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A Daniela, sempre
Preface

This book is the end result of a long story that started with my involvement
as Coordinator of the Statistical Mechanics section of the Italian Encyclo-
pedia of Physics.

An Ttalian edition collecting several papers that T wrote for the Encyclope-
dia appeared in September 1995, with the permission of the Encyclopedia
and the sponsorship of Consiglio Nazionale delle Ricerche (CNR-GNFM).

The present work is not a translation of the Italian version but it overlaps
with it: an important part of it (Ch.I,ILIII VIII) is still based on three arti-
cles written as entries for the —it Encicopledia della Fisica (namely: “Mec-
canica Statistica”, “Teoria degli Insiemi’ and “Moto Browniano”) which
make up about 29% of the present book and, furthermore, it still contains
(with little editing and updating) my old review article on phase transitions
(Ch.VI, published in La Rivista del Nuovo Cimento). In translating the
ideas into English, I introduced many revisions and changes of perspective
as well as new material (while also suppressing some other material).

The aim was to provide an analysis, intentionally as nontechnical as I was
able to make it, of many fundamental questions of Statistical Mechanics,
about two centuries after its birth. Only in a very few places have I en-
tered into really technical details, mainly on subjects that I should know
rather well or that I consider particularly important (the convergence of the
Kirkwood-Salsburg equations, the existence of the thermodynamic limit,
the exact soltution of the Ising model, and in part the exact solution of the
six vertex models). The points of view expressed here were presented in
innumerable lectures and talks mostly to my students in Roma during the
last 25 years. They are not always “mainstream views”; but I am confident
that they are not too far from the conventionally accepted “truth” and I do
not consider it appropriate to list the differences from other treatments. I
shall consider this book a success if it prompts comments (even if dictated
by strong disagreement or dissatisfaction) on the (few) points that might
be controversial. This would mean that the work has attained the goal of
being noticed and of being worthy of criticism.

I hope that this work might be useful to students by bringing to their at-
tention problems which, because of “concreteness necessities” (i.e. because
such matters seem wuseless, or sometimes simply because of lack of time),
are usually neglected even in graduate courses.

This does not mean that I intend to encourage students to look at questions
dealing with the foundations of Physics. I rather believe that young students
should refrain from such activities, which should, possibly, become a subject
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of investigation after gaining an experience that only active and advanced
research can provide (or at least the attempt at pursuing it over many
years). And in any event I hope that the contents and the arguments I have
selected will convey my appreciation for studies on the foundations that
keep a strong character of concreteness. I hope, in fact, that this book will
be considered concrete and far from speculative.

Not that students should not develop their own philosophical beliefs about
the problems of the area of Physics that interests them. Although one
should be aware that any philosophical belief on the foundations of Physics
(and Science), no matter how clear and irrefutable it might appear to the
person who developed it after long meditations and unending vigils, is very
unlikely to look less than objectionable to any other person who is given
a chance to think about it, it is nevertheless necessary, in order to grow
original ideas or even to just perform work of good technical quality, to
possess precise philosophical convictions on the rerum natura. Provided
one is always willing to start afresh, avoiding, above all, thinking one has
finally reached the truth, unique, unchangeable and objective (into whose
existence only wain hope can be laid).

I am grateful to the Enciclopedia Italiana for having stimulated the begin-
ning and the realization of this work, by assigning me the task of coordinat-
ing the Statistical Mechanics papers. I want to stress that the financial and
cultural support from the Enciclopedia have been of invaluable aid. The
atmosphere created by the Editors and by my colleagues in the few rooms
of their facilities stimulated me deeply. It is important to remark on the
rather unusual editorial enterprise they led to: it was not immediately an-
imated by the logic of profit that moves the scientific book industry which
is very concerned, at the same time, to avoid possible costly risks.

I want to thank G. Alippi, G. Altarelli, P. Dominici and V. Cappelletti who
made a first version in Italian possible, mainly containing the Encyclopedia
articles, by allowing the collection and reproduction of the texts of which the
Encyclopedia retains the rights. I am indebted to V. Cappelletti for granting
permission to include here the three entries I wrote for the Enciclopedia delle
Scienze Fisiche (which is now published). I also thank the Nuovo Cimento
for allowing the use of the 1972 review paper on the Ising model.

I am indebted for critical comments on the various drafts of the work,
in particular, to G. Gentile whose comments have been an essential con-
tribution to the revision of the manuscript; I am also indebted to several
colleagues: P. Carta, E. Jarvenpad, N. Nottingham and, furthermore, M.
Campanino, V. Mastropietro, H. Spohn whose invaluable comments made
the book more readable than it would otherwise have been.

Giovanni Gallavotti

Roma, January 1999
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§1.1. Introduction

Statistical mechanics poses the problem of deducing macroscopic properties
of matter from the atomic hypothesis. According to the hypothesis matter
consists of atoms or molecules that move subject to the laws of classical
mechanics or of quantum mechanics.

Matter is therefore thought of as consisting of a very large number N
of particles, essentially point masses, interacting via simple conservative
forces.!

A microscopic state is described by specifying, at a given instant, the value
of positions and momenta (or, equivalently, velocities) of each of the N
particles. Hence one has to specify 3N + 3N coordinates that determine a
point in phase space, in the sense of mechanics.

It does not seem that in the original viewpoint Boltzmann particles were
really thought of as susceptible of assuming a 6N dimensional continuum
of states, ([Bo74], p. 169):

Therefore if we wish to get a picture of the continuum in words, we first
have to imagine a large, but finite number of particles with certain properties
and investigate the behavior of the ensemble of such particles. Certain prop-
erties of the ensemble may approach a definite limit as we allow the number
of particles ever more to increase and their size ever more to decrease. Of
these properties one can then assert that they apply to a continuuwm, and
in my opinion this is the only non-contradictory definition of a continuum
with certain properties

and likewise the phase space itself is really thought of as divided into a finite
number of very small cells of essentially equal dimensions, each of which
determines the position and momentum of each particle with a mazimum
PTECcision.

This should mean the maximum precision that the most perfect measure-
ment apparatus can possibly provide. And a matter of principle arises: can
we suppose that every lack of precision can be improved by improving the
instruments we use?

If we believe this possibility then phase space cells, representing microscopic
states with maximal precision, must be points and they must be conceived
of as a 6NV dimensional continuum. But since atoms and molecules are not
directly observable one is legitimized in his doubts about being allowed to
assume perfect measurability of momentum and position coordinates.

In fact in “recent” times the foundations of classical mechanics have been

1 N =6.02 x 1023 particles per mole = “Avogadro’s number”: this implies, for instance,
that 1 cm® of Hydrogen, or of any other (perfect) gas, at normal conditions (1 atm at
0°C) contains about 2.7 x 10'° molecules.
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subject to intense critique and the indetermination principle postulates the
theoretical impossibility of the simultaneous measurement of a component
p of a particle momentum and of the corresponding component ¢ of the
position with respective precisions ép and d¢g without the constraint:

opdg > h (1.1.1)

where h = 6.62 x 10727 erg - sec is the Planck’s constant.

Without attempting a discussion of the conceptual problems that the above
brief and superficial comments raise it is better to proceed by imagining that
the microscopic states of a N particles system are represented by phase space
cells consisting in the points of R®Y with coordinates, (e.g. [Bo77]):

P —0p/2 < po < pg + 0p/2 _
a g a=1,...,3N 1.1.2
{qa—éq/2§qa§qa+5q/2 (1.1.2)

if p1, pa2, p3 are the momentum coordinates of the first particle, p4, ps, pe
of the second, etc, and q1, g2, q3 are the position coordinates of the first
particle, qu, g5, g¢ of the second, etc... The coordinate pS and ¢ are used
to identify the center of the cell, hence the cell itself.

The cell size will be supposed to be such that:

opdg = h (1.1.3)

where h is an a priori arbitrary constant, which it is convenient not to fix
because it is interesting (for the reasons just given) to see how the theory
depends upon it. Here the meaning of h is that of a limitation to the preci-
sion that is assumed to be possible when measuring a pair of corresponding
position and momentum coordinates.

Therefore the space of the microscopic states is the collection of the cubic
cells A, with volume h*" into which we imagine that the phase space is
divided. By assumption it has no meaning to pose the problem of attempting
to determine the microscopic state with a greater precision.

The optimistic viewpoint of orthodox statistical mechanics (which admits
perfect simultaneous measurements of positions and momenta as possible)
will be obtained by considering, in the more general theory with h > 0, the
limit as h — 0, which will mean dp = Apo,dq = Aqo, with po,qo fized and
A—=0.

Even if we wish to ignore (one should not!) the development of quan-
tum mechanics, the real possibility of the situation in which A = 0 cannot
be directly checked because of the practical impossibility of observing an
individual atom with infinite precision (or just with “great” precision).

§1.2. Microscopic Dynamics

The atomic hypothesis, apart from supposing the existence of atoms and
molecules, assumes also that their motions are governed by a deterministic
law of motion.



1.2.1

1.2.2

1.2.3

1. Classical Statistical Mechanics 5

This hypothesis can be imposed by thinking that there is a map S:
SA =A' (1.2.1)

transforming the phase space cells into each other and describing the system
dynamics.

If at time ¢ the state of the system is microscopically determined by the
phase space cell A, then at a later time ¢ + 7 it will be determined by the
cell A’. Here 7 is a time step extremely small compared to the macroscopic
time intervals over which the system evolution is followed by an observer:
it is, nevertheless, a time interval directly accessible to observation, at least
in principle.

The evolution law S is not arbitrary: it must satisfy some fundamental
properties; namely it must agree with the laws of mechanics in order to
properly enact the deterministic principle which is basic to the atomic hy-
pothesis.

This means, in essence, that one can associate with each phase space cell
three fundamental dynamical quantities: the kinetic energy, the potential
energy and the total energy, respectively denoted by K(A), ®(A), E(A).

For simplicity assume the system to consist of N identical particles with
mass m, pairwise interacting via a conservative force with potential energy
. If A is the phase space cell determined by (see (1.1.2)) (p°,q°), then the
above basic quantities are defined respectively by: -

N

K@) =K(A) =Y (p))°/2m P, = (P8 2:D5i1:P%)
=1

1,N

®(A) =) wlg — ) 00 = (452, @51, 45;)
i<j

E(p°,q¢°) = E(A) = K(p°) + ®(¢°)

(1.2.2)

A
—~
ES
[e]
~—
I

o

where p? = (p3. ,.P5; 1,05, ¢ = (45, 5,95-1,93;) are the momentum
and position of the i-th particle, i = 1,2,...IN, in the microscopic state
corresponding to the center (p°, ¢°) of A.

Replacing p°,¢°, i.e. the center of A, by another point (p,q) in A one
obtains values K (p), ®(q), E(p, q) for the kinetic, potential and total energies
different from K(A),®(A),E(A); however such a difference has to be non
observable: otherwise the cells A would not be the smallest ones to be
observable, as supposed above.

If 7 is a fixed time interval and we consider the solutions of Hamilton’s

equations of motion:
§ = — q p=—— 1.2.3

with initial data (p°
into a point S, (p°,q

0O -

q°) at time 0 the point (p°,q°) will evolve in time 7
)= (',q') = (S+(p°,¢°)). One then defines S so that
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SA = A’if A’ is the cell containing (p’, ¢'). The evolution (1.2.3) may send
a few particles outside the volume V', cubic for simplicity, that we imagine to
contain the particles: one has therefore to supplement (1.2.3) by boundary

conditions that will tell us the physical nature of the walls of V.

They could be reflecting, if the collisions with the walls are elastic, or
periodic if the opposite faces of the region V' are identified (a very convenient
“mathematical fiction”, useful to test various models and to minimize the
“finite size” effects, i.e. dependence of observations on system size).

One cannot, however, escape some questions of principle on the structure
of the map S that it is convenient not to ignore, although their deep under-
standing may become a necessity only on a second reading.

First we shall neglect the possibility that (p’, ¢') is on the boundary of a cell
(a case in which A’ is not uniquely determined, but which can be avoided
by imagining that the cells walls are slightly deformed).

More important, in fact crucial, is the question of whether SA; = SA,
implies Ay = A,: the latter is a property which is certainly true in the
case of point cells (h = 0), because of the uniqueness of the solutions of
differential equations. It has an obvious intuitive meaning and an interest
due to its relation with reversibility of motion.

In the following analysis a key role is played by Liouville’s theorem which
tells us that the transformation mapping a generic initial datum (p, ¢) into
the configuration (p', ¢') = S(p,q) is a volume preserving transformation.

This means that the set of initial data (p, ¢) in A evolves in the time 7 into

a set A with volume equal to that of A. Although having the same volume
of A it will no longer have the same form of a square parallelepiped with
dimensions ép or d¢q. For h small it will be a rather small parallelepiped ob-
tained from A via a linear transformation that expands in certain directions
while contracting in others.

It is also clear that in order that the representation of the microscopic
states of the system be consistent it is necessary to impose some non trivial
conditions on the time interval, so far unspecified, that elapses between
successive (thought) observations of the motions. Such conditions can be
understood via the following reasoning.

Suppose that h is very small (actually by this we mean, here and below,
that both dp and dq are small) so that the region A can be regarded as
obtained by translating A and possibly by deforming it via a linear dilata-
tion in some directions or a linear contraction in others (contraction and
dilatation balance each other because, as remarked, the volume remains
constant). This is easily realized if h is small enough since the solutions to
ordinary differential equations can always be thought of, locally, as linear
transformations close to the identity, for small evolution times 7. Then:

i) If S dilates and contracts in various directions, even by a small amount,
there must necessarily exist pairs of distinct cells Ay # A, for which SA; =
SAy: an example is provided by the map of the plane transforming (z,y)
into S(z,y) = (1 + &)~ 'z, (1 +€)y), e > 0 and its action on the lattice of
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the integers. Assuming that one decides that the cell A’ into which a given
cell A evolves is, among those which intersect its image SA, the one which
had the largest intersection with it, then indetermination arises for a set of
cells spaced by about e~ 1.

It is therefore necessary that 7 be small, say:
T< 94 (1.2.4)

with 94 such that the map S (associated with S;, see (1.2.2), hence close
to the identity) produces contractions and expansions of A that can be
neglected for the large majority of the cells A. Only in this way will it be
possible that SA; = SAs with Ay # A, for just a small fraction of the cells
and, hence, one can hope that this possibility is negligible.

It should be remarked explicitly that the above point of view is systemat-
ically taken by physicists performing numerical experiments. Phase space
is represented in computers as a finite, but very large, set of points whose
positions are changed by the time evolution (how many depends on the
precision of the representation of the reals). Even if the system studied is
modeled by a nice differential equation with global uniqueness and existence
of solutions, the computer program, while trying to generate a permutation
of phase space points, will commit errors, i.e. two distinct points will be
sent to the same point (we do not talk here of round-off errors, which are
not really errors as they are a priori known, in principle): one thus hopes
that such errors are rare enough to be negligible. This seems inevitable
except in some remarkable cases, the only nontrivial one I know of being in
[LV93].

ii) But T cannot be too small either, if one wishes to maintain coherently
the point of view that microscopic states are described by phase space cells.
In fact to a cell A is associated a natural time scale ¥_(A): which can be
defined as the minimum time in order that A becomes distinguishable from
the cell into which it evolves in time ¢¥_(A). And 7 must be necessarily
larger than the latter minimum time scale:

I_(A) < T (1.2.5)

(otherwise we have Zeno’s paradox and nothing moves).

Summarizing we can say that in order to be able to define the dynamic
evolution as a map permuting the phase space cells it must be that 7 be
chosen so that:

v = ”mAax”ﬁ,(A) <7< (1.2.6)

where the quotes mean that the maximum has to be taken as A varies
within the “majority” of the cells, where one can suppose that A; # A,
implies SAl 75 SAQ
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One should realize that if ¢ is a “reasonable” molecular potential (a typical
model for ¢ is, for instance, the Lennard-Jones potential with intensity €
and range ro given by: ¢(r) = 4e((%2)* — (£2)9)) it will generically be that:

lim 9_ =0 (1.2.7)

h—0

while for small h the right hand side of (1.2.6) (which has a purely kine-
matical nature) becomes h independent.

Hence it will be possible, at least in the limit in which A tends to 0, to define
a 7 so that (1.2.4), (1.2.5) hold; i.e. it will be possible to fulfill the above
consistency criteria for the describing microscopic states of the system via
finite cells.

On the other hand if A > 0, and a posteriori one should think that h =
6.62 x 1027 erg sec, the question we are discussing becomes quite delicate:
were it not because we do not know what we should understand when we
say the “large majority” of the phase space cells.

In fact, on the basis of the results of the theory it will become possible to
evaluate the influence on the results themselves of the existence of pairs of
cells Al 75 AQ with SAl = SAQ

Logically at this point the analysis of the question should be postponed
until the consequences of the hypotheses that we are assuming allow us to
reexamine it. It is nevertheless useful, in order to better grasp the delicate
nature of the problem and the orders of magnitude involved, to anticipate
some of the basic results and to provide estimates of ¥..’: readers preferring
to think in purely classical terms, by imagining that A = 0 on the basis of
a dogmatic interpretation of the (classical) atomic hypothesis, can skip the
discussion and proceed by systematically taking the limit as h — 0 of the
theory that follows.

It is however worth stressing that setting h = 0 is an illusory simplification
avoiding posing a problem that is today well known to be deep. Assuming
that, at least in principle, it should be possible to measure exactly positions
and momenta of a very large number of molecules (or even of a single one)
means supposing it is possible to perform a physical operation that no one
would be able to perform. It was the obvious difficulty, one should recall, of
such an operation that in the last century made it hard for some to accept
the atomic hypothesis.

Coming to the problem of providing an idea of the orders of magnitude of
Y+ one can interpret “max” in (1.2.6) as evaluated by considering as typical
cells those for which the momenta and the reciprocal distances of the parti-
cles take values “close” to their “average values”. The theory of statistical
ensembles (see below) will lead to a natural probability distribution giving
the probability of each cell in phase space, when the system is in macro-
scopic equilibrium. Therefore we shall be able to compute, by using this
probability distribution, the average values of various quantities in terms of
macroscopic quantities like the absolute temperature 7', the particle mass
m, the particle number N, and the volume V available to the system.
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The main property of the probability distributions of the microscopic states
observed in a situation in which the macroscopic state of the system is in
equilibrium is that the average velocity and average momentum v,p will be
related to the temperature by:

p=mv =+/3mkgT,  mv> = 3kgT (1.2.8)

where kp = 1.38 x 10~ 1% erg °K ! is the universal Boltzmann’s constant.

Other relevant quantities are the characteristic parameters of the interac-
tion, i.e. the strength ¢ with the dimension of energy and the range rq with
the dimension of length. It follows from the developments of the theory
of equilibrium statistical mechanics, independently of the particular form of
o(r) (as long as it is “reasonable”, like for instance the above mentioned
Lennard-Jones potential), that ¢ & kpT? where T is the critical liquefac-
tion temperature and rq is of the order of the molecular diameter (between
2x 1078 em and 4 x 1078 ¢m in the simplest gases like Hy, He, 02, CO, see
Chap.V).

We estimate ¥ first (the time scale over which expansion and contraction
of a phase space cell become sensible) looking at a typical cell where one
can assume that the particles evolve in time without undergoing multiple
collisions. In such a situation the relative variation of a linear dimension of
A in the time 7 will be, for small 7, proportional to 7 and it may depend on
€,m,rq,V: the pure numbers related to 7 and to the phase space dilatations
(i.e. to the derivatives of the forces appearing in the equations of motion)

that one can form with the above quantities are 7(-%5)'/2 and T(Tn—fj)l/z.
Hence the phase space changes in volume will be negligible, recalling that

mv? = 3kgT, from (1.2.8), and setting e = kgT?, provided:

r<in ()", (18)") = .. (129)

The condition 74/e/mr¢ < 1 means that, even during a microscopic collision
taking place while the time 7 elapses, there is no sensible expansion while
the second condition 7 < 79/ ¥ means that the time 7 is short with respect
to the total collision duration (which therefore takes several units of 7 to
be completed).

To estimate ¥_ (the time scale over which a cell evolves enough to be
distinguishable from itself) note that, given A, the coordinates p,, g, of the
phase space points in the cell A change obeying the Hamiltonian equations
of motion, in the time 7, by:

OF oV E
50l = 75— (p,0)| = 7%

Pa P (1.2.10)
pal | = 122 g)| = £
Pl g, PN T
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where (5&1)E, (5&2)E are the variations of the energy F in the cell A when the
coordinates p, or, respectively, g, vary by the amount dp or dq, i.e. they
vary by a quantity equaling the linear dimensions of the cell A, while the
others stay constant (so that the variations in (1.2.10) are related to the
partial derivatives of the energy function E).
Defining therefore the energy indetermination, which we denote by dE(A),
in the cell A as:

0E(A) = max bV E, 2 E) (1.2.11)

we see that the minimum time 9_(A) that one has to wait in order to see
that the cell evolves into a cell which is distinguishable from A itself is:

(1)

9_(A) max, %P > 5q, or J_(A) max, el > op (1.2.12)

op = dq

in fact, dp and d¢q being the linear dimensions of A, Eq. (1.2.12) just says
that at least one of the sides of A has moved away by a quantity of the
order of its length (thus becoming distinguishable from itself).

Since we set dp g = h one deduces from (1.2.11),(1.2.12):

9_(A)OE(A) > h (1.2.13)
and ¥_ = 0t can be chosen so that, introducing the notation:
JE ="min'{ 6E(A) (1.2.14)
we have:
0toE = h. (1.2.15)

We can therefore see, on the basis of (1.2.9),(1.2.15), whether or not an
interval (9_,9; ) admissible for 7 exists. We can in fact imagine that dp ~ P,
hence 6E = pdp/m = p°/m = 3kgT and:

_ =h/kgT. (1.2.16)

Equation (1.2.16) gives a remarkable interpretation of the time scale h/kpT:
it is the time necessary so that a phase space cell, typical among those
describing the microscopic equilibrium states at temperature 7', becomes
distinguishable from itself.

One can say, differently, that 9_ is determined by the size of p, g, i.e. by
the size of the first derivatives of the Hamiltonian, while 9 is related to the
phase space expansion, i.e. to the second derivatives of the Hamiltonian.

With some algebra one derives, from (1.2.9), (1.2.16):

Dy /9 = (mrkpT®/h*)Y? min(T/T°, (T/T°)'/?). (1.2.17)

Therefore it is clear that the relation ¢4 /9¥_ > 1, necessary for a consistent
description of the microscopic states in terms of phase space cells, will be
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satisfied for large T, say T > To, but not for small T (unless one takes
h =0). And from the expression just derived for the ratio ¢ /J_ one gets
94 /0- > 1 T > T, with:

h h ) . (1.2.18)

0 _
/22 = (ot T GarGha O

Table 1.1 below gives an idea of the orders of magnitude: it is elaborated
having chosen h = 6.62 x 10727 erg sec, i.e. Planck’s constant. A similar
table would be derived if, ignoring Planck’s constant suggested as a natural
action unit from quantum mechanics, we took ép ~ P, dq ~ /V/N, as
Boltzmann himself did when performing various conceptual calculations,
[Bo96], [Bo97], in his attempts to explain why his physical theory did not
contradict mathematical logic.

In fact with the latter choice the action unit dpdq = p/V/N would be,
in “reasonable cases” (1cm? of hydrogen, m = 3.34 x 107249, T = 273 °K,
N =2.7x10', kg = 1.38x10 18 erg? K1), of the same order of magnitude
as Planck’s constant, namely it would be dpdq = 2.04 x 1025 erg - sec.

The corresponding order of magnitude of ¥ is 9 = 5.4 10712 sec.

The sizes of the estimates for Tp/T? in the table show that the question
of logical consistency of the microscopic states representation in terms of
phase space cells permuted by the dynamics, if taken literally, depends in
a very sensitive way on the value of h and, in any event, it is doomed to
inconsistency if T — 0 and € # 0 (hence 9_ — +o0o and ¥4 — /mr3 /e <
+00).

Table 1.1: Orders of magnitude (N4 denotes Avogadro’s number)

To e = kgT? |To/T? | Tt A B m

10~8cm |10~ erg °K [107'"" cgs|cgs [1.17 10~%g
H, 2.76 0.57 4.3 33.2 2.46 26.7 2
CO, 3.23 5.25 0.12 | 304.1 36. 42.7 44
He 2.65 0.08 15. 5.19 0.33 23.5 4
N 3.12 2.17 0.25 126. 13.4 38.6 28
(02 2.93 2.65 0.23 |154.3 13.6 31.9 32

The columns A, B give empirical data, directly accessible from experiments and expressed
in cgs units (i.e. A in erg-em? and B in em?), of the van der Waals’ equation of state.
If n = N/N4 = number of moles, R = kgN4, see §5.1 for (x), (xx) below, then the
equation of state is:

(P + An?/V?)(V —nB) = nRT (%)

which is supposed here in order to derive values for €,7¢ via the relations:

4 3 , 32
(B/Na) = 4% (%0) = 4vg A/NE = 5 €vo ()

which lead to the expressions (see §4.3) 79 = (3B/2rN4)'/3,e = 3A/8BN, =
81 kpT9/64; TLT"¢ = experimental value of the critical temperature ~ T2.
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In this book I will choose the attitude of not attempting to discuss which
would be the structure of a statistical mechanics theory of phenomena
below Tp if a strict, “axiomatic”, classical viewpoint was taken assuming
é6p = 0,0g = 0: the theory would be extremely complicated as discovered
in the famous simulation [FPU55] and it is still not well understood even
though it is full of very interesting phenomena, see [GS72], [Be94], [Be97]
and Chap.III, §3.2.

§1.3. Time Averages and the Ergodic Hypothesis

We are led, therefore, to describe a mechanical system of N identical mass
m particles (at least at not too low temperatures, T > Tp, see (1.2.18))
in terms of (a) an energy function (“Hamiltonian”) defined on the 6N-
dimensional phase space and (b) a subdivision of such a space into cells
A of equal volume h*", whose size is related to the highest precision with
which we presume to be able to measure positions and momenta or times
and energies.

Time evolution is studied on time intervals multiples of a unit 7: large
compared to the time scale 0t associated with the cell decomposition of
phase space by (1.2.15), (1.2.16) and small compared with the collision
time scale (1.2.9): see [Bo74], p. 44, 227. In this situation time evolution
can be regarded as a permutation of the cells with given energy: we neglect,
in fact, on the basis of the analysis in §1.2 the possibility that there may be
a small fraction of different cells evolving into the same cell.

In this context we ask what will be the qualitative behavior of the system
with an energy “fixed” macroscopically, i.e. in an interval between £ — DE
and E, if its observations are timed at intervals 7 and the quantity DFE is
macroscopically small but DE > 6E = h/dt; see (1.2.15), (1.2.16).

Boltzmann assumed, very boldly, that in the interesting cases the ergodic
hypothesis held, according to which ([Bo71], [Bo84], [MaT79]):

Ergodic hypothesis: the action of the evolution transformation S, as a cell
permutation of the phase space cells on the surface of constant energy, is a
one cycle permutation of the N phase space cells with the given energy:

SAr=Ape1 k=12, N (1.3.1)
if the cells are suitably enumerated (and Ay i1 = Aq).

In other words as time evolves every cell evolves, visiting successively all
other cells with equal energy. The action of S is the simplest thinkable
permutation!

Even if not strictly true this should hold at least for the purpose of com-
puting the time averages of the observables relevant for the macroscopic
properties of the system.

The basis for such a celebrated (and much criticized) hypothesis rests on
its conceptual simplicity: it says that in the system under analysis all cells
with the same energy are equivalent.
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There are cases (already well known to Boltzmann, [Bo84]) in which the
hypothesis is manifestly false: for instance if the system is enclosed in a
perfect spherical container then the evolution keeps the angular momentum
M(A) = Zf\;l ¢; A\ p; constant. Hence cells with a different total angular
momentum cannot evolve into each other.

This extends to the cases in which the system admits other constants of mo-
tion, besides the energy, because the evolving cells must keep the constants
of motion equal to their initial values. And this means that the existence of
other constants of motion besides the energy is, essentially, the most general
case in which the ergodic hypothesis fails: in fact when the evolution is not
a single cycle permutation of the phase space cells with given energy, then
one can decompose it into cycles. One can correspondingly define a function
A by associating with each cell of the same cycle the very same (arbitrarily
chosen) value of A, different from that of cells of any other cycle.

Obviously the function A so defined is a constant of motion that can play
the same role as the angular momentum in the previous example.

Thus, if the ergodic hypothesis failed to be verified, then the system would
be subject to other conservation laws, besides that of the energy. In such
cases it would be natural to imagine that all the conserved quantities were
fixed and to ask oneself which are the qualitative properties of the motions
with energy E, when all the other constants of motion are also fixed. Clearly
in this situation the motion will be by construction a simple cyclic permuta-
tion of all the cells compatible with the prefixed energy and other constants
of motion values.

Hence it is convenient to define formally the notion of ergodic probability
distribution on phase space:

Definition: a set of phase space cells is ergodic if S maps it into itself and
if S acting on the set of cells is a one-cycle permutation of them.

Therefore, in some sense, the ergodic hypothesis would not be restrictive
and it would simply become the statement that one studies the motion
after having a priori fixed all the values of the constants of motion.

The latter remark, as Boltzmann himself realized, does not make less inter-
esting the concrete question of determining whether a system is ergodic in
the strict sense of the ergodic hypothesis (i.e. no other constants of motion
besides the energy). On the contrary it serves well to put in evidence some
subtle and deep aspects of the problem.

In fact the decomposition of S into cycles (ergodic decomposition of S)
might turn out to be so involved and intricated to render its construction
practically impossible, i.e. useless for practical purposes. This would hap-
pen if the regions of phase space corresponding to the various cycles were
(at least in some directions) of microscopic size or of size much smaller than
a macroscopic size, or if they were very irregular on a microscopic scale: a
quite different a situation if compared to the above simple example of the
conservation of angular momentum.
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It is not at all inconceivable that in interesting systems there could be
very complicated constants of motion, without a direct macroscopic physical
meaning: important examples are discussed in [Za89].

Therefore the ergodic problem, i.e. the problem of verifying the validity
of the ergodic hypothesis for specific systems, in cases in which no partic-
ular symmetry properties can be invoked to imply the existence of other
constants of motion, is a problem that remains to be understood on a case-
by-case analysis. A satisfactory solution would be the proof of strict validity
of the ergodic hypothesis or the possibility of identifying the cycles of S via
level surfaces of simple functions admitting a macroscopic physical meaning
(e.g. simple constants of motion associated with macroscopic “conservation
laws”, as in the case of the angular momentum illustrated above).

It is useful to stress that one should not think that there are no other simple
and interesting cases in which the ergodic hypothesis is manifestly false. The
most classical example is the chain of harmonic oscillators: described by:

N N
I= Zp?/?m, ¢ = Zm((h'-i-l - qi)?/2 (1.3.2)
=1 i=1

where, for simplicity, gn4+1 = ¢1 (periodic boundary condition).
In this case there exist a large number of constants of motion, namely N:

Ap=(p-n) +wk)?(@-n) k=12...N (1.3.3)

where 7, 1,.,...,m, are N suitable orthonormal vectors (normal modes)
and w(kﬁ are the “intrinsic pulsations” of the chain:

w(k)? = 2(1 — cos27k/N) . (1.3.4)

The constants of motion in (1.3.3) can be arranged into an N-vector A(A) =

(A1(A), As(A),..., An(A)). The phase space cells A and A’ for which the
vectors A(A) and A(A’) do not coincide cannot belong to the same cycle
so that the system is not ergodic.

Nevertheless Boltzmann thought that circumstances like this should be
considered exceptional. Hence it will be convenient not to go immediately
into a deeper analysis of the ergodic problem: not only because of its diffi-
culty but mainly because it is more urgent to see how one can proceed in
the foundations of classical statistical mechanics.

Given a mechanical system of N identical (for the sake of simplicity) par-
ticles consider the problem of studying a fixed observable f(p,q) defined on
phase space. o

The first important quantity that one can study, and often the only one
that it is necessary to study, is the average value of f:

f(A) = lim fo(S’“A) (1.3.5)
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where f(A) = f(p,q) if (p,q) is a point determining the cell A. If Ay =
A, Ao, ..., Ay is the cycle to which the cell A belongs, then:

- 1 N
fA) =D f(An) (1.3.6)
k=1

and in the ergodic case the cycle consists of the set of all cells with the same
energy as A.

If the system energy is determined up to a macroscopic error DE, macro-
scopically negligible (but large with respect to the microscopic indetermi-
nation of energy 0 E, (1.2.14)), the cells with energy between E — DE and
E will be divided into cycles with (slightly) different energies. On each of
the cycles the function f can be supposed to have the “continuity” property
of having the same average value (i.e. energy independent up to negligible
variations).

Hence, denoting by the symbol Jg the domain of the variables (p, q) where
E — DE < E(p,q) < E holds, one finds: o

fA)Y= [ flp,q dpdq//J dpdq . (1.3.7)

JE

Recalling in fact that the cells all have the same volume, (1.3.7) follows im-
mediately from (1.3.6) and from the assumed negligibility of the dependence
of f(A) from E(A), provided h is so small that the sum over the cells can
be replaced by an integral.

The above relation, which Boltzmann conjectured ([Bo71b], [Bo84]) to be
always valid “discarding exceptional cases” (like the harmonic oscillator
chain just described) and wrote in the suggestive form, [Bo71b], and p. 25
in [EE11]:

L dt dpdq
lim ==

—_— = == 1.3.8
T5o0 T fJE dpdq ( )

is read “the time average of an observable equals its average on the surface
of constant energy”. As we shall see, (§1.6), (1.3.8) provides a heuristic
basis of the microcanonical model for classical thermodynamics.

Note that if (1.3.8) holds, i.e. if (1.3.7) holds, the average value of an
observable will depend only upon E and not on the particular phase space
cell A in which the system is found initially. The latter property is certainly
a prerequisite that any theory aiming at deducing macroscopic properties
of matter from the atomic hypothesis must possess.

It is, in fact, obvious that such properties cannot depend on the detailed
microscopic properties of the configuration A in which the system happens
to be at the initial time of our observations.

It is also relevant to note that in (1.3.6) the microscopic dynamics has
disappeared: it is in fact implicit in the phase space cell enumeration, made
so that Ay, Ay, Az, ... are the cells into which A successively evolves at time
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intervals 7. But it is clear that in (1.3.6) the order of such enumeration is
not important and the same result would follow if the phase space cells with
the same energy were enumerated differently.

Hence we can appreciate the fascination that the ergodic hypothesis exer-
cises in apparently freeing us from the necessity of knowing the details of
the microscopic dynamics, at least for the purposes of computing the ob-
servables averages. That this turns out to be an illusion, already clear to
Boltzmann, see for instance p. 206 in [Bo74], will emerge from the analysis
carried out in the following sections.

§1.4. Recurrence Times and Macroscopic Observables

In applications it has always been of great importance to be able to estimate
the rapidity at which the limit f is reached: in order that (1.3.7) be useful
it is necessary that the limit in (1.3.5) be attained within a time interval
t which might be long compared to the microscopic 7 but which should
still be very short compared to the time intervals relevant for macroscopic
observations that one wants to make on the system. It is, in fact, only on
scales of the order of the macroscopic times ¢ that the observable f may
appear as constant and equal to its average value.

It is perfectly possible to conceive of a situation in which the system is er-
godic, but the value f(S*A) is ever changing, along the trajectories, so that
the average value of f is reached on time scales of the order of magnitude of
the time necessary to visit the entire surface of constant energy. The latter
is necessarily enormous.

For instance, referring to the orders of magnitude discussed at the end
of §1.2, see the values of dp,dF preceding (1.2.16) and (1.2.16) itself, we
can estimate this time by computing the number of cells with volume h3V
contained in the region between E and E + 0E and then multiplying the
result by the characteristic time h/kpT in (1.2.16), [Bo96], [Bo97].

If the surface of the d-dimensional unit sphere is written 2\/7_rdl“(d/2)_1
(with T Euler’s Gamma function) then the volume of the mentioned region,
if h is very small, can be computed by using polar coordinates in momentum

space. The cells are those such that P = \/E,ﬂf varies between P = v/2mE

and P + 6P = /2m(E + §E); hence we introduce, see §1.2, (1.2.14), the
quantities:

P =v2mkE, op=p=+/3mkgT

_ E  3kgT

0E =3kpT = pdp/m, N- 3 (1.4.1)
pop _ D VS

P="F= = =+

W= =N =(x)

where kg is Boltzmann’s constant, kg = 1.38 x 1010 erg° K—', T is the
absolute temperature, V is the volume occupied by the gas and N is the
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particle number. One finds that the volume we are trying to estimate is,
setting h = dpdq and using Stirling’s formula to evaluate F(%):

w=VNVImE " PN ar(3an/2)~ =
= (N6¢®)N (VNGp)*N =16 P/a 20 (3N/2)~! = (1.4.2)
= (opdq)* N NEN /TN ar (3N /2) 7 =

=~ hsN&(QE)SN/Qi o~ hSNNN_% (23)3]\7/2
N3N-3' 3 VT 3 )

The number of cells A would then be w/h*N. But we shall assume, on
the grounds of particle indistinguishability, that cells differing because in-
dividual particles are permuted are in fact identical. Then (1.4.2) has to
be divided by N! 2 NNe=N/27N and therefore the recurrence time, if the
system did move ergodically on the surface of energy E, would be:

3N/2

h h 2me®/3
- _ ~ ~ Nt . 1.4.
recurrence = N7 =N kT kgT ( 3 ) (143

As discussed in §1.2 the order of magnitude of 7 = h/kgT is, if T = 300°K,,
of about 107! sec. For our present purposes it makes no difference whether
we use the expression h = 6pdq with ép,dq given in (1.4.1) with V =1 cm?,
N =2.7x 10", m = 3.34 x 10724 g = hydrogen molecule mass, or whether
we use Planck’s constant (see comment after (1.2.18)).

Hence, %”6%3 being > 10, the recurrence time in (1.4.3) is unimaginably
longer than the age of the Universe as soon as N reaches a few decades
(still very small compared to Avogadro’s number). If T is chosen to be 0°C":
for 1em? of hydrogen at 0°C, 1atm one has N ~ 10'? and Trecurrence =
107141019 sec, while the age of the Universe is only ~ 107 sec!

Boltzmann’s idea to reconcile ergodicity with the observed rapidity of the
approach to equilibrium was that the interesting observables, the macro-
scopic observables, had an essentially constant value on the surface of given
energy with the exception of an extremely small fraction € of the cells, [Bo74],
p. 206. See §1.7 below for further comments.

Hence the time necessary to attain the asymptotic average value will not
be of the order of magnitude of the hyperastronomic recurrence time, but
rather of the order of T' = €Ty ecurrence- And one should think that ¢ — 0 as
the number of particles grows and that 7" is very many orders of magnitude
smaller than T so that it becomes observable on “human” time scales, see
§1.8 for a quantitative discussion (actually T" sets, essentially by definition,
the size of the human time scale).

Examples of important macroscopic observables are:

¢(1) the ratio between the number of particles located in a small cube Q
and the volume of @: this is an observable that will be denoted p(Q) and
its average value has the interpretation of density in Q;
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¢(2) the sum of the kinetic energies of the particles: K(A) = E,-Qf/Qm;
*(3) the total potential energy of the system: ®(q) = Xi<;p(q, — gj);

¢(4) the number of particles in a small cube @ adherent to the container

walls, and having a negative component of velocity along the inner normal
with value in [—v,—(v + dv)], v > 0. This number divided by the volume
of @ is the “density” n(Q,v)dv of particles with normal velocity —v that
are about to collide with the external walls of (). Such particles will cede a
momentum 2mv normally to the wall at the moment of their collision (as
their momentum will change from —muv to mv) with the wall. Consider the
observable defined by the sum over the values of v and over the cubes @
adjacent to the boundary of the container V:

S [ den@nems = P (144

with s = area of a face of ) and S = area of container surface: this is the
momentum transferred, per unit time and surface area, to the wall (note
that the number of collisions with the wall per unit time on the face s of
Q adjacent to the walls and with normal velocity v is n(Q,v)vsdv). The
quantity (1.4.4) is an observable (i.e. a function on phase space) whose
average value has the interpretation of macroscopic pressure, therefore it
can be called the “microscopic pressure” in the phase space point (p, q).

¢(5) the product p(Q)p(Q’) is also interesting and its average value is called
the density pair correlation function between the cubes @, Q’. Its average
value provides information on the joint probability of finding simultaneously
a particle in @ and one in Q'.

§1.5. Statistical Ensembles or “Monodes” and Models of Ther-
modynamics. Thermodynamics without Dynamics

From a more general viewpoint and without assuming the ergodic hypoth-
esis it is clear that the average value of an observable will always exist and
it will be equal to its average over the cycle containing the initial datum,
see (1.3.6).

For a more quantitative formulation of this remark we introduce the notion
of stationary distribution: it is a function associating with each phase space
cell a number p(A) (probability or measure of A) so that:

pA) >0 Y ud)=1  ud)=uSd)  (151)
A

if S is the time evolution map which permutes the cells, see §1.2 and §1.3.

One usually says that p is an invariant probability distribution or a sta-
tionary probability distribution on phase space (or, better, on phase space
cells). The following definition will be convenient (see §1.3):
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Definition: Let u be an invariant probability distribution on phase space
cells. If the dynamics map S acts as a one-cycle permutation of the set of
cells A for which p(A) > 0 then u is called ergodic.

If one imagines covering phase space with a fluid so that the fluid mass
in A is u(A) and if the phase space point are moved by the permutation
S associated with the dynamics then the fluid looks immobile, i.e. its dis-
tribution on phase space remains invariant (or stationary) as time goes by:
this gives motivation for the name used for p.

It is clear that u(A) must have the same value on all cells belonging to
the same cycle C, of the permutation S (here «a is a label distinguishing
the various cycles of S). If N'(C,) is the number of cells in the cycle C, it
must, therefore, be that p(A) = po/N(Ca), with p, > 0 and Y~ pa = 1,
for A € C,.

It is useful to define, for each cycle C, of S, a (ergodic) stationary distri-
bution p, by setting:

pa(A) = { L/N(Ca) i A €Ca (1.5.2)
0 otherwise

and this allows us to think that any invariant probability distribution is a

linear combination of the u, associated with the various cycles of S:

p(A) = papa(d), (1.5.3)

where p, > 0 are suitable coefficients with )" po = 1, which can be called
the “probabilities of the cycles” in the distribution pu. Note that, by def-
inition, each of the distributions p, is ergodic because it gives a positive
probability only to cells that are part of the same cycle (namely C,).

The decomposition (1.5.3) of the most general S-invariant distribution p as
a sum of S-ergodic distributions is naturally called the ergodic decomposition
of p (with respect to the dynamics S).

In the deep paper [Bo84] Boltzmann formulated the hypothesis that sta-
tionary distributions p could be interpreted as macroscopic equilibrium
states so that the set of macroscopic equilibrium states could be identi-
fied with a subset £ of the stationary distributions on phase space cells.
The current terminology refers to this concept as an ensemble, after Gibbs:
while Boltzmann used the word monode. We shall call it an ensemble or a
statistical ensemble.

Identification between an individual stationary probability distribution p
on phase space and a corresponding macroscopic equilibrium state takes
place by identifying u(A) with the probability of finding the system in the
cell (i.e. in the microscopic state) A if one performed, at a randomly chosen
time, the observation of the microscopic state.

Therefore the average value in time, in the macroscopic equilibrium state
described by p, of a generic observable f would be:

F=Y ma)f(a). (15.4)
A



1.5.5

1.5.6

20 1. Classical Statistical Mechanics

This relation correctly gives, in principle, the average value of f in time, if
the initial data are chosen randomly with a distribution p which is ergodic.
But in general even if p is ergodic one should not think that (1.5.4) is
directly related to the physical properties of u. This was already becoming
clear in §1.3 and §1.4 when we referred to the length of the recurrence times
and hence to the necessity of further assumptions to derive (1.3.7), (1.3.8).

We shall come back to (1.5.4) and to the ergodic hypothesis in §1.6. Return-
ing to Boltzmann’s statistical ensembles he raised the following questionin
in the paper [Bo84]: letting aside the ergodic hypothesis or any other at-
tempt at a dynamical justification of (1.5.4), consider all possible statistical
ensembles £ of stationary distributions on phase space. Fix £ and, for each
u € &, define:

Q(p) = Z w(A)2(A) = “average potential energy”,
A
T(p) = Z H(AVK(A) = “average kinetic energy”,
A
U(p) =T(p) + ®(p) = “average total energy”, (1.5.5)
P(u) = Z,u(A)P(A) = “pressure”, see (1.4.4),
A
p(u)=N/V=p=1/v= “density”,
V= / dg = “yolume”,

where V is the volume assigned to the system (i.e. the volume of the con-
tainer) and N is the particle number.

Question (“orthodicity problem”): which statistical ensembles, or monodes,
& have the property that as p changes infinitesimally within £ the corre-
sponding infinitesimal variations dU, dV of U = U(u) and V', see (1.5.5),
are related to the pressure p = P(u) and to the average kinetic energy per

particle T =T (u)/N) so that:

dU + P dV

7 = exact differential (1.5.6)

at least in the thermodynamic limit in which the volume V — oo and also
N,U — oo so that the densities N/V, U/V remain constant (assuming for
simplicity that the container keeps cubic shape).

Ensembles (or monodes) satisfying the property (1.5.6) were called by
Boltzmann orthodes: they are, in other words, the statistical ensembles
& in which it is possible to interpret the average kinetic energy per particle,
T, as proportional to the absolute temperature T (via a proportionality con-
stant, to be determined empirically and conventionally denoted (2/ 3kB)71:

so that T = %%), and furthermore it is possible to define via (1.5.6) a
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function S(u) on & so that the observables U, p, T, V, P, S satisfy the rela-
tions that the classical thermodynamics quantities with the corresponding
name satisfy, at least in the thermodynamic limit.

In this identification the function S(u) would become, naturally, the en-
tropy and the validity of (1.5.6) would be called the second law.

In other words Boltzmann posed the question of when it would be possible
to interpret the elements u of a statistical ensemble £ of stationary distri-
butions on phase space as macroscopic states of a system governed by the
laws of classical thermodynamics.

The ergodic hypothesis combined with the other assumptions used in §1.3
to deduce (1.3.7), (1.3.8) leads us to think that the statistical ensemble £
consisting of the distributions p on phase space defined by:

1/N(U,V) if E(A)e(U-DE,U) L5
w(A) =0 otherwise (1.5.7)
where U,V are prefixed parameters corresponding to the total energy and
volume of the system, should necessarily be a statistical ensemble apt at
describing the macroscopic equilibrium states. Here N (U, V) is a normal-
ization constant to be identified as proportional to the integral [ dpdg over
the region Jg of p, ¢ in which E(p,q) € (U — DE,U); and the parameter
DE is “arbitrary” as discussed before (1.3.7).

However the orthodicity or nonorthodicity of a statistical ensemble £ whose
elements are parameterized by U,V as in (1.5.7) is “only” the question of
whether (1.5.6) (second law) holds or not and this problem is not, in itself,
logically or mathematically related to any microscopic dynamics property.

The relation between orthodicity of a statistical ensemble and the hy-
potheses on microscopic dynamics (like the ergodic hypothesis) that would
a priori guarantee the physical validity of the ensuing model of thermody-
namics will be reexamined in more detail at the end of §1.6.

If there were several orthodic statistical ensembles then each of them would
provide us with a mechanical microscopic model of thermodynamics: of
course if there were several possible models of thermodynamics (i.e. several
orthodic statistical ensembles) it should also happen that they give equiva-
lent descriptions, i.e. that they give the same expression to the entropy S as
a function of the other thermodynamic quantities, so that thermodynamics
would be described in mechanical terms in a nonambiguous way. This check
is therefore one of the main tasks of the statistical ensembles theory.

It appears that in attempting to abandon the (hard) fundamental aim at
founding thermodynamics on microscopic dynamics one shall nevertheless
not avoid having to attack difficult questions like that of the nonambiguity
of the thermodynamics that corresponds to a given system. The latter is a
problem that has been studied and solved in various important cases, but we
are far from being sure that such cases (the microcanonical or the canonical
or the grand canonical ensembles to be discussed below, and others) exhaust
all possible ones. Hence a “complete” understanding of this question could
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reveal itself equivalent to the dynamical foundation of thermodynamics: the
very problem that one is hoping to circumvent by deciding to “only” build
a mechanical model of thermodynamics, i.e. an orthodic ensemble.

§1.6. Models of Thermodynamics. Microcanonical & Canonical
Ensembles and the Ergodic Hypothesis.

The problem of the existence of statistical ensembles (i.e. a family of sta-
tionary probability distributions on phase space) that provides mechanical
models of thermodynamics? was solved by Boltzmann in the same paper
quoted above, [Bo84] (following earlier basic papers on the canonical en-
semble [Bo71al, [Bo71b] where the notion of ensemble seems to appear for
the first time).

Here Boltzmann showed that the statistical ensembles described below and
called, after Gibbs, the microcanonical and the canonical ensemble are or-
thodic, i.e. they define a microscopic model of thermodynamics in which the
average kinetic energy per particle is proportional to absolute temperature
(see below and §1.5).

(1) The microcanonical ensemble

It was named in this way by Gibbs while Boltzmann referred to it by the
still famous, but never used, name of ergode. The microcanonical ensemble
consists in the collection & of stationary distributions p parameterized by
two parameters U= total energy and V= system volume so that, see (1.5.2):

w(A) =1/N(U,V) ifU—-DE<EA)<U 161)
Hw(A) =0 otherwise o
with:
NU, V)= Z 1 = {number of cells A with
U-DE<E(A)<U (1.6.2)

energy E(A) € (U —-DE,U)}

where the quantity DFE has to be a quantity, possibly V-dependent, “macro-
scopically negligible” compared to U, such that one may think that all cells
with energy between U — DE and U have the “same energy” from a macro-
scopic point of view.

The importance of the microcanonical ensemble in the relation between
classical thermodynamics and the atomic hypothesis is illustrated by the
argument leading to (1.3.8) which proposes it as the natural candidate for
an example of an orthodic ensemble.

2 At least in the thermodynamic limit, see (1.5.6), in which the volume becomes infinite
but the average density and energy per particle stay fixed.
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However, as discussed in §1.5, the argument leading to (1.3.7), (1.3.8)
cannot possibly be regarded as a “proof on physical grounds” of orthodicity
of the microcanonical ensemble.3

Following the general definition in §1.5 of orthodic statistical ensemble,
i.e. of an ensemble generating a model of thermodynamics, we can define the
“absolute temperature” and the “entropy” of every element u (“macroscopic
state”) so that the temperature T is proportional to the average kinetic
energy. Boltzmann showed that such functions 7" and S are given by the
celebrated relations:

21w

“3kp N S(p) = kplog N'(U,V) (1.6.3)

where kg, ”Boltzmann’s constant“, is a universal constant to be empirically
determined by comparison between theory and experiment.? The factor % is
conventional and its choice simplifies some of the following formulae, besides
the second of (1.6.3).5

The statement that (1.6.1), (1.6.2) provide us with a microscopic model of
thermodynamics in the thermodynamic limit V — oo, U — 0o, N — o0 so
that w = U/N, v = V/N remain constant has to be interpreted as follows.

One evaluates, starting from (1.6.1)+(1.6.3) (see also (1.5.5)):

u=U/N = “specific energy” , v =V/N = “specific volume”,
T =2T(pn)/3kpN = “temperature” ,
s = S(u)/N = “entropy”,, p = P(u) = “pressure”. (1.6.4)

Since the quantities u, v determine u € £ it will be possible to express 7', p, s
in terms of u, v via functions T'(u,v), P(u,v), s(u,v) that we shall suppose
to admit a limit value in the thermodynamic limit (i.e. V — oo with fixed
U, V).

Then to say that (1.6.1), (1.6.2) give a model of thermodynamics means
(see also §1.5) that such functions satisfy the same relations that link the
quantities with the same name in classical thermodynamics, namely:

du=Tds — Pdv. (1.6.5)

Equation (1.6.5) is read as follows: if the state y defined by (1.6.1),(1.6.2)
is subject to a small variation by changing the parameters U,V that define
it, then the corresponding variations of u, s, v verify (1.6.5), i.e. the second
principle of thermodynamics: see Chap.Il for a discussion and a proof of
(1.6.3), (1.6.5).

The proof of a statement like (1.6.5) for the ensemble £ was called, by
Boltzmann, a proof of the heat theorem.

3 Which it is worth stressing once more does not depend on the microscopic dynamics.
4 As already said and as it will be discussed later, one finds kg = 1.38716 erg°K —1.
5 Mainly it simplifies the relation between T and 8 in the first of (1.6.8) below.
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(2) The canonical ensemble.

The name was introduced by Gibbs, while Boltzmann referred to it with the
name of holode. It consists in the collection £ of stationary distributions
u parameterized by two parameters 3 and v = V/N, via the definition:

n(A) = (exp —BE(A))/Z(B,V) (1.6.6)

with
Z(B,V) = exp—BE(A). (1.6.7)
A

Boltzmann proved the proportionality between T'(u) and 31 as well as the
orthodicity of this statistical ensemble by showing that temperature and
entropy can be defined by

T =2T(u)/3ksN =1/kgB S =—kp(BU —logZ(B,V))  (1.6.8)

where kp is a universal constant to be empirically determined.

The statement that (1.6.6), (1.6.8) provide us with a model of thermody-
namics, in the thermodynamic limit V' — oo, V/N — v, = constant,
has the same meaning discussed in the previous case of the microcanonical
ensemble. See Chap.II for the analysis of the orthodicity of the canonical
ensemble, i.e. for a proof of the heat theorem for the canonical ensemble.

The relations (1.6.5) hold, as already pointed out, for both ensembles con-
sidered, hence each of them gives a microscopic “mechanical” model of clas-
sical thermodynamics.

Since entropy, pressure, temperature, etc, are in both cases explicitly ex-
pressible in terms of two independent parameters (u,v or §,v) it will be
possible to compute the equation of state (i.e. the relation between p,v and
T') in terms of the microscopic properties of the system, at least in principle:
this is enormous progress with respect to classical thermodynamics where
the equation of state always has a phenomenological character, i.e. it is a
relation that can only be deduced by means of experiments.

It is clear, however, that the models of thermodynamics described above
must respond, to be acceptable as physical theories, to the basic prerequisite
of defining not only a possible thermodynamics® but also of defining the
thermodynamics of the system, which is experimentally accessible. One can
call the check of the two prerequisites a check of theoretical and experimental
consistency, respectively.

For this it is necessary, first, that the two models of thermodynamics co-
incide (i.e. lead to the same relations between the basic thermodynamic
quantities u, v, T, P, s) but it is also necessary that the two models agree
with the experimental observations.

6 J.e a thermodynamics that does not come into conflict with the basic principles, ex-
pressed by (1.6.5).
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But a priori there are no reasons that imply that the above two prerequi-
sites hold.

Here it is worthwhile to get more deeply into the questions we raised in
counection with (1.3.7) and to attempt a justification of the validity of the
microcanonical ensemble as a model for thermodynamics with physically
acceptable consequences and predictions. This leads us once more to discuss
the ergodic hypothesis that is sometimes invoked at this point to guarantee
a priori or to explain a posteriori the success of theoretical and experimental
consistency checks, whose necessity has been just pointed out.

In §1.3 we have seen how the microcanonical distribution could be justi-
fied as describing macroscopic equilibrium states on the basis of the ergodic
hypothesis and of a continuity property of the averages of the relevant ob-
servables (see the lines preceding (1.3.7)): in that analysis, leading to (1.3.7),
we have not taken into account the time scales involved. Their utmost im-
portance has been stated in §1.4: if (1.3.7) held but the average value over
time of the observable f, given by the right-hand side of (1.3.7), was at-
tained in a hyperastronomic time, comparable to the one given by (1.4.3),
then (1.3.7) would, obviously, have little practical interest and value.

§1.7. Critique of the Ergodic Hypothesis

Summarizing: to deduce (1.3.7), hence for an a priori justification of the
connection between the microcanonical ensemble and the set of states of
macroscopic thermodynamic equilibrium, one meets three main difficulties.

e The first is a verification of the ergodic hypothesis, §1.3, as a mathemat-
ical problem.

e The second is that even accepting the ergodic hypothesis for the cyclicity
of the dynamics on the surface with constant energy (i.e. with energy fixed
within microscopic uncertainty JE) one has to solve the difficulty that, in
spite of the ergodicity, the elements of the microcanonical ensemble are
not ergodic because the (trivial) non ergodicity is due to the fact that in
the microcanonical ensemble the energy varies by a small but macroscopic
quantity DE > E.

e The third is that, in any event, it would seem that enormous times are
needed before the fluctuations of the time averages over finite times stabilize
around the equilibrium limit value (times enormously longer than the age
of the Universe).

The three difficulties would be solved if one supposed that, simultaneously:

(i) the phase space cells with fixed energy (microscopically fixed) are part
of a single cycle of the dynamics S: this is the ergodic hypothesis, see §1.3.

(ii) the values of the “relevant” macroscopic observables are essentially
the same on cells corresponding to a given macroscopic value of the energy
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E, with the possible exception of a small fraction of the number of cells,
negligible for large systems i.e. in the thermodynamic limit.

(iii) the common average value that the relevant observables assume on
trajectories of cells of energy E changes only slightly as the total energy
changes between the values U and U —DE, if U and DFE are two macroscopic
values with U > DE (but DE > 6E). This can be called a continuity
assumption.

The hypotheses (i) and (iii), see §1.3, show that the average values of
the macroscopic observables can be computed by using, equivalently, any
ergodic component of a given microcanonical distribution pu.

Hypothesis (i) allows us to say that the time necessary in order that an
average value of an observable be attained, if computed on the evolution
of a particular microscopic state A, is by far shorter than the recurrence
time (too long to be interesting or relevant). The region of phase space
where macroscopic observables take the equilibrium value sometimes has
been pictorially called the “Boltzmann’s sea” (see [Bo74], p. 206, and [U168],
p. 3, fig. 2).

Accepting (i), (ii) and (iii) implies (by the physical meaning that u,p,v
acquire) that the microcanonical ensemble must provide a model for ther-
modynamics in the sense that dU + pdV must admit an integrating factor
(to be identified with the absolute temperature). The fact that this factor
turns out to be proportional to the average kinetic energy is, from this view-
point (and only in the case of classical statistical mechanics as one should
always keep in mind), a consequence (as we shall show in Chap.II).

One can remark that assumptions (ii) and (iii) are assumptions that do
not, involve explicitly the dynamical properties, at least on a qualitative
level: one says that they are equilibrium properties of the system. And it
is quite reasonable to think that they are satisfied for the vast majority of
systems encountered in applications, because in many cases it is possible
to really verify them, sometimes even with complete mathematical rigor,
[Fi64], [Ru69].

Hence the deeper assumption is in (i), and it is for this reason that some-
times, quite improperly, it is claimed that the ergodic hypothesis is “the
theoretical foundation for using the microcanonical ensemble as a model for
the equilibrium states of a system”.

The improper nature of the above locution lies in the fact that (i) can be
greatly weakened without leading to a modification of the inferences on the
microcanonical ensemble.

For instance one could simply require that only the time average of few
macroscopically interesting observables should have the same value on every
cycle (or on the great majority of cycles) of the dynamics with a fixed energy.

This can be done while accepting the possibility of many different cycles
(on which non macroscopically interesting observables would take differ-
ent average values). An essentially exhaustive list of the “few” interesting
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observables for monoatomic gases is given by (1.5.5).

Furthermore the above-mentioned locution is improper also because, even
if one accepts it, it cannot release us from checking (ii), (iii) which, in
particular, require a quantitative verification: evidently one cannot be sat-
isfied with a simple qualitative verification since the orders of magnitude
involved are very different. One could, in fact, raise doubts that the time
“for reaching equilibrium” could really come down from the recurrence times
(superastronomical) to the times experimentally recorded (usually of a few
microseconds).

For what concerns the canonical ensemble its use could be justified simply
by proving that it leads to the same results that one obtains by using the
microcanonical ensemble, at least in the thermodynamic limit and for the
few interesting observables (see above for a list).

But, as already mentioned, the ergodic hypothesis (with or without the
extra two assumptions (ii), (iii) above) is technically too difficult to study
and for this reason an attempt has been made to construct models of ther-
modynamics while avoiding solving, even if partially, the ergodic problem.

The proposal is simply to prove that all the orthodic ensembles (at least
the reasonable ones)” generate the same macroscopic thermodynamics (for
instance the same equation of state). This property, by itself very notable
and remarkable, should then be considered sufficient to postulate, by the
“principle of sufficient reason”, that the equations of state of a system can
be calculated from the microscopic properties (i.e. from the Hamiltonian of
the system) by evaluating the average values of the basic observables (see
(1.5.5)) via the distributions of the microcanonical or canonical ensembles,
or more generally of any orthodic ensemble.

The latter is the point of view usually attributed to Gibbs: virtually all
the treatises on statistical mechanics are based on it.

It is well understandable why such a point of view appeared unsatisfac-
tory to Boltzmann who had the ambition of reducing thermodynamics to
mechanics without introducing any new postulate: on the other hand, the
pragmatic approach of Gibbs is also very understandable if one keeps in

7 One should not think that it is difficult to devise ensembles which are orthodic and which
may seem “not reasonable” (for a thermodynamic interpretation): in fact Boltzmann’s
paper, [Bo84], on the ensembles starts with such an example involving the motion of
one of Saturn’s rings regarded as a massive line (in a parallel paper the example was the
Moon, whose orbit was replaced by an ellipse of mass such that each arc contained an
amount of mass proportional to the time spent on it by the Moon). This may have been
one of the reasons this fundamental paper has been overlooked for so many years. Such
“unphysical” examples come from Helmoltz, [He95a], [He95b], and played an important
role for Boltzmann (who was considering them in a less systematic way even much
earlier, [Bo66]). In fact if one can define the mechanical analogue of thermodynamics
for any system, small or large, then it is natural to think that in large systems the
average quantities will also satisfy the second law. And the idea (of Boltzmann) that
the macroscopic observables have the same value on most of the energyy surface makes
the law easily observable in large systems, while this may not be the case in very small
systems. In other words the one-degree-of-freedom examples are not at all unphysical;
rather the contrary holds: see Appendix 1.A1 (to Chap.I) for Helmoltz’s theory and
Chap.IX for a recent application of the same viewpoint.
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mind the necessity of deducing all the applicative consequences stemming
from the marvelous discovery of the possibility of unambiguously deriving
values of thermodynamical quantities in terms of mechanical properties of
the atomic model of matter.

For the past few decades, about a century after the birth of the above
theories, we seem to feel again the necessity of a unified derivation of ther-
modynamics from mechanics without the artificial a priori postulate that
thermodynamics is described by the orthodic statistical ensembles; a pos-
tulate made possible, i.e. consistent, by the mentioned independence (dis-
cussed in the following Chap.II) of the results as functions of the statistical
ensemble used.

The ergodic problem and the statistical dynamics are therefore again at
the center of research, and are stimulating new interesting ideas and results.

Boltzmann tried to justify the microcanonical and canonical ensembles
also following a path rather different from the one of studying the ergodic
problem and the hypotheses (i),(ii),(iii) above, [UF63]. And his attempt
led him, [Bo72], to deduce the Boltzmann’s equation which revealed itself
essential even for technical applications, although it presented and presents
various conceptually unsatisfactory aspects, see §1.8 for a first analysis of
this equation.

§1.8. Approach to Equilibrium and Boltzmann’s Equation. Er-
godicity and Irreversibility

As discussed in the previous sections macroscopic equilibrium states can be
identified with elements of the orthodic statistical ensembles (microcanoni-
cal, canonical, grand canonical, ...). It is not quantitatively clear, however,
through which mechanism a mechanical system initially in non equilibrium
can reach equilibrium.

We have argued that the ergodic hypothesis, by itself, is not sufficient to
explain why a system reaches equilibrium within times usually relatively
short.

Boltzmann developed a model, [Bo72], for describing approach to equilib-
rium which was strongly criticized since its formulation, much as his other
intuitions, and which is considered by some (perhaps incorrectly) his great-
est contribution to Science.

The validity of the model is limited to systems with so low a density that
they can be considered rarefied gases and this shows how it can, in concrete
cases, happen that assumptions (i), (ii), (iii) of §1.7 could be, for practical
purposes, verified in such systems and how it could be possible that the
interesting observables reach their average values over time scales accessible
to our senses rather than on the absurdly long recurrence time scales.

One imagines the system to consist of N identical particles (for simplicity),
each of which is described by momentum p and by position g. They move
as if free, except that from time to time they collide. B

Assuming that such particles are rigid spheres with radius R (again only
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for simplicity) and that they have an average speed T, the low-density as-
sumption is that the density p = N/V is such that

a1 pR* <1 (1.8.1)

which means that it is very unlikely that there are two particles at a distance
of the order R, i.e. “colliding”.

At the same time one requires that the number of collisions that each
particle undergoes per unit time does not vanish. Evidently this number
has order of magnitude:

L8 pR*T. (1.8.2)
Hence the limit situation in which the gas is very rarefied but, nevertheless,
the number of collisions that each particle undergoes per unit time is not
negligible, is described by

R—0,p— so that
1.8.3 (1.8.3)

pR? = 0, pR?7 = w = fixed quantity .

The quantity 7 = 1/w is the time of flight between two collisions while the
mean free path is 7O = 1/pR>.

The limit situation that is obtained by letting R — 0 and p — oo as in
(1.8.3) is called Grad’s limit. In the situation envisaged by Boltzmann one
supposes that we are “close” to this limit, i.e. one supposes that we are
close to and pR?v = w > 0.

It is of some interest to compute pR?, 7 and 77 for a Hydrogen sample at
atmospheric pressure and room temperature (p = 1atm,T = 293°K): one
finds pR?* = 5.8 x 1074, 7 = 2.5 x 10 % sec, ¥ = 1.9 x 10° m/sec.

Let then f(p,q) dpdg be the number of particles that can be found in the
cell Q = dpdq of the phase space describing the states of a single particle
(not to be confused with the phase space which we have been using so far,
which describes the states of N particles).

Boltzmann remarks that f can change in time either by virtue of collisions
or because particles move in space. If ¢ is a prefixed time interval, the
number of particles that at a certain instant are in the cell @Q is:

f(p,q,t)dpdq = f(p,q — ep/m,t —¢) dpdg+

a4 + (number of particles in Q' that collide per unit of time with (1.8.4)
@', particles in Q" producing particles in Q1,Q2 with Q1 = Q)

- Z (number of particles in @1 = Q that collide per unit of time
Q',Q" Wwith particles in Q2 producing particles in Q', Q")

If we consider the collision that transforms two particles in @', @ into
two others in @1, @2 we must have, by the conservation of momentum and
energy in the collision):

1.8.5 p+p =p +tp,, P +pT=p+p (1.8.5)
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and the number of collisions leading from p p top,, p, can be expressed
in terms of the notion of collision cross-section o = o(p', p"; p, p2)

The latter is defined to be the fraction of particles of a stream with
momentum in dp and spatial density n(p)dp streaming around one par-
ticle with momentum D, that collides with it in time dt, experienc-
ing a collision that trasnforms p,p, into p',p". This number is writ-

ten as n(p)dp —7—2| a(p',p";p,p )dt and o has the dimension of a sur-

face. Hence the total number of such collision per unit volume will be

(]92)6l192 n(p )dp[ PP, a(p',p' 'p,pz)] dt, i.e. the the number of particles
with momentum in dp that experience a collision with one D, -particle in

time dt is the number of particles with momentum in dp and contained
2,

in a volume of size | —m—2 o(p',p";p,p,)]dt. Tt is therefore natural to call
collision volume (per unit time) the quantity in square brackets: because
it gives, after multiplication by the density of particles with momentum in
dp, the number of collisions per unit time and volume that particles with
momentum p would undergo against a momentum D, particle if there was
only one such particle.

Introducing;:

f(g', g) dg' dq = number of particles with momentum 1_9’,
within dp’ in the cube dg =
“number of collision centers”

f(p”, q) dp"” = density of particles with momentum p'/,
within dp”, in ¢ = (1.8.6)
=“density of particles that
can undergo collision”

U(]_)I,p”;]_),gz) = differential cross-section per unit solid

angle for the considered collision,

Note that the collision volume associated with a single collision center is,
since the relative velocity at collision is [p’ — p"|/m = |p — p,|/m n, also:

(Ip' = p"l/m)o(®.p".p.p,) (1.8.7)

Hence the total number of collisions from @', Q" to @1, Q2 is, per unit
time:
1 1 |]_)I — p”| 1/ / ’
f@", @) dp"=—=0a(p',p",p,p,) f(p',q) dp’ dg, (1.8.8)

R VA m Z

clearly symmetric in p', p"

metrically.
By a similar argument the number of “inverse” collisions is:

, although derived by treating p' and p" asym-

p—D,l

f(p.a)f(p,,q) dpdp, dq| o(p,p,;p'.p"). (1.8.9)
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One then remarks that (1.8.5) imply:

dp' dp” = dp dp, (“Liouville’s theorem” )
= EE (1.8.10)

/ 11
-p|

Ip =p- 1_)2| (“conservation of momentum”);

moreover the cross-section, as is in general true in collisions governed by
central forces, depends exclusively on the deﬂection angle between (p' —p'')
and (p— P, ) and on the relative speed [p' —p"|/m; and it is proportional to
the (normahzed) solid angle dw into which (p P, ) points with respect to
(' —p").

Note in this respect that the collision final data, i.e. p,p_, do not determine
p',p" via (1.8.5) but they leave the direction dw of p’ — p" arbitrary.

“We shall then set o(p’,p’ p,p,) = o(w|p’ — p"l)dw = o(w)dw where
the last relation is only valid when the interaction between the spheres is
assumed a rigid sphere interaction; and from the scattering theory it follows
that in this case o(w) is independent of w: o(w) = 47 R2.

Hence (1.8.10) allow us to rewrite (1.8.8), (1.8.9) as

f@,9f@", @) dpdp, dgdw (|p’ — p"|/m) o(w)
)f

(1.8.11)
f(p.9)f(p,: ¢) dpdp, dgdw (|p — p,|/m) o(w)

where, given p,p, . the vectors p', p" are computed from (1 8. 5) and from
the 1nf0rmat10n that the solid angle between p — and p—p'is w.
Introducing (1.8.11) in (1.8.4) and dividing by ¢ one finds the Boltzmann
equation:

of

lp— p2
= ) dwd
Bt (p,q / D,y

P f®",9) - fp,0)f (2, 0)

p
@@+E

|§’|\

(1.8.12)

In (1.8.12) one supposes that g varies over the whole space: but the most
interesting cases concern systems (one should say “rarefied gases” because
of the conditions under which (1.8.12) has been derived) confined in a given
volume V. In such cases (1.8.12) must be complemented by suitable bound-
ary conditions that depend on the microscopic nature of the collisions of
the particles against the walls.

Since the discussion of the boundary conditions is delicate we shall avoid
it and in the case of confined systems we shall suppose, for simplicity, that
periodic boundary conditions hold. This means that we imagine the volume
V' as a cube with opposite faces identified: i.e. a particle that collides with
one of the cube faces reemerges, after the collision, from the opposite face
and with the same velocity. For a deeper analysis of the problem of the
boundary conditions (and in general of Boltzmann’s equation) see [Ce69].

It should be clear that (1.8.12) is an approximation because we neglected:

(i) the possibility of multiple collisions,
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(ii) the possibility that particles in the same volume element do not behave
independently, as implicitly assumed in deriving (1.8.12), and instead, as
time goes by, correlations between positions and velocities build up, and
make certain collisions more probable than others, or multiple collisions
relatively more probable with respect to binary ones. This approximation
is sometimes called molecular chaos.

Such effects should disappear in the Grad-Boltzmann limit (1.8.3) provided
they are absent at the initial time. This “conjecture” is known as Grad’s
conjecture on the validity of the “Stosszahlansatz”, a word that, for tradi-
tional reasons, just denotes the lack of correlation between the motions of
different particles at various instants of time.

In Appendix 1.A2 we show how an analysis of the corresponding conjecture
can be easily performed in a much simpler case, in which a gas of particles
moves in a space occupied by randomly placed spherical scatterers: a model
called Lorentz’s model. The particles collide with the scatterers but do not
interact with each other, so that Boltzmann’s equation for this model turns
out to be linear.

Returning to Boltzmann’s equation and postponing the analysis of the
fundamental assumptions (i) and (ii) discussed above, the irreversibility of
the approach to equilibrium that it implies can be demonstrated on the
basis of the following remarks.

Multiplying both sides of (1.8.12) by 1, p, Zin p? or by log f(p,q) and in-
tegrating over p and ¢ (under the assumption that f(p,q) — 0 rapidly as
(p,q) = oo or, when q is restricted to a fixed container, that f satisfies suit-
able boundary conditions on the ¢ coordinate) one ﬁnds that the quantities

N = /f q) dpdg, P = /pf(p, q)dpdq
T = /(1_92/2m)f(1_9,g) dpdg, H= —/f(g,g)logf(z_v,g) dpdg
(1.8.13)
satisfy the relations:
AN dP  dT
=0 (1.8.14)

dt oAt T odt
_ /'p Bl o) Al (0 70 ) — £ 070y )

-(logf(g,g)f(g ,9) —log f(p,a) f(p,>9)) dpdp,dg > 0

as can be checked by a simple calculation in which an essential role is played
by the symmetry of the right-hand side of (1.8.12) between p,p, and p',
and dpdp, = dp’ dp" (i.e. Liouville’s theorem, see (1.8.10), and momentum
conser_vat_ion, see (1.8.5))) is used together with the relations logz +logy =
logzy and (z — y)(logz — logy) > 0.

Therefore while the first three relations in (1.8.14) imply five conserva-
tion laws (of the particle number, of momentum and of (kinetic) energy),
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the fourth manifestly implies irreversibility and is called Boltzmann’s H -
theorem.

Furthermore (1.8.14) shows that the only possible equilibrium distributions
f(p,q) can be those for which

o, 0f@", 9 = flp.0f(p,: 2 (1.8.15)

where p, pQ,p p" satisfy (1.8.5).
Equation (1.8.15) and the arbitrariness of PPy P p',p" imply, via a simple
argument that we leave out,

B(2)(p—p,(2))?/2m

plgle”
109 == g Tmy7

(1.8.16)
where 3(q),p,(q), p(g) are arbitrary functions and the factor in the denomi-
nator of the right-hand side has been introduced for the purposes of a simple
normalization, so that p(q) could be interpreted as the density at the point
g since it is then p(q) = [ f( P4

This means that the equlhbrlum dlstributions f(p, q) necessarily have the
form (1.8.16). Considering subsequently the simple case of a system in a
cubic container with periodic boundary conditions it is easy to show that,
if f satisfies (1.8.12), (1.8.16) and 9f/0t = 0 (i.e. it is stationary) then it
must necessarily be that 8(q), p(q),p,(q) are g-independent.

In fact if f has the form (1.8.16) the right-hand side of (1.8.12) vanishes
and, therefore, 9f /0t = 0 implies p- df/dq = 0. Hence denoting by f(}_), k)
the Fourier transform of f with respect to ¢ this implies that p'Ef(]_% k)=0,

so that if f(p, k) is continuous in p it must be that f(p, k) =0 for k # 0.
This means that f is ¢- -independent and that 3(q q), p(q), po(q) are constants.

We see that the H-theorem not only shows that the system evolves irre-
versibly, but it also shows that the one-particle distribution f(p,q) evolves
towards the free Mazwell-Boltzmann distribution which, one should not fail
to note, is just a typical property of an element u of the canonical ensemble
in a system in which the interaction energy between the particles is so small

(when their hard cores do not overlap) that the total energy of the system
can be identified with the kinetic energy. The parameters 3, p, P, of this dis-
tribution are uniquely determined by the initial data via the conservation
laws in (1.8.14).

It is natural to think that the H-theorem is, for rarefied gases, the micro-
scopic version of the second law of thermodynamics which states that in
isolated systems entropy increases (while equilibrium is approached): en-
tropy should be identified as proportional to H.

It is therefore important to stress that the H-theorem is manifestly in
contrast with the reversibility properties of Newtons’s equations and, conse-
quently, it cannot be a mathematical consequence of the latter, as already
remarked, at least not in the literal, i.e. naive, sense of the word.
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Just for this reason it becomes essential to understand whether this con-
trast between macroscopic irreversibility and microscopic reversibility can
be overcome.

The alleged incompatibility between the two conflicting properties was the
cause of violent critiques to Boltzmann who created the ergodic hypoth-
esis (thus laying the foundations of the modern ergodic theory) in one of
his attempts to answer his critics on a theoretical basis, solidly resting on
mechanics rather than on the admittedly obscure Stosszahlansatz.

To investigate the question one can take two viewpoints, which appear
somewhat to overlap in Boltzmann’s brilliant and misunderstood (by his
contemporaries) attempt at defending his theory and his H-theorem.

The first point of view is that the ergodic hypothesis holds, in the sense of
(i) in §1.7 reinforced by (ii) and (iii), and therefore % > 0 could be only
approximately true in the sense that it should hold “most of the time”: when
the cell S¥A that represents the microscopic state at the instant k7 runs
through a great part of the ergodic cycle of given energy (i.e. the part in
which the interesting macroscopic observables, see (1.5.5), are also constant
for practical purposes). The relation dH/dt > 0 would then become false
when S*¥A exits such region.

The latter circumstance however can only happen, in really macroscopic
systems as well as in systems with few decades of particles, with a temporal
frequency longer, by far, than the longest astronomical scales, see §1.4,
(1.4.3).

Therefore the system would for all practical purposes evolve irreversibly
(and the evolution irreversibility would be symmetrical in time!). Reversibil-
ity could manifest itself over time scales beyond eternity, i.e. of many orders
of magnitude greater than the age of the Universe, already for systems like
a gas at normal conditions in a container of the size of a room, or of a very
small box. Or, alternatively, for an extremely short time around the initial
time: enough to “forget” the peculiarity of the preparation of the initial
state.

A system set up initially in an “atypical” condition, e.g. occupying only
half of the container, would expand to occupy the whole container and then
it would continue to evolve without “ever” returning to occupy the initial
half.

Of course if a daemon acting a few seconds after the initial time inverts
all the velocities of all the particles of the system, then the system would
retrace its previous evolution coming back to the initial state (but just for
a very short time) and then it would evolve by again occupying the whole
container proceeding towards equilibrium exactly as it would have done
if its velocities had not been inverted (and, furthermore, according to an
evolution law described approximately by Boltzmann’s equation).

This inversion of the motion with production of an atypical situation after
a short time (i.e. a non astronomically long time) from the initial instant
requires the ezact inversion of all velocities: if they were inverted with an
error, even very small (provided not “astronomically small”), the system
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would not go back and, instead, it would probably continue to evolve as
if “nothing had happened” from a macroscopic point of view, [LV93]. The
effort of the daemonic heavenly creature to intervene on earthly affairs, after
leaving the realm of metaphysics, would therefore be in vain.

The second point of view has a more mathematical character and attempts
at making quantitative the argument just described by relating it to Boltz-
mann’s equation.

One imagines an initial datum in which particles, hard spheres with radius
R, are independently distributed in phase space; we suppose that the density
with which each of them is distributed is pfo(p,q) where fq is normalized
to 1: [ fo(p,q)dpdg =18

This system is evolved with Hamilton’s equations (i.e. with elastic collision
rules) and at time ¢ one supposes that it is described by a distribution
pfi(p,q), without however assuming that the particles are independently
distributed; this means that the one-particle distribution pf; (p, q) provides
only the information on the number of particles in dpdg but no longer their
correlations (as was the case at time 0, by construction) which will be non
trivial, just because the ”Stosszahlansatz” will not hold.

We now imagine, keeping ¢ fixed, that p — co, R — 0 so that pR*> — 0 but
pR? = X = fixed quantity: i.e. we consider the Grad-Boltzmann limit, see
(1.8.3). If the above qualitative discussion is correct and if one remarks that
in this limit the gas becomes a perfect gas (because the particles become
point masses) in which equilibrium is attained by virtue of collisions be-
tween pairs of particles without two particles ever colliding more than once
(because R — 0 implies just this, as it is easy to estimate the probability
of recollision, i.e. of the event in the Fig. 1.8.1.

A c
[ ]

Fig. 1.8.1: Trajectory of C collides twice with A (A, B imagined fixed to simplify

Note that if one throws randomly and independently hard spheres in a box then some
of them may overlap. It is convenient not to exclude such a possibility provided one
disregards completely the interaction of the overlapping spheres as long as they overlap
and starts considering it only after they separate because of the motion: this is clearly
a trick that introduces some minor simplification of the discussion while not affecting
the macroscopic properties of the (rarefied) gas.
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drawing).

as proportional to pR® — 0, per unit time), then recalling that we denote

pft the evolving one particle density (to keep the integral of f; normalized

to 1) one has to conclude that the evolution of the limit Il%imo ft = f, should
—

be rigorously described by the Boltzmann equation which for f, is

0f, 2 9F _ g/lzz’—zz”la<w> .
3 " m 82—(pR) —=— 5" dp,dw

(1.8.17)
(£ £ 0" 0) — i, ) f (2, 0) -

One should note that this is p, R-independent because pR? and o(w)/R?
are independent of R (recall that we are considering the case of hard sphere
systems).

Hence the Boltzmann’s equation should describe correctly the evolution
of a rarefied gas for arbitrary times ¢: in fact we expect that in the Grad
limit the recurrence times grow infinitely large while the collisions make the
system evolve on a time scale fized by the flight time: ((pR?)®) . This can
also be seen from (1.8.17) in which the time scale is fixed by pR*|p' —p"|/m
which, in the average, is just ~ pR? .

Equation (1.8.17) has been proved with complete mathematical rigor only
recently and for times t < 1/pR?v for systems of hard spheres and for
interesting classes of initial data fy: this is the content of Lanford’s theorem
on the Grad conjecture, [La74].

This is an important confirmation, mathematically rigorous, of Boltzman-
n’s point of view according to which reversibility, and the corresponding
recurrence times, is not in contradiction with the experimental observation
of irreversibility. Because the time scale over which reversibility manifests
itself is not observable while that in which irreversibilty can be observed
is related to the time of free flight (pR?7)~!. Furthermore we see that
irreversibility is not incompatible with the ergodic hypothesis, and Boltz-
mann’s equation provides us with a model of the development of irreversible
motions in situations in which the recurrence times are “infinitely” longer
(even on astronomical scales) than the average time needed for a molecule
to travel the free path (i.e. the flight time).

Thus Lanford’s theorem, although it presents moderate interest for the
applications due to the shortness of the interval of validity, ¢t < (pR2v) 1,
has an enormous conceptual importance (apparently not yet fully appreci-
ated by many) because it shows in a mathematically precise and rigorous
fashion that there is no incompatibility between irreversible evolutions like
the one described by the Boltzmann equation and the completely reversible
Hamilton equations that describe the details of the microscopic motions. In
fact mathematical rigor is particularly welcome here in consideration of the
enormous amount of speculation on the theme and of pretended proofs of
inconsistency between macroscopic irreversibility and mechanics. It has to
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be hoped that, with time, Lanford’s theorem will be appreciated as a basic
advancement of statistical mechanics.

There is already a vast literature that developed following the spirit of
Lanford’s work (which was heralded by various works) and here T cannot
discuss the matter further: for a proof developed with attention to the later
developments and for the developments themselves the reader is referred to
the recent treatise by Spohn, [Sp91], pp. 48-76.

This concludes our general introduction to statistical mechanics. We have
seen that classical statistical mechanics holds only under certain conditions
(see §1.2, for instance) at least as formulated here. It remains to analyze its
consequences to deduce some of its applications and a better understanding
of its validity and limitations.

Such an understanding is based, as already remarked, on the very con-
sequences of the theory and it cannot be derived a priori as shown, for
instance, by the fact that the basic condition in §1.2, namely ¥, /9_ > 1
is compatible with very reasonable values of the temperature for “everyday
physics” only because the intensity € of the molecular interaction energy
has order of magnitude of ~ 107!* erg and the radius of the molecules has
size ~ 2. x 10~ 8¢cm. If this experimentally determined data had been very
different the condition ¥4 /9_ > 1 could be impossible to satisfy at tem-
peratures of importance for the observations usually carried out by classical
thermodynamics. See Chap.ILIII for a discussion of the latter points.

§1.9. A Historical Note. The Etymology of the Word “Ergodic”
and the Heat Theorems

This section and Appendix 1.A1 are written in a way to be independent of
the preceding sections: therefore there are here and there a few repetitions
of subjects already analyzed in §1.1-§1.8. Few references to the previous
sections are meant for readers familiar with them, but they are not essential
for reading this section and Appendix 1.A1.

What follows is an expanded and revised version of various of my writings
on Boltzmann’s work, [Ga81], [Ga89].2

(1) The etymology of the word “ergodic” and the heat theorems.

Trying to find the meaning of the word ergodic one is led to a paper by
Boltzmann, [Bo84]: see the footnote of S. Brush in his edition, [Bo64], of
the Lectures on Gas Theory, on p. 297 (§5.10): here Boltzmann’s paper is
quoted as the first place where the word is introduced. Brush acutely warns
the reader that Ehrenfests’ paper misrepresents the opinions and even the
terminology of Boltzmann and Maxwell and dates (in agreement with Gibbs,

9 Readers might be interested in the referee report to one of my papers, [Ga95a], as it
shows, in my opinion, how blind to evidence an historian of Science can be at times.
The contents of the paper in question are reproduced here; the referee report and the
corresponding unamended original version can be found in [Ga95b] (in English).
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see p. vi of the introduction of [Gi81]), the first appearance of the concept to

1871, [Bo71b]. For instance the etymology that one finds in the Ehrenfests’
paper is incorrect on this point: see [EE11], note #93, p.89, (where also the
first appearance of the word is incorrectly dated and quoted).

In fact the basic idea of ergodicity can perhaps be traced to even earlier
works, namely to the first work of Boltzmann on the theory of heat, [Bo66]:
on p. 30 one finds that “... this explanation is nothing else but the mathe-
matical formulaton of the theorem according to which the paths that do not
close themselves in any finite time can be regarded as closed in an infinite
time” (in this paper one also finds a general derivation of the necessity of the
identification between average kinetic energy and absolute temperature).

The [Bo84] paper by Boltzmann is seldom quoted, I found only Brush’s
reference in [Bo64], and a partial account in [Br76], p. 242 and p. 368,
before my own etymological discussion appeared in print in [Ga81], [Ga89],
[Ga95a). More recently the paper has been appropriately quoted by [VP92];
the paper was discussed also by [Ma88]. However no English translation of
[Bo84] is available yet. Nevertheless I think that this is one of the most
interesting papers of Boltzmann: it is a precursor of the work of Gibbs,
[Gi81], on ensembles, containing it almost entirely (if one recalls that the
equivalence of the canonical and microcanonical ensembles was already es-
tablished (elsewhere) by Boltzmann himself, [Bo68], [Bo71]), and I will try
to motivate this statement.

The paper stems from the important, not too well known, work of
Helmbholtz, [He95a], [He95b], who considered what we call today a system
whose phase space contains only periodic orbits, or cycles of distinct ener-
gies: i.e. essentially a one-dimensional conservative system. He called such
systems monocyclic systems and noted that they could be used to provide
models of thermodynamics in a sense that Boltzmann undertakes to extend
to a major generalization.

After an introduction, whose relative obscurity has been probably respon-
sible for the little attention this paper has received, Boltzmann gives the
notion of stationary probability distribution on the phase space of N in-
teracting particles enclosed in a vessel with volume V. He calls a family
& of such probabilities a monode, generalizing an “analogous” concept on
monocyclic systems. In fact Boltzmann first calls a monode just a single
stationary distribution regarded as an ensemble. But sometimes later he
implicitly, or explicitly, thinks of a monode as a collection of stationary
distributions parameterized by some parameters: the distinction is always
clear from the context. Therefore, for simplicity, I here take the liberty of
calling monode a collection of stationary distributions, and the individual
elements of the collection will be called “elements of the monode”.

The etymology that follows, however, is more appropriate for the elements
of the monodes, as they are thought to consist of many copies of the same
system in different configurations. By reading Boltzmann’s analysis one
can get the impression, see p. 132 of [Bo84], that the word “monode” had
already been introduced by Maxwell, in [Ma79]; however the reference to
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Maxwell is probably meant to refer to the notion of stationarity rather than
to the word monode which does not seem to appear in [Ma79].

In fact the orbits of a monocyclic system can be regarded as endowed with
a probability distribution giving an arc length a probability proportional to
the time spent on it by the motion: hence their family forms a family of
stationary probability distributions.

Etymologically, from the context of [Bo84], this appears to mean a family of
stationary distributions with a “unique nature”, (each consisting of systems
with a “unique nature”, differing only by the initial conditions), from puévoc
and eldoc , with a probable reference to Plato and Leibnitz. The concept
appears, in fact, in some of Plato’s dialogues, see the entry povoedvic (“one
in kind”) in [LS94].

Then the following question is posed. Given an element p of a monode
&€ we can compute the average values of various observables, e.g. average
kinetic energy, average total energy, average momentum transfer per unit
time and unit surface in the collisions with the vessel walls, average volume
occupied and density, denoted, respectively:

1 B N
where ® denotes the potential interaction energy and K the total kinetic
energy. We then imagine varying p in the monode &, by an infinitesimal
amount (this means changing any of the parameters which determine the
element). Question: is it true that the corresponding variations dU and dV
are such that:

MJ

dU + pdV
T

In other words is it true that the above quantities, defined in purely me-
chanical terms, satisfy the same relation that would hold between them if,
for some thermodynamic system, they were the thermodynamic quantities
bearing the same name, with the further identification of the average kinetic
energy with the absolute temperature? (§1.5).

That the temperature should be identified with the average kinetic energy
per particle was quite well established (for free gases) since the paper by
Clausius, [Cl65], and the paper on the equipartition of kinetic energy by
Boltzmann, [Bo66], [Bo68] (in the interacting cases); see the discussion of
it in Maxwell’s last scientific work, [Ma79]. The latter paper is also very
interesting as Maxwell asks there whether there are other stationary distri-
butions on the energy surface, and tries to answer the question by putting
forward the ergodic hypothesis. If so the monode would provide a “me-
chanical model of thermodynamics” extending, by far, the early examples
of Helmholtz on monocyclic systems.

Thus Boltzmann is led to the following definition, see §1.5, (1.5.6):

is an exact differential dS ? (1.9.2)

Definition: a monode £ is called an orthode if the property described by
(1.9.2) holds.
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By reading [Bo84] the etymology of “orthode” is composed by ép6c and
eldog i.e. “right nature” or “correct nature”.

The above deep definition has not been taken up by the subsequent liter-
ature. This is surprising, even more so as Boltzmann, in the same paper,
proceeds to discuss “examples” of mechanical models of thermodynamics,
i.e. examples of orthodic monodes. The above orthodicity concept is still
attributed to Gibbs, see [Br76], p. 242.

The examples of orthodes discussed by Boltzmann in his paper are the
holode and the ergode which are two ensembles whose elements are param-
eterized with two parameters 8, N or U, N, respectively. Their elements
are

dp, ...dp dq, ...dg —BK+®)

1.9.3
const ( )

.~ (dpdgq) =
and

d;l_)1 . dgndgl ... dgn
const

pu,n (dpdg) = (K(p) +2(q) —U) (1.9.4)

Boltzmann proves that the above two ensembles are both orthodes! thus
establishing that the canonical and the microcanonical ensembles (using
our modern terminology) are equilibrium ensembles and provide mechanical
models of thermodynamics, see Chap.II for a discussion of similar proofs.

Boltzmann’s simple proof makes use of the auxiliary (with respect to the
above definition) notion of heat transfer. In the canonical case it yields
exactly the desired result; in the microcanonical it is also very simple but
somehow based on a different notion of heat transfer. An analysis of the
matter easily shows, see §3.2 in Chap.II, that a definition of heat transfer for
the microcanonical ensemble consistent with that of the canonical ensemble
gives the result (1.9.2), but only up to corrections expected to be of order
O(N~1). As we have alluded to in §1.6 there is a problem only if one insists
in defining in the same way the notion of heat transfer in the two cases:
Boltzmann does not even mention this, possibly because he saw as obvious
that the two notions would become equivalent in the thermodynamic limit.

Again from the context of [Bo84] one sees that the word “holode” has the
etymological origin of &loc and eldoc while “ergode” is a shorthand for
“ergomonode” and it has the etymological root of €gyov and i8oc , meaning
a “monode with given energy”, [Ga81], [Ga95a].

The word “ergode” appears for the first time on p. 132 of [Bo84] but this
must be a curious misprint, as the concept is really introduced on p. 134.
On p. 132 the author probably meant to say “holode” instead; this has been
correctly remarked by [VP92]. The above etymology was probably proposed
for the first time by myself in various lectures in Roma, and it was included
in the first section of [Ga81]. It has also been proposed in [Ja84], [Ma88].
The word “holode” is probably a shorthand for “holomonode”, meaning a
“global monode” (perhaps a monode involving states with arbitrary energy,
i.e. spread over the whole phase space).
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This is not what is usually believed to be the etymology of “ergode”: the
usual beliefl® comes from the Ehrenfests’ statement that the etymology is
goyov and 606¢ , with the meaning of “unique path on the surface of con-
stant energy, see note #93 in [EE11]. The latter etymology has been taken
up universally and has been attached to the subject of “ergodic theory”,
which is a theory dealing with time evolution properties.

(2) The ergodic hypothesis, continuous and discrete phase space

The etymological error of the Ehrenfests could be just an amusing fact:
but it had a rather deep negative influence in the development of the 20-
th century physics. They present their etymology in connection with the
discussion (amounting to a de facto rejection) of the ergodic hypothesis of
Boltzmann. In fact Boltzmann had come to the ergodic hypothesis in his
attempts to justify a priori that the ergode, as a model of thermodynamics,
had to produce the thermodynamics of a system with the given Hamiltonian
function (and not just a model).

Boltzmann had argued that the trajectory of any initial datum evolves on
the surface of constant energy, visiting all phase space points and spending
equal fractions of time in regions of equal Liouville measure. See §1.3.

The Ehrenfests criticize such a viewpoint on surprisingly abstract math-
ematical grounds: basically they say that one can attach to each different
trajectory a different label, say a real number, thus constructing a function
on phase space which is constant on trajectories. Such a function would of
course have to have the same value on points on the same trajectory (i.e. it
would be a constant of motion). This is stated in the note #74, p. 86
where the number of different paths is even “counted”, and referred to in
the note #94, p. 89. Therefore, they conclude, it is impossible that there is
a single path on the surface of constant energy, i.e. the ergodic hypothesis
is inconsistent (except for monocyclic systems, for which it trivially holds).

The abstract mathematical nature of this argument, see also below for a
critique, was apparently remarked on only by a mathematician, see [VP92]
p. 86, (i.e. by Borel, 1914); but it escaped many physicists. It is worrying
to note how literally so many took the Ehrenfests’ version of the ergodic
hypothesis and how easily they disposed of it, taking for granted that their
formulation was the original one by Boltzmann and Maxwell, see [Br76], p.
383.

Having disposed of the ergodic hypothesis of Boltzmann, the Ehrenfests
proceeded to formulate a new hypothesis, the rather obscure (and somewhat
vague as no mention is made of the frequency of visits to regions in phase
space) quasi-ergodic hypothesis see notes #98 and #99, p. 90, in [EE11];
it led physicists away from the subject and it inspired mathematicians to

10 1t is important, in this respect, to be aware that Boltzmann had studied the Greek
language and, by his own account, quite well: see [Bo74], p. 133, to the point of having
known at least small parts of Homer by heart. Hence there should be no doubt that he
did distinguish the meanings of €l80¢ and 63A¢ which are among the most common
words.
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find the appropriate definition giving birth to ergodic theory and to its first
nontrivial results.

The modern notion of ergodicity s not the quasi-ergodicity of the Ehren-
fests. It is simply based on the remark that the Ehrenfests had defined a
nontrivial constant of motion very abstractly, by using the axiom of choice.
In fact from the definition, consisting in attaching a different number, or
even 6N —2 different numbers, to each distinct trajectory, there is in princi-
ple no way of constructing a table of the values of the function so defined in
order to distinguish the different trajectories. In a system which is ergodic
in the modern sense the Ehrenfests’ construction would lead to a nonmea-
surable function; and to a physicist endowed with common sense such a
function, which in principle cannot be tabulated, should appear as not ez-
istent, or as mnot interesting. Thus motion on the energy surface is called
ergodic if there are no measurable constants of motion: here measurable is a
mathematical notion which essentially states the possibility of a tabulation
of the function.

It is surprising that a generation of physicists could be influenced (in be-
lieving that the ergodic hypothesis of Boltzmann had to be abandoned as a
too naive viewpoint) by an argument of such an exquisitely abstract nature,
resting on the properties of a function that could not be tabulated (and not
even defined if one did not accept the sinister axiom of choice). What is
remarkable is the coincidence that the recognition and the development of
the axiom of choice was due essentially to the same Zermelo who was one
of the strongest opponents of Boltzmann’s ideas on irreversibility; see also
[Sc86].

Therefore it is worth, perhaps, trying to understand what Boltzmann may
have meant when he formulated the ergodic hypothesis. Here one cannot
fully rely on published work, as the question was never really directly ad-
dressed by Boltzmann in a critical fashion (he might have thought, rightly,
that what he was saying was clear enough). The following analysis is an
elaboration of [Ga81], [Ga95a] in some respects it gets quite close to [VP92].
It should be noted that [VP92] has a somewhat different point of view
on several key issues, although we seem to share the main thesis that the
[EE11] paper is responsible for most of the still persisting misunderstand-
ings on Boltzmann’s work, including the exclusive attribution to Gibbs of
Boltzmann’s ideas on ensembles, so clearly elaborated in [Bo84]. This is
so even though, by reading the literature carefully, it is possible to realize
that many were aware of the connection of Gibbs’ work with Boltzmann’s;
see for instance [Br76], p. 242, first of all Gibbs, see p. vi of [Gi81] where
he quotes the first section [Bo71c] of [Bo71b].

My point of view, adopted in the preceding sections, is that of those who
believe that Boltzmann always conceived of the phase space and time as
discrete spaces, divided into small cells, see [Bo72], p. 346. He always
stressed that the continuum must be understood as a limit, see §1.1 (see
also [Br76], p. 371, and [K162], [K172], [K173], [Du59]). The book by Dugas,
[Dub9], is particularly illuminating (also) on this respect (see for instance
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Chap.I and the quotations of Boltzmann presented there, where he appears
to identify the discrete viewpoint with the atomistic conceptions). In his
writings Boltzmann very often makes this point: see for instance p. 42-44,
note 4 on p. 51 (discrete time), p. 54, p. 168, p. 169, p. 243 (discrete
time), p. 252/253, in [Bo74].

Although Boltzmann seems to have sometimes been quite apologetic about
such a viewpoint (even calling it a “mathematical fiction”, [Ba90], p.18, from
[Bo72]; see also [VP92], p. 75), he took advantage of it to the point that
one can say that most of his arguments are based on a discrete conception
of phase space, followed at the end by a passage to the continuum limit, see
§1.1. It should be understood however that the discretization that Boltz-
mann had in mind is by no means to be identified with the later concept of
coarse graining; see Chap.IX where a modern version of Boltzmann’s dis-
cretization is considered and where a distinction has to be made between
cells and volume elements, see also [VP92] and [Ga95a).

It is easier for us, by now used to numerical simulations, to grasp the
meaning of a “cell”: in the numerical simulations a cell is simply an ele-
ment of the discrete set of points in phase space, each represented within
computer precision (which is finite). One should always discuss how much
the apparently harmless discreteness of phase space affects results. This is,
however, almost never attempted, see [Ga95a] for an attempt. A “volume
element” in phase space has, instead, a size much larger than the machine
resolution, so that it looks like a continuum (for some purposes). In the
previous sections we have been careful to keep the discrete treatment of
phase space always quite explicit, so that later we shall be easily able to see
which are the consequences of a verbatim interpretation of the phase space
discreteness.

Hence one can say that an essential characteristic of Boltzmann’s thought is
to have regarded a system of NV atoms, or molecules, as described by a cell of
dimension dq and dp in each position and momentum coordinates. He always
proceeded by regarding such quantities as very small, avoiding entering into
the analysis of their size, but every time this had some importance he seems
to have regarded them as positive quantities.

A proof of this is when he refutes Zermelo’s paradoxes by counting the
number of cells of the energy surface of 1¢m? of normal air, [Bo96], a feat
that can only be achieved if one considers phase space as discrete. His
calculation has been discussed in §1.4, (1.4.3).

In particular this point of view must have been taken when he formulated
the ergodic hypothesis: in fact conceiving the energy surface as discrete
makes it possible to assume that the motion on it is “ergodic”, i.e. it visits
all the phase space points identified with cells, compatible with the given
energy (and possibly with other “trivial” constants of motion), thus behav-
ing as in a monocyclic system (as all the motions are necessarily periodic).
This is in fact the definition in §1.3.

The passage to the continuum limit, which seems to have never been made
by Boltzmann, of such an assumption is of course extremely delicate, and
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it does not lead necessarily to the interpretation given by the Ehrenfests. It
can easily lead to other interpretations, among which the modern notion of
ergodicity, but it should not be attempted here, as Boltzmann himself did
not attempt it.

In general one can hardly conceive that studying the continuum problem
could lead to really new information, cannot be obtained by taking a discrete
viewpoint. Of course some problems might still be easier if studied in the
continuum, and the few results on ergodicity of physical systems do in fact
rely explicitly on continuum models, [Si70]. However I rather interpret such
results as illustrations of the complex nature of the discrete model: for
instance the ergodicity theory of a system like billiards is very enlightening
as it allows us to get some ideas on the question of whether there exist
other ergodic distributions on the energy surface (in the sense of ergodic
theory the answer is affirmative), and what is their meaning. The theory
of the continuum models has been essential in providing new insights in the
description of nonequilibrium phenomena, [RT71], [Ru78], [CELS93].

Finally the fruitfulness of the discrete models can be even more appreciated
if one notes that they have been the origin of the quantum theory of radi-
ation: it has even been maintained that Boltzmann had already obtained
the Bose-Einstein statistics, [Ba90].

The latter is a somewhat strong intepretation of the 1877 paper, [Bo77].
The most attentive readers of Boltzmann have, in fact, noted that in his dis-
cretizations he uses, eventually, the continuum limit as a device to expedite
the computations, manifestly not remarking that sticking to the discrete
viewpoint would lead to émportant differences in some extreme cases. In
fact he does not discuss the two main “errors”, see Chap.IlI, that one com-
mits in regarding a continuum formulation as an approximation (based on
replacing integrals with sums), they were exploited for the first time by
Planck, much later. The latter errors amount, in modern language, see
Chap.III, to the identification of the Maxwell-Boltzmann statistics and the
Bose-Einstein statistics, and to neglecting the variation of physically rele-
vant quantities over the cells: see the lucid analysis in [Ku87], p.60; for a
technical discussion see Chap.III.

The above “oversight” might simply be a proof that Boltzmann never took
the discretization viewpoint to its extreme consequences, among which there
is that the equilibrium ensembles are no longer orthodic in the sense of
Boltzmann, see Chap.III, (although they still provide a model for thermo-
dynamics provided the temperature is no longer identified with the average
kinetic energy), a remark that very likely was not made by Boltzmann in
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spite of his consideration and interest on the possibility of finding other
integrating factors for the heat transfer d@), see the footnote on p. 152 in
[Bog4].11

The necessity of an understanding of this “oversight” has been in particular
clearly advocated by Kuhn referring to Boltzmann’s “little studied views
about the relation between the continuum and the discrete”, [Ku87], for
instance.

There are many directions into which the analysis of the foundations of
classical statistical mechanics can be developed. A somewhat different view-
point for instance can be found in [Kr79]: this work of Krylov, and particu-
larly part III has been very influential on Russian theoretical physics. In it,
besides a very detailed critique of the foundations and of Boltzmann’s and
Gibbs’ work, the foundations of the theory of the ergodicity of hard sphere
systems is laid down: it was pursued later by Sinai. It also provided grounds
for subsequent work on coarse graining (see Chap.IX) of Sinai and, in Sinai’s
interpretation, [Si79], also inspiration for the later theory of chaotic systems,
[Si72], quite close to Ruelle’s proposal, see Chap.IX and [Ru78c].

Appendix 1.A1. Monocyclic systems, Keplerian Motions and Er-
godic Hypothesis

Consider a one-dimensional system with potential ¢(z) such that |¢'(z)| >
0 for |z| > 0, ¢"(0) > 0 and ¢(z) 555 + co. All motions are periodic so
that the system is monocyclic. We suppose that the potential ¢(x) depends
on a parameter V.

One defines a state a motion with given energy E and given V. And:

U = total energy of the system = K + ¢

T = time average of the kinetic energy K

V' = the parameter on which ¢ is supposed to depend
p = — average of Jy .

A state is parameterized by U,V and if such parameters change by dU,dV,
respectively, we define:

dL = —pdV,  dQ =dU + pdV . (1.A1.1)
Then:
Theorem (Helmoltz): The differential (dU + pdV')/T is ezact.

In fact let 24 (U, V') be the extremes of the oscillations of the motion with
given U,V and define S as:

11 Tn checking my understanding of the original paper as partially discussed in [Ga81], T

have profited from an English translation that Dr. J. Renn kindly provided me with
later, (1984). He noticed this footnote in [Bo84] while performing his translation, (un-
fortunately still unpublished).
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z4(U,V) z4(U,V)
S =2log VK (x; U, V)dx = 2log VU — p(z)dz
z_(U,V) z_(U,V)
(1.41.2)
so that QU v d
_ z dz_
ds = J Wix) ) Vi (1.A1.3)
Ko%=

and, noting that % = ,/%dt we see that the time averages are given by

integrating with respect to % and dividing by the integral of \/1—} We find

therefore

dU + pdV
T

The above analysis admits an extension to keplerian motions: such sys-
tems are not monocyclic in the sense of Helmoltz, but if one considers only
motions with a fixed eccentricity they have the same properties.

It is convenient to study motions in polar coordinates (p,v), so that if
A= p2),E = %mf — %, m being the mass and ¢ the strength of the
attraction due to gravity (g = kM if k is the gravitational constant and M
is the central mass) then

ds = (1.A1.4)

1 ., mA?2 mg gm
E - _ 52 _ = —— 1A].5
STt o T, ©(p) ; ( )
and
. 2 mA%  mg. def 1 1.1 1
pP==(B-—5+—)= A= (—=-)
m 2p p PP+ p— P
1 —2E 1 1 2 ~ de
= L b2 et M9 (1.41.6)
p+p—  mA2T pp p. A? 2 —2E
def A
Vo= = a1 —e2, Vi—e2=—.
+ \/@

Furthermore if a motion with parameters (E, A, g) is periodic (hence E < 0)
and if (-) denotes a time average over a period then

__mg ()__@ (i>_;
= 204’ (10 - a) p2 _a2 /1_62
<K):?:_E, T:?E(K), Toe = (1—V1=¢2)T
a a

Hence if S is defined by

P+ 9 A2
S = 210g/ \/—(E L AP (1.41.8)
p—
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its differential is ) )
dE — A 44”4 mdg

_ 2a2y/1—e?
ds = AoViT (1.41.9)

This means that:

(1) If (E, A, g) are regarded as parameters then T, is an integrating factor
of:

—m

dQ = dE + padA® + pydg, S L
Q pa Podg,  pA= S

Py = % (1.41.10)

(2) Suppose that e is kept constant, so that the states as characterized by
(E,g). Then using V1 —e2 = /—2E/mAg~! and —E =T, i.e.

dA?  d(-E) _,dg

— = 1.A1.11
= T g y ( )
one can eliminate dA?/A? from dS and find (after some simple algebra):
dE + (-2E)g~'d 2
ds = HE+ L - 9749 _ j1og 9 (1.A1.12)

so that T is the integrating factor of dQQ = dE + pdV if V = g and p =
=2E _ T (Boltzmann). Note that the equations pg = 2T and E = —T' can
be interpreted as, respectively, analogues of the “equation of state” and the
“ideal specific heat” laws (with the “volume” being g, the “gas constant”
being R = 2 and the “specific heat” Cy = 1).

(3) If g is kept constant and (E, A%) determine the states the integrating
factor of dQ = dE +padA?, with py = —ﬁ is not the average kinetic
energy 1" but the eccentric temperature T....

To check (2) note that by (1.A1.9), (1.A1.11)

2 « 2
ds = dE (1 - 2a2n\2/A— LE) +dg (5 - Qaim\/fer é)
= (1-Vi-e)T -
m A?
(B + Bdg)(1 - W) _dE +%dg (1.A41.13)
( 1 —é ) T
=2F
— M — d]og gQ .
_E —2F

This concludes the discussion of Boltzman’s version of Helmoltz’s theory.

In general one can call a system monocyclic when it has the property
that there is a curve £ — z(£), parameterized by its curvilinear abscissa £,
varying in an interval 0 < ¢ < L(E), closed and such that z(¢) covers all
the positions compatible with the given energy FE.
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Let 2 = z(¥) be the parametric equations so that the conservation of energy
can be written:
1 dz\? 9
-m-|— =FE. 1.A1.14
s (5) €+ ealo) (1.41.14)

Then if we suppose that the potential energy ¢ depends on a parameter V'
and if T is the average kinetic energy, p = —(9y ) it follows:

_dE +pdV

ds T ,

p=—{(Ovy), T =(K). (1.A1.15)

A typical case to which the above can be applied is the case in which the
whole space of configurations is covered by the projection of a single periodic
motion and the whole energy surface consists of just one periodic orbit, or
at least only the phase space points that are on such an orbit are observable.
Such systems provide natural models of thermodynamic behavior.

Noting that a chaotic system like a gas in a container of volume V will
satisfy “for practical purposes” the above property we see that we should
be able to find a quantity p such that dE + pdV admits the inverse of the
average kinetic energy as an integrating factor.

On the other hand the distribution generated on the surface of constant
energy by the time averages over the trajectory should be an invariant dis-
tribution and therefore a natural candidate for it is the uniform distribution,
Liouwille distribution, on the surface of constant energy.

It follows that if u is the Liouville distribution and T is the average kinetic
energy with respect to p then there should exist a function p such that 7!
is the integrating factor of dE + pdV.

Boltzmann showed that this is the case and, in fact, p is the average mo-
mentum transfer to the walls per unit time and unit surface, i.e. it is the
physical pressure.

Clearly this is not a proof that the equilibria are described by the micro-
canonical ensemble. However it shows that for most systems, independently
of the number of degrees of freedom, one can define a mechanical model of
thermodynamics. The reason we observe approach to equilibrium over time
scales far shorter than the recurrence times is due (as discussed in the pre-
vious sections) to the property that on most of the energy surface the actual
values of the observables whose averages yield the pressure and tempera-
ture assume the same value. This implies that this value coincides with the
average and therefore satisfies the heat theorem, as Boltzmann called the
statement that (dE + pdV)/T is an exact differential if p is the pressure
(defined as the average momentum transfer to the walls per unit time and
unit surface) and T is proportional to the average kinetic energy.

Appendix 1.A2. Grad-Boltzmann Limit and Lorentz’s Gas

It is interesting to see how to derive Boltzmann’s equation in simple models
in which it becomes a linear equation. The models are well known since
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Lorentz introduced them in his attempt to establish more firmly Drude’s
theory of electric conduction in metals.

In the models there are two types of particles: the W-particles (wind-
particles) and the T-particles (tree-particles).

The W-particles move through space interacting only with the T-particles
which, however, are supposed to be infinitely heavy compared to the W-
particle and are supposed to be at rest and randomly distributed in space.

Each model is completely described by the W — T interaction and by the
T-particle distribution. From now on we shall focus our interest on the case
in which the T-particles are distributed as the space distribution of a perfect
gas (Poisson’s distribution) with density n. We shall also assume that the
T-particles are, with respect to the W -particles, hard spheres of radius a,
reflecting the W-particles on their surface.

The assumed tree distribution is such that the probability for finding inside
a given region A, with volume V' (A), exactly IV tree particles, and for finding

them in the infinitesimal cubes dcy,...,dcy around ¢q,...,cp, is:
deq, ..., dc _ nN
fA(gl,...,gN)_lT'_N =e "V(A)ﬁdgl,...,dgN (1.42.1)

where the parameter n has the interpretation of density of the tree particles.
Note that, since the T-particles are hard spheres only with respect to the
W -particles but not with respect to the each other, there are configurations
C1s---,¢n of trees in which the hard spheres overlap, (for some comments
on this point see §1.6).
If x = (p, q) is a W-particle phase space coordinate (p= velocity, g= posi-
tion) the symbol - B
St N g (1.42.2)

will denote the W-particle coordinate ' = (p',¢’) into which z evolves in
time ¢ in the presence of N tree-particles located at Cyy-.-5Cn- The symbol
w(p) will denote the direction of p and # will denote the pair (w(p),q) if
z = (p,9)-

Since the velocity |p| is conserved it is clear that S;""“¥z depends only
on the trees located within a distance (|p|t + a) from g. The symbols:

(S05a), (SR, (S (LA

1

will, respectively, denote the velocity, position and momentum direction of
(1.A2.2); and we also set:

5517“.’21\’55 — (w ((5517“.’21\’1:)) ’ (515217.“721\"73)2) (1.142.4)
Similarly we can give a natural meaning to the evolution of m W-particles:
5517”"21\’(331,---,37771) — (515217“.’21\71:1,---,Sfl’“.7£Nmm) . (1A25)

which takes into account the fact that there are no W-W interactions.
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It is easy to derive Boltzmann’s equation for W-particles in the case of the
Lorentz’ gas described above, see (1.A2.10) below. One realizes that the
assumptions to be made in order to derive the Boltzmann’s equation are
essentially the same as conditions 1), 2), 3), of Sect. 8. They are:

(i) a W-particle never hits twice the same particle;
(ii) molecular chaos is assumed;
(iii) the size of the T-particles is negligible.

Here by a “chaotic” W-particle state we again mean a state such that the
W -particle correlation functions are a product of one W-particle distribu-
tion: which are independent of the T-particle distribution. More precisely
a chaotic state is such that the probability distribution for finding a certain
configuration C of T-particles and a set of W-particles in zy,...,x,, has
the form p(C)1;~, fo(x;), where p(C)) denotes the distribution (1.A2.1)
and this is interpreted as 0 if any wind particle is inside the hard cores of
C.12

Clearly assumptions (i), (ii) and (iii) can be only approximately true.

Let us formulate Grad’s limit conjecture for the Lorentz gas. Assume that
the initial W-particles state is such that the probability density for finding
W -particle in dz; . ..dx, is m!™! times:

feremi 0= [ @ ][ae) 0420
comp (T1,-.-,Tm i=1

where fo(z) is a given function of x and the “integral” is the “sum” over
all the T-particle configurations compatible with x1,...,z,, (i.e. over the
C’s such that no W-particle is located inside the hard core of a T-particle).
The compatibility between (z1,...,2,) and C is expressed by the notation

(.171, e ,il?m)compc.

Note that (1.A2.6) is not a product state for the W-particles: this is so
because here we have hard core interactions between them and the 7' par-
ticles.

Consider the state obtained by evolving the initial state (1.A2.6):

F@t s 1) :/ ( )p(C)Hfo(sftxj) (1.42.7)
C comp (Z1,...,&m i—0

Explicitly this means the following. Let p be the probability of finding the W-
particles in a infinitesimal cube dz1 ...dzn, around the configuration X = (z1,...,Zm)
in the box Ag, and a tree configuration in the infinitesimal cube dc, ...dc,; around
C = (¢y,...,¢py) in the box A, assuming it wider by an amount a than Ag, at
least. Here z; = (Qi,gi). Then p is the product of the probability in (1.A2.1) times

- d
m!_l(HZil fo(z;)dz;)e fc fo(®) é, where £ = (p, ¢) and fc d§ means integration over
p and over the ¢ € Ag which are outside the hard spheres centered on C = (cy,...,cy)-

In other words the W particles also have a Poisson distribution, in the region outside
the T particles, with a density function fq.
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and then let the T-particle density n tend to infinity and the hard core W-T'
radius tend to zero in such a way that na® — 0 but na® — [ # 0,00. We
shall imagine that the solid angle integration is normalized so that [ dw = 1.
Grad’s conjecture can then be formulated as:

If t > 0 and under “mild assumptions” on fo, the following limit exists:

lim f(@, . zm; t) = f(@1,...,Zm; 1) (1.A2.8)
na?—0
na?— const #0,00

and: .
f(a:l,...,a:m, H (z45 ¢ (1.A2.9)
and f(z;t) satisfies the Boltzmann equation:
of 1
ot — (z,t) +p- (:U t)=X""|p| f(z,t)o(w)dw  (1.42.10)
where z = (p,q),x" = (p',q) and p' is a vector with the same length as p but

forming an angle w with it; a>0(w) = a® is the scattering cross-section of a

hard sphere with radius a and \™! = 4mna?.

A similar conjecture can be formulated in a two-dimensional model; here the
solid angle w has to be replaced by the deflection angle § (see Fig. 1.A2.2)
and o(w) by o(B) = 5 sing and A= = 2an. Of course the Boltzmann limit
will be, in this case, na® — 0, 2na — A~ ' #£ 0, c0.

It is easy to construct a proof of the above conjecture in the two-
dimensional case. The three-dimensional case could be treated along the
same lines as will become apparent from the proofs. We shall assume, for
simplicity, the spatial dimension to be two. The direction w(p) will be in
this case the angle ¥ between p and a fixed axis. B

We first specify the “mild assumptions” on fo. The function fo(z) will be
thought as fo(|p|,w(p),q), if z = (p,q), and we can write:

follpl w(@). 4 / dq' d' follpl ' )8(q — )(w(p) — ) (1A211)

we shall abbreviate (w',¢) to &, dg'dw’ to d§ and 6(q — ¢')é(w(p) — ') to
0(xz — &). Hence, by usmg definition (1.A2.4), Eq. (1.A2.7) becomes, for
m = 1:
fan = [acho.o [ dsCa-op©). (L4212
comp T

It is therefore useful to consider the function:

s = [ st - (1.42.13)
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where the factor €™ has been introduced for normalization purposes (note
that it tends to 1, in the Boltzmann limit). It is easily checked that:

9(&;2;0) =d(2 - §), /g(é;m;t)df =1
(1.42.14)

fla,t) =e ™" / a¢ follpl,€) 9(E: 2:1).

We shall show that as na®> — 0, 2na — A~! # 0,00 the function g(&;z;t)
will tend to a limit g(&; z;¢) which satisfies the two dimensional analogue of
relation (1.A2.10) with initial condition §(&;;0) = 6(2 — &) and |p| fixed.
The linearity of (1.A2.10), and of the third (1.A2.14), will imply, under
suitable assumptions on fo, that also f(z,t) satisfies (1.A2.10).

We will not insist in discussing in which sense ¢(&;x;t) converges to
g(&w;t). It will appear from the proofs below that, if z(t) = (¢ +

pt,p), at least go(&;a;t) défg(f;a:;t) — e M52 — 2(t)) converges to

go(&; x5 t) défg({f;w;t) — e MPlt§(% — 2(t)) pointwise for ¢ # 0, and in the

sense of the distributions for all ¢ > 0. However a close examination of the
proof will provide evidence against any uniformity of the convergence in ¢,
unless ¢ is restricted to a bounded interval (for further remarks on this point
see below).

Under the above convergence conditions, “mild assumptions” could, for
instance, be continuity and boundedness of fo. The proof is based on a
simple change of variables in (1.A2.13).

Let = = (p,q) and let R(z,t) be the sphere with center ¢ and radius
(Iplt + a); then S¢,x depends only on the T-particles in ¢ contained in
R(z,t). Hence the integral (1.A2.13) can be explicitly written as:

g(f;ﬂ?;t) _ (1.142.15)
_ eﬂ'na2 i / ean(R(z,t)) ﬂ(s (5217---,21\/1@ — f) dc dc
M=0 R(x,t)M M! B - -

where V(R(z,t)) = area of R(z,t) and where use has been made of the
assumed Poisson distribution of the T-particles (1.A2.1).

Note that, in general, not all the T-particles ¢,,...,¢;, in (1.A2.15) will
be hit by the trajectory STz, 0 < 7 < t. Let A, v denote the set
of configurations ¢,,...,cy of N T-particles such that a W-particle with
initial coordinate z hits, in the time ¢, all the N particles in ¢,...cy at
least once. We deduce from (1.A2.15), see Fig. 1.A2.1:
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Fig. 1.A2.1: The set P(t;¢y,...,cp) is the dashed region. The circles represent trees
€15+ +>Cxn» (N =5) and the length of the trajectory in the dashed region is |p|t.

[ee)
9(& ait) = e’ Z /A n™ dgl’.z.\};dEN Xey,mey (€) 0 (525 e —¢) -
N=0

@,t,N
= dc! dc’
. l Z fR gl(’].\./[.;f\f]v)IFN nM—Ne—nV(R(x,t))] (114216)
M=N

R = set of points in R(z,t)™~V such thatc},...,ch_n ¢ P(t;ci,- .-, Cn)

where X¢ ..c. (z) is 1 if x is compatible with the hard cores of ¢, ...,¢cn
and 0 otherwise: the region P(t;¢y,...,cy) is the tube like region (see Fig.
1.A2.1) swept by an ideal T-particle when its center is moved along the path
Sh Ny 0< T <t

The sum within square brackets in (1.A2.16) can be performed (since the
integrals are trivial) and yields:

oV (P(ticy o nien)) (1.A2.17)

so that g(§, z;t) is:

g(é"gj’t) :enﬂ—a2 Z / nNe_nV(P(t?Ep“'aEN)) “Xeprntn (ZU)
N=0”Ast.N (1.42.18)
dcy ...dcy

0 (SEyTNE =€) <

The reader should note the very simple probabilistic meaning of this equa-
tion which makes it almost self-evident: the T-particles in A, ; y can be hit
more than once in the time ¢. Divide A, ; v as A} , yUA) , n where A}, y
is the set of T-configurations in A, ; x such that all their T-particles are hit
just once by the trajectory SflT’""gNw, 0<r<t.
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To this decomposition of Ai’t’N there corresponds a decomposition g(&; x; t)
=g1(&zit) + g' (& 23t) with

de,, ..., dc
(f,l’ t 71'na / Nl’i’ﬂNXc yeeesC (1')
Z - N1 S (1.42.19)

S (Silta 7CN.27 _ f) ean(P(t,gl,...,gN))

We now perform the change of variables, illustrated in Fig. 1.A2.2 from the

2N variables ¢, . ..,cy to the new 2N +1 variables l1,...,IN41, (1, ., 0N;
we get

de C N+1 N+1
1,..., CN N

i(%02)

j=1

(1.42.20)
represented as:

Fig. 1.A2.2

Hence the N-th order contribution to (1.A2.19) is given by (if w(p) = ¥
and = = (p,q) = (Ip|. 9, ), £ = (Ip|, V', ¢")):

oo NA+1 2 N+1
emna’ (2na) / dl / H sin & % Z li — |plt)-
i=1

N+1

LOSRTER) <Zﬂz~—w'—w(z_o)))e*w(m’---’£N>21.A2.21>
i=1

where [; are the vectors represented by arrows in Fig. 1.A2.2 (|I,| = ;); the *
in (1.A2.21) means that there is an extra condition on the integration region.
It is the condition that none of the spheres of radius a around ¢,,...,¢cy
has intersection with the straight segments of the broken line representing
the trajectory in Fig. 1.A2.2 (i.e. this is the condition that ¢,,...,cy really

belongs to A1 tN) Of course in (1.A2.21), 6 (Zf;l Bi — (¥ — W(Q))) means
i O B — (9" —w(p)) — 27h).
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In the limit na® — 0, 2na — A~! # 0,0c the restrictions indicated by
the * in (1.A2.21) become unimportant and nV (P(t; ¢, ...,cy)) simplifies
enormously:

N+1
nV(P(ticy,. .. cn)) = 2na y_ 1= X""p|t (1.42.22)
j=1

Hence the limit §(&; 2;t) as na® — 0 and 2na — A~ # 0, 00 of g1 (&; x5 t) is

N N+1

S [ ’T(H n%—dﬁflj)azzi—mu)-
A N+1 L
(Zl —(q —q) <Zﬁz ))) Lo ATl

In the derivation of (1.A2.23) we have systematically disregarded conver-
gence problems connected with the summation over N, M, etc., since they
are trivial as a consequence of the presence of the factorials and of the
boundedness of the integration regions. The limit (1.A2.23) is pointwise for
t # 0 and it could be checked that it holds also in the sense of distributions
for t > 0.

Furthermore it could be checked that for ¢ > 0 the function g(&,z,t) >
g1(&,z,t) is bounded above by a Li(d¢) function once the delta function
contribution coming from the collisionless paths is subtracted to both terms;
hence the limit (1.A2.23) holds also in the L;(d¢) sense. Finally, by direct
computation, it follows from (1.A2.23) that:

(1.42.23)

/§(€;w;t)d£ =1 (1.A2.24)

and this fact, together with the above convergence properties and (1.A2.14),
implies the validity of the limit relation: lim .2, g¢(&a;t) —e RIS (2

2na—A—1

i(t)) = §(& 2; t)e MPI§(& — (1)) in Ly(d€) for ¢t > 0; furthermore it could
be proved that this limit holds, for ¢ > 0, in the sense of the distributions.

That (1.A2.23) is a solution of the Boltzmann equation can be checked
directly by substituting g into (1.A2.10), with initial condition §(&;z;0) =
0(z—¢) and | p| fixed, see for instance [Ga69] or check directly (recalling that

o(w)dw = Fsin 5 g— as, with our conventions, dw = % if w is the “solid
angle” in the direction f.

To complete the proof of Grad’s limit conjecture it remains to deal with
the m-particle distributions. However we skip this point since it involves
straightforward calculations based on changes of variable of the type illus-
trated in Fig. 1.A2.2.

We have thus described a proof of the Boltzmann limit conjecture in the
case of a two-dimensional Lorentz gas with hard core W-T interactions
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and free gas distribution of the T-particles. The generalization to three
dimensions would be trivial. See also [LS82] where a more detailed and
careful study of the mathematical aspects of the above analysis is performed
with further insights and applications.

A less trivial generalization would be obtained by keeping the hard core
W-T interaction but assuming that the T-particles are spatially distributed
as if they were a gas of hard spheres with hard core size being proportional
to the W-T radius. Other generalizations are conceivable in the direction
of allowing soft W — T particle interactions and more general T-particle
distributions.

Much more difficult and interesting would be the treatment of Knud-
sen’s model, in which the T-particles are allowed to move without suffering
changes in their momentum in the collisions with the W-particles.

Had we done the calculations associated with the proof of (1.A2.9), we
would have also found evidence of a lack of uniformity of the Boltzmann
limit in the number m of W-particles even at fixed ¢: the larger m is, the
closer one has to get near the Boltzmann limit in order to see factorization
of the W-particle correlations.

We also wish to remark that even when the Boltzmann limit conjecture
is true, one cannot expect that the solution p f(r,v,t) to the Boltzmann’s
equation (see §1.8 and (1.A2.8) above) is such that f(r,v,t) is a good
approximation to the actual distribution f(r,v,t) for large ¢: in fact one
intuitively expects that for times of the order of ¢,,. 7./ na® some nontrivial
correlations will start building up thus destroying the molecular chaos and
spoiling the validity of the Boltzmann equation.

This last remark is quite deceiving since it tells us that we cannot use,
without further assumptions, the Boltzmann equation to investigate the
long time behavior and, in particular, to compute the transport coefficients.
From a rigorous point of view we cannot even be sure that the lowest order
in na of the transport coeflicients is correctly given by the value obtained in
the Boltzmann limit. However it seems reasonable that this is, indeed, the
case at least if the dimension of the space is larger than two (in one dimen-
sion a simple counterexample can be found by using soluble models [LP66];
in this case, however, the Boltzmann equation is a priori not expected to
be a good approximation).

For further reading on the Lorentz gas see [WL69], [LS82].

The idea of the Boltzmann limit is clearly stated in [Gr58], see p. 214; the
present proof in the case of the Lorentz gas is done in [Ga69] (for the case
of §(&; ;t) only) and was inspired by discussions and suggestions from J.L.
Lebowitz.
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Chapter II:

Statistical Ensembles
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§2.1. Statistical Ensembles as Models of Thermodynamics

Given a mechanical system its microscopic states are described by the
microscopic configurations of NV (identical for simplicity) particles with mass
m wandering in a given volume V: such configurations are represented by
phase space cells of equal phase space volume A3Y.

The cells have dimensions dp and d¢ in momentum and position coordi-
nates and they represent the maximal resolution with which we suppose
that the microscopic states can possibly be observed: since we suppose the
particles to be identical the phase space cells differing by a permutation
of the particles must be regarded as identical. The parameter h = dpdq
empirically represents the precision with which the microscopic states can
be determined, see Chap.I, §1.1 and §1.2.

Time evolution transforms cells into cells in a small time 7: so that cell A
is transformed into A’ = SA by a transformation S defined in terms of the
total energy or Hamiltonian function E(A), the sum of the kinetic energy
K (p) and the total potential energy ®(q):

N
E(A) = E(p,q) = K(p) + ®(q) = > _p*/2m+ > (g, — g;) (2.1.1)
i=1 i<j
E(Ea 2) 2> Unin = min E(E, g) > —00

where p = (Ql,...,QN), q = (gl,...,gN) are the momentum and position
coordinates of the N particles and ¢ is interaction potential between par-
ticles, see §1.2. The second of (2.1.1) is a stability constraint that we shall
assume to hold for all N (with Upin dependent on N): without it many of
the integrals that we shall consider would be divergent.

In fact we shall see that the properly significant physical condition is that
Unin can be taken > —BN for some B; see (2.2.17) below.

We have then considered the stationary probability distributions g that
associate with every cell, i.e. with every microscopic state, its probability
#(A) so that p(A) = p(SA).

Families £ of stationary distributions can be identified with families of
macroscopic equilibrium states in which a generic observable f, i.e. a generic
function defined on the phase space cells, takes an average value in the state
peeé:

7= ). (2.1.2)
A

Given a family £ of stationary distributions on the space of microscopic
states one can consider the averages that the most physically relevant ob-
servables take in a state p € &:

Ul = 3 m(A)EQ) “encrgy”
A
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Vip)=V(A)=V “volume”

K(p) =Y n(A)K(A) “kinetic energy” (2.1.3)
A

P(u) = 2 w(A)P(A) “pressure”
A

where P(A) is the momentum variation per unit time and per unit surface
area undergone by the particles in the microscopic state A in the collisions
with the container walls, i.e. P(u) is the force per unit surface area exerted
over the walls, see §1.5.

Therefore, given a family £ of stationary distributions on the space of
microscopic states, we shall call its elements a statistical ensemble or simply
ensemble, after Gibbs, or monode, after Boltzmann, see §1.9. If £ is such a
family we can associate with every “macroscopic” state u € £ the quantities
U, V,K,p (energy, volume, average kinetic energy and average pressure)
and we can ask whether the statistical ensemble £ defines a “model of
thermodynamics” in which the absolute temperature T can be identified
with the average kinetic energy per particle up to a proportionality factor
that, to simplify various expressions, is written as 2/3kp:

2 K@

=5 W (2.1.4)

where kp is a constant to be determined empirically.

The precise meaning of the locution “defines a model of thermodynamics”
has been discussed in Chap.I, (see (1.6.5)); it means that by varying p in €
and following the variations of U, V, T, p the relation:

(dU + pdV)/T = exact differential (2.1.5)

holds. Hence it will be possible, by integrating (2.1.5), to define a function
S(p) on € so that the quantities U, V, S, T, p satisty the relations of classical
thermodynamics in which S has the interpretation of “entropy”:

(dU + pdV)/T = dS, (2.1.6)

see (1.5.6).

It is possible, in this way, to associate with each macroscopic state p € &
the quantities U,T,S,p,V and define a “model of thermodynamics”: the
statistical ensembles £ that enjoy the latter property (2.1.6) were briefly
called by Boltzmann “orthodes”, see §1.6 and §1.9, and therefore we shall
refer to (2.1.6) by calling it the orthodicity property of the ensemble £.

The existence of important classes of orthodic ensembles was demonstrated
by Boltzmann who also provided some a priori reasons to expect that his
examples should not only give mechanical “models of thermodynamics” but
precisely the thermodynamics of the system, given to us by the experimental
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observations: in this attempt he founded ergodic theory and the Boltzmann
equation, see §1.9.
Therefore the “theory of ensembles” poses three questions:

(1) existence and description of orthodic ensembles
(2) equivalence of the thermodynamics that they describe

(3) comparison of the equations of state computed from the ensembles and
the corresponding ones obtained experimentally.

In this chapter we shall consider the two basic ensembles studied by Boltz-
mann and we shall show their orthodicity, following the lines of Boltzmann,
[Bo&4].

The canonical ensemble (see §1.5) consists of the probability distributions
1 on the space of the microscopic states A which describe particles roaming
in a volume V' that, for simplicity, we shall suppose cubic and with perfectly
reflecting walls. The probability of a cell is, by definition:

e—BE(A)

HA) = 76

(p,q), (p,q) € A, being the energy of the microscopical
1.1), and:

(2.1.7)

with E(A) = E
configuration A, (2.

V)= e P& (2.1.8)
A

is a normalization factor Z which will be called canonical partition function;
the elements p of the canonical ensemble are therefore parameterized by the
volume V' and the quantity 3.

The microcanonical ensemble consists of the probability distributions p
parameterized by the parameters U and V' defined by:

() = { 1/N(U,V) it U-DE<EA)<U (2.1.9)
0 otherwise

where N (U, V), called the microcanonical partition function, is:

./\/(U,V) =

Z 1 { number of cells A of (2.1.10)

E(D)€[U-DE,U] energy E(A) € [U — DE, U]

where DE is a macroscopic energy, albeit very small compared to U.!

1 Or better compared with U + BN if the energy is bounded below by a stability bound
Unin > —BN; our conventions give energy 0 to configurations in which the N particles
are infinitely far apart and with zero speed: hence, if Uiy, is the minimum (potential)
energy then the energy above the minimum energy configuration, the “ground state” is
U—-U°>U+ BN and —BN is a lower bound for U°.
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In other words in the microcanonical ensemble one attributes equal proba-
bility to all cells with macroscopic energy U and 0 probability to the others,
while in the canonical ensemble one attributes relative probability (also
called weight) e~V to all cells with microscopic energy U which, however,
can take all possible values (i.e. all values between the minimum of the
potential energy and +00).

Proving “orthodicity” of the above ensembles means

(a) expressing U, K, p in terms of two parameters (3,v), with v = V/N, 8 >
0, in the case of the canonical ensemble, or (u,v) with u = U/N, v = V/N,
in the case of the microcanonical ensemble, and

(b) showing that, defining T" equal to ﬁ times the average kinetic energy
per particle, then:

(du + pdv)/T = exact differential (2.1.11)
as (8,v) or (u,v) vary, respectively.

We shall see that while the canonical ensemble is already orthodic in finite
volume, the microcanonical ensemble is orthodic “only” in the “thermody-
namic limit” N — oo, U = 00, V — o0 so that U/N = u, V/N = v stay
constant (or tend to a constant).

This will be the physically interesting limiting situation, if one keeps in
mind the size of N, in real physical systems.

§2.2. Canonical and Microcanonical Ensembles: Orthodicity.

There are many other examples of ensembles which are orthodic at least in
the thermodynamic limit. However before proceeding to the discussion of
other ensembles and of their equivalence (i.e. of their identity as models of
thermodynamics) it is convenient to describe how one can check orthodicity
of the canonical and microcanonical ensembles. This check is a key to
the understanding of Boltzmann’s ideas and to the understanding of the
mathematical mechanisms that make tractable a problem that at first sight
might look formidable.

Counsider first the canonical ensemble case (2.1.7), (2.1.8).

The partition sum Z(3,V) can be computed, if the cell size h = dpdq is

small, as:
dp dq
Z(B.V) = —BK(p) ,—B2(g) £ 2 2.21

where the factor N! takes into account that the N particles are strictly
identical and, therefore, indistinguishable as a matter of principle, so that
by permuting the N particles one obtains microscopic states described by
phase space cells that must be regarded as identical.

We can identify a configuration A (i.e. a phase space cell, as the two no-
tions coincide having adopted a discrete viewpoint (see §1.1), of the system
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by giving the “occupation numbers” ny of particles in a small cube Cy of
dimension (6pdq)® = h3, ns in the cube Cs, etc (the cubes should not be
confused with the phase space cells: they are 6—dimensional boxes in the
phase space of a single particle). Therefore in (2.2.1) we replace the sum
corresponding to (2.1.8) with an integral: in this way a twofold error is
committed:

(i) an approximation error due to the fact that F(p,q) = E(A) only at the
center of the cell A: we shall call this error (i.e. the act of confusing the
average value in a cell with the actual value at the center) an analytic error.

(ii) an error due to the fact that a microscopic configuration A C R®V
described by giving the numbers n;,n,,. .. is counted in the integral (2.2.1)
N!/njlns!... times instead of N! times. We call this a combinatorial error.

Both errors are, obviously, infinitesimal as h — 0 (if one means that both
dimensions 0p and dq tend to 0 as h — 0, as we always assume). They
were neglected by Boltzmann in his analysis since he had no reason to think
that the cell size would play any role in his classical world, besides that of
allowing omne to speak of the “number of configurations” of given energy.

We shall neglect them here as well, postponing their analysis until it will
become possible to discuss them a posteriori on the basis of theoretical
consequences of the theory drawn by neglecting them: hence the theory,
once developed, will allow us to evaluate under which physical conditions
negligibility of the above errors becomes reasonable.

Auticipating the results of the analysis (see also §1.2; details will be pro-
vided in §2.6) these errors will become negligible at “high temperature”
and, in the example of a perfect gas (®(¢g) = 0), at least for:

T >T, = (mkgh 2p~2/%)~1 (2.2.2)

where p = N/V, kg = 1.38 x 10 0 erg°K 1.2

The relation (2.2.2) is obtained (summarizing part of the discussion in §1.2)
by remarking that the representation of the microscopic states by cells can
be consistent only if dp and dq are smaller than the average values of the
momentum and of the intermolecular distances.?

Since by (2.1.4) the absolute temperature is such that 3kgT/2 is the av-
erage value of the kinetic energy per particle, i.e. the average of p? /2m,
it is clear that the average momentum will have order of magnitude
D = +/mkpT, while the average interparticle distance will be g = {/V/N =

2 The inequality (2.2.2) in the case of hydrogen at normal density and pressure: m =
3.34 x 107249, N = 2.7 x 10'° particles in V = 1em?, and choosing h = Planck’s
constant = 6.62 x 10727 erg/°K, gives T, = 1°K, very different values for T, are
obtained for other gases; see §1.2, where other necessary conditions for the validity of
the approximations are also taken into account.

This is a condition less stringent than the one examined in §1.2, (1.2.18): where T' > Ty
also imposes the compatibility of the description in terms of cells with the classical
microscopic dynamics as a cell permutation.
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p~1/3 and therefore the condition h = dp g ~ g = V/mkpIp /3 follows

(necessary but not sufficient) yielding (2.2.2). See §2.6 below for a more
detailed analysis.

It is important, however, to keep in mind that when (2.2.2) is not valid,
hence the cells sizes cannot be neglected, the very consistency of a cell
representation of the microscopic states fails, and the whole theory should
be reexamined from scratch. It will appear that in such circumstances
quantum mechanics becomes important and classical statistical mechanics
may lose validity in a fundamental sense.

Making the assumption that (2.2.1) is correct without the necessary ana-
lytic and combinatorial corrections and performing the orthodicity analysis
is equivalent to setting h = 0, i.e. to admitting the possibility of infinite
precision (simultaneous) measurements of position and momenta of (all)
particles.

We can evaluate, following Boltzmann, [Bo84], the thermodynamic quan-
tities in the state described by the canonical distribution p with parameters
B,V

To simplify notation we shall identify the region V' occupied by the system
with the measure V of its volume (which we always think of as cubic).

We shall use the fact that in our approximations the probability of finding
the system in the microscopic state dp dqis e ?7®9 dp dg/N'W*NZ(B,V),
so that (2.1.3) become: - -

o dp dg
K= K(u) = / <Z; 2—_m> s B
v=V/N
U=U(p) = _—alogZ(ﬁ,V) (2.2.3)

pzp(ﬂ)zgm'

_ / o BE@+8(0), 28 Wy Ay dp, - dpy
>0

S h3N N1

where the sum is over the small cubes () adjacent to the boundary of the box
V by a side with area s while S = ZQ s is the total area of the container

surface and ¢, is the center of @ (note that S = 6V/?), see §1.4, (1.4.4).
It is not difficult to transform the last of (2.2.3) into a more useful form:

p= 7 o (5, V), (224

the calculation is illustrated in detail in §2.6 below where we also collect
other more technical deductions.
At this point we only need a simple direct check. Let:

F=-3"Yg2(,V), S=U-F)T«<F=U-TS (2.25)
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and use (2.2.4),(2.2.3),(2.2.4) to obtain:

_ 2 K _ 1 dr__dp

= = — = 2.2.6

3kg N kgp T 8 (220
because the integral over ¢ in (2.2.3) factorizes and the one over p is elemen-
tary (i.e. gaussian):

AF = (5 108 2(5,V) + 7 'U) 4 — 7 20 log Z(5,V) dV =
— (F—U)dT/T —pdV = —SdT — pdV (2.2.7)

hence:
TdS= d(F+TS)+ pdV = dU + pdV (2.2.8)

which coincides with (2.1.6).

We also read from the above relations the physical interpretation of the
partition function Z(3,V): in fact the function F = —3 tlog Z(3,V) is
the free energy of thermodynamics.

Equation (2.2.8) shows the orthodicity of the canonical ensemble.

Note that (2.2.8) has been derived without any necessity to consider the
thermodynamic limit N — oo, V — oo, V/N — v, as long as one accepts
the approximations leading to (2.2.1) (i.e. if the cells size h can be taken as
0 or, more physically, as negligible). This “unconditional” validity, for all
N and V', should be regarded as a coincidence, as the following discussion
shows. In the other ensemble cases consideration of the thermodynamic
limit is necessary to establish the correct thermodynamic relations between
UT,S,p,p, V. In fact, to prove orthodicity of ensembles other than the
canonical it is necessary to impose some physically important conditions
on the interaction potential energy ®(q): the “stability and temperedness
conditions”, see below. B

In particular the situation is somewhat more involved in the microcanonical
ensemble case because in this case it becomes really necessary to consider
the thermodynamic limit.

The microcanonical partition function is defined in (2.1.9) and, up to the
errors already pointed out in the case of the canonical ensembles, it can be
written as:

dpdg
7 WPNN!

N(U,V) = (2.2.9)
where Jg is the phase space set in which (U — DE < E(p,q) < U).

The thermodynamic quantities are defined by (2.1.3), and the pressure can
be written just as in (2.2.3) with N'(U, V), 1 replacing Z(8,V), e K @+2(g)
respectively, and with the integral extended to the domain U — DE <
K(p) + F(q) <U. In this case U is a parameter defining, together with V|
the elements of the ensemble. The temperature is defined as 2/3Nkp times
the average kinetic energy per particle. See §1.6.
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Also in this case orthodicity is derived by a direct check. Let:
S =kp logN(U,V) (2.2.10)

and let T be (2/3kp) times the average kinetic energy per particle; one
finds:

1 ON 1 ON

U, V) dV> (2.2.11)

and we ask whether the right-hand side of (2.2.11) can be written as (dU +
p dV)/T with p, V, T defined in (2.1.3), i.e. by relations analogous to (2.2.3).

The derivatives of A" can be studied as in the case of the canonical ensemble,
and one finds that (2.2.11) can be rewritten, see §2.6, as

dS = kg % (K(p)™") ((1 - 3%) dU + <K(p)§)*?f‘(/(p)1>> (2.2.12)

where (if Jg is the domain U — DE < E(p,q) < U) we have set for a real:

fJE K(p)*dp dg/hSNN!

K(p)®) = 1 (2.21
(K(p)*) fJE dp dg/ N N1 areal 3)
(K(p)™)" Jipg, eav K" dp da/"10 1 (2.2.14)
= — a rea 2.
! fJE721€ av dp dg/h*NN!

dV being an infinitesimal region (with volume also denoted dV') around V
obtained by displacing by a distance 7, along the external normal to V', the
surface elements of V.

In other words (K (p)®) is the average value of the a-th power of K(p)
with respect to the considered microcanonical distribution, while (K (p))*
is the average value of K (p) with respect to a distribution p* obtained by
imposing the condition that one among the N particles is constrained to be
in the region dV around the surface of V. If the relations

(K(p)*), (K(p)")* = K(u)"(1+In) (2.2.15)
were valid, with Yn w—=> 0 and with K (u) equal to the average kinetic
energy in the microcanonical ensemble, then one could deduce that (2.2.12)
becomes, after dividing both sides by N and letting N — oo with %, %
constants:

ds = (du+ pdv)/T . (2.2.16)

In the microcanonical case one sees from (2.2.12), (2.2.16) that the parti-
tion sum directly has the physical meaning of entropy: S = kg log N (U, V).
Since N(U,V) is the number of microscopic states with energy U and al-
lowed volume V (see also §1.4) this is the well-known Boltzmann’s relation
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expressing entropy as proportional to the logarithm of the number of pos-
sible microscopic states with given energy and volume, see [Bo77] and §1.9.
To complete the analysis of the microcanonical ensemble orthodicity it
remains to check (2.2.15): as already mentioned one needs for this purpose
suitable assumptions on the potential energy ®(q).

Such assumptions, which will have an important physical meaning, are:

(a) Stability: this means that there is a constant B such that for every
configuration (g,,...,¢,) = ¢

®(@) =) e, ~4q,) > —BN (2.2.17)
i<j

This property not only says that the potential energy is bounded below (as
usual in many mechanical systems) but it also says that its minimum cannot
be too small as N grows.

(b) Temperedness: there are three constants C > 0, z > 0, R > 0 for
which:

le(g—q) <Clg—¢|** for  |g—¢|>R (2.2.18)

This is essentially a condition that says that “far” particles have “small”
interaction: by this hypothesis the interaction energy between a particle
and a uniformly filled half-space approaches 0 as the distance between the
two tends to co. In a large system the macroscopic subsystems have “small”
interaction energy (i.e. much smaller than the product of the volumes oc-
cupied by each). This can be considered as a property of the “short range”
of the forces.

Relations (2.2.17),(2.2.18) are not satisfied in the special but very impor-
tant case of systems of charged particles interacting via the Coulomb force:
qualitatively the problem really comes only from condition (b) because (a)
is satisfied as one thinks that in realistic cases particles have hard cores
(however, in spite of this, we shall see that even (a) poses a problem of a
quantitative nature as the “obvious” hard cores are often of nuclear size
which turns out to be too small for compatibility with the observations).
statistical mechanics of systems interacting via Coulomb forces is therefore
more delicate than that of systems interacting via phenomenological pair
forces with short range (like Lennard-Jones potentials) which mean effective
hard cores of atomic size (rather than nuclear size).

Even more delicate is the statistical mechanics of gravitationally interacting
particles. We shall see that while systems of charged hard core particles with
the property of a neutral total charge do obey “normal thermodynamics”
the same is mot true for gravitationally interacting particles (so that we
should not expect that a Star obeys the same thermodynamics as a pot of
gas, just in case this idea occurred to you).
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Equations (2.2.15) are related to the law of large numbers: they say that
the variables %K (), regarded as random variables with a distribution given
by an element g of the microcanonical ensemble or of the corresponding u*,
see (2.2.15), are variables with a “dispersion that approaches 0” in the
limit N — oo, because the ratio K (p)/K (u) is such that ((K(p)/K(u))%),
(K (p)/K(p)*)* — 1 for all a; or the fluctuations of K (p)®, with respect
to its average value (K (p)®) ~ K(u)®, do not have the order of magnitude
of (K (p)®) itself, but are much smaller.

The kinetic energy K(p) is however a sum of N “almost independent”
2 2

variables 22—71n, ey g_gw i.e. not really such because they are constrained by

U—-DE —®(q) < K(p) <U — ®(q)). Therefore it is clear that (2.2.15)

requires a proof and it does not reduce trivially to the law of large numbers

which is formulated for independent variables. We have in fact just discussed

which extra assumptions are necessary in order to be able to show the

microcanonical ensemble orthodicity.

From a historical viewpoint the above treatment of the canonical ensem-
ble is essentially the same as the original in Boltzmann, [Bo84]; the case of
the microcanonical ensemble is somewhat different and more involved: the
reason is that in Boltzmann the assumptions (2.2.15) are only implicitly
made: in fact Boltzmann studies the problem from a slightly different view-
point. He considers a priori a quantity that he identifies with the amount
d@ of heat that the system receives when the microcanonical parameters
change by dU,dV . In this way he shows that the microcanonical ensemble
is orthodic even in a finite volume. This is possible because the definitions
of d@) that he uses in the two ensembles are different and in the language
used here they are consistent only in the thermodynamic limit (and only if
(2.2.15) are assumed). But this is not the moment to attempt a philologi-
cally correct treatment of Boltzmann’ s ideas (a treatment that is still quite
unsatisfactory in the literature, see §1.9).

To conclude this section we can ask how strongly the orthodicity of the
canonical and microcanonical ensembles depends upon the hypothesis that
(2.2.1) and (2.2.9) are good approximations to the partition sums (as finite
sums over cells in phase space), and how strongly the orthodicity depends
on the hypothesis that the system consists of only one species of identical
particles.

Without exhibiting any analytic calculations we simply say that, in the
case that the integrals (2.2.9) or (2.2.1) are replaced by the sums that they
are supposed to approximate, orthodicity must be formulated differently:
in the canonical ensemble one has to interpret [ as proportional to the
inverse of the absolute temperature while in the case of the microcanonical
ensemble one must define the entropy directly via Boltzmann’s formula:
S =kplog N (U,V).

One obtains in this way two models of thermodynamics, which are models
in a sense which is natural although different from the one so far used.
Namely in the first case by setting T = ﬁ the expression (dU + pdV') /T is



2.2.19

2.2.20

I1. Statistical Ensembles 69

an exact differential, but T is no longer proportional to the average kinetic
energy; in the second case setting 7! = (dU + pdV')/dS the quantity T'
is independent of the transformation that generates the variations dU, dV
and the corresponding dS. Furthermore it is possible to prove that the two
models of thermodynamics are equivalent, [Ru69].

The important and well-known universal identification, [C165], [Bo66], be-
tween the average kinetic energy with the absolute temperature is no longer
valid: in view of the role that this identification played in the birth of statis-
tical mechanics and in its developments one should regard this as a shocking
major change. See Chap.III for a more detailed analysis of this point.

Therefore the ensembles in which the partition functions are evaluated
without the “continuum approximation”, valid only when (2.2.2) (or better
when (1.2.4), (1.2.5)) hold, can still be used for the formal construction of
models of thermodynamics.

However, as a consequence of the general considerations following (2.2.2),
in such cases it is not clear what the physical meaning of the thermodynam-
ics that is constructed from the mechanical model could be: a physically
correct investigation would in fact require, in such situations, using quantum
mechanics as a basis for the treatment.

For what concerns the assumption of existence of only one species of par-
ticles in the systems considered so far we simply mention that orthodicity
does not depend on this assumption. But there are some obvious changes
that one has to introduce in the formulation and in the combinatorial fac-
tors to be used. As an example we just write the partition function for a
general system with N; particles of species 1 and mass mi, No species 2
particles with mass mo, etc. Under the assumption that the cell size can be
neglected we have:

1 dp, dg, dp, dg, 5% K(p)-9(,..)
Z(6,V) = N1!N2!.../ BN paNe 6 B M
(2.2.19)
and the probability of a microscopic state will be:
dp dg _ K(p \—3d(q .. _
II <W>e Y. Kle,)=0%(,) 7(3 7)1 (2.2.20)

The natural generalization to this case of the notion of orthodicity is checked
in exactly the same way as in the previous case of only one species of par-
ticles.

§2.3. Equivalence between Canonical and Microcanonical Ensem-

bles.

In the above study of canonical and microcanonical ensembles Boltzman-
n’s constant appeared several times: it was always denoted by the same
symbols, but it was to be regarded as a priori different in each case.
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In fact this is a universal constant kg = 1.38 x 1016 erg °K 1,

The logical itinerary leading to the identification of kg and to showing the
equivalence of thermodynamic models described by the orthodic canonical
and microcanonical ensembles is discussed in this section.

Suppose first that the molecules do not interact, ¢ = 0, i.e. consider the
microscopic model of a free gas. In this case it is easy to compute ex-
plicitly the microcanonical and canonical partition functions, A, Z, in the
approximation in which cell size is neglected (see (2.2.1) and (2.2.9)).

One finds, performing the integrals (2.2.1) and (2.2.9) in polar coordinates
in momentum space:

N VN(2mU " — \/2m(U = DE)"") Q(3N)
U= N1h3N 3N (2.3.1)

VN mp

where Q(d) = T'(d/ 2)_1\/77d is the surface of the d dimensional unit sphere
and I'(z) is Euler’s gamma function (i.e. T'(z) = (xz — 1)!).

The limits of (2.3.1) as N — o0,V — oo, with V/N = v, U/N = u
fixed, are easily studied via Stirling’s formula I'(z + 1) = z"e "v/272(1 +
O(1/x)), or N! = NNe=N/27N(1 + O(1/N)) and one finds, see §2.1 and
(2.2.5),(2.2.10):

S =kglogN(U,V) =
log N

= NkB(log;K + %log% + const + O( )) (2.3.2)

N
F=—p""10gZ(3,V)=
log N

EY)).

V. 3
= —Np '(log — — = logf + const + O(
N 2
On the basis of the discussion in §2.2, S has the interpretation of entropy in
the microcanonical ensemble and F' of free energy, F = U — TS, see (2.2.5).
Hence we can compute the pressure in both cases:

% = (g—‘S/)U =kg % (1 + O(%)) microcanonical 233
= —(B—F) —ﬂflﬁ =kpTv ! canonical 23
P="yn =0 v ="

If N4 is Avogadro’s number (N4 = 6.0 x 10?® molecules per mole) and
N =nN4 (with n = number of moles), one sees that (2.3.3) establish that
the perfect gas equation of state is pV = nRT in both cases, provided the
value of kp is chosen the same in the two cases and provided it has the
numerical value:

kg = R/N4 = gas constant/N4 = (8.3010"/N4) erg°K ' =

2.3.4
=1.38 x 107 Cerg K" . ( )
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The specific heat at constant volume turns out to be, in the thermodynamic
3nR

limit (after an easy calculation) =%=: for instance in the canonical ensemble
the average total energy, equal to the average total kinetic energy because
® =0, is %NkBT and is volume independent, at fixed N; see (2.2.6) and
§2.6 below.

As we see the two thermodynamics defined for the perfect gas by the two
microscopic models, canonical and microcanonical, coincide in the thermo-
dynamic limit and they coincide with the experimentally known thermody-
namics of a free gas, provided the constant kp is chosen in both cases as in
(2.3.4).

We now ask whether the coincidence of the thermodynamics defined by the
two statistical ensembles remains the same also for more general systems.

This is the problem of equivalence of the microcanonical and canonical
ensembles. It is a fundamental problem because it would be a serious setback
for the whole theory if there were different orthodic ensembles predicting
different thermodynamics for the same system, i.e. different relations among
u,v,T,p,s, all compatible with the general laws of classical thermodynamics
although different from each other.

We shall see that “in general” for each given system there is equivalence (in
the thermodynamic limit) between canonical and microcanonical ensembles
if the constant kp appearing in the theory of the two ensembles is taken to
be the same.

Once equivalence of the thermodynamics, defined either by the canonical or
by the microcanonical ensembles corresponding to a given system, has been
established we shall ask the further question of whether the constant kg that
appears as proportionality factor between temperature and average kinetic
energy per degree of freedom is the same for all other systems, i.e. whether
the numerical value (2.3.4) is system independent.

The scheme of the proof of equivalence between canonical and microcanon-
ical ensembles, already used by Boltzmann and Gibbs, is the following. Set

No(U, V) = / Iy (2.3.5)

E(E’Q)SU hSNN' '

Note that N (U,V) = No(U,V) — Ny(U — DE,V) and that the relation
between Ny and Z is simply given by:

+o0
Z(B,V) =2 dEe PENG(E, V) (2.3.6)
Umin

if Upyip is the minimum of the energy and if Z, N are given by (2.2.1), (2.2.9);
this is satisfied by integrating (2.3.6) by parts over E; we treat here only
the case in which the continuum approximation is accepted, (h = 0).%

4 But one can check that the ensemble equivalence remains formally valid even if the cell
sizes are not neglected provided the orthodicity notion is adapted to the new case as
discussed in §2.2.



2.3.7

2.3.8

2.3.9

72 I1. Statistical Ensembles

Hence, see §2.2:

F(3,V)=-B"log Z(8,V) =
= —ﬁ—l logﬁ_ﬁ—l log/ 67'6EN0(E,V) dE. (2.3.7)

Umin

The specific (i.e. per particle) thermodynamic quantities in the canonical
distribution p with parameters 8,V are, in the thermodynamic limit (V' —
00, V/N = v fixed):

fe(B,v)= A}gnoo %F(ﬂ, V) canonical free energy
ue(B,v)= dm % = 8§ gc (B,v)  canonical internal energy
T.= @ = %# canonical absolute temperature
v= % canonical specific volume (2.3.8)
De= ]\;gnoo P(p)=— %(,@, v) canonical pressure
Ue — fe

canonical entropy

where in expressing u., p. as derivatives of the free energy f. via (2.2.3),
(2.2.4) the operations of differentiation and of limit have been interchanged
without discussion, because we proceed heuristically with the aim of ex-
hibiting the essence of the mechanism of equivalence.

The same thermodynamic quantities can be evaluated also in the mi-
crocanonical ensemble with parameters U, V; and of course they have an
a priori different definition:

Jm (U, vm) = =Tinsm + Um microcan. free energy
Up) _ U .
m=—— = N m.c. internal energy
2 K m -
m= W% = (gs (um,vm)) ! m.c. abs. temperature
B Um
v
VUm= N m.c. specific volume
Js
pm= P(u) = TmaT(’u,m, Upm,) m.c. pressure
. kp
sm= lim —Zlog (No(U,V) = No(U = DE,V)) = (2.3.9)
k
= A}gnoo WB IOgNo(U, V) m.c. entropy

where the expressions for T, pp follow from (2.2.16), the expression for
the free energy is the classical thermodynamic definition, while that of the
microcanonical entropy requires a digression.
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In the theory of the microcanonical ensemble the value of DE is not spec-
ified (and it is only subject to the condition that DE < U and that DE is
a macroscopic quantity, i.e. DE/N ~=== De > 0. Nevertheless the the-
ory of the microcanonical ensemble would proceed in the same way even
if DE = U — Upin, i.e. as large as possible, and one would still obtain an
orthodic ensemble, hence a model of thermodynamics in which the entropy
would have the “new” value S = kg log No(U, V).

The function $p,(u,v) = limy_e0 kWBlogNO(U, V') is monotonic non de-
creasing in u because such is, manifestly, A'(U,V) and in reality one can
show that, in the cases we consider (i.e. stable and tempered potentials, see
(2.2.17),(2.2.18)), it is strictly increasing (see Chap.IV) as we should wish
because, if 3, = sp, the derivative (83, /0u,,)~" should be equal to the
absolute temperature, which should be positive.

Hence, at the dominant order in N — oo and ignoring problems of exchange
of limits:

No(U, V) = e¥n *m(u:0)
NO(U - DE: V) — ekl(gm(u—D&V)—Em(uyu)) _ eiaN (2310)
M(U,V)

and a > 0 as a consequence of the strict monotonicity of §,, in u, so that
the two limits in the last of (2.3.9) coincide and s,, = 3,,. This shows
also the equivalence of the various versions of the microcanonical ensemble
determined by various choices of DE = N De with De > 0.

Coming back to the equivalence between microcanonical and canonical en-
sembles we fix the constant kg in (2.3.8),(2.3.9) to be the same gquantity and
we see that the problem can be formulated as follows: if we establish a corre-
spondence between the canonical state with parameters 8 = 1/kgT,, v = v,
and the microcanonical state with parameters © = u,,,v = v,, such that
T. = (kgB)~* = T,, and v. = v,, then all the other quantities with the
same “name” (i.e. differing only by the label m or ¢) must coincide. In
this way, because of orthodicity, all other thermodynamic quantities must
coincide. Hence, if this coincidence really takes place, the two models of
thermodynamics defined by the two ensembles will coincide.

The reason why the coincidence takes place is quite simple, if one neglects
matters of mathematical rigor and proceeds heuristically. For large N one
finds, by (2.3.6) and the first of (2.3.10):

o]

Z(ﬁavm) :ﬁ eiﬂENO(EaV)dE:
Unmin
— N/B e—,@NueNsm(u,vm)/kB du = (2311)
Unmin
1
~ const N7 exp [N max(—Bu + k—sm(u, Um))]
U B
so that if the maximum is attained at a unique point ug, it must be that wug

is such that 8 = ﬁ 85;;‘ (uo,vm), because the derivative with respect to u
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must vanish in the maximum point ug. Furthermore:

SO PP E/NINo (B, V) AE
I e PENG(B,V)AE

00w elPutsmuon) k)N gy
TR et RN dy

Ue = U(:U’)/N =
(2.3.12)

~

because only the values of u = wg will give a leading contribution to the
integrals as N — co. Equation (2.3.12) also confirms the physical meaning
of ug: it is the average energy per particle, i.e. the internal energy per
particle.

Recalling the relation remarked after (2.3.11) between ug and 8 and the
fact that u. = ug, we have:

1
T (U, 0y) ™" (2.3.13)

B=1—7 (e, vm) = o

_kB 6u

and choosing v. = v, and u. so that T, = T,,(um,vm) it follows that
Ue = Uy = Ug, from the third of (2.3.8), (2.3.9).

It remains to check that fu, (Um,vm) = fe(B,v.); this follows from (2.3.11)
which tells us that, for N — oo:

fc(/B: Um) = _/871 msx(_ﬂu + Sm(ua Um)/kB) =

= _ﬁ_l(_ﬁuc + Sm(UCavm)/kB) =
= (UC - Tcsm(ucavm)) = (2314)

= (um — TimSm(Um,Vm)) = fn(Wm,vim)

because T, = T, Ue = Up,.

The identity between the free energy, internal energy and absolute tem-
peratures implies (since the ensembles are orthodic, and therefore the usual
thermodynamic relations hold) that of the entropies; so that the two en-
sembles describe the same thermodynamics.

§2.4. Non Equivalence of the Canonical and Microcanonical En-
sembles. Phase Transitions. Boltzmann’s Constant

The derivation in §2.3 is classical but nonrigorous: it can be made rigorous
via a more detailed analysis of the qualitative properties of the functions
sm(u,v) and f.(8,v): the central point of a rigorous proof of equivalence is
in showing that s, (u, v) is “well approximated” (for N large) by S(U,V)/N
and, furthermore, it is a concave function of u and a convex function of
v, while f.(8,v) is concave in both variables 3,v. This implies that the
maximum in (2.3.11) is actually reached at a point ug or, possibly, in an
interval (u_,uy) where the function fu — sy, (u,v) is constant in w.
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A more detailed analysis of the question is postponed to Chap.IV: it is
however useful to mention that such an analysis requires making use of
the stability and temperedness properties of the inter-particles interaction
potential .

As one can predict from the discussion that we have led, the proof (rigorous
or not) of equivalence between the canonical and microcanonical ensembles
no longer works, in general, if the mazimum in (2.8.11) is reached on an
interval (u—,uy), u— < uy rather than at a single point.

By the general properties of concave functions, one can see that this pos-
sibility can be realized only for exceptional values of  (and precisely for a
set of values forming “at most” a denumerable set). This means that, for
exceptional values of 3, i.e. of the temperature, corresponding elements of
the canonical and microcanonical ensembles may be not equivalent.

Such values of § are exceptional, if they exist at all; therefore it must
happen that as close as we wish to one of them, call it 3, there exist values
(' and 3" which are not exceptional (3" < 8 < 3').

For 3 = ' or B = " there is equivalence of the corresponding elements
of the canonical and microcanonical ensembles; and in one case the internal
energy will be v’ < u_ and in the other it will be 4" > u,, having denoted
by (u_,u4) the interval on which the function —g(u,v) = (—=SBu + 81, (u, v))
takes its maximum in u for 8 = f3, as illustrated in Fig. 2.4.1:5

A—DBu+ s, A—0B'u+ s,

U_ Uy U U U

Fig. 2.4.1: Graph of the —fu + s(u,v) for different values of g

Hence we see that if for § = 3 the canonical and microcanonical states
are not, or may not be, equivalent then it must be that the internal energy
u.(83,v) shows a discontinuity jumping from u_ to u; when (3 is varied across
3. Consequently also the specific entropy s.(3,v) must show a discontinuity
because f.(3,v) = u., — Tes. is necessarily continuous being convex, as
mentioned above.

5 Here the graphs will have a continuous first u-derivative if the inverse temperature

(6521) = Trﬁl is continuous at constant v: this property is usually true but it is
v

nontrivial to prove it. We do not discuss this matter here, but in §4.3 we shall discuss
the similar question of the continuity of the pressure as a function of the density at
constant temperature. In the Fig. 2.1 we imagine that T, is continuous (i.e. the
plateau and the curved parts merge smoothly, “inside the black disks”, to first order).
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What has just been said, rather than being an obstacle to the microscopic
formulation of thermodynamics, shows the possibility that statistical me-
chanics can be the natural frame in which to study the phase transition
phenomenon. In fact we see that some of the thermodynamic quantities
can have discontinuities in terms of others, exactly of the type empirically
observed in phase transition phenomena, where entropy and energy of two
coexisting phases are different while the free energy is the same.

Hence cases in which there is no equivalence between corresponding ele-
ments of the two ensembles, or more generally when there are corresponding
but nonequivalent elements in two orthodic ensembles, can be taken as sig-
naling a phase transition: this is in fact the definition of phase transition
that is commonly accepted today.

From the point of view of Physics what happens in a case of nonequivalence
between two elements of two orthodic ensembles with corresponding ther-
modynamic parameters can be clarified by the following considerations. In
general the states of an ensemble describe thermodynamic equilibria but may
fail to describe all of them, i.e. all the equilibrium phases (corresponding for
instance to a given free energy and temperature, or to given temperature
and pressure).

In other words, a given ensemble may be not rich enough to contain among
its elements p the statistical distributions that characterize all the pure
phases or their mixtures: usually given a statistical ensemble £ one will find
among the p € £ a distribution describing a particular mixture of coexisting
phases (if there are more phases possible with the same free energy and
temperature) but it may not contain the distributions describing the other
possible phases or miztrures.

This is precisely what can be seen to happen in the cases of the canonical
and microcanonical ensembles, at least in the few systems in which the
theory can be developed until such details are thoroughly brought to light.
See Chap.V.

We can therefore conclude, in the case just examined of the canonical and
microcanonical ensembles, that they provide equivalent descriptions of the
system thermodynamics in the correspondence of the parameter values to
which no phase transition is associated. In the other cases the possible
nonequivalence cannot be considered a defect of the theory, but it can be
ascribed to the fact that, when equivalence fails, the elements of the two
statistical ensembles that should be equivalent are not because they describe
two different phases that may coexist (or different mixtures of coexisting
phases).

One of the most interesting problems of statistical mechanics emerges in
this way: it is the problem of finding and studying cases of nonequiva-
lence between corresponding elements of the canonical and microcanonical
ensembles (or more generally of two orthodic ensembles).

We conclude this section by coming back to the question of the system
independence of the Boltzmann constant kg. The above discussion only
shows that the constant kp appearing in the theory of the canonical ensem-
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ble must be the same as that appearing in the theory of the microcanonical
ensemble, if one wants the two ensembles to describe the same thermody-
namics (apart from the possible existence of phase transitions).

It is, however, easy to give a general argument showing that kp must be
system independent and, hence, it has the value given by (2.3.4) computed
for the special case of a free gas. The idea is simply that we want our models
of thermodynamics to also describe the same thermodynamics for a system
that is part of a larger system.

In fact putting into weak contact, mechanical and thermal, two systems that
are in thermal equilibrium (i.e. that have the same temperature) one builds
a composite system which, in the canonical ensemble, will be described by
a distribution p with parameters 3, v for the first set and by the parameters
(B',v") for the second.

We suppose for simplicity that each of the two systems contains only one
species of particle. The composite system will then be described by the
product distribution p x p’ because the two systems are independent and
their mechanical interaction is supposed negligible (this is the meaning of
the phrase “weak mechanical contact”).

On the other hand the distribution p x p’ must be equivalent to a suitable
distribution 7 for the composite system; a distribution of equilibrium and
canonical. In fact we accept that the thermodynamic states of a system
can be represented by the elements of an orthodic ensemble.® Hence if
A and A’ are two cells representing microscopic states of the two systems
7i(A x A") is proportional to exp — B(E(A) + E(A')), because the energy of
the microscopic state (A x A’) is E(A) + E(A'), by the weak mechanical
interaction hypothesis. Hence:

exp —BE(A) - B'E(A")) = exp - B(E(A) + E(A) (2.4.1)

for every pair of cells A and A/, hence 3 = ' = S.

But 8 = 1/kT, 8' = 1/K'T, B = 1/ kT where T is the value, common
by the assumption of thermal equilibrium, of the temperature in the three
systems and k, k', k are the three respective values of the constant kp.

Hence k = k' = k: i.e. k is a universal constant whose actual value kp can
be deduced, as was done above in (2.3.4), from the theory of a single special
system, namely that of the free gas which is the easiest to understand.

§2.5. The Grand Canonical Ensemble and Other Orthodic Ensem-
bles

It is easy to see that there exist a large number of orthodic ensembles.

eFor instance the following generalization of the microcanonical ensemble,
with DE = U — Uy, i.e. equal rather than small compared to U — Uy,

6 Unless, perhaps, there are phase transitions, an exceptional case that here we shall
suppose not to happen as we may imagine changing by a very small amount the ther-
modynamic parameters of the systems, still keeping thermal equilibrium.
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(as assumed in §2.2):

pA) =1N(UV) ) <U 05

u(A)=0 otherwise o
already considered in §2.3 (after (2.3.9)) is an orthodic ensemble, for the
reasons discussed in §2.3.

This ensemble is also called “microcanonical” (although perhaps improp-
erly because this name was introduced for the case DE = NDe, De > 0,
De <« U/N). But this is a somewhat trivial example of a new orthodic
ensemble.

e A different and wide class of orthodic ensembles can be built by imagining
to fix other particles in positions g}, ¢, ..., and modify ®(g), see (2.1.1),
into ®*(q):

- N

®"(q) = ®(@) + DD vle, — ) (2.5.2)
i=1 j
where the sum over ¢* runs over points ¢* ezternal to the volume V inside
which the system particles are free to roam. The energy ®* has the meaning
of potential energy of the system in the presence of particles fized at points
located outside the container.

As the shape or size of the container changes, when we vary V', we imagine
to remove the fixed particles whose positions fall into V.

Starting with the potential energy (2.5.2) we form the statistical micro-
canonical or canonical ensembles with energy function E(p,q) = T(p) +
®*(q).

If the fixed external particles are distributed reasonably, e.g. so that each
unit cube only contains a bounded number of fixed particles, or a number
slowly increasing with the distance of the cube from the center of V' (i.e. if
the fixed particles are roughly distributed with uniform density) then it
can be shown (see Chap.IV) that the ensembles so obtained are orthodic,
at least in the thermodynamic limit (V' — o0, V/N = v, U/N = u fixed
or V. — oo, V/IN = v, 8 fixed (respectively)), provided the interaction
potential ¢ satisfies the stability and temperedness of §2.2. If we do not
wish to neglect the cells size then we should apply to such ensembles the
comments at the end of §2.2 on the notion of orthodicity.

The above new ensembles are called microcanonical or respectively canon-
ical ensemble “with fized particle boundary conditions”. It can be shown
that they are equivalent, in the absence of phase transitions, to the usual
canonical ensemble, in a sense analogous to that discussed in the previ-
ous sections when comparing the canonical and microcanonical ensembles
(i.e. they generate the same thermodynamics, in the thermodynamic limit).
This can be done exactly along the same lines of argument that led to the
equivalence between canonical and microcanonical ensembles in §2.3.
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Other orthodic ensembles can be obtained by letting N or V vary, i.e. by
considering simultaneously microscopic states describing systems with dif-
ferent particles numbers N or occupying different volumes V.

eAn example which is very important in many applications is the grand

canonical ensemble: its elements depend on two parameters § > 0 and .
They are probability distributions, on the cells A representing the states
of an N particle system in a given volume V and with N = 0,1,2,...; if
E(A) = E(p,q) = K(p) + ®(q) and if N(A) = number of particles in the
microscopic state A then:

e~ BAN(A)-BE(A)

A) = — 2.5.3
n(A) 2000 (2.5.3)

where the denominator is called the grand canonical partition function
E(NB) =) emPNRZERA) (2.5.4)

A

and the thermodynamic limit consists simply in letting V' — oo keeping A, 3
fixed.

eMore generally one can replace ®(¢) with the potential energy ®*(q) de-
scribed in (2.5.2); in this last case we talk about a grand canonical ensemble
“with fixed particle boundary conditions”.

e A further class of orthodic ensembles is provided by the pressure ensemble:
it also admits variants with fixed particles boundary conditions. In this
ensemble one fixes N but the container V is thought of as variable and
susceptible of taking various volume values V; =V, V5 =2V, V3 =3V, ...
etc, the shape always remaining cubic.

If A is a cell describing a microscopic state with N particles enclosed in a
container V(A) and having energy E(A) one defines for each value of the
two parameters p > 0,3 > 0:

o~ BOV(A)-BE(A)
J(B,p)

where the denominator is called the partition function of the pressure en-
semble, and

W(A) = (2.5.5)

JN(ﬂ,p)zi Y e VIATaEA) (2.5.6)

=0 A: V(A)=V;
The thermodynamic limit simply consists in letting N tend to infinity.

Remark: One can also imagine taking the containers to be susceptible of
assuming a continuum of values, e.g. any volume V keeping it, however,
homothetic to a reference shape V?, e.g. to a unit cube); in this case the
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sum over the volumes should be replaced by an integral (Vp)~ fo dv. A
simple application of the pressure ensemble will be found in §5.8.

The theory of the grand canonical and pressure ensembles, as well as the
theory of the various ensembles with fixed particle boundary conditions,
can be developed by showing their equivalence with the canonical, or mi-
crocanonical ensemble, and this can be done via the method of the “maxi-
mum value” that we have described in §2.3: it will work if the interparticle
potential ¢ satisfies the stability and temperedness conditions, see (2.2.17)
and (2.2.18), [Fi64],[Ru69].

As a further example of the maximum value method, of very common use in
statistical mechanics, we deduce some of the properties of the grand canon-
ical ensemble from the corresponding properties of the canonical ensemble
and show their equivalence. Again we proceed heuristically, by ignoring
problems of mathematical rigor.

If 1 is a generic element of the grand canonical ensemble corresponding to
the parameters A, 8 one has, see (2.3.7) and the first of (2.3.8):

2\, B) = i e~ PAN Z e BE(A) —
N=0

AN(A)=N

S V(1) 2 Y N INEGVIN  (257)
N=0 N=0

=3 exp V(=A™ = Bo=! £o(B,0))
N=0

where in the last sum v = V/N and Zn(f3,V) is the canonical partition
function for N particles in the volume V' and with temperature 7' = 1/kgp[.
Hence for V' — oo, and if vy is the value where the function —gBAv—! —
Bu~Lf.(B,v), of the variable v, attains its maximum we find:

Jim (1/V)logE(8,X) = — Byt — Bugt fo(B,v0) (2.5.8)

assuming that the maximum point vy is unique. Here vy satisfies (if one

recalls that by (2.3.8) p. = — BJ;“ (8,v))
52 BN B o0y, = 0= A+ FulB,00) + vope(B.v0) = 0

(2.5.9)
On the other hand vy has the interpretation of grand canonical specific
volume v, because:

oo N *,BANZ v
v;l =N(u)/V = ZN;O V(iﬁ)\N N(B,V) _
S o€ PNZN(B,V)
Z]OVO_O NV ~le=(B w480 fo(B0)V
B ZJOVO:O e~ (B = +pv=1 fe (B,0))V Voo

== Y (2.5.10)
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due to the maximum of —BAv—! — Bv~! f.(8,v) being isolated and at the
point vg.

Therefore from (2.5.9), and classical thermodynamics, one finds the phys-
ical meaning of A:

AN =F +pV =U =TS +pV = N (fe(B,v) + v4pc(B,v5)) (2.5.11)

i.e. —AN is the Gibbs potential corresponding to the parameters (5,v,).
Furthermore from(2.5.8) one finds that

hm %log (A, B) = Bpc(B,vy) (2.5.12)

i.e. the grand canonical partition function is directly related to the canonical
pressure associated with the parameters (3, vg).

This suggests that the grand canonical and the canonical ensembles are
equivalent if the elements with parameters (A, 8) and (8,v,) with v, = vy,
see (2.5.9), are put in correspondence (i.e. are thought to describe the same
macroscopic state). This can be checked by setting, see (2.1.3):

ug = lim » " pu(A)U(A)/N(A)

V—oo

T, = lim (2/3kp) Zu(A)K(A)/N (4)

v, = lim Z/‘ YW/N(A (2.5.13)

Voo
R S
A
59 = (ug —lim 7' (1/V)1og (5, X)) /T,
and by showing the identity between the above quantities computed in the

grand canonical ensemble with parameters (A, 3) and the quantities with the
same name computed in the canonical ensemble with parameters (3, v,).

Using the fact that Tc(3,v) = 323 ,8 and
o0 —BAN 7 v
T, = lim =Nz NGBV (b 5) _ 1 (2.5.14)
Voo > Neo e*l”‘NZN( V) kpp

we see that, for the same reason used in deriving vy, = vg in (2.5.10):

—BAN 7 (5, v
uy = lim ZN ez p= 5]\;‘1(VZ 2;;’ V(/)B N) = uc(3,v0)
> AN B.V)p (ﬁ K) (2.5.15)
= lim N € NPV ) Pe V0 N) (B,vy)
b Sn e PNZN(EV) pas
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(2.5.14), (2.5.15), (2.5.12) clearly show that all grand canonical thermody-
namic quantities coincide with the corresponding canonical quantities.

As in the previous case of canonical versus microcanonical ensembles the
above analysis is not rigorous because it involves various interchanges of
limits and, furthermore, it presupposes that (—Av~=! —v=1f(3,v)) has a
unique isolated maximum (as a function of vy) but under the assumptions
of stability and temperedness of §2.2, (2.2.17), (2.2.18), the problems of
mathematical rigor can again be solved, see Chap.IV.

From the theory of the canonical ensemble, which we shall elaborate on
in more detail in Chap.IV, it follows also that the function —v=! f(8,v) is
convex in 3 and in v~! so that, with “few” exceptional values (i.e. at most
a denumerable family of values of \),” the function —(A\v=! + v~ f.(3,v))
has a unique maximum point as a function of v=!. For A outside this
exceptional set there is complete equivalence between thermodynamics of
the equilibrium states in terms of the elements of the canonical and grand
canonical ensembles.

For the other values of A (if any) the function —(Av=! + v~ f(3,v)) takes
the maximum value in an interval (v_, v, ), as implied by the general prop-
erties of concave functions, see the Fig. 2.4.1, in such cases the descriptions
of states in terms of canonical or grand canonical distributions may be
nonequivalent. But the interpretation of the nonequivalence is again that
of occurrence of a phase transition: non equivalence has to be interpreted
by attributing it to the fact that the distributions in question describe two
different equilibria that can coexist in thermodynamic equilibrium (i.e. they
both have the same temperature and pressure, but different specific volume,
entropy, etc) in the same sense as discussed in §2.4.

One of the main results of statistical mechanics which we wish to quote
with more detail has been that of showing that, at least in many interesting
cases, there is complete equivalence between the ensembles which will be
called here enlarged ensembles: such ensembles are obtained from a given
ensemble of stationary distributions (like the canonical, microcanonical or
grand canonical) by adding to it all the distributions with boundary condi-
tions of (arbitrarily) fixed external particles.

In such larger ensembles it may still happen that two given states, corre-
sponding to the same values of temperature and pressure, may have different

7 Of course a denumerable set of values has zero length but it might be quite large in
other senses: for instance it could be dense! Therefore this easy way of saying that
phase transitions are “rare” is very unsatisfactory. But a more detailed analysis is very
difficult and perhaps impossible at the level of generality in which we are discussing
the matter. More detailed statements, e.g. that the discontinuities in A take place at
finitely many values of 8 and in the plane X, they occur on smooth lines, can be
derived only when considering very special cases; see Chap.VI. One can ask whether the

pressure — (%fvﬂ)ﬁ = pis a continuous function of v: if so Ao~ +v7~1 f,, (8, v) will have

continuous v-derivative and we could draw a figure similar to Fig. 2.4.1 in §2.4. Also in
this case, see the corresponding comment about the temperature in the microcanonical
ensemble in footnote 5 in §2.4, it is nontrivial to show that p is a continuous function of
the specific volume at constant temperature: in §4.3 we shall discuss this in more detail,
in the case of hard core systems.
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averages for other thermodynamic quantities (energy, entropy, specific vol-
ume, etc) but it will happen that for every element of one ensemble there
is another in the other ensemble describing exactly the same macroscopic
state and thermodynamics; i.e. that associates the same values to all ther-
modynamic quantities and even the same relative probability distribution
to the most probable microscopic states.

In other words we can say that even the phase transition phenomenon
can be studied in an enlarged ensemble without worrying that in this way
one may “miss” some phases, because the enlarged statistical ensembles are
often rich enough to contain all possible phases and their mixtures.

This is the way to understand the nonequivalence between ensembles which
normally describe correctly the thermodynamics of the system (i.e. that are
orthodic). One can, in fact, think that, given a state of a system, one can
look at an ideal macroscopic region which however occupies a volume less
than the total; then the system in this volume can be regarded as a system in
equilibrium with its surroundings. Such a system will have a fixed volume
but a variable particle number. One would thus describe it naturally in
the grand canonical ensemble; however the particles in the system have
interactions with the identical particles that are outside the ideal volume
selected.

If one imagines taking a picture of the configuration one will see a sample of
the configuration in the inner volume and one in the outer volume. Taking
the highly imaginative step of collecting only the pictures in which the
external configuration is the same we should still see statistically the same
state inside the ideal box: this means that the state we see in the ideal
box is determined by the state of the particles outside it provided they are
chosen in a configuration “typical” for the state that is being considered.
If this is so we can expect that the grand canonical ensemble with fixed
particle boundary conditions can describe all possible states.

When there is more than one equilibrium state we can describe them by
selecting at random a configuration of the system and forming the grand
canonical distribution in a large volume with boundary conditions given by
the selected configuration of particles.

Note that from this viewpoint the phenomenon of phase transitions ap-
pears as an instability of the thermodynamic properties of a system with
respect to variations of boundary conditions: for instance keeping the same
temperature and pressure but changing boundary conditions one can ob-
tain different values for intensive thermodynamic quantities like the specific
energy, the specific entropy, the specific volume, etc, i.e. by changing the
forces that act near the boundary of our system we can change the macro-
scopic state even if the system is very large (hence the boundary is far and
relatively small compared to the volume).

In a sense this is a further manifestation of the richness of statistical me-
chanics: such a complexr phenomenon as a phase transition seems to find
its natural theoretical setting, and the bases for its analysis, in the theory of
(orthodic) ensembles.
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In a given statistical ensemble macroscopic thermodynamic quantities ap-
pear either as parameters of the ensemble, e.g. u,v in the microcanonical
case, (,v in the canonical and A, 8 in the grand canonical, or as quantities
directly related to the ensemble partition function such as the entropy, the
free energy or the pressure in the above three cases, or they are related to
derivatives of the partition function like the temperature, the pressure and
the energy in the three cases, respectively.

It can be shown, see Chap.IV, that the first two types of quantities do
not depend on the boundary conditions (imagining the latter to be taken
as fixed particle boundary conditions). Hence a way of searching for phase
transitions in particular models (i.e. in systems obtained by assuming spe-
cific choices for the interaction potentials) is to look for parameter values of
the chosen statistical ensemble (e.g. u,v in the microcanonical case, 8,v in
the canonical and A, 8 in the grand canonical, 3, p in the pressure ensemble
case) in correspondence of which the thermodynamic function associated
with the partition function is not differentiable, [Ru69].

This is a method that has become classical: it has, however, the defect of
not directly providing a microscopic description of the equilibrium states
describing the different possible phases. It determines the location of the
phase transition, in the thermodynamic parameter space of the ensemble
adopted for the analysis: but it does not analyze the characteristic physi-
cal peculiarities of the possible microscopic distributions that describe the
various phases.

On the other hand, the study of the boundary condition dependence of the
equilibrium states of an “enlarged ensemble” is potentially richer in infor-
mation and it can lead to a microscopic description of the phase transition
and phase coexistence phenomena, because each state of thermodynamic
equilibrium is described in detail by a probability distribution of its micro-
scopic configurations. The best understanding is obtained by examining in
detail some simple case (there are not, however, many cases in which the
above statements can be followed and checked in detail): this will be the
theme of Chap.VI, where the Ising model for ferromagnetism will be dis-
cussed in connection with the spontaneous magnetization phase transition,
and Chap.VII where other simple models are discussed.

Thus we have met two possible definitions of phase transitions. A system
shows a phase transition if a derivative of the thermodynamic function asso-
ciated with the partition function of an orthodic ensemble has a discontinu-
ity as a function of the parameters describing the elements of the ensemble.
Alternatively: a phase transition occurs if by changing the boundary condi-
tions in the elements of an enlarged orthodic ensemble one can change, in
correspondence of suitable values of the parameters describing the elements
of the ensemble, bulk properties of the system.

We conclude by mentioning that if one develops the thermodynamics model
associated with the pressure ensemble along the above lines one easily checks
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the equivalence between pressure ensemble and canonical ensemble and one
finds that the Gibbs potential A = pv + v — T's is related to the pressure
ensemble partition function by:

1
—BA = lim —log In(B.p). (2.5.16)

In fact one deduces, from the definition (recalling that V' is the volume of
the reference container box, see the remark following (2.5.6):

J(B,p) = / il/—‘ge*ﬁ”vzv(ﬂ,N) (2.5.17)

that —+ log Jn(3,p) ~== BA = min, (Bpv + Bf.(3,v) so that the mini-

mum is at v, such that fp = — 86“;“ (B,vp). Hence we see that p is identified

with the pressure and, by (2.5.6), B\ with the Gibbs potential.

§2.6. Some Technical Aspects

Some details concerning the derivation of the mathematical identities used
in §2.1,§2.2 and some related matters will be provided in this section:
namely we shall derive equations (2.2.4), (2.2.12), (2.2.2). The reader wish-
ing to delve into the subject can begin by consulting [Fi64], [Mi68], [Ru69],
[La72], [LL72].

(1) It is certainly worth commenting on the step from the last of (2.2.3) to
(2.2.4).

In the last of (2.2.3) one can make use of the independence of the integrals
performed with respect to the variables p from those performed with respect
to the variables ¢, and the symmetry of the p-components of the integrand.

In this way one can replace 2mNv? by mNv? and eliminate the condition
v > 0; then mNv? can be replaced by Np?/?)m, thus taking advantage of
the symmetry of the p, dependence in the three components of p. .

Hence one can replace the integral on p, that in (2.2.3) is: -

2
/ e OB /2M 9 2 dp, with /6_52?/27”2—1 dp (2.6.1)
v>0 - 3m !
and a simple calculation shows that:
~p?/2m D] L[ —sp?/2m
/e 21 3—m dBl = E / e =1 dBl (262)
so that
pzzﬁi 1 / () de... dgN d]_)l...d]_)N
Q ﬂ S Z(ﬂ) V) 22"“72N€VN hSNN'

(2.6.3)
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and the point ¢, is, in each addend of (2.6.3) localized in @ (which is
supposed so small that it has no importance where ¢ L exactly is inside
Q).

We now imagine varying V from V to V + dV, increasing the volume by
displacing, along the outer normal, by 1 every area element of the surface.
We see that log Z(3, V) varies, since dV = Sy, by:

dlog Z(8,V) = (2.6.4)
:Z Nsn / o—BE(pa) dg,...dg, dp, ... dp,
o ZB.V) Jy,..q ev h3N N

—avy s / e 4 gy dp - dpy
5 Z(BV)S Jo,,q ev T

i
which, comparing with (2.6.3) proves (2.2.4).

(2) Another deduction calling for further details is the step from (2.2.11) to
(2.2.12).

By proceeding as in the derivation of (2.6.3) one finds pdV starting from
the expression for p as the average P(u) with respect to the microcanonical
distribution with parameters (U, V). Denoting by f* the integral over (p, q)
extended to the domain of the (p, q) such that E — DE < E(p,q) < E and,
at the same time, g € dV = UoQ: o

N *2 p? dpdg 2 * dp dg

dV = —— L === —= (2.6.5
P N(T,V) / 32m 3NN~ 3N(U,V) / Dy (269)
having again used in the last step the symmetry of K(p) in p Lo Py (to

eliminate the factor N) and having written ), sn- dg, to obtain

= fq €dv '’
a more elegant form (formally eliminating the summatiolns over () naturally
appearing, in conformity to its definition, in the expression of the pressure).

To connect (2.6.5) with the derivatives of N' we have to make more explicit
the dependence of A" on U, by evaluating exactly the integral (2.2.9) on the
p variables in polar coordinates (which is an elementary integral).

If Q(3N) is the surface of the unit sphere in 3N dimensions and if we set
w(U,q) = \/2m(U — ®(q)), we deduce

NEV) = [ s (00,0 = 0 - DEY) 2T 2600)
hence:

N _ dg 3N 3N-2 an—2) 2(3N)

a0 = | ot g 2 (0P — U = DB ) S
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and coming back to the original coordinates

10N 3N 1 [ dpdg3N—-2 1 _3N(1 2)

NoUu ~ 2 N/ WNNI 3N K(p) 2\ 3N (K(p)~") (2.6.8)

where (K (p)®) is defined by (2.2.13) and the integral (2.6.8) is extended to
the domain in which (U — DE < E(p,q) < U).

If, instead, one had proceeded as in the derivation of (2.2.4) in the canonical
ensemble case (see (2.6.4) above) one would have found:

LN gy N[
N oV N J RNNI
dpd
o (KSR

?(2 dpdq/ * dpdq>
3 D) v J 3NN
where in the last step we multiply and divide by the same quantity and we
use the notation [* in (2.6.5). Then (2.6.9) and (2.6.5) imply

1 0N pdV
S gy =N 2O
N oV %(K(}_}))*

(2.6.9)

(2.6.10)

where (K (p)®)* is defined in (2.2.14).

Relation (2.2.12) now follows from (2.2.11), (2.6.8) and (2.6.10).

(3) We finally deduce (2.2.2) in the simple case (considered in §2.2) of a
perfect gas, ® = 0.

If we imagine dividing the six-dimensional phase space describing the in-
dividual particles of the system, into cells C' having the form:

C = setofthe (p,q) in RS such that:

’ !
{kaéq —0q/2 < qo < kL0q+ 6q/2 a=1,2,3 (2.6.11)

kadp — 6p/2 < pa < kadp + 0p/2
and k, k' are two integer components vectors; it follows that the energy of
a single particle located in C' is (C):

e(C)=>" %Ei(hf. (2.6.12)

a=1

Furthermore a microscopic state A of the system can be assigned by giving
the occupation numbers nc for each cell: they tell us how many particles
occupy a given cell. Then, without combinatorial or analytical errors (see

§2.2):
2(3,V)= 3 e Plenes@) (2.6.13)

=N
Yoo
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Taking L = V'/3 to be the side of the container and calculating, instead,
the expression afflicted by obvious combinatorial errors:

Z(B,V) = Z 1 e 2o nee(©) —

ne o0 (Il net)

nog=N
CC

L i

. N . 3N
_ - e—Be(C) N Rl e—ﬂkz(ép)z/Qm —
(T (5 s

C .

1 (Lop X w
= ﬁ <Tp Ze—,@kz(&p)?/?m) — (2614)
—00

3N
:LVN\/%%B*M 1 syt =Bk (op)%/2m
N 13N V2mp P2 k=0

which then leads to (2.2.1) (i.e. to the second of (2.3.1), since ¢ = 0) if
h 22 0 and if one approximates the sum in the last member of (2.6.14) with
the corresponding integral \/% Ik e—Pp*/2m dp (committing in this way also
the above described analytic error).

To compare (2.6.13) with (2.6.14) or (2.2.1) it is necessary to decide
whether the values of nc that give the main contribution to (2.6.13) are
those for which n¢ = 0,1 (and in this case (2.6.13),(2.6.14) are good ap-
proximations of each other as well as of (2.2.1) because the factor nc! has
value 1 in the majority of cases).

We must therefore compute the average value i of the quantity no with
respect to the canonical distribution and the consistency condition, i.e. the
condition of negligibility of the combinatorial error will be o < 1.

In the canonical ensemble, by definition (2.1.7), the probability of finding
a particle, with known position, with momentum in dp is the Maxwell-
Boltzmann law: B

e*ﬁgz/Qm dp
= (2.6.15)
(V2xmB 1)’
hence if p = N/V is the system density we shall find:
op)? h?
o = p(6g)Pe o0 /2m op) <P (2.6.16)

\/27rm[343 B \/27rm[343

so that e < 1, for all cells C, if T > T, with T}, given by (2.2.2).

It is clear that the error that we call “analytic error” will be negligible if
v/B/2mdp < 1. In the present context we did not fix separately dp and
8q: nevertheless d¢ should be certainly chosen so that 8¢ > p~'/3 = average
inter-particles distance, otherwise it would not make sense to think of the
system as built with particles as separate entities defined in the system.
With this choice of dq, from dp dq = h, it follows that dp = h/p~'/3 and
one sees that the condition /8/2mdp < 1 is the same as (2.2.2).
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§3.1. Equipartition and Other Paradoxes and Applications of Sta-
tistical Mechanics

One of the most well-known consequences of classical statistical mechanics
is the principle of equipartition of energy: somewhat less well known is that
this principle, after some shining initial successes, reveals itself as the sign of
statistical mechanics inadequacy to solve important problems that fall into
its domain. Likewise other well-known important consequences of statistical
mechanics are affected by serious paradoxes and theoretical problems.

Here we shall illustrate some significant examples.

(I) The Free Gases Specific Heats

By using the canonical ensemble and assuming that the cells size h is very
small (see §1.2) one easily computes the internal energy for a general model
in which each particle has ¢ degrees of freedom and does not interact with
the others.

The ¢ degrees of freedom describe the three baricentric degrees of freedom
plus the ¢ — 3 internal degrees of freedom of the molecule internal motion.

One supposes that energy is a quadratic form in the ¢ conjugated momenta

P1, P2, ..., pe and, possibly, in some of the internal position coordinates:
R S
Bp) = o0 * 2 marg T 2 a® e G
j=1 j=4 JA\L j=lo+1

where p1, p2, P3, q1, g2, g3 are the momentum and position coordinates for the
particles baricenter, m is their mass while py4, ..., q4,. .. are the momentum
and position coordinates describing the internal degrees of freedom and
4= (qa,--00)-

Equation (3.1.1) is the form that one expects for the energy of a molecule
which has a few internal degrees of freedom, precisely £— /g, to which are as-
sociated oscillatory motions around equilibrium positions (corresponding to
the values j = €y +1,...,{, with respective proper frequencies 2 /w;): they
can therefore be called oscillatory degrees of freedom. The first £y degrees
of freedom describe what we shall call translational degrees of freedom; the
position variable corresponding to a translational degree of freedom is either
a position coordinate for the center of mass, varying in V', for j = 1,2,3, or
an internal angular coordinate, while as a rule the variables ¢; conjugated
to a momentum of an oscillatory degree of freedom will always be a variable
describing an internal degree of freedom and it is best thought of as varying
in (—o0, +00).

For instance if the gas consists of point atoms with mass m then ¢ = 3
and E(p,q) = K(p) = (b} + p3 + p3)/2m. If the gas consists of diatomic
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molecules built with two atoms at a fixed distance p, then the kinetic energy
is:
1 1 2 2
K@) = 50t +i v+ o (B + 2n) e
where m is the total mass and p the reduced mass, m = my + mo, u =
mime /m, and pg, ps are the momenta conjugated to the variables ¢ and ¢,
respectively the latitude and the azimuth of the two linked atoms. In this
case the variables ¢ conjugated to the first three momenta are real variables
varying in V while the other two variables are angular variables. There are
five translational degrees of freedom and no oscillatory degree of freedom.
For the perfect gases for which the total energy is a sum of the kinetic en-
ergies of the individual particles (i.e. the fisrt term in (3.1.2)), the partition
function is: dnd
N
Z(B,V) = h31%j\%! e P2 in Klppg) (3.1.3)
so that the average energy is computed by using the factorization of the
integrals and by calculating explicitly first the (Gaussian) integrals over the
p’s and then those over the ¢ of the oscillatory degrees of freedom and finally
those over the remaining ¢ coordinates (that are trivial if performed after
those over the p’s).
More generally if (3.1.1) is the kinetic energy of a single molecule and if
G are the translational position coordinates and ¢ are the oscillatory ones
then:

J (Zi\;l K(Bi’ﬂi)) e’ 2 Klrpg) IL dgi dgi
feiﬁZK(&’gi) [1; dp, dg,
_ N[ dq(f K(p,q)e K9 dpdy)
[ da(f e "9 dpag
_NB[ (3 + (b)) _
J da
1
= Nﬂ*1(§fo +€—€0) .

= (3.1.4)

This is an interesting relation because it is independent on the special form
of (3.1.1) (i.e. independent of the coefficients M;(§,w;, m)): it says that the
internal energy of a perfect gas is given by the number of degrees of freedom
times 1/23 = kT /2 (equipartition of the energy among the various degrees
of freedom and between kinetic and potential energy) counting twice the
oscillatory degrees of freedom because the latter contribute to the potential
energy as well. One also says the “there is equipartition between kinetic
and internal elastic energy”.

The constant volume specific heat of a monoatomic gas and that of a gas
of rigid diatomic molecules are given, respectively, by:

ou 3

5
=— == — 1.
Cy T 2nR or 2nR (3.1.5)
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where n = N/N4, with N4 = Avogadro’s number, n the number of moles
of gas and R = kN4 is the gas constant.

Equation (3.1.5) agrees well with the experimental results on rarefied mono-
atomic gases, the agreement is less good for the diatomic gases, even if
rarefied.

In fact (3.1.5) cannot be accepted on general grounds, not even for
monoatomic gases (even if rarefied), because it is known that gases con-
sist of atoms with very many degrees of freedom, mostly oscillatory, and
their specific heat is, nevertheless %nR. For instance neon could be thought
of as built with 20 protons and neutrons and 10 electrons, i.e. it would have
90 degrees of freedom, of which 87 are oscillatory(!).

But even the simple case of a truly diatomic molecule in which all internal
degrees of freedom are neglected except the three describing the relative
position of the two atoms is conceptually unclear: if one assumed rigidity of
the distance between the two atoms then the specific heat would be gnR;
if, instead, we admitted that the distance between the two atoms oscillates
around an equilibrium position (which is more “realistic”), then the specific
heat would be %nR because the degrees of freedom would be 6, one of which
oscillatory.

It appears, therefore, that “things go as if” some of the internal degrees
of freedom were less important than others, they are “frozen” and do not
contribute to the energy equipartition. Which, therefore, would not be valid
in general, in spite of it being an extremely simple consequence of the theory
of the canonical ensemble.

(II) The Specific Heat of Solids.

Another success-failure of classical statistical mechanics is the theory of the
specific heat in crystalline solids. A crystalline solid can be modeled as a
system of particles oscillating elastically around ideal equilibrium positions
arranged on a regular lattice, e.g. a square lattice with mesh a (to fix ideas).

It is known from the elementary theory of oscillations that such a system
is described in suitable normal coordinates by the Hamiltonian:

H= Z (P +w(k)*q}) (py-a,) € R’ (3.1.6)

where the sum runs over the triples k = (k1, k2, k3) of integers with k; =
0,1,...,V/N—1if N is the number of atoms of the crystal (which we assume
cubic and with side /N = L), and:

3
w(k)? =262 Z <1 — cos afki 27r> (3.1.7)

i=1

with ¢ being the sound propagation velocity in the crystal.
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If we could compute the system properties by using the canonical ensemble
then the internal energy could be computed as:

L HS e M gy
B feiﬁH(Q’Z) dpdgq T2 (3.1.8)

because the sum over k concerns 3N values and the calculation proceeds
as in the case of the discussion of energy equipartition; with the difference
that now all the 3N degrees of freedom are oscillatory.

Therefore the specific heat of a crystal should be:

C = 3Nkg = 3nR (3.1.9)

if n is the number of moles, and this is quite well satisfied at high temper-
atures (above the solidification temperature, but below liquefaction) and is
known as the law of Dulong-Petit.

If however one takes into account that a typical model of a conducting
solid consists of IV ions on a lattice and N electrons forming a free electron
gas, then one finds that instead one should perhaps expect a specific heat
of 3nR + %.

Experiments show that the specific heat of crystals at high temperature
indeed conforms to the Dulong-Petit law. At lower temperatures instead
the specific heat approaches 0, according to a general principle called the
third law of Thermodynamics.

Hence classical mechanics produces erroneous predictions also for a crys-
talline solid: it looks as if some degrees of freedom are frozen because they
do not contribute to the specific heat (in other words their contribution to
the internal energy is the same as that which they would give if their tem-
perature could be considered zero and staying constantly so in all the system
transformations: which is not possible because then the system would not
be in thermal equilibrium). Furthermore at lower temperatures the crystal
oscillations seem to become less and less describable by classical statistical
mechanics because the specific heat deviates from the Dulong-Petit law, and
tends to 0.

(III) The Black Body.

A thermodynamic theory of radiation can also be developed on the basis
of the theory of ensembles, and one reaches disturbing and upsetting con-
tradictions with the experimental observations as a consequence of classical
statistical mechanics developed in the previous chapters.

In fact it was in the theory of the black body where, historically, the
contradictions were felt most and led to the origin of quantum mechanics.

Counsider a cubic region V filled with electromagnetic radiation in ther-
mal equilibrium with the surrounding walls with which it is supposed to
exchange heat. We describe the electromagnetic field by the vector poten-
tial A and the relations (which are implied by Maxwell’s equations in the
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vacuum):

10A
E:——a—_, H=rot A, divA=0 (3.1.10)
c Ot

where ¢ is the velocity of light, ¢ = 2.99 x 10'° ¢ sec™!. It is well-known
that the motion of such a field is described by the Lagrangian:

L= i/ (E* — H*)dz (3.1.11)
87 \%

regarded as a function of A, A.

If L is the side of the volume V occupied by the radiation, which for

simplicity it is convenient to consider with periodic boundary conditions

(by identifying the opposite sides of V'), it will be possible to write A in

terms of its Fourier expansion:

Az) = \/— Z g k) e (k) 'tz (3.1.12)

where k£ = L 7 and v is an integer component vector, and e(®) (k) are two

polarization vectors, with unit length, and orthogonal to £ and to each other.
One finds

2
1 1 .. 1 N
325 (AW - AW (3.1.13)
k a=1

Therefore the evolution in time of the field in the cavity can be described
by the Hamiltonian function:

2 2
1 k
—322 (4“21’(“) 7+ @)2) B

k a=1

5 2 2 p(oz) EQCQ q(a) (k)Q)

kE a=1

where the pairs (p(® (k), ¢! (k)) or ('Y (k), T (k)) = (V4acap'® (k),
q'¥ (k) /V4c>T) are canonically conjugated coordinates, equivalent because
the transformation (p, q) < (P, g) is canonical.

Hence an electromagnetic field in a cavity Vcan be regarded as a system
of infinitely many independent harmonic oscillators.

It is, therefore, very tempting to describe this system by statistical mechan-
ics and to say that at temperature 7" the microscopic states of the system
will be distributed according to a canonical distribution and, hence, the
probability of finding the oscillator with labels (a, k), i.e. with polarization
« and wave vector k, in the cell C = dp(®) (k)dq'® (k) is

e 5P () +e7k%¢ ) (k)?) dp @) (E)dq'™ (k)

/472 32k 22 '

(3.1.14)

—_

(3.1.15)
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It is clear that by assuming (3.1.15) one assumes that the cell size is negligi-
ble: this usually introduces the two types of errors that have been discussed
in §2.1 and §2.4. In the present case the combinatorial error is absent be-
cause this time the oscillators are pairwise distinct. However if g is large
the error due to having neglected the cell size by considering p(® (k) and
¢'“) (k) as continuous variables is still present and it might be substantially
affecting the results.

If one accepts (3.1.15) the average energy per oscillator will be kgT', by
the equipartition argument in (I) above, because each oscillator represents
an oscillatory degree of freedom (see (3.1.14)).

Therefore it follows that, if v = |k|c/27 is the frequency of the wave with
wave number E, the quantity of energy L3u, dv corresponding to the oscilla-
tors with frequency between v and v +dv is related to the number of integer
vectors n such that v < |n|c¢/L < v + dv via:

1
Liu,dv = EQ - (number of |n|such that |n|c/L € (v,v + dv)) =
2 Lv,24nL 3 81 5 (3.1.16)
= —(—) —dv=L"—v*dv
B e c cp
where in the first step the factor 2 after 37! is there because, for each
k there are two oscillators with different polarizations and equal average

energy, k1. Hence the Rayleigh-Jeans’ formula emerges:

8mv?
U, =
3

kpT (3.1.17)

which is manifestly in disagreement with experience, because fooo uy, dv = 0o
and a radiating cavity, in thermal equilibrium, would have infinite energy.

Experimentally the distribution (3.1.17) is observed only if v is small, and
for large v the observations are in contrast with the energy equipartition
theorem because one finds that u, approaches 0 very quickly as v tends to
infinity.

We see that classical statistical mechanics in the above three applications
leads to paradoxes and wrong predictions. In the next section we shall see
that the paradoxes disappear if the constant h measuring the cells size is
h # 0: and it will be possible to say that all contradictions that appear
in classical statistical mechanics arise when, to simplify the formulae by
replacing summations with integrals, errors of an analytic and combinatorial
nature are introduced, see also §2.1, §2.2 and §2.6, by taking h = 0.

83.2. Classical Statistical Mechanics when Cell Sizes Are Not
Negligible

In §3.1 and in the previous chapters we always neglected the size h of
the phase space cells representing the microscopic states of the system. As
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pointed out repeatedly, important errors are introduced in so doing (see §2.1,
§2.4, which we shall see are ultimately intimately related to the paradoxes
discussed in the previous sections.

The main error, however, is due to the fact that if the cells can no longer
be thought of as points then one should simply not use classical statistical
mechanics. The previous section shows that the theory leads to results
that in turn permit us to test whether the cells in phase space can really
be regarded as points: the disagreement between theory and experimental
results implies that the cell size is actually accessible to experiment and
this must necessarily lead us to reformulate the very principles of classical
mechanics and therefore of statistical mechanics.

To realize how drastic could be the changes of the Thermodynamics of
a system in a “quantum regime” in which A cannot be neglected one can
just proceed by assuming as valid the description of the system in terms
of cells in phase space and evaluate more accurately the partition sums of
the various ensembles, avoiding committing the combinatorial and analytic
errors that we have described above and that are really negligible only in
the limit as h — 0.

Consider as a first example a free gas of identical particles with no internal
degrees of freedom; and let C' be a generic cell of the six dimensional phase
space in which the states of the single particles can be described: let the
volume of C be (6pdq)® = h3.

Since the identical particles are indistinguishable then the microscopic con-
figurations A are determined by the numbers ng of particles that, in the
configuration A, occupy the cell C. Then

E(A) =%~ nce(C) total energy

3.2.1
N(A) = ~nc number of particles ( )

where e(C) is the energy of a particle in the cell C.
Let us study the system in the grand canonical ensemble, where the calcu-
lations are somewhat simpler. The partition function is then:

2B, = Y e P Lenee e ned@) (3.2.2)
{nc}

where, for each C, nc =0,1,2,3,...: see §2.5, (2.5.4).
We perform the summations explicitly, thus avoiding the combinatorial
and analytical errors whose effects we are investigating. We find

- 1 o log(1—e~ (B3 +82(€)))
=6,0 =[] Ty =¢ 2 ¢ los (3.2.3)
c

and the probability that nc = n can be immediately computed, see (2.5.3),

efﬁ)\nf,@n e(C)

p(n;C’) = (1 — e—,@A—,Be(C))—l

(3.2.4)
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The equation of state is deduced by expressing A as a function of the density
p and of 8 via

efﬁknfﬂne(C)

P\, B) = %;an(n;c*) = %Z (1”_ AT (3.2.5)

n,

and then by replacing A with A(8, p) in the grand canonical expression of
the pressure. By recalling that in the grand canonical ensemble the pressure
is directly related to the partition function, see (2.5.12), we get

Bp(\, B) =

1 1
= _ —BA—=Be(C
logZ(B,\) = — §O:10g(1 —e (@) (3.2.6)

and the total energy per unit volume wu; is

1 e—B(X+e(C))n
= V Zne(c) (1 — 675()""6(0)))71

N, (3.2.7)

v Z 1 — e BOxre(0))

To appreciate the difference between (3.2.5)-(3.2.7) and the classical perfect
gas properties it is convenient to imagine that e(C) = p*/2m if C' is a cell
with center at the point (p, ¢) and, hence, to neglect the variability of p? /2m
in C.

The latter approximation implies

¢’p B0+ /2m)
oo 9) = = [ S tog(1 - A0 /am)
a3p e B(A+p?/2m) 1
P\, B) = T B zm Ty (3.2.8)
d3p p 676(A+P2/2m)
'Uzl()‘wg) =/ h3 2 —B(Ap2/2
m 1 — p 2 /2m)
Integrating the first of (3.2.8) by parts one gets the relation:
2
Bp(A, B) = gﬂul (3.2.9)

The neglect of the variability of p? /2m in C introduces an error; however one
can check, without difficulty, that it does not alter the qualitative properties
of (3.2.5)-(3.2.7) which we shall discuss shortly (the approximation only
simplifies the analysis, to some extent).

The most relevant phenomenon is the Bose condensation: the (3.2.4) show
that the parameter A must be such that —A > ming e(C) = 0. Hence, as
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appears from (3.2.8), the maximum density po(3) of the system seems to
correspond to A = 0:

RE P e Bp*/2m
which looks incorrect because the density can be prescribed a priori, by
assigning the number of particles, hence it cannot be bounded above.

But the density can be larger than po(83) because (3.2.4) does not have
sense if A <0, e(C) = 0. Interpreted literally (3.2.4), for A > 0, shows that
the particle number in a cell C' with e(C) =0 is

Z;:O:O nePAn _ d log i e—ﬂ)m _
=0 = =
Yo €BAn gr "~

d
A log(1 — e ) = (3.2.11)

e P
- 1—eBX x0T o

The correct interpretation of (3.2.10) and of the last remark is that the
cells with e(C) > 0 can contribute the quantity pg(8) to the density p, at
most: however the remaining part of a larger density, p — po(8), is due, if
p > po(B), to the particles that are in the cells C with e(C') = 0! Note that
there are many such cells because they must only have 0 momentum but
the spatial centers of the cells can be anywhere in the container V.

This in fact means that the most appropriate way to describe the states of
this system should be the canonical ensemble. But from the above discussion
we can imagine describing a state with density p > po(8) in the grand
canonical ensemble by setting A = 0 and then by imagining that (p—po(8))V
particles are in the cells C' with e(C) = 0.

It is important to remark that since pg(3) — 0 for 8 — oc the phenomenon
of Bose condensation is always important at low temperature if the total
density is kept fixed. And it is clear that the particles that are in the cells C'
with e(C') = 0 have zero momentum and therefore they do not contribute to
the internal energy nor to the pressure nor to the specific heat at constant
volume.

In particular if we wish to examine the specific heat at constant volume
when T' — 0 we can note that, as soon as T is so small that po(8) < p the
internal energy becomes

—Bp>/2m

_ 5/2
U=uV = V/ 5 2m1 =7 = VT (3.2.12)

(only cells with e(C) # 0 contribute) with

2

Bz ) e~ T 2/2,5/2
o= | T L ey @m ks (3.2.13)
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Hence

= % = constant T%/% if p > po(5) (3.2.14)
which shows how in the perfect gas that we are studying the equipartition
result C, = 3nR/2 is no longer true: instead one finds C,, — 0 for T' — 0!.
At low temperatures equipartition fails if one takes h # 0 seriously.
Another example in which h cannot be neglected is the case in which the gas
particles are imagined to interact in a very simple way, conceivable although
not usual in classical mechanics: suppose that the particles “repel” each
other in the sense that they cannot occupy the same cell in phase space
so that one cannot find two or more particles in a given cell. The unusual
nature of this force is expressed by its dependence on velocity (because it
generates a “hard core” in phase space).

In the latter case the partition function is (3.2.2) with the condition that
nc = 0,1. Hence:

Cy

[1]

(A B) = [J (1 + e PO+eD) (3.2.15)
C

and the probability that nc = n is, instead of (3.2.4),

o~ BOFe(C)n

p(n;C) = 7 T e BOT(O))

n=0,1 (3.2.16)

and (3.2.5)-(3.2.8) change accordingly.

This gas does not resemble at all the classical perfect gas and at low tem-
perature it exhibits the phenomenon of Fermi condensation; one sees in fact
that

p(n; C) 555 (3.2.17)

1 ife(C) < =X
{0 if e(C) > —A
so that at low temperature only the cells with p?>/2m < —\ are occupied:
their momenta fill a sphere in momentum space (Fermi sphere). Note that
if A > 0 the system density tends to 0 as T — 0. If one wants to keep a
constant density while 7" — 0 one must fix A < 0. In fact if A < 0 the
density is such that:

g [ Ep e dr
p(A,B) = B3 1 3 e BOEEE/2m) Bood’ 33

V=2mA' . (3.2.18)

Hence if 3 — oo and the density stays constant (i.e. A < 0) one finds the
internal energy and the specific heat at constant volume via the relations:

2 d3 7,8()\+22/2m)
U=V r ap e .
2m h3 1 4 ¢ BO+P /2m)

o= (U _y [ 2 L g /ame SO
v=(ar), =V ] 3 e = ey

(3.2.19)

|4
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and an elementary analysis of the integrals leads to the asymptotic formula
Cy ~oVT asT — 0 (3.2.20)

with a suitable o. Hence also this system behaves in a different way if
compared to the classical perfect gas at low temperature. In particular

(3.2.20) shows that equipartition of energy no longer holds (because Cy #
V3nR/2).

The conditions under which a behavior emerges reflecting the fact that h
can no longer be considered negligible, and the classical perfect gas shows
properties that are completely different from those just exhibited (without
neglecting the size of h and, of course, only for small T') have been discussed
in Chap.II, (2.2.2) and §2.6. We just recall that we obtained an estimate
of the value of the temperature below which the effects of the nonvanishing
cell size begin to be felt as:

T, = b/ (mkgp~ /). (3.2.21)

One can check, on the above formulae, that the latter value for T}, coincides,
as we should expect, with the value of the temperature such that po(3,) = p
in the first case and such that —A\3 = 1 in the second.

It is common to say that the condition 7' > T}, is the condition that the per-
fect gas does not present degeneration phenomena due to the nonnegligible
size of h.

It is not difficult to realize that the degeneration due to the fact that h
is appreciably # 0 can be the mechanism that permits us to avoid all the
paradoxes due to energy equipartition.

For instance in the theory of a crystal, the electron contribution to the spe-
cific heat is negligible because the value of the temperature below which the
electron gas presents degeneration phenomena (with consequent smallness
of the specific heat, see (3.2.14) or (3.2.20)) can be estimated on the basis
of (3.2.21) and it gives a very high value of Tj,.

By using (3.2.21) and m = 0.91 x 10727 g, p = 102 ecm ™3 (density of the
free electrons in iron) one finds Tj:

T,=1/kpB, = 1.6 x 10° °K. (3.2.22)

More generally one can think that, if a given system consists of various
particles, each with several internal degrees of freedom, then at a given
temperature only some degrees of freedom are nondegenerate: equipartition
then takes place “between” them, while the other particles remain in a de-
generate state and therefore produce novel phenomena, among which the
lack of contributions to the specific heat.

A very interesting example is that of black body radiation theory: in fact
the black body is a system with infinitely many independent degrees of
freedom, most of which are in a state of extreme degeneracy (see below),
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so that the equipartition of the energy takes place only between a finite
number of degrees of freedom.

In §3.1 we saw that a radiating cavity can be regarded as a set of infinitely
many harmonic oscillators with Hamiltonian (3.1.14):

= % 2 d (P (&) + K7V (B)*) (3.2.23)

a=1

where p(®) (k) and §(® (k) are canonical variables.

The canonical distribution attributes to the configurations in which the
oscillator with polarization o and wave number k is in the cell CﬁL% with
center (p(¥(k), g (k)) = (m dp,n dq), (m,n integers), the probability:

ok e~ 5(m*op°+c*k%0¢°n?)
p(Crin) =

3.2.24
Yma€ §(m>6p2+c2k? W2 8¢2) ( )

where we do not neglect the dimensions of 0707;,7%7 and we take seriously the
canonical ensemble, forgetting that its use is doubtful when the cell sizes
are not negligible and that in such cases statistical mechanics should be
completely reformulated.

By repeating the analysis followed to obtain (3.2.21), see §2.2 and §2.6, one
easily finds the condition under which the size of h is negligible:

VBip <1,  /Blkdg<1. (3.2.25)

Without explicitly fixing the values of dp and dg we see that (3.2.25) will
imply, in particular (multiplying corresponding sides of the two conditions)
that 3 is too large for a classical statistical description of the oscillators
with frequency v if

Beclk|opdq = Bhclk| = 2nBhy > 1 (3.2.26)

where v = ¢|k|/27.

We must therefore expect that, given h, the high-frequency oscillators (with
|k| > 1/heB or hv > 37! = kgT) will be degenerate, i.e. they cannot be
described without taking into account the cells sizes. Note that since v
can be as large as we want there will always be frequencies v for which
hv > 571 =kpT.

If we take h = 6.62 x 10727 erg - sec and T = 6000 °K (temperature at the
surface of the Sun) one sees that the degenerate frequencies are all those
greater than:

vo = 1/hB = 1.25 x 10" cycles sec™ (3.2.27)

which can be compared, for the purpose of an example, with the fre-
quency of green light (where the Sun spectrum has its maximum) vgreen =
0.610"° cycles sec™!.
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The latter numerical values explain why the degeneration phenomenon has
been so “easy” to observe, or “so conspicuous”, in the black body radia-
tion and why it has plaid such a big role in the development of quantum
mechanics.

The average energy of a nondegenerate oscillator is, by energy equipartition,
kT = 1/3, while if we do not neglect the possibility of degeneration this
energy is:

1 a
u(onk) =Y 51700 + AlkPm25¢%)p(Ck)) (3.2.28)

m,n

as expressed by (3.2.24).
The quantity of energy in the radiation with frequency between v and
v+ dv is then (see (3.1.16)):

3 4v? e
Liuy dv = ——dvL > u(k,a) (3.2.29)
a=1
where |k| = 2nv/e. If v K ﬁ equipartition holds as one can compute

explicitly using (3.2.28), (3.2.24); and (3.2.29) is simply:

872 _
v=— 87" (3.2.30)

u

To discuss the high-frequency case v > 1/3h it is necessary to fix Jp and
0q: but in classical mechanics one cannot give a clear criterion for choosing
ép or dq. Hence for concreteness we shall choose dp and dq so that:

opdg=nh N op = vV 2mvh (3.2.31)
dp = 92clk|dq = ¥*27vdq dq =9"1\/h/2mv o

with 9 ~ 1. Although this is a “natural” choice because it makes approx-
imately equal the two addends in (3.2.28) for m = n = 1 (exactly equal
if § = 1), it is nevertheless arbitrary. The results are qualitatively inde-
pendent of the choice of ¥, but their quantitative aspects do depend on its
value.

From (3.2.29), (3.2.31), one deduces with a brief analysis of the series on
m and n, that if Shv > 1 and 92 = min(¥?,92),

u(k,a) = hve h=2rd2h ifd+#£1

a e
) X (3.2.32)
u(k, ) = 2hwe P h=2rh ifd=1

so that (3.2.30) yields (for ¥ # 1 and h = 2wh9?) the distribution, identical
to the Wien’s distribution,

(3.2.33)
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which shows that the energy present at high frequency is far below the
equipartition value and, in fact, the total energy of the electro-magnetic
field in thermal equilibrium is finite, unlike what would happen if every
oscillator had the same average energy. Of course (3.2.33) cannot really
be taken seriously because, as repeatedly remarked already, the very fact
that we do not neglect the size of h shows that it would be necessary to
reinvestigate the basic laws of motion, based on (3.2.23), that we are using.
A further indication that (3.2.33) cannot be considered a correct distri-
bution is seen also by noting that by changing by a small amount the cell
shape (e.g. take ¥ = 1 or 9 # 1 in (3.2.32)) one would find a quantitatively
different, result.

For instance Planck used phase space cells Cj; & (for single particles) with
the shape of an elliptic annulus defined by:

(n—1)hv < % (P (k) + A |kl¢' (k)?) < nhv  ninteger >0 (3.2.34)

and area h; i.e. he imagined that the cells were defined by the value of the
energy (and more precisely of the action to which, in this case, the energy
is proportional) rather than by the momentum and position. Note that this
shape is “very” different from the parallelepipedal shapes used so far.

In this way (3.2.24) and (3.2.27) are replaced by:

—Bhvn
aky €
p(Cn ) - (1 _ e—ﬂhy)—l
0 o—Brhy hye—Bhv (3.2.35)
U(Ea T) = ;nhy (1 — e—/)’hu)—l = 1 — o—Bhv
which leads to the Planck distribution:
2 h
w, = ST (3.2.36)

3 ebhr 1

for the black body radiation.

Obviously on the basis of classical statistical mechanics it is impossible to
decide which is the correct radiation distribution: we can only say that if
in fact phase space cells cannot be chosen smaller than a minimum size,
then it will be impossible to accept equipartition and, on the contrary, the
high-frequency oscillators will have a very low average energy.

The experimental result that radiation in thermal equilibrium conforms to
the Planck distribution is an indication of the non-indefinite divisibility of
phase space. And the black body is a system particularly apt to reveal the
discrete structure of phase space, because it consists of an infinite number
of oscillators with frequency v greater than an arbitrarily pre-fixed value
Vg, and therefore it contains an infinite number of degenerate oscillators if h
is positive, no matter how small. In fact degeneracy happens to be already
visible in “everyday life”.
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It is also possible, and of major interest, to investigate which would be the
predictions of a strict intepretation of radiation and specific heat theories in
terms of classical mechanics, i.e. assuming h = 0 in spite of our arguments
in Chap.I and above, on the “unphysical nature” of such an assumption.

This is however a very difficult task and many open problems remain.
Therefore T can only quote here a few papers that after the work [FPU55)
have tried attacking the problem and brought a wealth of new ideas and
results on the behavior of large assemblies of purely classical point particles
in a situation in which the temperature is lower than the value (3.2.21)
where problems with a classical interpretation begin to appear. See [GS72],
[BGG84], and for the more recent developments see [BGG93], [Be94], [Be97].

§3.3. Introduction to Quantum Statistical Mechanics

In a sense quantum statistical mechanics is very similar to classical sta-
tistical mechanics: this should come as no surprise as both theories aim at
explaining the same macroscopic phenomena.

As we have seen in §3.2 some of the main phenomena that receive their ex-
planation in the framework of quantum mechanics (like the low-temperature
specific heat of solids or the black body radiation or the perfect gases spe-
cific heats) can in a very qualitative and empirical sense be guessed also in
classical statistical mechanics: and historically this actually happened, and
sparked the genesis of quantum mechanics.

Phase space no longer has a meaning and one only thinks of observable
quantities: which are described mathematically by some (few, not necessar-
ily all, which would lead to conceptual problems, [VN55], [BH93], [Be87])
linear operators on a Hilbert space, usually infinite dimensional. On this
point a long discussion could be started by arguing that this is in fact not
really necessary and the dimension might be chosen finite and its size would
then become a parameter that would play in quantum statistical mechanics
a role similar to the phase space cells size h in classical mechanics.

However, since no “crisis” is in sight which would lead to a new mechanics,
at least no crisis that is as obvious and as universally recognized as a problem
like the black body radiation laws were in the early days of the twentieth
century, we shall not dwell on the exercise of trying to understand how
much the theory depends on the dimension of the Hilbert space or, for that
matter, on the continuity of the space of the positions that particles can
occupy (which one may, also, wish to challenge).

statistical ensembles are defined in terms of the Schridinger operator de-
scribing the observable energy and usually denoted H. But their elements p,
rather than as probability distributions of phase space, are defined as rules
to compute the equilibrium averages of observables (which is essentially
what they are used for also in classical statistical mechanics).

A ensemble £ will, then, be a collection of rules p each of which allows
us to compute the average value that an observable has in the macroscopic
equilibrium state p € £: the element p should be stationary with respect to
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quantum mechanical time evolution, as in the corresponding classical cases.

The mathematical notion necessary to define a “rule to evaluate averages”
of observables represented by self-adjoint operators, and therefore the analog
of the classical probability distributions on phase space, is that of density
matriz. If A is an observable and H is the energy operator that corresponds
to N particles in a container V', one defines the canonical ensemble as the
collection of all the density matrices which have the form:

p = conste P (3.3.1)

and the average value of the observable A in the macroscopic state repre-
sented by (3.3.1), parameterized by 8 and V, as in the analogous case of
the classical statistical mechanics, is defined by

— TrAePH

where T'r is the trace operation.

As hinted above, for all practical purposes (most) operators can be regarded
as big auto-adjoint matrices of large but finite dimensions, so that the trace
makes sense: after some practice one in fact understands how to avoid
annoying errors and pitfalls linked to this view of the operators, much in the
same way in which one learns how to avoid differentiating non differentiable
functions in classical mechanics.

Thermodynamics models are deduced from the (quantum) canonical par-
tition function:

Z(B,V)=Tre B (3.3.3)

and now 1/8kp is interpreted as the temperature, while the free energy is
defined by f(8,v) = Vlim —B7 1 log Z(B,V) in the limit V — oo, V/N —
— 00

v (thermodynamic limit).

Note the the absolute temperature is no longer defined as proportional
to the average kinetic energy: rather it is identified as proportional to the
parameter 31 that appears in (3.3.2): see also §2.1, and §3.1 for a related
comment, on this difference. In some respects this is the really major novelty
in quantum statistical mechanics.

One can also define quantum microcanonical or grand canonical ensembles
and check their equivalence, sometimes even rigorously under suitable extra
assumptions like stability and temperedness (see (2.2.17), (2.2.18)), [Ru69].

For instance, considering N identical particles of mass m in a cubic con-
tainer V, the Hilbert space is the space L3(VN) of symmetric (or an-
tisymmetric) square integrable functions of the N position coordinates
(gl, e ’QN)5 and the energy operator is

-
H=-o- ; Ay +2(g) (3.3.4)
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where ®(q) = ), j(gi - gj) is the potential energy of the interaction,
h = h/2m if h is Planck’s constant and A, is the Laplace operator with
respect to the i-th particle coordinate and with suitable boundary conditions
(e.g. periodic or Dirichlet boundary conditions).

The symmetry or antisymmetry of the wave functions is imposed to take
into account the specific quantum nature of the particles which can be either
bosons or fermions, the latter corresponding to a system of particles which,
besides the interaction energy @ in (3.3.4), also have the extra interaction
(classically nonstandard but quantum mechanically very natural) that no
two particles with the same momentum can occupy the same position.

The stability notion for the interaction ® is important in quantum statisti-
cal mechanics as much as it is important for classical statistical mechanics.
An interaction is called quantum mechanically stable if there is a constant
B such that the Schrodinger operator H, (3.3.4), for N identical particles
satisfies, for all N > 0,

H>-BN (3.3.5)

where the inequality holds in the sense of the operators (i.e. for any nor-
malized quantum state |¢), (¢ |H |¢p) > —BN).

It is interesting and important to note that the inequality (3.3.5) can now
be valid even if the infimum inf ®(gq) of ® equals —oco because the potential
becomes —oo at 0 distance. In fact one can no longer separate the potential
and kinetic energy as independent quantities: the indetermination principle
in fact forbids concentrating too many particles in too small a box without
giving to them a high kinetic energy. Hence there is the possibility that the
decrease in potential energy due to too many close particles (contributing
a large negative potential energy if p(0) < 0 or ¢(0) = —o0) is compen-
sated by the increase of kinetic energy necessary to achieve the confinement.
Whether this really happens or not depends on the system (mainly on the
bosonic and fermionic nature of the particles) and has to be quantitatively
checked. It will be briefly discussed in Chap.IV.

The case in which the system contains several species of identical particles is
treated as easily as in classical statistical mechanics. In the latter case it was
sufficient to introduce suitable combinatorial coefficients to take the identity
of the particles into account, see (2.2.19),(2.2.20); in the quantum case one
shall simply require the symmetry or antisymmetry of the wave functions
with respect to the permutations of the positions of identical particles.

For instance a system of Nj electrically charged particles with charge +e
and of NV, particles with charge —e interacting with the Coulomb force would
have, in the classical canonical ensemble, the partition function

Z(B,V)

1 /e—ﬁ(Zﬁiﬂ2?/2M++Z$§ff1£f/2m—)
NN,
o—pd __2de

h3(N1+N2)

(3.3.6)
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with
- ALNEAE —e? 1 e?
‘I’@ZZZﬁJﬁZ -l
im1 =1 14 " L, =t 4,4
’ (3.3.7)
No o2 Ni+N>
+Z—| — Pt > vlg,—q)
ii=t dieny T L, i<

where ¢ is a potential describing a nonelectric force between the particles
and m4, m_ are the masses of the two species,

In the quantum case one has instead: Z(3,V) = Tr exp —(3H, where H is
the Schrédinger operator:

h2 N hQ N2 _
H=—— A, — —— A P 3.3.8
2my L 2m_ ; Sy T (@) ( )

considered as an operator acting on the space of functions f(gl, sl

(INURTRE. ,gN1+N2) symmetric or antisymmetric with respect to the permu-
tations of the first NV, variables or of the second N, but with no symmetry
property with respect to “mixed” permutations.

The statistics, as one often calls the symmetry properties of the wave
functions® with respect to the permutations of their argument plays an
essential role in the theory. From the classical viewpoint adopted in §3.1
above we already had a glimpse of the phenomena that may make quantum
statistical mechanics quite “strange” even from a qualitative point of view,
at least at low temperatures. The reason is that the statistics can be in-
terpreted as a special (simple) further interaction (i.e. no interaction in the
case of bosons and a repulsive interactions in phase space for the fermions):
compare (3.2.14) and (3.2.20).

But the statistics may play a role even at ordinary temperatures: for
instance electrically neutral systems in which particles interact only via
Coulomb forces are unstable in classical statistical mechanics, at all temper-
atures, for the trivial reason that the Coulomb potential between particles
of opposite charge is unbounded below near the origin. But in quantum
statistical mechanics they are stable if the charged particles satisfy Fermi
statistics or if the bosons have charges of only one sign. See Chap.IV for
a discussion of the importance of stability in statistical mechanics even in
systems in which no charged particles are present.

§3.4. Philosophical Outlook on the Foundations of Statistical Me-
chanics

Contemporary (i.e. AD2000) equilibrium statistical mechanics can be said
to be in an ideal conceptual stage of development.

1 Which form the space on which the Hamiltonian acts as an operator
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(1) There seem to be no fundamental theoretical problems after the irre-
versibility of macroscopic evolution has been shown to be compatible with
the reversibility of microscopic dynamics: this understanding already came
about at Boltzmann’s time in terms of the existence of time scales of very
different orders of magnitude over which irreversibility and reversibility can
manifest themselves. It was put in a rigorous mathematical form by Lan-
ford, see §1.8: and this should have pacified the stubborn nonbelievers in
the incompatibility between microscopic reversibility and macroscopic irre-
versibility (it did so only very partially, in fact!).

(2) The paradoxes to which classical statistical mechanics leads have been
understood in terms of quantum effects and the conditions of applicability
of classical statistical mechanics have been correspondingly precisely formu-
lated, see (3.2.21),(1.2.16), (2.2.2), and §2.6.

There are still many questions to be understood on the dynamics of the
approach to equilibrium in many-particles systems and to develop reliable
(and universally recognized as correct) methods to evaluate the time scales
relevant in the phenomena of approach to equilibrium, see Chap.I, Chap.IX.

The ergodic problem is still not well understood particularly in systems
close to mechanical equilibrium positions (as in oscillations in crystals)
where it might even be conceivable that the ergodic hypothesis really fails
in a substantial way, [FPU55]. This is so in spite of the major success
achieved by Sinai in proving the ergodicity of a really interesting physical
system (two balls in a periodic box, [Si70]) and its extension to many balls
in a box [KSiS95]. On the whole the scarce understanding of nonequilibrium
phenomena is reflected also in major problems in the kinetic theories of gases
and liquids and of the related transport phenomena, [C0o69],[C093],[D098].

The importance of the latter question has been strongly stressed by L.
Galgani and by his collaborators who have devoted to the subject several
important studies which led to a much better understanding of the relevance
of the (probable) lack of ergodicity on time scales as long as the life of the
Universe. The investigations stem from, and develop, “forgotten” remarks
of “founding fathers” like Jeans, [GS72], [BGG93], [Be97].

But open problems abound also in equilibrium statistical mechanics.

The central problem of equilibrium statistical mechanics is perhaps the
theory of phase transitions and of the corresponding critical points. There
is no evidence of fundamental difficulties and recently some clarification
has been achieved in the phase transition phenomenon as a phenomenon of
instability with respect to boundary conditions, or of sensitive dependence of
the equilibrium state on the boundary conditions, see Chap.IT and Chap.V.

Via simple soluble models, see Chap.VII, it has been shown how even the
simplest models of mechanical systems (like systems of magnetic spins on
a lattice) can show nontrivial phase transitions and, in fact, very interest-
ing ones. Nevertheless very important phenomena, such as the liquid-gas
transition or the crystal-liquid transition, are not really understood.

In fact there is no model that could be treated avoiding approximations
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which are really out of control and which describes one such transition.
By “out of control” I mean approximations that have to be conceptually
regarded as parts of the model itself because their influence on the results
cannot be estimated “without hand waving”. See, however, [J095] and the
very recent [MLP98] for very encouraging steps in the right direction.

A meager consolation comes from the reassuring confirmation of the theo-
retical possibility (i.e. consistency) of such transitions accompanied by the
development of many approximate theories that are continuously generated
(and used in concrete applications: the ultimate goal for a wide class of
scientists).

The first among such theories is the mean field theory which until the
1930s was the only available theory for the study of phase transitions. This
is a simple theory, see Chap.V, but somewhat too rough (so as to predict
phase transitions even in systems which can be shown to have none, like
one-dimensional systems with short-range interactions).

The theory of phase transitions has undergone important developments
mainly for what concerns the theory of critical phenomena in the context
of which new approximate theories have been developed which provide the
first real novel theoretical proposals after mean field theory; they are known
as the renormalization group approach of Fisher, Kadanoff and Wilson,
[WFT72], [Wi83]. We cannot deal with such developments in this monograph:
the reader will find a modern acounts of them in [BG95], [Fi98].

Another important phenomenon of equilibrium statistical mechanics is that
of metastability and it is still not well understood: its theory involves dealing
with ideas and methods (and difficulties) characteristic both of the evolution
and of the equilibrium problems. Here we shall not deal with this matter,
see [LP79], [CCO74], [MOS90].

Another class of not well understood phenomena are equilibrium and
nonequilibrium phenomena in charged particles systems: until recently it
was even qualitatively unclear how a neutral system of charged particles
(i.e. matter) could stay in thermodynamic equilibrium, notwithstanding the
strong intensity and long range of the Coulomb interaction, see [Fe85] for
a detailed analysis of the basic mechanism. Until very recently only phe-
nomenological theories for phase transitions were available, essentially based
on the same type of ideas at the roots of mean field theory (for instance
Debye’s screening theory).

Recently the problem of stability of matter (i.e. of proving a lower bound
proportional to N on the energy of N charged particles with zero total
charge) has been satisfactorily solved in the framework of quantum sta-
tistical mechanics, [DL67], [LL72],[LT75], but the problem of a quantita-
tive understanding of the thermodynamic equilibria in neutral aggregates
of charges and of the related screening phenomena remains open, [Fe85],
[Li81]. Of course there are (plenty) of very elaborate and detailed phe-
nomenological theories, but here we mean that they are not fundamental
and that, to be developed, require further assumptions (besides the funda-
mental assumption that equilibrium states are described, say, by the canon-
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ical ensemble) that are only justified on a heuristic basis necessary to bypass
otherwise non-by-passable “technical” difficulties.

For instance in the theory of molecular gases one usually postulates that
a given system just consists of identical particles, with given time-invariant
properties (molecules), that interact with each other via effective forces due
to screened electromagnetic interactions. This is clearly an approximation
(that we empirically think of as perfectly adequate) which obviously ignores
an important part of the problem: namely that the molecules are formed
by atoms which are formed by nuclei and electrons (forgetting protons,
neutrons, quarks, etc), and the possibility that they dissociate, ionize or
react chemically. Therefore one may wish to see a microscopic explanation
of why in a range of densities and temperatures (absolutely crucial for our
lives) matter presents itself mostly bound into complexes which have the
size of isolated atoms and molecules: this is still not understood although
impressive progress has been achieved in the field, [Fe85].

quantum statistical mechanics not only solves the conceptual problem of
the stability of matter, [Li81], but it also introduces the possibility of a the-
oretical understanding of a large variety of new phenomena typically related
to the quantum nature of microscopic physics: superfluidity and supercon-
ductivity are typical examples. So far such phenomena are understood only
on the basis of phenomenological theories close in spirit to the mean field
theory of phase transitions, [BCS57], [Br65] and Chap. 10,11 of [Fe72]. But
a deeper theory has still to be developed. In fact one can say that in quan-
tum statistical mechanics all the problems of classical statistical mechanics
are present, usually in an unsolved form even when the corresponding classi-
cal problems are solved, and new problems that do not even exist in classical
mechanics become analyzable theoretically.

It does not appear that any of the problems that are not understood are
not understandable in the framework of statistical mechanics (classical or
quantum as the case applies): no fundamental problem seems to have a
theoretical description that is in conflict with experimental results. This
paradisiac atmosphere may not last for long (its stability would be very
surprising indeed) but as long as it lasts it gives us great peace of mind
while still offering us a wide variety of fascinating unsolved problems.

Finally we mention that statistical mechanics is related to many branches
of mathematics, particularly probability and information theory that have
received a great influx of new ideas from the theory of phase transitions and
of ensembles, [Ru69]; and the theory of dynamical systems that has received
influx from the theory of approach to equilibrium, [RT71], [Ru78a], [D0o98].
Combinatorics has been greatly widened by studies of the exactly soluble
models in statistical mechanics, [Ba82].

Many problems in ordinary or partial differential equations have their origin
in statistical mechanics which has also inspired several developments in the
theory of turbulence, [Fr97], and in the theory of quantum fields, [BG95].

One can say that the present state of statistical mechanics is perhaps com-
parable to the state of mechanics at the moment of its triumphal applica-
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tions to celestial mechanics and to ordinary mechanics at the end of the
'700s and the beginning of the ’800s. No obvious contradiction with ex-
periments has yet come up and nevertheless many simple and interesting
phenomena remain to be explained by the theory. A sign of vitality is also
to be seen in the fact that statistical mechanics continues to generate new
and deep mathematical problems: one can perhaps say, as a nontautologi-
cal statement, that physical theories are sources of interesting mathematical
problems only as long as they are really alive and faced with difficulties that
are not purely technical.
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Chapter IV:

Thermodynamic Limit and Stability
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§4.1. The Meaning of the Stability Conditions

The stability and temperedness conditions (see (2.2.17),(2.2.18)):

q) = Z(p(gi - gj) > —-BN stability
i<j (4.1.1)
le(g—¢) < Clg—¢'|7>° for |g—q'|>ro temperedness
for suitable constants C' > 0,e > 0,7¢ > 0, have to be imposed on the
interaction potential in order to insure the existence of the limits in (2.3.8),
(2.3.9) or (2.5.12) defining f., sy, or py respectively, i.e. the thermodynamic
functions associated with the partition functions of various orthodic ensem-
bles. The conditions are particularly interesting because, besides the above
mathematical role, they have a simple, and profound, physical meaning.
The existence of the limits is a necessary requirement to have orthodicity
and equivalence of the thermodynamic models defined by the different en-
sembles, as discussed in Ch.II. We have seen that if the above limits exist
then the ensembles define the same model of thermodynamics for a given
system. Therefore to understand the significance of the stability conditions
it is convenient to examine their meaning in the thermodynamics model de-
fined by one of the ensembles and we shall choose the canonical ensemble,
where the analysis is simplest. The following analysis also illustrates some
of the typical methods that are used in statistical mechanics.

(a) Coalescence Catastrophe due to Short-Distance Attraction. The first
condition in (4.1.1) can be violated in several ways. One possible way is
when the potential ¢ is negative at the origin: we always assume that ¢ is
a smooth function for ¢ # 0 and, in the case at hand, we also assume that
¢ is smooth at the origin.

Let 6 > 0 be fixed so small that the potential between two particles at
distances < 2§ is < —b < 0. Consider the canonical ensemble element with
parameters 3, N for a system enclosed in a (cubic) box of volume V. We
want to study the probability that all the NV particles are located in a little
sphere of radius § around the center of the box (or, for that matter, around
any pre-fixed point of the box).

The potential energy of such a configuration is ¢ < —b(g) ~ —%NQ (be-

cause there are (g’ ) pairs of particles interacting with an energy < —b)
therefore the canonical probability of the collection C of such configurations
will be

dpda —B(K(p)+®(q)) (&
Prttanse = 2CHENNIE 383
corapse dpdg _—B(K(p)+®(q)

VN1 € S h3NN'€

)N63Ne,8b N(N-1)

4.1.2
5@ (4.1.2)
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where we see that the contribution to the integral in the numerator can
be considered as due to two factors. One is the value of the integrand
function, whichwe call an “energy” factor, and one is the volume of the
configuration space where the function takes the value considered, which we
call an “entropy factor” or a “phase space factor”. The first is 8 dependent
while the second is not.

The phase space is extremely small because the configurations that we
consider are very special: nevertheless such configurations are far more
probable than the configurations which “look macroscopically correct”,
i.e. configurations in which the particles are more or less spaced by the
average particle distance that we expect in a macroscopically homogeneous
configuration namely (f£)71/% = pE.

The latter configurations will have a potential energy ®(q) of the order of
uN for some u, so that their probability will be bounded above by

h‘;%djﬂwefﬂ(K@HuN) hxv’jv e—BuN
Pregular S dgdg. 7,8(K(2)+<I>(2) - 30 ) (413)
VNI € J h3NN'€

and we see that
(1) the denominators in (4.1.2),(4.1.3) are (of course) equal and

(2) the phase space factor in the numerator in (4.1.3) is much larger than
the corresponding one in (4.1.2) (i.e. VY against §3V), at least in the “ther-
modynamic limit” V' — oo, N — o0, % T

regular

However, no matter how small § is, the ratio Ilj

collapse
V = oo, % — v~ 1; extremely fast because eBbN?/2 eventually dominates
over VIV ~ eNlog N,

This means that it is far more probable to find the system in a microscopic
volume of size d rather than in a configuration in which the energy has some
macroscopic value proportional to N: note that in a free gas, for instance
(where ®,b = 0), the situation is the opposite, and in general, if the stability
property in (4.1.1) holds, the above argument also does not apply.

This catastrophe can also be called an ultraviolet catastrophe as it is due to
the behavior of the potential at very short distances: it causes the collapse
of the system into configurations concentrated in regions as small as we
please (in the thermodynamic limit).

will approach 0 as

(b) Coalescence Catastrophe due to Long-Range Attraction. This is a more
interesting catastrophic behavior, because of its physical relevance. It occurs
when the potential is too attractive near co. To simplify matters we suppose
that the potential has a hard core, i.e. it is +o0o for r < rg, so that the
above discussed coalescence cannot occur and the system cannot assume
configurations in which the density is higher than a certain quantity p., <
00, called the close packing density.
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The catastrophe occurs if ¢(q) ~ —glg|~>*¢, g,e > 0, for |g| large. For
instance this is the case of matter 1nteract1ng gravitationally; if k£ is the
gravitational constant, m is the particles mass (assuming an identical par-
ticles system), then g = km? and ¢ = 2.

In this case the probability of “regular configurations”, where particles
are at distances of order p~1/? from their close neighbors, is compared with
that of “catastrophic configurations”, with the particles at distances rg from
their close neighbors to form a configuration in “close packing” (so that rq
is equal to the hard core radius). Note that in the latter case the system
does not fill the available volume and leaves empty a region whose volume
is a fraction p“: PPV of V.

A regular configuration will have a probability (in the canonical ensemble
with parameters 3, N and if L is the diameter of V') proportional to

VN 1N L —8+ey
Pregular ~ ChSNN!€g2 pfo lal 4 (4]_4)
because the energy of interaction of a single particle in a medium with
density p is, to leading order in I — oo, pfOL glg|=**tedq o< pgL*;in (4.1.4) C
is a normalization constant (i.e. it is the reciprocal of the canonical partition
function).

Likewise if we consider a configuration in close packing and we dilate it by a
factor (14 4) we obtain a configuration in which each particle can be moved

in a small sphere of radius O(pgpl/ ?§) and we can call such configurations
catastrophic or collapsed as they occupy only a part of the volume allowed,
no matter how large the latter is (i.e. no matter how small p is compared
t0 pep).

In the canonical ensemble with parameters 3, N the probability of the
catastrophic configurations can be bounded below by

(pcznl/s‘s) ¢’ 93 Npey(146)~7 fOL lg| =3+ dg
h3NN!

where the constant C' is the same normalization constant as in (4.1.4); and
again we see that the catastrophic configurations, in spite of their very
low phase space volume, have a much larger probability than the regular
configurations, if p < p.p and 0 is small enough: because the exponential
in the energy factor, in (4.1.5), grows almost as p.,V1+/% > Lpyi+e/s
provided p < p.p and § is small enough.

A system which is too attractive at infinity will not occupy the volume we
give to it but will stay confined in a close packed configuration even in empty
space.

This is important in the theory of stars: stars cannot be expected to obey
“regular thermodynamics” and in particular will not “evaporate” because
their particles interact via the gravitational force at large distance. Stars
do not occupy the whole volume given to them (i.e. the universe); they do
not collapse to a point only because the interaction has a strongly repulsive

Pcatastrophic Z c (415)
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core (even when they are burnt out and the radiation pressure is no longer
able to keep them at a reasonable size, a reasonable size being, from an
anthropocentric viewpoint, the size of the Sun).

(¢) Evaporation Catastrophe: this is a another infrared catastrophe, i.e. a
catastrophe due to the long-range structure of the interactions like (b)
above; it occurs when the potential is too repulsive at oc: i.e. ¢(q) ~
+g|g| 73T as ¢ = oo so that the temperedness condition is again violated.

Also in this case the system does not occupy the whole volume: it will
generate a layer of particles sticking in close packed configuration to the
walls of the container. Therefore if the density is lower than the close
packing density, p < pep, the system will leave a region around the center of
the container empty; and the volume of the empty region will still be of the
order of the total volume of the box (i.e. its diameter will be a fraction of
the box side L with the value of the fraction not depending on L as L — 00).

The proof of this statement is completely analogous to the one of the
previous case, except that now the configuration with lowest energy will be
the one sticking to the wall and close packed there, rather than the one close
packed at the center.

Also this catastrophe is very important as it is realized in systems of
charged particles bearing the same charge: the charges adhere to the bound-
ary in close packing configuration and dispose themselves so that the elec-
trostatic potential energy is minimal. We cannot, therefore, expect that the
charges that we deposit on a metal will occupy the whole volume: they will
rather form a surface layer minimizing the potential energy (i.e. so that the
Coulomb potential in the interior is constant). They do not behave thermo-
dynamically: for instance, besides not occupying the whole volume given to
them, they will not contribute normally to the specific heat.

§4.2. Stability Criteria

There are simple criteria that make sure that the conditions (4.1.1) are
satisfied. The first condition is satisfied, in general, if ¢ > 0: one calls
this case the repulsive potential case, although this is a somewhat improper
definition because ¢ > 0 does not imply that ¢ is monotonically decreasing
(which would in fact generate a repulsive force in the usual sense of the
word). In this case one can take B = 0.

Another interesting case is that of a smooth potential ¢ which has a non-
negative Fourier transform ¢. In fact in this case:

n

®(g,,---,q,) = —¢Q)n + % > olg; —q) =

ij=1
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because szzl et @) |Z;.l:1 elk'gj|2 > 0. This will be called the
positive definite potential, or positive type, case and one can take B = ¢(0).

Of course a potential that can be expressed as a sum of a positive potential
and of a positive type potential is also stable. A remarkable case of a
potential that can be expressed in this way is a potential such that, for
C,C'e,rg >0, it is:

T £
#(a) zc(ﬁ)” : for |g| < r
(4.2.2)
34
| ( )|<C/(|q|) s for |Q|ZT0

Such a potential is sometimes called a Lennard—Jones potential although it
is more general than the potential that was originally introduced with this
name (see §1.2).

The proof of the possibility of representing ¢ as a sum of a positive potential
and of a positive type potential can be found in [FR66]; but the stability of
a potential satisfying (4.2.2) can be checked directly very simply, [Mo56].
Given, in fact, a configuration 454, let r be the minimum distance
between pairs of distinct points: 7 = min;»; |gz. -4, |. Suppose that the pair

of closest particles is ¢, ¢, and that r < $ro; then

B(q,,ee00,) 2 2(gy-00,) o)+ Y wlg,—q)  (423)
lg,—q, 1270

where the equality would have held had we summed over all the j’s, i.e. also
over the j’s such that |g, — g | < 7o-

Around each of the q; we can draw a cube @); with side r and 4; being

the vertex farthest away from q,- Since any two points among ¢ 45----4,
have a distance > 7 the cubes thus constructed do not overlap, and their
union is contained in the complement of the sphere |g1 —ql>ro— 5 >3
furthermore

e (V23 e
r Qi

so that the sum in (4.2.3) is bounded below, for some Cy > 0, by

(V12)? rote T0\3
e /|q|>m gz (%) (4:25)

and ®(q,,...,q, ) > C(TTO)HE - Cl(T—O)S + ®(g,,.--.4,) so that the sum

.
of the first two terms is bounded below by some —C5 > —oo, provided the

assumption that the configuration ¢ 4, is such that r < %ro holds.
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The case r > %rg is easier because the density is bounded above by ~
8ry 3 and the interaction decreases summably at co: a repetition of the
above considerations yields simply that <I>(g1, e ,gn) > <I>(g2,...,gn) +
i ple, — gj) > &(q,,---,q,) — C3 for a suitable C3 > 0. Hence if b =
max(Cs,C3) then ® b+ @ > —bn and stabilit
is prE)vZ(’i. " (gl’ o = ! (qz’ ,gn) a '

We conclude by noting that (4.2.2) are sufficient stability and temperedness
conditions. But in general they are far from being necessary.

In fact one would like to prove that certain systems not fulfilling (4.2.2) are
nevertheless stable and have a well-defined thermodynamics, equivalently
described by the canonical ensemble or by other ensembles.

For instance a gas composed of electrically charged particles and with 0
total charge is an example of a system for which we would like to prove
stability, and even orthodicity of the classical ensembles.

Note that it is easy to see that a gas of charged classical particles is not
stable: just consider the configuration in which pairs of opposite charges are
put very close to each other, while the pair centers of mass are essentially
equispaced; this configuration has an energy which can be made < —bN for
all b’s, by pulling the pairs close enough together.

If, however, the particles also have a hard core interaction besides the
Coulomb interaction, so that pairs of particles cannot be closer than some
ro > 0, the system becomes stable as remarked by Onsager. In fact the
potential of interaction between the charges will be the same as that which
they would have if replaced by uniform balls of charge e; uniformly dis-
tributed in a sphere of radius %7‘0 around the j-th particle. Then by using
the fact that there is a hard core

= Z Iqequ | Z/

i<i i< a}x{q} =7 g

eiogi €j0'2j

(4.2.6)

where g, does not vanish only in the sphere with radius %+ around 4 and

it is constant there and with integral 1; here the integration domain is the
product of two balls {g.}, {gj} of radlus 170 centered at q; and q4;- Hence

€i0q,€j0q

Z/ q_ql| Z/{q}><{q} 1 lg—da'| (42.7)

—1

I-Ql\)

If the number of species is finite it is clear that the sum in the first line can
be bounded below by —nb, if n is the total number of particles. The double
sum is simply proportional to:
- |6(k
/ di 12
2

)P

—~

>0 (4.2.8)

e
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where 6(k) is the Fourier transform of >_; €ioq (q), and we have used that

the Fourier transform of the Coulomb potential is proportional to k2.
Hence (4.2.8) shows that a gas of a few different species of charged par-
ticles, interacting also via a hard core potential (and possibly any further
additional stable potential), is stable: and one should also note that stability
does not even depend on the system being neutral.

This example shows that stability can occur under situations more general
than (4.2.2), and the conditions in (4.2.2) may fail and nevertheless the
system may be stable.

A similar remark can be made for the temperedness condition: (4.2.2)
is sufficient for temperedness but the violations of temperedness described
above and leading to the above infrared catastrophes may be absent in
special systems. For instance in a gas of charged particles that is over-all
neutral this is what really happens, see [LL72].

§4.3. Thermodynamic Limit

A way to check that we are not missing some other basic condition on
the potential is to show that, if the stability and temperedness conditions
are satisfied, the thermodynamic limits exist and the basic ensembles are
equivalent.

We have considered in Ch.IT the existence of the thermodynamic limit of
the entropy:

(v, ) I L log/ dpdg (4.3.1)
s(v,u) = im — —_— 3.

where A3 is the size of a phase space cell, see Ch.I and Ch.II.

And, at least at a heuristic level, we have seen that the existence of the limit
(4.3.1), the microcanonical entropy, is the key to the proof of the existence
of the limits for f.,pge, see (2.3.8),(2.5.12), and for the equivalence of the
thermodynamics models based on the classical ensembles: microcanonical,
canonical and grand canonical.

Therefore we shall discuss the problem of the existence of the thermody-
namic limit in (4.3.1), 7.e. the problem of the existence of the entropy in the
microcanonical ensemble: this is in some sense harder than the problem of
showing the existence of the corresponding limits in the canonical or grand
canonical ensembles, but it has the advantage of implying the results for
the other ensembles as heuristically discussed in Ch.II: the argument given
there is easily turned into a proof, under very general conditions.

What follows is important not only because of the results that it establishes
but also because it illustrates some of the basic techniques used in appli-
cations of statistical mechanics. In spite of its technical nature the reader
could be interested in following it as it provides a good understanding of
the physical meaning of the conditions (4.1.1) and of their relation with the
extensivity properties of thermodynamic functions.
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Before proceeding it is necessary to warn however that the following argu-
ment looks at first a bit subtle, but it is in fact quite straightforward and
the intricacy is only due to the fact that we must make sure that when
we divide the number of particles by certain factors (often but not always
2,4 or 8) we get an integer number. If one does not pay attention to this
condition then the proof becomes trivial (although strictly speaking incor-
rect). Another source of problems is that we need to say that the partition
function corresponding to a region that is the union of two subregions is
the product of the partition functions corresponding to the subregions, a
property that would be obvious of the regions were separated by a corridor
of width larger than the interaction range. But the regions that we have
to consider touch each other and we must produce corridors by shrinking
the regions and therefore we must compare partition functions relative to
a region and to the smaller region obtained by cutting out of it a layer of
width iro around its boundary.

The reader should, on a first reading, simply disregard the technical details
related to the above counting and corridor problems and see that (4.3.6)
and the consequent (4.3.8) hold at least approximately, and the existence
of the limit then follows on the special sequence of cubes B, with side
2" Lo (for a fixed Lo > 0 and identifying temporarily the cubes B,, and B,);
subsequently (4.3.11), i.e. esentially still (4.3.6), implies both existence over
arbitrary sequences of cubes and shape independence.

One could invoke the fact that the numbers of particles are so large that a
change of the particle number by a few units or the taking out of a layer of
width %7‘0 around the boundary of a region that is becoming infinite, makes
no difference “on physical grounds”; but this is precisely the point, as we
must show that this is correct.

To simplify the discussion we shall suppose that the interaction has finite
range, i.e. it vanishes for |g| > 7o.

(A) Ground State Energy Convexity as a Function of the Energy

We first consider a special sequence of boxes and a special sequence of
values of N,U. The boxes will be cubes Bj, with side size L}, = 2"Lq — r¢
where Lg is an arbitrarily chosen unit of length; the boxes B!, are contained
in the cube B, with side size L, = 2" Ly and stay away <, at least, from
its boundaries. The volume |B,,| is 2°"Lj.

Bn+1
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Fig. 4.3.1

The figure illustrates the boxes Bj,11 and B), in the corresponding two-
dimensional case (for simplicity); the region B, is represented by the first
“quarter” (i.e. the lower left square); the shaded areas represent the corri-
dors of width 7o between the boundaries of the four copies of B, and the
corresponding copies of B,,.

Given a density p > 0 we suppose first that it is dyadic, i.e. that it has the
form p = m2*35L073 with m, s positive integers. Hence if n > s the number

N, = p|By| is an integer and we can define the “ground state energy” e, at
density p by
(g, -5ay )
e, = inf —1|B—|—N" > —Bp (4.3.2)
n

where! the infimum is taken over all n > s and over all configurations
4554y, 10 Bj, and the last inequality is a consequence of the stability,
(4.1.1). Making a difference between B], and B,, is a convenient device that
allows us to simplify some minor points in the forthcoming analysis and it
should not be regarded as an issue. The quantity e, can be thought of as
the minimum energy density of the particle configurations with numerical
density p.

Note that if p1,ps are two dyadic densities then also p = L(p1 + po) is
a dyadic density. Furthermore if we consider a box Bj_ , we see that it
contains 8 = 2 boxes B!, separated by at least r.

If we put p1|B,| particles in four of the boxes B!, and p3|B,| in the other
4, it is clear, from the definitions, that the energy density of any such
configuration is < 1e,,|By| + 1e,,| Byl so that:

ep < 5lep +eps)- (4.3.3)

N | =

In fact it is easy to see that e, ——3 0 because (4.3.2) holds together with
the easily checked e, < 1p max|g(s,-1 ¢(q) if p is small enough.?

Therefore if we define eq = 0 the function p — e, is continuous on the set
of dyadic densities on which it is uniquely defined (convex functions on the
dyadics are continuous) and it can be extended by continuity to all real p,
dyadic or not. We shall call A the convex region above the graph of the
extension to all p’s of p — e,.

(B) Upper Bound on Entropy.

Let A be the region p > 0 and e > e,; let (p,e) € A be an (interior)
point with p dyadic and e > e,. Given p,e,V' C V let, to simplify the

1 The quantity e, is defined to be +occ if one cannot fit p|By| particles inside B/ ; this
may happen if the interaction contains a hard core part.

1
2 This is a bound of the energy of a configuration of points regularly spaced by p~ 3.
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notations, Ny(p,e, V') = NMo(U,V) with Ny the microcanonical partition
function, (2.3.5), N = pV, U = eV. In the following V' will always be V
deprived of a small corridor near its boundary.

Define, for the p’s that are integer multiples of 2_3"L0_3, a corresponding
microcanonical entropy:

b
| Bal

] dpdg.
|Bn| 0g K(p)+®(g)<e|Bn| B3N NI

!
9;€B,

on(p;€) = IOgNO(paeaB;z) = (4.3.4)

Then o, can be bounded (because the potential ® satisfies: & > —BN,, >
—Bp|Byl) by:

1 Q(3N,) (v2m[Balle —e,)) "
on(pse) < log ~
| Bl h3Na NV e=Nu /27N,

(4me¥3/3)H (e = ,)'
h3pt

B[N <
(4.3.5)
< plog

where Q(m) = Qﬁmf(%)fl is the surface of the unit sphere in m dimen-
sional space: and no confusion should arise between the energy density e
and the e (equal to the base of the natural logarithms) arising from using
Stirling’s formula for N,,! and for the gamma function. The above inequal-
ity is an essential consequence of the stability which, in this proof, is used
here for the first time.

(C) Quasi Convexity of the Entropy in Finite Volume.

The function o,(p, e) has the simple property that it is “almost” convex.
Suppose in fact that p = £(p1+p2) and e = £ (e1+e2) with p, p1, po multiples
of 273(n+1) 9=3n 9=3n yegpectively, and e; > e,,, €2 > €,, (hence e > e,).
Then we can can look at the box B;,,, and at 8 copies of B, that fit in it
separated by a corridor of width 7.

In four of the boxes B,, we put N1y = p1|By| particles in a configuration
with energy < e;|B,| and in the other four we put N(3) = p2|B,| particles
in a configuration with energy < es|B,|; then N = 4(N(1)+ N(2)). Then we
shall have in B, | exactly N = p|B,;1| particles with energy < e|Bj1]
and clearly

No(pa €, B;H—l) Z NO(pla €1, B;z)4N0(p27 €2, B;z)4 (436)

where the N!in the definition of Ny, see (4.3.4), is very important because in
deriving (4.3.6) one uses the fact that there are W ways of selecting

which among the N particles are put in each of the eight boxes.
Relation (4.3.6) can be written in terms of the o, and it becomes:

Ont1(p,€) > =(on(p1,e1) + on(p2,e2) . (4.3.7)

1
2
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It will be convenient to have o,(p,e) defined not only for dyadic p
(i.e. multiples of 273"L;®) but for any real p. Since o,(p,e) is actually
defined for p = 53 Ly % this can be simply achieved by defining o,(p, e) for
the other values of p by linear interpolation.

The linear interpolation is very convenient and natural because it satisfies
the bound (4.3.5), since the latter is convex in p,e; furthermore it has, by
(4.3.7), the further property that if o, (p, e) is nondecreasing in n > ng for
each p a multiple of 27370 LaB, then it is also nondecreasing in n > ng for
all p.

(D) Monotonicity of Entropy as Function of the Container Size

The property of o,,(p,e) of being nondecreasing in n, for dyadic p, is the
key property to the analysis; in fact since, as remarked above, the box By, ,;
contains eight boxes B], separated by a corridor of width ro we see (from
(4.3.6) with p = p; = p2 and e = ¢; = €2) that

Un-l—l(pﬂ ) log./\fo(p,e Bn+1) =

1
|Bn+1|

> log No(p, e, BL)® = (4.3.8)
|Bn+1|

=0on(p;€)

where again we make essential use of the N! in the definition (4.3.4) of
N, in the same way as in the derivation of (4.3.6). By (4.3.5) on(e,p) is
uniformly bounded in n.

Hence the limit as n — oo of o, (p, e) does exist for all p dyadic and for
e > e,. But the sequence o, (p,e) will also converge for the nondyadic p’s
because o, (p, €) is “almost convex” in the sense of (4.3.7), and in fact the
convergence will be uniform on every closed set in the interior of A. The
latter property follows from elementary considerations on convex functions
monotonically convergent to a limit. Clearly (4.3.7),(4.3.5) imply that the
limit function s(p, e) will be convex and bounded in the interior of the region
A. Hence it will be continuous in the same region.

(E) Independence from the Special Sequences of Density Values and of Grow-
ing Containers.

We now want to show that we can free ourselves from the special sequence
of boxes and of densities that we have considered.

Consider a family of cubic boxes B with side L — oo containing N par-
ticles in configurations with energy < E and suppose that & v == p and

L == e with (p, ) in the interior of A. Below we use equivalently the
notation V = |B| =

Let po =p+e¢ and po be supposed dyadic, let eg = e — n with €, small.
We can divide the box B into boxes B,, of side L,, = 2"Ly. Their number

will be the cube of the integer part ] and they will cover a volume inside
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B whose complement has size < 8L?L,,. The corresponding slightly smaller
boxes B], will therefore cover a volume

L T L T
> 3_ 2 — _3 2—0: — —n— —0 . D
> L° - 8L°L, (Ln) 8L2 5 |B|(1—8 7~ 857 ) (4.3.9)

n

If n, L are so large that

To g
- = 4.3.10
2L”)P0 > po 5 >p ( )

(1—8%—8

we see that by filling each box B], with N,, = po|B,| particles we would put
in B more than N particles (N = p|B|).

Hence if we fill each box B!, with N,, particles until [Nin] N,, particles are
located and if we put in one of the remaining boxes a suitable number < N,
of particles we shall have located exactly N particles inside B. They are
put down in configurations with energy < eg|B,| in each box among the
first [Nln] N,, and in a regular but arbitrary configuration in the last box, to
cover as many points as necessary to reach the total correct number N (for
instance on a square lattice with density higher than p).

Then it is clear that if L is large enough we shall have filled the box B
with IV particles with total energy < E = eV and with overall density p;
at the same time we shall have shown the inequality

1

B (log No(po, e, B ¥l + Cy) (4.3.11)

1
logNo(p,e,B) Z Do
| B|

where C), bounds the log Vg (p', €') coming from the partition function of the
particles in the last box: C), is the maximum of log No(p', ') for p' = %
for 1 <m < N, and €’ suitably large. Once more the N! in the definition

of the microcanonical partition function (4.3.4) is essential.
This means, by taking into account the arbitrariness of n, that

~ de .. 1

5(p.e)d lim inf ] log No(p, e, B) > a4(po, €0) w=se 7(po, €o)
N E
3P s e

(4.3.12)
1 1[N 1
because Ecn m)o and W[N_n] m} m
Then the arbitrariness of eg, pg as well as the continuity of the function
o(p,e) imply that 5(p, ¢) > 7(p, ).

But we can clearly repeat the argument by exchanging the role of B and
1

By: namely we take a very large L so that g log No(p, e, B) is very close

to the limsup as L — oo, 25 — p, & — e of ﬁﬂ log Ny (p, e, B) and we take
a very large n so that L, > L and show by the same type of argument that:

1
o(p,e) > limsup —logNo(p,e, B). (4.3.13)

L—oo |B|
N E_
75 P Tg e
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This will imply

1
o(p,e)= lim Elog/\fo(p,e,B). (4.3.14)
N E
L—3—)p,L—3—)e

completing the proof of the existence of the microcanonical entropy over
sequences of cubic boxes.

The extension to sequences of parallelepipedal boxes with all sides tending
to oo at comparable speeds can be done along the same lines and we shall
not, discuss it.

(F) Box-Shape Independence.

We just mention that the argument can be perfected to show that the
limit (4.3.14) exists and equals o(p, €) over much more general sequences of
boxes.

Imagine, in fact, paving space with cubes of side £ > Ly (one of which
is always centered at the origin, to fix the arbitrariness due to translation
invariance); call B (¢) the union of the cubes of the pavement that contain
points of B, and B_(f) the union of the cubes of the pavement entirely
contained in B. Then we say that B tends to oo in the sense of Fisher if
there exist A, a > 0 such that:

|B+(0)] — |B—(4)] £\
: |B| SA.(diamB)' (4.3.15)

This means that the box B grows keeping the surface small compared to
the volume (homothetic growth of a box with smooth boundary trivially
satisfies (4.3.15) with a = 1).

Then it can be shown that, for (p, e) in the interior of A, (4.3.14) holds on
any sequence B — oo in the sense of Fisher.

If the potential has a hard core the same argument as above applies except
that the interval of variability of p is no longer [0, +00) but [0, pcp), i.e. it
is a finite interval ending at the close packing density.

The finite range condition can also be eliminated and replaced by the
temperedness condition (4.3.1).

A complete treatment of all these remaining cases can be found in [Fi64],
[Ru69].

The function o (p, e) is trivially related to the function s(v,u) of Ch.II:

-1

s(v,u) =vo(v v u) (4.3.16)

so that we see that s(v,u) is convex in v, at fixed u, and in u at fixed v.3

3 In fact by taking the second v—derivative of v f(v~') one sees that the convexity of f(p)
implies that of vf(v™1).
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This is also physically interesting as it shows that the derivative (ﬁ)v =

ou
T—! is monotonic nonincreasing in u (“positivity of the specific heat” at
constant volume) and likewise behaves (%)u =£.

One can also see that the latter quantities are > 0, as demanded by the
physical interpretation of T', p as, respectively, the absolute temperature and
pressure. In fact one can prove the relations:

on(p,e+0) > an(p,e) + plog(l + ) 4>0

e—ep
4.3.17
54 ( )

n
which together with the convexity properties immediately imply the posi-
tivity of T, p.

)um0+

(G) Continuity of the Pressure

Consider the pressure as a function of the density at constant temperature.
This is a function that is most conveniently studied in the grand canonical
ensemble. Since pressure is a convex function of the chemical potential* A
its derivative is monotonically nondecreasing (because convexity means that
the first derivative is nondecreasing); hence its graph has, at most, countably
many upward jumps and countably many horizontal plateaus. A vertical
jump corresponds to a value of the chemical potential where the right and
left derivatives of the pressure are different, while a horizontal plateau cor-
responds to a straight segment in the graph of the pressure (drawing a few
schematic graphs is very helpful here).

The definition of grand canononical partition function implies, by differ-
entiating it with respect to A, that its A—derivative is the density. Then
to say that there are no horizontal plateaus in the graph of the density as
a function of the chemical potential is equivalent to saying that the graph
of the pressure as a function of the chemical potential contains no straight
segment.

A horizontal plateau in the graph of the density as a function of the chemi-
cal potential means that there are several chemical potentials corresponding
to the same density.? Hence there are several pressures corresponding to

4 Because fp = %log Z(B,\) and E(B, ), the grand canonical partition function, see

—BAn
Ch.Il, is E = ZZOZO £ s! Z!,(B) with Z/ the canonical partition function for n parti-

cles; hence in general the logarithm of a sum of quantities ce®’ X with ¢ > 0 is a convex
function of X as one checks that the second derivative of this sum with respect to A is
nonnegative.

Note that the derivative of the pressure with respect to the chemical potential is the
density and, therefore, it should be strictly positive so that the pressure is strictly
increasing with the chemical potential. But one has to show that the density is positive
if the chemical potential is negative enough: this is not so easy and it will be shown
in complete generality in §5.9: see the sentence preceding (5.9.17) where the relation
p = e (14 O(e*P)) is given and interpreted as saying that the density is proportional
to the activity z = e®* at small activity i.e. at negative enough chemical potential.
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the same density, i.e. a vertical discontinuity in the graph of the pressure
as a function of the density.

It is therefore interesting to see that such discontinuities of the pressure
as a function of the density at constant 7" are in fact not possible under
the only condition that the potential is superstable; see Ch.V, (5.3.1) for a
definition.

A simple proof, due to Ginibre, [Gi67], can be given for systems with hard
core or, alternatively, with purely repulsive pair potential. The general case
of a supertsable potential is harder, [DM67],[Ru70].

Define the activity as 2% e Pr/m 2mﬁ—13h*3, where the second factor

comes from integrating explicitly the kinetic part of the energy so that

the grand canonical partition function Z (in volume V and temperature
= (kpB)~!) can eventually be written

o0
==Y 4z
777,

see below. Then we estimate

1 _POBp _ pOBpIBA _ P, dBp 10z

Bop — BB Bp — B 92 zop

at constant J: in the grand canonical ensemble it is Op = % log=Z. The
physical interpretation of x is clearly that of isothermal compressibility.

If we can show that x~' can be bounded away from +oo for z = e°* in any
finite interval then yx is bounded away from zero in any finite interval and
the graph of the pressure as a function of the density is continuous (in fact
Lipshitz continuous) and as a function of the chemical potential it cannot
contain any straight segment.

The grand canonical density is p = @ with {n )def S0 i %, where

n=0"""nl
Zn:/ day ... don e P 2oics $T) (4.3.18)

with 2=3Y"7" L2"Z,. Hence, if Bp =V 'logZ, then:

0 0
p= zg = % and z% = (n?) — (n)*;
furthermore
—1_ POBp _ B%(%)fl
B Op B Oz Oz
Hence: 93 (n)
-1_ P, 9P 9Py _ P ")

and we need a lower bound on W
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Consider systems with hard core interactions, i.e. with a pair potential
@(z — y) equal to +oo for |z —y| < a for some a > 0, or systems with

repulsive potential ¢ > 0. Let ¢ (q) et ©(q) if ¢(g) > 0 and ¢4 (g )difO

otherwise.

The key remark is that Z,y2/Zn11 > Zny1/Zn — D for some wvolume
independent and continuous function D = D(f). Hence in the hard core
case one can take D = e9P [(1—e=#%+(®)) dr < 400 if — B is a lower bound
for the energy of interaction ®; of one particle with any number of others.®

Setting ®(X) the potential energy of the configuration X this fol-

lows from the Schwarz inequality; abbreviating (zi,..., gn)défX and

<I>1(X,x)déf ZJ Lp(z; — ) > —B, we find:

< (/dXe—B‘b(X)) . (/dX d@dye*5<1>(X)*ﬂ<I>1(X’z)*ﬂ%(X’g)) =

1,390 = Zn/dngdge"Bq’(X’ﬁ’E) (e+ﬂ<p(£*g) —141) = (4.3.20)

= ZnZpio + Zn / dX dgeP®X.2) / dye P01 (Xw) (1 — e=Pe(2mw)y <

< ZnZnio + Zn / dX dge P*(X-2) / dyePB(1 — e Pe+lzmu)y =

Znt2 o Znt1

=ZnZn IinZini1D, <+
+2+ i Zn+1 - Zn

-D
where D = €98 [(1 _B“’Jf(y))dy Therefore, using again the Schwartz
inequality (plus the normalization property 3. Z-Ze» =1)

n nl=

o0
17, 2z 2
((n)(1+2D))* = (Z —"— (72 Y = —l—nzD)) <
n=0 n
4.3.21 00 iy (4.3.21)
Gzt

so that developing the square the r.h.s. becomes
o0

1 72

E Z—': (222—4_1 + 222Dn Zn+1 + 2'2 ’I'L2 D2 Zn)
n. = n

n=0

6 Therefore B < +oo if there is a hard core or if ¢ > 0; while if the potential is of
Lennard—-Jones type, or more generally a superstable potential, with an attractive part
there is no such B and the theory is more difficult, see [Ru70].
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and using the last of (4.3.20) this is bounded above, if p, = (2" /n!) (Z,/E),
by
— 2" 1
Z Z—E z 2o+ 2°D 21 +22° Dy + nQZQDQZn) =
= nlE
— Z (n 4+ 2)ppao + 2D (n+ 1)ppyi+
n=
+ 2z D ( + ]-)p'n.+1 + 22D2 n2pn) =
= (n®) = (n) + 2D{n) + 2zD((n*) — (n)) + 2*D*(n’) =
— (14 2D)*(n?) — (1+ 2D){n)
hence one finds , )
(n*) —(n) 1
> 4.3.22
4.3.22 <n> = 142D ( 3 )

which proves a lower bound on y and, therefore, the continuity of the pres-
sure as a function of the density at constant temperature
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Chapter V:

Phase Transitions
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85.1. Virial Theorem, Virial Series and van der Waals Equation

Van der Waals theory is one of the earliest and simplest applications of
classical statistical mechanics (1873: see [VW88]). Nevertheless it brings
up one more of its conceptual problems, although not as deep as the critical
problems of Chap.III. It clearly indicates that one has to give up the naive
hope that the theory of phase transitions and phase coexistence could be
easily quantitatively accessible.

The classical approach starts from the virial theorem (Clausius). Cousider a
real gas with IV identical particles with mass m in a spherical (for simplicity)
container with volume V'; suppose that the microscopic interaction potential
between two particles at distance r is a Lennard-Jones potential:

p(r) = 4e((ro/r)™* = (ro/7)°) (5.1.1)

where € is the interaction strength and rg is the diameter of the molecules.
Let the force acting on the ¢-th particle be L,; multiplying both sides of

the equations of motion mg, = f. by -3¢, we find

.. 1 1
—92.me 4 =52 9,1, = 500 (5.1.2)

and the quantity C(q) is the wirial of the forces in the configuration ¢; note
that C(q) is not translation invariant because of the presence of the forces
due to the walls: writing the force L as a sum of the internal forces and of
the external forces, due to the walls, the virial C' can be expressed naturally
as sum of the virial C;,; of the internal forces (translation invariant) and
of the virial C,y; of the external forces. By dividing both sides by 7 and
integrating over the time interval [0, 7] one finds, in the limit 7 — 400,

(T) = =(C) (5.1.3)

1
2
which is read by saying that the average kinetic energy equals half the
average virial of the forces.

The virial naturally splits as the sum of the virial due to the internal forces
Cint and that due to the external ones C,,;. The virial of the external forces
is simply

(Cent) = 3pV (5.1.4)

where p is the pressure and V the volume. Equations (5.1.3) and (5.1.4)
constitute the wirial theorem of Clausius.

A quick proof of (5.1.4) is that the external forces act only on the boundary
of the (spherical) box B containing the system: they send back into the
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container particles that try to get out. The average force that a surface
element do of the walls exercises over each colliding particle is —pn, do if p
is the pressure and n, the outer normal. Hence (Ceyt) = pfaB doc&-n (&) =
p3V by Green’s volume formula. A more refined argument leading to the
same result is possible.!
Since the average kinetic energy is % BN we see that the equation of state
is:
l =pv + <Oint>
8 3N
if 371 = kpT and T is the absolute temperature and v the specific volume.
The two relations (5.1.3) and (5.1.4) together with their corollary (5.1.5)
constitute Clausius’ virial theorem. The equation (5.1.5) is essentially the
equation of state. In the case of no internal forces it yields Spv = 1, the
ideal gas equation.
Van der Waals first used the virial theorem to perform an actual compu-
tation of the corrections. Note that the internal virial C;,; can be written,

i#f= 0, 2g~q))

(5.1.5)

N
Cint = ZZL—H' 4= Zqu‘p(gi —4;) - (¢,~ ) (5.1.6)

i=1 i#£j i<j

which shows that the contribution to the virial by the internal repulsive
forces is negative while that of the attractive forces is positive. To evaluate
the average of (5.1.6) we simply use the theory of the ensembles and choose
to use the canonical ensemble, as it is more convenient.

1 The force due the spherical container boundary can be represented as:

i(z) = f/ dog n(§)F(z — €) (a)
dB

where F is a nonnegative scalar, n®(¢) is the outer normal to the boundary B of B at
¢. The function F' is not zero and very intense only in a very tiny region near the origin,
so that d(z) is not zero only very close to the boundary. We are really interested in the
limiting case in which the force F' is a Dirac J-function, which represents the ideal case
of a perfect wall with no width.

The virial of the external forces § necessary to confine the system inside the box B is

O b)) = / dogn®(€) - €Y Flz; - ©) ()
B f

where (-) denotes the time avergae, and having replaced n°(§) -z; by n°(£)- £ because of
the locality property of F' (exact if § is a delta function). The average <Zl F(z; = §))
is £ independent because of the assumed spherical symmetry and it represents the force
exerted per unit surface area near §, i.e. it is the pressure p so that the average virial is

pfaB do’gﬂz -§ = 3pV. For an extension to nonspherical containers see [MP72].
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One could proceed by using time averages and the ergodic hypothesis,
i.e. the microcanonical ensemble, but the result would be the same. One
could also proceed by simply taking the few time averages that we really
need and argue that their value should coincide with the one we calculate as-
suming the gas essentially free and adding corrections that take into account
that close particles interact. This would be far weaker than the ergodic hy-
pothesis and it was the path followed by van der Waals; however, unlike the
equidistribution assumption, it does not lead easily to a systematic power
series expansion in v~! of the corrections.

In the canonical ensemble the average internal virial is, taking into account

. . N
the symmetry in ¢, and denoting @, (gg, .. ,gN) = Zj:s (p(gl - gj):

(Cint) = <N> / e L ey (8 ) ARyt )
2 N (5.1.7)

LeTPele,mgy) 9, #lg, 4, (¢, — 4,)

which can be rewritten (using an integration by parts) as

(Cint) = <N> / dgldg?_. : .e_'g(bﬂl(137"'721\')_’6@(22""721\7)-

2 N!
: %le (e 77 9) 1) (¢ —q,) = /% % (5.1.8)
./%(eﬁw(gy 1) e P00 Wyrrty) A t)
_/dﬂldggdﬂg / d%vcg']v o %0, (8t ) =B )

(e 1) (g, — g,) -2y ol - 1)

where the aqle—ﬁ*"(ﬂfﬂz) has been replaced, before integrating by parts, by
By, (€779(417%) _1) to avoid boundary contributions in the integrations (in
fact e P%@ is 1 at g = oo when, eventually, we take the limit as V' — o0).

To rewrite (5.1.8) in a better form it is useful to introduce the notion

of correlation function: the k-points correlation function p(gl,...,gk) is
dq. ...

defined so that p(q 1ree ,gk) 21k! & ig the probability of finding k particles

in the infinetisimal volume elements dq e ,dgk. Hence, in the canonical

ensemble:

_ dz,...dry 4 _
p(gla---agk)ZZNl/ﬁe P totientn) - (5.19)

where the normalization Zy is the canonical partition function. Note that
p(gl, .. ,gk) is mot normalized to 1; in fact fV p(gl, e ,gk)dgl -..dg, =
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N(N —=1)...(N —k+1). It is a simple matter of algebra to check that
3 - — -
<Olnt) = ﬁ /dgldgz (e ﬂ¢(21 22) _ l)eﬂ¢(21 gz)p(gl’QQ)_l_

1 _ _
+ ﬁ/dﬂldﬂQdQS (6 ,6’4;7(21 22) — 1) (_ﬁ) (5110)

Be(e,—a,)
.Q&(‘O(% - Qg) : (21 - gz)e vle, e,

p(q,:4,,9,) -
It can be shown, see §5.9 below, that the correlation functions of order k
are, for p small, analytic functions of p divisible by p* and proportional to

—,6<I>( 4,504, ). in fact

Py q) =" e PP (14 pFi(g) + PP Fa(g) +..)  (5.111)

so that (5.1.10) can be used as a starting point for a systematic expansion of
the equation of state in powers of p. We do not discuss here the possibility
of the expansion (5.1.11), not because it is difficult, but because it would
lead us into a technical question that certainly was not worrying people at
the time the above analysis was performed; we defer it to §5.9.

The physical meaning of the correlation functions of order k shows that
they should be proportional to p* and their definition (5.1.9) shows that
they ought also to be proportional to e P4 0)  Hence it is quite clear
that unless some integrals diverge, (5.1.10) already allows us to evaluate the
first correction to the gas law. We simply neglect the third order term in
the density and use p(g,,q,) = p2e P91, 79) in the second order term.

But there is no apparent reason for the integrals to diverge: they contain
the factors (efﬂ‘p(gfﬂz) —1) and 60190(21 — g,) which tend to zero at large
arguments so that the divergence sources should be quite subtle. About
hundred years after the original work of van der Waals the actual conver-
gence of the series in (5.1.11) and of the virial series has been mathematically
proved. We shall discuss it from a modern viewpoint in the following §5.9.

Then

1 3
§(Cint> 26 2I(B) + VO(p®) (5.1.12)
where I(8) = 1 [ (e7#9(9 —1) d?q and the equation of state (5.1.5) becomes

o+ ’(5) +O( ) =L,

The calculatlon of I can be performed approximately if fe < 1 (i.e. at
“high temperature”), by imagining that ¢(r) = +oo (i.e. e (") —1 = —1)
for r < rg and e #¢(") — 1 = —By(r) for r > ry. One has:

1 [r
1 —/ —dmr?dr — —/ r)dnridr =
2 Jo

—4vg + %ﬂsvo =
—(b— Ba)

1%

(5.1.13)
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with 4 29
vg = —W(r—0)3, b=4vy, a= —evg. (5.1.14)
3 3
Then it follows that pv + & — 6% = % so that
a b. 1 1 1 1
—Jv=(14-)== -+ 0(— 5.1.15
=04 D5 =275+ 0 (3119

or (p+ %)(v—0b)3 =1+ O(v™?), which gives the equation of state up to
O(v~2) and for B¢ < 1, i.e. at high temperature and low density.

It is in fact possible to compute, or at least to give integral representations
of the coefficients of arbitrary order of the virial series:

(o]

Bp=v""+Y c(B" (5.1.16)
=

=2

and one can even show that the series converges for 5 small and v large
(i.e. high temperature and small density) if the stability and temperedness
conditions discussed in Chap.II, Chap.IV, (4.1.1) hold.

Equation (5.1.15) can be compared with a well-known empirical equation
of state, the Van der Waals equation:

Bp+a/v)v—b=1 or (p+ An?/V?)(V —nB)=nRT (5.1.17)
where, denoting Avogadro’s number by Ny,
A=aN%, B=bNa, R=kpNa, n=N/Nu. (5.1.18)

It is clear that (5.1.16) and (5.1.17) coincide up to quantities of O(v™")
hence (once an explicit form for ¢ like (5.1.1) has been assumed as a good
description of the system) (5.1.18), (5.1.14) show us how it is possible to
access the microscopic parameters € and ro of the potential ¢ via measure-
ments detecting deviations from the Boyle-Mariotte law Spv = 1 of the
rarefied gases:

e =3a/8b=3A/8BN,, 1o = (3b/2n)'/® = (3B/2nN4)*/?. (5.1.19)

Equation (5.1.17) is, however, empirically used beyond its validity region
(very large v, i.e. very small density) by regarding A, B as phenomenolog-
ical parameters to be experimentally determined by measuring them near
generic values of p, V,T'. The result is that the values of A, B do not “usually
vary too much” and, apart from this small variability of A, B as functions of
v, T, the predictions of (5.1.17) have been in reasonable agreement with ex-
perience until, as the precision of the experiments increased over the years,
serious inadequacies eventually emerged.
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A striking prediction of (5.1.17), taken literally, is that the gas undergoes
a “gas-liquid” phase transition with a critical point at a temperature T,
volume v, and pressure p. that can be computed via (5.1.17) and are given
by (see §1.2, table (1.1))

RT, = 84/27B, V. =3B (n=1). (5.1.20)

The critical temperature is defined as the largest value T, of the temperature
for which the graph of p as a function of v is not monotonic decreasing; the
critical volume V,, is the value of v at the horizontal inflection point occurring
for T =T..

At the same time this is very interesting as it shows that there are sim-
ple relations among the critical parameters and the microscopic interaction
constants (¢ ~ kT, and ro ~ (V. /N4))'/3:

e = 81kpT./64, ro = (V./2rN4)Y/3 (5.1.21)

if the model (5.1.1) is used for the interaction potential ¢, see the table in
§1.2.

On the other hand, (5.1.17) cannot be accepted acritically not only be-
cause in its derivation we made various approximations (essentially neglect-
ing O(v™!) in the equation of state), but mainly because for T < T, the
function p is no longer monotonic in v, and the latter is a thermodynamic
function that in Chap.IV and Chap.IT has been shown to be monotonic non-
increasing as a consequence of the very general convezity of the free energy,
evaluated for instance in the canonical ensemble f.(83,v), as a function of
v, i.e. 82f./0v? > 0 so that —0p/dv = H*f./dv? > 0.

If, nevertheless, the isotherms of (5.1.17) are taken seriously even for T' <
T., by interpreting them as describing metastable states, then the “correct”
equation of state can be obtained by noting that p as a function of v has
a horizontal plateau [v;,v,] in the situations in the Fig. 5.1.1. Here the
plateau associated with the represented isotherm is drawn; hence the density
undergoes a jump from v; to v, as the pressure decreases and v, v, are
interpretable as the specific volumes of the liquid and of the gas.

A

Fig. 5.1.1
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The horizontal plateau must be drawn so that the areas 7,0 are equal.
The reason is that the reversible thermodynamic cycle obtained by having
the system go through a sequence of transformations along the plateau and
back along the curved parts of the isotherm would yield an output of work
represented by the difference between the areas (if run in an appropriate
direction). However it would be a Carnot cycle at counstant temperature
which, by the second principle of Thermodynamics, should instead yield 0
work.

This is the well-known Mazwell construction that, as we see, is motivated
in a rather obscure way because it is not clear whether is is really possible to
perform the above Carnot cycle since it is at least doubtful, [LR69], that the
intermediate states with p increasing with v could be realized experimentally
or even be theoretically possible (see, however, the theorem in §5.2).

The van der Waals equation, refined and complemented by Maxwell’s rule,
nevertheless provides a simple picture for the understanding of the liquid-gas
transition in statistical mechanics. But it predicts the following behavior:

p—p)x(V-V.))  6=3T=T.

(5.1.22)

(vy —v) o (T, = T)" B=1/2,for T - TS
which are in sharp contrast with the experimental data gathered in the
twentieth century. For the simplest substances one finds instead § = 5, § =
1/3.

An accurate measurement of § and (3 is very delicate and this explains why,
for a long time, the equation of van der Waals has been considered a “good
representation” not only for a high-temperature low-density gas regime but
for the liquid-gas transition regime as well. To gain an idea of the orders of
magnitude of the constants A, B, hence of the microscopic interaction data,
see the table at the end of §1.2.

One should stress that the disagreement between theory and experiment
that we are discussing has a rather different meaning and implications if
compared with the discussions in Chap.III. The disagreement here is due to
bad approximations (such as having neglected higher-order corrections in
v~1in (5.1.15) or such as having assumed that the virial series converged
even for values of v, T close to the critical point).

Here the disagreement does not involve fundamental questions on the foun-
dations of the theory: it only involves the analysis of whether a certain
approximation is reasonable or correct, or not.

One should remark, last but not least, that the blind faith in the equation of
state (5.1.17) is untenable also because of another simple remark: nothing in
the above analysis would change if the space dimension was d =2 or d = 1:
but in the last case, d = 1, one can easily prove that the system, if the
interaction decays rapidly at infinity, does not undergo phase transitions,
a fact usually known as Landau’s argument, see §152 in [LL67], and which
can be made into a mathematical theorem proved, as such, by van Hove,
[VH50], see §5.8 below.
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In fact it is now understood that the Van der Waals equation represents
rigorously only a limiting situation, in which the particles have a hard core
interaction (or a strongly repulsive one at close distance) and a further
smooth long-range interaction ¢: very small but with very long range. This
is discussed in §5.2.

As a final comment it is worth stressing that the virial theorem gives in
principle the corrections to the equation of state in a rather direct and
simple form as time averages of the virial of the internal forces. Since the
virial of the internal forces is easy to compute if one knows the positions
of the particles as a function of time we see that the theorem provides a
method for computing the equation of state in numerical simulations. In
fact this idea has been exploited in many numerical experiments, in which
the (5.1.5) plays a key role.

§5.2. The Modern Interpretation of van der Waals’ Approxima-
tion

Suppose that the system has an interaction potential ¢(r) = pc(r/ro) +
Y3po(yr/ro) Where pp.(r/rg) vanishes for r > rq and is +oo for r < rq (hard
core potential), while g is a smooth function with short range (i.e. either
eventually equal to 0 as r — oo, or tending to 0 exponentially fast as
r — oo, say). Here v is a dimensionless parameter which is really used to
set a variable value of the range to v 'r.

In other words we assume that, apart from the hard core, the particles
interact via a potential which is very long range as v — 0 but, at the same
time, it becomes very weak.

When 7 is very small and the density of the system is fixed to be p we see
that the energy of interaction between one particle and the remaining ones
will be essentially entirely due to the particles that are very far apart: the
close ones, being (relatively) few, will therefore contribute a small amount to
the energy, because the strength of the potential is very weak, proportional
to 73.

The energy of a particle in the force field of the others is in fact, if @, is
the (y-independent) integral of y>¢q(yr/ro)

r — r def _
p/v%dwﬂd%:p/whﬁfrép% (5.2.1)
To To

so that the energy of a configuration in which the hard cores of the particles
do not overlap will be essentially given, at least for small 7, by

1
U=3Np. (5.2.2)

The quantity p @, is sometimes called the mean field at density p.
The last relation allows us to compute immediately the canonical partition
function. Let V — Nwvg be the volume available to each particle, i.e. the
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total volume minus the volume occupied by the impenetrable hard cores of
the particles: v is of the order r§ and it will be taken, to be in agreement
with (5.1.14), to be

4T 1o

b=4vg=4—(— 5.2.3

w=a (2. (523

Then if the energy of a configuration is well approximated by (5.2.2), the
canonical partition function is approximately:

B i 0 %0 dSquBN
Z(ﬁ,v):/e B(zm+5 N)W =

(G

where a somewhat uncontrolled approximation is made about the ¢ integra-
tions, as clearly the integral over the configurations of N particles that are
constrained to stay at a distance ¢ from each other is a highly non trivial
quantity: only naively can one hope to approximate it by (V — Nb)"V, even
if we allowed simple adjustements of the value of the empirical “excluded
volume” b to improve the approximation.

(5.2.4)

If one accepts (5.2.4) then the equation of state can be computed straight-
forwardly. In fact the free energy f., see (2.3.8), is given by

3 1:(8,0) = Jim - log Z(8,v) =

(5.2.5)
=log(\/2mrmB-1h-2)3 — 3 9;0 + log(v — b)e
leading, by differentiation, to
_ Ofe BT, 1
/Bp(ﬂav) - ( 61) ) - 2,02 + b (526)

which coincides with (5.1.17), thus providing an alternative interpretation
of the van der Waals equation and motivating the qualification, which is
usually given to it, of mean field theory.

The above discussion shows that the van der Waals equation can be exact
only if the interaction has extremely long range and at the same time just
weak enough to have a nonzero integral P, so that it is correspondingly
so small that any individual particle contribution to the potential energy
of a fixed particle is negligible apart, of course, from the hard core energy
which, unsatisfactorily, is taken into account by replacing the integral over
the configurations of non overlapping cores by (V — Nb)N

In fact the latter approximation can be eliminated by replacing (5.2.4) by
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the more accurate:

dSN

p> _
Z(B,v) = /efﬂ(z——mﬂh%pwoN) TN dg =

p 3N, _
:(m) e~ 2P2%0 N 7, (v), (5.2.7)

dSNg

Zo(v) = / ¢4
lg,—4;1>70 Nt

where the configuration integral Zg(v) (which is S-independent) over the
nonoverlapping hard core configurations {g;} in the volume V' is not com-
puted.

Equations (5.2.7) then imply that the free energy and the equation of state
of our gas are:

—~BF(B.v) = =Bfo(v) = B3L,  (p(B,0) - %) B = Polv)  (5.28)

where 5
Po(’l)) = — —v—log Zo(’l)) (529)

is the (temperature-independent) product of § times the pressure pg of
the hard core gas. It replaces its crude approximation Py(v) = Bpo(v) =

(v —wo)~!in (5.2.6).

It is not difficult to see that the S-independence of Py(v) implies that, if
Do < 0, i.e. if the potential has a long range attractive (i.e. negative) tail,
then (5.2.8) will have, at low temperatures, a graph which is qualitatively
similar to that of (5.1.17) with a > 0 (hence like Fig. 5.1.1).

Thus the equation of state (5.2.8) will show phase transitions, and also the
phenomena of negative compressibility and metastability.

The negative compressibility can be eliminated by Maxwell’s rule. But one
is still left with the unpleasant feeling that somehow one is doing something
wrong. This is clearly signaled by the fact that in spite of the improvements
in the approximations we are still getting a pressure that is a nonmonotonic
function of the specific volume (if 3 is large enough, i.e. if the temperature
is low).

At least in one-dimensional gases the excluded volume problem is trivial
and one can simply check that 8po(v) = Po(v) is indeed = with vo = 70,
and, therefore, this is clearly a contradiction because we are getting a non
monotonic pressure in a situation in which the theory of §4.3 does apply,
and implies convexity of the free energy, i.e. monotonicity of the pressure.

Continuing to denote by Py(v) the temperature-independent product
Bpo(B,v) of B times the pressure of the pure hard core gas, the following
result sheds a great amount of light on the intricacy of the above situation,
showing that the presence of a negative compressibility region is an artifact
of the mean field approximation:
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Theorem: Suppose that we fix v > 0 and we call p(B,v;v) the canonical
pressure (in the thermodynamic limit) for the gas interacting with the po-
tential ,

r
o(r) = one(—) + 700 (v—) (5.2.10)

To To
where pp. = 0 for r > rq, ppe = 00 for r < ro; Qo is a smooth potential
rapidly decreasing at oo and with integral B, < 0. Let also Py(v) be the (3-
independent) product of (3 times the pressure of the pure hard core gas (in

the thermodynamic limit), i.e. the pressure of the gas in which the particles
interact only via the hard core potential po. Then:

508,90 im (5, vm) =[S+ RB@] (521

where the subscript “Mazwell rule” means that in the regions where the
right-hand side is not monotonic in v (existent if @y < 0 and (3 is large)
the pressure p(B,v) is obtained with the help of the Mazwell construction
discussed in §5.1.

Thus we see that there is indeed a firm foundation to Mazwell’s rule which
does not rest on dubious Carnot cycles: the van der Waals equation becomes
rigorously valid in the limit in which the attractive tail of the potential
becomes very weak but with so long-range that the mean potential (“mean
field”), see (5.2.2), that it generates in a point has a fixed value.

If the dimension is d = 1 the hard core gas pressure Py(v) is rigorously
Bpo = (v — )~ and the equation of state becomes ezactly the Van der
Waals equation. In higher dimensions 8py = (v — vg) ! is only an approxi-
mation (no matter how vq is chosen), but the basic fact that the equation of
state is a trivial modification of a reference, “simpler” (so to speak), system
(the hard core gas) together with Maxwell’s rule remains valid.

One can also say that the van der Waals equation arises when one inter-
changes two limits: the thermodynamic limit and the limit of infinite range
v — 0. It is obvious that if instead of taking the limit V' — oo first and
then the limit v — 0 one did the opposite then the equation of state would
have been p = pg and the attractive tail would have given no contribution.

The potentials like (5.2.10) are called Kac’s potentials, [HKU63] and one
can say that the above theorem plays a role analogous to that of Lanford’s
theorem for the Boltzmann equation, see §1.8 and §1.9: in both cases a
statement that has approximate validity becomes exact in a suitable limit.
And in both cases the statement seems incompatible with obvious properties
of the system (reversibility in the first case and strict convexity in finite
volume systems of the free energy in the second), although of course the
first case concerns a far more fundamental problem than the second.

But both cases are instances of a method of analysis that has been devel-
oped very much in the twentieth century, in which one tries to understand
some properties that cannot be exactly true in normal situations but that
become exactly true in suitable limiting situations thus leading to a more
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or less detailed understanding of why they may look true even when the
limit is not taken. Of course a complete theory should also come together
with estimates (and possibly reasonable ones) of how far we are, in concrete
situations, from the limiting cases (i.e. how big are the corrections on the
quantities on which we might be interested).

The method is a modern interpretation of the basic conception of Boltz-
mann on the relation between the apparent continuum of reality, as we
perceive it and input it in most of our models or theories for its interpreta-
tion and understanding, and the possibly intrinsic and deep discrete nature
of reality and of our own thinking.

This is exemplified by the quotation in §1.1 and in many others among
Boltzmann’s writings, for instance:

“The concepts of differential and integral calculus separated from any atom-
istic idea are truly metaphysical, if by this we mean, following an appropriate
definition of Mach, that we have forgotten how we acquired them.”

And I cannot resist the temptation of more quotations, as this is really
music for the mind:

“Through the symbols manipulations of integral calculus, which have become
common practice, one can temporarily forget the need to start from a finite
number of elements, that is at the basis of the creation of the concept, but
one cannot avoid it’;

or:

“Differential equations require, just as atomism does, an initial idea of a
large finite number of numerical values and points ...... Only afterwards
it is maintained that the picture never represents phenomena exactly but
merely approzimates them more and more the greater the number of these
points and the smaller the distance between them. Yet here again it seems
to me that so far we cannot exclude the possibility that for a certain very
large number of points the picture will best represent phenomena and that
for greater numbers it will become again less accurate, so that atoms do exist
in large but finite number, see p. 227 in [BoT74];

and:

“This naturally does not exclude that, after we got used once and for all to
the abstraction of the volume elements and of the other symbols [of calculus]
and once one has studied the way to operate with them, it could look handy
and luring, in deriving certain formulae that Volkmann calls formulae for
the coarse phenomena, to forget completely the atomistic significance of such
abstractions. They provide a 1geneml model for all cases in which one can
think to deal with 10'° or 10'0" elements in a cubic millimeter or even with
billions of times more; hence they are particularly invaluable in the frame

of Geometry, which must equally well adapt to deal with the most diverse
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physical cases in which the number of the elements can be widely different.
Often in the use of all such models, created in this way, it is necessary to
put aside the basic concept, from which they have overgrown, and perhaps to
forget it entirely, at least temporarily. But I think that it would be a mistake
to think that one could become free of it entirely.”?

The latter sentence, p. 55 in [Bo74], reminds us that the evaluation of the
corrections is of course a harder problem, which it would be a mistake to set
aside, even in the above case of mean field theory. In fact the corrections
are quite important and somehow even more important than the mean field
theory itself, which will remain as a poor idealization of far more interesting
cooperative phenomena.

It should also be noted that the above analysis does not allow us to solve
a fundamental question: can classical statistical mechanics predict and de-
scribe phase transitions? We have seen that the van der Waals theory is
no proof that when no infinite range mean field limit is taken (i.e. in most
interesting cases) then a system can show phase transitions.

This clearly emerges from the remark that if v is not 0 then in d = 1 one can
prove, as a theorem (see above, and §5.8), that the system cannot undergo
any phase transition whatsoever (and the pressure is strictly monotonic in
the specific volume, “no plateau” at all); and nevertheless the above theorem
also holds in d = 1, where in fact it leads precisely to the Van der Waals
equation (with the volume of the box being replaced by the length of the
box and similar obvious changes).

It is therefore important to see whether genuinely short-range models (no
~ around) generate equations of state with phase transitions. This will be
thoroughly discussed in Chap.VTI in simplified models, because in the cases
in which one would like to have results the problem is still open, and we shall
see that in the simplified models phase transitions are possible even when
the interactions have short range and the analysis will leave little doubt (in
fact no doubt at all) that phase transitions are possible in classical statistical
mechanics, without the necessity of introducing any new assumptions or new
physical laws.

We should however mention that important breakthroughs seem to be un-
der way: see [J095] and [LMP98].

The standard approach to the van der Waals theory (also called mean field
theory) can be found in [CC53], p. 284. A more refined and interesting
formulation is in [VK64]. A precise and very clear theory is in [LP66]. The
first precise understanding (and full proof in particular cases) of mean field
theory is in [HKUG63], in a series of papers reproduced, with introductory
remarks, in [LM66]. A more phenomenological but very interesting and
original theory is in the book [Br65], where the most common phase tran-
sitions are treated from the unifying point of view of the mean field theory.
The original work of van der Waals has been reprinted, [VW88].

2 Lucretius would not have said it better.
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§5.3. Why a Thermodynamic Formalism?

In the next sections we devote ourselves to a more detailed analysis of the
framework in which phase transitions could be placed and of the techniques
that one may envisage to apply towards an understanding of their proper-
ties. It will be a rather abstract analysis, usually called “thermodynamic
formalism” that plays in statistical mechanics a role akin to that played by
the Hamiltonian formalism in mechanics.

One does not have to recall that the formalism of Hamilton, in itself, does
not make mechanics problems any easier than other formalisms. However
it has become a tautology that it is a very appropriate formalism to de-
scribe mechanical phenomena. The same can, or should, be said about the
thermodynamic formalism.

The theory of orthodic ensembles provides us with a model of Thermody-
namics but, strictly speaking, only in the limit of infinite volume. In this
situation one also obtains equivalence between the various ensembles, see
Chap.II.

The elements of the orthodic ensembles describe in great detail the struc-
ture of the thermodynamic phases (i.e. macroscopic states), well beyond the
simple microscopic definition of the classical thermodynamic quantities, and
even provide us with the (surprising) possibility of computing theoretically
some relations between them (e.g. the equation of state). Every element
of a statistical ensemble describes details of the microscopic configurations
that are typical of the corresponding phase, because it gives the probability
of each individual microscopic configuration.

The problem of the “thermodynamic limit” theory is that of establishing
a formalism in which it becomes possible to make precise and sharp various
statements that we have made so far, on intuitive or heuristic grounds, and
thus lay the grounds for a deeper analysis and for deeper physical questions.

We shall only consider the case of classical statistical mechanics, in which
one neglects the size of Planck’s constant h.

What follows, as stated at the end of the previous section, is a formalism:
as with all formalisms it has interest only because it provides a natural
frame (as experience taught us) in which the discussion of the most impor-
tant questions and applications can be situated. This is not the place to
argue that this is the best formalism: others are possible and in the end
equivalent. But we need a formalism just in order to formulate precise ques-
tions, suitable of being given quantitative answers. The amount of work to
be done will be independent of the formalism used (of course).

It is well known that for each class of problems the formalism in which they
are formulated often has a clarifying and unifying role: the emergence of a
“good” formalism is often successive to the solution of important problems
in the field. This seems to be the case of the thermodynamic formalism and
the following few sections should be understood from this viewpoint.

As an example of the problems that it would be premature to formulate
without a clear formalism in which they fit one can quote:
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(1) describing the spatial correlations between particles in a gas,

(2) describing (and in fact defining) the surfaces of separation between
different, but coexisting, phases,

(3) understanding the formation and dissociation of gas molecules or atoms
into their more primitive constituents in stationary state situations, and
other cooperative phenomena.

A initial question is in which sense an element of a statistical ensemble
describes a probability distribution on phase space once the limit of infinite
volume has been taken. We shall consider here only the grand canonical
ensemble representation of the equilibrium states, because it is somewhat
easier to discuss than the canonical or microcanonical. We examine the case
of a system of identical particles with mass m enclosed in a cubic box V.

The particles interaction will be assumed to take place via a potential ¢
satisfying at least the stability and temperedness conditions (4.1.1), that
are necessary according to the analysis of Chap.IV in the theory of the
ensembles: i.e. ®(g,,...,q ) = >, ¢(q, — gj) > —Bn (“stability”) and

lo(r)| < Clr|=G+e) for |r| > ro > 0 (“temperedness”), B, C,e > 0.

To avoid several technical problems it will also be convenient to suppose
that the potential ¢ has a hard core with diameter rg, i.e. it is defined as the
sum of a smooth potential plus a singular potential which is +oo for |r| < rg
so that ¢(r) = +oo for |r| < rg. This has the physical significance that two
particles cannot be closer than g, but a large part of what will be discussed
does apply, with suitable modifications (and several open problems left), to
the case of a superstable potential. This is a potential such that there are
two constants A, B > 0 such that

@(gl,...,gn)Z—Bn+An2/V ifg,....q, €V (5.3.1)

where V' is an arbitrary cubic volume containing an arbitrary number n > 2
of particles located at a4, The Lennard-Jones potential, see (5.1.1),
is a typical example of a superstable potential. However the potential ¢ = 0,
the free gas model, is not superstable (although it is trivially stable), see
[Ru70] for a general theory of such potentials.

Let V be a cubic volume and consider the element p(®*V) of the grand
canonical ensemble with parameters (3, \) and with particles confined in
V: B8 = 1/kgT, kg = Boltzmann’s constant and T' = temperature, A\ =
chemical potential, see §2.5. The probability of finding n particles in the
microscopic state dp, ...dp dg, ...dg in the distribution pBAV) g

e~ B(E(p.0)+n) d}_)l . dBn dgl .. dgn
=(8,) n! h3N

where E(p,q) = T(p) + ®(¢) = Y1 P 2 /2m + ®(q,,...,q,) and E is the
grand canonical partition, see §2.5. We want to take the limit of (5.3.2) as
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V — oo and interpret it as a probability distribution on the infinite system
configurations that one reaches in this way.

One begins by giving a precise definition of the infinite system configura-
tions; then comes the problem of giving a meaning to the limit as V' — oo
of (5.3.2) and finally one will want to characterize the distributions that are
found by following this limiting procedure starting from (5.3.2), or start-
ing from the more general grand canonical distributions with fixed external
particle boundary conditions; the latter were introduced, as generalization
of (5.3.2), in §2.5: see (2.5.2).

§5.4. Phase Space in Infinite Volume and Probability Distribu-
tions on it. Gibbs Distributions

It is natural to define the phase space M in infinite volume as the space
of the sequences (p,q) = (p 4, )52, of momenta and positions such that
in every finite (cub_icj volume there are only finitely many particles, called
locally finite configurations: if we consider systems of particles with hard
core of diameter rq > 0 this will be “automatic”, as the only configurations
g that we have to consider are those with [g, — gj| > 1o, for i # j.

However, to take into account microscopic indistinguishability the configu-
ration space will not be M, but the space M obtained from M by identifying
sequences (p,q) differing by a permutation of the particles.

A probabzlzty distribution on M is in general defined so that the following
question makes sense: what is the probability that by looking in a given (cu-
bic) volume V° one finds in it exactly g particles with momenta in dp, ... dgg
and positions in dq1 dq

Therefore the probablhty distribution p will be characterized by the func-
tions fyo (Ql, Py s ,gg) such that the quantity:

dp, ...dggdgl...dgg
fVO(Bl""’Bg’gl""’g) (541)

9 g!

is the probability just described. The functions fjo will be called the local
distributions of u: the factor g! could be included in fyo, but it is customary
not to do so since the particles are indistinguishable and this factor simplifies
combinatorial considerations.

By using the functions fyo it will be possible to evaluate the average value
of a localized observable, localized inside the volume VO: this is, by def-
inition, a function on phase space that depends on (p,q) € M only via
the state of the particles located in V°. Adopting the convention that

{p}g,{q}g p1"“’2g’g1"“’gg’ if ' is such a local observable we can
write its average as

d{p}, d{q}g _

Z /R vy b Adde) - fro(hs, {ahs) (5.4.2)
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Consider a probability distribution like (5.3.2) describing a particle system
enclosed in a “large global” volume V that we suppose cubic. With a fixed
V0 C V (we think here of V as huge and V° as much smaller), one can
compute the probability that inside V° the configuration (p,q) will consist
in g particles in d]_)l .. d]_)gdgl e dgg. Once the appropriate integrals are

performed one will find necessarily an expression like

dp, ...dp dq, ...dq
(V) =1 =g =1 29
fVO (215"'a£g7g17"'7gg) g‘
It is then natural to define the limit as V' — oo of the probability distribution
pBAV) (5.3.2),% as the distribution u on M characterized by the local
distributions

(5.4.3)

. v
fvo(;l_)l,...,z_)g,gl,...,gg) = Vh_r)noof‘(/o)(gl,...,Qg,gl,...,gg) (5.4.4)

provided the limit exists for each V©.

It can be shown that if the interparticle potential ¢ is superstable, see
(5.3.1), and hence a fortioriif it has a hard core, then the limit (5.4.4) exists,
at least along subsequences of any sequence of volumes V' with V' — oc. In
the hard core case this is an almost obvious “compactness argument” (i.e. a
“free” argument based on abstract nonsense).4

The same remains true if 4?2V is replaced by a more general element of a
grand canonical ensemble with fixed external particle boundary conditions,
provided the external particle density “does not grow too fast with their
distance to the origin”, see §2.5.

The latter condition means that, fixing a length unit ¢ (arbitrarily), the
number n(A) of external particles in a box A with side size £ does not grow
too fast with the distance d(A, Q) of A from the origin, e.g. it satisfies

n(a) \
A, 0) dBo-= (5.4.5)

This condition is automatically satisfied if the interaction has hard core; if
it is not satisfied then it is not difficult to find a configuration of external
particles such that the above limit does not exist (or is “unreasonable”).5

«

When one imagines the volume of the “global” container increasing to oo, keeping the
size of the region VO that is under scrutiny fixed.

On the contrary it is highly nontrivial, when true, to prove the existence of the limit
V' — oo without restricting V' to vary along a “suitable” subsequence.

Consider in fact a system of particles interacting via a Lennard-Jones potential, (5.1.1),
which is < —b for distances between a and 2a. Let V be a cubic container and distribute
outside V, at distance exactly a, M = N¢ external particles, ¢ > 2/3. Inside the volume
V suppose that there are N particles with N = pV, p > 0. With such boundary
condition the canonical distribution has a thermodynamic limit in which there are no
particles in any finite region with probability 1 (i.e. fy,o = 0 for all V?). In fact one
checks that, putting all N internal particles in a corridor of width a around the boundary,
one gets a set of configurations with energy < O(—NN¢V ~2/3) and phase space volume
O((aV2/3)N N1—1). Then a comparison argument similar to those of §4.1 to study the
various catastrophes applies. Likewise one can discuss the corresponding example in the
grand canonical ensemble (or the microcanonical).
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Therefore we can define the set of Gibbs distributions on the phase space M
as the set of all possible distributions that are obtainable as limits of conver-
gent subsequences, in the sense of (5.4.4), of grand canonical distributions
puBAV) with periodic boundary conditions or with fixed external particle
boundary conditions whose density does not grow too fast at infinity in the
above semnse.

The distributions that are obtained in this way will define the equilibrium
phases of the system (see §2.5) and are not necessarily invariant under trans-
lations, i.e. such that for every displacement ¢ € R3:

fV°+£(El>"'>Qg’21 -I-{,...,gg +§) = fVO(El"”’Eg’gl""’gg)' (5.4.6)

Except in the (important) special case in which periodic boundary coondi-
tions are used, translation invariance symmetry is broken by the fact that
the system is, before the thermodynamic limit V' — oo, enclosed in a finite
box V; and it is not necessarily true that the invariance is “restored” by the
mere fact that we send V' — oo.

The physical phenomenon related to the above (possible) spontaneous
breakdown of translation symmetry is the possibility of the existence of
thermodynamic states in which pure phases coexist occupying, for instance,
each half of the total space allotted to the system, being separated by a
microscopically well-defined surface: one should think here of a liquid in
equilibrium with its vapor.

Therefore we shall distinguish the set of Gibbs distributions G°(3, \) from
its subset G(3,\) C G°(3, \) consisting in the distributions which are invari-
ant under translations, i.e. which have local distributions satisfying (5.4.6).

If u is a translation-invariant probability distribution on M and if S =
(S1,52,53) are the translations by one length unit, in the three directions
(i.e. Sa(p,q,)21 = (p,;-q; +€%) with €%, @ = 1,2,3 being the unit vector
in the a-th direction), then the triple (M, S, ) is, according to a well es-
tablished terminology, a dynamical system; this is a useful fact to bear in
mind, as we shall see on several occasions.

One could, of course, define the Gibbs distributions by starting from distri-
butions of the canonical ensemble (or microcanonical or any other orthodic
ensemble) with fixed external particle boundary conditions.

By so doing one would generate the problem of the equivalence of the en-
sembles (see Chap.II) in the sense that one should show that the totality of
the Gibbs distributions on M built starting from the grand canonical en-
semble distributions with fixed external particles boundary conditions does
coincide with the totality of the Gibbs distributions (on M) built start-
ing with microcanonical or canonical distributions with periodic or fixed
external particle boundary conditions.

The analysis of the latter question is difficult: it is essentially complete only
in the case of hard core systems, [Do68a],[Do72], [LR69]; but it is somewhat
incomplete in the “general” case of superstable potentials, see [Ru70],[La72],
[Ge93]. Nevertheless there is no evidence that there might be conceptual
problems on such matters.
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§5.5. Variational Characterization of Translation Invariant Gibbs
Distributions

If we restrict our attention to the translation-invariant Gibbs distributions
€ G(B, ), also called homogeneous phases, then an alternative and inter-
esting variational characterization of them is often possible.

The first simple remark, that stems immediately from (5.4.4), or from
its variants with different fixed external particles boundary conditions,
is that if © € G°(8,)\) then the momenta distribution is Mazwellian,

i.e. fvo(z_)l,...,gg,gl,...,gg) can be written as
g
=83 v /2m
e i=l —
fvo(;[_)l,...,]_)g,gl,...,q )= ﬁf‘,o(gl,...,gg) (5.5.1)

W fammp T

where the factor in the square root is introduced because it provides an ob-
viously convenient normalization, making f a quantity with the dimension
of an inverse length to the power 3g since the quantity

¥(B8) = v 2mrmB1 (5.5.2)

is a “momentum”. Sometimes one defines instead y(8) = y/2rmB-1h=2
including in it also the factor h~39 that appears in (2.2.1); with this choice
?Vo would be dimensionless.

The probability distributions on phase space M with local distributions
that depend upon the momenta as in (5.5.1) are called Mazwellian distri-
butions. The problem is therefore that of characterizing fyo so that the
distribution defined by (5.5.1) is in G(8, A).

Going back to a finite total volume a well-known argument shows that
(5.3.2) satisfy a wvariational principle. More precisely let (p,q) abbreviate
(ps---»P,,4,5---,4,), and write (5.3.2) as -

f(&""’Qn’gv""gn)d&"' dp dg,...dg = fn(p,q)dpdg  (5.5.3)

and set
n p2

Ea(p.4) =, 5= (g +:4,) = Ta(p) + 2nlg) - (5.5.4)

Then consider the functional J(f) = S(f) — BU(f) — BAN(f) defined on
the functions f:

ef 1 w— dpd
J(f) dzf%;)/—fn(ﬂag) 0g fu(p; ) i!g—
— dpd
—QZ/fn(z_%g)(En(z_ﬂ,g)+An) %‘g = (5.5.5)
n=0 .

ad dpd
=7 2 [ 100080+ FEa ) + 020 T
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By the Lagrange multiplier method one checks that J(f) is stationary (ac-
tually a maximum) on the set of the f > 0 such that

an P4

dp dq

=1 (5.5.6)

if, still with the notation (p,q) = (p,,- .. P ,gn), the functions f,
satisfy:

(—log fu(p,q) — B(En(p,q) + An)) = constant (5.5.7)

i.e. if f is given by (5.3.2).

It is natural, at this point, to introduce the space of all translation invariant
distributions p on M that have a Maxwellian momentum distribution and
to define on this space the following functionals: the “specific volume”, the
“total energy” and the “potential energy” corresponding to the interparticle
potential o, and the “entropy”.

We denote such functionals by v(u),u, (1), U, (1) and s(u), respectively,
and we write them first in the general case and then we shall consider the
expression that they assume when the fy0 have the Maxwellian form (5.5.1).

To simplify we also abbreviate the notation for the local distributions in
the volume V?, see (5.5.1), as

fV07g(p’q)Ei 0(p1a---a1_’gag1""’gg) (5.5.8)
.fVO() fvo (g1""’gg)

where (p,q) stands for (Ql,...,gg,gl,...,gg) and dpdg = d&“‘dﬂg

dg = .dgg. Then the specific volume of p will be defined by

dpdq
—1 _
v(w)™ = lim o5 Z/ngO,g (p.q =
(5.5.9)
- v0—> Vo Z/ng%
With the notations in (5.5.4) the total energy will be
: dpdg
up(p) = V%lgloo 770 2/ (@) fvo,q(p Q)T =
1 — 3 dg
= lim — 2o+ d — = (5.5.10)
i o ;/(2ﬂg+ /@) Fro (0
= o)™+ T ()
= 251} n Uy (1
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where in the first step the gaussian, hence trivial, integrals over the momenta
p have been performed explicitly and in the second step we used (5.5.9).
Likewise the thermodynamic entropy is:

. dpdq
s(p) = lim -5 / fvog(p, ) log fro4(p, @) ——= =
7,6T
R Z/ \/ng frna@)

_ dqd
- (=BT,(p) — 3—10g(27rm/371h72) + log fvo7g(g))% =

d
111’11 Z/ fVO,g q)3 -

. (_37g - 3—glog (2rmpB~'h?) +10g7vo,g(g)) =

=—o(p)" " log(2remB'h2)%/2 +3(p).
(5.5.11)
All limits above do exist in the case of systems with hard core potentials:
to prove this the techniques are similar to those used in Chap.IV to discuss
the existence of the thermodynamic limit. The limits, however, exist under
much more general conditions that we shall not discuss here.
We now maximize, on the space of the Maxwellian translation-invariant
distributions g on M (with inverse temperature 3, i.e. having the form
(5.5.1)), the functional:

s(u) = Bro(u) ™" = Buy(p) (5.5.12)

and let Bp(B,\) denote the supremum of (5.5.12).

We proceed by quoting only results that are valid in the case of hard core
systems, to avoid discussions on the more general superstable case (for which
similar, but less satisfactory results can be obtained), the general discussion
being somewhat technical, [Ru70]. If ¢ has a hard core one has:

B8, 3) = max (s(u) = Bho(w) ™! = Bu, () (5.5.13)

and the maximum is reached exactly on the translation-invariant Gibbs dis-
tributions g € G(3,)), and only on them; see [Do68a],[LR69].6 One can
check that the meaning of the maximum value p(3, \) is that of “pressure”
(leaving aside mathematical rigor this is, in fact, quite clear from the dis-
cussions in §2.5 and above).

The variational property (5.5.13) has been heuristically based on the men-
tioned check (see (5.5.5),(5.5.7)) that the functional (5.5.5) leads, in a finite

6 In the quoted papers one considers lattice systems, see §5.10 below, but the techniques
and results can be extended to hard-core systems quite straightforwardly.
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volume container with “open boundary conditions” (i.e. no fixed particles
outside the container), to the element (3, \) of the grand canonical ensem-
ble. However a remarkable feature of (5.5.13) is that nevertheless it happens
that the solutions of the maximum problem (5.5.12) contain, as well, the
translation invariant Gibbs distributions that can be obtained by imposing
general fixed external particle boundary conditions and subsequently con-
sidering the thermodynamic limit of the distributions so obtained, [Do68a],
[Do68b], [Do72], [LR69].

It can be checked (this is a simple but nontrivial theorem) that the set of
translation-invariant probability distributions that realize the maximum in
(5.5.13) (i.e. the set denoted G(8, A) of the Gibbs distributions with inverse
temperature 3 and chemical potential A) form a conver set (i.e. u1,us €
G(B, ) implies auy + (1 — a)uz € G(B, ) for all a € (0,1)). Furthermore
the convex set is actually a simplez, i.e. such that every u € G(83, \) can be
represented uniquely as a convex superposition of extremal distributions in
G(B,A).

The statistical interpretation of a (convex) superposition of two probability
distributions is that of a mizture: hence the meaning of the latter described
property is interesting. It says, in other words, that if the extremal distri-
butions of G(8, \) are interpreted as the pure homogeneous (i.e. translation
invariant) phases, then all the other elements (“homogeneous phases”) in
G(B, ) are miztures of pure phases and they can be represented as such in
a unique way.

For instance if G(8, \) contains only two extremal elements py and u_, the
first representing the “liquid phase” and the second the “gaseous phase”,
then every other distribution in G(8,\) can be represented as ap4 + (1 —
a)p— with 0 < a < 1, and a has the interpretation of fraction of mass of the
liquid phase.

It is remarkable that it is possible to prove that the extremal states u of
G(B, ) enjoy the property of ergodicity in the sense that the above defined,
see §5.4, corresponding dynamical systems (M, S, i) are “ergodic” and they
are the only points in (M, S, u) with this property, see [Ru69].

The ergodicity property is the natural generalization of the notion intro-
duced in the discrete evolution cases of the systems in Chap.I. We consider
a family of commuting invertible transformations” S = (Si,...,S,) acting

7 We shall only consider here and in the rest of the book measurable transformations,
measurable functions, measurable sets. These are rather delicate notions, on the brink of
the imponderable because to find nontrivial examples of nonmeasurable corresponding
objects one needs the sinister axiom of choice. However if one wants to discuss notions
like ergodicity in systems that are not regarded as discretized, abandoning Boltzman-
n’s wise discrete conception of the world, one must say a few words on measurability.
The spaces M, M’ ... that we consider here and later will all have a natural notion of
“closeness” bewteen points, a topology in Mathematics: typically a metric can be defined
on them (this metric can be defined but often it is not really useful so that it is not
always explicitly defined as there is little doubt about what it could be). Therefore it
makes sense to define open sets. One declares all of them measurable: more generally
the smallest family of sets that contains all the open sets and that is closed under the
operations of countable union, complementation and intersection is by definition the
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on a space M so that setting Sk = Sfl -S§2 oo Sk with k= (k... kn)
an n-ple of integers, we can define Sz for x € M. We say that a probability
distribution g on M is S-invariant if for every measurable set E C M it is
u(SEE) = p(E). The triple (M, S, i) is called a discrete dynamical system
and SE is called a “translation of k by S” (here SJO- is the identity map),
[AAGS]:

Definition (ergodicity): Let (M,S,u) be a discrete dynamical system; it is
“ergodic” if there are mo nontrivial constants of motion, i.e. no measurable
functions x — F(x) on a phase space M which are invariant under “trans-
lation by S” and which are not constant as x varies excluding, possibly, a
set of zero p-probability.

The definition can be extended in the obvious way to the case in which
S is a continuous flow, i.e. kK € R™ and S]’-g are commuting transformations
which satisfy the group property SJ’-“S;-L = LS‘J’.“L]g for all h,k € R and S;-J is
the identity map.

The above dynamical system with M being the phase space points of an
infinite system, with the “evolution” S being the spatial translations and
with p being a Gibbs state, is ergodic if one cannot find observables that are
translation invariant and at the same time not constant (outside a possible
set of zero u-probability).

If we sample the system configurations from an ergodic distribution u we
must find that the translation-invariant observables always have the same
value. Thus for instance the global density (or specific volume) will always
have the same value on all configurations that are sampled with distribution
-

We see that because of the above-quoted theorem of unique decomposabil-
ity of the elements of G(8, \) into extremal distributions the extremal points
of G(B3,A) deserve the name of pure phases as there is no way to see that
they consist of different configurations by measuring global, translation-
invariant, properties that they enjoy.

If, instead, a probability distribution in G(3,)) is not pure but it is a
mixture of, say, two pure states with different densities and with coefficients

family of measurable sets, or Borel sets. A mesurable transformation S is a map of M
into M’ such that S~ FE is measurable for any measurable E. Therefore it makes sense
to say that a function (i.e. a map of M to R) is measurable. A probability distribution,
or a “normalized measure”, p on M is a function defined on the measurable sets with
values p(E) > 0 and which is additive (i.e. if E = US°E, and the En’s are pairwise
disjoint, then u(E) = pu(En)), and such that p(M) = 1. Given a distribution y on M
one calls p-measurable any set in the smallest collection of sets, closed under countable
union, complementation and intersection, that contains the measurable sets as well as
any other set that can be enclosed into a measurable set with 0 y-measure: the latter
are called “0 p-measure sets”. Likewise we can define u-measurable functions and p-
measurable maps. The above notion of u-measurability should not be confused with the
previous notion of measurability. Why the name “measurable”? because a measurable
function of one veriable is the most general function for which it is possible to set up,
in principle, a table of values, i.e. a function that can be approximated by piecewise
constant functions.
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a and 1 — a then by sampling the system configurations we may get either
a configuration of the dense phase or one of the rarefied phase; so that
the global density, which is a translation-invariant observable, can have two
distinct values (each with a probability of occurrence in samples given by a
and 1 — a respectively), so that it is not constant.

An important general theorem for dynamical systems is Birkhoff’s ergodic
theorem, [AAGS]:

Theorem (Birkhoff): Let (M, S, u) be a discrete dynamical system and let A
be a cube of side L. Then for all p-measurable functions f on M the limit
limyg, oo Ml\_l D okeA f(Skx) = f(x) ewists apart, possibly, from a set of x’s
of zero p-probability. Hence if (M, S, ) is ergodic f(x) is a constant for
p-almost all x and, therefore, it is equal to [, u(dy)f(y).

The above statement can be also formulated for the case in which S is a
flow (i.e. £ € R™ is a continuous vector) and it is also a valid statement.
Another consequence of the ergodicity is that particles located in two far
apart cubes are observed as if they were independently distributed, at least on
the average over the boxes locations. This is also a property that intuitively
should characterize the physically pure homogeneous phases.®

§5.6. Other Characterizations of Gibbs Distributions. The DLR
Equations

Via the variational principle (5.5.13) one finds all the translation invariant
Gibbs distributions, but on physical grounds, as remarked, we expect that
there may also exist, under suitable circumstances, nontranslation-invariant
Gibbs distributions; i.e., with the notation of §5.4, in general we shall have
that G°(3,\) contains G(8, ), but it does not coincide with G(j3, \).

Therefore it is useful to look also for other characterizations of Gibbs states
which do not “discriminate” the nontranslation-invariant states. Such a

8 A simple abstract argument proves the statement. TLet u € G(B,)) be ergodic and
denote by p(A) the average over the configurations x of the number N(z) of particles
in the unit cube A with respect to the distribution y; let p(A, A’) be the average of
the product of the number of particles in the unit cube A times that in the unit cube
A’. The translation invariance of y implies that p(A) is independent of the location
of the unit cube A and that p(A, A’) depends only on the relative position of the unit
cubes A and A’. If A is a large volume paved by unit cubes A the average number

NN_1)y will be

[A]2
1 . . P N ()
AT ZA’A,CAQ p(A,A’). Given a configuration z, the limit p as A — oo of TAT

of particles in A will be <%) = ﬁ ZAcA p(A) and the average (

will exist, possibly outside of a set of configurations with u-probability 0: since this
limit (when it exists) is obviously translation invariant as a function of z, it must
be a constant (possibly outside a set of 0 probability, by Birkhoff’s theorem above;

N(z)(N(z)—1) will

nonconstancy would be against ergodicity). For the same reason also AT

N(x)®
[A]2
Hence ﬁ ZA,A, p(A AT — (ﬁ YA P(A))? 555> 0 which means that p(A, A’) ~

p(A)p(A’) “on the average over A, A'”.

have a limit equal to that of which has to be constant and therefore equal to p2.
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characterization is possible and is suggested by a heuristic argument based
on the finite volume grand canonical distribution p(?*Y) without external
fixed particles, (5.3.2).

We ask: given V° C V what is the probability of finding inside V° exactly
g particles in the positions ¢, ... 4, knowing that out of V° the particles

are located in the positions g’l,g’Q, L7

Denoting by fvo(gl,...,gg |4\, d,---) = fvoy(alg’) the density of this
conditional probability, where g abbreviates (gl, e ,gg) and ¢’ abbreviates
(4}, - --), then it is immediate to deduce from (5.3.2) that:

+(B)e [-8rg— B(a,a,)=BY 7 D0, (g, *g;.)]

normalization

fvoglald) = (5.6.1)

where y(3) = (2rmB1)39 (see (5.5.2)) and the normalization is deter-
mined by imposing the condition that fy, defines a probability distribution,

i.e. that:
Z/f (dg) 2% 1 (5.6.2)
Voo gh(@)Pe -
This relation depends on the total volume V' only because g’l,g’Q ..., d.e. the

particles of the configuration external to VY, are constrained to be in V/,

i.e. in the global container of the system (and outside V).

It is therefore natural to define, as an alternative to §5.3, §5.4, a (infinite
volume) Gibbs distribution on M with parameters (8, ) as a distribution
pon M Maxwellian in the momenta and for which the probability for the
event in which the particles inside a fixed finite volume V' are in ¢ Q-0

conditional to knowing that the particles outside the box V° are in q q
(with any momenta) is given by (5.6.1) without any restriction that the
particles at g’l , nga ... be inside a larger container V' (because the latter has,
now, to be thought as infinite).

This reading of (5.6.1) is known as the DLR equation and it was proposed
as a very general definition of Gibbs state (in the thermodynamic limit) by
Dobrushin, Lanford, Ruelle, [Do68], [LR69].

This is important because one can establish, quite generally, the theo-
rem that Gibbs distributions, defined as the probability distributions on
M which are Maxwellian in the velocities (with the same inverse tempera-
ture parameter ) and which satisfy (5.6.1), coincide with the distributions
in G°(3, ) defined via the thermodynamic limit in the previous sections,
whether or not they are translation invariant.

This is a theorem that holds as stated in the case of hard core systems; its
validity in more general situations still presents a few technical problems to
be understood although various weak versions of it exist in most cases of
interest (e.g. in the case of superstable potentials), [LP76].
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§5.7. Gibbs Distributions and Stochastic Processes

By integration of the momentum coordinates p, the probability distri-
butions g on the “infinite volume” phase space M define corresponding
probability distributions on the space M; of the position configurations
of infinitely many particles g. Thus Gibbs distributions integrated over
the momentum variables (which can be “disregarded” as playing a trivial
mathematical role from the point of view of the description of the states,
although they are physically very important), provide us with an interesting
class of distributions on M; which we shall still simply call Gibbs distribu-
tions (rather than using a pedantic distinction between Gibbs distributions
and configurational Gibbs distributions).

In general the probability distributions u on M7 are known in probability
theory as stochastic point processes because a point ¢ € M, in fact describes
afamily of points, i.e. particles locateding,,q,,...in R?,ifq = (21’22’ co)e

The remark permits us to give a new physical interpretation to several
results of the general theory of point stochastic processes, and mainly it
induces a translation of problems relevant for physics into interesting math-
ematical problems in the theory of point stochastic processes.

The issue that is, perhaps, central is to show that there exist simple choices
of the interparticle potentials ¢, assumed with hard core for simplicity,
and of the parameters 3, A for which the variational principle or the DLR
equations admit more than one solution.

This is the same as the problem of the existence of phase transitions in a
homogeneous system of identical particles: in fact we have argued that the
physical pure phases that can coexist can be identified with the solutions of
the variational principle or of the DLR equations.

We have seen above that the van der Waals theory provides us with an
affirmative answer to this issue; however it is rather unsatisfactory and,
to date, there is still no example that can be treated without uncontrolled
approximations (i.e. without introducing ad hoc hypotheses at the “right
moment”). The above nice thermodynamic formalism might be empty, after
all: but this possibility is really remote, and it is certainly not realized in
models that are somewhat simpler than the ones so far used for continuous
gases: see Chap.VI and the recent breakthrough in [LMP98].

Other remarkable problems that arise in the theory of stochastic processes
and, independently, in the theory of phase transitions are related to ques-
tions of scale invariance.

From experience and from the phenomenological theories of phase transi-
tions not only does the hypothesis emerge that the liquid-gas transition re-
ally takes place whenever the interaction potential ¢ has, besides a repulsive
core, an attractive tail, but also the hypothesis that such a transition has a
critical point (A., B.) where the Gibbs distribution (and the corresponding
stochastic process) u has special scaling properties, [Fi98], [BG95].

More precisely imagine that we pave the ambient space R? with a lattice of
cubes QL with side L and parameterized by three integers n = (n1,na,n3),
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so that the cube Qﬁ consists of the points with coordinates nyL < zp <
(np+1)L, h=1,2,3.

Define the family of variables (i.e. “functions” on phase space, in proba-
bility theory language, or “observables” in physics language) o, on M:

on = [(particles number in Qé) — o(p) L3 L%/? (5.7.1)

where § is a parameter to be chosen.

One gets a stochastic process, i.e. a probability distribution on a space of
states consisting of the sequences {o,,} indexed by n € Z*, in which the
“states at the site n” are real numbers labeled by n and defined by (5.7.1).2

By these phenomenological theories of the critical point, we may expect
that, in the limit as L — oo and if § is suitably chosen, the stochastic
process describing the distribution of the variables o, tends to a limiting
process such that, in the limit, the o, can be represented as:

On = P(x)dx (5.7.2)
Qu

where () are random variables: this is a “stochastic process on R*” with
homogeneous correlation functions; i.e. for every k and 1, zo,...,2:

(W(z1)...¢¥(z1))) = homogeneous function of (zi,...,z) (5.7.3)

if (-) denotes the operation of evaluation of the average value (also called

“expectation” in Probability Theory) with respect to the distribution of the
random variables ).

Since no nontrivial examples of point stochastic processes with the above
properties are known (or, better, were known until recently) one under-
stands the interest, even from a purely mathematical viewpoint, of the the-
ory of phase transitions which in its heuristic aspects provides a solution to
various problems related to the existence and structure of stochastic pro-
cesses. The heuristic results suggest in fact very challenging mathematical
conjectures, and some ideas for their understanding (often only partial), so
that the subject continues to attract the attention of many, [Wi83], [WF72],
[GaT6], [Fi98].

It seems fair to say that the tumultuous development of statistical me-
chanics and of the theory of phase transitions has literally revolutionized
the theory of probability as well.

We conclude by mentioning (we come back on this point later) that so far
we have only discussed the properties of the Gibbs states as equilibrium
states, but without ever introducing the dynamics. We have regarded them

9 More generally one calls stochastic process a probability distribution on a space of states
consisting of families of variables, called random wvariables, indexed by an arbitrary label;
and both the label and the labeled variables can be in any space, a ghastly generality.
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as dynamical systems with respect to space translations and we have seen
that this leads to the mathematical definition of pure phase. One may
wonder whether one could obtain similarly interesting notions by regarding
the Gibbs states as stationary states for time evolution as well (i.e. for
translations in time). This is a much harder question and we defer discussing
it to Chap.IX.

85.8. Absence of Phase Transitions: d = 1. Symmetries: d = 2

(A) One dimension. After the above general analysis and after setting up a
formalism well suited for our programs we return to more concrete questions.
We begin by showing that, as already stated several times, one dimensional
systems with finite range interactions cannot have phase transitions of any
sort, unless it is considered in the somewhat unphysical situation of having
zero absolute temperature. Again we limit ourselves to the simple case of
hard core interactions and call r¢ the hard core size (so that p(r) = 400 if
r<rp).

We shall use here as a definition of phase transition the presence of a hor-
izontal segment in the graph of the pressure as a function of the specific
volume at constant temperature. But other definitions could be used, e.g.
the inequivalence of some of the ensembles and the dependence of the ther-
modynamic limit on the boundary conditions, discussed in §2.5 and above,
in the present chapter.

Consider first the case in which the potential vanishes beyond r = 2rg
where rg is the hard core radius: this case is particularly easy and is called
the “nearest neighbor” interaction case.

It is best to use the pressure ensemble, see §2.5, (2.5.6), (2.5.16), with the
volume V taking the continuum of values between 0 and oo.

Then the partition function in the pressure ensemble, see (2.5.17), (2.2.1),
is

N-1

— OodL dqlqu —8pL _ o
Rl A L | i
0 LO [0,L] N! H

=1

(5.8.1)

where £(3) 1 = L

We shall use the fact that the interaction cannot extend beyond the nearest
neighbor and we label the particles 1,..., N sothat ¢; < ¢2 < ... <gn. In
this way we restrict the integration domain by a factor N!. Thus, extending
the integral to the region 0 < ¢1 < ¢2 < ... < gnv < L we get rid of the
NI~ present in the definition of the partition function.

The momentum integration yields the square root in front of the integral (it
is raised to the power 1 rather than the usual 3 because the space dimension
is now 1). The length Ly is an arbitrary dimensional factor (see (2.5.17)).

Then we note that L = ¢; + (Z;\:ll (gj41 — qj)) + L — gn and introducing
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the variables g;+1 — g; as independent variables, we see that:

INE.D) = ) /0 Temmeengg) T (582

so that the thermodynamic limit limy_, % log Jn (B, p) is

—BA(B,p) =log (\ / 2;7”; : /OOO e~ Pr1g=0¢(a) dq) : (5.8.3)

Equivalence between pressure ensemble and canonical ensemble is worked
out along the same lines in which in §2.5 equivalence between canonical and
grand canonical ensembles (hence orthodicity) were derived.

One finds, as mentioned in §2.5, that the quantity p can be identified with
pressure and A(83,p) can be identified with the Gibbs potential v — T's + pv
(see (2.5.11)), and 8 = 1/kpT. Moreover the equation of state is derived
(by using the orthodicity) from the thermodynamic relation (%) 3 =".

Relation (5.8.3) implies that the Gibbs potential A(8, p) is analytic in 3, p
for 8,p > 0; and it is strictly monotonic in p so that the relation (‘g—;‘)),@ =0
implies that pressure is analytic and strictly monotonic (decreasing) in v:
hence the equation of state cannot have any phase transition plateau.

The above analysis is a special case of Van Hove’s theorem, which holds
for interactions extending beyond the nearest neighbor, see Appendix 5.A1
below, and it played an important role in making clear that short-range
one-dimensional systems cannot undergo phase transitions, [VH50]. Further
extensions can be found in [GMRG69].

If one adopts the definition of phase transition based on sensitivity of
the thermodynamic limit to variations of boundary conditions one can
give a more general, conceptually simpler, argument to show that in one-
dimensional systems there cannot be any phase transition if the potential
energy of mutual interaction between a configuration g of particles to the
left of a reference particle (located at the origin O, say) and one configura-
tion ¢’ to the right of the particle (with ¢UO U ¢’ compatible with the hard
cores) is uniformly bounded. - -

The argument, due to Landau, is simply that, in this case, the distribution
of the configurations to the right of a point and to the left of it are essentially
independent: hence by changing the configuration of fixed particles outside
a box one does not alter appreciably the probability distribution inside it.

This is so because the weight of a configuration ¢, consisting of a part ¢ 4,
to the left of the origin and of a part q, to the right of it, is the exponential
of —BH, if H is the energy of the conﬁguratlon But the energy of such a
configuration is a sum of two quantities (large, of the order of the volume
occupied by the configurations) which are the sum of the energies that each
of the two parts 4, and 4, would have, in the absence of the other part,
plus the mutual energy. The latter is, however, bounded independently of
the choice of ¢, and g,.
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In itself this does not immediately imply that there can be no dependence
on boundary conditions because a finite ratio between two probabilities is
not the same thing as a ratio close to 1: hence the argument has to be refined
by considerations that show that it also implies actual boundary condition
independence: I find it easier to just give analytic details on the above
argument (see Appendix 5.A1 below) rather than indulging on heuristic
discussions. The argument clearly shows a mechanism responsible for the
“loss” of memory of the boundary conditions as one proceeds in from the
boundary down to the center of a finite interval [0, L].

Hence the larger the box the smaller is the influence of the external particles
on the bulk of the particles in the box: hence no inequivalence between the
ensembles can arise, i.e. no phase transitions in that sense. One also says
that no long-range order can be established in such systems, in the sense
that one loses memory of the boundary conditions as the boundaries recede
to infinity in the process of taking the thermodynamic limit.

Note that the argument above fails if the space dimension is > 2: in this
case even if the interaction is short ranged the energy of interaction between
two regions of space separated by a boundary is of the order of the boundary
area. Hence one cannot bound above and below the probability of any two
configurations in two half-spaces by the product of the probabilities of the
two configurations, each computed as if the other was not there (because the
bound would be proportional to the exponential of the surface of separation,
which tends to oo when the surface grows large). This means that we cannot
consider, at least not in general, the configurations in the two half spaces
as independently distributed.

Analytically a condition sufficient to imply that the energy between a con-
figuration to the left and one to the right of the origin is bounded above, if
the dimesion d is d = 1, is simply expressed (as it is easy to check) by:

/00 T |o(r)] dr < +o0 (5.8.4)
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One usually says, therefore, that in order to have phase transitions in d = 1
systems one needs a potential that is “so long range” that it has divergent
first moment. It can be shown by counterexamples that if the condition
(5.8.4) fails there can be phase transitions even in one-dimensional systems,
at least in further simplified models, [Dy69]. In fact very recently the first
phase transition in a continuous system and in the absence of symmetry
breaking has been proved to occur precisely in a system violating (5.8.4),
see [Jo95].

The arguments of this section apply also to discrete models like lattice gases
or lattice spin models, see §6.2 below and Chap.VI, Chap.VII, and §9.7.

(B) Symmetries. By symmetry one means a group of transformations acting
on the configurations of a system subject to some boundary condition (e.g.
periodic or open) and transforming each of them into configurations with
the same energy and with the same boundary condition.



V. Phase Transitions 165

Systems with “too much symmetry” sometimes cannot show phase transi-
tions. This is best discussed if one uses as definition of phase transition the
existence of long-range order.

The latter is defined by considering a localized observable F' (see (5.4.2))
which has zero average (F') in all Gibbs states obtained as thermodynamic
limits, with suitable boundary conditions (e.g. periodic or open), because
of their symmetry properties.

Suppose that the average value (F - 7¢ F') of the product of the observable
times a translatel® by ¢ of itself, a quantity called the spatial autocorrelation
of the observable, does not approach 0 as £ — co. Then one says that the
system shows long-range order for the order parameter F.

The symmetry is continuous if the group of transformations is a continuous
group. For instance continuous systems have translational symmetry if con-
sidered with periodic boundary conditions, so that the number na of parti-

cles in a small box A is a local observable and such is also va def (na — Tip)
where T is the average over translations. For symmetry reasons this quan-
tity has zero average in the Gibbs states associated with the Hamiltonian
describing the system with the symmetric boundary condition (periodic in
this case). Denote by A + £ the box A’ obtained by translating A by a vec-
tor £ and let (-) denote the average in one element of an orthodic ensemble

(i.e. an average with respect to a Gibbs state). The system is said to show
long-range order if the autocorrelation function at distance ¢ is a function
(vavate) which does not tend to zero as £ — .

Note that failure of convergence to zero of (vavaL¢), see also §5.5, footnote
8, is precisely what we expect should happen if the system had a crystalline
phase (in which case the (vavai¢) should show an oscillatory behavior,
in £, of the correlation function). One can also prove that long range or-
der of some observable implies that the derivative of the pressure (or of
other thermodynamic functions) with respect to suitable perturbations of
the energy function has a discontinuity, so there is an intimate connection
between phase transitions defined in terms of long-range order and in terms
of singularities of thermodynamic functions.

As an example of an application of a general theorem, the Mermin- Wagner
theorem, [MWG66], [Me67],[Ru69], one can state that if the dimension of the
ambient space is d = 2 then a system which in periodic boundary conditions
shows a continuous symmetry cannot have any local observable whose aver-
age vanishes and whose autocorrelations at distance & do not tend to zero as
the distance £ — oco. This theorem is the first of a series of similar theorems
based on an important kind of inequality called the infrared inequality and
it has led to developments that solved several long-standing problems, see
for instance [Fr81], [DLS78]. Here we choose not to enter into more details
in spite of the great importance of the technique and the reader is referred

10 A translate by the vector ¢ of an observable F' is defined as the observable T¢I such
that 7¢ F(z) = F(z + ) where z 4 £ is the configuration obtained from z by translating

by ¢ all particles positions, leaving the velocities unchanged.
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to the literature.

The limitation to dimension d = 2 is, however, a strong limitation to
the generality of the theorem and very seldom does it apply to higher-
dimensional systems. More precisely systems can be divided into classes
each of which has a “critical dimension” below which too much symme-
try implies the absence of phase traunsitions (or of certain kinds of phase
transitions), see [WF72], [Fr81], [Fr86], [Fi98].

§5.9. Absence of Phase Transitions: High Temperature and the
KS Equations

There is another class of systems in which no phase transitions take place.
These are the systems so far considered (with stable and tempered interac-
tions, see §2.2) in states with high temperature and low density.

We use here as definition of phase transition that of a singularity in the
equation of state, although in the cases below one could show that phase
transitions do not occur even in other senses (like persisting sensitivity to
boundary conditions as the boundaries recede to 0o).

One can easily show the absence of phase transitions for ~! and v large
by showing that the equation of state is analytic. In fact in such regions
the virial series, (5.1.16), is convergent and we have analyticity in v~! and
[ of the equation of state.

There are two ways of attacking the problem: one is rather direct and
looks for an algorithm that constructs the coefficients of the virial series.
The algorithm can be found quite easily: but the k-th order term results as
a sum of very many terms (a number growing more than exponentially fast
in the order k) and it is not so easy (although it can be done) to show by
combinatorial arguments that their sum is bounded by c(8)* if 3 is small
enough, [Gr62],[Pe63], see also equation (4.2), p. 176 in [GMM72], dealing
with a case only apparently different and in fact more general.

The other approach is somewhat less natural but it leads quite easily to
the desired solution. It attempts to solve a much more general question.
Namely the problem of computing the functions fyo of §5.5 and (5.5.1),
i.e. “all the properties” of the system.

We consider a gas in a cubic container V' and with an interaction potential ¢
satisfying (4.1.1). The state of the system, in the grand canonical ensemble,
can be defined in terms of the local distributions discussed in §5.4, (5.4.1),
or in terms of the more convenient (“spatial or configurational”) correlation
functions

pv(lh, .. aQn) =
— 1 Z zn—i—m / e—,8<1>(q17...,qn7y1,...7ym) dyl s dym
EV(/Ba)‘) m=0 m!

where z = e (\/2rmB-1h=2)3 is called the activity: it has the dimension
of a density i.e. of alength™3 as we included in it also the factor h~3™ which

(5.9.1)
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in (5.5.1) was included in ?Vo' The correlation functions are, therefore, the
probability densities for finding n particles at the positions ¢, ..., q, with
any momenta and irrespective of where the other particles are. The square
root comes from the integration over the momenta variables (which drop out
of the scene, with no regret as they play a trivial role in classical statistical
mechanics). The integral over the y’s is over the volume V.

The energy ®(q1,...,¢n,Y1,---,Ym) can be decomposed as:

m

(15 @25 0n) + D 0@ = ¥)) + P(@2s - Qs Yis s Ym)  (5:9.2)
j=1

where ®1(q1;q2,-.-,qn) = Y1y @(q1 — ¢;) is the energy of interaction of
particle ¢; with the group of (ga,...,qn).

We can imagine that ¢; is the “most interacting particle” among the
(q1,---,Gn), i.e. it is one that maximizes the potential energy of interac-
tion with the group of the other particles. Since ®(q1,...,¢,) > —Bn by
stability, this implies that

P1(q1592, -+ qn) > —2B. (5.9.3)

In some special cases the selection of ¢; among the n particles ¢, . . ., g, may
be ambiguous; the choice then can be made arbitrarily (for the purposes of
the following argument).

Then from the definition (5.9.1) and by using the decomposition (5.9.2)
and if 2y denotes the grand canonical partition function in the volume V,
we see that we have the following simple algebraic identities

1 . 00
N S B (5.9.4)
=V m=0

. /6*5 ZJ- ‘p(‘h*yi)efﬁ'?(qz,m,qn,y1,~~~’ym) dyi ... dym —
m!

1 o0
:—Zefﬁq)l 413025-++,0n ) E Sn—l+m,

=V m=0

/ [ﬁ ( + (e —Be(a1—y;) _ 1))]e_ﬂé(QQa--anﬂU‘L7...,ym)dyl-,r;q/# _
j=1

1 o0 m
— 2o PP1(a1502,-,qn) Z Zzn—l-i-m Z

=v m=0 s=0 1odzseerie; 1< 4k <m

dy ... dym T
/% H (e—ﬂw(th—yjk) — 1)e—ﬁ¢(qz,---7qn,y1,---7ym)

having developed the product in the second line. By using the symmetry
in the y; variables we can suppose that the ji,...,j, are in fact 1,2,...,s
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and rewrite (5.9.4) as

pv(qs. - qn) =
1 = dyi ...d
_ 1 —BP1(q13q2,,qn) S/ Yi.---aYs
= —2ze z
il v § s!
s o0 ! !
H (efﬂw(qryk) _ 1) Z Zn71+t/ dy; ... dy; e BP(a2, s Y1se Yo Yooy
t!
k=1 t=0
(5.9.5)
having in the last step called m = s + t and replaced, with the ap-
propriate combinatorial factors required by the change, (yi,...,ym) with
(Y1,---+Ys, Y1, --,y;). Hence we see that the integrals reconstruct the cor-
relation functions and (5.9.4) becomes
[ee]
dyy ...d
— Lo BP1(q1392,--,qn) - AYs
pV((Jh---aQn)—Z@ ez ZO/ 3!
5=
s (5.9.6)
! H (eil&p(qliyk) - 1)pV(q2a ceesQny Y1y e ays)
k=0
in which the term with s = 0 has to be interpreted as:
—B®1(q1592:---,4n) if
ze ifn>1
pV(qQa aqn)a . (597)
z ifn=1

and all the variables ¢,y are considered to be in V.

Relations (5.9.6) are called the Kirkwood-Salsburg equations: they are im-
portant because we can use them to show that the virial series converges
for 8 and v small. And in fact they allow us to obtain a complete theory of
the gases in such regimes of 3, v.

We can regard py as a sequence of functions “of one, two,... particle po-
sitions”: pv = {pv(q1,...,qn)}n;q,... vanishing for ¢; ¢ V. If we define
the sequence ay of functions of one, two,... particle positions by setting
ayv(gi) =1lif g € Vand av(qr,...,¢n) =0ifn>1orn=1,¢; ¢V, then
we can write (5.9.7) as

py = zay + zKpy (5.9.8)

where, if §,51 =0 forn =1 and 0,1 = 1for n > 1,

Kpv (... qn) = e OP10mi02i) (Pv(QQ, oo n) On>1+ (5.9.9)
= dyr ... dys T4 , _ _

+Z/1T H (6 Belar—yw) _l)pV(q%-"aQnayla"'ays))
s=1 k=1

which shows that the Kirkwood-Salsburg equations can be regarded as linear
inhomogeneous “integral” equations for the family of correlation functions
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that describe a given system in the box V. The kernel K of these equations
is independent of V.
We should note that the quantities in py have different physical dimensions.
In fact pv(qi,--.,qn) has the dimension of a length to the power —3n.
This sounds bad enough to wish to write (5.9.9) in dimensionless form.
For this we need a length scale, and a natural choice is the “range” of the
potential that could be defined as %. But a more convenient length

that we can associate with our system is the quantity r(83):

r(B)? = /Rg le=89@) _ 1]d?q (5.9.10)

which can be called the effective range at inverse temperature 3. Note
that r(8) —= 750 —— 0 if the potential has no hard core; if the potential has a

hard core with radius a, and it is smooth and bounded otherwise, then

r(8)° 559 Fa’.
The length r(3) can be used to define the dimensionless correlations

ﬁV(qla"'aqn) as

Py (qr,. - qn) =B pv (g, qn) (5.9.11)

and setting ¢ = zr(8)?, the above equations can be written in dimensionless
form:

py = Cav + (K py, (5.9.12)
with

KpV(qla e ':qn) = e*ﬁ¢1(l}1;qz,---,qn) (ﬁv(QQ, e -:qn) + Z
s=1

5 (5.9.13)
/%k{[ﬂ (efﬂW(qryk) - 1) PG,y ns Y1, Ys)) -
Then we can write the recursive formula:
by = Cav + P Kay + ¢ Klay +¢! Koy +... (5.9.14)

which gives us an expression for the correlation functions, provided the series
converges, of course.
The convergence of the series is easily discussed if one notes that

d
I K av (g1, ..,qn|<eQﬂBz/ 1117,
(5.9.15)
- _ —p—1
H|e Be(a yk)—1||Kp av(qay -y QnsY1s- -5 Ys)|
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so that if we call M (p) = maxp, qy.....q. |[KP@v(q1,...,qn)| we see that

M(p) <e®PM(p-1)(1+ i s =e2PBH M (p —1) (5.9.16)

s=1

and M (0) has to be set equal to 1. This implies that M (p) < e(?#B+1p g0
that the series (5.9.14) converges if |z| < e~ (28B+1y(3)73.

The convergence is uniform (as V — oo) and (K" )ay (1, - - -, qn) tends to a
limit as V' — oo at fixed ¢i, . - . , ¢, and the limit is simply (fpa) (q1y--5qn)
if a(q1,...,qn) =0 unless n = 1, and a(¢1) = 1. This is because the kernel
K contains the factors (e #¥(—21) — 1) which will tend to zero for y — oo
not slower than |p(y)|, i.e. summably by the temperedness condition. It is
also clear that (K" a)(qi,...,qn) is translation invariant.

Hence the limits as V' — oo of the correlation functions do exist and they
can be computed by a convergent power series in z, and the correlation func-
tions will be translation invariant in the thermodynamic limit and the lack
of translation symmetry, due to the confinement in the box V', disappears
when the box recedes to cc.

In particular the one-point correlation function p = p(q) is simply p =
z (1 + O(2r(8)%)), which to lowest order in z just shows that the activity
can be identified with the density. Activity and density essentially coincide
when they are small.

Furthermore 3py = - logZy (B, ) has the property that (20.0py)s =
% J pv(qg)dg, as is immediately checked (by using the definition of py in
(5.9.1)). Therefore the above remarks imply:

Bpv(8,2) = Jim < 10g (8, ) = /0 LA (5.9.17)

hence the grand canonical pressure p(g, z) is analytic in 3, 2. The density
p is analytic in 2z as well and p ~ z for z small. It follows that the pressure
is analytic in the density and Bp = p (1+ O(p?)), at small density. In other
words the equation of state is, to lowest order, essentially the equation of a
perfect gas, and all the quantities that we may want to study are analytic
functions of temperature and density.

The system is essentially a free gas and it has no phase transitions in the
sense of a discontinuity or a singularity in the dependence of a thermody-
namic function in terms of others.

However the system also cannot show phase transitions in the sense of
sensitive dependence on the boundary conditions: this is essentially clear
from the above analysis (i.e. from the remarked short range nature of the
kernel K) which shows that the dependence on the boundary condition
disappears as the boundary recedes to infinity while translation invariance
is recovered.

One could, nevertheless, think that by taking other boundary conditions
the argument may fail. It can however be shown that this is not the case,
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simply by pushing the above analysis a little further. The key remark is in
fact that any infinite volume state, obtained by any sequence of boundary
conditions with fixed external particles, will obey the DLR equations, see

85.6, and the latter can be shown to imply the “infinite volume Kirkwood-
Salsburg equations, [La70]. The latter are simply (5.9.13) with V replaced
by R?, and make sense also for infinite volume as soon as the correlation
functions satisfy a bound like p(q1,...,q,) < " for some & no matter how
large.

The limits of finite volume states with fixed external particle bound-
ary conditions do satisfy a bound of this type and also the DLR equa-
tions and, therefore, the Kirkwood-Salsburg equations in infinite volume.
The uniqueness of the solutions of such equations proves, in the region
|z| e26B+1r(3)? < 1, the boundary condition independence (hence the trans-
lation invariance) of the Gibbs states, [Do68c],[LR69].

Finally one can also see that the state of the system can be regarded as
describing a distribution of particles in which particles occupying regions
that are far apart are “independently distributed”. There are several ways
to express this property. The simplest is to say that the correlations have a
cluster property, see footnote 8, §5.5. This means that

lm plgr, s n, @y + a5 @ +a) = plg1, -5 @n)plars - -5 @) (5.9.18)

and this property is an immediate consequence of the above analysis in the
small 8, small p regions.

In fact, restricting ourselves for simplicity to the case in which the potential
has finite range ro we easily check that

Z(ZK)pa(qla"'aqn;qill +a7"'7q;z’ +a’) =

= 3 2K (a. . a0)2(2K)P (g1 ) (5.9.19)
p1+p2=p

for all p and provided the distance between the cluster ¢i,...,q, and the
cluster ¢{ + a,...,q,, + a is greater than pro.

This is satisfied by induction and implies that the power series expansion
for the difference between the expression under the limit sign in (5.9.18)
and the right-hand side starts at p = O(a/rg) because all the coeflicients
with p < % must vanish due to the fact that the kernel of the operator
K vanishes when its arguments contain points that are too far away. In
fact if the argument contains s + 1 points qi1,¥1,...,ys and the maximum
distance between them is greater than (s + 1)ro then at least one is further
away than ry from ¢, see (5.9.9). Then the above proved convergence
shows that the limit is approached exponentially at a speed that is at least
(zr(B)?e*PB+1)a/r0 (this being the rate of approach to zero of the remainder
of a geometric series with ratio zr(3)%e2#B+! and starting at order |a|/ro).

Hence if one wants to look for phase transitions one must forget the regions
of low density and high temperature. The Kirkwood-Salsburg equations
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are only one example of equations leading to convergent expansions for
the correlation functions: there are many recent developments based on
similar equations that are derived for other models or even for the same
ones considered above. The most interesting concern lattice models. See
§5.10 below: see [Ca83], [KP86], [Br86] for some examples.

§5.10. Phase Transitions and Models

As already mentioned the problem of showing the existence of phase tran-
sitions in models of homogeneous gases, which we have been considering so
far, is in fact still open.

Therefore it makes sense to study the phase transitions problem in simpler
models, tractable to some extent but nontrivial. In fact such an investigation
can give a very detailed and deep understanding of the phase transition
phenomenon.

The simplest models are the so-called lattice models. They are models in
which the particles are constrained to occupy points of a lattice in space.
In such models particles cannot move in the ordinary sense of the word
(because they are on a lattice and the motion would have to take place by
jumps) and therefore their configurations do not contain momenta variables.

The energy of interaction is just a potential energy and the ensembles
are defined as probability distributions on the position coordinates of the
particle configurations. Usually the potential is a pair potential decaying fast
at oo and, often, with a hard core forbidding double or higher occupancy of
the same lattice site.

Often the models allow at most one particle to occupy each lattice site. For
instance the nearest neighbor lattice gas, on a square lattice with mesh a > 0,
is defined by the potential energy that is attributed to the configuration X
of occupied sites:

J if =
H0= ¥ deon e ={] GRS s
z,yeX .

One can define the canonical ensemble, with parameters 5, N, in a box A
simply as the probability distribution of the subsets of A with N points:

e BH(X)
T Y ix=n e PHED

X'CA

p(X)

IX| = N (5.10.2)

where |X| is the number of points in the set X; and likewise the grand
canonical ensemble with parameters 3, A in the box A by
(xX) = e~ B X|g—BH(X)
P S e e X T BH(X)

(5.10.3)

Finally we can remark that a lattice gas in which in each site there can be
at most one particle can be regarded as a model for the distribution of a
family of spins on a lattice.
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Such models are quite common and useful: for instance they arise in study-
ing systems with magnetic properties. One simply identifies as “occupied”
a site with a “spin up” or + and as an “empty” site a site with a “spin
down” or — (of course one could make the opposite choice). If ¢ = {g,}a
is a spin configuration, the energy of the configuration will usually take the

form
H(g) = Z o(x —y)ogoy +h Z O (5.10.4)
z,yeEA z

and one calls canonical and grand canonical ensembles in the box A with
respective parameters 3, M or (3, h the probability distributions on the spin
configurations g = {0, }a with >°__, 0, = M or without constraint on M,
respectively, defined by

B2, Pla—y)oaoy

g) =
pﬂ’M(_) > e*ﬁ Zm,y p(z—y)olo)
(5.10.5)
ook Yooe=B),  wle—y)oeoy
o) =
poa(2) TP LAY, , oL
where the sums in the denominators run over the ¢’ with ° ol = M in

the first case and over all ¢'’s in the second case.

As in the study of the previous continuous systems one can define the
canonical and grand canonical ensembles with “external fixed particle con-
figurations” and the corresponding ensembles with “external fixed spin con-
figurations”.

For each configuration X C A of a lattice gas we define {n,} to be n, =1
ifx € X and n, =0if 2 ¢ X. Then the transformation:

Op =2y —1 (5.10.6)

establishes a correspondence between lattice gas and spin distributions. In
this correspondence lattice gases with canonical (or grand canonical) dis-
tributions and given boundary conditions with external fixed particles are
mapped into canonical (or grand canonical) spin distributions with suitably
correspondent boundary conditions of external fixed spins.

In the correspondence the potential ¢(x — y) of the lattice gas generates
a potential %(p(a: — y) for the corresponding spin system. The chemical
potential A\ for the lattice gas becomes the magnetic field h for the spin
system with h = 5(A+ 3, ¢(2)):

olz) = @' = %(p(a:); A= h= %(/\ + Z o(z)) . (5.10.7)
z#0

The correspondence between boundary conditions is also easy: for instance a
boundary condition for the lattice gas in which all external sites are occupied
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becomes a boundary condition in which all the external sites contain a spin
+. The correspondence between lattice gas and spin systems is so complete
that one often switches from one to the other with little discussion.

The thermodynamic limits for the partition functions of lattice gas models,
defined by

. 1 _
Bf(Bw)=~ lim  —log d e (5.10.8)
T:v,A—>oo |X|=N, XCA
and 1
Bp(B,A) = All)n;o Klog Z e~ AH(X)=BAIX] (5.10.9)
XCA

can be shown to exist, by an argument similar to that discussed in Chap.IV.
(and by far easier). They have the same convexity and continuity properties
of the corresponding quantities in the case of the continuous models and
they will be given the same names (free energy and pressure). They are
boundary condition independent, as was the case in the continuum models
with hard core interactions.

Likewise the thermodynamic limits exist also for the spin models partition
functions and they are denoted by f, p:

Bf(B,m)=—  lim l1og d o e e (5.10.10)

A—oo, M m

[A] Z Tu=M

and
Bp(8,h) = Jim %logE o PH@ Y, o (5.10.11)
—o0

however the physical interpretations of f, p are of course different. To find
the meaning of the above quantities in the Thermodynamics of a spin system
one would have to go through the discussion of the orthodicity again, in the
case of such systems. One would find, as it is easy to check, that p(3, h) has
the interpretation of magnetic free energy while f(8,m) is a quantity that
does not have a special name in the Thermodynamics of magnetic systems.

In the next chapter we shall consider some special cases: they are the
simplest and they are quite remarkable as in some particular instances they
are even amenable to more or less exact solution (i.e. calculation of the
thermodynamic limit of various quantities, like for instance the free energy).

The interest, as it will appear, of such models will be the wealth of infor-
mation that they provide about the phenomena related to phase transitions.

One of the developments of the late 1960s and early 1970s is that natural
“extensions” to lattice spin systems of the formalism discussed in §5.3-§5.7
arise in rather unexpected contexts, see Chap.IX.

Such “extended” lattice system models are spin systems more general than
the model (5.10.4). For instance they allow the spins o, at each site = to be
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an “arbitrary” finite set of symbols or “spin values” (rather than necessarily
o, = £1). The number of values of such “spins” divided by 2 is called the
total spin: so that the case 0 = +1 is the “spin %” case.

It is convenient, for later reference purposes, to introduce here such ex-
tensions: they will be one-dimensional models without phase transitions at
least in the cases that we shall later consider in Chap.IX; they can be ex-
tended also to higher dimension and, as such, they will appear in Chap.VIL.

The model energy H has the form

e
H= Z Z (pzh...,xn(azl,...,an) (51012)

n=1z1<...<ZTn

where @, 2. (01,-.,00) = Qeita,..an+al01,...,0n) for all a € Z
(“translation invariance”), and

o
Z Z Wy, Max Yz, 2. (01,...,05)] <0 (5.10.13)
O1,y.--40n

n=10=z;<...<z,

for some weights w,, > 1. If w,, = e*1*»~#1l one says that the model (5.10.12)
is a short-range Ising model with many body interactions. The quantity:

M) =3 Y Gerean(Oarsen0,) (5.10.14)

n=10=21<...<xn

will be called the “energy per site”; a few properties of A should be noted.
Namely X is “Holder continuous”: i.e. if g,g’ are two spin configurations
agreeing for |i| < k (i.e. 0; = o} for all |i] < k), and if the interaction has
short range in the above sense, then for some x > 0,

IMe) — Aa")| < conste . (5.10.15)

This means that A(g) depends “ezponentially little” on the spins located far
from the origin.
The partition function of the model with “open” boundary conditions will
be simply
Z=>Y e P, (5.10.16)

More generally one can consider the model in the presence of “fixed spin
boundary conditions”. This means that for each configuration ¢ in the
box A = [~L, L] we consider the biinfinite configuration o = (a”,o", ")
obtained by putting ¢* on the lattice and then continuing it outside A
with ¢ to the left and of to the right, where o = (...,0%,0f) and
oft = (oft,0F,...). The probability u(c") of a configuration in the model

“with boundary conditions ¢;,05” will be:

e H(a"a"a®)

A)_

= .10.1
S ia e~ Hghe ™) (5.10.17)

(e
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where, if ¥ denotes the shift operation on the bilateral sequences and we set

oLvoR = g, the energy H is

H(c"o"c®) = Z A9 0) (5.10.18)
k=—L

so that one can remark that the exponential is simply written in terms of
the energy per site A(g); (5.10.12) can also be expressed in a similar way.
In fact let ¢ = g% be the biinfinite configuration obtained by extending o
periodically outside the region A. Then the energy of interaction between
the spins in A and between them and the ones outside A, is:

L
= Z M*a) + corrections (5.10.19)
k=—TL

where the “corrections” depend “only” on the spins near the boundary
points =L and outside the interval A = [-L, L], in the sense that by varying
the spin at a site at distance ¢ from the boundary the correction changes
by a quantity proportional to e™*¢ if k is the exponent in the weight w,
introduced above, see (5.10.13).

A further extension is obtained by considering a matrix 7" whose entries
Ty, are labeled by the spin values and are supposed to be T,, = 0,1,
and by restricting the family of spin configurations ¢ to the T'-compatible
configurations: they are defined to be those that satisfy Ty, ,,,, = 1, where
T is a matrix with entries 0 or 1, called the compatibility matriz. One also
calls such models “hard core spin systems” and T describes the hard core
structure. Such systems are also called hard core lattice systems.

If the matrix 7" is such that 77! ,, > 0, for all o, o' and for n large enough,
one says that the hard core is mizing. For such cases all the above for-
mulae and definitions (5.10.12)-(5.10.19) extend unchanged provided only
compatible spin configurations are considered.

Appendix 5.A1: Absence of Phase Transition in non Nearest
Neighbor One-Dimensional Systems

The method discussed in §5.8 for hard core nearest neighbour one-
dimensional models is called the transfer matriz method. We extend it
here to the more general case of finite range, but not nearest neighbor. The
theory is very similar to that in §5.8.

Let ¢(r) =0 for r > (n — 1)ro for some integer n. Assume for simplicity
that N is a multiple of n. Let ¢ = (¢1,...,¢n) With ¢1 < g2 < ... < @n; and
let us define N

n

> le; —q)) (5.A41.1)

i<j=1

a(g) = a(Q1,---,Qn) =

N | =
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n

bald) =bla,- - qnlat-- - a0) = Y wlai — )
i,j=1
o

Then the energy of a particle configuration is

|q") = alg) +b(glq) +ald).

|>-Q

a(qus -5 qn) + a(@u((N/n)=1)+15 - - - AN)+

N/n2 (5.41.2)
+ Z c(Gnk+1 - - Gnksn | Gn(r+1)+1> - - - Dn(k+2))

so that one easily finds
In(B,p) = (a| T |a) (5.41.3)

where T is the operator acting on the space of the functions of n coordinates
q= (q1,92,- .-, qn) With gj11 —q; > ro:

Tf(q) =/ emPelalinta) o= (amta)00 (¢ dg' (5.A1.4)
0

and the vector |a) is the function e ~30pen—Fal)

Since the operator 7 is a Hilbert-Schmidt operator on the space La(dg)
(i.e. [T(q,q')*dgdq’ < +00), and since its kernel is > 0 it “immediately”
follows (i.e. it follows from well known results on the theory of operators, or
better of matrices, like the Perron-Frobenius theorem, see p. 136 in [Ru69])
that the largest eigenvalue (8, p) of T is isolated and simple and therefore
it is analytic as a function of 3, p, since T itself is analytic in such variables.
Therefore A\(8,p) = %t(ﬂ,p) is analytic in 8,p for 8,p > 0, and convex
in such variables (see (5.8.2) showing that Jy is a “linear combination” of
functions depending on 3 as e%¢, hence log .Jn (83, p), is convex in 3) and we
can repeat the argument above to see that the equation of state gives p as

an analytic function of 3, v

The further extension to systems with a potential with infinite range but
satisfying (5.8.4) is also possible and it was the main purpose of van Hove’s
theorem, [VH50]. The condition (5.8.4) comes in to insure that b(q|q’)
is uniformly bounded: this quantity represents the interaction between a
configurartion ¢ situated to the left of another configuration ¢, hence it is
uniformly bounded if (5.8.4) holds.
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§6.1. The Ising Model. Inequivalence of Canonical and Grand
Canonical Ensembles?

The Ising model? plays a very special role in statistical mechanics and
generates the simplest nontrivial example of a system undergoing phase
transitions.

Its analysis has provided us with deep insights into the general nature of
phase transitions, which are certainly better understood nowadays, after the
publication of the hundreds of papers which followed the pioneering work of
Ising, Peierls, Onsager, Kaufman and Yang, [Pe36], [On44], [Ka49], [KO49],
[Ya52].

The main reason why so much attention has been given to this very special
model lies in its simplicity and, in spite of it, in the fact that it first gave firm
and quantitative indications that a microscopic short-range interaction can
produce phase transitions which, furthermore, deeply differ in character
from the classical van der Waals’ (or Curie-Weiss’ or mean field) type of
transitions, see §5.1 and §5.2.

It should also be mentioned that the two-dimensional Ising model in zero
external field is exactly solvable (see §7.4);3 this fact has been very often
used to check of the validity of numerical approximations designed for ap-
plications to more complicated models, see the review [Fi64], pp. 677-702.

Last but not least, we mention that the Ising model has given rise to
a number of interesting developments and reinterpretations of old results
in the theory of Markov chains, [Do68],[Sp71], information theory, [Ru69],
[Or74], [RM75], random walks, [Gr67],[Fi67b],[GH64], [La&5], to quote a few
remarkable works, and therefore constitutes a notable example of a subject
which has simultaneously been the object of advanced research in Physics,
Mathematics and Mathematical Physics.

In the rest of this chapter we give a description, certainly not exhaustive,

1 This chapter is mostly taken from the paper Instabilities and phase transitions in the

Ising model, La Rivista del Nuovo Cimento, 2, 133-169, 1972.
For a history of the Ising model see [Br69].

The original solution for the free energy of the Ising model in two dimensions can be
found in [On44]. It was preceded by the proofs of existence of Peierls, [Pe36], and van
der Waerden, [VW41], and by the exact location of the critical temperature by Kramers
and Wannier, [KW41].

The spontaneous magnetization was found by Onsager, [KO49], but the details were
never published; it was subsequently rediscovered by Yang, [Ya52]. A modern derivation
of the solution is found in the review article by Schultz, Mattis and Lieb, [SML64]: the
latter is reproduced in §7.4. Another interesting older review article is the paper [NM53].
A combinatorial solution has been found by Kac and Ward and can be found in [LL67],p.
538. Some aspects of this derivation were later clarified: and it has been discussed again
in several papers, see [Be69]. Another approach to the solution (the Kasteleyn’s pfaffian
method) can be found in [Ka61].
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of the model and of some selected results. They illustrate properties which
throw some light on the general nature of the phenomenon of phase tran-
sitions, mostly far from the critical point, and which, hopefully, should not
be a peculiarity of the simplicity of the model.

There exist some very good accounts of the theoretical arguments leading
to the consideration of the Ising model in the context of physical problems,
[Fi67a], [Ma65]; here we shall completely skip this aspect of the matter.?

§6.2. The Model. Grand Canonical and Canonical Ensembles.
Their Inequivalence

We consider a d-dimensional (d = 1,2,3) square lattice Z¢ and a finite
square A C Z? centered around the origin, containing |A| = L lattice sites.
On each site & € A is located a classical “spin” o, = £1. The “configu-
rations’ of our system will, therefore, consist of a set g = (azl,...,axw)
of |A| numbers o, = =+1; the number of these configurations is 2/Al. The
ensemble of the configurations will be denoted U(A).

To each spin configuration a certain emergy is assigned, see §5.10:

Hp(o)=-J Z 02,02, — hZozi + B(o) (6.2.1)

<i,j> i
where Z<i’j> means that the sum is over pairs (z;,z;) of neighboring
points, h is an “external magnetic field” and Ba(g) describes the inter-
action of the spins in the box A with the “rest of the world”. This could
be the contribution to the energy that comes from the fized spins boundary
conditions that we considered in §5.5.5

For simplicity we shall treat only the case J > 0.

Of course Ba(g) in (6.2.1) can be rather arbitrary and, in fact, depends on
the particular physical problem under investigation. It is subject, however,
to one constraint of physical nature: in case we were interested in letting
A — o0, we should impose the condition:

. max, |Ba(g)]
lim ————

Jim T =0 (6.2.2)

i.e. we want the condition that the energy due to Ba (¢) should not be of the
same order as the volume of the box; furthermore Bx should depend mostly
on the o, with z near the boundary; e.g. Bx(g) = cog satisfies (6.2.2) but
it should also be excluded.® In other words B should be a “surface term”.

4 Tn some cases the Ising model is a good phenomenological model for antiferromagnetic
materials: this is the case of MnCls - 4H2 O, see [FS62], [Fi67].

5 This term is usually omitted and in some sense its importance has only recently been
recognized after the work of Dobrushin, Lanford and Ruelle, see [Do68], [LR69]. In this
chapter the main purpose is to emphasize the role of this term in the theory of phase
transitions.

6 A precise condition could be that for any fixed set D, max|By(c) — Ba(g')| == 0
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The laws of statistical mechanics provide a relationship between the micro-
scopic Hamiltonian (6.2.1) and the macroscopic quantities appearing in the
thermodynamical theory of the system. The free energy per unit volume is
given by

ﬂfl
where B = T! is the inverse temperature and
Z(B,h,AB)= Y e P (6.2.4)
g€U(A)

is the grand canonical partition function. Furthermore the probability of
finding the system in a configuration g of the grand canonical ensemble
U(A) is given by the Boltzmann factor:

e—BHA(2)
The grandcanonical ensemble formalism based on (6.2.3),(6.2.5) corresponds
to the physical situation in which there are no constraints on the system. If
one could, by some experimental arrangement, regard for example the total
magnetization M(g) = ) .\ 0, as fixed: M(g) = M = m|A|, then the
expression (6.2.3) for the free energy would no longer be appropriate.

One should rather consider the canonical ensemble, i.e. the set of the al-
lowed configurations would be the set U(A,m) C U(A) consisting of all the
o € U(A) such that ), 0, =m|A|, (jm| < 1), and the Thermodynamics
would be described by the function

-1

gA(ﬂah;m) = WlogZ(,@,h,A,B,m) (626)
where
Z(B,h, A Bm) = Y e P (6.2.7)
g€U(A,m)

and the free energy would be fx (8, h):

Fa(B,h) = hm(h) + ga(8,0,m(h)). (6.2.8)
where m(h) is the solution of the equation:”
_ 0ga(B,0,m)
h= = (6.2.9)

if the maximum is over all pairs of spin configurations ¢ and ¢’ that differ only on D,
i.e. such that o, = o/, for z ¢ D.

Here we have not been precise about the problem of what 8/8m means, since g (8, m)
is only defined for certain rational values of m (whose number is finite). One could,
for instance, extend ga (3, m) to all m’s by considering instead of g5 (3, m) its convex
envelope (or also one could prefer to consider the g obtained by linear interpolation
from (6.2.6)). This is not very satisfactory but it should not be very important for large
systems, as discussed in Chap.IV.
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There is no reason for having fo = fa since they correspond to different
physical problems; it is only when, in some sense, the fluctuations become
negligible (i.e. in the limit A — oo) that one can expect the identity between
fand f.

Of course in general the difference between fA and fp should vanish as
|A|~" times O(|A|(4~D/4) (this means O(log |A|) for d = 1); but, as we shall
see on many occasions, the situation is not so simple for other quantities
such as the correlation functions or the average magnetization.

As discussed in §5.9 the inequivalence, for finite volume, of the predictions
of the canonical and grand canonical ensembles should not be interpreted
as meaning that statistical mechanics is only approximate when applied to
finite systems; it simply means that in dealing with finite systems atten-
tion must be paid to the boundary conditions as a manifestation of the
peculiarities of the actual physical situation from which the problem under
consideration arises. We conclude by remarking that in the canonical en-
semble the probability of a spin configuration will be given by an expression
similar to (6.2.5):

e BHA(2)

ZGhABm)y CEUdm. (6.2.10)

§6.3. Boundary Conditions. Equilibrium States

Formulae (6.2.5), or (6.2.10), provide a complete statistical description of
the properties of the system. An alternative and often more convenient,
equally complete, description is provided by the so-called correlation func-
tions:

—BH
Y5 021005 -0z, € FHA(2)

(02, 02s ---an>A,BA = S e—BHAQ)
a

(6.3.1)

where )~ is extended to the appropriate statistical ensemble. For instance
the average magnetization in the grand canonical ensemble U/ (A) is

ma (8, h) = 3fA(;f,h) _ ZzeAV(\TE)Aﬁ (6.3.2)

We shall refer to the family of correlation functions (6.3.1) (regarded as a
whole) as the ”equilibrium state of the system in the box A”.

We call an equilibrium state, see §5.5, of the infinite system any family
{{o%, ...04,)} of functions such that, for a suitable choice of the By (¢):

(Ogq -+ 0g,) = Ah_)n;o (O2y -~ 02, ) A B, (6.3.3)
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forall n > 1 and all z1,22,...,2, € Z¢, simultaneously.8

An equilibrium state for an infinite system will simply be called an equi-
librium state: it is specified by a suitable choice of a sequence {Ba(g)} of
boundary conditions satisfying the requirement (6.2.2).

Let us list a number of remarkable boundary conditions:

(1) Open boundary condition (also called “perfect-wall” boundary condi-
tions). This name will be given to the case

Ba(g) =0 for all ¢ € U(A) (6.3.4)

(2) Periodic boundary conditions. This corresponds to allowing spins on
opposite faces of the box A to interact through a coupling —J (i.e. as the
bulk spins). Clearly this can be obtained by a suitable choice of By (g); we
shall refer to this choice as ”periodic boundary conditions”.

(3) (g)-boundary conditions. Tet (&,&,...) be the 2d|A|(4=D/? Jattice
points adjacent to the boundary of A. Let ¢ = (g¢,,€¢,,...), €, = £1, be
fixed. We shall call (¢)-boundary condition the choice

Ba(g)=—=J Y oac, (6.3.5)
z;EOA

where (z;,&;) are nearest neighbors.

The physical meaning of this boundary condition is clear: we imagine
that the sites neighboring the boundary 0A of A are occupied by a spin
configuration ¢ and that the latter spins interact with the spins g through
the same coupling constant of the bulk spins.

The cases ¢ = (+1,+1,...,+1) or ¢ = (—1,-1,...,—1) will be, respec-
tively, referred to as the (+)-boundary condition or the (—)-boundary con-
dition.

(4) In the two-dimensional case we shall be interested in another boundary
condition. Suppose that the spins on the opposite wvertical sides of A are
allowed to interact through a coupling —J (i.e. we impose periodic boundary
conditions along the rows of A only); and suppose that a set g,, of fixed spins
is located on the lattice sites adjacent to the upper base of A and, similarly,
a set g; of fixed spins is adjacent to the lower base of A. The spins ¢,,, &, are

allowed to interact with the nearest spins in A with a coupling —.J. We shall

8 This definition is essentially in [LR69] where the equivalence of the above definition
with a number of other possible definitions is shown. For instance the definition in
question is equivalent to that based on the requirement that the correlation functions
should be a solution of the equations for the correlation functions that can be derived
for lattice gases or magnetic spin systems in analogy to those we discussed for the gases
in §5.8. It is also equivalent to the other definitions of equilibrium state in terms of
tangent planes (i.e. functional derivatives of a suitable functional: see [Ru69], p. 184,
[Ga81]).
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naturally refer to this choice of By (o) as the (g,,¢;)-cylindrical boundary
condition.

The particular cases

gy =(+1,+1,...,+1), g =(+1,41,...,41)

6.3.6
§u:(+1a+1:---,+1), g = (—1,—1,...,—1) ( )

will be referred to, respectively, as (+, +)-cylindrical boundary condition or
(4, —)-cylindrical boundary condition.

§6.4. The Ising Model in One and Two dimensions and zero field

To acquire some familiarity with the model we examine some of the simplest
cases. Consider the one-dimensional Ising chain with periodic boundary

conditions. Labeling points of A as 1,2,..., L, the zero field Hamiltonian is
I
Hp(o) = —JZ Oi0it1, opi1 =01 (6.4.1)
i=1
(clearly Ba(o) = —Joro1). The grand canonical partition function can be
written:

L
ZA(B) = Z 65‘] 25:1 Tifit1 Z Heﬂjoioi+1 . (642)

o i=1

Noting that (o;0;41)% = 1 and therefore
eP19i%41 = cosh B.J + 00,41 sinh 3.J (6.4.3)

(6.4.2) can be rewritten as

L

Zx(B) = (cosh BJ)E > T](1 + tanh BT 5i0i41) - (6.4.4)

o i=1
If one develops the product in (6.4.4) one gets a sum of terms of the form
(tanh 8J)* 05,04, 1105, Giy 1 - 03 Tip g1 - (6.4.5)

It is clear that, unless &k = 0 or k = L, each of the terms (6.4.5) contains
at least an index i; which appears only once. Therefore, after performing
the sum over the ¢’s, all terms (6.4.5) give a vanishing contribution to
ZA(B) except the two with k = 0 and k = L which are, respectively, 1 and
(tanh BJ)E- 010905 ...01_100r01 = (tanh 3.J)%. This implies

ZA(B) = (cosh BL)E2% (1 4 (tanh B.J)F) (6.4.6)
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Hence:?

Bfa(B) =log(2cosh 8J) + %log(l + (tanh gJ)%). (6.4.7)

It has to be remarked that 3fa(8), as well as Bf(8) = limy, 0o Bfa(B) =
log 2 cosh BJ, are analytic in 3; this fact is usually referred to as the “absence
of phase transitions” in the one-dimensional Ising model. The reader can
check, by using the above method, that the partition function in the grand
canonical ensemble and zero field but open boundary conditions (see §6.3)
is slightly different from (6.4.6) and, precisely, is equal to (cosh 3.J)L2L.

Consider now the two-dimensional Ising model in a zero field and with
open boundary conditions:

L L-1 L-1 L
HA(Q) :—JZZO’MO’”'_H _JZZ‘”JUHU' (648)
i=1 j=1 i=1 j=1

A better form for Hp (o) is the following:
Hyo=-J)Y 6 (6.4.9)
b

where )", denotes the sum over the bonds, i.e. over the segments b =
[(4,7),(i,5 +1)] or b = [(4,7), (i + 1,7)], and &} is the product of the two
spins at the extremes of b (e.g. if b = [(i,7), (¢ + 1, )] then &, = 04 ,0441,5).
The partition function can be written, as in the one-dimensional case, as

Zx(B) = (cosh BJ)*PED N T (1 + (tanh B.J)5y) (6.4.10)

o b

Developing the product we are led to a sum of terms of the type:

(tanh BJ)* Gy, 64, . . . 53, (6.4.11)

and we can conveniently describe this term through the geometric set of lines
bi,ba,...,b;. After the )  is taken, many terms of the form (6.4.1) give a
vanishing contribution. The ones that give a nonvanishing contribution are
those in which the vertices of the geometric figure by U by U ... U by belong
to an even number of b;’s (two or four).

(a) O !

clJd_i_LiJ_i_uLdliJd. clJd_i_LiJ_i_uLdliJd.

9 The solution can also be found for instance in [NM53].



6.4.12

188 V1. Coexistence of Phases

Fig. 6.4.1: The dashed line is the boundary of A.

These terms are the ones such that &y, - 63, ...05, = 1. In Fig. 6.4.1a
we give a typical nonvanishing term and in Fig. 6.4.1b an example of a
vanishing term (k = 30).

We shall, in the following, consider the geometric figures built with k seg-

ments by,...,by such that 6y, - G4, ...0p, = 1 and call it a k-sided multi-
polygon on the box A (needless to say, all the by, ..., by are pairwise differ-
ent). Let Px(A) be the number of such polygons.
The partition function is now easily written as'©:
Z5(B) = (cosh §J)*E-12L" $™ P (A) (tanh 8. (6.4.12)
k>0

§6.5. Phase Transitions. Definitions

We have already seen, in the preceding section, that the one dimensional
Ising model has no phase transitions in zero field, since both fa(3) and f(5)
are analytic in (3.

We recall briefly in the concrete context of the Ising model the general
considerations of Chap.V about the definition of phase transition as a phe-
nomenon of macroscopic instability: slight changes of external conditions
should imply dramatic changes of some macroscopic variables; it is hard to
imagine how in such a situation thermodynamic functions, which we have
seen to be boundary-condition independent, like the free energy, the pres-
sure, etc, could be analytic functions of the parameters in terms of which
they are expressed (say, temperature, chemical potential or magnetic field,
ete).

For this reason an analytic singularity in the thermodynamic functions is
usually thought of as a “symptom” of a phase transition and on this idea it
would be possible to base a definition and a theory of the phenomenon of
phase transitions.

Here, however, we will not base the investigation of the nature of phase
transitions in the Ising model on the search for singularities of the thermo-
dynamic functions; we shall rather adopt and make more precise the other,
perhaps more immediate and intuitive, approach based on the detection of
”macroscopic instabilities”, introduced in Chap.V.

This way of proceeding is more convenient for the simple reason that a
number of very clear and rather deep results have been obtained along
these lines. But it should be understood that this second approach does
not ”brilliantly” avoid the difficulties of the first. It is simply an approach
to the theory of phase transitions which, so far, has asked for and provided
a less refined description of the phenomena of interest, as compared to the

10 The expansion can be used as a starting point for the combinatorial solution mentioned
above, see [LL67].
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description which would be expected from the analysis of the singularities of
appropriate analytic functions (an analysis still in a very primitive stage and
whose problems are often not well formulated even in the simplest cases).!?
For this reason it provides a wealth of remarkable properties of the phase
transition phenomenon.

Let us now discuss in a more precise way the concept of macroscopic in-
stability. Consider the Ising model and define the condition that a phase
transition takes place at the values (3, h) of the thermodynamic parame-
ters if the system is unstable with respect to boundary perturbations; i.e. if
there are at least two sequences By (g) and B\ (¢) of boundary terms (see
(6.2.1), (6.2.2)) such that (say, in the grand canonical ensemble)

lim (o, ...0 lim (0,,...0 6.5.1
Hm (0, o)y E 0o (65)
for a suitable choice of x1,xs,...,2,,n.

We first clarify why we say that, if (6.5.1) holds, we have a macroscopic in-
stability. We remark that a change in boundary conditions does not change
the extensive properties of the system such as the free energy. In fact, from
definition (6.2.4):

Z(B,h, A\, Br) _ Ba(2)|+|B) (o)
SN DA aXycu(A) |Bala AZ 5.2
Z(B, A By) =€ (6:5:2)

and therefore (6.2.2) implies

log Z(B3, h, A, Ba) =] Z(B,h, A, BYy) (6.5.3)

IAI IAI
Oun the other hand, if (6.5.1) is true, intensive quantities like the correlation
functions are sensitive to the boundary conditions; for instance if

Ah_{lgo <Ux1>A,BA # Ah_{lgo <0z1>A,B'A- (6.5.4)
we realize that the local magnetization changes as a consequence of a change
in boundary condition even if the boundary is very remote.

Of course once provided with a ”definition” of what a phase transition is,
one has not gone very far. The real question is whether the definition reflects
what is physically expected; this implies, in particular, that one should at
least be able to prove the existence of a phase transition, in the above

11 Of course we do not attach a deep physical meaning to the difference between these two
approaches. Clearly they should be equivalent if one pretended to extract all possible
information from them. What is really important is that the first questions raised by
both approaches are very interesting and relevant from a physical point of view. One of
the goals of the analytic theory of phase transitions is to understand the nature of the
singularity at the critical point and at the “breaks” of the isotherms. A lot of interest
has been devoted to this point and a number of enlightening phenomenological results
are available. However the number of complete results on the matter is rather limited.
An idea of the type of problems that are of interest can be obtained by reading the
papers [Ka68] or the more detailed paper [Fi67].
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sense, in cases in which one expects a transition. Hopefully the definition
and its physical interpretation should allow one to do more: for instance
to provide the tools for a closer description of typical phenomena (like the
phase separation).

Here we end this somewhat philosophical but necessary discussion and
in the coming sections we shall describe in the concrete example of the
Ising model, some of the results that have been obtained since the early
1960s, when the above point of view was starting to be developed, quite
independently, by several people.

86.6. Geometric Description of the Spin Configurations

Here we introduce a new description of the spin configurations, which we
shall use to derive in a very elegant way the exact value of the critical
temperature in the two-dimensional Ising model. In the following sections
the geometric representation, introduced below, will be widely used.

Consider an Ising model with boundary conditions of the type (6.3.5) ((g)-
boundary conditions) or with periodic boundary conditions (see §6.3).

Given a configuration ¢ € U(A) we draw a unit segment perpendicular to
the center of each bond b having opposite spins at its extremes (in three di-
mensions we draw a unit square surface element perpendicular to b). A two-
dimensional example of this construction is provided by Fig. 6.6.1 (where
a very special (g)-boundary condition is considered).

The set of segments can be grouped into lines (or surfaces in three di-
mensions) which separate regions where the spins are positive from regions
where they are negative.

It is clear that some of the lines (or surfaces, if d = 3) are ”closed polygons”
(”closed polyhedra”, respectively) while others are not closed. It is perhaps
worth stressing that our polygons are not really such in a geometrical sense,
since they are not necessarily ” self-avoiding” (see Fig. 6.6.1): however they
are such that they can intersect themselves only on vertices (and not on
sides). From a geometrical point of view a family of disjoint polygons (in
the above sense and in two dimensions) is the same thing as a multi-polygon
in the sense discussed in §6.4, Fig. 6.4.1.

In two dimensions instead of saying that a polygon is ”closed” we could
equivalently say that its vertices belong to either two or four sides.

We note that the (+)-boundary conditions, the (—)-boundary conditions
and the periodic boundary conditions are such that the lines (surfaces)
associated with spin configurations are all closed polygons (polyhedra). In
the periodic case some polygons might wind up around the two holes of the
torus.

In the two-dimensional case and if the boundary conditions are the (+, +)-
cylindrical or the (+, —)-cylindrical ones (see §6.3) a geometric construction
of the above type can still be performed and, also in this case, the lines are
closed polygons (some of which may ”wind around” the cylinder A).
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Fig. 6.6.1: The dashed line is the boundary of A; the outer spins are those fixed by the
boundary condition. The points A, B are points where an open line ends.

For a fixed boundary condition let (71,42, ..,Vh, A1, .-, Ax) be the disjoint
components of the set of lines (surfaces) associated by the above construc-
tion with a spin configuration ¢ € U(A). The 74, ..., vy are closed polygons
and the A1,...,A\x are not closed. The example in Fig. 6.6.1 has one no
closed polygon only (due to the special nature of the boundary condition,
“half 4+ and half —").

Clearly the correspondence between (v1,92, - -, Vh, A1, - - -, Ax) and g is, for
a fized boundary condition, one-to-one except for the case of the periodic
or open boundary conditions, when it is one-to-two. Changing boundary
conditions implies changing the set of lines (surfaces) which describe the
same spin configuration g.

A very important property of the above geometric description is that, if
|7], |A] denote the length (area) of the lines (surfaces) v and A, then the
energy of a spin configuration is, in zero field, given by

Hj(g) = —J - (number of bonds in A) + 2J[Z lvil + Z IA;]]. (6.6.1)
i J

This remark easily follows from the fact that each bond b contributing —.J to
the energy has equal spins at its extremes, while the bonds contributing +.J
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have opposite spins at their extremes and, therefore, are cut by a segment
of unit length belonging to some v; or A;.

If Ma= (number of bonds in A), the partition function becomes (in zero
field and with fixed spin boundary conditions)

Z Z ( —28J Zi vl . e_QBJ ZJ' |)\j|) . e’BJNA (662)

<Y A1

where the sum runs over the set of lines associated with a spin configuration
o € U(A) and with the boundary condition under consideration.

In the case of periodic or open boundary conditions there may be no A’s
(this happens in the periodic case) and there is an extra factor 2 (because

in this case the correspondence between o and (7y1,...,7v) is two-to-one);
in the periodic case:
ZnB) =2 3 e 2Ll N (6.6.3)
Y1---Yh
and Ny = 2L2.

Form the above considerations we draw two important consequences:

(I) If the boundary condition is fixed, the probability of a spin configuration
o described by v1,...,vh, A1, .., Ag is proportional to:

200 (30, el 1) (6.6.4)

(IT) In the case of (+) or (—) boundary conditions and two dimensions we
remark that >~ in (6.6.2) is a sum over "multi-polygons” lying on a

shifted lattice and in a box A’ containing (L + 1)? spins (see the definition
in §1.6) and, therefore, if )", |v;| = k we have

Zp(B) = eBPHEFVETN " P (A) e 207k (6.6.5)
k>0

where Py(A') is the number of different multi-polygons with perimeter k
(see (6.4.12)).

If we now define 8* through
tanh 8.J = e 2977 (6.6.6)

with A replaced by a volume A’ with side L — 1 then a comparison between
(6.6.5) and (6.4.12) yields

Zn (B) _ Zn(BY)
212 (cosh BJ)2L(I=1) — 23" JL(L—1)

(6.6.7)
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Here ZA(3) is computed with open boundary conditions, while Zx:(3*) is
computed with (4)-boundary conditions.

If we assume that the bulk free energy f(8) = lima_00 \fl\_l log Zx(83) has
one and only one singularity as a function of g, for 3 real, then (6.6.7) can
be used to locate the singularity. In fact this implies

£(B) —log2(cosh B.J)* = f(B*) — 26" J (6.6.8)

having used the fact that the free energy is boundary-condition independent,
see (6.5.3). Hence a singularity in 3, if unique, can take place only when
B = p*, i.e. for f = B0 such that:

tanh f. o = e 2P0 (6.6.9)

which, indeed, has been shown by Onsager, [On44], to be the exact value
of the critical temperature defined as the value of 8 where f(§) is singular

(in the sense that its derivative diverges).1?

In the next section we outline the theory of phase transitions in the Ising
model as a macroscopic instability and a spontaneous breakdown of up-
down symmetry. We shall concentrate, for geometric reasons, on the two-
dimensional Ising model but, unless explicitly stated, the results hold in all
dimensions d > 2.

This geometric picture of the spin configurations can be traced back at least as far
as Peierls’ paper, [Pe36], and has been used, together with formula (6.4.12) to derive
(6.6.8) (the “Kramers-Wannier duality” relation) and (6.6.9), [KW41]). A recent in-
teresting generalization of the duality concept has been given in [We71], where some
very interesting applications can be found as well as references to earlier works. The
duality relation between (+) or (—) boundary conditions and open boundary conditions
(which is used here) has been realized by several people. The reader can find other
similar interesting relations in [BJS72] and further applications came in [BGJS73]. Du-
ality has found many more applications, see for instance [GHM77] and, for a recent one,
[BCY4]. In particular a rigorous proof of the correctness of the Onsager-Yang value of
the spontaneous magnetization is derived in [BGJS73].
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86.7. Phase Transitions. Existence

In this section we shall show that the (4)-boundary conditions and the (—)-
boundary conditions (see §6.3) produce, if the temperature is low enough,
different equilibrium states (see §6.3), i.e. for large 3 the correlation func-
tions are different and the difference does not vanish in the limit A — oo
(see (6.5.1)).

More precisely we shall prove that if h = 0 and § is large enough then

Jm (0,)y . = £m*(8) £ 0 (6.7.1)

where the index + refers to the boundary conditions.

Clearly (6.7.1) shows that the magnetization is unstable (in zero field and at
low temperature) with respect to boundary perturbations. We also remark
that by using periodic boundary conditions one would obtain still another
result:
=0, if h=0 (6.7.2)

Ah_{réo <O-z>A, periodic
because (02) 5 periogic = 05 if b =0, for obvious symmetry reasons.

After a description of the very simple and instructive proof of (6.7.1) we
shall go further and discuss more deeply the character of the phase transi-
tion.

As already remarked, spin configurations o € U(A) are described in terms
of closed polygons (v1,72,---,%s) if the boundary condition is (+) or (—)
and the probability of a configuration ¢ described by (71,72, ... ,7n) is pro-
portional to (see (6.6.4)):

e 2872 il (6.7.3)

Below we identify ¢ with (v1,72,...,7,) (with the boundary condition
fixed).

Let us estimate (o), ,. Clearly (0:), , =1—2Px 4+(—), where Py 4(—)
is the probability that i 1n the site x the spin is —1.

We remark that if the site = is occupied by a negative spin then the point
x is inside some contour 7y associated with the spin configuration ¢ under
consideration. Hence if p(7y) is the probability that a given contour belongs
to the set of contours describing a conﬁguration g, we deduce

Py (=) <) ply (6.7.4)

yox

where yoxr means that v “surrounds” z

Let us now estimate p(7y): if I' = (71,...,7y,) is a spin configuration and
if the symbol T comp~y means that the contour 7 is “disjoint” from (or
“compatible” with) ~v1,...,7, (i.e. {y UT} is a new spin configuration),
then

ZFB'Y 672'6'] 27’61“ v

—243J rer 1Y
(v) = = 2871 ZF comp~y © 27 €

ZF 6_2'6'] ZW’EF bl Z _QﬂJZ ’eF

p

(6.7.5)
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Before continuing the analysis let us remark that if ¢ = (v,v,%2,...,7n)
then ¢’ = (v1,792,...,7n) is obtained from ¢ by reversing the sign of the
spins inside -; this can be used to build an intuitive picture of the second
equation in (6.7.5). Clearly the last ratio in (6.7.5) does not exceed 1; hence:

p(y) < e 20711 (6.7.6)
Letting p = |y| and observing that there are at most 37 different shapes of v

with perimeter p and at most p? congruent v’s containing (in their interior)
x, we deduce from (6.7.4), (39.6):

p?3Pe28Ip (6.7.7)

M8

Py (=) <

Il
I

p

Hence if 8 — oo (i.e. the temperature T' — 0) this probability can be made
as small as we like and, therefore, (o, ) A4 1S @s close to 1 as we like provided
B is large enough. It is of fundamental importance that the closeness of
(04)5 4 to 1is both z and A independent.

A similar argument for the (—)-boundary condition, or the remark that
(ou)p— = —(0u)p 4, allows us to conclude that, at large 3, (0.), _ #
(02) 5, and the difference between the two quantities is uniform in A.
Hence we have completed the proof (” Peierls’ argument”) of the fact that
there is a strong instability with respect to the boundary conditions of some
correlation functions.'3

We can look upon the above phenomenon as a spontaneous breakdown of
up-down symmetry: the Hamiltonian of the model is symmetric, in a zero
field, with respect to spin reversal if one neglects the boundary terms; the
phase transition manifests itself in the fact that there are equilibrium states
in which the symmetry is violated “only on the boundary” and which are
not symmetric even in the limit when the boundary recedes to infinity.

86.8. Microscopic Description of the Pure Phases

The description of the phase transition presented in §6.7 can be made more
precise from the physical point of view as well as from the mathematical
point of view. A deep and physically clear description of the phenomenon
is provided by the theorem below, which also makes precise some ideas
familiar from a model, which we shall not discuss here, but which plays
an important role in the development of the theory of phase transitions:
namely the droplet model, [Fi67c].

Assume that the boundary condition is the (+)-boundary condition and
describe a spin configuration g € U(A) by means of the associated closed
disjoint polygons (v1,---,7n)-

18 The above proof is due to R.B. Griffiths and, independently, to R.L. Dobrushin and it
is a mathematically rigorous version of [Pe36].
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We regard the ensemble U(A) as equipped with the probability distribution
attributing to ¢ = (11,...,v) a probability proportional to (6.7.3).
Then the following theorem holds:

Theorem. If 3 is large enough there exist C > 0 and p(y) > 0 with p(y) <
e 28771 and such that a spin configuration o randomly chosen out of the
ensemble U(A) will contain, with probability approaching 1 as A — oo, a
number K. (a) of contours congruent to y such that

1K (1)(@) = p(7) |A]] < C/[A]e=?71] (6.8.1)

and this relation holds simultaneously for all ~’s. In three dimensions one
would have |A|*/3 instead of \/|A.

It is clear that the above theorem means that there are very few contours
(and that the larger they are the smaller is, in absolute and relative value,
their number). The inequality (6.8.1) also implies that for some C'(3) there
are no contours with perimeter |y| > C(8)log|A| (with probability ap-
proaching 1 as A — oc): this happens when p(y)|A| < 1 (because K(,)(a)
is an integer and the right-hand side of (6.8.1) is < 1). Hence a typical
spin configuration in the grand canonical ensemble with (4)-boundary con-
ditions is such that the large majority of the spins is “positive” and, in the
“sea” of positive spins, there are a few negative spins distributed in small
and rare regions (in a number, however, still of order of |A|).

Another nice result which follows from the results of §6.7, and from some
improvement, [BS67], of them, concerns the behavior of the equation of
state near the phase transition region at low (enough) temperatures.

AmA(ﬁah)
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If A is finite the graph of h — ma (8, h)f will have a rather different be-
havior depending on the possible boundary conditions; e.g. if the boundary
condition is (=) or (4+) one gets respectively the results depicted in Fig.
6.8.1 and Fig. 6.8.2, where m*() denotes the spontaneous magnetization
1imh—>0+ limp 00 mA (ﬂa h)

With periodic boundary conditions the diagram changes as in Fig. 6.8.3.

NG

Fig. 6.8.3

The thermodynamic limit m(8, h) = lima_,o, ma (3, h) exists for all h # 0
and the resulting graph is as shown in Fig. 6.8.4.

. m(f, h)
__---—---"'/“— Fig. 6.8.4
m*(3)
>
h

At h = 0 the limit is not well defined and it depends on the boundary
condition (as it must). It can be proven, if 3 is large enough, that

am(B,h)

6.8.2 Jim ———— = x(5) (6.8.2)
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is a finite number (i.e. the angle between the vertical part of the graph and
the rest is sharp, [BS67]).

The above considerations and results also provide a clear idea of what a
phase transition for a finite system means.

It is often stated that a finite system “does not” show “sharp” phase tran-
sitions; however this statement is always made when considering a fixed
boundary condition, usually of periodic or perfect-wall type. By taking into
account the importance of the boundary terms we see which kind of phe-
nomena occur in a finite system, if the corresponding infinite system has a
sharp phase transition.

The next section is devoted to the discussion of a number of problems con-
cerning the generality of the definition of a phase transition as an instability
with respect to the boundary perturbations, and other related problems, in
the special case of the Ising model that we are discussing.

§6.9. Results on Phase Transitions in a Wider Range of Temper-
ature

An unpleasant limitation of the results discussed above is the condition
of low temperature (“g large enough”). The results of the preceding sec-
tions show that, at a low enough temperature, the Ising model is unstable
with respect to changes in the boundary conditions. A natural question is
whether one can go beyond the low-temperature region and fully describe
the phenomena in the region where the instability takes place and first de-
velops. In the particular case of two dimensions it would also be natural to
ask whether the maximum value of 8 to which an instability is associated
is the one given by (6.6.9) which corresponds to the value of 8 where the
infinite volume free energy f(8) has a singularity, the critical point.

The above types of questions are very difficult and are essentially related to
the already mentioned theory of the phase transitions based on the search
and study of analytic singularities of the thermodynamic functions (which
is a theory, however, that has still to be really developed).

Nevertheless a number of interesting partial results are known, which con-
siderably improve the picture of the phenomenon of the phase transitions
emerging from the previous sections. A list of such results follows:

(1) It can be shown that the zeros of the polynomial in z = e®" given
by the product of 2zl times the partition function (6.2.4) with periodic
or perfect-wall boundary conditions lie on the unit circle: |z| = 1 (“Lee-
Yang’s theorem”). Tt is easy to deduce, with the aid of Vitali’s convergence
theorem for equibounded analytic functions, that this implies that the only
singularities of f(3,h) in the region 0 < 8 < 00, —0c0 < h < +00 can be
found at h = 0.

A singularity appears if and only if the point z = 1 is an accumulation
point of the limiting distribution (as A — oo) of the zeros on the unit circle.
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In fact, if the zeros in question are 21, ..., 2y then

2[A|

ﬁ logzlA‘Z(,@,h,A,periodic) =28J+Bh+ — P2 Zlog z;) (6.9.1)

and if [A|7! - (number of zeros of the form z; = €' with ¥ < ¥; < 9 +
d¥) —— pg(9) L in a suitable sense, we get from (6.9.1),

A—o0

K

BF(B,h) =28J + Bh + % / log(z — €' pg(9)dv) (6.9.2)

-7

where the second term comes from the |z||Al appearing in (6.9.1).

The existence of the measure plg(ﬁ)% such that (6.9.2) is true fol-

lows, after some thought, from the existence of the thermodynamic limit

lirnA—>oo fA(ﬂah) = f(/Bah)7 14

(2) It can be shown that the zeros of the partition function do not move
too much under small perturbations of the spin-spin potential even if one
allows “many spin” interactions; i.e. even if one perturbs the Hamiltonian
(6.2.1) with perfect-wall boundary conditions into

Hy(g) =Ha(2) + (6Ha)(a)

1
(SHA Z Z EJ'(QH, .,xk)azl e Oy (693)
k>1zq,....2€A

where J'(X) is a function of the set X = (z1,...,2) such that

1] = sup > |J'(X (6.9.4)

yEZ yeX

is small enough.

More precisely, suppose that one knows that, when .J' = 0, the zeros of
the partition function in the variable z = e lie in a certain closed set N
of the z-plane. Then if J' # 0 they lie in a closed set N' contained in a
neighborhood of N which can be made as small as we please when ||.J'|| — 0.

This result, [Ru73b], allows us to make a connection between the analyt-
icity properties and the boundary condition instability as described in (3)
below.

14 Here the symbol pg(d)dd/2m has not to be taken too seriously; it really denotes a

measure on the circle and this measure is not necessarily dd-continuous. Also the “con-
vergence” statement really means the existence of a measure such that (6.9.2) holds for
all real z. The original proof of this theorem is in [LY52]. A much stronger and general
statement, the Ruelle’s theorem, leading in particular to the Lee-Yang’s theorem is in
[Ru71a]: it has been one of the most remarkable among a series of improvements and
generalizations of Lee-Yang’s theorem (among which T quote [As70], [Ru71b]).
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(3) There can be a boundary condition instability only in zero field and, in
this case, if and only if the spectrum pg(9) does not vanish around ¢ = 0:
one says that there is a gap around 0 if pg(¥) = 0 near ¥ = 0.

The proof of this result relies upon 2) and the remark that the correlation
functions are functional derivatives with respect to J'(z1,. .., ) of the free
energy defined by the Hamiltonian (6.9.3), [Ru73b].

(4) Another question is whether the boundary condition instability is al-
ways revealed by the one-spin correlation function (as in §6.7) or whether
it might be shown only by some correlation functions of higher order. This
question is answered by the following result.

There can be a boundary condition instability (at h = 0 and 3 fixed) if
and only if

Tim m(8,h) # lim m(, ) (6.9.5)

Note that, in view of what was said above (point 3)), m(8,h) =
limp 00 A (B, h) is boundary condition independent as long as h # 0.

In other words there is a boundary condition instability if and only if
there is spontaneous magnetization. This rules out the possibility that the
phase transition could manifest itself through an instability of some higher-
order correlation function which, practically, might be unobservable from
an experimental point of view [MLT72].

(5) Point (4) implies that a natural definition of the critical temperature
T, is to say that it is the least upper bound of the T’s such that (6.9.5) is
true (T' = B71). It is clear that, at this temperature, the gap around 9 = 0
closes and the function f((3, h) has a singularity at h = 0 for 3 > 8, = 7.7 1.
It can in fact be proven that if (6.9.5) is true for a given [y then it is true
for all 3 > B, [Gr67], [Fi65].

(6) The location of the singularities of f(3,0) as a function of 8 remains
an open question for d = 3, see however [Gr67],[Fi65]. In particular the
question of whether there is a singularity of f(53,0) at 8 = . is open. The
identity 8. = f., for the two-dimensional Ising model has been proved in
[BGJS73] and, independently, in [AM73].

(7) Finally another interesting question can be raised. For 8 < (. we have
instability with respect to the boundary conditions (see (6) above): how
strong is this instability? In other words, how many “pure” phases can
exist?

Our intuition, in the case of the Ising model, suggests that there should be
only two phases: the positively magnetized and the negatively magnetized
ones.

To answer the above question in a precise way it is necessary to agree
on what a pure phase is, [Ru69], p. 161. We shall call “pure phase” an
equilibrium state (see footnote 8, §5.5 and (5.9.18)) if it is translationally
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invariant and if the correlation functions have a cluster property of the form

(021 - 02, Oyita - Oypta) a5 (Tay - Oz, ) Oy, - - Oy,,) (6.9.6)

where convergence is understood in a very weak sense, i.e. the weakest
sense which still allows us to deduce that the fluctuations of the extensive
quantities are o(|Al|), [Fi65], which is
1
I Z Oy -+ Ou,Oyrta- - Oypta) T (g -+ 02, )00y - 0y,)
a€A
(6.9.7)
i-e. the convergence in (6.9.6) takes place in the “Cesaro’s limit” sense.

It can be proved that, in the case of the Ising model, the two states obtained
as limits for A — oo of finite volume states (see §6.3) corresponding to (+)-
boundary conditions or (—)-boundary conditions are different for g > g.
and are pure phases in the sense of (6.9.7) above.1®

Actually it can be proved that, in this case, the limits (6.9.6) exist in the
ordinary sense, [GMM72], rather than in the Cesaro sense, and that at low
temperature they are approached exponentially fast, see [MS67].

Furthermore, if 3 is large enough (e.g. in two dimension ~ 10% larger than
Bc), these two pure phases exhaust the set of pure phases [GM72a], [MaT72].
For 3 close to (., however, the question is much more difficult: nevertheless
it has been completely solved in a remarkable series of papers based on the
key work [Ru79b]; see [Hi81], [Ai80]. The work [Ru79b] did provide a real
breakthrough and a lot of new ideas for the theory of the Ising model and
percolation theory, [Ru81], [Hi97]. The solution of this problem has led to
the introduction of many new ideas and techniques in statistical mechanics
and probability theory.

Another approach, very rich in results, to the theory of correlation func-
tions originates from the combination of the Griffiths, FKG and other in-
equalities, see [Gr67], [FKG71], [Le74], with the infrared bounds introduced
in the work of Mermin and Wagner, [MW66], see §5.8. I only quote here
the work [Fr81], mentioned in §5.8 of Chap.V, where the reader can find
a very interesting analysis of the behavior at the critical point of various
correlations and a clear discussion of the relevance of the dimension of the
lattice (if the dimension is > 5 the correlations are “trivial”).

Having discussed some exact results about the structure of the phase tran-
sition and the nature of pure phases, we shall turn in the next section to
the phenomenon of the coexistence of two pure phases.

§6.10. Separation and Coexistence of Pure Phases. Phenomeno-
logical Considerations

Our intuition about the phenomena connected with the classical phase
transitions is usually based on the properties of the liquid-gas phase transi-
tion; this transition is experimentally investigated in situations in which the

15 This is an unpublished result of R.B. Griffiths. His proof is reported in [GMMT72].
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total number of particles is fixed (canonical ensemble) and in the presence
of an external field (gravity).

The importance of such experimental conditions is obvious; the external
field produces a nontranslationally invariant situation and the corresponding
separation of the two phases. The fact that the number of particles is fixed
determines, on the other hand, the fraction of volume occupied by each of
the two phases. The phenomenon of phase transitions in the absence of an
external field will be briefly discussed in §6.14.

In the framework of the Ising model it will be convenient to discuss the
phenomenon of phase coexistence in the analog of the canonical ensemble
U(A,m), introduced and discussed in §6.2, where the total magnetization
M = m|A| is held fixed.

To put ourselves in the phase transition region we shall take 3 large enough
and, for a fixed a, 0 < a < 1:

m = am*(8)+ (1 a) (~m*(8)) = (1 - 2a) m"(8) (6.10.1)

i.e. we put ourselves in the vertical “plateau” of the diagram (m,h)s (see
Fig. 6.8.4 above).

Fixing m as in (6.10.1) does not yet determine the separation of the phases
in two different regions; to obtain this effect it will be necessary to intro-
duce some external cause favoring the occupation of a part of the volume
by a single phase. Such an asymmetry can be obtained in at least two
ways: through a weak uniform external field (in complete analogy with the
gravitational field in the liquid-vapor transition) or through an asymmetric
field acting only on the boundary spins. This second way should have the
same qualitative effect as the former, because in a phase transition region
a boundary perturbation produces volume effects (this last phenomenon,
which has been investigated in the previous sections, is often also referred
to as the “long-range order” of the correlations).

From a mathematical point of view it is simple to use a boundary asym-
metry to produce phase separations.

To obtain a further, but not really essential, simplification of the problem
consider the two-dimensional Ising model with (4, —)-cylindrical or (+, +)-
cylindrical boundary conditions.

The spins adjacent to the bases of A act as symmetry-breaking external
fields. The (4, +)-cylindrical boundary condition should, clearly, favor the
formation inside A of the positively magnetized phase; therefore it will be
natural to consider, in the canonical ensemble, this boundary condition only
when the total magnetization is fixed to be +m*(8) (see Fig. 6.8.4).

On the other hand, the boundary condition (+,—) favors the separation
of phases (positively magnetized phase near the top of A and negatively
magnetized phase near the bottom).

Therefore it will be natural to consider this boundary condition in the
case of a canonical ensemble with magnetization m = (1 — 2a) m*(8) with
0<a<l,(6.10.1).
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In this last case one expects, as already mentioned, the positive phase to
adhere to the top of A and to extend, in some sense to be discussed, up to
a distance O(L) from it; and then to change into the negatively magnetized
pure phase.

To make precise the above phenomenological description we shall describe
the spin configurations o € U(A,m) through the associated sets of disjoint
polygons (cf. §6.6).

Fix the boundary conditions to be (+,+) or (4, —)-cylindrical boundary
conditions and note that the polygons associated with a spin configuration
o € U(A,m) are all closed and of two types: the ones of the first type,
denoted ~1,...,7n, are polygons which do not encircle A, the second type
of polygons, denoted by the symbols A,, are the ones which wind up, at
least once, around A.

So a spin configuration ¢ will be described by a set of polygons (71,

ey Vs Ay .-, An). It is, perhaps, useful to remark once more that the
configuration ¢ will be described by different sets of polygons according
to which boundary condition is used (among the ones we are considering,
i.e. (+,+) or (+,—)-boundary conditions). However, for a fixed boundary
condition, the correspondence between spin configuration and sets of disjoint
closed contours is one-to-one and the statistical weight of a configuration
0= (Y15 Yy AM,y-- -5 Apn) is (cf. (6.6.4)):

6—25.](21, i+, 1250 ‘ (6.10.2)

It should also be remarked that the above notation is not coherent with
the notation of §6.6, where the symbol A is used for open polygons (absent
here); but this will not cause any confusion. The reason why we call A
the contours that go around the cylinder A is that they “look like” open
contours if one forgets that the opposite sides of A have to be identified.

It is very important to remark that if we consider the (4, —)-boundary
conditions then the number of polygons of A-type must be odd (hence # 0),
while if we consider the (+,+)-boundary condition then the number of A-
type polygons must be even (hence it could be 0).

§6.11. Separation and Coexistence of Phases. Results

Bearing in mind the geometric description of the spin configuration in
the canonical ensembles considered with the (4,+)-cylindrical or the
(+, —)-cylindrical boundary conditions (which we shall denote briefly as
UTT(A,m), UT~ (A, m)) we can formulate the following theorem, [GM72b],
essentially developed by Minlos and Sinai to whom the very foundations of
the microscopic theory of coexistence is due:

Theorem. For 0 < a < 1 fized let m = (1 — 2a) m*(03); then for 3 large
enough a spin configuration @ = (Y1, ---,Yn, A, - - -, Aapa1) randomly chosen
out of UT~ (A, m) enjoys the properties (1)-(4) below with a probability (in
Ut~ (A, m)) approaching 1 as A — oco:
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(1) @ contains only one contour of \-type and
[[Al = (1 +e(B))L] < o(L) (6.11.1)

where £(3) > 0 is a suitable (a-independent) function of B tending to zero
exponentially fast as f — oo.

(2) If Ax, A denote the regions above and below A we have
AN — o |A]] < K(8) A1/ (6.11.2)

[HAM = (1= @)|A]| < &(8) ] (6.11.3)

where k(f3) 5 0 exponentially fast.
(8) If Mx = 3", cp, Oz, we have
| My —am*(8)|A|| < w(B)|A]P/* (6.11.4)
and a similar inequality holds for Mj = ZIGA& 0x =m|A| — M.

(4) If K,i‘(g) denotes the number of contours congruent to a given v and
lying in A then, simultaneously for all the shapes of ~y:

| K2 (o) — p(7) a]Al| < CePPIV/IA] - € >0 (6.11.5)

where p(v) < e=2071 is the same quantity already mentioned in the text of
the theorem of §6.8. A similar result holds for the contours below A (cf. the
comments on (6.8.1)).

It is clear that the above theorem not only provides a detailed and rather
satisfactory description of the phenomenon of phase separation, but also
furnishes a precise microscopic definition of the line of separation between
the two phases, which should be naturally identified with the (random) line
A

A very similar result holds in the ensemble T * (A, m*(3)): in this case 1)
is replaced by

(1’) no A-type polygon is present

while (2), (3) become superfluous and 4) is modified in the obvious way. In
other words a typical configuration in the ensemble U+ (A, m*(3)) has the
same appearance as a typical configuration of the grand canonical ensemble
U(A) with (+)-boundary condition (which is described by the theorem of
§6.8).

We conclude this section with a remark about the condition that 0 < a < 1
has to be fixed beforehand in formulating the above theorem. Actually the
results of the theorem hold at fixed 8 (small enough) for all the a’s such
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that £(8) < min(e, 1 — @), i.e. such that the line A cannot touch the bases
of A (in which case there would be additional physical phenomena and
correspondingly different results).

§6.12. Surface Tension in Two Dimensions. Alternative Descrip-
tion of the Separation Phenomena

A remarkable application of the above theorem is the possibility of giving
a microscopic definition of surface tension between the two pure phases,
[GMT72b]. We have seen that the partition functions

Z++(A, ﬂ) _ Z 6*2/3*](21- |"/i‘+zj R¥1)) (6121)

Z€u++(A’m* (B))

and (if m = (1 — 2a)m*(B),0 < a < 1)

+_(A, B) = Z 6_2’8‘](21‘ |’Yi‘+zj R¥1)) (6.12.2)

ceU+—(A,m)

will essentially differ, at low temperature, only because of the line A (present
in U+t~ (A, m) and absent in UTT (A, m*(3)), see the preceding section).

A natural definition (in two dimensions) of surface tension between the
phases, based on obvious physical considerations, can therefore be given
in terms of the different asymptotic behavior of ZT+ (A, m*(3)) (or of the
grand canonical Z*T (A, 3)) and ZT~ (A, m):

T(Am)
= li 1 — 2.
Pr(B) = lim Tloe Z++(A m*(5)) (6.12.3)
The above limit (which should be a-independent for £(3) < min(a, 1—a), cf.
the concluding remarks of the preceding section) can be exactly computed
at low enough temperature and is given by

Br(B) = —2BJ —logtanh 3.J (6.12.4)

which is the value computed by Onsager, [On44], by using a different defini-
tion, not based on the above detailed microscopic description of the phases
and of the line of separation: for a comparison of various old definitions of
surface tension, new ones and a proof of their equivalence see [AGMT71].

We conclude this section with a brief discussion of one particular but very
convenient alternative way of investigating the phenomenon of coexistence
of two phases. Another still different way of investigating the phenomenon
will be discussed in §6.14.

Consider the grand canonical ensemble, but impose the following boundary
conditions: the spins adjacent to the upper half of the boundary of A are
fixed to be +1, while the ones adjacent to the lower half are —1 (and no
periodicity condition). This is an e-type boundary condition (see §6.3 and
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Fig. 6.6.1, or also cover figure) generating an ensemble that we shall denote
by Uy (A).

It is clear that a configuration o € ;"™ (A) is described, under the above
boundary condition, by one single open polygon A (surface in three dimen-
sions) going from one side of A to the opposite side, and by a set of disjoint
closed polygons (polyhedra in three dimensions) (y1,...,7n)-

The surface A now plays the role of the polygons encircling A in the case
of cylindrical boundary conditions (and two dimensions) and it is also clear
that a theorem very similar to those already discussed should hold in this
case. The above point of view is more relevant in the three-dimensional case
where a “cylindrical” boundary condition would have a less clear physical
meaning, and it would look rather a mathematical device.

In the three-dimensional case ) is a “surface” with a boundary formed by
the square in the “middle” of A where the “break” between the spins fixed
to be +1 and the ones fixed to be —1 is located.

In the next section we investigate in more detail the structure of such a
line or surface of separation between the phases.

§6.13. The Structure of the Line of Separation. What a Straight
Line Really is

The theorem of §6.11 tells us that, if 3 is large enough, then the line A is
almost straight (since £(/3) is small). It is a natural question to ask whether
the line A is straight in the following sense: suppose that A, regarded as
a polygon belonging to a configuration ¢ € U+~ (A, m) (cf. §6.11), passes
through a point ¢ € A; then we shall say that A is “straight” or “rigid” if the
(conditional) probability Py that A passes also through the site ¢/, opposite®
to ¢ on the cylinder A, does not tend to zero as A — oo, otherwise we shall
say that A is not rigid or fluctuates. Of course the above probabilities must
be computed in the ensemble U+~ (A, m).

Alternatively (and essentially equivalently) we can consider the ensemble
Us~(A) (see §6.12, i.e. the grand canonical ensemble with the boundary
condition with the boundary spins set to 4+1 in the upper half of OA, vertical
sites included, and to —1 in the lower half). We say that A is rigid if the
probability that A passes through the center of the box A (i.e. 0) does not
tend to 0 as A — oo; otherwise it is not rigid.

It is rather clear what the above notion of rigidity means: the “excess”
length €(8)L, see (6.11.1), can be obtained in two ways: either the line X is
essentially straight (in the geometric sense) with a few ”bumps” distributed
with a density of order £(8) or, otherwise, the line X is bent and, therefore,
only locally straight and part of the excess length is gained through the
bending.

In three dimensions a similar phenomenon is possible. As remarked at the
end of the last section, in the ensemble Z{;"~ (A), in this case A becomes a

3 i.e. on the same horizontal line and I/2 sites apart.
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surface with a square boundary fixed at a certain height (i.e. 0), and we ask
whether the center of the square belongs to A with non vanishing probability
in the limit A — oo.

The rigidity or otherwise of A can, in principle, be investigated by optical
means; one can have interference of coherent light scattered by surface el-
ements of A separated by a macroscopic distance only if A is rigid in the
above sense.

It has been rigorously proved that, at least at low temperature, the line of
separation A is not rigid in two dimensions (and the fluctuation of the middle
point is of the order O(\/W )); a very detailed description of the separation
profile is available, at low temperature ([Ga72a],[GV72],[Ga72b]) and even
all the way to the critical point [AR76]. In three dimensions the situation is
very different: it has been shown that the surface A is rigid at low enough
temperature, see [Do72], [VB75]. The latter reference provides a very nice
and simple argument for the three-dimensional rigidity.

An interesting question remains open in the three-dimensional case and
is the following: it is conceivable that the surface, although rigid at low
temperature, might become loose at a temperature T, smaller than the
critical temperature T, (the latter being defined as the highest temperature
below which there are at least two pure phases). The temperature T., if
it exists, is called the “roughening transition” temperature, see [KM86],
[VB77], [KMS8T7], [VN8T], .

It would be interesting to examine the available experimental data on the
structure of the surface of separation to set limits on T.—T. in the case of the
liquid-gas phase transition where an analogous phenomenon can conceivably
occur even though a theory of it is far from being in sight, at least if one
requires a degree of rigor comparable to that in the treatment of the results
so far given for the Ising model.

We conclude by remarking that the rigidity of A is connected with the
existence of translationally noninvariant equilibrium states (see §6.3).

The discussed nonrigidity of A in two dimensions provides the intuitive
reason for the absence of nontranslationally invariant states.

Note that the existence of translationally noninvariant equilibrium states
is not necessary for the description of coexistence phenomena. The theory
of the two-dimensional Ising model developed in the preceding sections is a
clear proof of this statement.

§6.14. Phase Separation Phenomena and Boundary Conditions.
Further Results

The phenomenon of phase separation described in §6.12 and §6.13 is the
ferromagnetic analogue of the phase separation between a liquid and a vapor
in the presence of the gravitational field.

It is relevant to ask to what extent an external field (or some equivalent
boundary condition) is really necessary; for instance one could imagine a
situation in which two phases coexist in the absence of any external field.
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Let us discuss first some phenomenological aspects of the liquid-gas phase
separation in the absence of external fields. One imagines that, if the den-
sity is fixed and corresponds to some value on the “plateau” of the phase
diagram, see Fig. 5.1.1, then the space will be filled by vapor and drops of
liquid in equilibrium. Note that the drops will move and, from time to time,
collide; since the surface tension is negative the drops will tend to cluster
together and, eventually, in an equilibrium situation there will be just one
big drop (and the drop surface will be minimal). The location of the drop
in the box A will depend on how the walls are made and how they interact
with the particles within A.

Let us consider some extreme cases:

(1) the walls “repel” the drops,
(2) the walls “attract” the drops,

(3) the wall is perfect and does not distinguish between the vapor and the
liquid.

In the first case the drop will stay away from the boundary 0A of A. In the
second case the drop will spread on the walls, which will be wet as much
as possible. In the third case it will not matter where the drop is; the drop
will be located in a position that minimizes the “free” part of its boundary
(i-e. the part of the boundary of the drop not on OA). This means that the
drop will prefer to stay near a corner rather than wetting all the wall.

Let us translate the above picture into the Ising model case. Assume
that g is large and m = (1 — 2a)m*(f) (see Fig. 6.8.4) (i.e. assume that
the magnetization is on the vertical plateau of the (m, h)s diagram in Fig.
6.8.4).

Then the conditions (1), (2), (3) can be realized as follows:

(1) The spins adjacent to the boundary are all fixed to be +1. This favors
the adherence to the boundary of the positively magnetized phase.

(2) The spins adjacent to the boundary are all fixed to be —1. This favors
the adherence to the boundary of the negatively magnetized phase.

(3) There are no spins adjacent to the boundary, i.e. we consider perfect
wall or open (or free) boundary conditions (see §6.3).

The rigorous results available in the case of the Ising model confirm the
above phenomenological analysis of liquid-vapor coexistence [MS67]:

Theorem. Fiz 0 < o < 1 and consider (+)-boundary conditions. Then a
spin configuration g randomly extracted from the canonical ensemble with
magnetization m = (1 — 2a)m™*(B) has, if B is large enough, properties
(1)+(3) below with a probability tending to 1 as A — oo.
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L
333

|7l = 4/ (1 = @)IA]| < 6(8)V/IA] (6.14.1)

with 6(8) — 0 as B — oo (exponentially fast); % (2) The area enclosed by
v is 9():

(1) There is only one ~ such that |y| > log|A| and it has the property'®

|9(7) = (1= @)|A]] < w(B) |A]* (6.14.2)

(8) The magnetization M (9(v)) inside v is on the average equal to —m™*(3)
and, more precisely,

| M(9(7)) +m*(8) (1 = ) |A] | < &(8) AP/ (6.14.3)

and, therefore, the average magnetization outside 9(vy) is +m*(0).

This theorem also holds in three dimensions but, of course, the exponent

of [A] in (6.14.1) changes (from § to 2).
The above theorem shows that a typical configuration consists of a pos-
itively magnetized pure phase adherent to the boundary and of a “drop”
of negatively magnetized phase not adhering to the boundary (since 7 is
closed). The size of the drop is ~ /(1 — «)|A] (as it should be).

Note that the drop is almost square in shape (as follows from (6.14.1),
(6.14.2)): this should not be astonishing since the space is discrete and
the isoperimetric problem on a square lattice has the square as a solution
(rather than a circle).

The opposite situation is found if one fixes a (—)-boundary condition; a
square drop forms in the middle of the box with side ~ \/a|A| and average
magnetization m*(3).

Finally if the boundary condition is of perfect wall type (Bx(g) = 0), then
the above theorem does not hold and one can prove (say, in two dimen-
sions) that a typical spin configuration has just one open contour A (with
ends on JA) which separates the space in two parts which are occupied by
opposite phases; the line A should be the shortest possible compatible with
the condition that the volume A is divided by it into two regions of vol-
ume essentially a|A| and (1 — «a)|A| (respectively occupied by the positively
magnetized phase and by the negatively magnetized phase): see [Ku83].

If one interprets the spins equal to +1 as particles and the spins equal to —1
as empty sites, then one has a lattice gas model which undergoes a liquid-
vapor phase transition presenting the phenomenological aspects outlined at
the beginning of this section for these transitions.

16 The number 333 is just an arbitrary constant and it is reported here because it appeared

in the original literature, [MS67], as a joke referring to the contemporary papers on the
KAM theorem (“Moser’s constant”). Tn fact it looks today somewhat confusing and
quite strange: the modern generation do not seem to appreciate this kind of hum-our
any more; they became more demanding and would rather ask here for the “best”
constant; this is my case as well.
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To conclude we remark that, in the phase separation phenomenon, the
finiteness of the box only plays the role of fixing the density. The detailed
structure of the phenomenon depends on the boundary conditions which,
in experimental situations, turn out to be something intermediate between
the three extreme cases discussed above.

Note that (6.14.1) does not provide a satisfactory estimate of |A| since the
allowed error is still of the order of \/[A]; but better estimates can be ob-
tained to determine ezactly (i.e. with an error much smaller than O(+/]A]))
the size of the boundary and its macroscopic shape. Such remarkable results
also provide a rigorous microscopic theory of the ancient Wulff’s construc-
tion of the shape of a droplet in the absence of gravity when the surface ten-
sion is not spherically symmetric as a function of the normal to the droplet
surface, see [DKS92], [PV96], [MR94], [Mi95]. The results hold in the two
dimensional case and for low enough temperature: their literal extension to
the whole coexistence region or to the three-dimensional case (even at very
low temperature) seem out of reach, if at all possible, of present day tech-
niques: in this respect, unexpected, remarkable progress has been achieved
very recently, [PV99], with new techniques that cover, at least in 2 dimen-
sions the whole phase—coexistence region (showing that despair is out of
place). However one can get surprisingly detailed informations by general
considerations based on inequalities and convexity properties of the surface
tension, see [MMR92].

Another problem is the investigation of the dependence of the correlation
functions on the distance from the surface of the drop.

The analogs of the first two questions just raised were previously satis-
factorily answered in the two-dimensional Ising model with the “easier”
cylindrical boundary conditions (see §6.11), i.e. in the case of an “infinite”
drop with a flat surface. This problem has been approximately studied even
in the case of a flat drop, [BF67].

§6.15. Further Results, Some Comments and Some Open Prob-
lems

In §6.14 we dealt with the case of a nearest neighbor Ising model. It
has become customary, in the literature, to apply the name of Ising model
to more general models in which the “bulk” Hamiltonian (i.e. without the
boundary interactions and conditions) has the form, see §5.10,

_hz%i — Z Jo(24,25)02,04; — Z J3(2i, 25, 71)02,04,04, + ...
; i<j i<j<k

(6.15.1)
where the potentials J,,(z1,...,,) are translationally invariant functions
of (z1,...,,) and satisfy certain restrictions of the type

> 15200,2) + Y 150, 2,9)| + ... < +o0. (6.15.2)
x x,y
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If only pair potentials are present, i.e. if the bulk Hamiltonian has the form:

—hZUx - Z J(x; — xj)04,04; (6.15.3)

i<j

and if J(r) < 0, then most of the results described in this chapter and ap-
propriately reformulated can be extended or become very reasonable con-
jectures, see [Ru69], p. 125, [MS67], [BS67], [Do68c] and the review [Gi70].

Many results remain true for more general pair potentials and for other
models (like continuous gases) at least from the qualitative point of view;
in fact it is reasonable that the results selected here for discussion should
have, at least qualitatively, an analog in the “general” case of a classical (as
opposed to quantum) phase transition.

Results such as analyticity and absence of phase transitions at high tem-
perature, or exact solutions, are a peculiarity of lattice models and have
been partly discussed in Chap.V and they will be analyzed again later.

Below I list a number of rather randomly chosen and interesting problems
suggested by the topics of this chapter.

(1) The solution of the two-dimensional Ising model is based on the so

called “transfer matrix”. The investigation of the transfer matrix has been
pursued in some detail in the case of periodic or open boundary conditions
in two or three dimensions, [MS70], [CFT1], see also [On44],[Ab71].
The transfer matrix with non-symmetric boundary conditions has also been
studied in the two-dimensional case,[Ab84], i.e. the transfer matrix between
two rows (or planes) where the line (or surface) of separation should pass
if straight. A qualitative difference should arise between two and three
dimensions (see, for more details, §6.15).

(2) In Fig. 6.8.4 we see that the isotherm m(3,h) as a function of h > 0
abruptly ends at h = 0. It is a natural question whether A = 0 is an analytic
singularity of m(3, h) or whether m(3,h) can be analytically continued to
h < 0. There has always been strong evidence for a singularity, [LR69], and
it has been shown, rigorously, that at h = 0 there is an essential singularity,
at least at large (3, although the function m(g3, h) is infinitely differentiable
as a function of h for h > 0, [Is84].

(3) The answer to (2) makes clear that one has to give up the theory of
“metastability” based on the possibility of an analytic continuation of the
magnetization as a function of h through h = 0. The latter idea was founded
in fact on the absence of an analytic singularity at h = 0 in the equation
of state deduced from mean field theory (that is in the van der Waals the-
ory of phase transitions, whose version for spin systems is called the Curie
Weiss’ theory): for an interesting mathematically complete treatment of the
metastability phenomenon in the case of very weak and very long ranged
forces see [LP79]. The question of how one can explain metastability phe-
nomena in systems with short range forces has been investigated in great
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detail as a dynamical phenomenon and the results are very many, detailed
and varied, see for instance [CCOT4], [KO93],[MOS90].

(4) There is a great number of other lattice models for which phase transi-
tions are proven to take place; the basic techniques originated by the work
of Minlos and Sinai, [MS67], have evolved and have been highly enriched;
one can compare the situation in the early 1970s, before the first proof of
the existence of a phase transition in a continuous system, still based on
symmetry breaking [Ru73b], see the review [Gi70], with the present day
very refined results (see [BLPO79], [BC94]. In this respect one must men-
tion the very recent progress in nonlattice models, [Jo95] and [MLP98]).
The latter works should be considered major breakthroughs on the problem
of phase transitions occurring in continuous systems or, more generally, in
systems without special symmetries which are spontaneously broken at the
transition.

(5) The question of whether, once a phase transition is known to occur,
one can count how many pure phases exist is often a very intricate question
as various examples show (see [BC94]).

(6) A detailed description of the correlation functions near the line or
surface of separation has still to be discussed, see [ART76].

(7) The microscopic definition of surface tension in the particular case of
the three-dimensional Ising model has been studied but there are many open
problems, see [Mi95], particularly concerning the cases when the boundary
conditions would impose an ideal surface of separation, between the two
phases, which is not parallel to the lattice planes. Furthermore it is a
well founded conjecture that there is a temperature lower than the critical
temperature for the appearance of spontaneous magnetization, above which
the separation surface shows large fluctuations (possibly of order /log L),
see [VB77]. In this regime there would probably be no more translationally
noninvariant states, and it is likely that the surface tension 7(3) is not
analytic as a function of 3 (while at low temperature it is known that
the surface tension relative to an ideal surface of separation parallel to the
lattice planes is such that 7(3) + 23J is analytic in e™#7). This would
identify a second type of phase transition which has been called in §6.13 the
roughening transition, see [KM86], [KM87] and, for a review, [VN8T].

(8) The problem of the existence of phase transitions in models close to
symmetric models but asymmetric was expected to give interesting results,
[MeT71]. Substantial progress towards the understanding of phase transitions
not directly associated with spontaneous breakdown of symmetry has been
achieved by the understanding of the model in (6.15.1) with J3 # 0, [PS76].
Although the models in [PS76] are ”close” to symmetric models the absence
of a rigorous symmetry was a major obstacle and the solution proposed
in [PS76] has generated a large number of investigations: the theory is
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generally known as the Pirogov-Sinai theory of phase coexistence, see for
instance the applications to Potts’ models, [LMMRS91], [MMRS91].

(9) In connection with (8) an interesting problem arises on the correct
definition of approzimate symmetry. The analysis has been attempted in
[EGT5] but the results are still very partial. There is also the possibility
that in some cases symmetries that are apparently already broken in the
Hamiltonian are in fact dynamically restored (and then, possibly, sponta-
neously broken). An example in which this happens has been proposed in
[BGIT] (see [BGGIT] and [Ga98b] for some applications) in a totally dif-
ferent context, but its relevance for the theory of phase transitions might
create surprises.

(10) Last but not least, the phase transitions problem in quantum statis-
tical mechanics will not be discussed in this book, but it is, of course, very
important. The conceptual frame in which it is developed in the literature
is the same as the one we described in the classical cadre. However the phe-
nomenology becomes even richer and full of surprises: see [BCS57],[Br65].
Phase transitions of quantum systems can be studied in “lattice systems”
at a rather sophisticated mathematical level, [Gi69b], [DLS78], and we shall
meet some in Chap.VII where they appear because of their relation with
transitions in classical spin models. However the theory is, generally speak-
ing, less developed on a mathematical level but it is enormously developed
on a phenomenological level, see [An84].
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§7.1. Transfer Matrix in the Ising Model: Results in d = 1,2

Many well-known exact solutions of statistical mechanical models are based
on the transfer matriz method. In fact the summation over the states of the
system, e.g. the sum over the values of the spin at each site, can be quite
easily interpreted as an operation of summing over the labels of a product
of matrices in order to compute the trace of the product. Thus the problem
of computing, say, a partition function is “reduced” to that of diagonalizing
certain matrices with the purpose of computing their eigenvalues and eigen-
vectors. The latter sometimes also provide informations on the correlation
functions.

The difficulty is that the matrices that one obtains are “large dimension
matrices” and they are difficult to diagonalize. This can be done, at the
cost of remarkable effort, in a few cases. We shall discuss a few samples of
them. The simplest case is the d = 1 Ising model already studied in §6.4
with a different method and at zero field h.

Consider the one dimensional Ising model with periodic boundary condi-
tions, see (6.2.1), Ch.IV. If 6,41 = o1 the partition function Z(A, 8, h) can
be written as

L L
§ H65J0i0i+1+ﬁh0i — E H eghoi eﬂjoi0i+1e§h0'i+1 —

01...01 i=1 o1...0r, i=1 (711)
= Z VorooVosos - Voron = TrvE
oL

where V is a two-by-two matrix such that (0,0’ = +1)
B(h+J) -BJ
Bp Joo' LBhe! e e
Vypr = e3hoefIod’ 5ha’ V= ( o=BT o= B(h=1) ) (7.1.2)

If Ay > A_ are the two eigenvalues of V, we find
Z(A,B,h) =N+ A" (7.1.3)

so that 1
Bf(B,h) = lim —logZ =log A, . (7.1.4)
L—oo L

It is easy to check that A, (8, h) is analytic in 8 and h for 0 < 8 < oo
and —oco < h < o0, i.e. there are no phase transitions (as singularities of

f(B,h)). In fact

Bf(B,h) =log (eﬁj cosh Bh + (ewJ(sinh Bh)? + e*w‘]) %) (7.1.5)
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as the elementary calculation of Ay shows, from (7.1.2). This is manifestly
an analytic function of 3, h in the region of physical interest (3, h real) so
that the model has no phase transitions in the sense of no singularities of
the thermodynamic functions or of their derivatives, as already discussed.
A similar method can be applied to the two-dimensional Ising model (A is
now an M x N box). Suppose, for simplicity, h = 0, then Z(3, h) is

M N
E 'H H eBJoiiit1,j+BI0i 500541

o i=1j=1
7.1.6 N (7.1.6)
= Z Z H { H eﬁTJULNf,HleﬁJﬂi,j0i+1,j+BTJUi+1,j0i+1,j+1}
oy =1 =1
where in the second line we denote by g; = (04,1, ...,0;,n) all the spins on
the i-th row of A; the periodic boundary conditions are imposed by setting
01 =04 and 051 = 05 1. Clearly, if we define the 2N % 2N matrix
N
00 :H BTUjUj+1€’8JUjJ;+L32_JJ;'U;+1 =
7.1.7 N 4g 47 (7.1.7)
= exp Z (70’jO’j+1 + BJojo; + 7030;-4_1)
j=1
where 0y = on41, 0] = o)y, We realize that
7.1.8 Z(A,B) = TrvM (7.1.8)

We have dealt so far only with periodic boundary conditions. We could
introduce transfer matrices also in the case of other boundary conditions.
For instance, assume, for simplicity, that there are periodic boundary con-
ditions along the columns; we shall consider the three cases below:

(1) “Perfect wall” or “open” boundary conditions, see §6.3, along the rows;

(2) Boundary conditions on the rows corresponding to the existence of fixed
spins ; = +1 (or ¢; = —1) for all the ’s on the lattice sites adjacent to the
end points of the rows;

(3) Boundary conditions which are of the same type as in 2) but half the
rows end in positive spins (say the upper half) and half in a negative spin.

We shall now write down a transfer matrix expression for Z(A, 3) in the
above cases. In case (1) Z(A, 3) = Tr VIM where:

V(l) _ ez;.v=_11(%(0101+1+‘7 ‘7:+1)+ZJ , BIo;0; ) (7.1.9)

7.1.9 o,
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In case (2) Z(A,B) = Tt VHEM where:

o

() = EpI(artoitontan)y ) (7.1.10)
In case (3), assuming here that the height of A is M with M even, we have
that Z(A, 8) = Tr (V) zM=1yGH)(y(=))zM=1y(-) with

V) = #BI(ortoy—oi—on)y () (7.1.11)

The transfer matrix V in (7.1.7) is the matrix that was diagonalized in the
famous paper of Onsager, [On44]. The matrix V(! has also been diagonal-
ized exactly in [Ab71].

The matrices V(*) have been studied and diagonalized in [AM73]. Many
more exact calculations of interesting quantities have been performed, see
for instance[AbT71], [MW73], [Ab78a], [Ab78b], [Ab8&4].

The problem of computing the partition function can be formulated sim-
ilarly in the three dimensional case. Some very interesting results on the
spectral properties of the generalization to three dimension of the matrix V'
(periodic boundary conditions) have been obtained in [MS70],[CF71].

In three dimensions one expects that the analogue of V(%) (in contrast
to V(N V(#)) has spectral properties which differ radically from those of
V. In two dimensions the phenomenon should not occur and all the above
matrices should have the same spectrum (asymptotically as A — oo). As
mentioned in §6.15, problem (1), this should be related to the fact that
V(%) should contain some information about the rigidity of the line or
surface of phase separation (which is “rigidly sitting” right near the two
lines between which V(%) “transfer”, see Ch.VT).

A very interesting heuristic analysis of the spin correlation functions in
terms of the transfer matrix has been done in [CF71].

§7.2. Meaning of Exact Solubility and the Two-Dimensional Ising
Model

Before proceeding to study more interesting cases it is necessary to say
that usually by “exactly soluble” one means that the free energy or some
other thermodynamic function can be computed in terms of one or more
quadratures, i.e. in terms of a finite-dimensional integral, whose dimension
is independent of the system size.

In some cases one can even compute a few correlation functions: but there
remain, as a rule, quite a few physically interesting quantities that one
cannot compute (in the above sense of computing).

Another characteristic problem of the “solutions” is that sometimes their
evaluation (in terms of quadratures) involve a few exchanges of limits that
are not always easy to justify. For instance the value of the spontaneous
magnetization in the Ising model was derived in an unknown way by On-
sager (who just wrote the final formula, (7.2.2) below, on a blackboard at a
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meeting in Firenze, [KO49]) and later by Yang, [Ya52], but both derivations
relied on some hidden assumptions (in modern language the first assumed
that there could be only two pure phases and the second that an external
field of order O(+) would be strong enough to force the system into a pure
magnetized phase).

In the case of the Ising model spontaneous magnetization the mathematical
problems were solved much later, independently in [BGJS73] and [AMT73].
But in several other cases there are still open problems in establishing the
validity of the “exact solutions” with full rigor (in the current sense of the
word).

The two-dimensional model is soluble only in zero external field (h = 0) in
the sense that in this case the free energy f2(8), the magnetization m(h)
and a few correlation functions can be expressed quite simply. For instance
if BJ* = J*(B) is defined by tanh.J*(3) = e2%7, see (6.6.6),(6.6.9), and
denoting cosh™! as the inverse function to cosh:

1
Bf2(8,0) = = log 2sinh(248J)+
2
" d (7.2.1)
+ / 4—| cosh™ " (cosh 283.J cosh 2.7 + sinh 23.J sinh 2.7* cos ) | .
o AT

A simple analysis of the 8 dependence of this function shows that it is
singular at the value 8 = . for which it is J = J* (i.e. sinh28.J = 1) and
the singularity appears as a logarithmic divergence of the derivative of fo
with respect to 3, i.e. as a divergence of the specific heat.

The exact value of the spontaneous magnetization, i.e. of the (right) h-
derivatives at h = 0 of the free energy, can also be computed as said above
and the result is

i 981 (B.1) = m(5) = {O . L if smh?ﬂJ <1
h—o+t  Oh (1— (sinh2B3J)"*)® otherwise.

(7.2.2)
The importance of the above formulae, besides their obvious beauty, can
hardly be overestimated. For instance they proved that in statistical me-
chanics there are phase transitions with critical exponents different from

those of mean field theory: e.g. from (7.2.2) one realizes that m(j3) 5520

as (B — B.)'/® rather than the (8 — 3.)"/? foreseen by mean field theory, see
Ch.V, §5.1 and §5.2).

Many other quantities have been computed exactly: some already in the
original Onsager papers and others in successive works. Among them we
quote:

(1) The correlation function (cpo,) where O denotes the origin and z
is a lattice point on one of the two lattice axes or, alternatively, it is a
lattice point on the main diagonal; the symbol (-) denotes the average value,
of the quantity inside the brackets with respect to the Gibbs equilibrium
distribution.



7.2.3

7.2.4

V1I. Exactly Soluble Models 221

One shows that, if £(8) = 28|J — J*| and if |z| is large, then the function
(0003) is proportional to

e—r(B)z]
—— for B < B.
V Izl
(ooog) o q  |z|7V* for B =4, . (7.2.3)
e—26(8)z]

W forﬁ>ﬁc

One should not view (7.2.3) as a discontinuity in the asymptotic behavior
of the pair correlation function when the temperature passes through the
critical temperature 7T,. A more detailed analysis shows in fact that if 7" is
close to T, the correlation starts depending on z as if T = T,: this however
proceeds only until |z| becomes so large to be comparable to the correlation
length k(8)~! which is longer and longer the closer T is to T,. Afterwards
the exponential decay sets in (with a different power correction depending
on whether 8 < . or 8 > f3.).

In fact one can compute the asymptotic behavior of all correlations func-
tions (i.e. of the average value of products of spin values in an arbitrary
number of sites) in various regimes: for instance for 8 # (. when the spin
sites separate from each other homothetically, [WMTB76], [MTW77].

In the same situation a beautiful asymptotic formula for the value of the 2n
spins correlation function for 2n spins aligned along a line has been derived
by Kadanoff, [Ka69].

(2) The surface tension between coexisting phases, defined as, see (6.12.3),
Ch.VI,

_ B _fo if B < Be

0= Jim Lo = g s (29

where Z+tF, Zt~ denote respectively the partition functions of the models
obtained by fixing the boundary spins all equal to +1 in the first case and
equal to +1 in the upper half and to —1 in the lower half in the second
case. Here L is the perimeter of the container 2, which is assumed to be a
square. See [On44], [GMMT72], [GM72b], [AMT73].

(3) Quite a lot is known about correlation functions of spins associated
with boundary sites. In the case of a box with open boundary conditions
(i.e. no interaction with the spins located at external sites) it is, for in-
stance, remarkable that for  — . the spontaneous magnetization on the
boundary! does not tend to 0 as 8 — 3. with the same critical exponent %
characteristic of the bulk magnetization (i.e. of the magnetization at a site

1 Whose square is defined here as the limit as L — oo of the correlation (o,0y) with =,y
being two points on dA and at distance O(L).
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at a finite distance from the origin, hence infinitely far from the boundary):
the new critical exponent is in fact % (in the limit as  — oo, of course),

[Ab&4].

Even more remarkable is that one can find the critical exponent of the
magnetization computed at a corner, where it is 1; more generally one
considers the Ising model in a wedge-shaped planar lattice with opening
angle ¥ (so that ¥ = 7 is the case of a point in the middle of a side of the
container, whose shape does not matter as long as the point is at a distance
tending to infitity from the points where the boundary starts bending: “half-
plane case”); and ¢ = T is the case of a “square corner”. The conjecture is
that the critical exponent for the spontaneous magnetization at a “corner
with opening ¥¥” is 7. This has been proved (together with various other
results about the magnetization at points a finite distance away from a
corner) for ¥ = 7 (exponent 1, as mentioned above) and ¥ = % to which

these corresponds an exponent %, see [AL95].

§7.3. Vertex Models.

Consider a rectangular region Q C Z?2 with opposite sites identified (peri-
odic boundary conditions). We imagine that the microscopic states of the
system are obtained by fixing an orientation on each lattice bond linking
nearest neighbors of (2.

Given a microscopic configuration ¢ of the system, at every lattice site we
shall see one among the 16 possibilities shown in Fig. 7.3.1 below,

e
R S
T e

oo et

The eight-vertex models or 8V -models are characterized by allowing only
the configurations g which in every lattice site the bonds orientations look
as in A, B,C,D, see p. 128, p. 203 in [Ba82]. Furthermore the energy
associated with a configuration is, in the general eight-vertex model, a sum
of contributions e; coming from each lattice site j. Allowing only vertices
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A, B, C generates the siz-vertex models, or 6V -models.

The vertices A, B are called polar vertices while the C, D are called non
polar: the A vertices are usually labeled as 1 and 2, the B vertices are
labeled 3 and 4, the C are 5 and 6, the D are 7 and 8. We denote by ¢
one of the latter eight arrow configurations: an 8V configuration will be a
collection of arrows put on the lattice bonds that at each lattice node form
one among the eight arrows configurations, called “allowed vertices”.

Each lattice site = gives to the total energy of the configuration an additive
contribution £(c¢) depending on which of the eight possible vertices ¢ are
formed by the arrows entering or exiting the lattice site x.

Not all the eight-vertex models are “exactly soluble”: one gets a soluble
model if the energies of the vertices 1,2, i.e. A, are equal and so are those of
the vertices 3,4, i.e. B, of 5,6, i.e. C', and of 7,8, i.e. D. Thus the family of
eight vertex soluble models has three parameters (because one of the four
can be eliminated by recalling that the total energy is defined up to an
additive constant).?

d . .
We call €4 ef €1 = €9 the common value of the energies corresponding

. . . de de
to the vertices 1,2, and likewise we set ep lef €3 = €4, EC e/ g5 = €¢ and
def
EpD = €7 = €8§.

The eight vertex models can be interpreted as spin models (hence as lattice
gas models). A trivial way to do this is to interpret an arrow configuration
as a spin configuration with the lattice of the spins being the lattice of the
bonds, see Fig. 7.3.1; the up and down arrows can be identified with + and
— spins located at the center of the arrows and, likewise, the right and left
arrows can be identified with + and — spins. This naive procedure however
relates the 8V models to spin models with constraints or hard cores because
not all 16 configurations of spins on the arrows relative to a vertex are going
to be possible.

A much more interesting representation of the eight vertex models is ob-
tained by considering Ising models in which interactions between next near-
est neighbor spins and many spins interactions occur (see §5.10) between
quadruples of spins involving the four spins of a unit lattice cell, see p.207
in [Ba82]. An excellent introduction to the vertex models and their rela-
tionship with other models can be found in [LW72],[Ka74].

We call the lattice of the centers of the vertices the “8V lattice” and we
consider a configuration of arrows which at each point of the 8V lattice is
one of the eight allowed configurations. We define a configuration of signs
+ or — located at midpoints of the bonds of the 8V lattice: + represents a
up or right arrow while — represents a down or left arrow.

The product of the signs of the four bonds of the 8V lattice that merge into
a vertex must be +: this is the condition that all vertices are of the above

2 TIn fact the restriction e5 = €4 is not really such because the total energy depends only
on €5 + €6. Furthermore if e7 = eg = 0 the models with €1 # €5 and €3 # €4 are also
soluble so that the class of soluble 6V models has four parameters, one more than the
8V model, see below.
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first eight types. Therefore we have a one-to-one correspondence between
the eight vertex configurations on the 8V lattice and the sign configurations
at the centers of the bonds which multiply to + on each of the 8V lattice
bonds that merge into a vertex.

We imagine putting a spin 0 = £1 at the center of each square, also called
a “plaquette”, formed by four of the 8V lattice bonds; the lattice of the
centers of the 8V lattice plaquettes will be called the Ising lattice and it will
carry in this way a spin configuration o.

The product of the spins on nearest neighbor sites v, w of the Ising lattice is
a sign £1 (we use this name rather than spin to stress the difference between
these auxiliary variables and the spins introduced above). This sign can be
naturally associated with the bond of the 8V lattice that separates v, w,
and by construction the product of the signs on the sides that merge into a
vertex is necessarily + so that the sign configuration can be interpreted as
an 8V configuration and there is a one-to-two correspondence between 8V
configurations and Ising spin configurations. In fact a spin configuration
and —¢ give the same sign configuration, hence the same 8V configuration.

Setting a = exp(—Bea),b = exp(—Bep),c = exp(—Pec),d = exp(—fep)
and defining .J, J', J":

a=expBJ+J +J") b=expB(-J—-J +J")
c=expfB(=J+J —=J") d=expB(J—-J —J")
it is now immediate to check that any configuration of the 8 model has

the same energy as the corresponding spins configuration +¢ in the Ising
model with energy:

H(g) = — (Z Joop + 2 J’U'Z'U','H + Z J”O'Z'U'jo'j/O'jH) (732)

where the sum runs over the sites i € 2 and i’ denotes the nearest neighbor
of i along the diagonal of the second and fourth quadrant, and " the one
along the first and third quadrant diagonal; 7, 7’, 7" are three sites that,
together with 4, form a unit square (with ¢ in the lower left corner), see p.
207 in [Ba82].

One can consider also the sixteen-vertex models, obtained by considering
all arrow configurations in Fig. 7.3.1 above, including the E,F ones. This
model is also equivalent to a suitable Ising model, with also three-spin in-
teractions, see [LW72], p. 350, for the discussion of the general cases.

This model has many interesting special cases, some of which were rec-
ognized to be soluble before Baxter’s work. In fact the breakthrough in
the whole theory was the solution by Lieb of the six-vertex Pauling’s “Ice
model” discovering the method of solution for the other soluble 6V -models.

Among the latter there are the siz-vertex models, whose configurations
only allow for the vertices A, B, C each of which gives a contribution to the
energy €4,€B,EC-

(7.3.1)

(1) The just mentioned Pauling’s ice model fixes 4 = ep = ec = 0, (it
corresponds to J' = Jo,JJ = —Jy, J" = Jy and Jy = +00).
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(2) The K DP model fixes the B, C vertices energies to € > 0 and to 0 those
of the vertices A: the occurrence of “non polar” vertices and of two of the
four polar ones is energetically less favored.

(3) The F model fixes the energies of A, B to ¢ > 0 and those of C to 0:
the non polar vertices are favored.

Such models were solved (i.e. their free energy was calculated) in rapid
succession after the solution of the first, [Li67a], [Li67b], [Li67c], [Su67].
The analyis and solution of the most general 6V model is in [LW72].

The 6V models above are limiting cases of the 8V model in which the
couplings J, J', J" in (7.3.2) tend (suitably) to cc. Because of this limiting
procedure they have been sometimes regarded as “pathological”, see below.
The 6V models have a physical meaning within the theory of the hydrogen
bond and of similar chemical bonds. In the ice model the lattice sites
represent the sites occupied by O, and the bond orientations tell where the
two H atoms are located: if an arrow emerges from a lattice site this means
that an H atom is located on the bond and near the site. The association
of the arrows with the bond provides a two-dimensional version of the ice
rule (which states that on any bond there is one H atom, and not more,
located closer to one of the two oxygens), a rule deduced by Pauling from
the observation that the ice entropy is lower than the one it would have if
in an ice crystal the H atoms could be found, unconstrained, near every O
atom (so that one could find configurations like E, F' or even with opposite
arrows on each bond). Of course the model should be, to be realistic, three
dimensional, but the appropriate three-dimensional version is not exactly
soluble.

The KDP-model has been proposed as a model for the ferroelectric prop-
erties of KH,PO,: a substance that crystallizes in tetrahedra with KPO,4
at the center and the two H atoms on the lines between the KPOy4: only
one H can be located on each such line and it can be there in two positions
(i.e. near one or the other extreme). KHoPOy is a polar molecule without
spherical symmetry so that not all dipoles give equal contribution to the
total energy of a configuration. In the two-dimensional version of the model
the two nonpolar vertices C' and two of the polar ones (e.g. B) are unfa-
vored and contribute energy € > 0 while the others contribute ¢ = 0: at
low temperature a spontaneous polarization, or ferroelectricity, is expected
to occur.

The F-model, instead, is a model for an antiferroelectric polar material
resisting (at low temperature at least) polarization by a field.

A deeper discussion of the physical interpretation of the 6V models and of
their relation with other remarkable combinatorial problems and statistical
mechanics models can be found in [LW72]. The vertex models are equivalent
in various senses to several other models, see for instance, [VB77], [Ba82].

The problem of the existence of the thermodynamic limit for the 8V models
is a special case of the general theory, see Ch.IV, with the minor modifica-
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tion required to study lattice spin systems rather than continuous particle
systems (see (7.3.2): an easier problem, in fact). However the situation
is different in the case of the 6V models, because the constraints imposed
by arrow configurations can propagate the boundary conditions on a large
box all the way inside it. The theory has been satisfactorily developed in
[LW72].

In the ice model case one finds, [Li67a]

. 1 3 4
Q11_1};0 0] log Z(Q) = 3 log 3 (7.3.3)
which is really beautiful!

In the F-model case the free energy is given by, if A =1 — %ews,

- Bfr(B) = —Be+
o 2o, log Somtazcosiu e if cos = |A] < 1 (7.3.4)
34y, e tanhn) if coshA = —A > 1

and in the KDP-model case, setting A = 1e%, the free energy is:

- Bfxkpp(B) =
00 ha— d ; — .9,
= { # f—oo ccoosshoz—ccoosSBlL cosh 71'0:)4/2;; if A=— cosp <1 (7 3 5)
0 otherwise

where the above solutions for the KDP-model is due to Lieb, [Li67b], and
for the F-model to Lieb and Sutherland, [Li67c], [Su67]. See §7.5 below for
a technical introduction.

Furthermore the F-model and the KDP-model, unlike the soluble eight
vertex models, can be solved even in the presence of an “electric field” E, if
such field is modeled by assuming that the energy contribution of a vertex
increases by —Ep with p being the number of arrows pointing up minus the
number of those pointing down. The solution in the presence of such an
electric field is fairly simple but we do not report it here. It is a model with
one more free parameter in which the energies €1,e5 are different and the
energies €3, &4 are also different by the same amount.

The even more general model in which the electric field has also a horizontal
component so that the energy of a vertex increases also by — E’q with ¢ being
the number of arrows pointing right minus the number of those pointing
left is also soluble although the result is not as simple to discuss, [LW72].
Taking this into account amounts to a freedom of taking €;, j = 1,...,4 as
independent parameters. Hence the number of free parameters in the most
general 6V soluble model is 4 (they are €1,€9,€3,€4,5 = €6 and one can be
fixed to be 0).

The elementary analysis of the above formulae, and of their extensions
to cases with E # 0, leads to the following results that we describe by
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denoting by fr(8,E) and fxpp(8,E) the free energies of the two models
at temperature (kg(3) ! and in the presence of a (vertical) electric field E.

The function fr(8,0) is infinitely differentiable and analytic in 8 except
for an essential singularity, at the value 8 = . where A = —1; one has,
therefore, in zero field a phase transition of infinite order (the order of a
transition as a function of a parameter can be defined to be the order of the
lowest derivative of the free energy, with respect to the parameter, which is
singular, see Ch.VI, §6.5).

The polarization, defined as the average number of arrows pointing up
minus those pointing down, is proportional to the derivative of fp with
respect to F; it vanishes for E = 0 for all values of 3; but if 8 > 8. (low
temperature) it remains 0 even if E # 0, for a while, and it becomes nonzero
only if E grows beyond a critical value E.(§) and in this sense the model
has an antiferromagnetic behavior. If one keeps E fixed, then by varying
[ one finds a second-order phase transition with a specific heat singularity
proportional to (3 — 8,) /2.

The free energy of the KDP-model, fxpp(8, E), is essentially different.
Also in this case there is a critical temperature 3 = (. at zero field E
(defined by A = 1): in zero field and if 8 > 3. the polarization has value 1
identically, and the free energy is constant; if 3 — (. the specific heat tends
to 0 as (B. — 6)'/? but the internal energy does not tend to zero although
the value of the internal energy for 8 > . is 0, therefore there is a phase
transition of first order with latent heat and at low temperature there is
spontaneous polarization (maximal, p = 1, so that the system is “frozen”
and it has trivial thermodynamic functions).

The above properties, selected among many that can be derived by simply
examining the expressions for the exact solutions, show the richness of the
phenomenology and their interest for the theory of phase transitions, in
particular as examples of phase transitions with properties deeply different
from those found in the Ising model case, [LW72].

It is important to stress that the 6V models form a four-parameters class
of models and some of the soluble 6V models are limiting cases of the three-
parameter family of soluble 81 models. By varying the parameters one can
find a continuous path linking the F-model critical point (in zero field) to
the KDP-model critical point (also in zero field).

As remarked above the 8V models are genuine short-range Ising models,
(7.3.2), with finite couplings. Hence one can study how the critical point sin-
gularity changes in passing from the F to the KDP-model. The remarkable
result found via the solution of the 8V models is that the critical exponents
(the ones that can be computed) change continuously from the F values to
the KDP values.

This fact has great importance: at the time of the solution of the ice model
and of the consequent solution of the F and KDP models the universality
theory of critical point singularity was not yet developed in its final form.
So when the renormalization group approach arose around 1969, see [BG95)
for a review and references, the 6V model appeared as a counterexample to
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the universality that the renormalization group was supposed to predict.

This was stressed by Lieb on several occasions: regrettably his comments
were either not understood or they were dismissed on the grounds that the
6V models regarded as Ising models were “models with constraints”, in the
sense discussed above in the derivation of (7.3.2).

Baxter’s solution of the 8V model made clear to everybody Lieb’s point of
view. Even genuine finite-range “unconstrained” Ising models could show a
critical singularity that was neither that of the F-model, neither that of the
KDP-model nor that of the Ising model (to which the 8V models reduce if
J'" =0). The three behaviors were the limiting cases of a three-parameter
continuum of possibilities! so that the phenomena shown by the 6 models
were not examples of pathological properties dubiously attributable to the
hard core features of such models,® but they were the rule! This led to a
much better understanding of the theories that were put forward to explain
the universality phenomena, first among which the renormalization group
itself.

It would take too long to discuss the eight-vertex model properties, [Ba82]:
it is not surprising that it offers a varied and interesting phenomenology,
besides the enormous theoretical interest of the sophisticated analysis nec-
essary to obtain the solutions. As mentioned it can be solved only in zero
field (i.e. for €1 = €9, €3 = €4, €5 = €, €7 = €g). Some results in nonzero
field can be obtained by “perturbing” the zero field models, see [MWS86].

It is however important to stress once more that the exactly soluble models
give very limited information about the actual thermodynamics of the sys-
tem. For instance the informations that can be obtained about correlations,
even just pair correlation functions, is very scanty.

There are a few remarkable cases in which one can compute explicitly the
pair correlation function, like the two-dimensional Ising model, see [MW73],
[WMTBT76], [MTW77], [AR76]), or even higher correlations, like the 2n-
spins correlations in the two-dimensional Ising model when the spins are
on the same lattice line and far apart, [Ka69]. Correlation inequalities can
be very useful to study more general situations without having recourse to
exact solutions, [MM77].

Often one is able to evaluate the correlation length because it can be re-
lated to the second or third largest eigenvalue of the transfer matrix (often
the highest is almost degenerate and what counts is the third) which can
be studied quite explicitly (for instance in the 8V models), see [Ba82] p.
241,284.

Even the latter results provide little information about the “critical” cases
when there is no gap isolating the top of the transfer matrix spectrum from
the rest. The renormalizations group methods, which received so much
clarification from the exact solution of the 6V and 8V models, do provide
at least in some regions of the coupling parameters a, b, ¢,d (7.3.1), a rather

3 Because as mentioned above their statistical mechanics properties are quite normal, as
shown in [LW72], p. 354-361.
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detailed analysis of the properties of the correlation decay. For a recent
development see [Ma98].

There are many other exactly soluble models; e.g. one could just men-
tion the spherical model, [BK52], the dimer model, [Ka6l] and [TF61],
the XY -model, the ground state of the one-dimensional Heisenberg model
(whose solution can be related to that of the six and eight vertex models
[YY66],[Ba82], see also [Li67a],[Su70],[Ka74]), besides the Ising model on
some lattices other than the square lattice and the hard hexagon model on
a triangular lattice, [Ba82]. The reader should consult the monographs on
the subject [MW73], [Ba82] to which a good introduction is still the review
paper [SML64] and the book [LM66].

§7.4. A Nontrivial Example of Exact Solution: the Two-Dimen-
sional Ising Model

The actual computations for the exact solutions are always quite involved
but their elegance surpasses Jacobi’s theory of the action angle variables
for the pendulum. To give an idea of the procedures involved we describe
below the classical solution of the Ising model, as presented in the paper
[SML64].4

One starts from the remark in §6.15 that the free energy of the Ising model
in an N x M box with periodic boundary conditions is given by the trace
(7.1.8) of the M-th power of the matrix V in (7.1.7).

It is easy to construct a convenient representation for the matrix V. Con-
sider the three Pauli matrices

S (I R () P ) R

and consider the tensor product  of N bidimensional linear spaces E and
the operators of" defined by:

N
’H:HE:E®E®...®E

j=1
0f =l®..®0"0I®...0l, a=u,y,z

(7.4.2)

where [ is the identity operator on E and o¢ is located at the jth-place.
The operators o5 are pairwise commuting and one can easily diagonalize
them. If |o0) € E is a vector such that 0* |0) =0 |o) (with o = £1), then
the most general eigenvector of the operators o on H can be written as a
tensor product of vectors:

4 This was important progress as it provided a simple and easily understandable entirely
new approach to the solution of the Ising model, at a time when rested on the original
works [On44], [Ka49], [Ya52] which were still considered very hard to follow in the 1960s.
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N
o) =[[®le;),  a=(o1....,0n) (7.4.3)

=1
and the 2V such vectors (each corresponding to a string ¢ = (01,...,0n)

of digits o; = +1) form an orthonormal basis in H.
Consider the operator w on F such that

(o|lwlo") =777 g.0' =+1 (7.4.4)
which can be written as a matrix as
BJ -BJ
_ [ € € _ BJ —BJ & _ p,J* 0"
w_(e_BJ 65J>—e I+eP0o® = Ae (7.4.5)
with A = (2sinh23.J)'/? and tanh .J* = e=2%7. We see from (7.4.4) that
the tensor product
V1=H®w=w®...®w=ANeJ*ZJ‘U; (7.4.6)
has matrix elements

N
(e|Vile’) =[] e*77 . (7.4.7)
j=1

Hence if we define the operator V, on H, diagonal on the basis consisting
in the vectors |o ), which on |g) acts as

Vy = €377 29500 (7.4.8)

then we immediately check that the matrix elements of the operator V =
V2V1V, between |o') and (o] are exactly the transfer matrix elements
Vg,or in (7.1.7).

This means that the problem of the evaluation of the partition function
(7.1.8) is solved once we know the eigenvalues of V' = V511 V5, or of any
operator unitarily equivalent to it.

We shall, therefore, perform the unitary transformation U on H such that:

xrr—1 _ _z zyr—1 __ x

which transforms the matrix V into V = UVU~!:

V=4V (e%ﬂ'] Zj U;CU;“) (eJ* ZJ‘ UJZ') (e%ﬂ'] ZJ’ U;U;Jrl) (7.4.10)

which we can write, defining the matrices f/'j, as VaVi Vs.
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Here it will be very usefule to consider the following Pauli-Jordan trans-
formation:

) _
+ _ -}

o; = 5(0;” :I:zaj), | | (7.4.11)

so that ojj.: = a;t [1..;(1 = 2afa;) and 0} 0; = aja;. The usefulness of

(7.4.11) is due to the remark that:

[CL;_, +]+ =0= [CLJ ) ;]-H [a;"_aajil]-l- = 5]']" (7.4.12)
if [-]+ denotes the anticommutator In other words the above transforma-
tions changes the operators aj which have mized commutation relations
(i.e. commuting for j # j' while anticommuting for j = j') into operators
a;.t with purely fermionic commutations relations. We set N = Zj aja;.
This makes it easy to complete the calculations: one first remarks that the
Ndef otor _ Z ataT .

parity operator (—1) (=1)&i"7 % =(=1)43 77 commutes with the
factors defining V, hence it commutes with V itself.

Hence the space H is a direct sum of two orthogonal subspaces HT and H~
on which the parity operator has values respectively +1 and —1, i.e. Ht
contains an “even number of fermions” and ‘H~ an “odd number”.

This means that if [Q2) is a vector in H such that a; [Q) = 0 for j =

1,..., N, and one can see that there is always one and only one such vector,
the H™ is the space spanned by the vectors aj . .a;n |©), n >0 while H™
is spanned by the vectors with a; . J2 - ), n>0.

Agsuming from now on that %N is even, for simplicity, one can make the
following key remark; if we define the new operators:

:I:z7'r/4 N tijg T T T
Ze at g=45E35 £ (N-1)5 (7413)
where the ¢’s are defined so that e!?V = —1, then on H* the following
algebraic identities hold:
e:FW/ Ze:F’Jin
‘71 :AENeJ* ZQ(QA;"Aq_fl) (7.4.14)

N — o AF A + — A=Y e
‘/2 :6%,6.] Zq ((A;"Aq +A7qA7q) cos q+(A;"A7q+A7qu ) sin q)

where, in deriving the second and third relations, careful account has
been taken of the facts that while oj07,; = (a+ + 07 )(o ;:_1 +o05, =

(aj —a; )at i1t a]_H) for J < N it is, instead, (of; + oy)(0] +07) =

—(—1)N(a} —ay)(af +ay) and that on H* it is (=1) = +1.



7.4.15

7.4.16

7.4.17

7.4.18

232 V1I. Exactly Soluble Models

The anticommutation relations (7.4.12) imply similar anticommutation re-
lations for the A* so that the expressions in (7.4.14) containing different
+¢’s commute and therefore we can write, only on, HT,

V=aV][ P (7.4.15)

q>0

with A defined after (7.4.5) and

P, = e,aJ((A;rA;JrquA:q)cos GHAFAY £AZ A7 )sing) (7.4.16)

Q2T (AF AT +AT AT 1) .eﬁj((A;"Aq_—}—A"' AT ) cos +(AF AT +AZ A7)

—aqa —q —q —q —q° 9

and the operators P, commute. Hence they can be considered as 4 x 4
matrices acting on the space D, spanned by the vectors |Q), A(‘; ),
AT 1), AFAT Q).

Furthermore it is clear that the operator P, has A} |Q) as eigenvectors
and qu |0) with eigenvalues 25757 Hence the % operators P, can
be considered as operators on the space Dg‘ spanned by the two vectors
|Q),AF AT |Q). Note that such space is invariant under the action of P,.

Diagonalization of (7.4.15) will account only for %2N eigenvalues and eigen-
vectors because the operator V coincides with the transfer matrix only oon
‘H*. The remaining %QN are in the space H~ and they can be found in
the same way: defining new operators A} as in (7.4.13) with ¢ such that
€N = 1 one obtains a representation like (7.4.15) which is now only correct
if restricted to the space H~.

Therefore the problem has been reduced to the diagonalization of % 2% 2
matrices obtained by restricting each F,, ¢ > 0, to the space spanned by
the two vectors Af AT |Q), ). The four matrix elements of P, on such
vectors can be evaluated easlily starting from the remark that

Pq — eQ,@J cos qeﬁJ(‘r‘ cos q+717 sin q)eQJ T eﬁJ(‘r‘ cos g+77 sinq) (7417)

where

TP =(AFA; + AT AT, 1), T = (A AT+ AT A7)
P P o (7.4.18)
TV = (A7 AT - AT A

and the matrices 7%, 7Y, 7% have the same matrix elements as o%,0Y,0% in

(7.4.1), respectively, if the vectors A(‘;Ai'q |Q),|Q2) areidentified with <é>

1
relations and have the same spectrum.

and <O>, hence they satisfy the same commutation and multiplication
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By using the properties of the Pauli matrices it is possible, with some
obvious algebra, to rewrite the product (7.4.17) as

P, = 287 cosa (coshe(g) + (77 cosVy + 7 sindd,) sinh e(q)) (7.4.19)
where £(q) is the positive solution of

coshe(q) = (cosh 2J* cosh28.J + sinh 2J* sinh 28.J cos q) (7.4.20)
and the angle 9, is defined, setting ¢ = tanh 8J and t* = tanh J*, by

2:0, (14 e L)(1 4 tt*e')
o200 —

= . - 7.4.21
(1+ e~ L)1+ tte~ia) ( )

Coming back to P, one sees that on Dj:
Pq — eQ,BJ cos qeé‘(q)(‘rz cos Vq+7% sindy) (7422)

but since the latter expression has Af |Q) and AT |Q) as eigenvectors
with the “correct” eigenvalues e2?7 <059 ye see that P, is given by (7.4.22)
on the entire four-dimensional space D,. Hence we must diagonalize:

(q) ((A;"A; +AT AT, —1)cosdg+(AFTAZ +AZ A7) sin 19,,)

Pq — eQ,BJcos qu —_qfq .
(7.4.23)
Note that if one sets (for ¢, + 29, = 0)
Af =B/ cosp, + B~ singp, (7.4.24)
A, =- B; sing, + BZ, cosp,
which is an example of a well-known transformation, called the “Bogoliu-
bov-Valatin transformation”, and ¢, = —29, one finds
B, = o287 cosq =(a)(Bf By +BX BZ —1) (7.4.25)

so that the transfer matrix on % T can be written as AN exp(} q(ﬁJ cosq+
e(q)(Bf B, — 3)), see (7.4.15), noting that e(q) = e(—gq) the 32" eigen-
values of the transfer matrix on H* are, therefore, simply given by
ANeZq %eq, eq = *&(q) where the signs can be arbitrarily chosen as long
as the is an even number of + signs (because the only relevant eigenvalues
are those associated with an even number of fermions). The terms §.J cosq
disappear because of the trigonometric identity ) ,cosq=0.

There is a unique vector [Q2") such that B, |2") =0 for all ¢ > 0, and it
is a linear combination of the vectors obtained by applying [], Ajk Al to
|2): this means that the “new vacuum” |Q') is in the even space H™.
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Clearly the largest eigenvalue is Aoo ) ., 1e(q) and it corresponds to
the eigenvector [] . B; |Q") which, being in HT, really corresponds to an
eigenvector of the transfer matrix.

A similar calculation can be performed to find the eigenvalues of the trans-
fer matrix on H ~: this time one takes ¢ such that e = 1 and proceeds
in the same way getting an analogous result. The analysis of the relation
between the maximal eigenvalues in HT and H~ is a simple matter: how-
ever it is very illuminating as it reveals that if 8 < (., with 3. defined
by Bc.J = J*(B.), there is a gap between the two eigenvalues (which does
not shrink to 0 as N — oo) while for 8 > . (i.e. at low temperature)
the difference between the two eigenvalues tends to 0 exponentially fast
as N — oo. In the end this can be seen as the reason for the different
asymptotic behavior of the correlations, in (7.2.3)).

In the analysis on ‘H~ one must pay attention to the fact that now the
values ¢ = 0,7 are permitted but they are not paired as the other values
of ¢g. This implies that the modes ¢ = 0,7 must be treated differently, and
the key difference that a careful discussion yields is that the value of e(n)
is not necessarily > 0: it becomes negative for T' < T, and this accounts for
the difference in the spectrum of the transfer matrix above and below 7.

With the above explicit expressions for the eigenvalues it is not difficult
to see that in the limit as N — oo the only eigenvalues that count are
the two with maximum modulus, which are almost degenerate if 8 > (.
and separated by a gap of order O(1) for 8 < f.. This means that the
limit as N — oo of (7.1.8) is dominated by the largest eigenvalue Ay and
the free energy Sf(8) is always (for all ) given by log A plus the limit of
¥ >_4>0€(q) which is the integral in (7.2.1) as a consequence of (7.4.20).

The calculation of the spontaneous magnetization is more involved (see
[Ya52], it is, however, quite simple in the method of [SML64)]), and it requires
extra assumptions, which can be removed by using further arguments as
mentioned in Ch.VI, [BGJS72], [AMT73].

We see that the above calculation requires some wit but its real difficulty is
to realize that the transfer matrix can be written essentially as a quadratic
form in certain fermionic operators. This reduces the problem to a 4 x 4
matrix diagonalization problem; after that it is clear that the problem is
“solved”, although some computations are still necessary to get a really
explicit expression for the free energy.

The above calculation should be performed in all its details by those inter-
ested in statistical mechanics, as it is one of the high points of the theory,
in spite of its apparent technicality. There are alternative ways to compute
the free energy of the two-dimensional Ising model, but all of them have
a key idea and a lot of obvious technicalities that accompany it. The one
above is particularly interesting because of its connection with the quantum
theory of fermionic systems (and because of its simplicity).

§7.5. The Six Vertex Model and Bethe’s Ansatz
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We consider an N x M periodic lattice (N, M even) and on each bond we
put an arrow so that the arrows entering or leaving each lattice node form
a configuration ¢ among the A,B,C in the Figure in §7.3. Let ¢(c¢) depend
on ¢ but suppose that it takes the same values in each pair in A or in B or
in C; the value of £(¢) will be the contribution to the energy of an arrow
configuration. The partition function will be

Z(B) =Y e PP BC) = &) (7.5.1)
C

where the sum runs over all vertices, i.e. over all the arrow configurations
compatible with the six-vertex constraint and which can be put on the NM
vertices.

Consider first the case e(¢) = 0 (the ice model). Given a configuration C
consider the M rows of vertical arrows. We associate a number 0,,,; = %1
to the j-th bond (j = 1,..., N) on the m-th row (m = 1,..., M) indicating
whether the arrow points up (+) or down (—). Let g,, = (0m1;---,0mnN)-

Given g4, ...,a,;, i-e. the collection of vertical arrow configurations there
will be in general several horizontal arrows settings that will be compati-
ble with g,...,0,, i.e. which together with the vertical arrows form an
allowed configuration around each vertex. Of course the set of horizontal
configurations that can be between two rows g, and o,,; depends solely
upon g,.,0,,,. Hence we can define

T(o,0') = {number of horizontal configurations allowed

, L (752)
between two rows of vertical arrows o and g'},
and for instance in this case with e(¢) = 0 it is:
Z= Y Tl(o,05) T(0s.05) ... T(ap04)- (7.5.3)

L RRRE-2Y:

Therefore the free energy (which in the latter example is the so-called
residual entropy, i.e. a number that measures how many configurations are
possible for the system) is

I = lim lim 1

1
M _ 1. 4
N—oco M—oco MIN IOgTI’T - ]\;51100 N log /\max- (754)

One checks, see Fig. 7.3.1, that

T(g,0) =2, T(o,0"Y=0,1, ifo#do". (7.5.5)
Ifo=(01,...,0n) and o' = (0],...,0) and if 1 <21 <23 < ... <zp <
N are the n-labels for which 0,; = —land 1 <z} <2, <... <z, <N
the n'-labels for which ¢!, = —1, then T'(g,0’) = 1 only when n = n' and

one of the following two chains of inequalities holds:
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1<z <7}
1<z <a

. <z, <z, <N

< (7.5.6)
.Zz, <z, <N.

<
<
Hence we see that T is divided into blocks which do not mix spaces with
different “total spin”, i.e. one must have ), 0, = N—-2n=N-2n"' =", 0}
to have T'(g,a’) # 0.

Fixed n (i.e. the total spin) we can consider the matrix 7™ obtained by
restricting T' to the space generated by the unit vectors that we can label
|o) with Y .0; = N — 2n. This can therefore be regarded as an operator
on the functions f(z1,...,z,) with 1 <2y < 22...<zp < N:

(T(”)f)(ml,...,mn)zz Z z": Flyr, -, yn)+
1=1y2=z1 n=Tn—1
B (7.5.7)
+ Z Z Z flyr, -, yn)
Y1=T1 Y2==o2 Yn==Tn

where the % denotes that the terms in which there are at least two equal y’s
must be considered absent, see the following footnote 5.
If )\55‘.2,( is the largest eigenvalue of T(™) then Apax = max; <n<N /\,(;Qx. One

N
can, however, show that in the most interesting cases Apax = )\fné,)(

Bethe’s ansatz is that the largest eigenvector of the matrix 7(" is a linear
combination of plane waves:

fl@r,...zn) =) Ap o' 25 %K (7.5.8)
P
where the sum runs over the n! permutations P = (pi,...,p,) of the n
indices and K1, ..., K, are n distinct “wave numbers”.

The idea of trying to find eigenvectors of the form (7.5.8) appeared first in
the work of Bethe, [Be31], who found that the eigenvectors of the matrix H
defining the one-dimensional Heisenberg model could be expressed in that
form.5

5 The Heisenberg model on the lattice 1,2,..., N with periodic boundary conditions is
an operator written in terms of the matrices defined in (7.4.2) and it is:

N
H = E Jzafaf_'_l+Jyagag+1+Jzajz-ajz-+1, 01 = O0N41 (%)
j=1
which can be regarded as a matrix acting on the vectors in (7.4.3) which can be denoted
d
o) ef |1,...,@n) if z1,...,2, are the lattice pints where oz; = —1. Thus if the

generic vector is written Zm f(z1,...,2n)|21,...,20 ) the operator H becomes

yeesTm
a matrix acting on the same space as the transfer matrix (7.5.7). If J = J, = Jy a
key remark is that given T' the matrix H commutes with 7 if the coefficient J./J = A
is suitably chosen as a function of the parameters a, b, ¢ of the six-vertex model: A =

240°=c®  Then, see (7.3.4) and (7.3.5), A = L for the ice model, A = 1 — L¢28¢ in

the case of the F-model and A = %656 for the KDP model.
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Bethe’s eigenvectors were not immediately useful, not even to compute the
actual value of the lowest eigenvalue of H (ground state energy) because the
coefficients Ap were difficult to treat and their evaluation required solving
a linear integral equation which, at the time, could not be studied.

Wave functions of the form (7.5.8) turned out to be very useful also in other
problems: the “new era” started when it was shown, in [LL63], that the
ground state energy of a simple one-dimensional Bose gas with a nontrivial
interaction corresponded to an eigenvector of the form (7.5.8).

In the papers [YY66] a complete study of the integral equation necessary for
the evaluation of the ground state of the Heisenberg model was presented,
and in [Li67a] it was discovered that one could find eigenvectors of (7.5.7) of
the form (7.5.8), among which one with f(z,...,z,) > 0 corresponding to
n = N/2 when N is even, as usually assumed. From this Lieb was able to
show, in the ice model case, that the largest eigenvalue of T" was precisely
the same as that which gave the ground state energy of a corresponding
Heisenberg model (with suitably chosen couplings, see footnote ®) and whose
form had become known by the [YY66] key work.

The commutation property, cited in footnote , between the ice model
transfer matrix and the Heisenberg model Hamiltonian with A = % was
also a consequence of the results on the ice model. This becomes clear as
soon as one realizes that the two matrices have the same eigenvectors (all

of the Bethe ansatz form, (7.5.8)).

The knowledge of the ground state eigenvalue for the ice model transfer
matrix led to the explicit evaluation of the ice model residual entropy and,
shortly afterwards, the works [Li67b],[Li67c], and [Su67] determined the
largest eigenvalue of the matrix T in the F and KDP-models.

It would be fairly easy to reproduce the work of [Be31] to see that the ma-
trix H, written in the basis of the last footnote ®, admits eigenvectors of the
form (7.5.8). And remark that the Heisenberg model matrix H and trans-
fer matrix T for the above considered 6V models commute (if, of course, A
is suitably chosen) implies that 7" has eigenvectors of the form (7.5.8) and
provides a way for finding the solution oof the model: this, however, was
not the path followed in the discovery of the ice model solution.

A direct check that one can adjust Ap, Kp in (7.5.8) to make them eigen-
vectors of the matrix (7.5.7), [Li67a], is possible and very instructive, al-
though it is surprisingly difficult to write in words. The procedure suggested
in [Ba82] is perhaps the simplest.

Having noted that 7" decomposes into blocks that do not mix vectors in the
spaces generated by the basis elements |z1,...,2,) (i.e. the functions of
z} < ...< ), vanishing unless m = n and &} = x;, when their value is 1, see
footnote °) with different n’s one studies first the case n = 0 (trivial), then
n = 1 (also very easy), then n = 2 which is easy but requires attention as the
algebra is already quite involved. The calculation is strongly recommended,
and one should first attempt it in the ice model case A = %

For the ice model (of the F and KDP-models which are not harder) one
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finds
A12 1-— 2A21 + 2129 i
_———-—— A
A21 1-— QAZQ + 2’12’2’ J
N A12 N _ A21

zZ1 = — Ze = .
1 ’ 2
A21 A12

K;

(7.5.9)

If one has really performed the calculation at least in the A = % case, with
the necessary patience, then: “the solution of the eigenvalue problem for
arbitrary n is a straightforward generalization of the n = 2 case”, p.138 of
[Ba82)! If P = (p1,...,pn) is the generic permutation of 1,...,n, then:

- P def
Apypa = (=1) H Spiptis Spg = 1 =282 + 2pzg,
i<j

N = (—1» T 2L (7.5.10)

-S4
1] Js

where the last relations must be interpreted as equations for z; hence, by
(7.5.9), for the K;’s. The calculations also provide the value of the eigen-
value A corresponding to a sequence K7y, ..., K, of n values that are pairwise
distinct and satisfy the last of (7.5.10). For instance in the ice model case:

- 1 Dz
A= J 5.
H1_2,+H1_Z. (7.5.11)
Jj=1 J Jj=1 J
It is remarkable that if |A| < 1 and p, ¢ are real then

Spa 1 — 2Ae 4 ¢ilp+9) _ i®0a) (7.5.12)
Sep 1 — 2Aeia + eilp+a)

where the ©’s are real and are given by

Asin %(p —q)

O(p,q) = 2arctg (7.5.13)
cosi(p+q) — Acosi(p—q)
which is real if p, ¢ are real. The conditions on K; become
2rl; ZNKJ'+Z@(KJ';K£), Ii=j— §(n+1) (7.5.14)

=1

which has been discussed in [YY66] and shown to admit, for all |A] < 1,
a unique real solution K, ..., K,. Therefore, modulo mathematical rigor
problems, we expect that Ki,...,K, become dense when N — oo and
n/N = 0 stays constant; the number of K;’s in an interval dK should
be described by a density ps(K) such that [* ps(K)dK = 6 = %. The
distribution ps(K) will be nonzero inside an interval [-Q, Q] C [—-7d, md]
(because j in (7.5.14) varies between 1 and 3(n + 1)).
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The form of (7.5.14) means that the number of K;’s which are < K is such
that

K Q
N/ ps(K"dK' = 7r(n-|—1)+NK+N/ O(K,K")ps(K")dK'; (7.5.15)
-Q -Q
hence differentiating with respect to K:
Q
2mps(K) =1 -|-/ OxO(K,K")ps(K') dK' (7.5.16)
-Q

which is an equation whose solution for § # % is still an open problem.
The problem for § = 3 was solved in 1938 (reference to Hulthén, [Hu38],
in [Ba82]) for the case A = —1, and in [Wab9] for the cases A < —1. The
|A] < 1 cases were completely solved by Yang and Yang, [YY66], for A < 1.
The case A > 1 is trivial, as noted by Lieb, because one can see that the
maximum eigenvalue is the one corresponding to n = 0 and it is a™¥ + bV,
see [Ba82], (see (7.3.1) for the definition of a, b).

The reason why the case n = %N is so special and exactly computable
lies in the existence of a change of variables transforming (7.5.16) into a

. L d
convolution equation, in the cases —1 < —cosp I A < 1. The change of
variables is K +—a:

iK _ et — e~
e = e 1 (7.5.17)
or
dK sin

- = 7.5.18

da  cosha —cospu ( )
which maps the interval [-Q, Q] into (=00, 00) and 27p1 (K)¢—R(a) with
R(a) satisfying:

o0

sin p 1 sin 2

R(a) =

R(B)dS  (7.5.19)

cosha—cosp  2m | . cosh(a— f3) — cos2u

which can be solved by Fourier transform, and it even leads to the simple

solution 1 1
R(z)

~ 2cosh uz (7.5.20)
for the Fourier transform R of R!!

The first instance in which a transformation of the type (7.5.19) is used
to transform the integral equation (7.5.16) into a simple equation is in the
remarkable brief paper [Wa59] which introduced the change of variables
corresponding to (7.5.17) in the case A < —1. The latter paper is based
upon another remarkable paper, [Or58], which studies the same equation in
an approximate way.

It is now a matter of simple algebra to obtain the formulae of §7.4,
(7.3.3),(7.3.4),(7.3.5), see [LWT2],[Ba82].
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The 8V model is not soluble by Bethe’s ansatz; I cannot give here even a
sketchy account of its solution. The reader should look at Baxter’s book,
[Ba82], detailing what is one the main achievements of mathematical physics
in the 1970s. The book also illustrates several other exactly soluble models.
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Brownian Motion



242



VIII. Brownian Motion 243

§8.1. Brownian Motion and Einstein’s Theory.

Brownian motion was first observed by Brown (1828): he recognized that
the motion of “molecules”, of size of ~ 1073 ¢m, of a pollen in a solution
(“colloid”) was not due to internal causes, as it was believed at the time,
but it had a mechanical (unknown) origin. It was in fact observable by
looking at particles of comparable size and of any material, both organic
and inorganic.

Very soon the movements were attributed to collisions with the microscopic
constituents of matter. Among the first to recognize this was Cantoni,
[Ca67], in a remarkable paper he says

“in fact, I think that the dancing movement of the extremely minute solid
particles in a liquid, can be attributed to the different velocities that must
be proper at a given temperature of both such solid particles and of the
molecules of the liquid that hit them from every side. I do not know whether
others did already attempt this way of explaining Brownian motions. . .

In this paper an impressive number of experiments, performed by Cantoni
himself, are reported in which he finds evidence for the equipartition of en-
ergy between the suspended particles and the solvent molecules to conclude:

“In this way Brownian motion provides us with one of the most beautiful
and direct experimental demonstrations of the fundamental principles of the
mechanical theory of heat, making manifest the assiduous vibrational state
that must exist both in liquids and solids even when one does not alter their
temperature”.

This work is most remarkable also in view of the fact that it is contemporary
of the first papers of Boltzmann on the heat theorem and equipartition.

Brownian motion attracted the interest of many leading scientists, among
which was Poincaré. Brownian motion theory was worked out by Einstein
and, independently, by Smoluchowski, (1905-1906), soon followed by the
experimental confirmation of Perrin, (1908), see [Ei56],[VS06];[Pe70].

The main critique (Nageli, [VN79]) to the microscopic kinetic nature of
Brownian motion was the remark that experimental data and kinetic theo-
ries permitted one to estimate that (the particles in suspension being hun-
dreds of millions times larger than the molecules of the liquid) the velocity
variations at each collision had a random sign; so that it seemed inconceiv-
able that one could see a nonvanishing average effect. A fallacious argument,
as it was stressed (for instance) by Poincaré (1904), [Po00]. He also noted,
with others, that the hypothesis that the colloidal particles motion had a
kinetic nature could contradict thermodynamics (see below).

The fallacy of the reasoning was, in any event, well known as it appears
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from an esoteric article by Bachelier (1900), [Ba00], on the austere Annales
de I’Ecole Normale of Paris (a few pages away from the French translation
of Hilbert’s Grundlagen der Geometrie); it is a paper on stock market spec-
ulations where, precisely, the problem is posed of how can many random
small variations produce visible effects (see below).

Einstein’s approach starts with the remark that the suspended particles,
although of huge size, can still be considered as large molecules and, hence,
one can apply statisical mechanics to them, so that they will exercise osmotic
pressure, just as with ordinary solutions, satisfying (therefore) Raoult-van
t‘Hoff’s law at least at small concentrations. Hence Van t‘Hoff’s law holds
not only for solutions of microscopic particles but also for calculating the
partial pressure due to particles of arbitrary sizes (e.g. glass balls).

The idea was “revolutionary” and, as Einstein realized, possibly in contrast
with classical thermodynamics, but not with statisical mechanics and the
atomic hypothesis. Hence he immediately posed the question of how to find
observable macroscopic consequences.

Nonrectilinear motion of particles is thus attributed to their random colli-
sions with molecules. Hence it is a random motion, at least when observed
on time scales 7 large compared to the time necessary to dissipate the ve-
locity v acquired in a single collision with a molecule (by friction, due, also
to microscopic collisions between fluid molecules). The dissipation of such
velocity can be estimated, in the case of macroscopic particles, by remarking
that in a single collision with a molecule the acquired speed v is dissipated
into heat by the action of a force F' which, by Stokes’ law, is

m@ =F = —6mRv (8.1.1)
ot

where 7 is the fluid viscosity coefficient, R is the radius of the suspended
particles, and v the speed; hence the characteristic time scale for the loss
of the velocity acquired in a single collision is ¢y = (67pm~'R)~!. This
is a very short time (for instance if R = 1y, and if m is evaluated by
assuming that the density of the material constituting the large particles is
the same as that of the liquid in which they are suspended (i.e. water, so
that n = 1072 cgs-units), one realizes that the time scale is ¢y ~ 1077 sec).
Therefore on the time scale 7 >> ¢y motion will be diffusive. In such motions
there is transport of matter only when there is a density gradient.

The logic of Einstein’s analysis is quite fascinating. Using an ideal experi-
ment (a method characteristic of his thinking) he links microscopic quanti-
ties to macroscopic ones. The background solvent fixes the temperature and
the time scale over which a particle undergoes a diffusive motion: to find the
diffusion coefficient for a single particle one considers a gas of particles of
arbitrary density v, but so small that the ideal osmotic pressure law holds.
We recall Raoult—van t’Hoff’s law: if p is the osmotic pressure (i.e. the par-
tial pressure due to the particles) and v is their numerical density one has
p = kpTv, with T being the fluid temperature and kg Boltzmann’s con-
stant. This is done in spite of the fact that in the classical experiments the
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suspended particles are so few that they can be considered isolated from
each other.

Hence in the first step of the ideal analysis one replaces a single colloidal
particle with a gas of such particles, with density v.

One then imagines that some external force F' acts on the gas (also a fiction,
in the ideal experiment) which only acts upon the colloidal particles (and
not on the solvent fluid); it generates, in a stationary state, a gradient Fv
of pressure, denoted 9,p. The pressure gradient also equals kgT'd,v by the
Raoult—van t’Hoff law (or more precisely by the assumption that the osmotic
pressure law holds for macroscopic particles). The pressure gradient which
exactly balances the force action is 9,p = Fv = kT 0,v by the Raoult—van
t"Hoff law.

Supposing that the solvent obeys the Navier—Stokes equations one can
then compute, via Stokes’ law, the particle velocity in terms of the viscosity
(strictly speaking here it is necessary that particles be in fact macroscopic)
so that one can compute the flux generated by the pressure gradient:

vF kBT

®— o= _ _ kBT o, 1.2
VU= SR T 6mR Y (8.1.2)

Finally the assumption that the individual particles undergo a diffusive
motion implies that the flux has to be proportional to the density gradient
giving:

®=-Do,v (8.1.3)

where the proportionality constant D is the diffusion coefficient.

Equating the two expressions for the flux of particles all auxiliary quanti-
ties, used to mount the ideal experiment, have disappeared and one infers
that assuming kinetic theory then a macroscopic particle (even just one) in
a fluid and in thermal equilibrium (i.e. in a stationary state) must have a
diffusive motion with a diffusion constant related to the viscosity by

kT
= 6k (8.1.4)
which is called the Finstein-Smoluchowski relation: that one should at-
tribute entirely to Einstein, see the following §8.2.

The quantity D is also directly related to the average value (over many
trajectories) (r(t)?) of the squared displacement r(¢)? of the colloidal par-
ticle in a time interval ¢; we shall see that (r(#)?) = 6Dt. Since the value
of {r(t)?) is directly measurable in a microscope, this is a first theoretical
relation that can be checked experimentally.

Conceiving of macroscopic particles as behaving like microscopic molecules
(and generating an osmotic pressure obeying Raoult—van t'Hoff law, much as
true chemical solutions do) is an important idea that was, in itself, a novelty
brought by Einstein’s work (heralded by Cantoni’s experiments, [Ca67]). It
allowed everybody who had not yet accepted the atomic hypothesis to see
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that thermodynamics laws must have a statistical nature. This in fact hap-
pened at least after Perrin showed, experimentally, that Brownian motion
theory was correct, [Pe70].

In fact, since it seems possible to build semi-permeable walls for macro-
scopic objects, it becomes possible to perform thermodynamic cycles at con-
stant temperature which, by using osmotic pressure, convert heat into work:
the walls create an entity similar to Maxwell’s daemon. One can think of a
cylinder filled with liquid and divided in two by a semi-permeable movable
wall; on the left side there is also a colloidal solution seeing the impermeable
side of the wall, while the right side contains no colloid. The wall can then
be pushed to the right by using the osmotic pressure to extract work from
the process; at the end of the run the wall is taken out (performing a work
as small as we wish, in principle, because we only need to displace the wall
horizontally) and reinserted back at the original position but with the two
faces inverted.

Then comes a long waiting time while the observer does nothing but witness
the colloidal particles randomly hit the wall on the permeable side and get
caught in the left part of the cylinder, again. After the last colloidal particle
crosses the wall the initial conditions are restored and Carnot’s principle has
been violated.

The infinitely sharp eye of Maxwell’s daemon can thus be replaced by
our microscope, as Poincaré stressed (having in mind a somewhat different
apparatus based on the same ideas). Perrin highlighted this same aspect of
the Brownian motion phenomenon, and he also noted that a machine like the
above would have required unimaginably long times to extract appreciable
amounts of energy, see §51 of [Pe70].

It is important to keep in mind that here we are somewhat stretching
the validity of thermodynamic laws: the above machines are very idealized
objects, like the daemon. They cannot be realized in any practical way:
one can arrange them to perform one cycle, perhaps; (and even that will
take forever if we want to get an appreciable amount of energy, see §51 of
[Pe70]), but what one needs to violate the second law is the possibility of
performing as many energy producing cycles as required (taking heat out of
a single reservoir). Otherwise their existence “only” proves that the second
law has only a statistical validity, a fact that had been well established since
the work of Boltzmann.

In fact an accurate analysis of the actual possibility of building walls semi-
permeable to colloids and of exhibiting macroscopic violations of the second
principle runs into grave difficulties: it is not possible to realize a perpetual
motion of the second kind by using the properties of Brownian motion. It is
in fact possible to obtain a single violation of Carnot’s law (or a few of them),
of the type described by Perrin, but as time elapses and the machine is left
running, isolated and subject to physical laws with no daemon or other ideal
extraterrestrial being intervening (or performing work unaccounted for),
the violations (i.e. the energy produced per cycle) vanish because the cycle
will be necessarily performed as many times in one direction (apparently
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violating Carnot’s principle and producing work) as in the opposite direction
(using it).

This is explained in an analysis of Feynman, see [Fe63], vol. 1, §46, where
the semi-permeable wall is replaced by a wheel with an anchor mechanism,
a “ratchet and o pawl”, allowing it to rotate only in one direction under the
impulses communicated by the colloidal particle collisions with the valves
of a second wheel rigidly bound to the same axis. Feynman’s analysis is
really beautiful, and remarkable as an example of how one can still say
something nonboring about perpetual motion. It also brings important
insights into the related so-called “reversibility paradox” (that microscopic
dynamics generates an irreversible macroscopic world).

Diffusive motion produces a displacement r(t) over a time ¢ whose squared
average is (r?)(t) = 6Dt, because the probability f(z,t)d*z for finding a
particle, initially located at the origin, in the little cube dz around z is the
solution of the diffusion equation 8, f(z,t) = DAf(x,1t), i.e.

2
e T /4Dtd3£

f(Lt):W

(8.1.5)

(the equation that Einstein derives by imitating Boltzmann’s method to ob-
tain the Boltzmann’s equation also finding, at the same time, a microscopic
expression for the diffusion coefficient D). The squared average value of the
displacement is then simply:

(r(1)*) = /ff(@, t)d’z =6Dt (8.1.6)

We see that, although each collision produces a very small velocity varia-
tion, immediately followed by variations of similar size and of either sign,
nevertheless the particle undergoes a motion that over a long time (com-
pared to the frequency of the collisions) leads to a change of each coordinate
of the order of 2Dt (or V6Dt if one looks at the three-dimensional vari-
ation) which not only is nonvanishing, but can also be considerably large
and observable.

As an application Einstein deduced (1906) the value of Boltzmann’s con-
stant kg, hence of Avogadro’s number Ny, from the measured diffusion of
sugar suspended in water, finding N4 = 4.0 x 1023: the error being mainly
due to a computational mistake. On the basis of accurate experiments,
by using the theory of Einstein, Perrin and collaborators obtained a value
essentially equal to the recently accepted value of Ny, see §77 of [Pe70].

Brownian motion theory was derived by Einstein without him being really
familiar with the details of the experiments that had been performed for
about 80 years. He proceeded deductively, relying on ideal experiments,
starting from the remark that particles, even if of macroscopic size, had to
obey the laws of statisical mechanics. In particular they had to show energy
equipartition and their osmotic pressure had to obey the perfect gas law
(Raoult—van t’Hoft’s law).
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His theory leads manifestly to motions that, if observed over time scales
long compared to to (cf. lines following (8.1.1))! must be motions for which
the velocity would depend on the time interval over which it is measured and
it would diverge in the limit ¢ — O or, better, it would become extremely
large and fluctuating as t approaches the time scale ¢ty beyond which the
theory becomes inapplicable.

It provided, therefore, an example of an actual physical realization of cer-
tain objects that had until then been just mathematical curiosities, like
continuous but nondifferentiable curves, discovered in the ’800s by mathe-
maticians in their quest for a rigorous formulation of calculus; Perrin himself
stressed this point very appropriately, see §68 of [Pe70].

The assumption that fluid resistance to macroscopic particle motion follows
Stoke’s law is by no means essential but it is a characteristic aspect distin-
guishing Einstein’s theory from Smoluchowski’s, as we shall see below. In
fact if the assumption was changed to v = CrF with Cg suitably depending
on R, then (8.1.4) would be replaced by D = kT'Cg. If, for instance, the
particle was suspended in a rarefied gas, rather than in an incompressible
liquid, then C'r would be different.

More precisely if the colloidal particle proceeds with velocity v in a gas
with density p, then the number of gas particles colliding with an average
velocity —vp, is mR?(v + v,)p/2, while mR?(v — v,,)p/2 is the number of
particles colliding with an average velocity +wv,,. The former undergo a
momentum variation, per unit time, 2m(v,, +v) and the latter 2m(v,, —v).
Hence, instead of Stokes’ law, the force of the fluid on the particle is

%WRQ[(’U + ) = (vm — v)%)2m = ¢ R*vympv (8.1.7)
with ¢ = 4m.
In the above calculation we supposed that half of the particles had velocity
equal the absolute velocity average and half an opposite velocity; further-
more the particle has been treated as a disk perpendicular to the direction
of motion. A more correct treatment should assume a Maxwellian veloc-
ity distribution and a spherical shape for the particle. The evaluation of
the corrections is without special difficulties if one assumes that the gas
is sufficiently rarefied so that one can neglect the recollision phenomena
(i.e. repeated collisions between the particle and the same gas molecule,
and it leads to a final result identical to (8.1.7) but with a different factor
replacing 47. One would eventually find, following the argument leading to
(8.1.4),

kT kgT kT
C CR*mump  cR2p2mEkpT  cR2p\V2m

and the constant ¢ is in fact 2,/m. For obvious reasons the regime in which
the expression (8.1.7) for the friction holds is called Doppler’s regime and

(8.1.8)

1 j.e. long compared to 1 psec as is necessarily the case because of our human size
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it is relevant for rarefied gases, while the Stokes regime, in which (8.1.1) is
acceptable, pertains to friction in liquids.

§8.2. Smoluchowski’s Theory

Smoluchowski’s theory, shortly following that of Einstein, shines light on
Einstein’s hypotheses. The latter lead to (8.1.5) at the price of tacit assump-
tions similar to the molecular chaos hypothesis familiar from Boltzmann’s
attempts at deriving Boltzmann’s equation: in fact according to (8.1.5)
colloidal particles show a diffusive motion, with mean square displacement
proportional to time t.

Smoluchowski, to disprove Nigeli’s argument, considers a concrete micro-
scopic model for the collisions: a particle of mass M is subject to a large
number of collisions with the molecules, of mass m, of the fluid (~ 10%¢ sec—!
in many cases). If v;, is the particle velocity after k collisions and if the k-th
collision is with a molecule with velocity v before colliding, one infers from
the elastic collision laws that:

m
Vg1 R U+ M(R_ Do i [y > |v], M>m (8.2.1)

where R is a random rotation (depending on the impact parameter, also
random). The above equation only deals with a single collision between two
particles and it does not take into account that the heavy particle moves in a
gas of light particles with positive density: this causes a cumulative friction
effect; hence when the velocity v, grows the Doppler friction in (8.1.7) will
start to damp it by a force —c' R%v,,pmu,,, hence with acceleration —\u,,
with A = ¢/ R?v,,pm /M. Thus the velocity variation should rather be as

Upsy A e %(R ~1)u (8.2.2)

which includes, empirically, the damping effect.
We can consider (R — 1)v as a random vector, at each collision, with zero

average and square width (m/M)?(((R — 1)uv)?) = 2(m/M)?v2,. Further-
more collisions take place, in average, every time interval 7 such that

TR pop =1, — M= c'% (8.2.3)

hence the space run in a time ¢ during which n = t/7 collisions take place is
(if the initial positon and velocity of the particle are both 0, for simplicity)

[

n—

k
=37 Z “Ar(k=h)y, (8.2.4)
k=0 h=0

with w;, independent random vectors with (w?) = 2v2, (m/M)?. Hence we
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can immediately compute the average square dislacement as?

r2 m 112 1 kT
Ty 92 2 —m =6 8.2.5
< t ) =2 ( )7 ()27 ¢ mpR2up, aC'RQTTLPUm ( )

where a = 2/(c') is a numerical constant of O(1) (see below) and ¢’ was
introduced in (8.1.7); we see that we find again, essentially, Einstein’s for-
mula in the case in which Stokes law is replaced by Doppler’s resistance
of a rarefied gas, just as we would expect to find given the nature of the
model (apart from the factor a). One shall realize, see §8.3, that Uhlenbeck—
Ornstein’s theory is a macroscopic version of Smoluchowski’s theory.

This led Smoluchowski to say that if, instead, the fluid is an incompress-
ible liquid one has “simply” to replace, in the denominator of (8.2.5), the
Doppler regime viscosity with that in the Stokes regime, with a somewhat
audacious logical leap; he thus finds:

Dgmot. = aDeinst. (826)

Hence Smoluchowski’s theory is in a sense more ambitious than the Ein-
steinian theory because it attempts at proving that the colloid motion is a
diffusive one without neglecting completely the time correlations between
consecutive collisions (which Einstein, as already mentioned, implicitly ne-
glects). The model proposed is to think of the fluid as a rarefied gas which,
therefore, does not obey the Stokes viscosity law. Strictly speaking Smolu-
chowski’s model deals with a colloid realized in a rarefied gas, a situation not
very relevant for the experiments at the time, because it is not applicable to
a colloid realized in a fluid. Einstein’s method is more general and applies
to both cases, although it does not really provide a microscopic justification
of the diffusive nature of the motions.

Conceptually Smoluchowski could not possibly obtain Einstein’s formula
because he was not able to produce a reasonable microscopic model of a
fluid in the Stokes regime (which even today does not have a satisfactory
theory). His method in fact is not very “objective” even in the rarefied gas
case since it leads to a result for D affected by an error of a factor a with
respect to Einstein’s.

This factor can be attributed to the roughness of the approximations,
mainly to the not very transparent distinction between velocity and average
velocity in the course of the derivation of (8.2.5), which does not allow us to
compute an unambiguously correct value for a. Nevertheless Smoluchowski,
without the support of the macroscopic viewpoint on which Einstein was
basing his theory, is forced to take seriously the factor a that he finds and
to transfer it (with the logical jump noted above) to an incorrect result in
the case of a liquid motion.

2 We use that 3 kpT _ lv . The factor a changes if one makes a less rough theory of the
Doppler frlctlon takmg 1nto account that there are differences between various quantities

identified in the discussion, like 4/((Av,)2) and (|Av,|) (which, by the Maxwellian
distribution of the velocities, modifies ¢’ hence a).
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As in the case of the factor ¢ in (8.1.8) a more precise theory of the col-
lisions between molecules and colloid is possible, in which one replaces the
average values of the velocity with fluctuating values (distributed according
to the appropriate Maxwellian): in this way the value ¢ = 1 arises. Had
Smoluchowski proceeded in this manner, although finding the correct result
in Doppler regime, he would have still needed a logical jump to treat the
case of a colloid in a liquid solution.

It thus appears that Smoluchowski’s theory was not comparable with the
experimental data available at the time; this was so for intrinsic reasons
and it, perhaps, explains why he did not publish his results before Ein-
stein’s papers (results that, as he says, he had obtained years earlier). It is
not impossible that by reading Einstein’s memoir he could make the above
analyzed logical jump which was necessary in order to make a comparison
of the theory with the experiments (which occupies few lines in his long
memoir).

Later Smoluchowski abandoned the factor a and he adopted “Einstein’s’
value” (a = 1).

It remains true, however, that Smoluchowski’s work is a milestone in kinetic
theory and his was among the first of a series of attempts aimed at obtaining
equations for macroscopic continua. The continua are regarded as describ-
ing microscopic motions observed over time scales (and space scales) very
large compared to microscopic times (and distances), so that the number of
microscopic events involved in an observation made on a macroscopic scale
was so large that it could be treated by using probability theory techniques
(or equivalent methods).

The use of probability theory is the innovative feature of such theories:
already Lagrange, in his theory of the vibrating string, imagined the string
as composed of many small coupled oscillators: but his theory was entirely
“deterministic”, so much as to appear artificial.

In 1900, six years before Smoluchowski’s work, Bachelier published the
above mentioned research, [Ba00], with the rather unappealing title of
Théorie de la spéculation which, as is maintained by some historians, would
have been left unappreciated because it was superseded or shadowed by
Einstein’s 1905 paper. Bachelier’s work, it is claimed, did in fact present
the first theory of Brownian motion.

It is in fact only a posteriori possible to see a connection between the
theory of fluctuations of erratic (“?”) stock market indicators and Brownian
motion; nevertheless Bachelier’s memoir can perhaps be considered to be
the first paper in which dissipative macroscopic equations are rigorously
derived from underlying microscopic models.

In his work Brownian motion is not mentioned and his model for the evo-
lution of list prices is that of a random increase or decrease by an amount
Az in a time At with equal probability. The novelty with respect to the
classical error analysis is that one considers the limit in which Az and At
tend to 0 while studying the list price variations at various different times
t under the assumption that they are given by partial sums of the price
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variations. In classical error theory one studies only the total error, i.e. the
sum of all the variations, so that the summation index does not have the
interpretation of time value, but is an index enumerating the various error
values.

One deduces that the probability distribution of the list price values at
time ¢ satisfies a diffusion equation; furthermore the probability distribu-
tion of successive increments of value is a product of independent Gaussian
distributions and one arrives at a kind of preliminary version of the stochas-
tic process that was later studied by Wiener (essentially in [Ba00] “only”
the analysis of the continuity of the sample paths as functions of time is
missing).

Thus we can consider Bachelier’s work as similar to Smoluchowski’s theory
and, therefore, rather loosely related to Einstein’s theory and, furthermore,
in his analysis no mention appears of physics and thermodynamics. But we
have seen in the above discussion that it is precisely here that one of the
main difficulties of Brownian motion lies.

Smoluchovsky’s point of view is by no means superseded: in the last few
decades it has been developed into very refined theories aiming at under-
standing the more general problem of deriving macroscopic continua equa-
tions from microscopic dynamics: see [Sp91], part II, for a perspective and
technical details.

§8.3. The Uhlenbeck—Ornstein Theory

As remarked by Einstein (as well as by Smoluchowski) Brownian motion
theory held for experimental observations taking place at time intervals
spaced by a quantity large compared to the time scale characteristic for the
loss of the velocity acquired in a single collision, which is tg = (6anm~'R)~!.

For shorter time intervals it still makes sense to define the velocity of the
particles and motion cannot be described by the diffusive process charac-
teristic of Brownian fluctuations proper. The trajectories appear, when
observed over time scales larger than to, erratic and irregular so that if one
tries to measure the velocity by dividing the space run by the correspond-
ing time one finds a result depending on the time interval size and that
becomes larger and larger the more the time interval is reduced. This is an
immediate consequence of the fact that, on such time scales, the average of
the absolute value of the displacement is proportional to /%, rather than
to t. But this “divergence” of the velocity ceases as soon as one examines
motion on time scales short compared to tg

One is then faced with the problem of developing a theory by describing
motions in the “normal” phase at small time intervals, as well as in the
Brownian phase, at larger time intervals. Langevin proposed a very simple
mathematical model for the complete Brownian motion equations.

He imagined that successive collisions with fluid molecules had an effect on
the variations of each velocity component that could be described in terms
of a random impulsive force F(t) and, hence, the equation of motion of a
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coordinate of a colloidal particle would be:

mo = —lv + F(t) (8.3.1)

where A is the friction coefficient for the colloid motion (i.e. 67nR in the
case of a fluid in a Stokes regime and c¢R?v,,mp in the case of a Doppler
regime, see (8.1.7)).

The Langevin equation, (8.3.1), can be discussed once a suitable random
force law is assigned for F'. The model proposed by Uhlenbeck and Ornstein
for F(t) was that of a white noise, i.e. that F' was such that:

(1) no correlation existed between the values of F(t) at different time
instants,

(2) the distribution of an n-tuple F(t1), F(t2), ..., F(t,) of values of the
force, observed at n arbitrary instants ¢; < t5 < ... < t,, was a Gaussian
distribution, and

(3) the average value of F(t) vanished identically as a function of .

This leads to the notion of a (centered) Gaussian stochastic process and
to the more general notion of stochastic process and, also, it leads to the
possibility of regarding Brownian motion as an “ezactly soluble” stochastic
process.

Consider a stochastic process, i.e. a probability distribution, on a space of
events that can be represented as functions of one (or more) zero average
variables t — F(t), see §5.7, footnote 9. It is characterized by giving the
probability of observing an n—tuple F(t1), F(t2),..., F(t,) of force values
when measuring the F'(t) at n instants t; < 2 < ... < t,, as a Gaussian
distribution on the force values.

It can be shown that such a process (i.e. the probability distribution of
the functions ¢ — F'(t)) is uniquely determined by the two-point correlation
function, also called the covariance, or propagator. This function is defined
as the average value of the product of the function values at two arbitrary
instants %1, to:

Cty,t2) = (F(t1)F(t2)) (8.3.2)

and this means that the Gaussian distribution of the probability of an ar-
bitrary n—tuple of values of F' at n distinct time instants can be simply
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expressed in terms of the covariance C (it is, in fact, simply expressible in
terms of the inverse matrix of the matrix C(;,t;), 4,5 = 1,2,...n).3

In this way the ”white noise” is defined as the Gaussian process with co-
variance

C(t,t') = f26(t—t) (8.3.3)

where f? is a constant and J is Dirac’s delta function.

We shall write f2 as 2\kgT (thus defining T') and it will appear that if 7T is
identified with the absolute temperature of the solvent then the Uhlenbeck—
Ornstein theory and the Einstein theory will agree where they should, see
below.

For C given by (8.3.3) an explicit solution of (8.3.1) is possible and it
follows, as shown by Uhlenbeck and Orunstein, [UO30], that each velocity and
position component which is generated from initial data sg, vo (respectively
for the position and the velocity) is a Gaussian process with nonzero average.
If B=X/m =t," (see the lines following (8.1.1)), their average, at time ¢,
is given by

3(t) = so + %0(1 e P, 5(t) = ve P (8.3.4)

which follow simply by averaging (8.3.1) over the distribution of F' (so that
the term with F' disappears because (F') = 0 by assumption), and then inte-
grating the resulting equations for the average velocity; and the probability
distribution of a velocity component v at time ¢ is the Gaussian:

m 1/2 m  (v—v(t))?
G(v,t) = ( ) - . (835
(v, 1) kpT (1 — e—25Y) exp { 2kpT (1 — e—28%) } ( )
3 Starting from a Gaussian probability distribution over n variables z1,...,z, of the form
_1 mims
n(dz) = conste * Z” Migins Hdmh (%)
h

where M is a positive definite symmetric matrix, then:

/W(dﬁ) zizj = (M~ )

defining the covariance of the Gaussian process m and identifying it with the inverse of
the matrix of the quadratic form defining 7. Also, for all vectors ¢ = (Q15+-+yn), we

have:
s 1 N
/W(dl) ezi PiT; — 2 le(M )i, jPiv; ] (** *)

Viceversa *x plus Gaussianity of 7 implies the other two and also («s#3x) implies the other
two (and gaussianity of 7). Finally one should remark that any random variable which
is a linear combination of the Gaussian variables x; has a probability distribution that
is Gaussian. One now replaces sums with integrals and matrices with operators and
one obtains the corresponding notions and relations for a Gaussian stochastic process
indexed by a continuum time label.
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This is computed also from (8.3.1) by writing it as

tdr
o(t) = e Plog + | —e BT R(r) (8.3.6)
0 m

so that squaring both sides and using (8.3.2) one gets

(w(t) — e Ptg)?) =
o Bl—r) () I N fP—e?) (837
=/0 dr ! P Loy Wi( ‘- )

hence (8.3.5) follows because the distribution of v(t) must be Gaussian since
(8.3.6) shows that v(t) is a linear combination of Gaussian variables, see
footnote 3.

By integrating (8.3.6) once more one obtains in the same way also the
distribution of the position component s(t). It is a Gaussian with center at
5(t) and quadratic dispersion

kpT 2%pT
o(t) = nfﬂQ (26t — 3+ 4e Pt — 720t mBﬂ t =2Deinst.t  (8.3.8)
or 1o
1 e
(s ) = —(s-3(1))? /20 (1) 3
= (o) 539

The formulae just described reduce to the previous ones of Einstein’s theory
in the limit £ — oo, but they hold also if t < o = %t and hence they solve
the problem of the colloidal particle motions over time scales of the order
of tg or less.

The relation % = D (i.e. kgTA~! = D) connecting viscosity (or “dissi-
pation”) and microscopic force fluctuations due to collisions with the solvent
was the first example of a series of similar relations called “fluctuation—
dissipation theorems”.

Uhlenbeck and Ornstein also computed the “joint” probability distribu-
tions of the values v(t1),s(t1),...,v(tn), s(t,) for arbitrary ¢q,...t,, hence
the resulting Gaussian process (i.e. the probability distribution of the
two component functions ¢ — (v(t), s(t))) is therefore called a Ornstein—
Uhlenbeck process.

A modern discussion of the theory can be found in [Sp91], part I, Chap.8:
here the motion of a Brownian particle is discussed by treating it is a “trac-
er” revealing the underlying microscopic motions. This is perhaps the main
role of Brownian motion in macroscopic physics.

§8.4. Wiener’s Theory.

From a mathematical viewpoint one can consider an idealized random mo-
tion with the property that the position r at a time #+ ¢ relative to that at
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time  has, even for an extremely small time t, the probability given by
e~ /4Dt

P(fat) = (47I'Dt)3/2

(8.4.1)
i.e. given, even for small time, by the asymptotic distribution (as t — oo or
t > tg) of the Brownian motion.

Clearly the proportionality of r2 to ¢ (rather than to #2) for small ¢ means
that one shall find a motion with the remarkable property of not having a
well-defined velocity at any time just as the Brownian motion observed over
time scales longer than the previously introduced tg.

The very possibility of rigorously defining such an object is the remarkable
contribution of Wiener (1923), who showed that the Gaussian process with
transition probability (8.4.1) (already introduced by Bachelier in the above
quoted article, [Ba00]) is well defined from a mathematical viewpoint and
that with probability 1 the paths described by the particles are continuous,
and in fact Holder continuous with exponent « (with any a < 1/2, see
(8.4.7) below) (Wiener theorem, [Ne67],[IM65]).

The Gaussian process describing the probability of trajectories ¢t — r(t) in
which the increments of r are distributed independently and with Gaussian
distribution (8.4.1) is, in probability theory, called a Wiener process or,
simply, a (mathematical) Brownian motion. From the Physics viewpoint
it corresponds to the description of the asymptotic behavior of a colloidal
particle in a fluid, for times ¢ large compared to the characteristic relax-
ation time to (while for generic times, including the short times, it is rather
described by the Ornstein—Uhlenbeck process).

More technically we can translate into a rather simple formula the state-
ment that the increments of one (of the three) coordinate w(t) — w(t') of
a Brownian motion are indpendent and distributed according to (8.4.1).
This means that if 0 < #; < t2 < ... < t, then the probability p that
w(t1) € dzy,w(tz) € daa,w(ty) € dx, is given by:

2
1(zj—=zi1)

e IDEG=5-1 20=0,t=0. (8.4.2)

n

1;[ 47TD(t - tj 1)
Although Wiener’s process is, as we have seen, a “mathematical abstrac-
tion” it has, nevertheless, great theoretical interest and it appears in the
most diverse fields of Physics and Mathematics.

Its first application was to provide several quadrature formulae that express
solution of various partial differential equations in an “explicit form”, as
integrals over families of curves randomly distributed with a Wiener process
law, [Ne67].

Obviously the calculation of such integrals is, usually, not simpler than the
solution of the same equations with more traditional methods. Neverthe-
less the explicit nature of the formulae provides an intuitive representation
of the solutions of certain partial differential equations and often leads to
surprisingly simple and strong a priori estimates of their properties.
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A classical example is the theory of the heat equation:

Oiu = D Au, ult—o = uo(z) (8.4.3)

whose solution can be written as
u(z,t) = /dg/P(dg)t&yug(g) (8.4.4)

where the integral is extended over all continuous curves 7 — w(7) that
at 7 = 0 start from the position y arriving at time ¢ at z. The integration

(“sum”) over the paths is performed by using the distribution of the Wiener
process, subject to the condition of reaching x at time t.

Equation (8.4.3) has the following interpretation: heat undergoes a Brow-
nian motion, i.e. it is transferred from point to point following a random
motion with distribution given by Wiener process. Therefore the amount of
heat u(z,t) which at time ¢ is in £ can be obtained by imagining that the
amount of heat initially in a generic point y is equitably distributed among
all trajectories of the Wiener process that leave y, so that the amount of
heat that one finds in z at time ¢ (i.e. u(z,t)) is the sum over all Brow-
nian paths that arrive at z each carrying an amount of heat proportional
to the amount wug(y)dy initially around the point y where they originated;
and the proportionality factor is precisely equal to the fraction of Brownian
trajectories that start in the volume element dy and arrive at z in the time
interval t. -

Formula (8.4.4) is the simplest instance of a class of formulae that solve
partial differential equations; a further classical example is provided by the
equation

O = D Au+ V(z)u, Ult=0 = uo(z) (8.4.5)

which can be explicitly solved by the quadrature

u(z, t) = / dy / P} (dw)e” Js VT (y) (8.4.6)

which is called the Feynman—Kac quadrature formula.

As an example of a simple application of (8.4.6) one can derive a comparison
theorem for solutions of the equation dyu = DAu + Vj(z) u, u(0) = up > 0
where V;(z), j = 1,2, are two functions (not necessarily positive) such that
Va(z) < Vi(z). Then (8.4.6) immediately implies that ua(z,t) > ui(z,t)
for all z and ¢ > 0, a property that is not so easy to prove otherwise.

Equation (8.4.6) admits various extensions, relevant both in mathematics
and in physics in very diverse fields ranging from probability theory or par-
tial differential equations to statisical mechanics and relativistic Quantum
field theory and even to the foundations of quantum mechanics (see the
analysis of hidden variables in Nelson’s or in Bohm’s quantum mechanics
formulations, [Ne67], [BH93]). One can say that in these applications the
formulae of explicit solution really play a role similar to that played by the
classical quadrature formulae in classical mechanics.
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Wiener’s process had, and still has, a particular importance in probability
theory, where it introduced a wealth of ideas and problems (and provided
solutions to several preexisting problems). We quote the following as exam-
ples among the mathematical properties of the process.

(1) P. Levy’s regularity law. This gives the behavior of the variation w(t) —
w(t") of a position component w(t) of a Wiener process trajectory ¢t — w(t)
observed at two nearby instants ¢,¢ within a prefixed time interval [0, ¢].
It has already been said that Wiener proves that the trajectory is Holder
continuous with an exponent « that can be fixed arbitrarily provided it is
smaller than 1. This means that, for arbitrarily fixed a < 1/2, we shall

2
have with probability 1:

_ '
im W Zw®]_ (8.4.7)
t—t'—0 |t —t'|*

if 0 < t,t' < 1. The arbitrariness of a < 1/2 makes it interesting to ask
what is the “optimal” value for «, if any. Levy’s law says that the is no
optimal «, but at the same time it provides an answer to what is the actual
regularity of a trajectory w because it states

- |w(t) — w(®)

1 —1 8.4.8
S (D]t — t]log k)12 (8.48)
0<t,t!' <t

with probability 1, [IM65].

(2) But the Levy’s regularity law does not provide us with informations
about the properties of the trajectory in the vicinity of a given instant: in
fact (8.4.8) only gives the worst behavior, i.e. it only measures the maximal
lack of regularity within a specified time interval [0, f]. If we concentrate
on a given instant # then, in general, the trajectory will not be as irregular.
This is in fact the content of the iterated logarithm law of Kintchin: the law
gives the regularity property of a trajectory at a prefixed instant {. Fixing
t = 0, and supposing w(0) = 0, the law is

lim sup w(®) =1 (8.4.9)

=0 (4Dtlog (log 1))
with probability 1. Equation (8.4.9) is not incompatible with (8.4.8). In fact
it only says that the worst possible behavior described by (8.4.8) is in fact
not true with probability 1 at a prefixed instant i.e. it happens certainly, by
the previous law, but certainly as well it does not happen at the time ¢ at
which one has decided to look at the motion! [IM65].

(3) The above two laws deal with the behavior of the trajectories at finite
times; one can ask what is the long-time behavior of a sampled trajectory.
The Einstein and Smoluchowski theories foresee that the motion goes away
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from the vicinity of the origin (i.e. of the starting point) by a distance that
grows proportionally to /2.

An analysis of these theories indicates that by average one means average
over a statistical ensemble. If at time ¢ one measures the square of a co-
ordinate of the particle which at time 0 was at the origin and if one does
this for many Brownian particles (i.e. if one repeats the measurement many
times) one finds 2Dt, in the average.

However this does not mean that if one fixes attention on a single motion
and one observes it as ¢t grows, every coordinate w(t) squared grows at
most as 2Dt in the sense that the maximum limit as ¢ — oo of w(t)?/t is
2D. In fact such growth is really given by the global iterated logarithm law

(Kintchin):
lim sup @)

t=+oc (4Dtlog(logt)) 12

=1 (8.4.10)

with probability 1, [IM65].

Although (8.4.10) deals with Wiener process properties it expresses a prop-
erty of relevance for experiments on Brownian motion: unlike the two previ-
ous laws, which look at properties characteristic of the Wiener process and
not of real Brownian motions (which are rather described by the Ornstein—
Uhlenbeck process), this is a property that refers to the large time behavior
(which is the same for the Wiener process and for the Ornstein—Uhlenbeck
process). However it is very difficult to perform experiments so accurate
as to reveal a correction to the displacement which is proportional to the
square root of an iterated logarithm.

(4) Equation (8.4.10) does not invalidate the measurability of D based on
the observation of a single trajectory. Such measurements are performed by
following the displacement w(#) of a coordinate as ¢ varies between 0 and t.
One then sets

X(@t)=t"" /Otw(r)er (8.4.11)

and a fit is attempted by comparing the data X (¢) with the function 2Dt.
The procedure is correct, at least asymptotically as ¢ — oo, because one
shows that: X
4
—— =1 4.12
oo 2Dt (8.412)
with probability 1. This is the ergodic theorem for the Wiener process. Like
the comparison between laws (1), (2) above, law (3) tells us that our particle
will be “far” ahead of where it should infinitely many times (i.e. a factor
(loglogt)? ahead, (8.4.10)) although in the average it will be at a distance
proportional to ¢ ((8.4.12)), [IM65].

(5) The trajectories run by the Wiener process are rather irregular, as the
Levy and Kintchin laws quantitatively show. One can ask which is the
fractal dimension of the set described by a Wiener process trajectory. If



8.4.13

8.4.14

260 VIII. Brownian Motion

the dimension of the space in which the motion take place is > 2 then the
fractal dimension is 2, in the sense of Hausdorff. This essentially means that
if one wants to cover the trajectory with spheres of radius 1/n one needs
O(n?) spheres in the sense that given € > 0 then O(n?~¢) are (eventually as
n — oo) not sufficient while O(n?*¢) are sufficient (even if n — o). Note
that a smooth curve, with finite length, can be covered by just O(n) spheres
of radius n~!.

The property of showing dimension 2 can be expressed also in several other
ways which are perhaps intuitively equivalent, at a superficial level of under-
standing, but strictly speaking different, and the analysis of the alternative
ways illustrates subtle aspects of the Wiener’s process trajectories.

For instance if one considers two distinct points in B¢ and from each of
them one starts a Wiener path, then one finds that the two paths will
eventually “cross” (i.e. they reach the same point at some later time) with
probability 1 if d = 2, 3, as expected intuitively on the basis that dimension-
ally they are “surfaces”. But they do not cross if d > 4 (with probability 1):
if they were really 2-dimensional geometric objects we would expect that
they would intersect not only for d = 2,3 but for d = 4 as well. This is
Lawler’s theorem, [La85], see also [HS92].

(6) A further celebrated property of the Wiener process, due to Wiener
himself, exhibits interesting connections with harmonic analysis and Fourier
series theory. Consider a sequence go, g1, ... of Gaussian independent and
equidistributed random variables and suppose that the distribution of each
of them is (27) /2 exp —g?/2. Set

t 2.1/2 sin kt
wt) = 590 + (;) / > Gk (8.4.13)
E>1

Then the random function w(t), for 0 < ¢ < 7, has a probability distribution
(induced by the one assumed for the coefficients gi) identical to that of a
Wiener process sample path in dimension 1 (and D = 1), [IM65]. This
remarkable fact is easy to check; since the covariance of a Gaussian process
determines the process, it suffices to check that if ¢ > t' then, see (8.4.2):

2 1 (1; )

"y = ()2 / 32 by
(w(t)w(t") (m) e e rydedy (8.4.14)
The left-hand side is immediately computable from (8.4.13) and from the
assumed Gaussian distribution of the g;’s and the r.h.s. is an elementary
integral so that the identity is easily checked.

To conclude one can say that the Wiener process is a mathematical ab-
straction originated from the physical phenomenon of Brownian motion: it
describes its “large time” behavior (the behavior for all times being caught,
more appropriately, by the Ornstein—Uhlenbeck process). It is nevertheless
a mathematical entity of great interest which finds applications in the most
different (and unexpected) fields of mathematics and physics. Further read-
ing on both the mathematical and physical aspects of Brownian motion can
be found in [Sp91].
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§9.1. Ergodic Hypothesis Revisited

An informal overview of the basic ideas of Chap.IX is given in Appendix
9A1 below, which is the text of a conference at the Séminaire de Philosophie
et Mathématiques of Ecole Normale Superieure in Paris.

Giving up a detailed description of microscopic motion led to a statisti-
cal theory of macroscopic systems and to a deep understanding of their
equilibrium properties which we have discussed in Chap.I-VIIL.

It is clear today, as it was already to Boltzmann and many others, that
some of the assumptions and guiding ideas used in building up the theory
were not really necessary or, at least, could be greatly weakened or just
avoided.

A typical example is the ergodic hypothesis. Although we have analyzed
it in some detail in Chap.l it is interesting to revisit it from a different
perspective. The analysis will not only help clarify aspects of nonequilibrium
statistical mechanics, but it will be important for its very foundations.

We have seen the important role played by the heat theorem of Boltzmann,
[Bo84]. We recall that one can define in terms of time averages of total
or kinetic energy, of density, and of average momentum transfer to the
container walls, quantities that one could call, respectively, specific internal
energy u, temperature T, specific volume v, pressure p; and the heat theorem
states that when two of them varied, say the specific energy and volume by
du and dv, the relation

du+ pdv

T = exact (9.1.1)

holds.

In the beginning, [Bo66], this was discussed in very special cases (like free
gases), but about fifteen years later Helmholtz, influenced by the progress of
Boltzmann on the proof of the heat theorem, wrote a series of four ponder-
ous papers on a class of very special systems, which he called monocyclic, in
which all motions were periodic and in a sense non-degenerate, and he noted
that one could give appropriate names, familiar in macroscopic thermody-
namics, to various mechanical averages and then check that they satisfied
the relations that would be expected between the thermodynamic quantities
with the same name.

Helmholtz’ assumptions about monocyclicity are very strong and seem to
be satisfied in no system other than in confined one-dimensional Hamilto-
nian systems. Here are the details of Helmholtz’ reasoning (as reported by
Boltzmann), in a simple example.

Consider a one-dimensional system in a confining potential.! There is only
one motion per energy value (up to a shift of the initial datum along its
trajectory) and all motions are periodic so that the system is monocyclic.
We suppose that the potential ¢(z) depends on a parameter V.

1 A potential ¢(z) such that |¢’(z)| > 0 for |z| > 0, ¢©''(0) > 0 and ¢(2) w=ss> + 0.
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Suppose that one identifies a state with a motion with given energy E and
given V. Then, let

U = total energy of the system = K + ¢,

T = time average of the kinetic energy K,

V = the parameter on which ¢ is supposed to depend,
p = — time average of Oy .

A state is parameterized by U,V and if such parameters change by dU, dV
respectively we define:

dL = —pdV,  dQ=dU —dL. (9.1.2)

then:
Theorem (Helmholtz): The differential dQ/T = (dU + pdV)/T is exact.

Repeating, for convenience, the few lines of proof already discussed in Ap-
pendix 1.A1 to Chap.I, this can be proved by directly exhibiting a function
S whose differential is (dU + pdV')/T. In fact let £ (U, V') be the extremes
of the oscillations of the motion with given U,V and define S as

z+(U7V)

S(U, V) =2log VU = ¢(z)dz (9.1.3)
)

z_(UV

and %S is the logarithm of the action since U — ¢(z) is the kinetic energy
K(z;U,V); so that

J(dU — By o)) Lo

ds = . (9.1.4)
d
T
Noting that % = \/2dt, we see that the time averages are obtained by

integrating with respect to % and dividing by the integral of \/1—? Hence:
dU +pdV

T 7
completing Helmholtz’ remark. For a more extended discussion of the the-
orem see Appendix 1.A1 to Chap.l.

Boltzmann saw that this was not a simple coincidence: his interesting (and
healthy) view of the continuum which, probably, he never really considered
more than a convenient artifact, useful for computing quantities describing
a discrete world where sums and differences could be approximated by in-
tegrals and derivatives, cf. §1.9 and [Bo74] p. 43, led him to think that in
some sense monocyclicity was not a strong assumption.

Motions tend to recur (and they do in systems with a discrete phase
space) and in this light monocyclicity would simply mean that, waiting

ds = (9.1.5)
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long enough, the system would come back to its initial state. Thus its mo-
tion would be monocyclic and one could try to apply Helmholtz’ ideas (in
turn based on his own previous work) and perhaps deduce the heat theorem
in great generality. The nondegeneracy of monocyclic systems becomes the
condition that for each energy there is just one cycle and the motion visits
successively all (discrete) phase space points.

Taking this viewpoint one had the possibility of checking that in all mechan-
ical systems one could define quantities that one could name with “thermo-
dynamic names” and which would satisfy properties coinciding with those
that thermodynamics would predict for them, see Chap.I, II.

He then considered the two-body problem, showing that the thermody-
namic analogies of Helmholtz could be extended to systems which were
degenerate, but still with all motions periodic. This led to somewhat ob-
scure considerations that seemed to play an important role for him, given
the importance he gave them. They certainly do not help in encouraging
reading his work: the breakthrough paper of 1884, [Bo84], starts with asso-
ciating quantities with a thermodynamic name to Saturn’s rings (regarded
as rigid rotating rings!) and checking that they satisfy the right relations,
like the second principle, see (9.1.1).

In general one can call monocyclic a system with the property that there
is a curve ¢ — x({), parameterized by its curvilinear abscissa ¢, varying in
an interval 0 < £ < L(E), closed and such that x(£) covers all the positions
compatible with the given energy FE.

Let 2 = z(¢) be the parametric equations so that energy conservation can
be written, for some m > 0,

Smi? 4 o(a(0) = B. (9.1.6)

then if we suppose that the potential energy ¢ depends on a parameter V
and if T is the average kinetic energy, p = — {0y ) then, for some S,

dE +pdV
as =P p=—ove), T=(K)  (917)

where (-) denotes the time average (see Appendix 1.A1, Chap.I).

A typical case to which the above can be applied is the case in which the
whole energy surface consists of just one periodic orbit, or when at least
only the phase space points that are on such orbit are observable. Such
systems provide, therefore, natural models of thermodynamic behavior.

A chaotic system like a gas in a container of volume V', which will be re-
garded as an important parameter on which the potential ¢ (which includes
interaction with the container walls) depends, will satisfy “for practical pur-
poses” the above property, because (Feynman) “if we follow our solution
[i.e. motion] for a long enough time it tries everything that it can do, so to
speak” (see p. 46-55 in [Fe63], vol. T). Hence we see that we should be able
to find a quantity p such that dE + pdV admits the average kinetic energy
as an integrating factor.
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On the other hand if we accept the viewpoint (ergodic hypothesis) that
phase space is discrete and motion on the energy surface is a monocyclic
permutation of its finitely many cells, the time averages can be computed by
integrals with respect to the uniform distribution, that we shall call Liouville
distribution,? see §1.7.

Hence if p is the Liouville’s distribution on the surface of constant energy
U, and T is the p-average kinetic energy then there should exist a function
p such that 77! is the integrating factor of dU + pdV .

Boltzmann shows that this is the case and, in fact, p is the u-average
(—0vp) and it is also the average momentum transfer to the walls per unit
time and unit surface, i.e. it is the physical pressure, see Appendix 9.A3.
This is not a proof that the equilibria are described by distributions u
of the the microcanonical ensemble. However it shows that for most sys-
tems, independently of the number of degrees of freedom, one can define a
mechanical model of thermodynamics, i.e. one can define various averages
of mechanical quantities and name them with names of thermodynamical
functions, and check that they satisfy the relations that would follow from
classical thermodynamics, see Chap.LII for more details.

thermodynamic relations are, therefore, very general and simple conse-
quences of the structure of the equations of motion. They hold for small
and large systems, from one degree of freedom (the case of Helmoltz’ mono-
cycles) to 10%* degrees and more (the case of a gas in a box).

The above arguments, based on a discrete view of phase space, suggest how-
ever that, in general, the thermodynamic relations hold in some approximate
sense, as we have no idea of the precise nature of the discrete phase space.
However, in some cases, they may hold ezactly even for small systems, if
suitably reformulated: for instance in the 1884 paper, [Bo84], Boltzmann
shows that in the canonical ensemble the relation (9.1.1) (i.e. the second
law) holds without corrections even if the system is small, as explained in
Chap.II.

Thus the ergodic hypothesis does help in finding out why there are mechan-
ical “models” of thermodynamics: they are ubiquitous, in small and large
systems alike, but usually such relations are of interest in large systems and
not really in small ones.

A critical comment and a warning is important at this point: for large
systems any theory claiming to rest on the ergodic hypothesis may seem
bound to fail, see §1.7, because if it is true that a system is ergodic, it is
also true that the time the system takes to go through one of its cycles is
simply too long to be of any interest and relevance: this was pointed out
very clearly by Boltzmann, [Bo96], and earlier by Thomson, [Th74].

The reason why we observe approach to equilibrium over time scales far
shorter than the recurrence times is due to the property that the micro-

2 Which is the only invariant distribution if one accepts the above discrete point of view,
probably Boltzmann’s.
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canonical ensemble is such that on most of phase space the actual values
of the observables, whose averages yield the pressure and temperature and
the few remaining other thermodynamic quantities, assume the same value,
[La72], and p. 206 of [Bo74]. This implies that such values coincide with
the average and therefore satisfy the heat theorem.

The ergodic hypothesis loses its importance and fundamental nature and it
appears simply as a tool used in understanding that some of the relations that
we call “macroscopic laws” hold in the same form for all systems, whether
small or large.

§9.2. Timed Observations and Discrete Time

The question that we shall now investigate is whether there can be anything
similar to the above done out of equilibrium but still in a stationary state:
are there statistical properties that hold for small and large systems alike
under the “only” assumption that the systems evolve in a very disordered,
“chaotic”, way? If so such properties might have physical relevance for large
systems: when the system is large they may become observable because
they may become a property of most of the individual configurations of the
system without need of time averaging, just as it happens in equilibrium.

And they might be checked, and perhaps even be interesting, in small sys-
tems which become therefore a natural testing ground, mainly because of
the availability of fast computer experiments, just as it happens in equilib-
rium with the ergodic hypothesis, which is usually tested in systems with
very few degrees of freedom.

The first step in the investigation is a dynamical hypothesis on the nature
of the motions of complex systems (like a gas in a box). This hypothesis
has developed quite slowly in the past epoch: it developed from the theory
of complex motions in fluid mechanics and it was formulated by Ruelle
in the early 1970s (1973) and written explicitly later, [Ru80], [Ru76]. It
influenced research strongly, see for instance [ECM90],[ECM93]; and it led
to some concrete results, after being reformulated and put in the context of
nonequilibrium statistical mechanics, “much later” [GC95]. The hypothesis
will be stated below and is called the chaotic hypothesis.

To proceed to the formulation of the hypothesis we need to set up a conve-
nient kinematic description of disordered motions, convenient for the study
of chaotic evolutions: this is necessary because the usual kinematics is well
suited for orderly motions but is insufficient for disordered ones.

In Chap.I we have already hit the difficulty of a proper representation of
the evolution of a system of IV particles in a box V as a permutation of
phase space cells. The difficulty came from the hyperbolic nature of the
evolution that stretches some coordinates and contracts others. This forced
us to use very small cells and very small time intervals as phase space and
time units.
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The division in cells of phase space is, in this way, extremely fine (although,
as we discussed, there are conceptual limits to the precision and reliability
that one can reach in this way), so fine that we can regard space as discrete.

It is interesting to change viewpoint and, keeping the conception of space
as a continuum, to try using a discrete representation of motion based on
phase space cells that are not as small as possible (but that are nevertheless
still compatible with the discrete picture that we follow after Chap.l.): we
shall call such a description a “coarse grained’ one.

In other words it may be more convenient to use larger phase space cells
and to find a description of dynamics in terms of them, which explicitly
and “exactly” still takes into account the (often) “hyperbolic” nature of the
evolution, 7.e. its (usual) high instability or its chaoticity.

The use of the “coarse grained” cells brings to mind something “approx-
imate” and not too well defined. Here we do mot want to convey such
intuition and the representation of motion, that we look for, will be in prin-
ciple as exact as wished, and involve no approximation at all. The modern
efforts to clarify the notion of coarse graining can be traced back to Krylov,
[Kr79], whose work strongly influenced Sinai, [Si79], whose work in turn
influenced Ruelle leading him, eventually, to his hypothesis.

We consider a system evolving on a bounded surface ¥ and with the evo-
lution acting near a given point z by expanding some line elements and by
contracting some others. The evolution will be described by a map S that
can be thought of as being obtained from the time evolution flow z — Sz
by monitoring it every time some special event happens (for instance a col-
lision between some pair of particles). In this way the surface ¥ consists of
the collection of the special events that one monitors, which will be called
timing events or monitored events.

The geometrical meaning of the construction of S from the flow S; is il-
lustrated in Fig. 9.2.1 where a trajectory x — Syz in the phase space for
the evolution in continuous time (“usual phase space”) is depicted together
with the surface ¥ consisting of the monitored events (which is the phase
space where the motion is described by the map S: the map S acts, in the
Fig. 9.2.1, on the monitored event ¢ mapping it into S¢ and S2¢).
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z-trajectory

se 5 Fig. 9.2.1

S%¢

Line elements on X are transformed by the time evolution S and some of
them become longer and others shorter (or keep their length). Note that in
order to measure the length of a line element we need a metric defined on X::
we shall take the natural metric induced on the surface ¥ by the metric in
the space in which X lies (which is usually the Euclidean space of position
and velocity vectors of the system particles). But of course the metric that
we use is rather arbitrary and we have to be careful, it is best to try dealing
only with notions that turn out to be metric independent.

In the following we shall always use the above discrete time evolution, but
all that we say can be quite easily translated in terms of properties of the
continuous time flow S;.3

§9.3. Chaotic Hypothesis. Anosov Systems

Boltzmann’s equation and Brownian motion theory are examples of at-
tempts at studying nonequilibrium problems. The first has the ambition of
discussing the approach to equilibrium, while the second deals with motions
that take place in equilibrium.

In general we shall say that a system is in a nonequilibrium situation when-
ever nonconservative external forces act on it and, usually, sustain macro-
scopic motions. Such systems will evolve and reach in due course a station-
ary state, which will not be one of the equilibrium states with which we are
familiar from the preceding chapters.

This is because time evolution will ultimately be described by differential

3 One should not confuse this map with the map used in Chap.I for the one time step
evolution. Two successive timing events still contain very many time steps in the sense
of Chap.I: here we do not discretize time or space. Motion appears evolving discretely
simply because we choose to observe it from time to time, when something that we
consider interesting happens.
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equations which will contain dissipative terms and consequently phase space
volume will be contracting; hence probability distributions corresponding
to the statistics of stationary states must be concentrated on sets with zero
volume.

Before attempting a general theory of the approach to an equilibrium state
or, more generally, to a stationary state it seems reasonable to study the
properties of the stationary states themselves, end products of the evolution
under external driving forces (which may vanish, however, so that equilib-
rium theory will still be a “special case”).

This will include investigating phenomena like Brownian motion which
can be regarded as dynamical properties of equilibrium states, as well as
genuinely nonequilibrium phenomena, like thermodynamical relations be-
tween quantities that can be defined in systems in nonequilibrium stationary
states.

And one can imagine stretching the analysis to stationary states of the
macroscopic equations that are supposed to be obeyed out of equilibrium,
like the Euler or Navier-Stokes equations for systems macroscopically be-
having as fluids.

Approach to equilibrium or to a stationary state is likely to be a more
difficult problem and it will be set aside in most of what follows. Hence we
shall not deal with states of systems evolving in time: rather we refer to
properties of states that are already in a stationary state under the influence
of external nonconservative forces acting on them. For instance think of an
electric circuit in which a current flows (stationarily) under the influence
of an electromotive field, or of a metal bar with two different temperatures
fixed at the extremes; and one can even think of a Navier-Stokes fluid in a
(stationary) turbulent Couette flow or a more general flow. What follows
applies also to such apparently different systems (and in fact the basic ideas
were developed having precisely such systems in mind).

The first two systems, regarded as microscopic systems (i.e. as mechanical
systems of particles), do certainly have very chaotic microscopic motions
even in the absence of external driving (while macroscopically they are in
a stationary state and nothing happens, besides a continuous, sometimes
desired, heat transfer from the system to the surroundings). The third
system also behaves, as a macroscopic system, very chaotically at least
when the Reynolds number is large.

A basic problem is that the situation is quite different from that in which
Boltzmann was when attempting a microscopic proof of the heat theorem:
there is no established nonequilibrium thermodynamics to guide us.

The great progress of the theory of stationary nonequilibrium that took
place in the past century (the XX-th), at least that which was unanimously
recognized as such, only concern properties of incipient nonequilibrium:
i.e. transport properties at vanishing external fields (we think here of On-
sager’s reciprocity and of its more quantitative form given by the Green-
Kubo transport theory). So it is by no means clear that there is any general
nonequilibrium thermodynamics.
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Nevertheless in 1973 a first suggestion that a general theory might be
possible for nonequilibrium systems in stationary and chaotic states was
made by Ruelle, eventually written down only later in [Ru78c], [Ru80].
This suggestion was made with full understanding of its ambition:

“If one is optimistic, one may hope that the asymptotic measures will play
for dissipative systems the sort of role which the Gibbs ensembles played for
statistical mechanics. Even if that is the case, the difficulties encountered
in statistical mechanics in going from Gibbs ensembles to a theory of phase
transitions may serve as a warning that we are, for dissipative systems, not
yet close to a real theory of turbulence”, [Ru78c].

The proposal is very ambitious because it suggests a general and essen-
tially unrestricted answer to what should be the ensemble that describes
stationary states of a system, whether in equilibrium or not. In the recent
formulations of Cohen and Gallavotti it reads:

Chaotic hypothesis: for the purpose of studying macroscopic properties, the
time evolution map S of a many-particle system can be regarded as a mizing
Anosov map.?

We defer discussing in detail the technical notion of “mixing Anosov map”
to the coming sections and the hypothesis is written here only for con-
creteness and later reference. For the moment it will suffice to say that
mixing Anosov maps are the paradigm of chaotic motions: they are well
understood dynamical systems which show chaotic behavior in the “purest”
possible way. They play a role in nonlinear dynamics very similar to that
played by harmonic oscillators in the theory of stable motions.

Remark: If the evolution is very dissipative and motions tend to an attract-
ing set smaller than the whole phase space the hypothesis may be interpreted
as meaning that the attracting set can be regarded as a smooth surface and
that the restriction of the evolution to it is a mixing Anosov map, see below
(which is a very special case of a wider class of chaotic systems called Aziom
A systems), [BGGI7],[BG97]. However a less strict interpretation could be
to say that the attractor is an “Axiom A attractor”, see below.

The ergodic hypothesis led Boltzmann to the general theory of ensembles
(as acknowledged by Gibbs, p. vi in [Gi81], whose work has been perhaps
the main channel through which the allegedly obscure works of Boltzmann
reached us): besides giving the second law, (9.1.1), it also prescribed the
microcanonical ensemble for describing equilibrium statistics.

The reasoning of Ruelle was that from the theory of simple chaotic systems
one knew that such systems, just by the fact that they are chaotic, will reach

4 This is a notion that in the original work [GC95] was called “transitive Anosov map”,
however it turns out that the established nomenclature is different and here I try to
adhere to it, as much as possible.
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a “unique” stationary state. Therefore simply assuming chaoticity would
be tantamount to assuming that there is a uniquely defined ensemble which
should be used to compute the statistical properties of a stationary system
out of equilibrium.

This argument is based on the idea that a chaotic system, even when it is
not exactly a mixing Anosov map in the mathematical sense, does share its
main qualitative features, [Ru78c|, in a sense similar to the one in which in
stability theory one infers properties of nonlinear oscillations from those of
harmonic oscillators or of integrable systems. And a key property of mixing
Anosov maps is that their motions show a unique statistics pu. This means
that there is a unique probability distribution u on phase space F such that
for all (smooth) observables F'(x):

Jim leF(snm)—/ P(y) p(dy) 9.3.1)
2 = | Fw)u(dy 3.

T—oo T

apart from a set of zero volume of initial data z € F.3

The distribution p is called the SRB distribution or the statistics of mo-
tions: it was proven to exist by Sinai for Anosov systems and the result
was extended to the much more general Axiom A attractors by Ruelle and
Bowen, [BR75], [Ru76]. Natural distributions were, independently, discussed
and shown to exist, [LY73], for other (related and simpler) dynamical sys-
tems, although in an apparently less general context and with a less general
vision of the matter, [Si70],[BR75].

Therefore one is, at least in a very theoretical way, in a position to inquire
whether such a unique ensemble has universal properties valid for small and
large systems alike (of course we cannot expect too many of them to hold,
but even a single one would be interesting).

In fact in equilibrium theory the only universal property is precisely the
heat theorem, besides a few general (related) inequalities (e.g. positivity of
the specific heat or of compressibility). The theorem leads, indirectly as we
have seen, to the microcanonical ensemble and then, after one century of
work, to a rather satisfactory theory of phenomena like phase transitions,
phase coexistence and universality.

From this point of view the criticized (and more and more often dismissed
as, at best, unnecessary) ergodic hypothesis assumes a new status and
emerges as greatly enhanced. Ruelle’s proposal seems to be its natural
(and, perhaps, the unique) extension out of equilibrium.

The proposal was formulated in the case of fluid mechanics: but it is so
clearly more general that the reason why it was not explicitly referring
to statistical systems is, probably, due to the fact that, as a principle, it
required some “check” if formulated for statistical mechanics. As originally

5 In general replacing S by S~! in (9.3.1) leads, when the new limit exists, to a different
probability distribution on phase space, which we can call the statistics towards the past,
while (9.3.1) defines the statistics towards the future. One cannot expect that, when
they exist, the two statistics coincide.
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stated, and without any further check, it would have been analogous to the
ergodic hypothesis without the heat theorem (or other consequences drawn
from the theory of statistical ensembles).

Of course the chaotic hypothesis will suffer from the same objections that
are continuously raised about the ergodic hypothesis: namely “there is the
time scale problem”, see §1.7.

To such objections the answer given by Boltzmann should apply unchanged:
large systems have the extra property that the interesting observables take
the same value in the whole (or virtually whole) phase space. Therefore
their values satisfy any relation that is true no matter whether the system is
large or small: such relations (whose very existence is, in fact, surprising)
might even be of no interest whatsoever in small systems (like in the above-
mentioned Boltzmann’s rigid Saturn ring, or in his other similar example of
the Moon regarded as a rigid ring rotating about the Earth).

Evidence for the nontrivial applicability of the hypothesis built up and
it was repeatedly hinted at in various papers dealing with numerical ex-
periments, mostly on very few particle systems (< 100 to give an indi-
cation), [HHP87]. In attempting at understanding one such experiment,
[ECM93], the above “formal” interpretation of Ruelle’s principle was for-
mulated, [GC95], for statistical mechanics (as well as for fluid mechanics,
replacing “many-particles system” with “turbulent fluid”).

The hypothesis was made first in the context of reversible systems: they
were in fact the subject of much of the experimental work that bloomed
once the importance and relevance of reversibilty was strongly stressed,
and supported by experiments, by Hoover and coworkers, for highlights
see [HHP87],[EM90],[ECM90],[DPH96]. Note that saying that reversibility
can be relevant to, and even facilitate, the analysis of dissipative motions
is highly nontrivial and it required insight and intellectual courage to be
introduced.

The strict interpretation of the chaotic hypothesis given in the above
remark rules out, when the attractive set is smaller than phase space,
attractors® with a fractal closure (i.e. attracting sets which are not smooth

6 Tt is important to distinguish between attracting set and attractor. The first is a closed
set such that all points close enough to it evolve in time keeping a distance from it
that tends to 0 as ¢t — 400, and furthermore are “minimal” in the sense that they
do not contain subsets with the same properties. Consider, to define an attractor, an
attracting set which admits a statistics p given by (9.3.1) for all but a zero volume set
of nearby points . Any subset C of such an attracting set with u(C) =1 is called an
attractor. More generally we can imagine choosing initial data = near an attracting set
with a probability distribution g that can even be concentrated on sets of zero volume,
i.e. that is completely different from the volume measure. Supposing that all data = but
a set of zero pp measure satisfy (9.3.1) (of course, in general, with a statistics ' different
from g and po-dependent). The subsets of the attracting set that have probability 1
with respect to the statistics generated by such initial data x, will be called “attractors
for the data with distribution po”, and they may have 0 measure with respect to the
statistics p defined by (9.3.1). We see that in general the notion of attracting set is
uniquely determined by the dynamics, while the notion of attractor depends also on
which initial data we are willing to consider; and even once the class of initial data is
chosen the notion of attractor is not uniquely defined as we can always take out of an
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surfaces); to include them, one should replace, in the formulation of the
chaotic hypothesis, the word “Anosov” into “Axiom A” (a similar but much
weaker notion): but it seems appropriate to wait and see if there is real need
of such an extension. It is certainly an essential extension for small systems,
but it is not clear to me how relevant could fractality be when the system
has 10?3 particles). Therefore we shall concentrate our attention mainly on
Anosov systems.

Finally I add one more comment on the words at the beginning of the
chaotic hypothesis “for the purpose of ...”: an easy critique could be that
this is “vague” since it is obvious that virtually none of the systems of
interest in statistical mechanics (or fluid dynamics) are Anosov systems
in the mathematical sense (they are often not smooth, or obviously not
hyperbolic and often not even ergodic).

Nevertheless I think that the hypothesis is well founded and it has an
illustrious predecessor in the early ergodic hypothesis of Boltzmann: he was
trying to prove the heat theorem; he needed the condition that the motions
were periodic; he said that if they were not they could still be considered
so for practical purposes “because a nonperiodic orbit can be regarded as
periodic with infinite period”.

Assuming that the motions were periodic (i.e. the systems were “mono-
cyclic”) led him to discover a hitherto unknown property of periodic motions
(the heat theorem). Indeed things “went as if the motions were periodic”!,
[Bo66], a first rough formulation of the ergodic hypothesis. We have dis-
cussed at length the interpretation and the interest of the ergodic hypothesis
in Chap.LILIII, and we have seen that it leads to important relations be-
tween averages; one can think that “all systems are Anosov” in the same
sense.

Mathematically what is being said is that there might be general properties
of Anosov systems that might have been missed in spite of the vast reasearch
on the subject.

§9.4. Kinematics of Chaotic Motions. Anosov Systems

To proceed we need a more precise formulation of the notion of Anosov
systems and an analysis of the kinematics of their motions. We give here
an informal definition and in the next section we give a detailed discussion
of the kinematics of motions.

Definition: A mizing Anosov system is, see p.55 of [AAG8], a smooth map
S (i.e. of class C*) of a smooth manifold M (“phase space”) and around
every point x one can set up a local coordinate system with the following
properties associated with it:

(a) depends continuously on x and is covariant (i.e. it follows x in its
evolution) and

attractor one orbit and still have an attractor (unless the attractor consists of finitely
many points).
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(b) is hyperbolic, i.e. transversally to the phase space velocity of any chosen
point x the motion of nearby points looks, when seen from the coordinate
frame covariant with x, like a hyperbolic motion near a fized point. This
means that in a sphere of small radius § around x there will be a connected
“local stable coordinate surface”, the stable local manifold W2° through z,
whose points have trajectories that get close to the trajectory of x at ex-
ponential speed as the time tends to +o0o, and a “local unstable coordinate
surface”, the local unstable manifold W, whose points have trajectories
that get close to the trajectory of x at exponential speed as the time tends
to —oo. Furthermore the exponential speed of approach must admit a bound
independent on x, i.e. it has to be “umiform”.

(¢) the global stable manifold and the global unstable manifold of every
point, i.e. the sets U2 (S" W¥° and US_,S™" W2 are dense in M. This
excludes the possibility that the phase space consists of disconnected invari-
ant parts. It also excludes the case that it consists of n disconnected parts
My, ..., M, cyclically permuted by S so that S™ is a mizing Anosov map as
a map of M; into itself, clearly a case in which one is “improperly defining”
phase space and evolution map (which should be rather defined as M, say,
and S™ respectively).

If only (a),(b) hold the system is simply called an “Anosov system”. Tt is
a theorem (Anosov) that the planes tangent to W, W2 are quite smoothly
dependent on z; they are Holder continuous in z (in general not more,
however, because in general they are not differentiable in z even if the map
S is analytic), [AA68],[Ru89].

If the system is described in continuous time the direction parallel to the
velocity has to be regarded as an “extra” meutral direction where, on the
average, no expansion nor contraction occurs. However here we shall adhere
to the discrete viewpoint based on timed observations, see §9.1. For a
discussion of the continuous time point of view see [BR75], [Bo74], [Ge98].

The simple but surprising and deep properties of Anosov maps are by and
large very well understood, [Ru89]. Unfortunately they are not as well
known among physicists as they should be: many seem confused by the
language in which the above concepts are usually presented; however it is a
fact that such remarkable mathematical objects (i.e. Anosov systems) have
been introduced by mathematicians, and physicists must, therefore, make
an effort at understanding the new notion and its physical significance.

In particular, as mentioned above, if a system is Anosov, for all observ-
ables F' (i.e. continuous functions on phase space) and for all initial data z,
outside a set of zero volume, the time average of F' exists and can be com-
puted by a phase space integral with respect to a distribution u uniquely
determined on phase space F as expressed by (9.3.1).

Clearly the chaotic hypothesis solves in general (i.e. for systems that can
be regarded as “chaotic”) the problem of determining which is the ensemble
to use to study the statistics of stationary systems in or out of equilibrium
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(it clearly implies the ergodic hypothesis in equilibrium), in the same sense
in which the ergodic hypothesis solves the equilibrium case.

The chaotic hypothesis might turn out to be false in interesting cases;
like the ergodic hypothesis which does not hold for the simplest systems
studied in statistical mechanics, like the free gas, the harmonic chain and
black body radiation. Worse, it is known to be false for trivial reasons in
some systems in equilibrium (like the hard core gas), simply because the
Anosov map definition requires smoothness of the evolution and systems
with collisions are not smooth systems (in the sense that the trajectories
are not differentiable as functions of the initial data).

However, interestingly enough, the hard core systems are perhaps the ob-
ject closest to an Anosov system that can be thought of, being at the same
time of statistical mechanical relevance, [GG94], [ACG96], to the extent
that there seem to be no known “physical” properties that this system does
not share with an Anosov system. Aside from the trivial fact that it is not
a smooth system, the hard core system behaves, for statistical mechanics
purposes, as if it was a (mizing) Anosov system. Hence it is the prototype
system to study in looking for applications of the chaotic hypothesis.

In fact if the system is smooth one can imagine, and sometimes prove
rigorously, see [RT98], that phase space contains big nonchaotic islands
where the system looks very different from a Anosov system: it is important
to understand the relevance of such regions for the statistical properties of
(moderately) large systems because the chaotic hypothesis states that they
should not be too relevant for nonequilibrium theory.

The problem that “remains” is whether the chaotic hypothesis has any
power to tell us something about nonequilibrium statistical mechanics. This
is the real, deep, question for anyone who is willing to consider the hypoth-
esis. Of course one consequence is the ergodic hypothesis, hence the heat
theorem, but this is manifestly too little even though it is a very important
property for a theory with the ambition of being a general extension of the
theory of equilibrium ensembles.

A chaotic motion, as discussed in §9.2, is recognized from the expansion
and contraction that the evolution map x — Sz produces on line elements
of phase space X (the space of the events).

However the notion of expansion and contraction depends on the metric
that we use near x and Sz to measure lengths; hence it is clear that expan-
sion and contraction at x are not definable in terms of x and of the action
of S near x alone. The latter are, in fact, local notions, but it will make
sense to say that a line element § emerging from z (lying on X) “expands”
if it does so asymptotically, i.e. if:

|S™0|sns > Cer S|, for alln >0 (9.4.1)

where | - |, denotes the length of § measured with the metric used at the
point x of ¥ and C, A > 0 are suitable constants. Likewise one has to reason
in the case of contraction.
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The collection of the expanding line elements generates a plane T (tangent
to X) called the expanding plane at x and the collection of the contracting
line elements generates another plane T7. This can be illustrated in a two-
dimensional case by the first of Fig. 9.1.1 where two line elements emerging
from a point ¢ € ¥ are directed along the expanding and the contracting
directions.

R

Here the two tangent planes emerging out of = are drawn as two arrows:
one has to imagine that the planes can be drawn at all points of 3; in fact
the family of planes T} (or T*) can be integrated and generates a family of
smooth manifolds W3 (or W) that are tangent at each of their points y
to the plane T} (or T}'). The second drawing in Fig. 9.1.1 illustrates this
property and shows the beginning of the two manifolds through z, i.e. a part
of the manifolds that is enclosed in a sphere of radius 4, small compared to
the curvature of the manifolds.

More generally we can hope that it will be possible to give a decomposition
of the tangent plane T, at a point z as a sum of linearly independent planes
T):

Fig. 9.1.1

T,oT.®...0TF (9.4.2)
of dimensions n1, ..., n, and to define p Lyapunov exponents Ay, ..., A, such
that: )

HEIEOO - log |S"™6|sma = A if 6 €T (9.4.3)

If such a decomposition and such exponents exist we say that the point x
admits a dynamical base for the evolution S “towards the future”.

If 8S; denotes the matrix of the derivatives of S™ evaluated at = the
the spaces T!,...,TP can be taken to be the eigenspaces of the matrix

lim,, 4 oo ((65;‘)*(652))1/2n, if this limit exists: however it should be clear
that this is not the only way in which the tangent plane can be split so that
(9.4.3) holds.

This is so because the x-operation (i.e. transposition) depends on the sys-
tem of coordinates and on the metric: one sees this by noting that 9S? maps
the tangent space T, into a different space, namely Tsn,. For instance if
we have a decomposition satisfying (9.4.2) we get a new one by changing
T} into a new plane forming a different (positive) angle with respect to
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the plane of the other vectors T? @ ... ® TP?; and one can likewise change
T2,T3,....

But the sequence of subspaces TP, TP TP L, TP&... T2, T, =TFP®...®
T}, is uniquely determined and metric independent (assuming the existence
of a dynamical base towards the future).

Dynamical bases for the evolution towards the past are defined in the same
way if S is invertible (we do not describe here the obvious adjustments
needed in the definition, e.g. n — —o0). The same comments about lack of
uniqueness can be made for such bases.

On the other hand in the case of invertible maps dynamical bases which
are such both in the future and in the past may exist and, if they do exist,
they are uniquely determined; we shall call them simply dynamical bases or
bilateral dynamical bases.

It is remarkable that such bilateral bases exist under rather general condi-
tions. For instance:

(a) if p is a probability distribution which is S-invariant 7 then, apart from
a set of points of zero p-probability, every point admits a dynamical base,
and

(b) if the distribution p is ergodic in the sense that there are no nontrivial
measurable functions that are constants of motion then the dimensions of
the planes T/, as well as the Lyapunov exponents );, are z-independent

with p-probability 1.
Remarks:
(1) Properties in (a) and (b) are the content of Oseledec’s theorem.

(2) Dynamical bases for the motion towards the future and those for the
motion towards the past will be different, in general. However if S is invert-
ible and p is an invariant distribution the forward and backward dynamical
bases can be chosen to coincide (apart for a set with zero p-probability) and
their exponents are opposite, see [Ru79a] p. 283.

(3) A caveat is that in (2) it is essential that p be S-invariant. Therefore
the above is not saying that all points but a set of zero volume will admit a
dynamical base, because in general the volume measure pg @s not invariant.
But if po admits a statistics p in the sense of (9.3.1) then all points but
a set of p-measure 0 admit a dynamical base. In other words it is impor-
tant to note that in general an invariant probability distribution p is not
expressible by means of a density function in phase space (one says that it
is not “absolutely continuous” or “nonsmooth”), and therefore one cannot
say that the latter statement (b) holds “apart from a set of points with zero
volume”, even when the volume distribution po admits a statistics pu.

7 i.e. the probability u(E) of E and that of S™!F are equal for all sets F’s.
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Considering a dynamical system the question of the existence of the stable
and unstable manifolds or just of the local stable and unstable manifolds is
of course rather delicate and one would like to have simple critieria guaran-
teeing their exixtence and a few basic properties. The real problem is with
the local manifolds, W2, W*°  in a sphere of radius § around a point z. In
fact once the local manifolds are defined one can define the global expanding
and contracting manifolds even when S is not invertible, simply as

Wi ={Upe S"Wke if S"z, =z} (9.4.4)
W2 = {set of points y such that S"y € W52 for n large enough }

where the first union is meant, when S is not invertible, also as a union over
the various possibilities of choosing the z,’s.

The existence of the local hyperbolic structure may seem a property dif-
ficult to check. This is ideed so; but in many cases the proof is greatly
simplified because of the following sufficient conditions.

The existence of the local manifolds W2:°, W can be deduced from the
existence of a continuous family of cones I'y,I'? lying in the tangent plane
to every point x with the property that a displacement § that points into
the cone I'y will be transformed by the evolution map S inside a cone which
is strictly less wide than the cone I'%, and will have a length |.Sé| which is
strictly larger than that of §, and a corresponding property holds for cone
I'*, see Fig60.2 below.

Here “strictly” means, see Fig60.2, that the length will be larger by a factor
X > 1 with respect to the initial length and X will be independent of the
point z; and, thinking that the cone is determined by its intersection with
the unit sphere in T}, “strictly less wide” will simply mean that the image
ST, intersects the unit sphere of Ts, in a set which has a distance r > 0 to
the boundary of I's, N Ts,, with 7 being z-independent.

The first of Fig60.2, illustrates the parts of the pair of cones I'¥, I'? around =
(shaded sectors) contained inside a small sphere around z. The evolution .S
maps them into the shaded sectors of the second figure, so that the expand-
ing cone (marked by u) ends “well inside” the corresponding one around
Sz (unshaded) while the contracting cone widens around the corresponding
cone for Sz.
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S A similar property is required for t@gg'cgﬁ%SQF;, by using S~! instead of
S.
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The existence of families of cones is sufficient for the system to be an
Anosov system, but it is a much simpler condition, conceptually, and in
fact it can even be easily satisfied in some cases, [Ru79], [Li95].

§9.5. Symbolic Dynamics and Chaos

The key property of mixing Anosov systems is that of admitting a
“Markov’s partition”; this is an important discovery that was realized in
the classical works of Sinai, [Si68], [Si72], heralded by the independent dis-
covery of a special case, [AW68]. We devote this section to the illustration
of this important geometrical notion and to the consequent “symbolic dy-
namics”, or “coarse grained” representation of motion.

The geometric properties of Anosov systems allow us to imagine a partition
of phase space into rectangular cells E, ..., Exn such that, see Fig. 9.5.1:

(i) Each cell is defined by a “center” ¢ and two “azes” A¥, AS: it consists

of the points z(£,7) which have the form z(¢,7) = W,»* N W§’6 S ¢ w1y for

some £ € A¥ and 5 € AZ. The boundary JF of such a cell E will, therefore,
consist of a shrinking part (or “stable part”) O°E s OAY x Af and of an

expanding part (or “unstable part”) O"FE et AY x OAS.

The geometrical construction is illustrated in the two-dimensional case in
Fig. 9.5.1. The circles are a neighborhood of ¢ = x of size § very small
compared to the curvature of the manifolds (so that they look flat); Fig.
9.5.1a shows the axes; Fig. 9.5.1b shows the X operation and W#"S,T/I/'ES"s
(the horizontal and vertical segments through 1 and &, respectively, have size
0); Fig. 9.5.1c shows the rectangle E with the axes (dotted lines) and with
the four marked points being the boundaries A" and dA®. The picture
refers to the two-dimensional case (which is substantially easier to draw and
to conceive, see [Bo70]), and the stable and unstable manifolds are drawn as
flat, i.e. the A’s are very small compared to the curvature of the manifolds.
Transversality of W, W2 is pictorially represented by drawing the surfaces
at 90° angles:

(a) (0)

(ii) Furthermore we require a covariance property of the various cells with
respect to the action of the evolution map S: i.e. we demand that the map
S transforms the shrinking parts of the boundary of E inside the union of
the shrinking parts of the various cells of the partition, and S~ also enjoys
the corresponding property (with the collection of “expanding” sides of the
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cells now containing the S—! images of the “expanding” sides of each cell).
The covariance property is illustrated by Fig. 61.2.

S S

A

Fig. 9.5.2

SA
|

u u

A partition into such cells is called a Markov partition. Such partitions
enjoy remarkable properties of covariance under the time evolution and are
suitable for a description of the motion.

Note that here “shrinking” and “expanding” surface elements are repre-
sented in a “literal” sense. However since these are asymptotic notions
(which only as such are metric independent) it may well be that under the
action of S a “shrinking side” actually expands in the metric used, or an
“expanding side” actually contracts: however under repeated applications
of S such surface elements do eventually behave as the words, and drawings,
we use suggest.

Before proceeding it seems useful to discuss briefly an example. It is the
map of the two-dimensional torus 7 = [0,27]? defined by (z,y) — (x +

!
¥,z + 2y) (modulo 27) or (Z,) = (} ;) <Z> (modulo 27). This is the
case in which Markov’s partitions were first discovered, [AW6S].

In this case we see easily that the expanding and contracting planes are
simply the lines through a point (z,y) parallel to the eigenvectors of the

. 11
matrix M = ( 1 92
lines through (x,y) parallel to these eigenvectors and regarded as drawn on
the manifold 7.

Thus they cover it densely because the slope of these lines is irrational
(being (1 4 +/5)/2). We see in this example also why it is (in general)
necessary to distinguish between the local stable and unstable manifolds
and the global ones (which are dense while the local manifolds are not).

It is easy, by using ruler and compass, to draw a Markov pavement for the
above map: an example is given in Fig. 9.5.3.

>. The stable and unstable manifolds are, therefore,
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(a) ®) [, ’
\ A
X U

ig. 9.5.3

This is a partition for the torus map just introduced: Fig. 9.5.3a represents
many copies of the torus pavement in Fig. 9.5.3b (unraveled as a pavement
of the plane). Each copy is a square with side 27. The two lines are parallel
to the eigenvectors of the above matrix M generating the map. The line
with positive slope is parallel to the eigenvector with eigenvalue larger than
1, and the two lines are orthogonal because the matrix is symmetric.

In this simple case the expanding and contracting directions are trivially
parallel to the two drawn lines. If we draw the lines of Fig. 9.5.3a as
they really appear when wrapped back into the torus we get Fig. 9.5.3b
where the endpoints of the lines are marked as big dots. The lines define
several rectangles (both in the geometrical sense and in the above introduced
dynamical sense, which explains the attribute “rectangular” used) with a
few exceptions (three in the picture). They are due to the termination of
the initial lines “in the middle of nowhere”. The dashed lines continue the
original lines (on both ends) until they meet a line, thus completing the
missing rectangles. The result depends on the order of the continuation
operations: an irrelevant ambiguity (as in any event Markov’s partitions
are by no means unique®, when they exist).

Fig. 9.5.3b could have been obtained directly without any elongation of the
lines had the initial lines been drawn of appropriate size. The construction
shows how to find the appropriate size (using only “ruler and the compass”,
as required by every noble drawing, or by a Postscript program using only
“integers and quadratic irrationals”).

The union of the rectangle boundaries parallel to the line with negative
(positive) slope is transformed into itself by the action of the map (inverse
map). This is so because it is a connected piece of the stable manifold of the
trivial fixed point that is the origin; it shows that the property of Fig. 9.5.2
is indeed satisfied. Hence Fig. 9.5.3b is a simple example of a “Markovian
pavement” also called a “Markov partition” (and its discovery was at the
beginning of the developments discussed here, [AW68], [Si68]).

In fact given a Markov partition we can generate a much finer partition
simply by transforming it with the various iterates of the map and then
intersecting the collection of pavements thus obtained, see footnote 8. The
new partition of phase space is obviously still Markovian but it can be made

8 Tor instance if P = {E;} is a Markov partition then P’ = {E; N SE;}, P’ = {S7'E;n
Ej} and P = {ST'E; N E; N SEp} (and so on) are Markov partitions.
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as fine as we want.

The above definitions and related properties can be extended to systems
which have an attracting set consisting of a smooth surface and the time
evolution restricted to the surface becomes a mixing Anosov system. The
extension can even be pushed to systems with attracting sets that are not
smooth but that are still hyperbolic (“axiom A attractors”, [Ru76]). We
shall not deal here with this more general notion (for simplicity).

Anosov systems that are mixing are topologically mizing in the sense that
given any pair of open sets U,V there is a ny such that the iterates S™"U
have a nonempty intersection with V for all n > ny. Hence imposing
mixing is the simple way of imposing the condition that the system phase
space cannot be “disconnected” into disjoint parts under the action of S or
of any of its iterates (alternative to assuming existence of a dense orbit).

A general theorem (“Smale’s spectral theorem”) deals with cases in which
one does not assume mixing: under the assumptions (a) and (b) in the
definition of §9.4 and adding the extra assumption:

(¢) Periodic motions are dense on phase space.

the phase space M can be decomposed into a union of M; U My U ... U
M, in each of which there is a dense orbit. If n = 1 the system is said
to be transitive. Hence each system satisfying assumptions (a), (b), (c)
can be regarded as a collection of finitely many transitive Anosov systems.
Furthermore if a Anosov system is transitive then its phase space M can be
decomposed as a union M = M{UMjU...U M, on each of which S™ acts
as a mixing Anosov system.

In other words given an Anosov system with dense periodic points either
topological mixing holds for the map S™ for some n, or phase space splits
into a finite number of disjoint closed components (called “spectral ele-
ments” of the system) in each of which, for some large enough n, the map
S™ is topologically mixing. The mixing assumption is not as strong as it
may at first appear: if it does not hold it is because in some sense we
have chosen the phase space inappropriately not noticing that motion was
actually taking place on a smaller space.

Markov partitions set up a nice “coarse graining’ permitting us to think
of the dynamical system as a copy of something very familiar in statistical
mechanics: namely the one-dimensional Ising model, or of one of its exten-
sions considered in §5.10. The correspondence is via the symbolic dynamics
associated with Markov partitions.

One defines for each point z a sequence g(z) of digits each of which can
take A values if A/ is the number of elements of a Markov partition £ with
elements so small that the image of every rectangle intersects all the other
rectangles at most in a connected part (i.e. the size of the rectangles is
so small that even when stretched by the one time step evolution map, it
remains small compared to the curvature of the sides).
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One defines a V' x N transition matriz T, by setting Tog = 1 if the interior
of the rectangle E, evolves under S into a set intersecting the interior of
the rectangle Eg; we set T,,g = 0 otherwise.

The definitions readily imply a few properties. A transition matrix is said
to be transitive if for any pair ¢, ¢’ there is a power n such that (T™), > 0;
this means that there is a sequence which is compatible and which contains
the symbols o and, to the right of it, ¢’. A transition matrix is said to
be mizing if for all n large enough (T"),, > 0. A Markov partition for a
transitive Anosov system has a transitive matrix which is also mixing if the
system is mixing.

A sequence {0} } is “allowed” or “compatible”, see §5.10, if it is a sequence of
symbols such that T, ,,,, =1 for all integers k € (—00,00). A meditation
on Fig. 9.5.3, i.e. on the covariance property, will convince the reader that
if o = {0;} is allowed there must be a point x such that S*z € E,, for all
integers k € (—o00, 00); and this point must be unique by the hyperbolicity of
the transformation (if there were two such points they would travel visiting
always the same boxes of £: which is impossible because if two points
visit the same boxes during the time [—T,T] then, from the definitions of
hyperbolicity, their distance must be not bigger than O(Ce*T), cf. (9.4.1)).

Therefore it follows that we can establish a correspondence between points
and compatible sequences. There may be exceptionally more than one se-
quence representing the same point, but this can happen only if the point
is either on a boundary of a rectangle of £ or on that of one of its images
under iterates of S. Hence the set of points that are represented by more
than one sequence has zero volume and, therefore, it can be ignored for
the purposes of our discussion (which in any event disregards sets of zero
volume).

This means that we can map, or “code”, phase space into a space of se-
quences: any function on phase space becomes a function of the sequences.
The coding of points into sequences of digits is very similar to the familiar
coding of its coordinates into decimal sequences (which is also well defined
apart from a zero volume (dense) set of exceptional points, namely the
points whose coordinates are numbers ending with an infinite string of 0’s
or of 9’s). And it is harder but much better in spite of the fact that the dec-
imal representation is the “usual” representation of points in phase space,
both in theoretical applications and in numerical experiments.

It is better because it is adapted to the dynamics and turns the most
chaotic dynamics into a “standard’ one (still chaotic), namely the shift
on a space of sequences of symbols subject to a nearest neighbor constraint
(that T,, 5,,, = 1), also called a hard core, see §5.10. The latter dynamical
systems are often called “subshifts of finite type”, or “one-dimensional spin
(or particle) chains” for obvious reasons.

A function F(z) which is mildly regular on phase space, e.g. Holder con-
tinuous with exponent a, becomes a function F(xz(g)) of o which has a weak
dependence on the digits oy, of o with large |k|: i.e. if ¢ and o' agree on
the digits between —k and k then the distance between z(g) and z(g’) is
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< O(Ce**) so that F(o) — F(g') is bounded by a constant times e =¥,
In particular the expansion rate A,(x) of the phase space volume over one
time step of the map S (i.e. the determinant of the Jacobian 85 of the map
S, also called the contraction rate of phase space because A, (x) is a “real”
coutraction or a “real” expansion depending on whether it is < 1 or > 1)

will satisfy for some C, a:
|Au(z(2)) — Au(z(a))| < Ce k7 (9.5.1)

if the digits of ¢ and ¢’ with labels between —k and k agree. This is because
hyperbolicity implies that the stable and unstable tangent planes at x are
very smooth and vary in a Hoélder continuous fashion with the point z (as
mentioned in §9.3, this is Anosov’s theorem), so that also the functions
Ay (z),As(z) are Holder continuous.

One can interpret (9.5.1) as saying that the function A, (z(o)) I Mo)

has short range as a function of the symbolic sequence g and the following
remarks are worth the effort necessary for understanding their formulation,
admittedly hard at first sight (yielding to a reassuring sense of triviality
after some thought):

(1) The set of points which are symbolically represented by sequences that
agree between — 1T and $7T is just the set of points in the very small rect-
1 .
angle of 57%T 17 consisting of the intersections HZTTS*JEJJ. (with sides
’ —3
bounded proportionally to e=*27), see footnote 8 above. Hence a sum over
the elements E € 5_%T’%T can be written as a sum over the sequences

(0_k,...,0r) (which are compatible). The reader will be greatly helped by
1 .
attempting to draw a representation of a set in ﬂjZTS_] E;; in the manner
2
of Fig. 9.5.2 above).

. iT ; . . . o
(2) Apoint z € E =nN*,,.S 7 E,, is determined by a compatible bi-infinite
2
sequence g which continues O_i7,---,017 0N either side to an infinite (com-
patible) sequence ... O L7 1,0 L5 0L, 0L s - -

(3) Since there are only finitely many values for each symbol we can define

for each symbol o compatible sequences cf(0) = (¢}, 0%,...) and o (o) =
(...,0" 5,0 ) infinite to the right and to the left, respectively, and such
that Too =1 and T, Lo =1, te respectively right and left compatible
with o: this can be done in many ways. We shall call a pair of functions
o — (af(0), aX (o)) a boundary condition.
If we are given a boundary condition (¢ (), o¥(0)) we can associate with
each element F € Q%ETS’]'EUJ, a point ¢(FE) whose (bi-infinite) symbolic
sequence is a*(0_17),0_17,...,017,0"(017). We call ¢(FE) the “center”
of E with respect to the boundary condition o — (a%(o), a”(0)).

The bi-infinite continuation, which we can naturally call “Markovian”, of the
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finite string O_17s-- s O'%T to an infinite compatible sequence is possible
because of the topological transitivity property supposed for the system
(consequence of the mixing).?

(4) We can interpret a continuation of the sequence O_i7y---,0L @S the
assignment of a boundary condition to a spin configuration in the one-
dimensional box [~ 3T, $T7] in the sense of the discussion in §5.10, following
(5.10.16).

(5) If x is a point in E = nw ) S JE,, the product of expansion factors

H%

j=-Z Ay (S7™7z)~! can be written

Sl

z k
DO CAta)
e L

Ay(SHz)7t = (9.5.2)

j=—
with A\, (g) = log A,(z(0)), a = u,s.

(6) One says that the mixing Anosov system (M, S) admits a symmetry if

there is an isometry of phase space with I? = 1 which is either commuting
or anticommuting with S: 4.e. IS = SI or IS = S~ 'I, respectively. In
the second case the symmetry is called a time reversal symmetry: of course
the same system may admit several time reversal symmetries. A Markov
pavement for (M,S) is said to be “I-symmetric” if E € P implies that
IE € P; in this case, again by the transitivity of the compatibility matrix,
we can define time reversible boundary conditions o — (af(0), o’ (o)) in
such a way that the centers ¢(E) of the sets E = ﬂ§:7%5’jEﬁ satisfy the
covariance property: Ic(E) = ¢(IE).
In the commuting case this is so because we can choose the continuation
of o to the right and that of io; to the right to be “consistent” i.e. if
Ok+41,0k+2, - - . continues oy, then iog41,i0,42, ... continues io. In the an-
ticommuting case the continuation of ¢ to the right has to be chosen con-
sistent in the same sense with that of io to the left. Such consistent choices
are Markovian in the above sense.

(7) another interesting consequence of mixing is that given a sequence
O—s,-..,05 and supposing that p is such that 7 , > 0 for all 0,0’ (which

9 Given a symbol &, let m be such that (T™)z 7 > 0. TLet n, be such that

(IT"™7)s,z > 0, this means that there is a sequence T, 0%, ...,0%-_,, o which

is compatible, and also a sequence ¢é2...6n, 0 which is compatible: therefore
R

def . . — e . . s
o) lef G9,0ny, 0,0h,...,0" where the last dots indicate indefinite repetition

STLT
is a infinite string “continuing” the symbol ¢ to the right

a

-1
into a compatible sequence. Likewise one builds a ¢ (o) continuing th symbol ¢ to the
left into a compatible sequence. The name “Markovian” is due to the property that the
sequences o’ (), a® (o) share: namely they depend solely on o.

of the string @,0%,...,0%
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is an analytic form of the mixing property) we can form a compatible se-
quence 0_g,...,05,0541,...,0s4p = 0_g: therefore we can form an infinite
sequence in which the latter sequence is repeated indefinitely into an infinite
and compatible sequence. The point x that corresponds to this sequence is,
necessarily, a periodic point (with period s + p). A consequence is the den-
sity of periodic points in phase space: every mixing Anosov system admits
a dense set of periodic orbits.

Because of all the above properties Anosov systems (and the related Axiom
A attractors) are the paradigm of chaotically behaving systems. The basic
idea, developed in the early 1970s by D. Ruelle, is that such systems are not
just curiosities but rather they are in some sense the “rule” when dealing
with real dynamics.

§9.6. Statistics of Chaotic Attractors. SRB Distributions

Perhaps the most important property of mixing Anosov systems or systems
with Axiom A attractors is that they admit stationary states, i.e. the limits
in (9.3.1) exist and the “statistics” p of almost all data z (i.e. all data
outside a zero volume set) exists. Furthermore the probability distribution
1, called the SRB-distribution, describing them can be characterized quite
explicitly.

Note that the “almost all” is an essential feature of the definition, in fact,
see §9.4, Anosov (or Aziom A) systems will have a dense set of periodic
points covering phase space (or the attracting set): any such point z, at
least, will of course be an exceptional point as far as the value of the limit
in (9.3.1) is concerned.

The SRB distribution can be given an expression in terms of the kinemat-
ical properties discussed in the previous section. This is an expression that
can play a role similar to that played by the Boltzmann-Gibbs expression
for the equilibrium distributions. It is an expression that clearly cannot
be computed in any nontrivial case, much like the integrals that express
equilibrium properties in terms of integrals with respect to the canonical
distribution.

However, like the integrals with respect to the canonical distribution, it
can be useful to derive relations that must hold between various averages.
Therefore formal expressibility of the SRB distribution seems to be a very
important property for nonequilibrium theory.

The formula can be rather easily justified at an informal level, however even
this requires good will on the part of the reader, to the extent that he will
develop it only if convinced of its utility. Therefore we relegate to Appendix
9.A2 below the “informal” analysis and we confine ourselves to giving here
the SRB distribution expression in a form sufficient for the discussion of a
few applications.

One needs to define the SRB average of a generic observable F'(z) on phase
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space: f F(x . For this purpose we divide phase space into cells
at least SO small that F ( ) is constant in each of them.

The division into cells will be conveniently made by using a Markov par-
tition & (it will not matter which one); of course the elements E € £ will
not, in general, be so small that F' is constant in each of them. However we
can refine £ simply by considering the partition £ 7.7 = NI__;5 /&; as
remarked in §9.4 this is a much finer partition (and the size of the cells is
of the order O(e~*?) if A is defined in (9.4.1)).

Each element of £ has the form ﬂszfTS_onj where o_7,...,07 is a
compatible sequence of symbols.

Given a boundary condition g”,c® in the sense of §9.5, which one again
does not matter, we can define a compatible bi-infinite sequence:

o (c"(o_7),0-1,...,00,0%(07) (9.6.1)

for each E € &r.

If ¢(E) is the point of E whose symbolic representation relative to the
partition £ is ¢ ; we can define the ezpansion rate A, o7 (E) of the map S2T
regarded as a map between S~ T¢(E) and ST¢(E) as, cf. (9.5.2),

Auor(B) = Ayor(e(E) < H Aul H (5 FelE))

k=-T k=-T
(9.6.2)

Then the SRB distribution p can be written as
[ Fmtan =, tim

ZEGELT,T Au 12n(T)( (E))F(C(E))
T—o0,n(T)— o0

(9.6.3)
n(T)LT ZE&‘LT,T u712n(T) (c(E))

where n(T) < T is any sequence tending to oo as T' — co.
A particularly convenient choice will be n(T') = T so that, with ¢ = ¢(E),

/ F(y)u(dy) = lim 2resrr M zfl(C)F (c)

.6.4
T=00 3 pee pp Nupr(0) (964

Remarks:

(1) The weight in (9.6.4) can be written, in terms of the function (o)
defined in §9.5, see (9.5.2), and of the shift operation ¥ on the infinite
sequences, as

_ -5 (9 0)
A n(EB)=e 2 N2 (9.6.5)
where ¢ = gy, is the sequence that is obtained by continuing o_r,..., o7

to an infinite sequence as prescribed by the chosen boundary condition,
see (9.6.1). This is a slightly different rewriting of (9.6.2). It shows that
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the SRB distribution can be interpreted as a probability distribution on the
space of bi-infinite compatible sequences g. As such it is a Gibbs distribution
for a one-dimensional lattice spin model with short-range interaction and
nearest neighbor hard core (due to the compatibility restriction that limits
the allowed configurations ¢). In fact (9.5.1) says that Z?LTJ”(T) A o)
can be interpreted as the energy of a spin configuration under a potential
that is exponentially decreasing at oo, see §5.10, (5.10.14), (5.10.18).

In §5.8 we have seen that one-dimensional short-range systems are quite
trivial from the statistical mechanics viewpoint and the theory of chaotic
motions inherits quite a few results from the theory of such lattice sys-
tems. Such results are often quite nontrivial and surprising when seen as
properties of chaotic motions. For instance uniqueness of SRB distributions
corresponds to the absence of phase transitions in one-dimensional lattice
systems. The thermodynamic limit corresponds to the limit as 7' — oco. Ex-
ponential decay of time correlations in the SRB distributions corresponds
to the exponential decay of correlations in one-dimensional short-range lat-
tice systems. Large deviation theorems correspond to the analyticity of the
thermodynamic functions and so on.

For the above reasons the theory of Anosov (and Axiom A) systems has
been called thermodynamic formalism, [Ru78b].

(2) If n(T)/T == 0 then by (9.6.5) and (9.5.1) we see that the weight

-1
Au72n(T)
boundary condition is changed.!'® This is a kind of “mean value theorem”,

for the SRB distribution.

(E) given to the cell E of Er does not change appreciably as the

(3) But if n(T) = T the variation of A;}QT(E) within E is appreciable
because, clearly, the sum in (9.5.2) will undergo variations of order O(1),
when the boundary condition is changed.

(4) Hence (9.6.4) is a deeper property than (9.6.3) with n(T)/T — 0. It
is proved easily in the thermodynamic formalism because it reduces to the
statement that one-dimensional lattice gases with short-range interactions
show no phase transitions, therefore the boundary condition dependence

of the averages of local observables disappears in the thermodynamic limit
T — ), see §5.8.

(5) If the attractor is invariant under the action of a time reversal symmetry
I, see §9.5, we can, and shall, suppose that the Markov partition is I-
reversible: if £ € £ then TE € £.' Furthermore the centers ¢ in (9.6.2)
can be chosen so that if ¢ is the center of E then ic is that of IE, see §9.5,
comment (6). This means that we have to choose a reversible boundary

10 Note that at fixed E and as the boundary condition is varied the center point c(F)
varies (densely) inside E.

11 If not one could use the finer partition obtained by intersecting £ and I€ so that the
new partition will be time reversible.
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condition to select the centers.

An expression of the SRB distribution based on a reversible partition £ and
on a reversible boundary condition will be called a reversible representation
of a SRB distribution..

In Appendix 9.A2 below we give details of an informal derivation of (9.6.3),
but the above properties will suffice for deducing many interesting con-
sequences of the chaotic hypothesis, in the form of general properties of
Anosov systems.

It is interesting and important to discuss the connection between the Boltz-
manian representation of motion as a cyclic permutation of the phase space
cells and the new symbolic representation of motion in Anosov systems. In
fact the chaotic hypothesis is supposed to hold also in the equilibrium cases
and therefore one has two different representations of motions for the same
system.

According to views already repeatedly expressed by Boltzmann, [Bo74],
this “dualism” is not a priori impossible although in most cases in which
he envisaged this possibility it seems that he did not really believe in it.
The above seems to be a very fine and nontrivial instance in which a dual
representation is possible. This is discussed in Appendix 9.A1 below, see
also [Ga95a].

§9.7. Entropy Generation. Time Reversibility and Fluctuation
Theorem. Experimental Tests of the Chaotic Hypothesis

The connection between the general kinematical analysis of chaotic motions
and applications can be established if one accepts that the motions of a
many-particle system are so “chaotic” that one can regard the system as a
mixing Anosov system in the sense of §9.4.

One of the key notions in equilibrium statistical mechanics is that of en-
tropy; its extension to nonequilibrium is surprisingly difficult, assuming that
it really can be extended. In fact we expect that, in a system that reaches
under forcing a stationary state, entropy is produced at a constant rate so
that there is no way of defining an entropy value for the system, except
perhaps by saying that its entropy is —oc.

Although one should keep in mind that there is no universally accepted
notion of entropy in systems out of equilibrium, even when in a stationary
state, we shall take the attitude that in a stationary state only the entropy
creation rate is defined: the system entropy decreases indefinitely, but at a
constant rate.'? Note that we say “decreases” and not “increases” because
in a nonequilibrium situation nonconservative forces work upon the system
and, since the system is supposed to be in a stationary sate, such work must,
be ceded to the exterior in the form of heat at constant temperature. So

9

12 Defining “entropy” and “entropy production” should be considered an open problem.
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entropy (of the system) decreases and entropy of the surroundings increases

(as expected).

The natural definition of entropy creation rate is, following Gibbs and
Boltzmann, that of the time derivative of the entropy of a state of the
system that evolves towards stationarity, [An82], [Ru97c].

We look, temporarily, again at the evolution of our systems in continuous
time: so that we imagine that it corresponds to a differential equation
Z = f(x). A “state” which at time ¢ = 0 is described by a distribution ug
with density po(z) with respect to the volume element dz on phase space
becomes at time ¢ a distribution u;(dz) = pi(x)dz with density pi(z) =

d . . .
po(S_ix) 8%;”, where J;(z) ef 6%;” is the Jacobian determinant at x of

the map x — S_;x. Defining the “entropy” of u; as

O / pi(z) log py(z) de =

0S_x dS_ix
_/pO(S_ta:) e log (po(Staj) e )dx

we deduce that

ew == [ m(s-m

0S 1z S
_ / po(S_s7) 6;“”” log aw”: dz

and the first term on the righ-hand side does not contribute to & because
it equals the constant — [ po(y)log po(y)dy (just set S_;z = y); therefore

& equals the ¢ derivative of the second term, which can be transformed by
setting y = S_;x into

(9.7.1)

al log po(S_iz) dx—

(9.7.2)

9S_4(Siy) 05ty
/dypo(y) log 95,0 /dyp (y) log By (9.7.3)
having used the identity
05_+(Sty) 0Sey _
— =1. .74
0Syy Oy (6.74)
We now make use of the other identity
d 8Sty o 8Sty
i oy oy o(Sty) (9.7.5)

where o(z) is the divergence of —f(z) (writing the equations of motion as
& = f(z)). It follows that the rate of entropy creation is, see [An82], &:

E=- /po(y)U(Sty) dy =

- [ nis-n B o) dz =

- /,ut(dz) =i / (dz)o e

def

(9.7.6)
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if p suitably converges to .

Hence we see that if y; ;57— p the asymptotic average rate of entropy
de

variation is o ef (o), Since the macroscopic state of the system does not
change as ¢ — oo we must interpret o4 as the average entropy increase of
the thermostat that absorbs the heat created in the system by the forcing.

Naturally we must expect oy > 0. It is reassuring that this a theorem,
[Ru96a], that o > 0 for systems with an Axiom A attractor, hence for sys-
tems satisfying the stronger chaotic hypothesis. This is not very surprising
because, by assumption, our system evolves in a bounded region (i.e. phase
space is bounded) so that o < 0 would mean that the volume expands
indefinitely, which is impossible.

Because of the above considerations we shall call o the entropy generation
rate and we suppose that it has the property o(z) = 0 if the system is
not subject to forcing, so that at zero forcing the evolution is volume pre-
serving (a property usually true because the nonforced system is, as a rule,
Hamiltonian).

Coming back to our previous point of view, with time evolution described
by a map S on a phase space of “timing events” the entropy creation rate
will be, in this case, identified with the phase space contraction between
one timing event and the next:

4S(z)
ox

o(z) = —log| |. (9.7.7)

Our analysis concerns idealized systems of the above type that are also
mixing Anosov maps in the sense of §9.4.

We now attempt to deduce other consequences of the chaotic hypothesis,
possibly new (and in any event beyond the existence of the stationary dis-
tribution g and the nonnegativity of o) and measurable in at least some
simple cases. The simplest cases to study are systems whose dynamics is
reversible not only in the nonforced case, but under forcing as well.

Examples of thermostatting mechanisms that generate reversible motions
are provided under rather general circumstances by forces acting on oth-
erwise Hamiltonian systems and realizing an anholonomic constraint ac-
cording to the principle of least constraint of Gauss, also called minimal
constraint principlesee Appendix 9.A4. In the following we shall provide
some simple concrete examples, but it is important to note that the theory
is far more general than the few examples that we shall discuss.

We consider, therefore, a general reversible mechanical system governed by
a smooth equation:

i=f(z,G) (9.7.8)

depending on several parameters G = (G, ..., G,) measuring the strength
of the forces acting on the system and causing the evolution x — Sz of
the phase space point x representing the system state in the phase space F
which can be, quite generally, a smooth manifold.
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We suppose that the system is “thermostated” so that motions take place
on bounded smooth invariant surfaces H(z; G) = E, which are level sur-
faces of some “level function” H. Hence we shall identify, to simplify the
notation, the phase space F with this level surface which we shall sometimes
call, somewhat inappropriately, the “energy surface”.

We suppose also that the flow S; generated by (9.7.8) is reversible, i.e.
there is a volume preserving smooth map I, “time reversal”, of phase space
such that I? = 1 and “anticommuting with time”:

SiI =1S_, (9.7.9)

ie. f(Iz, G)=—(0,1)""(z)" f(z, G).13

We shall further restrict our attention to mixing Anosov systems that are
reversible, in the above sense, for all values of the forcing parameters G of
interest and dissipative at G # 0. This means that the systems we consider
are such that, see (9.7.6):

o=(a), >0 for G #0 (9.7.10)
Under the above assumptions one can define, for (U)u > 0, the “dimension-
less average entropy creation rate” p by setting:

1 1 T/2
p= ——/ o(Sy; G)dt (9.7.11)

<0->,1T 77’/2

Then the probability distribution of the variable p with respect to the SRB
distribution p can be written for large 7 as 7, (p)dp = const e ¢ (P dp, see
[Si77], and the function ((p) = lim_, (;(p) satisfies, if . =(0), > 0 and
|p| < p* for a suitable p* > 1, the property:

¢(=p) =((p) + po, Ip| <p* (9.7.12)

which is called the fluctuation theorem, and is part of a class of theorems
proved in [GC95], see also [Ga95a], for discrete time systems, and in [Ge98§],
for continuous time systems. This theorem can be considerably extended, as
discussed in [G96b], [Ga98b] and the extension can be shown to imply, in the
limit G — 0 (when also 04 — 0) relations that can be identified in various
cases with Green-Kubo’s formulae and Onsager’s reciprocal relations, see
also [GRI7], [Ga98d] and §9.9 below.

Similar theorems can be proved for suitable nonstationary probability dis-
tributions and, in fact, preceded the above, [ES94], or for nondeterministic
evolutions, [Ku97], [LS98]. In the closest cases the relations between the

13 For instance if —o(x; G) is the rate of change of the volume element of F near z and if

F is a Euclidean space then o(z) = — Za dafa(z; G). If z = (p,q), and Iz = (—p,q)
and f is an Hamiltonian part plus a p-dependent term due to the “thermostat forces”
then o(Iz,G) = —o(z, G).
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latter theorems and the above is sometimes “only” an interchange of limits:
it is precisely in the analysis of this interchange that the chaotic hypothesis
plays a major role, see [CG99].

The interest of (9.7.12) is its universal nature, i.e. its (reversible) system
independence, and the fact that it contains no free parameter.

The comnection with applications of the above results is made via the as-
sumption that concrete chaotic dynamical systems can be considered, “for
the purpose of studying macroscopic properties”, as mizing Anosov flows.

The fluctuation theorem proof is quite simple and it is based on the ex-
pression (9.6.4): it will be discussed in the forthcoming sections.

As a concluding comment we note that the probability distribution of p
can be regarded as the probability distribution of the sum of the “local
Lyapunov exponents”; if one defines it as the sum of the eigenvalues \;(z)
of the matrix 9S™(S™2x): Tp(o), = — 2o Ai(@).

If a system is an Anosov system then it has been proved that the proba-
bility distribution of the sum po, 7 of the local Lyapunov exponents has a
density of the form e¢(P)7, [Si77]. One says that the distribution is maulti-
fractal if {(p) is not linear. This means that the sum of the local Lyapunov
exponents has wide fluctuations around its average (given by ~ 70.). The
fluctuation theorem says that the odd part of the multifractal distribution
is always linear, in reversible systems, so that multifractality of the vol-
ume contraction rate is, in such systems, related to the even part of its
distribution.

Is the above (9.7.12) an observable relation? In fact it was observed in a
numerical experiment with 56 particles modeling a (reversible) gas in a shear
flow, [ECM93], and the attempt at theoretical prediction of the observed
results led to the chaotic hypothesis and to the derivation discussed in §9.9.

It has then be observed in a sequence of experiments with 2 and 10 hard
core particles, [BGG97], moving among fixed obstacles in a periodic box
and subject to a constant field and thermostatted with a force necessary
to maintain a constant total kinetic energy in spite of the action of the
field. The force is selected among the several possible force laws as the
one satisfying Gauss’ principle of minimal constraint (so that the resulting
equations are reversible, see Appendix 9.A4).

One can also consider systems in which the forcing has a “thermal nature”
like systems enclosed in boxes whose walls are kept at constant temperature
(depending however on which side of the walls one considers). Also such
systems can be modeled with equations of motion which can be reversible,
for instance see [Ga96b]. A very interesting numerical experiment has been
performed on a chain of oscillators (in number up to 10*) interacting with
inelastic forces and with the oscillators at the extremes forced to have a
“given temperature” by acting on them with suitable forces, [LLP97].

An experiment of a completely different kind, on a sample of water in
convective chaotic motion (not too strongly chaotic, however) has been per-
formed recently. Its interpretation in terms of the fluctuation theorem (or
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rather of its extensions discussed in [Ga96c]|, [Ga97a], because a fluid is
strongly dissipative and one cannot expect that the attractor is dense in
phase space, even in developed turbulence states) is still under analysis,
[CL98].

An important prediction of the fluctuation theorem in strongly chaotic
particle systems is that the slope of the graph of {(p) — {(—p) is precisely
o4. This shows that even if the distribution of p was Gaussian, i.e. {(p) =
35(1 — p)? for some D > 0, the theorem would be nontrivial. In fact it

would be ((p) — ((—p) = %p and there would be no a priori reason to have

D = O04.

In general one expects the distribution {(p) to be Gaussian near the average
value of p (which is 1 by definition), [Si77], but the Gaussian approximation
should be correct only for |p — 1| = O(r~'/?) (“central limit theorem”).
Hence it becomes important to test not only the linearity of {(p) — ((—p)
but also the slope of this linear law and whether the distribution {(p) can
be regarded as Gaussian.

One finds in the first two experiments the correct value of the slope but one
cannot really distinguish whether the distribution of p is Gaussian or not.
Although one can see a priori that it is not Gaussian, the non-Gaussian
nature of the distribution is not observable because it manifests itself in
a region so far away from p = 1 that the corresponding huge fluctuations
cannot be observed, being too rare. The attempt at understanding the rela-
tion between the central limit theorem and the large deviation experimental
results on the fluctuation theorem led to the idea that there was a relation
between the fluctuation theorem and the linear response theory of Onsager
and Green-Kubo. This in fact was found in [Ga96a],[Ga96b],[Ga98d].

In the third experiment, [LLP97], one finds the correct value of the slope
in a situation in which {(p) is manifestly not Gaussian. Hence this is a key
experiment for the theory.

Finally in the fourth experiment, [CL98], one gets a linear graph for the odd
part of the large deviation function {(p), but the slope is not that of (9.7.12)
but considerably smaller. The system in this case, unlike the previous one, is
certainly so dissipative that the attractor is much smaller than phase space
(the space of the temperature and velocity fields of the sample of water)
and the slope was certainly not expected to be o, [BGG97], [BGI7]. This
might be due to the fact that the system is not reversible, or that it is not
equivalent to a reversible one, or that the chaotic hypothesis is incorrect
in this case. But the matter requires further investigation, because in the
earlier work [Ga96¢], [Ga97a] it was shown that in such cases one could
expect a slope P < 1.

A final comment on the observability of the fluctuation theorem in large
systems: since the function ((p) is expected to be proportional to the volume
of the system, or at least to the surface of its container (depending on the size
of the region where dissipation really occurs), it is impossible to observe the
fluctuation relation in macroscopic systems because the fluctuations have
too small a probability. However in some cases it is possible to derive a
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“local fluctuation theorem” which concerns the fluctuations of the entropy
creation rate in a microscopic region. In such cases the fluctuations are
observable. One is in a situation similar to that of density fluctuations
in equilibrium. One cannot see density fluctuations of a gas in a large
macroscopic container, but one can quite easily see density fluctuations in a
small microscopic volume, and the functions ¢ that control such deviations
are simply proportional (their ratio being the ratio of the corresponding
volumes). It would be interesting to formulate local fluctuation theorems
as generally as possible, beyond the few examples known, [Ga98e].

89.8. Fluctuation Patterns

It is natural to inquire whether there are more direct and physical inter-
pretations of the theorem (hence of the meaning of the chaotic hypothesis)
when the external forcing is really different from the value 0. A result in
this direction is the conditional reversibility theorem, discussed below.

Consider an observable F' which, for simplicity, has a well-defined time
reversal parity: F'(Iz) = epF(z), with ep = £1. For simplicity suppose
that its time average (i.e. its SRB average) vanishes, F;. = 0, and let
t = (t) be a smooth function vanishing for |¢| large enough. We look
at the probability, relative to the SRB distribution (i.e. in the “natural
stationary state”) that F'(Syx) is close to ¢(t) for t € [, §]. We say that
F “follows the fluctuation pattern” ¢ in the time interval ¢t € [T, 7].

No assumption on the fluctuation size (i.e. on the size of @), nor on the
size of the forces keeping the system out of equilibrium, will be made. Be-
sides the chaotic hypothesis we assume, however, that the evolution is time
reversible also out of equilibrium and that the phase space contraction rate
o4 is not zero (the results hold no matter how small o is; and they make
sense even if o, = 0, but they become trivial).

We denote by ((p,¢) the large deviation function for observing in the

. . . def
T T ‘€1
time interval [—3,3] an average contraction of phase space o, = =

f_ng o(Siz)dt = po and at the same time a fluctuation pattern F'(S;z)
o(t).

This means that the probability that the dimensionless average entropy
creation rate p is in an interval A = (a,b) and, at the same time, F is in a
neighborhood? Uy, ,, of ¢, is given by

sup e T¢(Pe) (9.8.1)
pGA,weUim

to leading order as 7 — oo (i.e. the logarithm of the mentioned probability
divided by 7 converges as T — 00 t0 SUpPpca yeu,.. C(P: ¥)).

14 By “neighborhood” Uy, we mean that ffi jQw(t)F(Siz)dt is approximated within

given n > 0 by fjijz Y(t)p(t)dt for ¢ in the finite collection ¥ = (¥1,...,9%m) of test

functions. This is, essentially, what is called in mathematics a “weak neighborhood”.
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Given a reversible, dissipative, mixing Anosov flow the fluctuation pattern
t — ¢(t) and the time reversed pattern ¢t — epp(—t) are then related by
the following:

Conditional reversibility theorem: Consider a function t — ¢(t) and an
observable F' with defined time reversal parity ep = £1. Let T be large
and consider the fluctuation pattern {¢(t)}ic[—z, z] and its time reversal
{Io(t) }ie-z.21={erp(—t) }te[—z,z); they will be followed with equal like-
lihood if the first is conditioned to an entropy creation rate p and the second

to the opposite —p. This is an interpretation of the following result:

((=p, 1) =((p,p) +poy  for |p| < p (9.8.2)
with ( introduced above and a suitable p* > 1.

In other words, in these systems, while it is very difficult to see an “anoma-
lous” average entropy creation rate during a time 7 (e.g. p = —1), it is also
true that “that is the hardest thing to see”. Once we see it all the observables
will behave strangely and the relative probabilities of time reversed patterns
will become as likely as those of the corresponding direct patterns under
“normal” average entropy creation regime.

A waterfall will go up, as likely as we see it going down, in a world in which
for some reason, or by the deed of a Daemon, the entropy creation rate has
changed sign during a long enough time. We can also say that the motion
on an attractor is reversible, even in the presence of dissipation, once the
dissipation is fixed.

The proof of the above theorem is similar to that of the fluctuation theorem
to which it reduces if F' = ¢ = 0 (and in fact it is a repetition of it). To be
complete we sketch, in the next section, the proof.

The fluctuation and the conditional reversibility theorems can also be for-
mulated for systems whose evolution is studied in continuous time (i.e. for
Anosov flows). The discrete case is simpler to study than the corresponding
Anosov flows because Anosov maps do not have a trivial Lyapunov expo-
nent (the vanishing one associated with the phase space flow direction); the
techniques to extend the analysis to Anosov flows are developed in [BR75],
[Ge98] (and one achieves the goal of proving the analogue of the fluctuation
theorem for such systems).

89.9. “Conditional Reversibility” and “Fluctuation Theorems”

In §9.4 we have seen that in a Anosov system the stable and unstable
tangent planes T, T* form an integrable family of planes (and their integral
surfaces are the stable and unstable manifolds). If  is a point and if J(z) =
0S(x) is the Jacobian matrix of S at z, then the covariance of the stable and
unstable planes implies that we can regard its action (mapping the tangent
plane T, onto Ts;) as “split” linearly into an action on the stable plane and
one on the unstable plane: i.e. J(x) restricted to the stable plane becomes
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a linear map J*(z) mapping T to T¢,. Likewise one can define the map

J*(x), [Ru79].

Let Ay (), As(z) be the determinants of the Jacobians, i.e. of J¥(z), J*(z).
Their product differs from the determinant A(x) of 8S(x) by the ratio of
the sine of the angle a(z) between the planes T3, T and the sine of the
angle a(Sz) between T§,, T, .

Hence na(Se)
sina(Sw
and we also set, see §9.5,
T/2—-1 7/2—1
Aur@) = J[ Au(F2), Asr(@)= ] As(S2),
J==7/2 j==7/2
T/2—1
Ar(z)= J] A(S2). (9.9.2)
j=—7/2

Time reversal symmetry, which we assume here, implies that W;, =
IWy Wi =1W} and:

A(x) =A(Iz) Y, Ay (Iz) = Aur(z) ™t Aur(Iz) = Ay (2) !
sina(z) = sina(lx). (9.9.3)

In §9.5 we have seen that, given the above geometric-kinematical notions,
the SRB distribution u can be represented by assigning suitable weights to
small phase space cells, (9.6.2). This is very similar to the representation
of the Maxwell-Boltzmann distributions of equilibrium states in terms of
suitable weights given to phase space cells of equal Liouville volume.

The phase space cells can be made, see §9.5, consistently as small as we
please and, by taking them small enough, one can achieve an arbitrary
precision in the description of the SRB distribution y, in the same way as
we can approximate the Liouville volume by taking the phase space cells
small.

The key to the construction and to our proof is a Markov partition, in-
troduced in §9.5: this is a partition & = (Ey,...,E ) of the phase space
C into N cells which are covariant with respect to the time evolution and
with respect to time reversal in the sense that IE; = Ej for some j', see
§9.5 for the notion of covariance and for the properties of Markov partitions.

Given a Markov partition £ we can “refine” it “consistently”, see §9.6, as
much as we wish by considering the partition £ _r 7 = VZCTS —J3 & whose
cells are obtained by “intersecting” the cells of £ and of its S iterates; the
cells of £ _4 1 become exponentially small with 7" — oo as a consequence
of the hyperbolicity. In each E; € & _pp one can select a center point
xzj = c¢(F;) (associated with an arbitrary boundary condition in the sense
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of remark (6) in §9.6, see also (9.6.1)), so that Iz; is the point selected in
IE;. Then we evaluate the expansion rate Ay o7 (z;) of S?1 as a map of the
unstable manifold of S~%z; to that of STz, see (9.6.4).
Using the elements E; € £ 71 as cells we can define approximations “as
good as we wish” to the SRB distribution p, as given by (9.6.4), because
for all smooth observables F' defined on C, [Si68],[BRT75],

-1
/ (dy)F(y) = hm /mT dy)F def lim ZE €€r F(z; zAuZT(a:J)
Tooo Y peerdy ()
(9.9.4)
where my(dy) is implicitly defined here by the ratio in the righ-hand side
of (9.9.4); (9.9.4) is just a change of notation away from (9.6.4).
Let A, denote an interval [p,p + dp] and U, denote a set of of functions

t— ( ) defined in [-7, 5] and with values in a “tube” of width n around

a given “path” t — ¢(t), t € [—37, 17]. Let EU be the time reversed set of
paths, i.e. the set of paths t — ¢'(¢ ) t € [—37, 37] with values within n of
erp(—t). Here time is discrete (but the same ideas and deductions would
apply to a continuous time case, so that we use a notation that makes sense
in both cases.

We first evaluate the probability, with respect to the distribution m;, /5 in
(9.9.4), (instead of the mr), of the event that p = p(z;) = o-(z;)/{0), €
A, and, also, that {F(S*z;)}7___ € U,, divided by the probability (with
respect to the same distribution) of the time reversed event that p(z;) =
o-(x;)/(0), € A_p and, also, k — {F(S*z;)} € eU,,.

Thus we compare the probability of a fluctuation pattern ¢ in the presence
of average dissipation p and that of the time reversed pattern in the presence

of average dissipation —p. This is essentially:

-1
71'-,—(])) _ Zj,p(zj):p,F(S"zj)zap(n) Au;r(mj) (995)

T (=P) 32 plas)=—p (5705 =e pp(—m) Mir (25)

Since m,/ in (9.9.4) is only an approximation to i an error is involved
in using (9.9.5) as a formula for the same ratio computed by using the true
SRB distribution p instead of m .

It can be shown that this “first” approximation (among the two that will be
made) can be estimated to affect the result only by a factor bounded above
and below uniformly in 7,p. This is not completely straightforward: in a
sense this is perhaps the main technical problem of the analysis.!® Further
mathematical details can be found in [Ga95c¢],[Ru97c],[Ge98].

15 Tt can be seen if one interprets (9.9.5) as a probability distribution on the space of the
symbolic sequences ¢ which, via the Markov partition £, can be used to represent the
points x in phase space. Such probability distribution can also be interpreted as a Gibbs
distribution over the space of the sequences g with potential A(g) = log Ay 1(z(a)), if
o is the symbolic sequence corresponding to x;: see §5.10. In this way the property
under analysis (i.e. the identity of the limits as 7 — oo of (9.9.5) and of the same ratios
evaluated by using myr instead of m[_%_r’%_r]), appears simply due to the nonexistence
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Remark: There are other representations of the SRB distributions that
seem more appealing than the above one based on the Markov partitions
notion and still make the above analysis possible and apparently more intu-
itive, e.g. see [MR97]. The simplest is perhaps the periodic orbits represen-
tation in which the role of the cells is taken by the periodic orbits. However
I do not know a way of making the argument that leads to (9.9.5) while
keeping under control the approximations and at the same time not relying
on Markov partitions; and in fact I do not know of any expression of the
SRB distribution that is not proved by using the very existence of Markov
partitions.

We now try to establish a one-to-one correspondence between the addends
in the numerator of (9.9.5) and those in the denominator, aiming at showing
that corresponding addends have a constant ratio which will, therefore, be
the value of the ratio in (9.9.5).

This is possible because of the reversibility property, it will be used in the
form of its consequences given by the relations (9.9.3). The ratio (9.9.5) can
therefore be written, by virtue of (9.9.3), simply as:

Y (e =pF(sme )=o) Nar (B3) D5 pas)=p F(snay)=p(n) Nur (T5)

X iopas=pF(snag=epe(-n) Aur (@) 2 pen)=p F(smay=gm) Ao (2))
(9.9.6)
where z; € Ej is the center in E;. In deducing the second relation we take
into account:

(1) time reversal symmetry I,

(2) that the centers zj,z; of E; and Ej = IE; are such that x5 = Iz,
and

(3) that (9.9.3), (9.9.2) hold,

and transform the sum in the denominator of the left-hand side of (9.9.6)
into a sum over the same set of labels that appear in the numerator sum.
It follows then that the ratios between corresponding terms in the ratio
(9.9.6) is equal to AL (x)A;L(x). This differs little from the reciprocal of
the total change of phase space volume over the 7 time steps (during which
the system evolves from the point S~7/%z to S7/%z).

The difference is only due to not taking into account the ratio of the sines
of the angles a(S™7/2zx;) and, see (9.9.2), a(S7/%z;) formed by the sta-
ble and unstable manifolds at the points S_T/Q:Uj and ST/Qmj. Therefore

of phase transitions in the one-dimensional short-range Ising models. In fact the two
ratios become ratios of expectation values of the same quantities evaluated in presence
of different boundary conditions, and in absence of phase transitions one should have
boundary conditions independence which in this case would imply that the two ratios
differ at most by a factor of order O(1) so that their logarithms divided by T or %

2
should have the same limit ((p) — ¢((—p).
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Ayt (zj)A 1 (x;) will differ from the actual phase space contraction under

the action of S7, regarded as a map between S~7/2z; and S™/?z;, by a fac-
tor that can be bounded between B! and B with B = max; (M),

sin a(x*
which is finite and positive, by the linear independence of the s‘tablé E)Llld
unstable planes.

But for all points z; in (9.9.6), the reciprocal of the total phase space
volume change over a time 7 equals e”7+? (by the constraint, o, /oy = p,
imposed on the summation labels) up to a “second” approximation that
cannot exceed a factor which is bounded above and below by 7T-independent
positive and finite constants BE!, due to the above sine ratio. Hence the
ratio (9.9.5) will be the exponential e”?+?, up to a 7-independently bounded
factor and (9.9.3) follows.

It is important to note that there have been two approximations, as just
pointed out. They can be estimated, see [GC95],[Ga95¢], [Ru97c], and imply
that the argument of the exponential is correct up to p,p, T-independent
corrections so that the result can be proved even if the approximations are
avoided (this also makes clear that the consideration of the limit 7 — oo is
necessary for the theorem to hold).

In the special cases in which there is no F' and one only looks at the
probability distribution of the entropy production rate the above becomes

B1omp (o) < 7rr(p)) < BemP o)y (9.9.7)
Tr(—
or
7 (p) _ 72 (0)+O() (9.9.8)
7I-‘r(_p

i.e. we get (9.7.12).

§9.10. Onsager Reciprocity and Green-Kubo’s Formula.

The fluctuation theorem degenerates in the limit in which o tends to
zero, 4.e. when the external forces vanish and dissipation disappears (and
the stationary state becomes the equilibrium state).

Since the theorem deals with systems that are time reversible at and out-
side equilibrium, Onsager’s hypotheses are certainly satisfied and the system
should obey reciprocal response relations at vanishing forcing. This led to
the idea that there might be a connection between the fluctuation theo-
rem and Onsager reciprocity and also to the related (stronger) Green-Kubo
formula.

This is in fact true: if we define the microscopic thermodynamic flux j(x)
associated with the thermodynamic force E that generates it, i.e. the pa-
rameter that measures the strength of the forcing (which makes the system
nonHamiltonian), via the relation

j(@) = (9.10.1)
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(not necessarily at E = 0) then in [Ga96b] a heuristic proof shows that the
limit as E — 0 of the fluctuation theorem becomes simply (in the continuous
time case) a property of the average, or “macroscopic”, fluz J = {(j),,:

a7
0E

b =3 | G, d (9.10.2)

— 00 E=0

where (), denotes the average in the stationary state ug (i.e. the SRB
distribution which, at E = 0, is simply the microcanonical ensemble).
If there are several fields Fq, Es, ... acting on the system we can define

several thermodynamic fluxes jj (a:)défaEka(x) and their averages (jx),: in
the limit in which all forces Ej, vanish a (simple) extension of the fluctuation
theorem is shown, [Ga96b], to reduce to

def 8Jh

L =
hk 9E;,

|E:0 = % /_Oo (Jn(Stw)jr (7)) =0 dt = Lgp , (9.10.3)

therefore we see that the fluctuation theorem can be regarded as an exten-
sion to nonzero forcing of Onsager reciprocity and, actually, of the Green-
Kubo formula.

Certainly assuming reversibility in a system out of equilibrium can be dis-
turbing: one can, thus, inquire if there is a more general connection between
the chaotic hypothesis, Onsager reciprocity and the Green-Kubo formula.

This is indeed the case and provides us with a further consequence of the
chaotic hypothesis valid, however, only in zero field. It can be shown that
the relations (9.10.3) follow from the sole assumption that at E = 0 the
system is time reversible and that it satisfies the chaotic hypothesis for £
near 0: at E # 0 it can be, as in Onsager’s theory, not reversible [GR9I7].

It is not difficult to see, technically, how the fluctuation theorem, in the
limit in which the driving forces tend to 0, formally yields the Green-Kubo
formula.

We consider time evolution in continuous time and simply note that
(9.9.8) implies that, for all E (for which the system is chaotic) (e!®) =
>, mr(p)er™ 7+ =3 mi(—p)e®®) = %W 5o that:

: 1 Ig _
TETOQ - log{e’®)p =0 (9.10.4)
where Igp et [ o(Siz)dt with o(z) being the divergence of the equations

of motion (i.e. the phase space contraction rate, in the case of continuous
time). This remark, [Bo97],1® can be used to simplify the analysis in [Ga96b]
(and [Ga96a]) as follows.

We switch to continuous time, to simplify the analysis. Differentiating both
sides with respect to E, not worrying about interchanging derivatives and

16 Tt says that essentially (eIE)uE = 1 or more precisely it is not too far from 1 so that

(9.10.4) holds.
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limits and the like, one finds that the second derivative with respect to E
is a sum of six terms. Supposing that for E = 0 the system is Hamiltonian
and (hence) Iy = 0, the six terms, when evaluated at E = 0, are:

(@I m Ym0 — (D5 1%)) sl ot
/OEIE (2)0pe(z)|E=0 — (((8EIE /laEME)|E o+ (9.10.5)
/3EIE (2)0pp(r)|p= o-l-/l OfuE|p= 0]

and we see that the fourth and sixth terms vanish being derivatives of
J ne(dz) = 1, and the first vanishes (by integration by parts) because Ig
is a divergence and g is the Liouville distribution (by the assumption that
the system is Hamiltonian at £ = 0 and chaotic). Hence we are left with:

(_%<(6EIE) Jup /aEIE )0ppe(x ))E =0 (9.10.6)

where the second term is 277 '0p((OrIE)us)|F=0 = 20rJE|E=0, be-
cause the distribution pug is stationary; and the first term tends to
fj;o (j(Sx)j(x)) p=odt as T — oc. Hence we get the Green-Kubo formula
in the case of only one forcing parameter.

The argument could be extended to the case in which E is a vector de-
scribing the strength of various driving forces acting on the system, but one
needs a generalization of (9.10.4). The latter is a consequence of the fluctu-
ation theorem, and the theorem has to be extended in order to derive from
it also the Green-Kubo formula (hence reciprocity) when there were several
independent forces acting on the system; see [Ga96b] where the extension
is discussed.

The above analysis is unsatisfactory because we interchange limits and
derivatives quite freely and we even take derivatives of ug, which seems to
require some imagination as pg is concentrated on a set of zero volume.
On the other hand, under the strong hypotheses in which we suppose to
be working (that the system is mixing Anosov), we should not need extra
assumptions. Indeed the above mentioned nonheuristic analysis, [GR9T], is
based on the solution of the problem of differentiability with respect to a
parameter for SRB distributions, [Ru97b].

§9.11. Reversible Versus Irreversible Dissipation. Nonequilibrium
Ensembles?

What is missing are arguments similar to those used by Boltzmann to
justify the use of the ensembles independently of the ergodic hypothesis: an
hypothesis which in the end may appear (and still does appear to many)
as having led to the theory of enembles only “by accident”. The missing
arguments should justify the fluctuation theorem on the basis of the extreme
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likelihood of its predictions in systems that are very large and that may not
be Anosov systems in the mathematical sense. I see no reason why this
should prove impossible, a priori, now or in the future.

In the meantime it seems interesting to take the same philosophical attitude
adopted by Boltzmann: not to consider that “by chance” chaotic systems
share some selected properties, and try to see if such properties help us
achieve a better understanding of nonequilibrium. After all it seems that
Boltzmann himself took a rather long time to realize the interplay of the
above two basic mechanisms behind the equilibrium ensembles and to pro-
pose a solution harmonizing them. “All it remains to do” is to explore if the
hypothesis has implications more interesting or deeper than the fluctuation
theorem.

A system driven out of equilibrium can reach a stationary state (and not
steam out of sight) only if enough dissipation is present. This means that
any mechanical model of a system reaching a stationary state out of equi-
librium must be a model with nonconservative equations of motion in which
forces representing the action of the thermostats, that keep the system from
heating up, are present.

Thus, as we stressed repeatedly in the previous sections, a generic model of
a system stationarily driven out of equilibrium will be obtained by adding to
Hamilton’s equations (corresponding to the nondriven system) other terms
representing forces due to the thermostat action.

Here one should avoid attributing a fundamental role to special assump-
tions about such forces. One has to realize that there is no privileged ther-
mostat: many of them can be considered and they simply describe various
ways to take energy out of the system.

Hence one can even use stochastic thermostats, and there are many types
considered in the literature; or one can consider deterministic thermostats
and, among them, reversible ones or irreversible ones.

Each thermostat requires its own theory. However the same system may
behave in the same way under the action of different thermostatting mecha-
nisms: if the only action we make on a gas tube is to keep the temperatures
of its extremes fixed, by taking in or out heat from them, the difference may
be irrelevant, at least in the limit in which the tube becomes long enough
and as far as what happens in the middle of it is concerned.

But of course the mathematical representation of the stationary state may
be very different in the various cases, even when we think that the differences
are only minor boundary effects.

For instance, in the case of the gas tube, if our model is of deterministic
dissipation we expect the SRB state to be concentrated on a set of zero
phase space volume,'” while if the model is stochastic then the stationary
state will be described by a density on phase space. Nothing could seem
more different.

17 Because phase space will on the average contract, when o4 > 0, so that any stationary
state has to be concentrated on a set of zero volume, which however could still be dense
and often it will be.
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Nevertheless it might still be true that in the limit of an infinite tube
the two models give the same result, in the same sense as the canonical
and microcanonical ensembles describe the same state even though the mi-
crocanonical ensemble is supported on the energy surface, which has zero
volume if measured by using the canonical ensemble (which is given by a
density over the whole available phase space).

Therefore we see that out of equilibrium we have in fact much more free-
dom to define equivalent ensembles. Not only do we have (very likely) the
same freedom that we have in equilibrium (like fixing the total energy or
not, or fixing the number of particles or not, passing from microcanonical
to canonical to grand canonical, etc) but we can also change the equations
of motion and obtain different stationary states, i.e. different SRB distri-
butions, which will however become the same in the thermodynamic limit.

Being able to prove mathematical equivalence of two thermostats will
amount to proving their physical equivalence. This again will be a diffi-
cult task, in any concrete case.

What I find fascinating is that the above remarks seem to indicate to us the
possibility that a reversible thermostat can be equivalent in the thermody-
namic limit to an irreversible one. 1 conclude by reformulating a conjecture,
see for instance [Ga96¢], [Ga97a], [Ga98c¢|, which clarifies the latter state-
ment.

Consider the following two models describing a system of hard balls in
a periodic (large) box in which there is a lattice of obstacles that forbid
collisionless paths (by their arrangement and size); the laws of motion will
be Newton’s laws (elastic collisions with the obstacles as well as between
particles) plus a constant force E along the horizontal axis (say) plus a
thermostatting force.

In the first model the thermostatting force is simply a constant times the
momentum of the particles: it acts on the i-th particle as —vp; if v is a
“friction” constant. Another model is a force proportional to the momentum
but via a proportionality factor that is not constant and depends on the
system configuration at the point z in phase space; it has the form —a(z)p;
with a(z) = E- 37, pi/ 32, v}

The first model is related to the model used by Drude in his theory of
conduction in metals, see [EGM98]. The second model has been used very
often in recent years for theoretical studies and has thus acquired a “re-
spected” status and a special importance: it was among the first models
used in the experiments and theoretical ideas that led to the connection
between Ruelle’s ideas for turbulent motion in fluids and nonequilibrium
statistical mechanics, [HHP87], [ECM90], [ECM93]. I think that the im-
portance of such work should be stressed and fully appreciated: without
this work the recent theoretical developments would have been unthinkable,
in spite of the fact that a posteriori they seem quite independent and one
could claim (unreasonably in my view) that everything could have been
done much earlier.
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Furthermore the second model can be seen as derived from Gauss’ least
constraint principle, see Appendix 9.A4. It keeps the total (kinetic) energy
exactly constant over time (taking energy in and out, as needed) and is
called a Gaussian thermostat. Unlike the first model the second model is
reversible, with time reversal being the usual velocity inversion. Thus the
above theory and results based on the chaotic hypothesis apply.

The conjecture was (and is) that:

(1) Compute the average energy per particle that the system has in the
constant friction case and call it £(v) calling also p,, the corresponding SRB
distribution.

(2) Call jig the SRB distribution for the Gaussian thermostat system when
the total (kinetic) energy is fixed to the value £.

(3) Then p, = fig(y) in the thermodynamic limit (in which the box size
tends to become infinitely large, with the number of particles and the total
energy correspondingly growing so that one keeps the density and the energy
density constant) and for local observables, i.e. for observables that depend
only on the particles of the system localized in a fixed finite region of the
container. This means that the equality takes place in the usual sense of
the theory of ensembles, see Chap.I,IV and [Ru68].

It has to be remarked that the idea of equivalence between dynamical en-
sembles, in contexts perhaps more limited, seems to circulate for quite a
long time particularly among those who work on numerical experiments:
remarkable are the early papers [ES93], [Ev93], [ST93] which certainly pro-
pose the same kind of ideas, see also [MR96].

The above conjecture opens the way to several speculations as it shows that
the reversibility assumption might be not so strong after all. And results
for reversible systems may carry through to irreversible ones.

I have attempted to extend the above ideas also to cases of turbulent
motions but here I can only give references, [Ga97a],[Ga97b].

There are a few other results and many speculations about the conse-
quences of the chaotic hypothesis: among the (few) related results. I want
to quote the “pairing rule”, valid for a somewhat restricted class of systems.
It is a further extremely interesting example of a mathematical theorem dis-
covered through physical experiments and, although heralded by a similar
result in a simpler case, [Dr88], it was proved only later (like the fluctuation
theorem), [ECM90], [EM90], [DM96], [WL98]. It is related to the chaotic
hypothesis but it does not depend on it, the relation being that it emerged
in the same group of experiments that led to the fluctuation theorem.

Among the “speculations” T quote:

(1) Several applications to fluid mechanics, like the equivalence of Navier-
Stokes equations to a similar reversible, equation (in the limit of large
Reynolds’ number), [Ga96¢], [Ga97a], [ST93].
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(2) stability of time reversal symmetry whereby under assumptions, that
I think are quite natural, [BG97], one deduces that when time reversal
is spontaneously broken'® it is replaced by another symmetry with the
same property of anticommuting with time evolution, thus showing that
the fluctuation theorem might hold, with minor modifications, even in cases
in which the time reversal symmetry of the equations of motion is broken,
see §1.6 of [BGGIT].

(3) The possibility of equivalence between reversible and irreversible equa-
tions describing the same system, in the limit of large systems, [Ga98c].
This gives hope that some result like a, suitably reformulated, fluctuation
theorem can hold even in irreversibly driven systems. Furthermore it seems
to indicate that the theory of ensembles in nonequilibrium is much richer
than what we are used to in equilibrium. An ensemble might be character-
ized not only by the choice of a few parameters, as in Chap.II, but also by
the choice of the equations of motion.

The above incomplete list is here only to provide the reader with a guide to
the literature, which is constantly increasing but which does not yet seem
established enough to be treated as an accomplished theory deserving more
space in a short treatise.

Appendix 9.A1. Mécanique statistique hors équilibre: I’héritage
de Boltzmann

The following is a slightly expanded version of a talk at Ecole Normale
Superieure in Paris, january 1998, and gives an informal overview of the
basic ideas of Chap.IX, see §9.3, and some supplementary analysis.

Boltzmann entreprit, [Bo66], de prouver 'existence des atomes en poursui-
vant un programme déja amorcé par ses prédécesseurs. Son approche était
d’établir que la conception de la matiere en tant qu’agglomération d’atomes
obéissants aux lois de la mécanique conduisait & la déduction des propriétés
de la matiere que connaissaient alors les expérimentateurs et les théoriciens.

Ainsi Boltzmann produisit des versions de plus en plus raffinées du
théoréme de la chaleur, [Bo68], [Bo71], [Bo72], [Bo77]. Au début il s’agissait
de faire voir qu’il est possible de définir des quantités mécaniques associées,
par exemple, & un gaz enfermé dans un conteneur cubique de volume V/,
telles que :

énergie cinétique moyenne

= énergie totale

= volume

= impulsion moyenne transférée aux parois
par collision et par unité de surface

SIEESES
|

18 Because the attracting set A becomes strictly smaller than the phase space and TA # A.
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ou les moyennes sont calculées empiriquement en supposant les particules
indépendantes et & distribution uniforme sur une sphere dans ’espace des
impulsions et dans le volume V' des positions.
Le théoreme a prouver est alors que si on varie U et V de dU et dV et que
I'on calcule la quantité :
dU + pdV
T

ou p et T dépendent de U et V', on trouve une différentielle exacte : c’est &
dire qu’il existe une fonction S(U, V) telle que dS = M. Suite aux tra-
vaux de Boltzmann, Helmholtz considéra les systemes mécaniques monocy-
cliques, c’est-a-dire les systemes dont tout mouvement d’énergie donnée est
périodique et non dégénéré (ce qui veut dire que les mouvements d’énergie
donnée ne different entre eux que par un décalage du temps d’observation),

[He95a],[He95b).

Il fit voir que, en général, si on imagine que les mouvements (“états”’) de
tels systemes sont paramétrés par leur énergie totale U et par un parametre
V' dont les potentiels ¢y des forces qui agissent sur le systeme dépendent,
alors en définissant :

(9.A1.1)

T = énergie cinétique moyenne

U = énergie totale

V = volume

P = {~3v%)
ou (F) maintenant dénote précisément la moyenne de F par rapport
au temps (et donc n’est pas définie empiriquement comme dans le cas
précedent), on trouve en général :

dU + pdV
T

Celle-ci aurait pu n’étre rien de plus qu’'une curiosité. Mais Boltzmann avait
une conception discréte de la nature : méme s’il ne ’avait pas explicitement
dit dans ses écrits populaires, on le verrait dans ses travaux scientifiques
ou 'emploi de ’analyse, avec ses intégrales et ses dérivées, est souvent vu
comme un moyen technique pour venir a bout du calcul de sommes et de
différences, [Bo74].

Donc pour Boltzmann le mouvement n’est qu’une évolution discréte ou
lespace des phases est quadrillé en petites cellules & 6N dimensions (N
étant le nombre de molécules) dont une contient le point qui représente
I’état instantané du systeme. L’évolution apparait comme les déplacements
successifs du point représentatif d’une cellule a une autre, alors que le temps
s’écoule d’une petite quantité discrete h. Bien sur le déplacement doit étre
conforme aux lois du mouvement.

C’est une représentation tres familiere aujourd’hui & qui essaye de simuler
sur ordinateur les mouvements d’'un gaz de particules. Sur lordinateur
les états microscopiques du gaz sont représentés par des cellules (car les
coordonnées des points sont représentées par des nombres qui sont déter-
minés avec une précision qui est loin d’étre infinie et qui dépend de la

= différentielle exacte (9.41.2)
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machine ou plutot du logiciel que I'on emploit) et 1’évolution se déroule par
pas discrets; le programme qui effectue ces pas est écrit avec les lois du
mouvement comme guide.

De ce point de vue le mouvement est une permutation des cellules qui
représentent 1’état microscopique. Le systéme est alors toujours en évolution
périodique : car toute permutation d’un nombre fini d’objets (les cellules
d’énergie totale U donnée, dans le cas présent) engendre une évolution cy-
clique.

On imagine que l'on fixe "énergie totale U et que les forces agissantes sur
le systeéme sont paramétrées par le volume V : en fait on imagine que, quoi
que 'on fasse, les forces entre les particules ne varient pas et seules les forces
entre les particules et les parois peuvent changer (a4 cause des mouvements
des parois et des changements de volume qui en découlent).

Alors ’hypotheése de monocyclicité de Helmholtz, de non-dégénérescence
des mouvements d’énergie donnée, correspondrait & dire que I’évolution est
une permutation & un seul cycle des cellules et donc on serait dans la situa-
tion ou le systeme est monocyclique : cette hypothése est connue comme
Ihypothése ergodique.

Sous cette hypothese on devrait avoir la possiblité de trouver, en général,
une analogie mécanique de la thermodynamique et un théoreme général de la
chaleur. Puisque les moyennes doivent se calculer, alors, par la distribution
uniforme sur ’espace des cellules d’énergie donnée (car les cellules ont des
tailles égales) on se trouve obligé de vérifier que dans le cas d’un gaz (ou
méme d’un liquide ou d’un solide, vue la généralités des considérations en
question):

dU + pdV : 0
+ est exact si p= —(Wgo\/). (9.A41.3)

Cette propriété, cas particulier d’'une propriété plus générale que Boltz-
mann appella orthodicité, doit étre accompagnée par la propriété supplé-
mentaire que p est aussi 'impulsion moyenne transférée aux parois par les
collisions, par unité de temps et de surface. Si cela est bien le cas on aura
prouvé que en général un théoreme de la chaleur est valable.

C’est, ce que Boltzmann fit en 1884, [Bo84], en fondant, en méme temps, la
théorie des ensembles statistiques (qui est souvent attribuée a Gibbs, mais
pas par Gibbs lui méme, [Gi81]).

Tl est tout & fait remarquable que le théoreme de la chaleur, (9.A1.2), est va-
lable tant pour les petits systémes (méme & une particule, si la non-linéarité
du mouvement est suffisante de facon a rendre I’hypothese ergodique rai-
sonnable) que pour les grands (avec 10? particules).

dU + pdV

L’exactitude de ne dépend pas de la taille du systéme, [Bo84].

Cette indépendance est d’ailleurs une propriété absolument fondamen-
tale et elle permit a Boltzmann de se dégager des critiques qui lui étaient
adressées.
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Les critiques, par Zermelo et méme par Poincaré, étaient subtiles et
portaient sur le principe selon lequel il serait impossible de déduire
les lois macroscopiques (irréversibles) d’une mécanique réversible qui est
nécessairement cyclique et donc apparemment pas irréversible (au bout d’un
temps de récurrence le systeme revient a son état initial, contre toute intui-
tion sur le comportement des systémes macroscopiques), [Bo96], [Bo97].

Ces critiques s’adressaient surtout a 1’équation de Boltzmann et par
conséquent a I’approche irréversible a 1’équilibre. Boltzmann, comme il est
bien connu, répondit qu’on ne pouvait pas ne pas tenir compte des échelles
de temps nécessaires a réveler des contradictions. Pour voir, au niveau ma-
croscopique, les effets de la réversibilité microscopique, le temps qu’il fallait
attendre était énorme qu’on le mesure en heures ou en ages de 'Univers,
[Bo74]. Aprés quoi on observerait une évolution anormale pour revenir
presque immédiatement au comportement normal et pour une période de
durée encore aussi longue.

Mais cet argument, a la défense de ’équation de Boltzmann, détruisait
aussi apparemment la signification du théoreme de la chaleur et la possi-
bilité de déduire la thermodynamique de la mécanique et de I’hypothese
ergodique. Car pour que le théoreme de la chaleur ait un intérét quel-
conque il faut que les moyennes dont il parle soient atteintes dans un laps
de temps raisonnablement court : mais si le temps de récurrence (c’est a
dire le temps nécessaire au point représentatif du systéme pour revenir a la
cellule initiale dans ’espace des phases) est énorme alors les moyennes des
observables risquent d’étre atteintes sur un temps du méme ordre, ce qui
signifierait qu’elles n’ont pas d’intérét physique.

Boltzmann apercut cette difficulté et fut conduit & dire que dans un systeme
macroscopique tout se passe comme si les moyennes sur des temps courts
étaient les mémes que sur les temps (inobservables) de récurrence. Ceci
serait da au fait que si le nombre de particules est tres grand, les grandeurs
d’intérét thermodynamique prennent la méme valeur sur presque tout 1’es-
pace des phases : ce qui leur permet d’atteindre leur valeur moyenne sur des
temps trés courts qui n’ont rien a voir avec le temps de récurrence (qui est
infini & tout point de vue). Elle prennent la méme valeur parce qu’elles sont
a leur tour des moyennes sur les particules et ne dépendent pas de I’état de
particules individuelles.

Donc ’hypothese ergodique suggere ’ensemble microcanonique pour le cal-
cul des moyennes : c’est un fait général que ces moyennes vérifient les re-
lations thermodynamiques qui, d’un autre coté, sont observables grace a
la lois des grands nombres qui fait que ces grandeurs ont la méme valeur
partout (ou presque) dans l’espace des phases.

Il s’en suit que ’hypothese ergodique n’est pas une justification de la ther-
modynamique et ne joue qu’un role cinématique. La thermodynamique
est une identité mécanique qui devient observable au niveau macroscopique
grace a la loi des grands nombres, (§1.9).

Une fois achevée cette admirable construction conceptuelle on se pose la
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question de savoir si on peut faire de méme dans le cas des systemes hors
équilibre.

Ce sont des systemes de particules sur lesquels agissent une ou plusieurs
forces conservatives dont le travail est dissipé dans des thermostats, per-
mettant ainsi au systeme d’atteindre un état stationnaire.

C’est un probléeme pas vraiment touché par Boltzmann qui étudia en détail
le probleme du retour & I’équilibre d’un gaz perturbé de son état d’équilibre
(retour qui se déroule selon I’équation de Boltzmann). Et il peut paraitre
étrange qu’un probleme si naturel et d’une telle importance soit resté es-
sentiellement ouvert jusqu’a nos jours.

On remarque immédiatement une profonde différence par rapport au
probleme de la théorie des états d’équilibre : il n’y a pas une véritable
théorie macroscopique (comparable & la thermodynamique classique) qui
puisse servir de guide et qui fournisse des résultats a prouver.

Une différence technique importante est que ’on peut s’attendre a ce que le
comportement physique du systeme dépende de la méthode qu’on emploie
pour enlever la chaleur produite par le travail des forces qui agissent. Ce
qui peut donner le souci qu’une théorie générale soit impossible & cause de
la grande variété de forces thermostatiques qu’on peut imaginer pour un
meéme systeme.

Mais, & mon avis, il ne s’agit que d’une difficulté apparente qui disparait
au fur et & mesure qu’on précise la théorie.

Donc on va imaginer un systéme de particules sur lesquelles agissent des
forces externes non conservatives et un mécanisme quelconque qui empeche
le réchauffement. On va modéliser ce thermostat par des forces addition-
nelles. Par exemple, si le systeme est un gaz de sphéres dures enfermées
dans un conteneur périodique avec quelques obstacles fixes et soumises &
un champ de force E, on peut imaginer que les équations du mouvement
soient :

mi, = f,+ E - vi, = ®,(z, 1) (9.41.4)

ou les f. sont les forces entre particules (spheres dures élastiques) et entre
particules et obstacles (qui sont aussi des spheres dures élastiques).

Ici vz = v(z) & est le modele de thermostat. La vraie difficulté est que
I’évolution engendre une contraction du volume de 1’espace des phases car :

%(d@d@) =div® - (dzdz) (9.41.5)
et la dissipativité entraine —(div®) > 0, et donc I’état stationnaire devra
étre une distribution de probabilité u(dz, di) concentrée sur un ensemble
de volume nul. Elle ne pourra pas étre décrite par une densité de la forme :
plz, &) dz, di.

Du coup on ne peut méme pas écrire les formules qui expriment formel-
lement les moyennes des observables par rapport a 1’état stationnaire en
termes d’une fonction de densité inconnue.

Néanmoins on voudrait avoir de telles expressions pour pouvoir espérer
en tirer des conséquences générales, du type du théoreme de la chaleur,
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qui puissent étre observées dans les petits systemes (parce que directement
observables) et dans les grands aussi (pour des raison différentes).

L’idée clef a pris forme au début des années 1970, 1973 au plus tard, et
est due a Ruelle : mais dans un contexte apparemment assez différent du
notre (celui de la mécanique des fluides et de la turbulence). On congoit les
mouvements turbulents d’un fluide stationnaire ou d’un gaz de particules
comme des mouvements chaotiques.

Cela ne demande pas a premiére vue beaucoup d’imagination : mais le

point est que I’hypothése est posée dans un sens technique précis, [Ru78a],
[Ru80]. Dans linterprétation d’auteurs successifs, [GC95], on dit que le
principe est que le systéme est “hyperbolique” ou d’ “Anosov”. Clest
Ihypothése chaotique.

Cela veut dire que en tout point x de I’espace des phases on peut établir
un systeme covariant de coordonnées locales tel que 1’évolution temporelle
n — S™x observée dans ce systéme voit z comme un point fixe (car on le
suit) hyperbolique. C’est-a-dire on voit depuis z les autres points bouger
de la méme facon qu’on les voit si on regarde les mouvements a partir du
point fixe instable d’un pendule : la différence étant que cela est vrai pour
tout point (et non pas pour un point isolé comme dans le cas du pendule).

On aura cette propriété valable & 1’équilibre aussi bien que hors équili-
bre : les mouvements des molécules sont chaotiques méme dans les états
d’équilibre. Pour comprendre ce qui se passe il convient de revenir au point
de vue discret de Boltzmann.

Si un systeme est dissipatif il y a des difficultés supplémentaires car il
est clair qu’on a beau rendre petites les cellules de I’espace des phases, on
n’arrivera jamais a un systeme dynamique discret qui puisse étre décrit
comme une permutation des cellules : la contraction de I’espace des phases
entraine que certaines cellules ne seront jamais plus visitées méme si on les a
visitées au départ (par exemple parce que ’on a initié le mouvement a partir
d’elles). Les mouvements se déroulent asymptotiquement sur un attracteur
(qui est plus petit que tout l’espace des phases, bien que si on considere
I'espace de phases comme continu lattracteur pourrait étre densel?).

Mais si on considere seulement les cellules sur lesquelles se déroule le mou-
vement on est dans une situation tdentique a l’équilibre et hors équilibre.
On imagine que le mouvement est une permutation a un cycle, et donc il y
aura un état stationnaire unique. Le temps pour parcourir le cycle sera, bien
évidemment, toujours du méme ordre de grandeur qu’a ’équilibre (dans des
situations pas trop extrémes des parametres qui déterminent les forces agis-
santes sur le systeéme) : donc la raison pour laquelle on peut espérer observer
les moyennes temporelles et les calculer par intégration par rapport a une
distribution de probabilité sur I’espace des phases reste la méme que celle
déja discutée dans le cas d’équilibre (et liée a la loi des grands nombres).

Toutefois il y a une difficulté : c’est une difficulté qu’on aurait pu discuter
déja dans le cas de ’équilibre. On a supposé, sans critique, que les cellules

19 Ce qui montre seulement que la notion de “grandeur” d’un attracteur est plutot délicate
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de Despace des phases étaient toutes égales. Mais méme dans le cas de
I’équilibre les systemes sont chaotiques et donc toute cellule est déformée par
I’évolution temporelle qui la dilate dans certaines directions et la contracte
dans d’autres.

Il apparait alors que la représentation du mouvement comme évolution
d’une cellule vers une autre de forme et de taille identique est loin d’étre tri-
viale. Elle est en fait une hypothese forte sur la dynamique, qui, & I’équilibre,
sélectionne ’ensemble microcanonique comme distribution correcte a utili-
ser pour calculer les moyennes temporelles (et qui entraine le théoreme de
la chaleur). Il y a bien d’autres distributions invariantes sur I’espace des
phases (contrairement & ce qu’on entend dire parfois) et I’hypothese appa-
remment innocente que le mouvement se représente comme une permutation
de cellules identiques en sélectionne une particuliere.

Hors équilibre la difficulté devient plus manifeste. Car le volume des cel-
lules ne reste méme pas invariant contrairement au cas de 1’équilibre (grace
au théoréeme de Liouville). De plus hors équilibre il faut s’attendre & ce
que la représentation du mouvement comme évolution de cellules iden-
tiques conduise & sélectionner une distribution de probabilité particuliere
sur ’espace des phases, concentrée sur les cellules qui constituent 'attrac-
teur, [Ga95al.

L’intérét et I'importance des systemes chaotiques au sens de ’hypothese
chaotique est que, en effet, pour tous ces systemes il y a une unique dis-
tribution stationnaire p sur l’espace des phases qui donne les moyennes des
grandeurs observées sur les mouvements qui commencent dans la grande
majorité des cellules identiques en lesquelles on peut imaginer de diviser
lespace des phases. C’est un résultat fondamental di & Sinai et & Ruelle-
Bowen : ainsi la distribution u s’appelle distribution SRB, [Si68], [BR75].
Dans le cas de ’équilibre, elle coincide avec la distribution microcanonique.

Ce n’est pas ici le lieu de poursuivre la critique de la vision discrete du mou-
vement, bien qu’elle soit intéressante ne fusse que pour une interprétation
correcte des simulations numériques qui se font de plus en plus fréquentes,
voir la note 2° page suivante.

L’hypothese chaotique conduit naturellement & une représentation discrete
différente du mouvement qui non seulement ne souffre pas des critiques
qu’on vient de mentionner, mais qui nous donne une formule explicite pour
la valeur des moyennes des observables, valable & la fois & ’équilibre (ot elle
se réduit & I’ensemble microcanonique) et hors équilibre.

Cette nouvelle représentation est aussi basée sur des cellules : mais elle
ne sont pas vraiment petites dans le sens qu’elles sont considérablement
plus grandes que les cellules que 'on a utilisées jusqu’a maintenant et qui
avaient la taille minimale concevable. On peut donc les appeller “cellules
a gros grains” ou grosses cellules, réservant le nom de cellules de taille fine
aux précédentes.

Il est en effet possible de découper l'espace des phases en cellules
Ei,Es,... = {E;}x=1,.. qui forment un pavage ou une partition P et qui
ont la propriété de covariance.
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Leur bords sont constitués par une réunion d’axes des systemes locaux
de coordonnées dont on a parlé plus haut : donc les bords consistent en
des surfaces qui soit se contractent sous I'action de la dynamique, soit se
dilatent. On dira que les frontieres des cellules de la partition P = E4, E», ...
consistent en une partie qui se contracte ou “stable” et en une partie qui se
dilate ou “instable”. La propriété de covariance dit alors que sous I’action
de I’évolution les cellules se déforment mais les parties stables de leur bords
évoluent de facon a terminer comme sous-ensembles de leur réunion : la
figure suivante illustre cette propriété simple.

A

SA

Fig. 9.A4.1

Si on a une telle partition (qui s’appelle partition markovienne) P on peut
la raffiner en d’autres qui ont la méme propriété de covariance : simple-
ment en donnant un entier T et considérant la partition constituée par les
ensembles S™TE,,_,. N...STE,, qui, & cause de la contraction et de 'ex-
pansion de ’espace lors de 1’évolution, forment une partition Pr dont les
cellules deviennent aussi petites que I’on veut en prenant T' assez grand.

Si F' est une observable on peut en calculer la valeur moyenne simplement
en considérant une partition markovienne P (arbitraire, car il n’y a pas
d’unicité) en construisant la partition Pr avec T assez grand pour que F
soit constant dans chaque cellule C' de Pr et puis en posant :

7y~ S POF(O) 0,410
> P(C)

ot P(C) est un “poids” convenable. Il est construit en choisissant un point

c € C et en considérant son évolution entre —7 et 7 olt 7 est grand mais

petit par rapport & T' (par exemple 7 = 17).

On considere le point S™7¢ qui est transformé en S™¢ en un temps 27. On
voit que l'axe, par S~™"¢, des coordonnées qui se dilatent sous I'action de
I’évolution est dilaté, au cours d’un temps 27, par un facteur qu’on appelle
As-i(e) : alors le poids P(C) peut étre choisi égal a Aari(c)?.

L’équation (9.A1.6) est la formule qui remplace la distribution microca-
nonique hors équilibre : on peut prouver que 'on s’y rameéne sous 1’hy-
pothese chaotique. La question qui se pose est si 'on peut tirer quelques
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conséquences générales de '’hypothése chaotique moyennant 1'usage de la
représentation (9.A1.6) ci-dessus.2°

Dans ce contexte, mentionnons que récemment on a réussi a déduire une
conséquence qui apparemment a un certain intérét. On va la formuler pour
un systeme décrit par une équation différentielle (et donc en temps continu)
# = f(x) qui engendre un flot t — S’z dans I’espace des phases. On suppose
aussi que I’évolution est réversible : c’est-a-dire qu’il y a une transformation
isométrique I de ’espace des phases qui anti-commute avec ’évolution :
ISt = S71I.

Imaginons un systeme pour lequel ’hypothese chaotique soit valable, donc
décrit par une équation & = f(z) et soit o(z) = —div f(z) la contraction
de l'espace des phases associée. Supposons que 'on mesure la quantité
o(S™z) au cours du temps mais avec le systéme dans son état stationnaire.
Appellons o4 sa moyenne temporelle que l’on suppose non nulle (alors elle
ne peut étre que positive par un théoreme général, [Ru96a)) et :

1 T
p=— o(Stx)dt (9.A1.7)
TO 4+

D=

1
—5T

20 L’expression (9.A1.6) pour la distribution SRB permet d’éclaircir la réprésentation de

I’évolution comme permutation des cellules a taille fine. On doit imaginer que chaque
élement C' (“cellule & gros grain”) de la partition markovienne Pr, avec un T trés grand
de fagon a ce que toute observable F' (pertinente pour le comportment macroscopique)
reste constante sur chaque C' : pour une représentation fidele du mouvement, on ima-
gine que chaque C est quadrillé par des cellules tres petites “de taille fine” en nombre
proportionnel ¢ P(C). Par I’évolution les cellules de taille fine se répartissent entre les
éléments C' de Pr qui intersectent SC. On fait évoluer de la méme fagon les autres cel-
lules fines des éléments de Pr : la théorie des distributions SRB montre que le nombre
des cellules de taille fine qui viennent se trouver dans chaque C € Pr ne change pas, a
une trés bonne aproximation prés; c’est la stationnarité de la distribution SRB, [Ga95a].
Alors on peut définir I’évolution des cellules de taille fine simplement en disant qu’une
cellule fine § dans C évolue dans une des cellules fines qui sont dans la C’ qui contient
S¢; il faut seulement faire attention & ne pas associer une méme cellule fine de C’ a
deux cellules fines appartenant 2 diffefentes C' (parmi celles telles que SCNC’ # @) : on
peut s’arranger de fagon telle que la permutation des cellules fines ainsi définie soit & un
seul cycle, car les détails du mouvement & l’intérieur des cellules C' n’ont pas d’impor-
tance parce que les observables qui nous intéressent sont constantes dans les C'. Mais la
méme construction peut étre faite en remplagant le poids P(C) par P(C)* avec @ # 1 :
on obtient ainsi d’autres distributions stationnaires différentes de la SRB, et on peut
méme en construire d’autres, [Si68], [Bo70]. On peut représenter de la méme facon aussi
ces autres distributions : mais on doit imaginer que les cellules de taille fine que I’on
utilise pour en représenter une soient différentes de celles utilisées pour représenter les
autres. En fin de compte toutes les cellules fines ainsi introduites représentent ’attrac-
teur. Sion divise I’espace entier en (beaucoup de) cellules fines, de fagon a ce que toutes
distributions stationnaires puissent étre représentées par une permutation des cellules
fines qui se trouvent dans les C' € Pr, alors on obtient une réprésentation discete tres
fidele du mouvement. Mais toutes les cellules ne feront pas partie d’un cycle, car la
dynamique est en général dissipative et une grande partie d’entre elles ne reviennent
pas sur elles mémes mais “tombent sur ’attracteur” ou, des lors, elles évoluent dans
un cycle. La théorie de la distribution SRB montre que si on considére un ensemble
ouvert dans I’espace des phases le comportement asymptotique du mouvement de tout
point, sauf un ensemble de volume nul, est bien réprésenté par la distribution SRB, ce
qui lui fait jouer un réle particulier, au contraire des autres distributions que ’on peut
definir : c’est-a-dire que la grande majorité (en volume) des cellules fines tombant sur
Pattracteur vont se trouver parmi celles que ’on a associées aux cycles de la distribution
SRB.
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et soit 7 (p) = e™¢(P) la distribution de probabilité de cette observable.

Alors :
((p) —<(-p)

I
—

(9.A1.8)

c’est le théoréme de fluctuation, [GCI5].

Je ne peux pas discuter ici la signification physique du théoréeme et de ’hy-
pothese de réversibilité, mais il est intéressant de souligner sa généralité,
son indépendance du systeme considéré et aussi ’absence, dans sa formu-
lation, de parametres libres. Ce qui le rend en un certain sens analogue au
théoréme de la chaleur, qui lui aussi est général et sans parametres libres.

Il suffira de dire que le théoreéme de fluctuation est une propriété qu’il faut
quand méme vérifier expérimentalement : en effet une partie de la théorie
ci-dessus est née a la suite d’une expérience de simulation numérique et
pour en interpréter théoriquement les résultats, [ECM93]. Il y a eu aussi
quelques vérifications indépendantes, [BGG97], [LLP97].

La raison pour laquelle des expériences sont nécessaires est qu’il n’y a au-
cun espoir de prouver que des systemes réels vérifient au sens mathématique
du mot I’hypothese chaotique; moins encore de prouver que des systemes
réel vérifient I’hypothese ergodique. Il n’y a méme pas d’espoir de prouver
que des systemes intéressants en simulation numérique ou dans la réalité
vérifient des propriétés qui soient assez proches de celles des systemes hy-
perboliques pour en déduire des conséquences telles que le théoreéme de fluc-
tuation. Mais on peut croire que néanmoins “les choses se passent comme
si 'hypothese chaotique était littéralement vraie”.

Il y a donc une nécessité d’un controle expérimental car on est dans la
méme situation qu’a I’équilibre : ou tout en croyant, avec Feynman, que
“if we follow our solution [i.e. motion] for a long enough time it tries eve-
rything that it can do, so to speak” (see p. 46-55 in [Fe63], vol. 1), il a été
néanmoins nécessaire de faire de bonnes vérifications expérimentales pour
ne plus avoir de réserves ou de doutes sur I’hypothese ergodique dans la
théorie de ’équilibre.

Quelques références sont données ici pour guider le lecteur dans la
littérature récente et ancienne. Elles sont loin d’étre exhaustives : [HHP87],
[EM90], [ECM90], [DPHI6], [Ga95c], [Ga96a], [Gad7b], [Ge98], [GRIT],
[Ga98a], [Ga98b], [Ga96c], [Ga97a], [Ru97a], [Ru97c|, [BGI7], [MRI7h],
[Ku97].

Appendix 9.A2. Heuristic Derivation of the SRB Distribution

The discussion below follows [Ga95a],[Ga95d],[Ga98c], see also [Ga81]. A
ball B containing a unit mass uniformly spread in it with density p and
centered around a fixed point?! O for an Anosov map S which is a Anosov

21 Tt is not restrictive to suppose that there is a fixed point for S. In fact Anosov systems

always admit periodic points: they are always dense on phase space F. If w is a periodic
point of period N then it is a fixed point for SV. Clearly the map SV is still an Anosov
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mixing map (hence such that the stable and unstable manifolds of O fill
densely the phase space € on which S acts, see §9.4) will be elongated
along the unstable manifold of O; in so doing the map S will compress the
mass so that after 7' iterations the image ST B will coat a large portion of
W§ with a thin coating of mass.

The mass around an infinitesimal surface element § around a point x € W
which is reached by the spreading coating, i.e. which has the form z = STy
for some y in the connected part of W N B which contains O, will be the
one that at time 0 was above the image S~7§ of § (of extremely small size,
area || and very close to the origin for T large and z fixed): i.e. it will
be proportional to the area of the image times p and the proportionality
constant will be essentially the power n of the radius h of the ball if n is the
dimension of the stable manifold of O. In formulae the mass du in question
will be:

dp = ph" AL (S~ Tw) 6] (9.42.1)

For T large we see therefore that the mass initially in B will coat a finite (but
very large and increasing with T') surface of the (dense) manifold W4. Hence
we see that the SRB distribution, which should be the limit to which the
described distribution of mass should tend, will be in a sense “concentrated”
along the unstable manifold Wj.

Let 6,0’ be two (infinitesimal) surface elements on W} centered around
x, 2’ respectively with z, 2’ close and on the same stable manifold W2. And
suppose that the stable manifolds through the points of § intersect 4’ and
vice-versa (i.e. §,d’ are the bases of a “tube” whose generators are the stable
manifolds). See Fig. 9.A5.1: 2!

6/

0

where the vertical lines represent stable manifolds and the horizontal parts
of the unstable manifold. The surface elements 4, ¢’ are infinitesimal parts
of a connected surface which, being very large and winding around on the
manifold, “almost fills” the whole manifold. The surface (i.e. the unstable
manifold of O) is not drawn; it would connect the two surface elements. We
see that the ratio of the masses originally in B and coating ¢ and 4’ is

Fig. 9.A5.1
xr

A (S T |5
s UL 9.42.2
A, (5 Ta) |0 (9422

where ||, 6| denote the surface areas of the elements 4,4'; but the ratio
|0]/]d"| can be expressed as

18 _ 87T(sTe) _ Ar(ST) |ST4| (9.42.9)
'] ~ STT(ST8) ~ AL L(STa') ST e

)

map, so that the following discussion will apply to the map SN and even to S provided
we take T an integer multiple of N.
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and by the composition rule of derivatives (and Jacobian determinants) we
see that the (9.A2.2) can be written

A (S o)A (S ) |576)
A (S7Ta) A (STa!) [ST 6|

(9.A2.4)

but the last ratio approaches 1 as T — oc because 4, ¢' are infinitesimal and
875,876 get closer and closer as T — co. The limit as T — oo is

. o ALL(S )

k=—c0

(9.A42.5)

It is not difficult to check that the infinite product on the right converges
because the points S¥z, S¥z’ tend to get close exponentially fast both in the
future and in the past, being at the same time on the stable and on the
unstable manifolds of each other.

Thus the coating generated by the splashing (due to the time evolution)
of the mass initially in the ball B of the unstable manifold W5 will have
the formal density []po _ A;ll (S~ *z) which can be written (formally) as
e M with H = ;2 _log A, 1(S7*z). Since z can be represented as a
sequence ¢ via its symbolic coding, z = z(g), on a Markov partition £ we
can define A,(0) = log A, 1(2(g)) and obtain that the SRB distribution
u will be represented as a distribution on the space of the (compatible)
sequences associated with the Markov partition and it will have the formal

expression

oo

k
u(da) = conste Lor=-eco A7)

(9.42.6)
if 9 is the shift on the bilateral sequences o.

Recalling §5.10 we see that the distribution u can be interpreted as a Gibbs
state for a one-dimensional Ising model with short-range interaction in the
sense of the discussion in Chap.V following (5.10.12), see §5.10,.

The function A,(c) has in fact all the properties needed for the lat-
ter interpretation, as a consequence of the discussion in §9.5. The
above heuristic discussion establishes the connection between the statis-
tical mechanics of one-dimensional spin systems with short-range interac-
tions and the apparently highly nontrivial dynamics of an Anosov system.
The above remarks lay the foundations of the thermodynamic formalism,
[Si68],[Ru76],[Bo74],[Ru78b].

In a sense the reduction of the system to an Ising model is the chaotic
dynamics analogue of the integration by quadratures of classical mechanics.

Appendix 9.A3. Aperiodic Motions Can be Begarded as Periodic
with Infinite Period!

This famous and criticized statement of Boltzmann, [Bo66], is the heart of
the application of the heat theorem for monocyclic systems to a gas in a
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box. Imagine the box containing the gas to be covered by a piston of section
A and located to the right of the origin at distance L, so that V' = AL.
The microscopic model for the piston will be a potential B(L — &) if z =
(&,m,C) are the coordinates of a particle. The function $(r) will vanish for
T > 10, for some g < L, and diverge to +oc at + = 0. Thus r¢ is the width
of the layer near the piston where the force of the wall is felt by the particles
that happen to roam there.

Noting that the potential energy due to the walls is ¢ = >, P(L —¢&;) and
that 8y = A~101,¢ we must evaluate the time average of

dre(e) =~ P(L-&)- (9.43.1)

As time evolves the particles with ¢; in the layer within r¢ of the wall will
feel the force exercised by the wall and bounce back. Fixing the attention
on one particle in the layer we see that it will contribute to the average of
Or¢(x) the amount

t1
! 2/ — P (L —¢&)dt (9.43.2)

total time /;,

if ¢y is the first instant when the point j enters the layer and ¢; is the
instant when the {-component of the velocity vanishes “against the wall”.
Since — @' (L —¢;) is the {-component of the force, the integral is 2m|¢;| (by
Newton’s law), provided éj > 0 of course. One assumes that the density is
low enough so that no collisions between particles occur while the particles
travel within the range of the potential of the wall: i.e. the mean free path
is much greater than the range of the potential ¥ defining the wall.

The number of such contributions to the average per unit time is therefore
given by pyan A fv>0 2mu f(v) vdvu if pyey is the density (average) of the
gas near the wall and f(v) is the fraction of particles with velocity between v
and v+dv. Using the ergodic hypothesis (i.e. the microcanonical ensemble)
and the equivalence of the ensembles to evaluate f(v) it follows that:

p - (Ove) = pwan B (9.43.3)

where 87! = kpT with T the absolute temperature and kg Boltmann’s
constant. Hence we see that (9.A3.3) yields the correct value of the pres-
sure, see Chap.I, Chap.II; in fact it is often even taken as the microscopic
definition of the pressure, [MP72].

On the other hand we have seen in §9.1, (9.1.7) (repeating the analysis
in Appendix 1.A1, Chap.I), that if all motions are periodic the quantity p
in (9.A3.3) is the right quantity that would make the heat theorem work.
Hence regarding all trajectories as periodic (i.e. the system as monocyclic)
leads to the heat theorem with p, U, V., T having the right physical inter-
pretation. And Boltzmann thought since the beginning of his work that
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trajectories confined into a finite region of phase space could be regarded
as periodic possibly with infinite period, [Bo66].

Appendix 9.A4. Gauss’ Least Constraint Principle

Let o(z,2) =0, (2,z) = {ij,gj} be a constraint and let R(&,z) be the
constraint reaction and F(z,z) the active force.

Consider all the possible accelerations a compatible with the constraints
and a given initial state Z,2. Then R is ideal or satisfies the principle of
minimal constraint if the actual accelerations a; = mL(E ; + R;) minimize
the effort

1 N
—(E; —m;a,)? Z(E —m;a;) - 6a; =0 (9.44.1)

m;
i=1 ’ i=1

M=

for all possible variations da; compatible with the constraint ¢. Since all
possible accelerations following z, z are such that Z O3, (&, ) - da; = 0

we can write
F;, —ma;, — « a@ﬁﬂp(ia z)=0 (9.44.2)

with a such that

Z7&z) =0, (9.44.3)

i.e.
>2imi (O,)?
which is the analytic expression of the Gauss’ principle, see [Wi89].

Note that if the constraint is even in the &, then « is odd in the velocities:
therefore if the constraint is imposed on a system with Hamiltonian H =
K 4+ V, with K quadratic in the velocities and V' depending only on the
positions, and if other purely positional forces (conservative or not) act on
the system then the resulting equations of motion are reversible if time
reversal is simply defined as velocity reversal.

The Gauss’ principle has been somewhat overlooked in the Physics litera-
ture in statistical mechanics: its importance has again only recently been
brought to the attention of researchers, see the review [HHP87]. A notable,
though by now ancient, exception is a paper of Gibbs, [Gi81], which develops
variational formulas which he relates to Gauss’ principle of least constraint.

Conceptually this principle should be regarded as a definition of ideal non-
holonomic constraint, much as D’Alembert’s priciple or the least action
principle are regarded as the definition of ideal holonomic constraint.
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