





Annals of Mathematics Studies

Number 117






RADICALLY ELEMENTARY
PROBABILITY THEORY

BY

EDWARD NELSON

PRINCETON UNIVERSITY PRESS

PRINCETON, NEW JERSEY
1987



Copyright © 1987 by Princeton University Press

ALL RIGHTS RESERVED

The Annals of Mathematics Studies are edited by
William Browder, Robert P. Langlands, John Milnor, and Elias M. Stein
Corresponding editors:

Stefan Hildebrandt, H. Blaine Lawson, Louis Nirenberg, and David Vogan

Clothbound editions of Princeton University Press
books are printed on acid-free paper, and binding
materials are chosen for strength and durability. Pa-
perbacks, while satisfactory for personal collections,

are not usually suitable for library rebinding

ISBN 0-691-08473-4 (cloth)
ISBN 0-691-08474-2 (paper)

Printed in the United States of America
by Princeton University Press, 41 William Street

Princeton, New Jersey

Library of Congress Cataloging in Publication data will
be found on the {ast printed page of this book



Table of contents

Preface
Acknowledgments

Pk ped ek ek e e ek ped et
0 I OOV i W N =

SOWND U AW

Random variables

Algebras of random variables

Stochastic processes

External concepts

Infinitesimals

External analogues of internal notions
Properties that hold almost everywhere
L' random variables

The decomposition of a stochastic process
The total variation of a process

. Convergence of martingales

. Fluctuations of martingales

. Discontinuities of martingales

. The Lindeberg condition

. The maximum of a martingale

. The law of large numbers

. Nearly equivalent stochastic processes

. The de Moivre-Laplace-Lindeberg-Feller-Wiener-

Lévy-Doob-Erdos-Kac-Donsker-Prokhorov theorem

Appendix
Index

vii
ix

10
12
16
20
25
30
33
37
41
48
53
57
61
63

" 72

75
80
95






Preface

More than any other branch of mathematics, probability theory has
developed in conjunction with its applications. This was true in the begin-
ning, when Pascal and Fermat tackled the problem of finding a fair way
to divide the stakes in a game of chance, and it continues to be true to-
day, when the most exciting work in probability theory is being done by
physicists working on statistical mechanics.

The foundations of probability theory were laid just over fifty years ago,
by Kolimogorov. I am sure that many other probabilists teaching a begin-
ning graduate course have also had the feeling that these measure-theoretic
foundations serve more to salve our mathematical consciences than to pro-
vide an incisive tool for the scientist who wishes to apply probability theory.

This work is an attempt to lay new foundations for probability theory,
using a tiny bit of nonstandard analysis. The mathematical background
required is little more than that which is taught in high school, and it is
my hope that it will make deep results from the modern theory of stochastic
processes readily available to anyone who can add, multiply, and reason.

What makes this possible is the decision to leave the results in non-
standard form. Nonstandard analysts have a new way of thinking about
mathematics, and if it is not translated back into conventional terms then
it is seen to be remarkably elementary.

Mathematicians are quite rightly conservative and suspicious of new
ideas. They will ask whether the results developed here are as powerful as
the conventional results, and whether it is worth their while to learn non-
standard methods. These questions are addressed in an appendix, which
assumes a much greater level of mathematical knowledge than does the
main text. But I want to emphasize that the main text stands on its own.
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Radically Elementary Probability Theory






Chapter 1

Random variables

Here are some of the basic definitions and inequalities of probability
theory, in the context of a finite probability space.

A finite probability space is a finite set 1 and a strictly positive function
pr on (2 such that 3 pr(w) = 1. Then a random variable on {1 is a function
z:{1 — R, where R is the real numbers. The ezpectation or mean of a

random variable z is
Ez = ) z(w)pr(w).

An event is a subset A of {1, and the probability of an event A is

PrA= ) pr(w).

wEA

If A is an event, we define a random variable x 4, called its indicator func-
tion, by xa(w) =1 if w € A and xa(w) = 0if w ¢ A. Then PrA = Ex,.
Also, we define A°¢ to be the complementary event A° =1\ A of all w in 0
that are not in A.

The set R? of all random variables on 0 is an n-dimensional vector
space, where n is the number of points in {1. Consider the expression Ezy,
where = and y are any two random variables. Then Ezy = Eyz, Ezy is
linear in z and y, and Ezz > 0 unless £ = 0. Thus Ezy has all of the
properties of the inner product on n-dimensional Euclidean space. The
Euclidean norm v Ez? of the random variable z is denoted by ||z[,.

The expectation is a linear function on R®, so the random variables of
mean 0 form a hyperplane. The orthogonal complement of this hyperplane
is the one-dimensional subspace of constant random variables. We identify
the constant random variable whose value is A with the number A. With
this identification, z — Ez is the orthogonal projection onto the constant
random variables and z — z — Ex is the orthogonal projection onto the



4 CHAPTER 1

random variables of mean 0. We call Varz = E(z — Ez)? the variance of z,
V' Varz the standard deviation of z, E(z — Ez)(y — Ey) the covariance of
z and y, and
E(z — Ez)(y — Ey)
VVarz/Vary

the correlation coeffictent of x and y. Thus if z and y have mean 0, the
variance of z is the square ||z||2 of its Euclidean norm, the standard devia-
tion of z is its Euclidean norm ||z||z, the covariance of z and y is their inner
product, and the correlation coefficient of z and y is the cosine of the angle
between them.

Other norms on random variables are frequently useful. For 1 < p < o0
let ||z|l, = (E|z|P)}/?, and let ||z|o = max|z(w)|. Clearly ||z||, < ||/,
and if wp is a point at which |z| attains its maximum, then

lzllp > (J2(wo)"pr(wo)}*/ = ||zl

as p — 00, so that ||z||, — ||z|lc as p — oo.
For 1 < p < oo, let p, called the conjugate exponent to p, be defined by
p' = p/(p— 1), so that

1.1,
p o

Hélder’s inequality asserts that

[Ezy| < l=llp/lyll- (1.1)

If z or y is 0, this is trivially true. Otherwise, we can assume that we
have ||z], = |lylly = 1 after replacing = by z/||z||, and y by y/||yllp-
Then E|z|? = E|y|* = 1 and we want to show that |[Ezy| < 1. Since
|Ezy| < E|zy|, this will follow if we can show that |zy| is less than a convex
combination of |z|? and |y|”'. Taking the obvious convex combination, we
need only show that

1 1 '
zy| < —|zl? + —|y|?.
23] < el +
To see this, take logarithms. By the concavity of the logarithm function,
the logarithm of the right hand side is greater than

1 1 !
—log [z|? + = log |y|” = log |zy|,
5 log[zl? + Zloglyl” = log|zy]

which concludes the proof of Holder’s inequality.
Keeping the normalizations ||z||, = ||y||,» = 1, we see that we have strict
inequality in (1.1) unless |Ezy| = E|zy|—that is, unless z and y have the
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same sign—and unless |z|” = |y|¥’; but if z = sgny |y[’/?, then Ezy = 1.
Consequently, for all random variables z we have

lz|lp = max, |Ezy|. (1.2)

llwllpr=

An immediate consequence of (1.2) is Minkowsk:’s inequality
2+ 2llp < lizllp + |2l (1.3)

If we let 1' = oo and oo’ = 1, then (1.1), (1.2), and (1.3) hold for all p with
1< p<oo.
Let f be a convex function. By definition this means that

FQZ z(w)pr(w)) < - f(z(w))pr(w);

that is,
f(Ez) < Ef (), (1.4)

which is Jensen’s inequality. If we apply this to the convex function f(z) =
|z|?, where 1 < p < 0o, we obtain |Ez|f < E|z|?. Applied to |z| this gives
llzlls < ||z||p, and applied to |z|", where 1 < r < oo, this gives ||z||, < ||z||
so that ||z||, is an increasing function of p for 1 < p < oo.

Let f be a positive function. Then, for A > 0,

Ef(z) = 2 f((w))pr(w) > UZ(:)»}f(z(w))Pr(W) > APr{f(z) > A},

rps

so that Ef(2)
z
S (1.5)
(Here {f(z) > A} is an abbreviation for {w € Q : f(z(w)) > A}; such
abbreviations are customary in probability theory.) In particular, for A > 0
and p > 0 we have {|z| > A} = {|z|? > A?}, and so by (1.5) we have

Pr{f(z) 2 A} <

Pr{jz| > A} < M. (1.6)

AP

This is Chebyshev’s inequality.



Chapter 2

Algebras of random variables

The set R? of all random variables on {1 is not only a vector space, it
is an algebra. By an algebra A of random variables we will always mean
a subalgebra of R® containing the constants; that is, A is a set of random
variables containing the constants and such that whenever z and y are in 4,
then z + y and zy are in A.

The structure of an algebra A is very simple. By an atom of A we mean
a maximal event A such that each random variable in A is constant on A.
Thus Q is partitioned into atoms—that is, {2 is the union of the atoms and
different atoms are disjoint. If A is an atom and w ¢ A, then by definition
thereis an  in A such that z(A) # z(w). Let z, = (z—z(w))/(z(A4) —z(w)).
Then z, € A and z,(4) = 1, z,(w) = 0. Consequently, the indicator
function x4 is in 4, since

XA = H Ty

wEA
Thus A consists of all random variables that are constant on the atoms
of A. Conversely, given an arbitrary partition of 2, the set of all random
variables that are constant on each event in the partition is an algebra of
random variables.

Notice that an algebra A of random variables contains arbitrary func-
tions of its elements: if f: R™ — R and z;,...,z, arein 4, then f(z1,...,z,)
isin A. ‘

As an example, let £ be the set of all pairs (,7) with 1 < 4,7 < 6 and
pr({¢,7)) = 1/36 for all (¢,7) in 1. This is a model for throwing a pair of
dice. Let z({1,5)) = ¢, y({¢,7)) = 7, and 2({z,5)) = 7+ j. Let A be the
smallest algebra containing z. The atoms of A are indicated in Fig. 2.1.
There are 11 atoms which we denote by A,,..., Ays, with the subscript
denoting the value of z on the atom.
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Let A be an algebra of random variables. If A is an atom of A, then A
is itself a finite probability space with respect to pr, defined for all w in A
by A

pry(w) = ﬁpr(w).

This means that every construct or theorem of probability theory can be
relativized to any algebra A of random variables. In this relativization,
elements of A play the role of constants.

For example, corresponding to the expectation Ez of a random vari-
able = we define the conditional expectation or conditional mean E z to be
the element of A that on each atom A is the expectation of = with respect
to pry. Thus if A, is the atom containing w, then

LS a(n)pr(n).

PrA, e A

Eqz(w)

The expectation is linear; that is,
E(Alxl + Azxg) = /\IEIEl + /\2E$2; Al,/\z € R.
The conditional expectation is A-linear; that is,

Eq(niz1 + y272) = 11 Egzy + y2Egzy; y1, 92 € A

Ay As Ay As As Ay
1 2 3 4 5 6 - 1

Figure 2.1: Dice
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The expectation preserves constants; that is, EA = A if X is a constant.
The conditional expectation preserves elements of A; that is, Eqy =y if y
is in A. The expectation is the orthogonal projection onto the constants;
that is, E(z — Ez)? < E(z — A)? for all constants A. By relativization,
Eq(z — Egz)2 < E4(z — y)? for all y in A. Notice that EgE4 = Ejp if
B C A. In particular, EE; = E since E is the conditional expectation
with respect to the trivial algebra consisting of the constants. Therefore
E(z — E4z)? < E(z — y)? for all y in A, so that E, is the orthogonal
projection onto 4.

Another notation for E4z is E{z|A}, and we use E{z|z;,...,z,} for
the conditional expectation of z with respect to the algebra generated by
Zy,...,Zn. In the example of Fig. 2.1, E{z|z} = E{y|z} by symmetry, so
that E{z|z} = {E{z|z} = }=.

We define the condstional probability Pry B of an event B with respect
to the algebra A, by relativization, as Pry B = E4xp. Thus

Pr(Bn A,)
PryB(w) = “PrA
where A, is the atom of A containing w. Note that this is a random variable,
not (in general) a constant.
The relativization of Holder’s inequality is

[Eqzy| < (E4lz|?) /7 (Eqlyl”) ",
the relativization of Jensen’s inequality is

f(Eqz) < E4f(2)
for f convex, and the relativization of Chebyshev’s inequality is

E;f(z)

Prg{f(z) 2y} < ”

for f positive and y > 0 in A. From Jensen’s inequality we have
|Eazl” < Eqlzl?,

and since EE4 = E, this gives ||E4z||, < ||z, valid for 1 < p < c0.

Let A be an algebra of random variables. We denote the set of all atoms
of A by at(4). Not only is each element A of at(A) a finite probability space
with respect to pr4, but at(A) is itself a finite probability space with respect
to

pry(4) = Pr(4)
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for A in at(A). We say that the original probability space (2, pr) is fibered
over (at(A),pry), with fibers (A,pr,). In the example of Fig. 2.1, this
can be visualized by rotating the figure 45° clockwise. Expectations with
respect to pr); are denoted by E/, and the probability of a set of atoms is
denoted by Pr'. Notice that E{E sz = Ez.

A special case of a fibering is a product. Suppose that (Q;,pr;) and
(022, pry) are finite probability spaces. Then 2; X 1, is a finite probability
space with respect to pr, X pr,, where

pr1 X pry({wi, ws)) = pry(wi)pry(w;).

Let A; be the algebra of all random variables that are functions of w; alone.
Then at(4;) consists of all sets of the form {(w;,ws) : w1 = 11}, where n;
is any element of (1;.



Chapter 3

Stochastic processes

The word “stochastic” means random, and “process” in this context
means function, so that a stochastic process is a function whose values are
random variables. Let T be a finite set and let ({2, pr) be a finite probability
space. A stochastic process indered by T and defined over (Q,pr) is a
function &: T — R®. By a “stochastic process” we will always mean one
that is indexed by a finite set and defined over a finite probability space.
We write £(t,w) for the value of £(¢) at w, and we write £(-,w) for the
function t — £(¢,w). Thus each £(t) is a random variable, each £(t,w)
is a real number, and each £(-,w) is a real-valued function on T, called a
trajectory or sample path of the process.

Let A¢ be the set of all trajectories of the stochastic process £. Then A,
is a finite subset of the finite dimensional vector space R7 of all functions
from T to R. We define the probability distribution pr, by

pre(A) = Pr{&(t) = A(¢) for all ¢ in T},

for all X in A¢. Then (A¢, pry) is a finite probability space. Two stochastic
processes £ and &', indexed by the same finite set T but defined over possibly
different finite probability spaces, are called equivalent in case A¢ = Ay and
PT¢ = Prg; that is, in case they have the same trajectories with the same
probabilities. Probability theory is concerned only with those properties of
a stochastic process that are shared by all equivalent stochastic processes.
Notice that the function sending ¢ into the evaluation map A — A(t) is a
stochastic process defined over (Af,pre) that is equivalent to £&. Thus in
studying a stochastic process there is no loss of generality in assuming that
it is defined over the space of its trajectories.

If T consists of a single element, then we can identify a stochastic process
indexed by T with the corresponding random variable. That is, a random

10
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variable is a simple special case of a stochastic process. If z is a random
variable, then pr (A) = Pr{z = A}, where A is in

A, ={X € R:Pr{z = A} #0},
and it is easy to see that
Ez =) _ Apr,(}). (3.1)

The right hand side of (3.1) is the expectation of the identity function A

on (A, pr,). (If (3.1) were not true, then, by the dictum of the preceding

paragraph, expectations would be of no concern to probability theory.)
The random variables of a stochastic process £ are called independent

in case
pre() = [] pregy (A1)
teT
for all A in A¢. Suppose for example that T' = {1,...,v} and that z, is a
random variable on (Q,pr). Then (1%, pr”), where

pr¥(wi,...,w,) = pr(w1) -+ - pr(w,),
is a finite probability space, and the random variables z,, defined by
Tn(wi, .. wy) =xo(wn), 1<n <y,

are independent. This stochastic process describes v repeated independent
observations of the given random variable z,.

If A;,..., A, are events, they are called tndependent in case their indi-
cator functions are independent. In the dice-throwing example (Fig. 2.1),
let A be the event that 7 is odd, let B be the event that 7 is odd, and let
C be the event that 7 4+ 5 is odd. Then A, B are independent; A, C are
independent; B, C are independent; but A, B, C are not independent. The
event A tells us nothing about C, the event B tells us nothing about C,
but A and B together tell us everything about C. This is the principle on
which a good detective story is based.



Chapter 4

External concepts

Let z; be a random variable of mean 0 and variance 1. Consider v
independent observations zq,...,z, of zg.

If v is a large number, then almost surely for all large n < v
the average (z; + - -- + z,,)/n is nearly equal to 0.

This is an intuitive statement of the strong law of large numbers. It is not
precise because we have not explained what is meant by “large”, “almost
surely”, and “nearly equal”.

Here is a sketch of how the strong law of large numbers is formulated in
conventional mathematics. One replaces the finite sequence z,,...,z, by
an actually infinite sequence z;,zs,... To do this, one must construct the
infinite Cartesian product of the initial probability space 1 with itself. Even
if {1 is a finite probability space, the infinite Cartesian product will contain
an uncountable infinity of points. Each individual point has probability O.
Only certain (measurable) sets are events, and the probability of an event
is no longer the sum of the probabilities of the points in it. Only certain
(measurable) functions are random variables. The expectation becomes an
integral, and only certain (integrable) random variables have expectations.
Then the strong law of large numbers becomes the statement that except
for an event of probability 0, for all € > 0 there is an m such that for all
n > m we have |(z1 + - + zn)/n| < &.

The approach that we take is different, and has the virtue of remaining
within the elementary framework of finite probability spaces. We retain the
finite sequence z;,...,z, but we let & be nonstandard. By an infinitesimal
we mean a real number whose absolute value is smaller than the reciprocal
of some nonstandard natural number, and two real numbers are said to
be nearly equal in case their difference is infinitesimal. A property holds

12
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almost surely in case for all non-infinitesimal positive € there is an event N
with Pr N < e such that the property holds on N¢. Then, with “large” as a
synonym for nonstandard, the statement of the strong law of large numbers
is identical with the intuitive statement given above. '

The conventional approach involves an idealization, because one cannot
actually complete an infinite number of observations. The second approach
also involves an idealization, because one cannot actually complete a non-
standard number of observations. In fact, it is in the nature of mathemat-
ics to deal with idealizations. The choice of a formalism must be based
on esthetic considerations, such as directness of expression, simplicity, and
power. Actually, different formalisms in no way exclude each other, and it
can be illuminating to look at familiar material from a fresh point of view.

Let us examine how the notion of a nonstandard number arises. Let N
be the set of all natural numbers 0,1,2,... The basic property of N is the
induction theorem, which asserts that if S is a subset of N containing 0, and
such that whenever n is in S then n + 1 is in S, then S = N. Now if A(n)
is any formula of conventional mathematics, such as “n is prime and n + 2
is prime” or “n > m”, then we can form the subset S = {n € N : A(n)}
of all natural numbers n for which A(n) holds. However, the formula must
be a formula of the agreed-upon language for mathematics. Sets are not
objects in the real world; they are formal mathematical objects and only
exist when the formal rules of mathematics say they exist. For example, it
does not make sense to consider S = {n € N : A(n)} if A(n) is “n is not in
my opinion enormously large”.

From the work of Godel in the early thirties it emerged that the ba-
sic intuitive systems of mathematics, such as N, cannot be completely
characterized by any axiom scheme. To explain what this means, let us
adjoin to the language of conventional mathematics a new undefined pred-
icate “standard”. Then “n is standard” has no meaning within conven-
tional mathematics. We call a formula internal in case it does not involve
“standard”—that is, in case it is a formula of conventional mathematics—
and otherwise we call it ezternal. Thus the simplest example of an external
formula is “n is standard”. Another example of an external formula is “z
is infinitesimal”, since by definition this means: there exists a nonstandard
natural number v such that |z| < 1/v. Only internal formulas may be used
to form subsets. (For example, it makes no sense to speak of “the set of all
standard natural numbers” or “the set of all infinitesimal real numbers”.)
We call an abuse of this rule illegal set formation.

We make the following assumptions:

1. 0 s standard,
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2. for all n in N, if n is standard then n + 1 is standard.

Then it is impossible to prove that every n in N is standard. (This does
not contradict the induction theorem—it merely shows that it is impossible
to prove that there is a subset S of N such that a natural number n is in S
if and only if n is standard.) That is, it is consistent to assume also:

3. there exists a nonstandard n in N.
We also assume:

4. if A(0) and if for all standard n whenever A(n) then A(n + 1), then
for all standard n we have A(n).

In (4), A(n) is any formula, internal or external. This assumption is called
external induction. It is a complement to ordinary induction, which as
we have seen may fail for external formulas. (Of course, ordinary induc-
tion continues to hold for ordinary—i.e., internal—formulas. Nothing in
conventional mathematics is changed; we are merely constructing a richer
language to discuss the same mathematical objects as before.)

Using external induction we can easily prove that every nonstandard
natural number 1s greater than every standard natural number (let v be a
nonstandard natural number and in (4) let A(n) be “v > n”), that the sum
of two standard natural numbers is standard (let m be a standard natural
number and let A(n) be “n + m is standard”), and that the product of two
standard natural numbers is standard (let m be a standard natural number,
let A(n) be “nm is standard”, and use the fact just proved about sums).

Another assumption that we shall occasionally use is called the sequence
principle. Let A(n,z) be a formula, internal or external. If for all stan-
dard n there is an z such that A(n,z), then, of course, there is an z, such
that A(0,zo), an z; such that A(1,z;), an z, such that A(2,z,), and so
forth. We assume:

*5. if for all standard n there is an z such that A(n,z), then there is a
sequence n — x, such that for all standard n we have A(n,z,).

For an example of the use of the sequence principle, see the proof of Theo-
rem 6.1. Results that use the sequence principle will be starred.

Notice that by (2) there is no smallest nonstandard natural number.
We can picture the natural numbers as lying on a tape (Fig. 4.1). The
standard natural numbers behave just like the full system N, so far as
internal properties are concerned. But N consists of the standard and the
nonstandard natural numbers as well. Notice that we did not start with
the left portion of the tape and invent a right portion to be added on.
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N EEEEE I EEEREERE
0123
standard nonstandard

Figure 4.1: The natural numbers

Rather we started with the whole tape and then adjoined a predicate to
our language that allows us to distinguish the two portions of the tape. The
use of this new predicate “standard” is similar to color on a TV set: the
picture is the same, but we see distinctions that we could not make before.

For a long time the incompleteness of axiomatic systems was regarded
by mathematicians as unfortunate. It was the genius of Abraham Robinson,
in the early sixties, to turn it to good use and show that thanks to it a vast
simplification of mathematical reasoning can be achieved.



Chapter 5

Infinitesimals

Now we introduce some useful external notions for the field R of real
numbers.

A real number z is called infinitesimal in case |z| < 1/v for some
nonstandard natural number v. Since a nonstandard v is bigger than every
standard n, it follows that if z is infinitesimal then |z|] < 1/n for every
standard natural number n. I claim that the converse is also true. If
|z| < 1/n for all n in N, then z = 0, and so is infinitesimal; otherwise, let p
be the least natural number such that |z| > 1/u. Then p is nonstandard,
so v = u — 1 is nonstandard. But |z| < 1/v, so z is infinitesimal.

A real number z is called limisted in case |z| < n for some standard n
in N; otherwise z is called unlimited. The words “finite” and “infinite”
are sometimes used as synonyms for “limited” and “unlimited”, respec-
tively, but since they already have internal meanings, their use can lead to
confusion, as in “this integral is finite”.

If z and y are real numbers we say that:

z~y incase z — y isinfinitesimal,

z<y incase z <y+ afor some infinitesimal o,

z>y incase y<uz,

z€y incase z <yand z#y,

>y incase y<Kz.
We may read z ~ y as z is infinitely close (or nearly equal) to y, <y as
T is weakly less than y, x>y as z is weakly greater than y, z < y as z is
strongly less than y, £ > y as z is strongly greater than y, and £ > 0 as z
is strongly positive.

The extended real line R consists of R together with two other points,
—oo and oco. We write —oo < z < oo for all z in R. We define £ ~ oo to
mean that z is positive and unlimited, £ < co (or oo > z) to mean that

16
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z % 00, and —oo < z (or £ > —oo) to mean z % —oo. Thus |z| < oo if
and only if z is limited, and |z| ~ oo if and only if = is unlimited.
Visualize the relations ~, <, and < on the real number line. To the
naked eye, ~ looks like =, < looks like <, and < looks like <.
We list below a sequence of propositions that follow easily from the
definitions given above:

1. z ~ 0 if and only if = s infinitestmal.

2. z ~ 0 if and only if for all € > 0 we have |z| < €.

3. Infinitesimals are limited.

4. Letz # 0. Then z ~ 0 if and only if 1/z is unlimited.
5. |z| = 0o if and only if 1/x ~ 0.

6. If £ and y are limited, then so are £ + y and zy.

7. If z and y are infinitesimal, then so are z + y and zy.
8. If z ~ 0 and |y| < oo, then zy ~ 0.

9. z<yandy<rifandonlyifz ~y.
10. If z~y and y ~ z, then z ~ z.
11. For all n in N, n ts standard if and only if n s limited.

12. For all n tn N, n is nonstandard if and only if n is unlimited.

Theorem 5.1 If n is standard and z; ~ y; for i =1,...,n, then

Proof. We need to show that 3 ,(z; — ¥:) ~ 0. Use (7) and external
induction. O

This is not true in general for an unlimited n: take z; = 1/n and y; = 0.

If z # 0 and y # 0, we say that £ ~ y (z is asymptotic to y) in case
:z:/y ~ 1.
Theorem 5.2 If 0 < |z|, |y| < oo (that s, if £ and y are non-infinitesimal
and limited), then  ~ y if and only if z ~ y.

Proof. Let 0 < |z|, |y| < oo. Suppose that £ ~y. Then z/y =1 + «
with @ =~ 0, so that £ —y = ay. But ay ~ 0 by (8), and so z ~ y.
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Conversely, suppose that z ~ y. Then z — y = a with a ~ 0, so that
z/y =1+ a/y. But a/y ~ 0 by (5) and (8), and so z ~ y.

Theorem 5.3 If z; > 0, y; > 0, and z; ~ y; fort =1,...,n, then

Proof. Let z > 0 and y > 0. Then z ~ y if and only if for all e > 0
we have (1 — e)y>§ z < (1+¢€)y. Let € > 0. Then

(1-¢e)y <z < (1+¢€)u

Therefore " n n
(1-e)2w<d zm<(l+e)d u O
=1 =1 =1

There is no requirement in Theorem 5.3 that n be limited. Theorems
5.2 and 5.3 together are the reason why integration works: we make only
an infinitesimal error in adding up an unlimited number of infinitesimals,
provided only that the sum is limited and that we make an infinitesimal
percentage error in each summand.

I have emphasized that the rules of our theory do not allow us to form
subsets corresponding to external properties. In many cases we can even
show that such subsets do not exist:

Theorem 5.4 There does not exist a set A;, Ay, As, Ay, or Ag such
that (for alln and z)

n € A; if and only if n € N and n s standard,

n € Ay if and only if n € N and n is nonstandard,

T € As if and only if x € R and z 1s limited,

z € Ay if and only if £ € R and z ts unlimited,

z € As if and only if £ € R and z is infinitesimal.

Proof. The existence of A; would violate the induction theorem, if A,
existed we could take A; = N\ A,, if A; existed we could take A, = N\ A;,
if A4 existed we could take A; = R\ A4, and if A5 existed we could take
Ag={zeR:1/z€ As}. O

This seems like a negative result, but it is very useful. For example, if
A(z) is an internal formula and we have shown that for all infinitesimal z
we have A(z), then we know that there exists a non-infinitesimal z such
that A(r), because otherwise we could let A; = {x € R : A(z)}. This is
called overspill.

Let z,,x,... be a sequence of real numbers such that z, ~ 0 for all
limited n. Since “z, =~ 0” is an external formula, we cannot use overspill
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directly to prove that z,, ~ 0 for some unlimited n. Nevertheless, the result,
called Robinson’s lemma, is true, and the proof is accomplished by replacing
“z, ~ 0” with a weaker internal formula:

Theorem 5.5 Let z;,z;,... be a sequence of real numbers such that
T, =~ 0 for all limited n. Then there s an unlimited v such that z,, ~ 0 for
alln <wv.

Proof. Consider the set S of all m such that |z,| < 1/n for all n < m.
This set contains all standard numbers and therefore, by overspill (Theorem
5.4), it contains a nonstandard (unlimited) natural number v. Let n < v.
If n is limited, then z, ~ O by hypothesis. If n is unlimited, then |z,] <
1/n~0,since visin S. Thusv ~ oo and z, ~0foralln <wv. O

If we attempt to construct a counterexample by considering the sequence
such that z, = 0 whenever n is limited and z, = 1 whenever n is unlimited,
we commit illegal set formation. There is no such sequence. A sequence is
a function, a function is a set, and we may not use external properties to
define sets.



Chapter 6
h

External analogues of internal
notions

Let T be a finite subset of R. Throughout this book, we will use the
following notation: the first element of T is a, the last is b, we let T' =
T \ {b}, for t in T’ its successor is ¢t + dt, and for any £:T — R we write
dé(t) = &(t + dt) — £(t). Whenever £&:T — R and we write £(t), it is
understood that ¢t isin T. If 0 <« b — a <« oo and each dt is infinitesimal,
we call T a near interval.

Most of the concepts of analysis are vacuous when applied to a function
whose domain is a finite set of points, so there will be no danger of confusion
if we use familiar terminology for external analogues of the concepts. But
it is sometimes convenient to insert a modifier, such as “near” or “nearly”,
before the familiar term when it is used for an elementary external analogue.

Let T = {1,...,v} where v is an unlimited natural number. This is
an elementary analogue of Nt = N\ {0}. By analogy with the notion
of convergence for an infinite sequence, we say that z;,...,z, is (nearly)
convergent in case there is a number z such that z,, ~ z for all unlimited
n < v. We also say in this case that z;,...,z, (nearly) converges to z.
Notice that if it converges to z, then it also converges to y if and only if
Yo~z

In Fig 6.1 the values of z,, are indistinguishable to the naked eye from z
whenever n < v is unlimited. It may not seem from Fig. 6.1 that near
convergence captures the intuitive notion of getting closer and closer to =z.
What can we say about the values of z,, for n < c0? Let € > 0, and let n,
be the least number such that |z, — z| < € for all n with n, < n < v. Then
n. < oo, for if it were true that n, ~ oo then we would have n, — 1 ~ o0
and |z,,_1 — z| < €. See Fig. 6.2.

20
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o 6 ¢ 6 o 0o o O T

0123 v

Figure 6.1: Near convergence

There is no unique way to construct an elementary external analogue
of a given internal notion. Let T be a subset of R, and let £&: T — R. We
say that & admits k e-fluctuations in case there exist elements 35 < --- < ¢,
of T with

[€(to) — £(t1)| > &, [&(t1) = E(t)| > €, -y [E(te-1) — E(te)| > €

(in which case we say that o, ..., are tndices of k e-fluctuations). These
are internal notions. Now an infinite sequence is convergent if and only
if for all € > O there is a k such that the sequence does not admit & e-
fluctuations. This suggests the following external definition. We say that
an infinite or finite sequence (or any function &: T — R) is of limited fluc-
tuation in case for all £ > 0 and k£ ~ oo it does not admit k e-fluctuations.
Thus the property of a sequence being of limited fluctuation is, like the
property of near convergence, an external analogue of the internal notion
of convergence. But it is a weaker property: let : < v be unlimited, and

'S .
z+e
.o‘ e 6 06 ¢ 0 0 ¢ o
- T—¢
[
°
°
[ ]
0123 e v

Figure 6.2: Near convergence again
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let z, =0forn<7and z, =1 fori <n <v. Then z,,...,z, is of limited
fluctuation but it is not convergent. On the other hand, if z,...,2, is
convergent, then it is easily seen (see Fig. 6.2) to be of limited fluctuation.

Both the notion of near convergence and the notion of being of limited
fluctuation will be important for our study of fluctuations in stochastic
processes. Near convergence expresses an ordinal property of convergence
(from some point on there is no e-fluctuation), while being of limited fluc-
tuation expresses a cardinal property of convergence (there is only a limited
number of e-fluctuations).

Let A(n) be any formula, internal or external. The external least number
principle asserts that if there is a standard number n such that A(n), then
there is a least number m (which must be standard) such that A(m). This
can be proved by external induction, just as the usual least number principle
is proved by induction.

*Theorem 6.1 Let r1,...,, be of imited fluctuation, wherev ~ co. Then
there s an unlimited p < v such that z,,...,, converges.

Proof. Let j <« 0o. The set of all k such that zy,...,z, does not admit
k (1/7)-fluctuations contains all k ~ oo, so it contains some k < oo by
overspill. By the external least number principle, there is a least number [,
with I < k, such that there do not exist unlimited indices of [ + 1 (1/7)-
fluctuations. If I = 0, let p; = v. If [ > 0, there are unlimited numbers
no,...,n that are indices of I (1/7)-fluctuations; in this case, let p; = no.

Then oo ~ p; < v, and for all unlimited n < u; we have |z, — z, | <
1/j. By the sequence principle, there is a sequence of natural numbers
J = py such that for all j < oo these properties hold. Now make the
sequence decreasing: let f; = infi<; ;. By Robinson’s lemma, applied to
the reciprocals of the fz;, there is an unlimited j such that fi; is unlimited.
Let p be iz; for such a j. Thus p is unlimited, 4 < v, and p < p; for all
J < oo. For all unlimited n < u we have

| &N

|zn - xu‘ < Izn - xl‘j| + |xl‘j - mul

<

for all j < o0, so that z, ~ z,,. Thus z,,...,z, converges. O

We say that 37, z; is (nearly) convergent in case the sequence of par-
tial sums y, = X7, z;, for n = 1,...,v, is convergent, and is of limited
fluctuation in case the latter is. (Since “X%7_; z;” denotes a number and
not a sequence, there is an abuse of language here.) Notice that if Y7, z;
converges, then it converges to its sum z = 37 z; (and to any y that
is infinitely close to z), and that Y7, z; converges if and only if the tails
>.i{_, z; are infinitesimal for all unlimited n < v.
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The following implications are always valid, but none of the reverse
implications hold in general.

Yi_ . |zi| converges = 3.7, z; converges

v i v | isof limited v . isof limited
L=t |$'| oo = XLz fluctuation L% fluctuation

If |z;| < oo for all ¢ < 0o, then we also have the implication

v v
Z|x,~] converges = Z |z;| < oo.

=1 =1

This is because the least n such that >;_  |z;| < 1 must be limited, and

n—1
,Z=:1 lz:] < (n— 1) lsrlr_lsarzilm-] < o0.

Finally, if |z;| < oo for all 1 = 1,...,v, then it is easily seen that

14 v
Y|zl € 0o <= Y|z is of limited fluctuation.

=1 =1

Let &:T — R. Wesay that £ is (nearly) continuous at t in case whenever
s =~ t we have £(s) ~ £(t). We say that £ is (nearly) continuous (on T) in
case it is continuous at each t in T'. For example, let T be a near interval
with @ > 0, and let £(t) = 1/t. Then £ is continuous at ¢ if and only if
t > 0, so £ is continuous if and only if a > 0.

Let £ be continuous at ¢ and let € > 0. Let A, be the set of all § such
that for all s, if |s — | < 6 then |¢(s) — £(t)] < e. Then A; contains all
6 = 0, so by overspill it contains some § > 0. Thus £ is continuous at ¢ if
and only if for all € >> 0 there exists a § > 0 such that for all s, if [s—¢| < §
then [£(s) — £(t)| < e. Now let £ be continuous on T, and let € > 0. For
each ¢t in T let 6; be the largest reciprocal of an integer in A;. Then &; > 0.
Let 6 = min; §;. Then § is also strongly positive (simply because it is equal
to &é; for some ¢ in the finite set T'). Thus £ is continuous on T if and only
if for all € > O there is a § > 0 such that for all s and ¢, |s —t| < § implies
|€(s) — &€(t)| < e. Hence near continuity at ¢ is an elementary analogue of
continuity, and near continuity on T is an elementary analogue of uniform
continuity.

Here are some simple and useful illustrations of these notions. By ex-
ternal induction, e® <« oo for all standard n in N. Therefore e! < oo for
all t < oo. By the mean value theorem, e'** = ¢! + e¢*h with  between ¢
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and t + h. Thus if t < oo and h =~ 0, we have e!** ~ ¢!, so that t — e is
continuous on T if b < co. Similarly,

log(t + k) =logt + h/T ~ logt

for h ~ 0 and 0 < t, so that ¢t > logt is continuous on T if a > 0. Let
|z] < o0 and n ~ oo. Then

z\" z z 1/7\?
log(1+—) :nlog(1+—>:n ___(_) ~ z,
n n n 2\n

where T is between 0 and z, so that

T n
(1-1—-—) ~ %,
n

Thus n — (1 + z/n)", for n = 1,...,v where v ~ oo and z is limited,
converges to e*. By the Lagrange form of the remainder for Taylor series,

v n
T __ 23_ z z
“=L ot LT

v+1

with T between 0 and z. If z is limited so is €%, and if v ~ oo it is easy
to see that the remainder is infinitesimal. Consequently, if |z| < co and
v ~ oo, then }_7_,z"/n! converges to e®.

The variation, or total variation, of £:T — R is Y e |d€(t)]. We say
that ¢ is of limited variation in case its variation is limited. This is an
elementary analogue of the notion of a function of bounded variation. We
say that £ is (nearly) absolutely continuous in case whenever S C T" is such
that 3 ;cq dt ~ 0, then Y ,cg |d€(t)| ~ 0. Clearly, an absolutely continuous
function is continuous.

Theorem 6.2 Let T be a near interval. If £ is absolutely continuous, then
& is of imited variation.

Proof. Consider the set of all § such that whenever S C T' with
Yiesdt < 6, then ¥, |d€é(t)] < 1. Since this set contains all § ~ 0, it
contains some 6§ > 0. Then T' can be be split into n = [(b — a)/6] + 1
subsets S, with the last element of each S equal to the first element of the
next 8, with Z,cq |d€()| < 1. Thus X [d€(t)| < n < c0. O
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Properties that hold almost
everywhere

Finite probability spaces are usually employed only in the discussion
of combinatorial problems, but we want to make them the basis for a dis-
cussion of the classical limit theorems of probability theory and of central
topics in the modern theory of stochastic processes. The fundamental ex-
ternal notion that enables us to do this is the following. Let (Q},pr) be a
finite probability space and let A(w) be an internal or external formula.
We say that A(w) holds almost everywhere (a.e.), or almost surely (a.s.),
on (02, pr) in case for all € > 0 there is an event N with Pr N < ¢ such that
A(w) holds for all w in N°©.

If A(w) is an internal formula, then we can form the set
{A} ={weN:A(w)},

and A(w) holds a.e. if and only if Pr{A} ~ 1. But some of the most interest-
ing properties that we shall consider are external, and we need the formu-
lation of the preceding paragraph to avoid illegal set formation. Whether
A(w) is internal or external, though, the intuitive content of the state-
ment that A(w) holds a.e. is near certainty: given € > 0—for example,
€ = 10719 —there is an event N with Pr N < € such that with the possible
exception of points in N the formula A(w) always holds.

Theorem 7.1 Let = be a random variable. Then the following are equiva-
lent:
(i) ~0a.e.,
(i) for all A > 0 we have Pr{|z| > A} ~ 0,
(ii) there is a A ~ O such that Pr{|z| > A} ~ 0.

Proof. Suppose (i), and let A > 0 and € > 0. Then there is an event N

25 K
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with Pr N < € such that z(w) = 0 for all w in N¢, so that {|z| > A} C N
and thus Pr{|z| > A} <e. Since € > 0 is arbitrary, Pr{|z| > A} ~ 0. Thus
(i) = (ii). Suppose (ii). Then the set of all A such that Pr{|z| > A} < A
contains all A > 0 and so contains some A =~ 0 by overspill. Thus (ii) =
(iii). Finally, the implication (iii) = (i) is obvious. O

So long as we are considering a single random variable z, if £ ~ 0
a.e. then we can safely think of = as being O for all practical purposes—
the probability of being able to detect with the naked eye any difference
from O is less than 1071, The situation changes radically when we con-
sider an unlimited number of random variables zi,...,z, each of which
is infinitesimal a.e. Suppose that the day is divided into v equal parts of
infinitesimal duration 1/v, that we have a device whose malfunction would
cause a disaster, that the probability of malfunction in any period is ¢/v
where 0 <« ¢ < o0, and that different periods are independent. If we let z,,
be the indicator function of the event of a malfunction in the n’th period,
then for each n we have z,, ~ 0 a.e. (in fact, z,, = 0 a.e.). But we are really
interested in max z,, the indicator function of a disaster sometime during
the day. By independence, the probability of no disaster during the day is

c 14
(1~——) ~e k1.
v

Let z;,...,z, be a finite sequence of random variables, with v unlimited.
We say that z;,...,z, (nearly) converges to = in probability in case z, ~ z
a.e. for all unlimited n < v. As the example above shows, this is not very
restrictive. A more interesting question is whether z;,...,z, converges
to z a.e. For convergence in probability the exceptional set N is allowed to
depend on n, but not for convergence a.e.

Theorem 7.2 Let z,,...,z, be random variables. Then z.,...,z, con-

verges to 0 a.e. if and only if for all A > 0 and all unlimited n < v we
have

n<i<y

Pr{m<x |z;| > )\} ~ 0, (7.1)

Proof. Let
M(n,A) = {r£1a<x lzg| > )\}.

Suppose that z;,...,z, converges to O a.e., and let A > 0 and € > O.
Then there is an event N with Pr N < ¢ such that z;, ..., z, converges to 0
on N¢. Then M(n,)) C N if n is unlimited, so that Pr M (n, ) < e. Since
€ > 0 is arbitrary, Pr M(n, ) ~ 0.
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Conversely, suppose that Pr M(n,A) ~ 0 for n ~ oo and A > 0. Let
€ > 0, and for 7 # 0 in N, let n; be the least natural number such that

1 €
PrM (nj,;) S 5—
Let
o 1
N = U M (n,-, ’—.) -
j=1 J
(Not that it matters, but the M(n;,1/5) are empty for j sufficiently big,

since (1 is finite.) Then PrN < e. Notice that if j is limited, so is n;, for
otherwise we would have n; — 1 ~ oo and 1/5 > 0, so that

1
PrM (nj -1, —,)
J

would be infinitesimal by hypothesis and so < £/27, contradicting the def-
inition of n;. Consequently, if w € N¢ and n ~ oo, then |z,(w)| < 1/5 for
all 7 < oo, and so z,(w) ~ 0. Since € > 0 is arbitrary, this shows that
Zy,...,Z, converges to 0 a.e. (J

Notice that, by Theorem 7.1, the relation (7.1) is equivalent to saying
that for all unlimited n < v we have

max |z;| ~ 0 a.e.
n<i<

Theorem 7.2 has the following corollary:

Corollary. Let £ be a stochastic process indezed by a finite subset T of R,
and let t be in T. Then & is continuous at t a.s. if and only if for all A > 0
and all h ~ 0 we have

Pr{lgﬁ%(hlf(s) —£(t)| > /\} ~ 0. (7.2)
Proof. Let v ~ oo, and for n < v let
Tn= |a_1?|§’f/n|£(s) - &(t)].

Then ¢ is continuous at ¢ if and only if z, converges to 0, and (7.1) is
equivalent to (7.2). O

Theorem 7.3 (Borel-Cantelli, ordinal version) Let A,,...,A, be events
and let k(w) be the largest k such that w € Ay, with k{w) = 0 if w 1s not in
any of the A,. \
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(1) If Zv_, Pr A, converges, then k 1s limited a.s.
(ii) If the A, are independent, then 3°;_, Pr A, converges if and only if
k 1s limsted a.s.

Proof. To prove (i), let £ > 0 and let j be the least number such
that PrU,_; A, < €. Then j is limited, since otherwise we would have
Prl;_; .1 An < X4 ; Pr4, ~ 0. But for all w in (U:cj A,)¢ we have
k(w) <j—1< oo. Thus k < o0 a.s.

In case (ii) we have

Pr() A5 = J[(1 - PrA,) < e Ln=iPran

n=1 n=t¢

since 1 — A < e™* (a convex function lies above its tangent line). If £ < 0o
a.s., then for ¢ =~ oo the left hand side is infinitely close to 1, and so
>¥_;PrA, ~ 0. Together with (i), this proves (ii). O

Theorem 7.4 (Borel-Cantelli, cardinal version) Let Ay,..., A, be events
and let K(w) be the number of n such that w € A,,.

(1) If v PrA, < oo, then K is limited a.s.

(i) If the A, are independent, then 3.._, Pr A, < oo if and only if K
ts limited a.s. In fact, 3°,_, Pr A, ~ oo if and only if K ts unlimited a.s.

Proof. To prove (i), notice that >°},_, Pr A,, = EK, and by the Cheby-
shev inequality for p = 1 we have Pr{K > I} < EK/l. But if EK < oo,
then for all € > 0 there is an | <« oo such that EK/l < ¢, so that
K < | < oo except for an event of probability at most €, and hence
K < oo a.s.

To prove (ii), we need only show (when the A, are independent) that
if EK ~ oo, then K ~ oo a.s. By the Chebyshev inequality for p = 2 we
have Pr{|K — EK| > A} < Var K/A%. But by independence,

VarK =) _ Varyy, < ZEXEL. =EK.

Hence Pr{|K — EK| > A} < EK/). Suppose that EK ~ oo and take
A = lEK. Then Pr{|K — EK| > 1EK} ~ 0. Thus except for an event of
infinitesimal probability we have |K — EK| < 1EK, so that K ~ oo a.s. [

If the A, are independent, then either K <« oo a.s. or K ~ oo a.s.
This is not in general true for the k of Theorem 7.3: let A, = @ for all
n < v except for n = 7, where 7 ~ oo, and let Pr 4; = % Then the 4,
are independent, but Pr{k = 0} = 1 and Pr{k = ¢} = 1. In this example
Y Pr A, is limited but not convergent.

A convergent series of probabilities converges to a limited value, and if

k < oo then K < o0, so in the ordinal version both the hypothesis and the
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conclusion of (i) are stronger. The language of conventional mathematics
is not well adapted for distinguishing between the ordinal and cardinal
versions: if we have an actual infinity A,, A, ... of events, then the cardinal
statement that only a finite number K of them occur is equivalent to the
ordinal statement that from some point k& on none of them occur. Yet the
distinction is of some practical importance. The discussion above makes
it plain that if we want to estimate K, then a bound on ) Pr A, suffices,
whereas if we want to estimate k, then we need an estimate showing the
smallness of the tails of 3 Pr A,,. For the disaster example discussed earlier
in this chapter, it is not true that & is limited a.s., but at least we can take
comfort in the fact that almost surely only a limited number of disasters
will occur during the day.
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! random variables

If z is a random variable and a is a constant, we define the truncated
random variable z(®) by
2 = 2X(jzica)-
Thus (%) (w) = z(w) if |z(w)| < @ and otherwise z(*)(w) = 0.
We say that a random variable = ¢s L' in case E|z — z{?)| = 0 for all
a =~ oco. Since
Elz - | = Y Alpr,(3),

1A|>a

it follows that z is L! if and only if the sequence

n— Y |Alpr,(}),

A|gn

for n = 1,...,v with v > ||z||e, converges, or as we shall say more
briefly, 3~ |A|pr,(A) (nearly) converges. Thus if z is L', then Elz| < oc.
The converse is not true in general: suppose that pr{w) =~ 0 and let
z = pr(w) 'x(w}- Then E|z| < oo, but for a ~ oo with ¢ < pr(w)™!
we have E|z — z{9| =1 #£ 0.
Theorem 8.1 (Radon-Nikodym and converse) A random variable z is L'
if and only if E|z| is limited and for all events M with Pr M ~ 0 we have
E|z|xam ~ 0.

Proof. Suppose that z is L! and PrM =~ 0. Let a ~ oo be such that
aPr M ~ 0 (for example, let @ = 1/v/Pr M). Then

Elz|xam < Elzl?|xp + Elz — z(®|xpr < aPr M + Ejz — 29| ~ 0.

Conversely, suppose that E|z| < oo and for all M of infinitesimal prob-
ability we have E|z|xp ~ 0. Let a ~ oo and let M = {|z| > a}. Then

30
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(by Chebyshev’s inequality for p = 1) we have Pr M < E|z|/a ~ 0, so that
E|z|xp = 0; that is, E|z — z(d| ~ 0. O

It follows from this criterion that if z and y are L, then so is = + y; if
z is L' and [y| < |z|, then y is L*; and if z is L! and |[y||« < oo, then yz
is L1.
Theorem 8.2 (Lebesgue) If z and y are L' and £ ~ y a.e., then Ez ~ Ey.

Proof. Let z =z —y. Then z ~ 0 a.e., so (by Theorem 7.1) there is
an o ~ 0 such that Pr{|z| > a} ~ 0. But |z| < |z|X{jzj>a} + @, and since z
is L', Theorem 8.1 implies that E|z| ~ 0. Hence Ez ~ Ey. O

For 1 < p < oo we say that z is LP in case |z|P is L', and we say that =
is L™ in case ||z||oo < 0o. If z is I? and y is L*', where p' is the conjugate
exponent to p, then by the inequality

1 1,
lzy| < ;lzl" + ;!yl"

proved in Chapter 1, the product zy is L'. Also, if p > 1 and E|z|* < oo,
then z is L', since for a ~ oo we have

AP

S Mer() < ¥ L

| 1
IAl> x> 1P () < ap_—lEIﬂp =~0.0

Theorem 8.3 Let = be LP where 1 < p < oo, and let A be an algebra of
random variables. Then E x is L.

Proof. For p = oo this is obvious. For 1 < p < oo the relativized
Jensen inequality implies that |E4z|? < Eg4|z|?, so we need only prove the
result for p = 1. Let z be L'. Then E|E z| < E|z| < oo. Let PrM =~ 0
and let ¢ = 1/v/Pr M. Then

E[Ez|xpm < E[Ez@|xa + E[Eq(z — ) |xn

<aPrM +E|z — z(9| ~ 0.
By Theorem 8.1, E4z is L. (I

Theorem 8.4 Let z be L' and let A be an algebra of random variables.
Then = ts L' on a.e. atom of A.

Proof. Let € > 0. For each n in N let a,, be the least natural number
such that

Pr', {Eg[:c — z(“")| > l} < =
n 2n
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(See Chapter 2 for the definition of Pr).) I claim that if n < oo then
a, < oo. To see this, observe that E4|z — x(“)l is a random variable on
at(A) whose expectation is

E E |z — 29| = E|z — z(9].

The Chebyshev inequality implies that
1
Pr, {Eglx — 29 > ;} < nE|z — z19],

which is infinitesimal (and so < &/2") if @ ~ co.
Let N be the set of all atoms on which

1
Eqz — (™)) > =

S

for some n. Then Prly N < e. On those atoms not in N, we have
1
E4lz — 29| < =
n

for all n < oo, if @ =~ oo, since a > a, for all n < co. Thus z is L! on those
atoms. Since € > 0 is arbitrary, this concludes the proof. [J

In the converse direction, suppose that z is L! on every atom. If @ ~ oo,
then E4|z — z(?)| ~ 0 everywhere, so that E|z — z(9)| ~ 0. Thus if z is L'
on every atom of A, then z is L'. This is the most that can be said in
general, since we can always alter an L! random variable on a single point
of infinitesimal probability and obtain a random variable that is not L.

Theorem 8.4 has the following corollary.

Corollary. (Fubini) If z is L' on ((}; x Q,,pr, X pr,), then the random
variable z,, on (Qs, pr,), given by z,,(w;) = z(w1,ws), 1s L! for a.e. w; in
the space (1.



Chapter 9

The decomposition of a
stochastic process

We will study stochastic processes ¢ indexed by a finite subset T of R.
Recall the general notation introduced at the beginning of Chapter 6. Typ-
ical cases will be T = {1,...,v} where v is an unlimited natural number or
the case that T is a near interval. Thus, although we require T to be finite,
we will be studying the classical subjects of “infinite” sequences of random
variables and of “continuous” time parameter stochastic processes.

Let P:t — P; be an increasing function from T to the set of all algebras
of random variables on ({1, pr). This is called a filtration. We abbreviate
Ep, by E;. A P-process, or a process adapted to P, is a stochastic process
¢ indexed by T such that for all ¢ in T we have £(t) € P,. Since P, C P, for
s < t,if £ is a P-process, then £(s) € P, for all s < ¢. If ¢ is any stochastic
process indexed by T, then it is a P-process if we define each P; to be the
algebra generated by the £(s) with s < t, but it is convenient to allow for
the possibility that P, is larger. The algebra P, represents the past at time ¢,
and if y is a random variable, then E,y is the best prediction of y that can
be made knowing the past at time ¢.

A P-process € is called a martingale in case E,£(t) = &(s) for all s < ¢,
a submartingale in case E,£(t) > £(s) for all s < ¢, and a supermartingale
in case E,£(t) < &(s) for all s < t. Thus in the trivial case that 0 consists
of a single point, a martingale reduces to a constant function of ¢, a sub-
martingale to an increasing function, and a supermartingale to a decreasing
function.

Notice that if ¢ is a martingale, then

f(t) = Etf(b)

33
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for all . Conversely, given a filtration P and any random variable z, the
process ¢ defined by £(t) = E.z is a martingale.
Let £ be a P-process. We define D¢, d€, and 02 by

DE(t)dt = E,dé(t),

dé(t) = Dé(t)dt + dé(2),
oi(t)dt = Edé(t).
Thus D&(t)dt and of(t)dt are the conditional mean and variance of the
increment d¢(t). Notice that D¢ and o} are P-processes indexed by 77,
whereas d{ and dé are not in general P-processes.
Observe that D¢ = 0Oif £ is a martingale, D€ > 0 if £ is a submartingale,
and D¢ < 0if £ is a supermartingale. (Of course, for a general process D¢

need not have a constant sign either in ¢ or in w.) We will show that these
conditions are sufficient as well as necessary. We have

£(t) = &(s) + > DE(r)dr+ > dé(r), s<t. (9.1)

3<r<t 3<r<t

Now E,dé(z') = 0. Since P, C P, for s < r, we have E;, = E,E, for s <.
Hence E,d¢(r) = 0 for s < r. Therefore, if we apply E, to (9.1) we obtain

E.£(t) = £(s) + E, Y D¢(r)dr, s<t. (9.2)

a<r<t

Therefore £ is a martingale if and only if D¢ = 0, a submartingale if and
only if D¢ > 0, and a supermartingale if and only if D& < 0.

We call D¢ the trend of £, and if dé = 0 we say that £ is a predictable
process. Thus £ is a predictable process if and only if az = 0 or, equivalently,
d€ is a P-process. We let

£(t) = 2_ Dé(s)ds,
s<t
so that g(a) = 0. Then dé(t) = DE(t)dt is in P, so that £ is a predictable
process. We call it the predictable process associated with . Notice that
if we know P, then we know d{(t); we can predict the increment with
certainty. But to predict the next increment with certainty, we would need
to know P4, and this is not in general generated by P; and d¢ (t). We let

£(t) = €(a) + 2 dE(s).

s<t
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Thus é is a P-process whose increments, as the notation requires, are the
dé (t). Since DE = 0, the process ¢ is a martingale. We call it the martingale
assoctated with €. Notice that if £ is already a martingale, then é = £. We
have the decomposition L
§=¢€+¢
of an arbitrary P-process £ into a predictable process E and a martingale f ,
and this decomposition is unique if we impose the normalization £(a) = 0.
If the d¢(t) are independent, and if P, is the algebra generated by the
£(s) with s < ¢, then DE(t) = Ed¢(t) = Ed{(t). Therefore the partial
sums £(t) = X,<; d€(s) of independent random variables d{(s) of mean 0
form a martingale. To specify such a process up to equivalence, it is only
necessary to give the probability distribution of the increments. Here are
two examples. In the first example, which we call the Wiener walk, we set

Vdt with probability %,

t) =
dé(t) { —+/dt with probability I,

and in the second example, which we call the Poisson walk, we assume that
dt < 1 for all ¢t and set

1 with probability %dt,
dé(t) = 0 with probability 1 — dt,
—1 with probability Idt.

Let £ be a martingale. If r; < r,, then d¢(r;) € P,,. Since E,, is P,,-
linear, we have E,,dé(r1)dé(r2) = dé(r1)E,,dé(r:) = 0. But E,E,, = E,
for s < ry, and consequently

E,d¢(r1)dé(r:) =0, ry #£ry, s < max{ry,rs}.

Since £(t) — &(s) = X,cr<t dé(r) for s < ¢, this implies that

E,(¢(t) — &(s))* = E, ) of(r)dr, s<t.

s<r<t

If we take absolute expectations, we see that £ has orthogonal increments,

and
16(8) = €()NE= D llde()IE, s<t.

s<r<t

Now let  be any P-process, and consider the P-process ¢ given by

¢(t) = 3_n(s)d¢(s).

s<t
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Then ¢(a) = 0 and d¢(t) = n(t)dé(t), so that D¢(t) = n(t)DE(t) = O.
Thus ¢ is also a martingale, and ¢?(t) = n(t)?0%(t). We can think of ¢ as
describing a fair game. At any time ¢ the expected win on the next bet
is E;d£(t) = 0. Then the process n represents a gambling strategy. At
any time ¢ the gambler decides, on the basis of her knowledge of the past,
to multiply her bet by the factor n(t). Then ¢(¢) represents her winnings
at time t. No matter how cleverly the gambler chooses her strategy, any
possible winning at time ¢ will be offset by a possible loss at time ¢, since
E¢(t) = 0. This fact is the inspiration for the poem “Owed to a Martin-
gale”.

A random variable z is called normalized in case Exz = 0 and Varz = 1.
If z is not a constant random variable, then £ = u+ 0%, where u is the mean
of z, o is the standard deviation of z, and ¥ = (z — u)/0 is a normalized
random variable. Such a representation is possible even if z is a constant
random variable (that is, even if 0 = 0) by taking for £ any normalized
random variable. There is one exceptional case: if {1 consists of a single
point, then it does not admit any normalized random variable, and it must
be replaced by a larger finite probability space.

These trivialities have been recounted to serve as a guide in thinking
about the more interesting case of a stochastic process £. A stochastic
process £ is called normalized in case D¢ = 0 and 02 = 1. In particular,
if £ is normalized then it is a martingale. Both the Wiener walk and the
Poisson walk are normalized martingales. A stochastic process £ is called
non-degenerate in case a'g’ > 0onT'x (). If £ is a non-degenerate stochastic

process, define E by

E(t) = 3 op (s)dé(s),

s<t

where o 1=1/ ,/og and é is the associated martingale. Then E is normal-
ized, and we have the representation

£(t) = €&(a) + Zt D¢(s)ds + thfe(S)dé(S)' (9:3)

Even if £ is degenerate we can achieve such a representation by passing to a
larger finite probability space. Let n be any normalized martingale indexed
by T and defined over a finite probability space ({2, pr'). Define agl(s) to

be 1/1/0%(s) where o%(s) > 0, and O otherwise, and let & be the stochastic
process defined on (2 x ', pr X pr') by £(a) = 0 and

dé(s) = o' (s)dé(s) + X{o2(s)=0y4n ().

Then £ is normalized and we have the representation (9.3).



Chapter 10

The total variation of a process

The discussion in the last chapter was entirely internal. We shall be
interested mainly in processes for which D¢ and az are limited in suitable

norms. Then the increments dé(t) = DE(t)dt of the associated predictable
process will be of order dt while the increments dé(t) of the associated
martingale will be of order Vdt. The interesting local fluctuations of a
stochastic process are in the associated martingale. Nevertheless, in this
chapter we begin the study of fluctuations of stochastic processes by esti-
mating Y |d&(t)|, a method that is too crude to be of interest for martin-
gales. We will see that for a process ¢ whose difference quotient d¢/dt is L!
in both w and ¢ (in a sense that will be made precise), £ is absolutely con-
tinuous a.s. (i.e., almost surely the sample paths are absolutely continuous)
and that almost surely the associated martingale remains infinitely close
to its initial value. This last property also holds for an increasing process
with infinitesimal increments.

Notice that the definition

dt
b—a

prp(t) =

makes (T, pry) into a finite probability space. We denote the expectation
on this space by Er. If £ is a fixed function on T, then £ is of limited
variation if and only if Ez|d¢/dt| < co and, by Theorem 8.1, ¢ is absolutely
continuous if and only if d¢/dt is L' on (T', pry).

Now let £ be a stochastic process indexed by T, adapted to the filtration
P. When T = {1,...,v}, we sometimes use the notation &, for £(n).

Theorem 10.1 (i) If 3 ||dé(t)||1 < oo, then X |dE(t)] < oo a.s. (that is,
€ is of limited variation almost surely).
(if) If T ={1,...,v} and X ||d&,|| converges, then ¢, converges a.s.
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(iii) If d¢/dt is L' on T' X Q, then ¢ is absolutely continuous a.s.

Proof. In case (i), let ¢ = X ||d€(¢)|]1 and let z = 3" |dE(¢)|, so that
¢ = Ez. Then (i) asserts that if E|z| < oo, then |z| < oo a.s., which is
true in general by the Chebyshev inequality.

In case (ii), by Theorem 7.2 we need only show that for all A > 0 and
unlimited n < v, we have

v—-1
Pr{S. |dé] > A} = 0.

But the left hand side is < 341 ||d&]|1/A ~ 0.

Case (iii) follows at once from the Fubini theorem (corollary to Theo-
rem 8.4). O

Case (iii) was stated for a general stochastic process, but we shall see (in
Theorem 10.4) that the hypothesis is quite restrictive, and implies that £ is
nearly a predictable process, in the sense that for the associated martingale,
almost surely & (t) ~ ¢ (@) for all t.

Theorem 10.2 Let £ be a stochastic process such that d¢/dtis L' on T'x Q.
Then D¢ 1s L' on T' x Q, and consequently d€/dt = d¢/dt — D¢ is L' on
T x Q.

Proof. Let P’ be the algebra of all random variables y on T' x Q such
that for every ¢t we have y(t,-) € P.. Then
d§
D¢ =Ep—,
$=Eng
so that the result follows by Theorem 8.3. O
The next result is a truncation lemma. It asserts that under suitable
hypotheses we can modify a process slightly (meaning that almost surely the
trajectories stay infinitely close for all times) so that the modified process
has infinitesimal increments.

Theorem 10.3 Let £ be a martingale indezed by a near interval T such
that d¢/dt is L' on T' x Q1. For a > 0, let (o) be the martingale with

€(a)(a) = €(a) and
d€(a)(t) = d&(t)™) — Eude ()@,

s0 that |d€(q)(t)| < 20 for all t and all w. Then there is an infinitesimal o
such that a.s. for all t we have {()(t) ~ &(t).

Proof. By Theorem 10.1 (iii), a.s. £ is absolutely continuous, and hence
continuous. Since T is a near interval, this implies that max; |d£(t)| ~ O
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a.s. By Theorem 7.1, for any sufficiently large infinitesimal a we have
Pr{max |d¢(t)| > a} ~ 0.

Then a.s. we have

(o) (t) a) + > dé(s) .

s<t

Therefore, by the definition of £(,), to show that a.s. §(a)(t) = £(t) for all ¢,
it is enough to show that Y |E;d¢(t){(¥)| ~ 0 a.s., and for this it suffices to
show that its expectation is infinitesimal. But

EY [Edé()] = B3 [Ei(d€(1) — dg(8))]

(since ¢ is a martingale, so that E,d{(t) = 0), and this is

(df)(a/dt)

< EY Elde(t) - d¢(t)®) = dt

where ¢ = o/ maxdt. If @ > 0, then ¢ ~ oo; and since d¢/dt is L' on
T' x 01, the expectation is infinitesimal. Therefore the set of all & such that

EY [Ed¢())] <

contains all & > 0, and so contains all sufficiently large infinitesimal «, by
overspill. O

In the proofs of the next two theorems we shall appeal to a result (The-
orem 11.1) that will be proved later.

Theorem 10.4 Let & be a stochastic process indezed by a near interval T
such that d¢/dt is L! on T' x Q, and let & be the associated martingale.
Then a.s. £(t) ~ é(a) for all t.

Proof. There is no loss of generality in assuming that £(a) = 0. By
Theorems 10.2 and 10.3, we may assume that £ = £, and so is a martingale,

and is such that for some infinitesimal a we have |d¢(t)| <  for all t and w.
Then

1€ (@)Il; = Ed¢(t)* < oE|d¢(t)],
and since d¢/dt is L' on T' x (1 we have

> Eldé(t)] = EZ{‘;—f dt < oo.
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Therefore

1EGIIE < N1E@)IE =2 11dEQ)IIE < ad Eldg(?)

By Theorems 7.1 and 11.1 we have max, |£(t)] ~ 0 a.s. O

Theorem 10.5 Let £ be an increasing stochastic process all of whose tnere-
ments are everywhere infinitesimal, and suppose that E({(b) — £(a)) < oo.
Let £ be the associated martingale. Then a.s. £(t) ~ £(a) for all t.

Proof. Again, there is no loss of generality in assuming that £(a) = 0.
Let a = maxy, [d{(t)|, so that by hypothesis « is infinitesimal. Then

IE®IE < 6@ =3 1€ < 3 lldé)]13

=D _Ed((t)’ < a) Edé(t) = aB(£(b) — £(a)) = 0.
By Theorems 7.1 and 11.1 we have max, |£()| ~ 0 a.s. [J



Chapter 11

Convergence of martingales

In this chapter we derive an estimate on the maximum of a supermartin-
gale or submartingale, and use it to study convergence and continuity prop-
erties at a fixed time.

The price on the stock market of one share of Nonstandard Oil is a
stochastic process £. A bullish investor buys a share at time a and decides
to keep it until the price increases by at least A dollars, at which time he
takes his profit and sells it. Then the investor’s “earnings” at time ¢ are

given by
a(t) = 2_m(s)de(s),

<t
where n;(s) is 1 as long as he holds on to the stock and is O thereafter.
Whether n,(s) is 0 or 1 depends only on the values of £(r) for r < s, so 7, is
a P-process. Recall the general discussion of sums of this form (“stochastic
integrals”) in Chapter 9. Let A be the event that the investor’s strategy is
successful:

A = {max({(t) — &(a)) > A}.
The investor’s final earnings are at least A if he is successful, and they are
£(b) — £(a) otherwise. That is,

¢1(6) > Axa + (€(0) — &(a)) xc- (11.1)

Now suppose that, unfortunately for the investor, £ is a supermartingale
(declining market). Since 7, is a positive P-process, we have

Da (t) =m()DE(t) <0,

so that ¢; is also a supermartingale. Since ¢;(a) = 0, we have E¢(b) < 0.
By (11.1), this implies that if £ is a supermartingale and A > 0, then

Pr{max(£(t) - £(e) > A} < 11I€0) - (@) (11.2)

41



42 CHAPTER 11

E(a)+ N /

E(o)v

®bull buys bull selis®bear buys
a

e

Figure 11.1: Two investment strategies

The argument appears to yield no information if £ is a submartingale.
But consider a bearish investor who adopts the opposite strategy: she
cautiously waits to see whether the price will increase by at least A dollars,
and as soon as this happens she buys a share and holds on to it. Her
earnings at time ¢ are given by

¢ (t) = 2 ma(s)dé(s),
a<t
where 72(s) = 1 — n1(s), so that 7, is also a positive P-process. Her final
earnings are 0 unless the stock rises (the event A occurs), in which case
they are at most £(b) — £€(a) — A. That is,

¢(6) < (£(8) — &(a) — A)xa- (11.3)

Notice that (11.3) is the same as (11.1), since ¢; + ¢ = & — &(a). Now if
€ is a submartingale, then so is ¢, since D¢ (t) = n2(¢)D&(t) > 0. Since
¢2(a) = 0, we have E¢;(b) > 0. By (11.3), therefore, if ¢ is a submartingale
and A > 0, then (11.2) holds.

Thus (11.2) holds for both supermartingales and for submartingales
(and also, of course, for martingales, either because a martingale is a su-
permartingale or because a martingale is a submartingale). Since —¢ is a
supermartingale if and only if £ is a submartingale, and vice versa, we also
have the inequality

Pr{max(£(a) — £(1) > 3} < 111€06) - €@,
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valid for both submartingales and supermartingales. We have proved the
following theorem.

Theorem 11.1 Let £ be a supermartingale or a submartingale, and let
A> 0. Then

Pr{max(£(t) - £(a) > A} < 11/€6) — £(@)l,

Pr{max|£() - £(a)] 2 A} < 516() ~ €@~ (114)

If £ is a martingale, then, by the following theorem, we can prove a
result that is twice as good as (11.4).

Theorem 11.2 (i) If £ is a martingale and f is a convezr function, then
fo& is a submartingale.

(ii) If € is a submartingale and f is a conver increasing function, then
f o € is a submartingale.

Proof. By the relativization of Jensen’s inequality, if f is convex, then
F(B.£(t)) < E, f(&(2)). If € is a martingale, then E,£(t) = £(s) for s < ¢,
so that f(£(s)) < E,f(&(t)) for s < t, and f o £ is a submartingale. If £ is
a submartingale, then £(s) < E,£(t) for s < t, and if f is increasing and
convex, then f(£(s)) < f(E:&(t)) < E,f(&(t)) for s < t (by the relativized
Jensen inequality again), and f o £ is a submartingale. O

If ¢ is a martingale, then ¢ — £(a) is a martingale, | — £(a)| is a sub-
martingale by (ii), and so by (11.2) the inequality (11.4) holds with 2/X
replaced by 1/A.

The set R? of all random variables on ({2, pr) is a metric space with
respect to the metric ||z — yl||,, where 1 < p < 0o. We denote this metric
space by LP. As p varies, the L? are the same set R®, but with different
metrics. We say that z;,...,z, (nearly) converges to y in L? in case we
have ||z, — y||p =~ O for all unlimited n < v. If £ is a stochastic process
indexed by the finite subset T of R, and t € T, we say that ¢ is (nearly)
continuous at t in L? in case s ~ ¢t implies ||£(s) — £(¢)||, =~ O, and otherwise
we say that ¢ is (strongly) discontinuous at t in L*.

Continuity in L? is an analytical property that is easy to verify or fal-
sify, but almost sure continuity of sample paths is an interesting and subtle
probabilistic property. Many theorems of the theory of stochastic processes
assert that under suitable analytical hypotheses, a certain property of sam-
ple paths holds almost surely.

Theorem 11.3 (i) Let z;,...,z, be a supermartingale or submartingale
that converges in L'. Then it converges a.s.
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(if) Let ¢ be a supermartingale or submartingale that ts continuous at t
in L. Then it is continuous at t a.s.

Proof. This follows immediately from Theorem 11.1 and from Theo-
rem 7.2 and its corollary. O
The next theorem establishes a partial converse.

Theorem 11.4 (i) Let zi,...,z, be a martingale such that z, is L'. Then
Zy,...,Z, converges in L' if and only if it converges a.s.

(i1) Let ¢ be a martingale such that £(b) is L'. Then ¢ is continuous in
L' at t if and only if € ts continuous a.s. at t.

Proof. By Theorem 8.3, £(t) = E;£(b) is L' for all t. By the Lebesgue
theorem (Theorem 8.2), a.s. convergence or continuity then implies L! con-
vergence or continuity. The other direction was proved in Theorem 11.3. O

The only use made in this proof of the martingale hypothesis was to
conclude that every £(t) is L', so the result continues to hold with this as
the hypothesis.

Wesay that ¢ is a (strong) fized point of discontinuity of £ in case it is not
true that £ is continuous a.s. at t. Thus Theorem 11.4 (ii) says that if { is a
martingale such that £(b) is L', then ¢ is a fixed point of discontinuity of ¢
if and only if ¢ is a discontinuity of £ in L!. The following counterexample
shows what can happen when £(b) is not L.

Let 2 be an ordered set of 2 points, where v ~ oo, each with the

o I,

e O I3

e o 0o o I,
® 0 00 0 0 0 ¢ I

Ty © © e o 0 o o o
I, © e e @

Ty L]

Figure 11.2: A bad martingale
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probability 27%, and let z,,, for n = 1,...,v, be the random variable that
takes the value —2"! on the first 2”~" points, the value 2*~! on the last 2V~ "
points, and the value 0 in between. (The non-zero values are illustrated in
Fig. 11.2, where to save paper we have taken v = 4 rather that v ~ 00.)
Then the z,, are a martingale, with respect to the algebras P, generated by
Ty,...,Tn. They have mean 0 and ||z,||; = 1 for all n, and ||z, — zu|[1 > 1
for all n # m. Let k and v — k£ be unlimited, and let T be a near interval
containing v — k points. Define £ by £(t) = z,44, where t is the n’th point
of T. Then ¢ is everywhere discontinuous in L', but since a.s. £(t) = 0 for
all ¢, it is a.s. continuous for all .

The remainder of this chapter is devoted to showing that there are very
few fixed points of discontinuity of a martingale £ such that £(b) is L'.

Let € > 0. We say that a function &:T — M, where (M, p) is a metric
space (such as L' or R), is (nearly) e-continuous at t in case whenever
ty ~ t and ¢, ~ t we have p(£(t1),£(¢2)) < €; otherwise we say that ¢ is
(strongly) e-discontinuous at t, and that ¢ is a (strong) e-discontinuity of €.
Notice that if s ~ ¢, then s is an e-discontinuity of £ if and only if ¢ is. If ¢
is an e-discontinuity of £, then there are ¢; and ¢, infinitely close to t with
p(&(t1), (t2)) > ¢, so by the triangle inequality there is a t' (either ¢, or t5)
that is infinitely close to t with p(&(t'), £(t)) > €/2. Notice also that ¢ is a
discontinuity of £ if and only if ¢ is an e-discontinuity for some € > 0.

Theorem 11.5 Let ¢ be a martingale such that £(b) 1s L', and let € > 0.

Then there ts a limited number of points ty,...,t,, no two of which are
infinitely close to each other, such that t is an e-discontinusty of £ in L' ¢f
and only tf t ~ t; for somei=1,...,n.

Proof. The set of all ¢ such that ||£(b) — £(b)(9)|; < /4 contains all
¢ =~ oo, and therefore contains some ¢ < co. Let & (t) = E.£(0)(9). As
remarked in Chapter 9, &, is a martingale. Since conditional expectations
reduce L! norms, ||€,(¢) — €(?)|]1 < /4 for all ¢.

Suppose that there are n points #4,...,¢,, no two of which are infinitely
close to each other, with |[£(s;) — €(ri)||1 > €, for some s; and r; with
s; =~ r; ~ t;. Choose notation so that r; < s;. Then the intervals [r;, s,]
are disjoint. By the triangle inequality, ||€.(s:) — &.(r:)|l1 > /2, and so
[|€:(si) — &(ri)||]2 > €/2. Since a martingale has orthogonal increments, we

have
2

n < D ede) — EIE < lect) — (o)

= ]J£:(8) — Ea&.(8) |3 < I€(8)]1; < <.

Thus n < 4¢?/e? < co. The proof is concluded by an appeal to the external
least number principle. O
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*Theorem 11.6 Let ¢ be a martingale such that £(b) is L'. Then either:
(i) there is a limited number of points t,...,t,, no two of which are
infinitely close to each other, such that t is a fized point of discontinuity
of € if and only if t ~ t; for some i; or
(ii) there is an infinite sequence of points t;, no two of which with stan-
dard indices are infinitely close to each other, such that t is a fized point of
discontinuity of £ if and only if t ~ t; for some standard .

Proof. By Theorem 11.4 (ii}, t is a fixed point of discontinuity of £ if
and only if ¢ is a (1/k)-discontinuity in L' of ¢ for some standard k. Let k
be standard. By Theorem 11.5, there is a set

E, = {tkl, .. ,t)mk},

with ny < oo and |ty, — tg—;| > 0 for ¢ # j, such that the point ¢ is
a (1/k)-discontinuity in L!, but not a (1/I)-discontinuity in L! for any
natural number ! < k, if and only if ¢ is infinitely close to some (unique)
element of E;. By the sequence principle, there is a sequence k — Ej; of
subsets of T such that these properties hold for all standard k. If there is
a standard j such that E) is empty for all standard k& > j, let ¢;,...,%, be
Uk<j Ex. Then ty,...,t, has all of the properties stated in (i). Otherwise,
let j be nonstandard and let ty,...,t, be Uy<; Ex, with ¢; defined arbitrarily
for i > v. Then the sequence ¢; has all of the properties stated in (ii). O

Let us verify that (ii) really says that there are few fixed points of
discontinuity.

Theorem 11.7 Let T be a near interval. There does not exist a sequence t;
such that every element of T is infinitely close to some t; with a standard
indez 1.

Proof. We argue by contradiction. Without loss of generality, assume
that @ = 0 and b = 1. Let z be in [0,1] and let ¢ be the largest element
of the finite set T” such that t < z. Then t < z < t + dt, so that z is
infinitely close to the element ¢ of 7' and hence, by hypothesis, to some ¢;
with ¢ standard. But Cantor’s diagonal argument produces an z in [0,1]
that differs in the :’th decimal place from ¢;; that is, |z —¢;| > 10~ for all 1,
including the standard ones. This is a contradiction. O

We have seen that there are few fixed points of discontinuity in the
sense of “cardinality”. Now let us show that there are few fixed points of
discontinuity in the sense of “measure”.

*Theorem 11.8 Let £ be a martingale such that £(b) is L, and let the
function f:R* — R* be such that f(h) =~ 0 for all h =~ 0. For alle > 0
there are a natural number v and tntervals [ry,s;], for i = 1,...,v, such
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that we have Y3.7_, f(s; — r;) < € and each fized point of discontinuity of ¢
is in one of the intervals [r;, s;].

Proof. Let a > 0 be infinitesimal. For all ¢ in N let ; be the largest
integral multiple of a that is less than 1 and such that f(kh;) < €/2¢, or
h; = 0 if no such number exists. Then for all 7 <« co we have h; > 0 and
f(hi) < €/2'. Lett; be the finite or infinite sequence given by Theorem 11.6,
in case (i) let v = n, in case (ii) choose v ~ oo, and let r; = ¢; — h;/2 and
s; = t;+h;/2. Then Y7_, f(s;—ri) < €, and each fixed point of discontinuity
of ¢ is in one of the intervals [r;, s;]. O

In particular, let £ be a martingale indexed by a near interval T', such
that £(b) is L', and choose f(h) = h. Then we see that almost everywhere,
with respect to pry (“normalized Lebesgue measure”), t is not a fixed point
of discontinuity of £.

Finally, let us remark that if £ is a martingale such that £(b) is L, then
€(a) = E.£(b) is L', and so £(b) — £(a) is L*. Theorems 11.4-8 remain true
under the hypothesis that £(b) — £(a) is L, since ¢ differs trivially from the
martingale £ — £(a). In the next chapter we will study martingales under
the weaker hypothesis that ||£(b) — £(a)||, < oo.



Chapter 12

Fluctuations of martingales

If ¢ is either the Wiener walk or the Poisson walk, then Ed¢(r)? = dr,
so that ||£(t) — £(s)]|3 = |t — s|. Thus in both examples the process is
continuous in L?, and therefore in L', for all t. By Theorem 11.3 (ii), for all ¢
the process is continuous at ¢t a.s. There are no fixed points of discontinuity.
This does not imply, however, that a.s. the process is continuous at ¢ for
all ¢, because the exceptional sets may depend on t. Consider the Poisson
walk indexed by a near interval. It takes only integer values, so the only
way it could be continuous at all ¢ would be to remain identically 0. But
the probability of a jump at ¢ is dt, so the probability of no jump is, by the
independence of the increments, [,er (1 — dt). But

log [J(1 —dt) =D log(1 —dt) ~ — > dt = —(b—a)
by Theorem 5.3, since log(1 — dt) ~ —dt. Therefore the probability of no
jump is ~ e (*~%, which is strongly less than 1. In the next chapter we
shall see that the Wiener process is indeed a.s. continuous for all t. Typical
trajectories of the two processes are sketched in Fig. 12.1.

This raises the question of how bad the discontinuities of a martingale
trajectory can be. In conventional terms, for a bounded function there are
two types of discontinuity: a discontinuity of the first kind (or jump discon-
tinuity) and a discontinuity of the second kind (or oscillatory discontinuity),
as in Fig. 12.2. (There are supposed to be infinitely many oscillations in
Fig. 12.2 (b), as in sin £ at the origin.) The notion of a function of limited
fluctuation, defined in Chapter 6, is an external analogue of the internal
notion of a function (with bounded domain) having jump discontinuities
only. We may think of Fig. 12.2 (a) as illustrating a function of limited
fluctuation, and (b) one of unlimited fluctuation.

The main result of this chapter is that under a very mild hypothesis,
the trajectories of a supermartingale or submartingale are almost surely of

48
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Poisson walk Wiener walk

Figure 12.1: Two trajectories

limited fluctuation. First we establish a technical lemma, and then con-
struct an investment strategy that leads to an estimate on the number of
upcrossings of an interval.

Theorem 12.1 Let £ be a stochastic process tndezed by a finite subset T

of R. Then £ is of limited fluctuation a.s. if and only if for all € > 0 and
k ~ co we have

Pr{¢ admits k e-fluctuations} ~ 0.

Proof. The condition is clearly necessary. Suppose conversely that the
condition holds. Let M(e,k) be the event that ¢ admits k& e-fluctuations,
and let § > 0. Let k, be the least natural number such that

P (Lka) < o,
n 2n

Y, e

a. First kind b. Second kind

Figure 12.2: Discontinuities



50 CHAPTER 12

and let '
N 1
N=UM (—, k,,) )
n=1 n
Then Pr N < 6. By hypothesis, k,, is limited when n is limited, so ¢ is
of limited fluctuation on N¢. Since § > 0 is arbitrary, this concludes the
proof. [

A speculator on the stock market hopes to make a killing from a wildly
fluctuating market by following the “buy low—sell high” maxim. She decides
to wait until the first time s; that the price of a share drops below A; before
buying a share, and then to sell it at the first subsequent time t; that the
price rises above A, (where A; > A;). She then repeats the procedure as
often as possible. The speculator’s earnings at time t are given by

¢s(t) = D_na(s)d€(s),

s<t

where 73 is 1 when she is holding on to the stock (that is, when for some k
it is true that s, < s but not s > ;) and 0 at other times. Thus n; is a
positive P-process. The speculator temporarily earns at least S{A; — Ay)
dollars, where 3 is the number of upcrossings of [A;, Az] by ¢ (that is, 8 is
the largest k such that ¢, is defined), but she may lose at the end if the
last s is not followed by a t;. However, this loss is at most (A; — £(b))*,
where zt denotes max{z,0}. Thus

¢(b) > B(A2 — M) — (A — £(B)) . (12.1)

Suppose that £ is a supermartingale, so that 0 > E¢(b). Then by (12.1)
we have

(A2 = M)ES < E(A — £(8))" < [[£(8)][1 + [Aa]-

Figure 12.3: Two upcrossings
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We have proved the following theorem.

Theorem 12.2 Let £ be a supermartingale, let A\; < Ay, and let B be the
number of upcrossings of (A1, Ag] by &. Then

[1€(B)[x + ]
Az — M

Although we shall make no use of this fact, it is interesting that Theo-
rem 12.2 also holds for a submartingale £. To see this, consider a conser-
vative investor, who wants a sound stock for investment, and follows the
opposite strategy of the speculator. That is, he buys a share at time a
unless £(a) < A;. At time s; he sells and accepts his loss for tax purposes,
waiting unti] time ¢, to buy again, and then repeats the procedure as often
as necessary. His earnings at time ¢ are given by

¢a(t) = D_nals)dé(s),

<t

Ej <

where 7n4(s) =1 —n3(s). Then 74 is also a positive P-process. I claim that
¢a(b) < (&(8) — A)™ — B(A2 — X1). (12.2)

To prove this, observe that if £(a) > A, then he buys at the price £(a) and
loses at least A3 — A; on each upcrossing, so that

¢a(b) < €(0) — &(a) — B(Az — A1) < (€(B) — A1) — B(A2 — ).

If ¢é(a) < A1 and B = 0, then he never buys, so that ¢s(b) = 0 and (12.2)
is trivially true. Finally, if é(a) < A; and 8 > 0, then he first buys at a
price > A, after the first upcrossing, so that

¢a(b) < (€(B) — A9) — (B — 1) (A2 — Xy} < (€(8) — M)T = B(Aa — A1)

Thus (12.2) holds in all cases, and Theorem 12.2 also holds for a submartin-
gale ¢ (since then 0 < E¢(b)).

Theorem 12.3 Let £ be a supermartingale or a submartingale with

11€(8) — (a1 < oco.
Then a.s. € 1s of limited fluctuation.

Proof. Since —¢ is a supermartingale if and only if £ is a submartingale,
it is enough to prove the theorem for supermartingales. Also, there is no
loss of generality in assuming that £(a) = 0. Let 6 > 0 and let

2/1£(6)[[x

2 = 2SI

6 3
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so that A <« co. By Theorem 11.1,

Pr{max|¢(t)] > A} < M <8é. (12.3)
Now let € > 0 be such that n = A/e is an integer. Notice that n < oo.
Partition [—A, A] into 2n subintervals of length «.

Now suppose that we have max |£(t)| < A, and that the process £ admits
2n + 2k 2e-fluctuations, where k is an unlimited multiple of 2n. Each 2e-
fluctuation produces either a downcrossing or an upcrossing of one of the 2n
subintervals, so some subinterval has at least 1+ /n crossings. Let 3 be the
number of its upcrossings. The number of upcrossings and downcrossings
of it can differ by at most 1, so 8 > k/2n. But

k 2
pefo> < 2ms< 2 (el +

by the Chebyshev inequality and Theorem 12.2. Since there are 2n subin-
tervals, the probability that max |£(¢)] < A and that ¢ admits 2n + 2k
2¢e-fluctuations is

2n?
< — b A) = 0.
<22 leih + ¥
Together with (12.3), this shows that
Pr{¢ admits 2n + 2k 2e-fluctuations} <.

Since § > 0 is arbitrary, the proof is complete by Theorem 12.1. OO



Chapter 13

Discontinuities of martingales

We have just seen that, subject to a mild hypothesis, a.e. trajectory of a
supermartingale or submartingale is of limited fluctuation. This gives some
information on the nature of the possible discontinuities of a trajectory, but
a finer analysis is called for. Let € > 0. Then a.s. there is only a limited
number of points with |d¢(t)| > e. Can it happen that two such points
occur infinitely close together? Can it happen that each increment d¢(t)
is infinitesimal but that there is a discontinuity (by means of an unlimited
number of infinitesimal increments adding up to more than € during an
infinitesimal interval)? Can it happen that at some point ¢ the trajectory
is neither continuous from the left nor continuous from the right? Can it
happen, in short, that there are two e-fluctuations during some infinitesimal
time interval? Certainly these local horrors can occur for a function of
limited fluctuation, but we will see that the answer to these questions is
no for a.e. trajectory of a supermartingale or submartingale £ for which
0 < b—aand o} is L' on T' x 0. Recall that of is L' on T' x (1 if each
o¥(t) is L' on 0 (see the remark after the proof of Theorem 8.4).

If £ is a stochastic process indexed by a finite subset T" of R, define the

proper time 7 by
Te(t) = Y of(s)ds.
s<t
The proper time increases on each trajectory, but the rate at which it
increases may vary from trajectory to trajectory. If s < ¢, we call 7¢(t)—7¢(s)
the proper time duration of the interval [s, ¢].

The price of a share of a certain stock is a martingale ¢ satisfying the
inequality |[£(6) — £(a)|[1 < 0. An investor is anxious not to have his
capital tied up for a long time (proper time, actually—the anticipation of a
rapidly fluctuating price makes the time seem long to him), and he figures

53
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o

Hlm
-~

*———o —o— P
So S| S2 Sz Sg Sy
Figure 13.1: Another investment strategy

that a good time to buy is when the stock shows signs of activity. He
chooses a natural number 7, an € > 0, and an infinitesimal o > 0. Let
S0 = a, let s; be the first time such that |[£(s;) — £(a)| > &/4, let s; be the
first time with s, > s; such that |£(sz2) — €(s1)| > /4, and so on.

The investor buys a share of the stock at time s; and sells it at time s;4,
if 7¢(s;41) — 7e(s;) < o; otherwise he sells it at the first time s such that
7¢(s + ds) — 7¢(s;) > a. He never buys again. His earnings at time ¢ are

given by
(1) = sz (s)dé(s),

a<t
where 7, is a P-process taking the values 0 and 1. (Notice that r¢(s+ds) =
7¢(s) + 0%(s)ds is in P,, so that n; is indeed a P-process.)
We have

ls;(0)I; =E (Z": t) —EZW; dt < a~0,

teT! teT!

and by Chebyshev’s inequality we have ¢;(b) ~ 0 a.s.
By Theorem 12.3, £ is of limited fluctuation a.s., so that a.s. there is
only a limited number of points s;. Therefore

max ¢;(0)] =~ O a.s. (13.1)

Let M(e, &) be the event that there are at least two e-fluctuations within
some interval of proper time duration < «. Notice that if [£(f2) — £(t1)| > &
and |&(ts) — &(ts)| > €, where t; < t; < t3 < t4, then there are at least
two s; between ¢; and t4, since there must be at least one in [¢1,2,] and at
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least one in [t,ts. Therefore, if M(e,a) occurs, then for some j we have
Te(s541 — 7¢(s5)) < @, and consequently

€
. > 2.
max [¢;(b)] > 7

Therefore, by (13.1), if € > 0 and « =~ 0, then Pr M(e,a) ~ 0.
Let § > 0, and let a, be the largest number (in the finite set of all
possible values of 7¢(t) — 7¢(s)) such that
PrM (l,an) < i
n 2n

Then a, > 0 for n < oo, and if

> 1
N = U M <_’ an) )
n=1 n
then PrN < §. But on N° there do not exist two e-fluctuations in any

interval of infinitesimal proper time duration, for any € > 0. Since § > 0
is arbitrary, we have proved the following result.

Theorem 13.1 Let £ be a martingale with ||£(b) — é(a)||1 < co. Then
a.s. for all € > 0 there do not exist two e-fluctuations in any interval of
infinttessimal proper time duration.

Notice that for a normalized martingale £, the proper time differs triv-
ially from the ordinary time: 7¢(t) = ¢t — a; and that

11€(8) — €(a)llx < [1€(8) — &(a)llz = Vb —a,

so that ||€(b) — &(a)|]1 < oo if b — a <« oo. Then the conclusion of Theo-
rem 13.1 holds. If each increment d¢ is infinitesimal, everywhere on T'x (1, it
follows that a.e. trajectory is continuous at all times, for if |£(¢2) —€(¢1)] > 0
then there must be a t between ¢; and t; with |£(¢;) — £(¢)] > 0 and
|€(t) — €(t1) > 0. Thus Theorem 13.1 has the following corollary.

Corollary. Almost every trajectory of the Wiener walk ts continuous at
all t.

Let us convert the information about proper time in Theorem 13.1 into
information about ordinary time.

Theorem 13.2 Let £ be a stochastic process with b — a > 0 such that az
is L' on T' x 0. Then a.s. the proper time 7¢ is absolutely continuous.
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In particular, a.s. every interval of infinttesimal length ts of infinitesimal
proper time duration.

Proof. By the Fubini theorem, for a.e. w the function t > o}(2) is L'
on T'. By the Lebesgue theorem, this implies that a.s. 7¢ is absolutely con-
tinuous (since dr¢(t)/dt = 0}(t) and b — a > 0). The final statement of the
theorem is merely that an absolutely continuous function is continuous. O

Let T be a finite subset of R and let £: T — R. We say that s in TV is
an e-jump of £ in case |d€(s)| > €, and a jump of £ in case it is an e-jump
for some € > 0. If s is a jump of £ with ds ~ 0, and if t ~ s, then ¢t is
a discontinuity of £&. We say that a point ¢ is a jump discontinusty of ¢ in
case there is a unique jump s with s ~ ¢.

Theorem 13.3 Let T be a finite subset of R and let £:T — R be such
that for all € > 0 there do not exist two e-fluctuations in any infinitesimal
interval. Then every discontinuity t of £ 1s a jump discontinusty. If s is
the jump with s ~ t, then & ts continuous from the left at t if and only if
t < s, and £ is continuous from the right at t if and only if t > s. If all of
the sncrements of € are infinitesimal, then £ 1s continuous. No two jumps
of & are infinitely close to each other. If b — a <« oo, then for alle > 0
there s only a limited number of e-jumps.

Proof. Let t be a discontinuity of £. That is, there are t; and ¢,
infinitely close to ¢, with t; < ¢;, such that for some § > 0 we have |d¢(t) —
d€(t1)| > 6. Let s be the first time > ¢, such that |£(s +ds) — £(¢1)| > 6/2.
By the hypothesis on &, we have |£(s+ds) —£(t1)| > 6 and |£(s) — £(¢1)] = O.
Therefore |[£(s + ds) — £(s)| > 6, so that s is a (6/2)-jump. Thus there is
a jump s with s ~ t, it is clearly unique, and ds < t; — t; ~ 0, so that ¢
is a jump discontinuity. The remaining statements in the theorem are now
obvious. O

By Theorems 13.1-3 we have the following result.

Theorem 13.4 Let £ be a martingale with 0 < b— a such that 02 ts L1 on
T' x Q. Then the conclusions of Theorem 13.3 hold for a.e. trajectory.

Using the sequence principle, we can also show (under these hypotheses
and the assumption that b—a < o0) that a.s. there is a sequence of points s;
in T such that for all s in T, s is a jump of £ if and only if s = s; for some
standard 1.



Chapter 14

The Lindeberg condition

We say that a stochastic process ¢ satisfies the (near) Lindeberg condi-
tton in case for all € > 0 we have

E) d¢@t)! ~E. de(t)92. (14.1)

For a normalized martingale, the left hand side of (14.1) is equal to b — a.

The Wiener walk satisfies the Lindeberg condition because the two sides

of (14.1) are equal, but for the Poisson walk the right hand side is 0 for
e<1.

One way to obtain a normalized martingale is this. Let z,,...,z,, with

v ~ oo, be independent random variables of mean 0 with 0 < Ez < oo

for 1 <k < v, and let
sp =, > Ezl.
k=1

Suppose that s, ~ co. Let T be the set of all numbers of the form s2/s2
for n = 0,...,v. Then T is a near interval with a = 0 and b = 1. For ¢
in T, with t = s2/s2, let

14 1 n
Et) = =D =z
Sy k=1
Then ¢ is a normalized martingale, which we will call the normalized mar-
tingale assoctated with z,,...,z,. It satisfies the Lindeberg condition if
and only if for all € > 0,

iz S Ec{? ~ 1. (14.2)
v k=1
The relation (14.2) is very similar to the conventional form of the Linde-
berg condition, but it is much easier to understand when expressed in the
form (14.1) for the associated normalized martingale.
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Theorem 14.1 Let £ be a stochastic process satisfying the Lindeberg con-
ditton. Then a.s. each increment 1s infinstesimal.

Proof. For € > 0 we have

0= EY (de(t)? — de(®)?) = 3 3 NMprgg(y(V)

t >e
> &? ;Pr{ldf(tﬂ > e} > e Pr{max|d¢(t)| > €}.

Since € > 0, it follows that Pr{max|d{(t)| > €} ~ 0, and since € > 0 is
arbitrary, this means by Theorem 7.1 that max|dé(t)| ~ 0 a.s. O

Theorem 14.2 Let ¢ be a martingale with 0 < b — a such that of 1s L'
on T' x Q1, that satisfies the Lindeberg condstion. Then a.s. £ is continuous
onT.

Proof. By Theorems 14.1 and 13.4. O
If £:T — R, we define

ge(t) = 2_ d€(s)”.
<t
We call g, the quadratic variation of {. If T is a near interval and { is a
smooth function, then the quadratic variation will be infinitesimal. But for
a martingale ¢ we have Eq¢(t) = ||£(t) — £(a)]|3, so that it is quite normal
to have non-infinitesimal quadratic variation.

Recall the typical trajectories of the Poisson and Wiener walks illus-
trated in Fig. 12.1. The corresponding quadratic variations are graphed in
Fig. 14.1. Notice that for the Wiener walk, but not for the Poisson walk,
the quadratic variation does not depend on the trajectory. To show that
this phenomenon results from the Lindeberg condition, we first establish a
truncation lemma similar to Theorem 10.3.

Theorem 14.3 Let £ be a martingale that satisfies the Lindeberg condition.
For a > 0, let £, be the martingale with £,(a) = ¢(a) and

déa(t) = dg(1)® — Eedg (1)),
so that |d¢,(t)| < 2a for all t and w. Then there is an infinitessmal @ such
that a.s. for all t we have £,(t) ~ £(t), ge.(t) = q¢(t), and 7¢, =~ 7¢(t).

Proof. We have max|d£(t)| ~ O a.s. by Theorem 14.1, so it follows
from Theorem 7.1 that for any sufficiently large infinitesimal o we have
Pr{max |d¢(t)| > o} ~ 0. Then a.s. we have

£() = €(a) + 3 de(s) ).

a<t
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Poisson walk Wiener walk

Figure 14.1: Quadratic variation

Therefore, to show that a.s. £,(t) 2 £(¢) for all ¢, it is enough to show that

> \Etdf(t)(o‘)l ~ 0a.s.,

and for this it suffices to show that its expectation is infinitesimal. But
since E;d€(t) = 0 we have

BY[Bde()| = EX | (e6() - de())]

<E) E |d§(t) - dﬁ(t)(“)‘ < %EZ (dg(t)2 - dg(t)(aﬂ) )

If @ > 0, this in infinitesimal by the Lindeberg condition. Hence the set
of all & such that EY |Etd£(t)("‘)| < a contains all & > 0 and thus, by
overspill, contains all sufficiently large infinitesimal c.

By the same reasoning, > (df(t)2 — df(t)("‘)z) ~ 0 as. But dé,(t)?
differs from d¢(t)(®? by

~2d€(1) VEdE (1) + (Ede())’,

which in absolute value is less than 3alEtd§(t)(°‘)’. Consequently, a.s.
e, (t) =~ g¢(t) for all t. Finally, apply the same reasoning with E, pre-
ceding each term and conclude that a.s. 7¢ (t) ~ 7¢(¢) for all t. O
Theorem 14.4 Let £ be a martingale that satisfies the Lindeberg condition,
with ||€(b) — £(a)||3 < co. Then a.s. g¢(t) =~ 7¢(t) for all t.

Proof. By the previous theorem, we may assume that for £ itself there
is an o ~ 0 such that |dé(t)] < e for all t and w. Observe that g; — 7¢ is a
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martingale with initial value 0. We have
llae(8) — 7e(®)IIF < llae(6) — re(®) 117 = 3 lldae(2) — dre(D);

= 3 |detey’ — Buaee’], < Xfaer?], = X mae(ey*

< o Y Ede (1) = o?[€(b) — £(a)ll2 = .

By Theorem 11.1 we have Pr {max |g¢(¢) — 7¢(¢)| > A} ~ 0 for all A > 0, so
by Theorem 7.1 we have max |g¢(t) — 7¢(¢)| ~ 0 a.s. O



Chapter 15

The maximum of a martingale

Let us return to the proof of Theorem 11.1. If £ is a submartingale,
then, by (11.3),

0 < E(£(b) — £(a) — X)X {max(¢()-£(a)) 22} -

We can relativize this result to the algebra P,, replacing E by E, and A by
any element of P,. In particular, if we replace A by A — £(a), we obtain

0< Ea(g(b) - A)X{ma.xf(t)z)«}-
Taking the absolute expectation, we have
APr{max £(t) > A} < BE(D)Ximencory < [[€OL.  (15.1)
We have proved the following theorem.

Theorem 15.1 Let £ be a submartingale. Then (15.1) holds.
Here is another proof of this theorem. Let A = {max £(¢) > A}, and let

Ae = {&(2) > A and £(s) < A for all s < t}.

Then A is the disjoint union of the A;, and x,, € P.. We have
1€®) ]I > EE(B)xa = B3 €(B)xa, = ED_E&(b)xa,

=EY xnEil(0) > EY_ x4&(t) > EY xad = APrA,
which proves (15.1).
If € is a martingale, then |£|?, for 1 < p < oo, is a submartingale, by
Theorem 11.2. Since

{max [£(2)] = A} = {max |£(¢)[? > A%}
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for A > 0, Theorem 11.1 implies that

Pr{max|¢(t)] > A} < 3 BIEB)" (15.2)

If max |€(t)| had an L? norm smaller than that of £(b), then (15.2) would
follow from the Chebyshev inequality. This is false in general, but we do
have the remarkable result that

|| max |£(#)] ||, < P'lI€(B)]l (15.3)

where 1 < p < oo and p' is the conjugate exponent. This is a consequence
of Theorem 15.1 and the following result.

Theorem 15.2 Let £ and y be positive random variables such that for all
A > 0 we have

1
Pr{y > A} < XEIX{yzz}-

Then for all p with 1 < p < oo we have ||y||, < p'||z],-
Proof. For 1 < p < oo we have

il = By? = S ¥pr, () = — [~ WdPriy > 3}
= /Ooo pAP 1 Pr{y > A}dA < /oo PAP IExyy>y3d)
0

v
=B(a o 00) = ;2B < pllello

= Pllzllol "7 [l = p'||]lpll15
The case p = oo follows by letting p — oco. O



Chapter 16

The law of large numbers

For some reason, probabilists use the the phrase “law of large numbers”
instead of the more descriptive “law of averages”. But the problem concerns
the behavior of the averages y, = (z1 +- - -+ ) /n of a sequence of random
variables.

Let z4,...,z, be independent random variables of mean 0 and vari-
ance 1, let P, be the algebra generated by the random variables z,,...,z,,
and let y, = (21 + - -+ + z,)/n. Then

Tyt Tyt Ty Tyt t+In Yn Tnt1
d = -— = — . 16.1
Yn n+1 n n+1 + n+1 (16.1)
Since the z, are independent, we have E,z,.1 = Ez,,1 = 0. Therefore
yn A zﬂ""l
Dy, = — and dy, = ——.
Yn n+1 In = +1

For n = 0o we have ||y,||2 = 1/n = 0, so that by the Chebyshev inequality
yn =~ 0 a.s. That is, y1,...,y, converges to 0 in probability. This is the weak
law of large numbers. We can also prove the strong law of large numbers:
Y1,---,Y, converges to 0 a.s. To see this, notice that

1 1
n+1yn’
so that 3 ||Dyal||; converges. By Theorem (10.1) (ii), the predictable pro-
cess associated to y, converges a.s. Also,

1Dyl < [|Dynllz =

Y lldgnllt = Y s

(n+1)?

converges, so that by Theorem 11.3 (i) the martingale associated to y,
converges a.s. Thus y, converges a.s., and by the weak law of large numbers
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it converges to 0 a.s. This establishes the strong law of large numbers for
the case discussed at the beginning of Chapter 4, but we shall prove some
stronger results. Notice that the proof did not really use independence, but
only the fact that the z,, are the increments of a martingale.

Theorem 16.1 Let z,,...,z, be the increments of a martingale.

v E 2
Q) If>. _;c' converges, then (z; + - -- + z,)/n converges to 0 a.s.
=1 !
Y Ez?
(ii) If ) —~ < oo, then (z1 + -+ + Z4)/n 1s of limited fluctuation a.s.
i=1 °
Proof. Let

1 n n T:
Yn = —Z:c; and z, = =
ni i=1 !
Then
n+

n

1& 1
Yn=——2 2+ Zn, (16.2)
ni
as can be seen by collecting coeflicients of z; on both sides. Now the z,, are
a martingale with zo = 0 and

v 2

Ezx-
lall =3 =5+ < oo,
22
=1

so Theorem 11.1 implies that a.s. 2, is limited for all n. In case (i), Theo-
rem 11.3 (i) implies that 2, converges a.s., and in case (ii), Theorem 12.3
implies that z, is of limited fluctuation a.s. Therefore the proof will be
concluded if we can establish the following two claims:

(I) If 2z, 1s limited and convergent, then y, converges to 0.

(II) If 2, is limited and of limited fluctuation, then y, ts of limited fluc-
tuation.
To prove (I), let n ~ co. Since z, is limited,

n+1
n

Zn o 2n 22 2.

Let € > O and let k be the largest natural number < v such that |zx—2z,| > ¢
(and k = 0 if there is no such number). Then k < oo, each |z;| < oo, but
n =~ 0o, so that
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and thus

n

ZZ:,"—Z,,

1
- < €.
nis

Since £ > 0 is arbitrary, this means that the right hand side of (16.2) is
infinitely close to —z, + 2, = 0, which proves (I).

To prove (II), observe that z,/n =~ 0 for n ~ oo, so that z,/n converges
to O and is therefore of limited fluctuation. By the triangle inequality,
the sum of two sequences of limited fluctuation is of limited fluctuation.

Therefore
n+1

n

Zpn = zn+ —Zn
n

is of limited fluctuation. Let

It remains to show that w, is of limited fluctuation. But, as in the proof of
Theorem 12.3, we see that if w, is of unlimited fluctuation, then there exist
A1 < A; such that w, has an unlimited number of upcrossings of [A;, Az].
Define sy, 11, 82,13, ... for the sequence w,, as in Chapter 12 (see Fig. 12.3).
Now in order for w, to upcross [Ay, A;] between s; and ¢y, there must be a
zj,, with j; between sy and ¢;, such that z;, > A,. Similarly, for it to upcross
again at a later time, there must be a z,,, with k; between t; and s,, such
that z;, < A;, and so forth. Thus z,, must have at least 8 —1 upcrossings of
[A1, Az} if w,, has B upcrossings of [A;, A;]. But this is impossible for 8 ~ oo,
since 2, is of limited fluctuation. This proves (II). [J

Here is an example in which case (ii) applies but not case (i). Let
z, = 0 for n < v, and let z, = v with probability % and z, = —v with
probability 1, so that 3° Exz?/:i% = 1. Then the averages y, are 0 for n < v,
but y, = +1, each with probability -;-

Thus the y, with n unlimited need not be infinitesimal in case (ii).
Nevertheless, the y, with n limited become and remain smaller than any
€ > 0. To see this, observe that by Theorem 6.1, if

Y, Ex?

E 7 < 00,
. 1

=1

then there is an unlimited g with g < v such that
! Ez?
Z —7 converges,

=1

and so case (i) applies to zq,...,T,.
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Theorem 16.1 generalizes to other exponents p, but the proof consists
of a truncation argument that reduces the situation to the case p = 2:

Theorem 16.2 Let z,,...,z, be the increments of a martingale, and let
0« p<L2

Elz:|?
) IfY —l;;i converges, then (z1+ - - + z,)/n converges to 0 a.s.

E|.7:,

(ii) IfZ

Proof. In both cases, I claim that a.s. there is a ¢ < oo such that
|zn| < ¢n for all n. To see this, let € > 0, let a = 3 E|z;|?/:*, and let
¢ = (a/e)'/?. Then ¢ < oo, since @ < oo and p >> 0. By the Chebyshev
inequality,

< 00, then (z1+ - -+ z,)/n is of limited fluctuation a.s.

Pr{|z,| > cn for some n} < ) Pr{|z,| > cn}

Elz,]? a
< T e T
<2 ey

cP

Since € > 0 is arbitrary, this proves the claim.

Let us say that a sequence of random variables behaves in case it con-
verges to 0 a.s. in case (i) and is of limited fluctuation a.s. in case (ii).
By what we have just shown, it suffices to prove that, for ¢ < oo, the
sequence (z{) 4 - + z{)/n behaves. Now the z{*" are not in general
the increments of a martingale, but the :csf") — En_lef“) are. We have

(en)
A

AP

—Z > Apr, (M) <32 3 —5—pr,,(A)
l'\|>’-'" 1A|>en ¢
1 E|z,[P
S oL T
By Theorem 10.2,
En_lx&cn)

2=
converges a.s. in case (i) and is of limited fluctuation a.s. in case (ii}, and in

both cases a.s. all of the terms are limited. By (I) and (II) of the previous
proof, this means that

(onﬁ“) + oot E,._lef")) /n
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behaves, so we need only show that the averages of
zszcn) _ En_lxacn)
behave. To do this we need only verify the hypotheses of Theorem 16.1:

E (e — Bpoazf) L Bofen

2

n? n?

1
=Y 5 ¥ e, (),
JA|<en
and since p < 2, this is
AP
(en)?=2

pr,, ()

1 1
X 2 e, ()

|A|<en

1 E|z,|?
Scp—2z np

Corollary. Let x;,...,z, be the increments of a martingale, and let p > 1.
If each ||za||p is limited, then (z1 + - -+ + z,)/n converges to O a.s.

O

Proof. There is no loss of generality in assuming that p < 2. Let
M = max||z,||,. Then M < oo, since M = ||z,]|, for some n. Therefore
the hypothesis of Theorem 16.2 (i) is satisfied. O

Notice that Theorem 16.2 is trivial for p = 1: the conclusions follow by
Theorem 10.2 and (I) and (II), even without the assumption that the z,
are the increments of a martingale.

But the corollary is false for p = 1, as the following counterexample
shows. Let the z,,, for n = 3,4,..., v, be independent and satisfy

n with probability

1
2nlogn’
Ty = 0 with probability % - %M:gn,
— =y Wwith probability 1.

Then Ez, = 0 and ||z,||; = 1/logn. Notice that each z, is L' and ||z,||;
is even infinitesimal for n ~ co. But by the cardinal version of the Borel-
Cantelli theorem (Theorem 7.4 (ii)), a.s. £, = n for an unlimited number
of n. Therefore a.s. '

:x3+---+xn>1_ 1
- log 3

" n—2
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for an unlimited number of n, and so does not converge to 0. In fact, using
(16.1) one can easily show that a.s. y, is of unlimited fluctuation.

The following theorem shows that there is an important case, that of re-
peated independent observations of a random variable, in which the strong
law of large numbers does hold with L! hypotheses.

Theorem 16.3 Let z be a random variable and let z,, ..., z, be independent
random variables with the same probability distribution as z.

(i) If z is L, then (z1 + -+ + z,)/n converges to Ez a.s.
(1) If ||z||1 < oo, then (z1 + -+ z,)/n is of limited fluctuation a.s.

Proof. The strategy of the proof is the same as for Theorem 16.2, but

some of the tactics are different. There is no loss of generality in assuming
that Ex = 0.

I claim that a.s. there is a ¢ < o0 such that |z,| < en for all n. To see
this, let € > 0, let ¢ = E|z|/¢, let

Ey={ck <|z| < c(k+1)}

and observe that

v
Pr{|z,| > cn for some n} < >_ Pr{|z,| > en}

n=1
=Y Pr{|z| >en} = > > PrE
n=1 n=1k=n
oo min{v,k} 00
= > PrE, <) kPrE,
k=0 n=1 k=0
1 1
<13 pn(Y) =SBl =+,
[ Iy c

which proves the claim.
Therefore it is enough to show that, for ¢ < oo, the averages of ("
behave. Now Ez{*" = Ez(”) = E (z — :z:(c")), and it is smaller in absolute

value than
Z |A|prz(/\)'

|A|>en

Also, for n < m we have

E:z:gf") _ Ezglclm)’ — iEz(m) _ Ex(cm)} < Z IAlpr,(A).

en<|Al<em
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Thus Exﬁ,‘") is always limited, and it behaves. If follows, as in the proof
of (I) and (I), that the averages of Ez{" behave. (We have exploited
independence in this argument—it was essential that we were dealing with
absolute expectations rather than conditional expectations.) Therefore we
need only show that z{*") — Ez{*" satisfies the hypotheses of Theorem 16.1.
But R

E(z(m) x(cn)) v fglen)?

znzzvmo 3 D S

n=m " )|<en Al n>max{m,A|/c} "
A | Y 1
Z Azprz(’\) Z ﬁ_*_ Z Azprz(A) Z )

n
AEvm n=m [Al> VA n=|A|/c

n?

Cpisve ML s ("\I/c) -1
vm
< VS )+ X 2
[Al>v/m

provided that v/m/c > 2. In case (i), this is infinitesimal for m =~ oo (so
that the series converges), and in case (ii) it is limited. O

Let z;1,...,z, and z be random variables, not necessarily defined over
the same finite probability space. We say that the z;,...,z, are dominated

in distrtbution by z in case there is an a < oo such that foralln =1,...,v
and all natural numbers k we have

Pr{k < |z,.| <k +1} <aPr{k < |z| < k+1}.

This is certainly the case if the z;,...,z, all have the same probability
distribution as z. In the counterexample given earlier in this chapter,
Z3,T4,..., %, are not dominated in distribution by any random variable.

Let z,,...,z, be independent random variables of mean 0 that are dom-
inated in distribution by the random variable z. If one rereads the proof of
Theorem 16.3, one finds that everything extends to this more general case
except for the estimate of |Ez$f") - Exg,i"‘)|, which was used in case (ii).
Thus we have the following result.

Theorem 16.4 Let x be a random variable and let x,,. .., z, be independent
random variables of mean O that are dominated in distribution by z. If z s
L', then (z1 + -+ + z,)/n converges to 0 a.s.
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Here is a counterexample in case (ii). Let v =~ oo, let u be such that
p/v ~ oo, and let z be 1 with probabilityl —1/u and —p + 1 with proba-
bility 1/x. Then z is not L!, but ||z||; = 2 — 2/p < o0, and Ez = 0. Let
z},...,z!, be independent observations of z. Then a.s. z,, = 1 foralln < v.
Let z1,...,%, be the same as z}, . ..,z except that ] is replaced by 0, the
next 2! random variables z!, are unchanged, the next 3! random variables
are replaced by 0, the next 4! are unchanged, and so forth up to v. Then
the z;,...,z, are independent random variables of mean O that are domi-
nated in distribution by z with ||z||; < oo, but a.s. the (z; + -+ + z,)/n
are of unlimited fluctuation.

The point of the strong law of large numbers is that eventually the av-
erages (z; + :-+ + z,)/n of repeated independent observations of z settle
down near Ez. This is true if z is L' by Theorem 16.3 (i). If we assume
only that ||z||; < oo, then the conclusion of Theorem 16.3 (ii) is rather
uninformative: it tells us merely that the averages can fluctuate substan-
tially only a limited number of times. Nevertheless, if ||z||; < oo, then by
Theorem 6.1 (applied to the sequence E|z(?|) there is an unlimited a such
that z(®) is L. If we choose g < v unlimited but sufficiently small, then
we can ensure that a.s. z, = z{* for all n ~ u, so that by Theorem 16.3 (i)
the sequence (z; + - -- + z,)/n for n < u converges a.s. to Ez(9).

We say that a random variable = is near L' in case there is an L!
random variable y such that £ ~ y a.e., in which case we call Ey a reduced
ezpectation of z. By the Lebesgue theorem, if z is also an L! random
variable with 2z ~ z a.e., then Ez ~ Ey. Thus the reduced expectation
of a near L' random variable is limited and is uniquely defined up to an
infinitesimal.

*Theorem 16.5 Let = be a random variable. Then the following are equiv-
alent:

(i) z is near L,
(ii) for some a =~ oo we have that Pr{|z| > a} ~ 0 and E|z(?| < oo,

(iii) for some a ~ co we have that Pr{|z| > a} ~ 0 and z(9) {5 L.

Proof. As already remarked, it follows from Theorem 6.1 that (ii) =
(iii). The implication (iii) = (i) is obvious. Suppose that (i) holds. Then
clearly Pr{|z| > a} ~ 0 for all @ ~ co. Let y be L! and such that z ~ y
a.e., and let K be such that E|y] < K < oo. Suppose that E|z(?)| ~ oo for
all @ =~ co. Then the set of all a such that Ela:(“)[ > K contains all a =~ oo,
and so contains some a < oo. But |z(9| < |z] ~ |y| a.e., and since z(? is
clearly L', the Lebesgue theorem implies that B|z(%)| < Ely| < K, which is
a contradiction. O
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We have the implications

zis I' = |jz|li K 00 = =z is near L,

with neither of the of the reverse implications holding in general.
The following theorem is a corollary of Theorems 16.3 (i) and 16.5.

*Theorem 16.8 Let = be near L' and let z;,...,z,, with v ~ oo, be
independent random variables with the same probability distribution as .
Then there is an unlimited u < v such that the (z; + -+ + z,)/n for n =

1,...,u converge to the reduced expectation of z.



Chapter 17

Nearly equivalent processes

In Chapter 3 we defined the internal notion of equivalence of two stochas-
tic processes. Now we shall define an external notion: near equivalence.
The intuitive content is that two stochastic processes are nearly equivalent
in case they cannot be told apart by observations that are incapable of
resolving infinitesimals.

Recall that the trajectories of a stochastic process £ indexed by a finite
set T and defined over a finite probability space ({2, pr) are elements of the
finite subset A, of RT. If A is a finite subset of RT and F: A — R, then we
call F a functional defined over A. If F is a functional defined over A and
Ag C A, then we write F(&) for the random variable whose value at each w
in Q is F(€(w)). The space A is a metric space with respect to the metric

p(A, u) = max |A(8) — u(Y)],

and a functional is (nearly) continuous in case p(A, ) 2~ 0 (which is equiv-
alent to A(t) ~ u(t) for all t) implies F(A) ~ F(p). We say that F is
limited in case |F(A)] < oo for each A in A. Since |F| attains its maximum
somewhere, this is the same as saying that max|F| < co.

Let £ and 7 be two stochastic processes indexed by the same finite set T
but defined over possibly different finite probability spaces. Notice that £
and 7 are equivalent if and only if EF(£) = EF(n) for all functionals F
(defined on A¢ U Ay; but then we must have A; = A,). We say that £ and n
are nearly equivalent in case EF({) ~ EF(n) for all limited continuous
functionals F on A¢ U A,,.

Theorem 17.1 Let £ be a stochastic process defined over (Q,pr). Sup-
pose that Q1 is also a finite probability space with respect to pr', and that
3 |pr(w) — pr'(w)| =2 0. Let &' be the same function as &, but regarded as a
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stochastic process on (1,pr'). Then £ and &' are nearly equivalent.

Proof. Let F be a limited functional. Then
|EF(€) - E'F(&)] < X |F(€(w))][pr(w) — pr'(w)]

< max|F|)_ |pr{w) — pr'(w)| = 0. O

Theorem 17.2 Let £ and i be stochastic processes indexed by T and defined
over the same finite probability space. If a.s. £(t) = n(t) for all ¢, then
and n are nearly equivalent.

Proof. If F is a limited functional, then F(¢) and F(n) are L', and if
F is continuous, then F(§) ~ F(n) a.s., so that by the Lebesgue theorem
EF(¢) ~EF(n). O

In the next theorem, A is any formula, internal or external. This theo-
rem shows that our definition of near equivalence has the desired intuitive
content.

Theorem 17.3 Suppose that for all A and p tn A we have that p(\, u) ~ 0
implies that A()) if and only if A(u). Let € and n be nearly equivalent
stochastic processes with A¢UA,, C A. Then A(§) a.s. if and only if A(n) a.s.

Proof. Without loss of generality, we assume that £ and 7 are defined
over A; and A,. Suppose that A(€) a.s. We need to prove that A(n) a.s.

Let € > 0. Then there is a set ® C A, such that Pr;® > 1 —¢ and
A(X) holds for all A in ®. For 8 > 0 let

A +
Fg(X) = (1 - M) ]

Y
Then 0 < Fg < 1, so Fp is limited. If § > 0, then Fp is continuous. Let
@5 = {X: p(A, ®) < B}, and note that

X2, > Fg > xs. <

Therefore, if 8 3> 0 we have
Pr,®s > EFg(n) >~ EFg(€) > Pre® > 1 —¢,

so that Pr, &5 > 1 — 2e. Since this holds for all 8 >> 0, it holds for some
B =~ 0 by overspill. But for # ~ 0 we have A(}) for all A in ®4. Sincee > 0
is arbitrary, we have A(n) a.s.O

Corollary 1. Let £ and n be nearly equivalent stochastic processes and
let F be a functional. If F is continuous at a.e. trajectory of £, then F is
continuous at a.e. trajectory of n.
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Corollary 2. Let ¢ and n be nearly equivalent stochastic processes tndezed
by a finite subset T of R. If a.e. trajectory of &€ ts continuous, then a.e.
trajectory of n ts conttnuous.

Theorem 17.4 Let £ and n be nearly equivalent stochastic processes and
let F be a limited functional that is continuous at a.e. trajectory of €. Then
EF(¢) ~ EF(n).

Proof. Without loss of generality, we assume that £ and # are defined
over A; and A,, and that 1 < F < ¢ < 0o0. Let € > 0. By Corollary 1 there
is a subset ® of A;UA,, such that Pre(®NA;) > 1—¢ and Pr,(®NA,) > 1—¢,
and F is continuous at each element of ®. Now define the functional G as
follows: if A € ® let G(A) = F()), and if A ¢ @ let

G() = DRt fE 0T,

For all A in A = A; U A,, let A* be an element of ® such that p(),®) =
p(X,2*), and let A’ be an element p of ® at which p(), u) F() achieves its
minimum on ®. Then 1 < G < ¢. This is obvious for A € ®, and for A ¢ ®
we have

1 < PAX) Q) p(A, AN F(OY)
= o\, @) p(X, @)

I claim that G is everywhere continuous. To see this, let p(A;, A2) ~ 0.
If Al, Az (S Q, then G(Al) - G(Az) = F(Al) - F(Az) ~ 0. If Al ¢ ® but
p(A1,®) =~ 0, then p(A;,A}) ~ O by the definition of A}, since 1 < F.
Therefore p(A},A]) =~ 0 and so F(X}) =~ F(A]). By (17.1),

=G\ < =F(\") <e. (17.1)

and so G(\;) = F(XAf). Since also G(X;) ~ F()}), we have G(},) ~
G(Az). Finally, if p(A1, ®) > 0, then it is clear that G();) ~ G();), which
establishes the claim.

Therefore EG(§) ~ EG(n), by the definition of near equivalence. But
E|F(¢) — G(&)| < ce and E|F(n) — G(n)| < ce, and since € > 0 is arbitrary
we have EF(¢) ~EF(n). O



Chapter 18

The

de Moivre-Laplace-Lindeberg-
Feller-Wiener-Lévy-Doob-
Erdos-Kac-Donsker-Prokhorov
theorem

Let £ be a stochastic process indexed by a near interval T (for example,
the normalized martingale associated to a series of random variables in
Chapter 14). We say that £ is a (near) Wiener process in case £ is nearly
equivalent to the Wiener walk on T. The following is a version of the
de Moivre-Laplace central limit theorem that contains Lindeberg’s theorem
on the sufficiency of his condition, Feller’s theorem on its necessity, Wiener’s
theorem on the continuity of trajectories for his process, the Lévy-Doob
characterization of it as the only normalized martingale with continuous
trajectories, and the invariance principle of Erdods and Kac as extended by
Donsker and Prokhorov.

Theorem 18.1 Let £ be a normalized martingale, indezed by a near inter-
val, with €{(a) = 0. Then the following are equivalent:

(i) € ¢s a Wiener process,
(i) a.s. ¢ is continuous for all t, and £(b) is L?,
(iii) € satisfies the Lindeberg condition.

Proof. We will show that (i) = (ii) = (i) = (i).
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Suppose that (i) holds. By the corollary to Theorem 13.1, a.e. trajectory
of the Wiener walk is continuous for all £, so by Corollary 2 to Theorem 17.3,
a.e. trajectory of ¢ is continuous for all ¢. We need to show that £(b) is L*.

Let X, <
fro(¥) ={ o M{;z:

and observe that a random variable y is L? if and only if for all £ > 0 there
is a ¢ < oo such that Ef((y) > Ey? —¢. If ¢ < oo, then f{, is limited and
continuous, so if we let Fi,)(¢) = f(.)(£(b)), then F{,) is a limited continuous
functional. Let w be the Wiener walk. It is easily seen that w(b) is L?; for
example, because

Ew(b)* (Z dw(t)) =E)Y_ dw(t;)dw(t:)dw(ts)dw(ts)

=3) Edw(t)*dw(s)® +)_ dw(t)*
t#s
=3 dtds+Y_dt* ~3(b—a)? < 0.
t#s
Therefore, for € > 0 there is a ¢ < 0o such that Ef(,)(w(b)) > b—a — ¢,
and so
Ef)(¢(b) >b—a—e=EL(D)? —e.

Hence ¢£(b) is L%, and thus (i) = (ii).
Suppose that (ii) holds. In the identity

£(b)* =2 £(t)de(r) + D_de(r)?,

the left hand side is L! by hypothesis. The next term is L' because the
expectation of its square is

4E) £(t)%dt =4) (t — a)dt ~ 2(b — a)? < 0.

Therefore the last term is L', and consequently 3 d¢(¢)(*)? is L'. But if
€ > 0, then 3 d&(t)? = T dE(t)? as. by the continuity of trajectories.
By the Lebesgue theorem, their expectations are infinitely close, and this
is the Lindeberg condition. Thus (ii) = (iii). ‘

Suppose that (iii) holds. The idea of the proof that (iii) = (i) is simple.
Observe the process £ at the times ¢, as in Fig. 18.1, where ¢ is a huge
infinitesimal. Then it almost surely goes up or down by nearly /¢, and
by the martingale property these occur with nearly equal probability. The
times t, are random variables, but since the quadratic variation of the
process (which is nearly ne) is nearly equal to the elapsed time ¢ — a, they
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Figure 18.1: A Wiener process

behave as if they were spaced ¢ apart on the average (this is not indicated
in Fig. 18.1), and the process looks like a Wiener process.

We shall prove that (iii) => (i) under the weaker assumption that £ is
nearly normalized, by which we mean that a.s. 7¢(t) ~ t — a for all t. By
Theorems 14.3 and 17.2, there is no loss of generality in assuming that for
some a =~ 0 we have |d¢(t)| < a for all ¢ and all w.

Let b — b ~ oo, and let T be the union of T and the set of all numbers
of the form

b—b b—b

b+k for k=1,...,m, where =~ 0.
m

We extend ¢ to T by setting £(t) = £(b) +W(t), where W is the Wiener walk
on T\ T. This extension preserves the properties of £ assumed above. The
point of this extension is to avoid having to worry about when the times ¢,
become undefined for the original process.

We denote the predecessor of ¢t by ¢t — d«t. We say that £ crosses A at
t in case either £(t — dxt) < A and £(t) > A, or else {(t — dxt) > X and
£(t) < A. Let € > 0 with v/e > 2a, and let v = [(b— a)/e]. Let t; = a
and define ¢t,, inductively, for n = 1,...,v, to be the first time subsequent
to t,_; at which £ crosses some k,+/c, where k,, is an integer with the same
parity as n (and if there is no such time, then we define ¢, to be b). See
Fig. 18.1.

Let P, be the algebra generated by £(ty),...,&(t,). I claim that the
€(t,) are a martingale with respect to this filtration. To see this, let A be
an event with x4 in P,. Then

Xa (£(tnr1) — £(tn)) = D_n(s)dé(s)
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with 7 a P-process: n(s) = 1 if the event A has occurred and t, < s < tp41,
and otherwise 7(s) = 0. Therefore Ex4 ({(tn+1) — €(ts)) = 0, and since
this is true for all A with x4 in 7,, it follows that

Ej (£(tnt1) — £(tn)) = 0,

which establishes the claim.
Suppose that 0 < € < co. Then a.s.

Is(tn-ﬂ) - E(tn) + \/El < 2«

for all n < v, since the only way this could fail is for ¢,;; to be b—but since
b— b~ oo, and v <« oo for € > 0, it is easy to see that a.s. this does not
occur. Notice also that [£(t,+1) — €(tn)] < V€ + 2a K 0o everywhere, for
all n < v. Since £(¢p+1) — €(ts) has mean 0, we have

Pr{[€(tnsr) — £(t) — V| < 20} ~ 3,
Pr{‘f(th) — E(ta) + \/El <2}~ %

The same holds for the conditional probability with respect to 5,. Since
v &€ oo for € > 0, this means that

z

where the sum is over all 2 mappings 7 of {0,...,r — 1} into {0, 1}.

Now use overspill. Since the set of all £ for which the left hand side
of (18.1) (i.e., everything but the ~ 0) is < € contains all € > 0, it contains
all sufficiently large € ~ 0. Hence (18.1) continues to hold for all sufficiently
large € ~ 0. Now fix € (the “huge infinitesimal”) so that € ~ 0, a/e ~ 0,
and (18.1) holds.

Let the random variable v(t) be the largest n with n < v such that
t, <t.FortinT, let

v(t) 2
¢(t) =z_:l(s(tn)—eun_a)w(s(t)—s(tvm)) : (18.2)

Pr{l&(tm) — €(t,) — (—1)"(")\/21 < 2a for all n} — '217' ~0, (18.1)

Then

dg(t) = de(t)® +2(£(t) — €(tuy))dE(),
so that |d¢(t)| < 4|d€(t)] for all ¢ in 7' and all w, where v = a+2(y/e+a) =~
0. Consequently,

|32 de() - S Bede(v)]) < S llde(0)lE < +* 3 1dE@)IE = 0.
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By Theorems 11.1 and 7.1, a.s.

¢(t) = > Ede(s) = Y Edé(s) =re(t) ~t—a

s<t s<t

for all ¢t in T. Since a/e ~ 0, a.s. each term in the sum in (18.2) is ~ e.
The last term in (18.2) is =~ 0, so that a.s. ¢(t) ~ v(t)e. Thus a.s.

vit)e~t—a (18.3)

foralltin T.

Let II be the finite probability space of all mappings 7 of {1,...,v} into
{0,1}, with pr(w) = 1/2¥ for all 7 in II. Let w, be the stochastic process
indexed by T and defined over (II, pr) by

w()= Y ()

n<(t—a)/e

By (18.1) and (18.3), and Theorems 17.1 and 17.2, £ is nearly equivalent
to w,.. If & is any other process satisfying our hypotheses—in particular,
if £ is the Wiener walk on T—then for sufficiently large € ~ 0, both ¢
and ¢’ are nearly equivalent to w,, and so are nearly equivalent to each
other. Therefore £ is a Wiener process, and thus (iii) = (i). O

This is an arbitrary stopping point. More can be done. I hope that
someone will write a truly elementary book on stochastic processes along
these lines, complete with exercises and applications.



Appendix

Introduction

The purpose of this appendix is to demonstrate that theorems of the
conventional theory of stochastic processes can be derived from their ele-
mentary analogues by arguments of the type usually described as general-
ized nonsense; there is no probabilistic reasoning in this appendix. This
shows that the elementary nonstandard theory of stochastic processes can
be used to derive conventional results; on the other hand, it shows that
neither the elaborate machinery of the conventional theory nor the devices
from the full theory of nonstandard analysis, needed to prove the equiva-~
lence of the elementary results with their conventional forms, add anything
of significance: the elementary theory has the same scientific content as the
conventional theory. This is intended as a self-destructing appendix.

We assume a knowledge of conventional measure theory and of nonstan-
dard analysis in the form of Internal Set Theory (IST), for which see [1].!

The elementary axioms of Chapter 4 are theorems of IST. Axioms (1)
and (2) follow from the transfer principle, axiom (3) follows from the ide-
alization principle, and external induction (4) follows from the standard-
ization principle. The sequence principle (*5) is a particular case of the
saturation principle; see [2]. Consequently, all of the theorems of the text
are theorems of IST.

Nearby elementary processes

Theorems of conventional mathematics are internal, so to prove such
a theorem about a stochastic process we can assume that the process is
standard, by transfer. This implies that its indexing set and the probability

1The references are at the end of this appendix.

80



APPENDIX 81

space over which it is defined are standard.

Let £; be a standard stochastic process indexed by T, and defined over
(Qo, So,P1p). By a nearby elementary process we mean a stochastic pro-
cess £ indexed by a finite subset T of T, containing all of the standard
elements of T, defined over {Q, So, Pro) but taking only finitely many val-

ues, such that
S 1€(t) — &ot)] = 0 (A1)
teT
except on a set of infinitesimal measure, and such that if & takes values
in L?, where 1 < p < oo is standard, then

2 11E() = éo(®)]lp = 0. (A.2)

teT

Observe that if &y takes values in L? for some standard p, then (A.1) follows
from (A.2), by the Chebyshev inequality. Let S be the o-algebra generated
by the £(t) for ¢t in T'; then § is a finite Boolean subalgebra of S;. Let Q2 be
the set of all atoms of § of strictly positive measure, and define pr on 2 by
pr{w) = Pro(w). Then (2, pr} is a finite probability space. We can consider
£ either as a stochastic process defined over ({1, pr), as in the text, or, for
purposes of comparison with £, as defined over ({1, So, Pro); we will not
distinguish notationally between the two notions.

To obtain a nearby elementary process, it suffices to take a sufficiently
large unlimited number of terms of the decimal expansion of &;(t) for ¢
in T. For any positive real number z and natural number n, we let z[, be
the largest number < z of the form

n

Z akZ‘k,

k=—n

where each a; is 0 or 1, and for £ < 0 we let zj) = —(—2)[n-

Theorem A.1l Let & be a standard stochastic process. Then there exists a
nearby elementary process.

Proof. The existence of T follows from the idealization principle. Let
€ > 0 be infinitesimal. Let P be the set of all p in [1,00] such that &
takes values in LP. If P is non-ernpty, then it contains an element py such
that po > p for all standard p in P, by idealization. Then by the Lebesgue
dominated convergence theorem, if n is sufficiently large we have

Z [1€0(t) ) — €0(t) 5o < €.

teT
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Let £(t) = &o(t)[n) for t in T'; then (A.2) holds for all standard p in P. As
already remarked, this implies (A.1). If P is empty, let

No = {max ea(t)] > 27}

Choose n so large that Pro N,, < ¢ (this is possible since the N,, decrease to
the empty set), n is greater than the cardinality of T', and n2™" < €. Again
let £(t) = &o(t)[n) for ¢ in T. Then (A.1) holds because |[£(t) — &(¢)] < 27"
except on N,. O

It is clear that the £(¢) given by this construction are independent if the
&o(t) are. If & is a martingale, we must modify the construction a bit to
obtain an elementary martingale.

Theorem A.2 Let £ be a standard stochastic process, indezed by a subset
Ty of R and taking values in L', that is a supermartingale, submartingale,
or martingale. Then there ezists a nearby elementary process with the same
property.

Proof. Choose a finite subset T of Ty containing all of its standard
elements, and use the notation (7", dt, a, etc.) of the text. We suppose
that & is adapted to a certain filtration F;. We will choose an n and let 7,
be the finite Boolean algebra generated by the £o(s), for s < ¢, s €T, so
that P, C Py;. Then we define £ by

de(t) = d (€o(t)m) + E{déo(t) — d (&o(t)m) | P}, teT,
&(t) = &ola)m + >_déE(s), teT.

Then
E{d¢(t) | A} = E{d&(t) | P}

Since P, C Py, this has the right sign; that is, if & is a supermartingale,
submartingale, or martingale, then so is £. Let € > 0 be infinitesimal, and
let po be as in the previous proof. If n is sufficiently large, then

SIE) — o(®)llpe < €

teT

by the Lebesgue dominated convergence theorem. [
These proofs show that the infinitesimal implicit in the definition of a
nearby elementary process can be chosen to be arbitrarily small.
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Equivalence of analytical properties

A typical theorem of the theory of stochastic processes asserts that
under certain analytical hypotheses, certain probabilistic conclusions hold
almost surely for the sample paths. To derive a conventional theorem from
its elementary analogue, we need to show that the internal analytical hy-
potheses imply the analogous external analytical hypotheses, and that the
external probabilistic conclusion implies the corresponding internal proba-
bilistic conclusion. But to satisfy ourselves that the two formulations are
saying the same thing in different languages, we should establish the equiv-
alence of the two forms of the hypotheses and of the two forms of the
conclusions.

In this section we will verify that certain internal analytical properties
of a standard stochastic process are equivalent to corresponding external
analytical properties of a nearby elementary process. The following con-
ventions are in force: &g is a standard stochastic process, indexed by Ty and
defined over {Qg, So, Pro); £ is a nearby elementary process, indexed by T
and defined over ({2, pr) as above (and is a supermartingale, etc., if £, is); a
and b are the first and last elements of T, T' = T\ {b}, for t in T" its succes-
sor is ¢t + dt, and for any function f on T we let df(t) = f(t + dt) — f(¢) for
tin T'; if Tp = NT = N\ {0}, then we choose T to be {1,...,v} where v is
an unlimited natural number. Notice that if Tj is the closed interval [a, b],
then T is a near interval with first element a and last element b.

Theorem A.3 Let & take values tn L1, If To = N7, then
(1) Z3211léo(n) (|1 converges <= Xy_[|€(n)|]1 (nearly) converges,
(2) &(n) converges in L' <= £(n) (nearly) converges in L.

If to ts a standard point of Ty, and Ty C R, then

(3) éo is continuous at to in L' <=> ¢ is (nearly) continuous at to in
L.

If To CR, then

(4) &o #s of bounded variation in L' <= Y ,.r||dé(t)]]1 < oo.
If Ty 1s a closed interval [a,b], then

(5) €& is in L (Tp x Q) <= € is L' on T' x 0.

(8) & is absolutely continuous in L' <= d&/dt is L' on T' x Q, for
some nearby elementary process €.
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Proof. The conclusion of (1) is equivalent to

z": [|€o(n)]]1 (nearly) converges, (A.3)

n=1

since £ is a nearby elementary process. Thus (1) asserts that a standard
series converges if and only if its partial sum up to an unlimited v nearly
converges, and this is easy to see. The proofs of (2) and (3) are entirely
similar.

Suppose that the hypothesis of (4) holds. By transfer, there is a stan-
dard number K such that for all finite subsets of T, and for T in partic-
ular, we have ¥,cqv ||d€o(t)||1 < K. Therefore the conclusion of (4) holds.
Conversely, suppose that the conclusion of (4) holds. Since T contains all
standard elements of Ty, there is a fixed standard bound on the variation
of £p for any standard finite subset of T, and so by transfer the hypothesis
of (4) holds.

The hypothesis of (5) is equivalent to the assertion that

1165 — €51 — 0 as n,m — oo (A.4)

Since o is standard, (A.4) is equivalent to Hf(()") - fc(,m)lll ~ 0 for n,m =~
oo, and since ¢ is a nearby elementary process, this is equivalent to the
conclusion of (5).

For any finite collection I of non-overlapping subintervals of [a,b], let
|I] be its total length, and let varo(Z) be X;]|&(8:) — &o(as)||1, where the
[ai, b;] are the intervals of I. Then the hypothesis of (6) is

VedsVI(|I| < & = vary(I) <¢). (A.5)
But this is equivalent to
VI(|I| ~0 = varg(I) ~0); (A.6)

to see this, apply the reduction algorithm to (A.6), as follows. Write (A.6)
as ’

VI (V“& I <6 = Ve varg(I) < e) ,

rewrite this as
VEeVIF*S (|I] <6 = varg(I) <e),

use idealization to put this in the form
veteItngY 36! (1| < 6 = varg(I) <€),

then choose the smallest § in 6' and apply transfer to obtain (A.5).
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Let us call I good in case the endpoints of the intervals in I are contained
in T. I claim that (A.6) is equivalent to

vE&dT (J1) ~ 0 = vare(I) ~0). (A7)

Clearly, (A.6) implies (A.7). If we apply the reduction algorithm to (A.7),
we find that it is equivalent to

VeIt EVECIT (1] < 6 = vare(I) <¢).
Since T contains all of the standard points of [a,b], this implies
VeItV (JI| < 6 = var(l) <€),

which is equivalent by transfer to (A.5), and so to (A.6). This proves the
claim.

Thus (A.5) and (A.7) are equivalent. For a good I, let var(I) be
i [|€(5:) — €(ai)||1- Since £ is a nearby process, (A.7) is equivalent to

Vel (|I| ~0 = var(I) ~ 0).

But this asserts that for sets of the form M = I x Q, if M is of infinitesimal
probability in T' x Q then P
Ed—fx MmM=0,
and this holds if d¢/dt is L' on T" x 1, by Theorem 8.1.
For the converse direction, remark that the hypothesis of (6) is equiv-
alent to the existence of a standard function 7, in L' (T x {2g) such that
for all ¢t in Ty,

£o(t, wo) = &o(a, wo) + /at no{s, wo)ds

for a.e. wp in 5. Then let n be a nearby elementary process to ng, so that
n is L' on T' x Q by (5). Choose a nearby elementary random variable
€(a) to &o(a) (that is, choose a nearby elementary process to the standard
stochastic process whose index set consists of the single point a and whose
random variable is y(a)), and define ¢ by

£(t) = £(a) + an(S);

then it is easy to verify that £ is a nearby elementary process to £, and
défdt=nisL'onT'x Q. O

Theorem A.4 Let & take values in L', and suppose that To C R. If &
s a martingale or a positive submartingale, then ||£(a)]]; < oo, and we
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have |[£(b)||; < oo if and only if t — ||&o(2)||1 ts bounded. If & is a positive
supermartingale, then ||£(b)||; < oo, and we have ||£(a)||; < oo tf and only
if t— ||&o(2)|]1 s bounded.

Proof. Under the first hypothesis, ||£0(¢)!]; and ||£(t)||: are increasing
in t, so ||€(a)||1 < oo. If ||€(b)||; < oo, there is a standard K such that
[1€(8)]l; < K for all t in T, so that ||&(t)]]s < K + 1 for all standard ¢
and hence, by transfer, for all t. Conversely, if t — ||£o(t)|]1 is bounded,
then it has a standard bound K, so that ||&(b)||1 < K and ||£(b)||1 < oo.
The proof under the second hypothesis (when the norms are decreasing) is
entirely similar. O

Regular probability measures

Let ny be a stochastic process indexed by the set T;. When Tj is un-
countable, there are many measure-theoretic complications in the theory.
To avoid most of these complications, we will always consider the canon-
ical version &, of the process; see [3]. This is a process, indexed by the
same set T, that is equivalent to 7; that is, it has the same finite joint
distributions. It is defined over path space

where R is the one-point compactification of R. Then {1, is a compact
Hausdorff space in the product topology. We let §y be the o-algebra of all
Borel sets in {1g and we let Prq be the unique regular probability measure
such that the stochastic process &, defined over ({2, So, Pro) by the equa-
tion &o(t, wo) = wo(t), for ¢t in Ty and wp in g, has the same finite joint
distributions as 7,. If ng is standard, so is &,.

One advantage of the canonical version is that many interesting subsets
of path space are Borel sets, and so are automatically measurable.

We will need two internal results about regular probability measures.
Recall that a directed set is a set D together with a transitive binary rela-
tion < on D such that every finite subset of D has an upper bound, and
that a net is a function F — ®p defined on D. If it is set-valued, then it is
called increasing in case Fy < F, implies ®p, C ®f,, and decreasing in case
Fy, < F; implies ®r, 2 ®F,. The point of the following theorem is that it

applies to uncountable families of sets.

Theorem A.5 Let Prg be a regular probability measure on a compact Haus-
dorff space Q. Let F — ®p be a decreasing net of closed subsets of (1,
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and let G — T'¢ be an increasing net of open subsets of §1g. Then

Pro[ ) ®F = inf Pro®r, (A.8)
F

Pro|JTe = sup Prole. (A.9)
G

Proof. Let £ > 0. By definition of regularity, there is a compact set ®
contained in Ug I'¢ such that

Pry (Lcj Te\ <I>) <e.

Since ® is compact, there is a finite set {G),...,G,} such that

UJTe, 2 @.

=1

Let Go be an upper bound for this finite set. Then I'g, 2 @, so that

Pro (Lé) T\ ran) <e.

Since ¢ is arbitrary, this proves (A.9), and (A.8) follows by duality. O

Theorem A.6 Let Pry be a regular probability measure on a compact Haus-
dorff space Qg. Let the O p be closed subsets of 1 and let the T'yjc be open
subsets of (g, where 7 and k range over N and F and G range over a di-

rected set D, and let them be decreasing in 7 and F and increasing in k
and G. Then

Pry O LkJ Q S = SI’;’p 1]r’1Ff Proéﬁ(j)F, (A.10)

where k ranges over all functions from N to N, and
Pro U UTkje = supinf Prol', & ., (A.11)
k j G ko 7
where G ranges over all functions from N to D.
Proof. Let

p=Pro[NUN ®ser
i k F
and let € > 0. Then
Y53k Pro[ | ®jxr > p—,
F
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so there exists a function k such that
vy Proo Qj;(j)F > p—E¢.

By the previous theorem,

lﬁ"f Prij;(].)F >p—E¢.

Since ¢ is arbitrary, this proves the inequality < in (A.10). But since

NUN@r =UN 25006

ik F T F

the reverse inequality is trivial.

Now let
p=ProlJNUT4je
ki G
and let € > 0. Then
EkVJEG PrOI‘ij Z pP— €

by the previous theorem, so there exist k and G such that for all 7

Pr T >p—¢.

kiG(5)
Since € is arbitrary, this proves the inequality < in (A.11), and again the
reverse inequality is trivial. O

Equivalence of probabilistic properties

Let £y: Ty — R be a standard function. The notion of a nearby elemen-
tary function £ is clear: just restrict the definition of a nearby elementary
process to the case that the underlying probability space consists of a single
point. We frequently have a pair of properties, an internal property A and
an external property B, such that A holds for & if and only if B holds for &.
An example is that A is continuity at a standard point ¢, and that B is near
continuity at ¢5. Notice that if & is not standard, the equivalence need not
hold. Now let & be a standard stochastic process and let £ be a nearby
elementary process, and ask whether A holding a.s. for &g is equivalent to
B holding a.s. for £&. First we must make sure that the set of all points
in the underlying probability space for which A holds is a measurable set;
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otherwise the question makes no sense. Even then we cannot argue path-
by-path. There is a finite set containing all of the standard paths, and for
most interesting stochastic processes any finite set of paths has probabil-
ity O (that is, in general the sample paths of a standard stochastic process
are nonstandard!), so that the equivalence of A for a standard function with
B for a nearby elementary function does not answer our question.

Theorem A.7 Let £ be a standard stochastic process in the canonical
verston. If To = N, then

(1) X2, 1é(n)] < oo a.s. <= Xh_,]€(n)| < oo a.s.,

(2) 224 ]éo(n)| < o a.s. <= Yi_;|&(n)| (nearly) converges a.s.
If tq is a standard point of Ty, and Ty C R, then

(3) &o #s continuous at ty a.s. <= ¢ s (nearly) continvous at ty a.s.
If Ty 1s a compact subset of R, then

(4) &o ts continuous a.s. <=> £ is (nearly) continuous a.s.

(8) &o has no discontinuities of the second kind a.s. <= ¢ is of limited
fluctuation a.s.

If Ty C R, then

(6) £o is of bounded variation a.s. <= ¢ is of limited variation a.s.
For any Ty,

(7) é6=0as <= ¢ =~0as

Proof. For i = 1,...,7, the equivalence (7) is of the form A; & B;,
where A; is an internal formula and B; is an external formula.
By definition, there is a subset N of path space {3y with Prg N ~ 0 such

that on N¢ we have
> léo(t) — &(t)] ~ 0.

teT
Suppose it is false that A; a.s., and let

k
2}, = {Z taln)] > j},
n= -
o' = ﬂU%-
ik
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Then Pro®! > 0, so by transfer there exists a standard € > 0 such that
we have Pro®! > . By Theorem A.6 and transfer, there is a standard
function k& such that Pry <I>,11: > €, where

1 _ 1,
o =125

If 7 is standard, then k() is standard and so < v, and hence
2 l&o(n)] = o0
n=1

on ®}, since it is bigger than every standard j. Therefore
A

ilm(nn ~ oo

on N¢n &, and Pro(N° N ®1) > €. Since this is true for some standard
€ > 0, it is false that B; a.s. Thus B; a.s. implies A; a.s.

A fortiori, By a.s. implies A, (which is identical with A,) a.s.

Suppose it is false that A; a.s., and for G a finite subset of T} let

e = U {lals) - &0l > 1}
€G
|s—to}<1/3

r*= U ﬂ U Fi:‘a-
ki G
Then I'? is the set of paths that are discontinuous at ¢;. Notice that it is
a Borel set, since the uncountable union over G is a union of open sets.
Then there is a standard £ > 0 such that PryT'® > ¢. By Theorem A.6 and
transfer, there exist standard k and G such that Pry I'za > ¢, where

3 _ 3
FkE' - nrkjc”:(j)'
J

If 7 is standard, then G (7) is a standard finite set, so that each element of it
is standard and hence G(j) C T. OnT?, therefore, for all standard j there
is an s in T with |s — ¢5| < 1/7 and |&o{s) — &(to)| > 1/k, so by overspill
there is an s in T with s ~ t; and |£o(s) — &o(to)| > 1/k. Consequently, on
Nen 1‘26 the process ¢ is not nearly continuous at ¢y, and so it is false that
Bs a.s. Thus Bj a.s. implies A3 a.s.
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The proof that B, a.s. implies A4 a.s. is entirely similar: just replace
the fixed ¢, by a varying ¢.

The proof that Bs a.s. implies As a.s. is similar. For G a finite subset
of Ty consisting of the 7 points t; < - -+ < ¢, let

j-1

Thic = N {Ifo(ti) — Eoltiy1)] > %}a

i=1
r* = UNUTke
E i G
and argue as before. Notice that the Borel set I'® is the set of paths having
a discontinuity of the second kind.
The proof that Bg a.s. implies Ag a.s. is also similar. For G a finite

subset of T}, let G' be G with its last element deleted, and for ¢t in G', let
t + dt be its successor in G. Let

I = { > [€o(t + dt) — &o(t) > J'} ;

tec!
ré= ﬂ U I‘ng"
i@
and argue as before.
Suppose it is false that A; a.s. For G a finite subset of T}, let

1
FZG = {I{gglﬁo(t)l > E} )

F7:UUF;G'
E G

Then there is a standard € > 0 such that Pr,I'7 > ¢, and so a standard &
and G such that PryT']; > ¢. Then G C T, and on I'? the process ¢ is not
infinitesimal on T, so it is false that By a.s. Thus B; a.s. implies A; a.s.
Now let us consider the converse direction.
Suppose that A; a.s., and let

2, = {'§|§0(n)| <1
®% = OLkJ@?,,.
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Then Pro®% = 1. Let € > 0 be standard. By Theorem A.6 and transfer,
there is a standard k such that Prg Q% > 1 — ¢, where

2 _ 2
o5 = OQ:‘ZU)'
On Q%, for all standard j we have

o 1
> l&(n)] < 5

~

n=k(J)

and soon N°N Q% we have

and so Y.%_, |é(n)| nearly converges. Hence B; a.s., and thus A; a.s. implies
B; a.s.

A fortiori, A, a.s. implies B; a.s.

Suppose that A; a.s., and let

- N et - sl <3},

Js—to|<1/k
o* =23
ik

Then Pro ®% = 1. Let € > 0 be standard. Then there is a standard k such
that Prg Q% > 1— ¢, where

3 _ 3
o= ﬂ @jk(j).
j
On NN @% the process £ is nearly continuous at to, and thus Az a.s. implies

B; a.s.
The remaining cases are similar. [J
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