


Solid–Liquid Two Phase Flow



This page intentionally left blank



Solid–Liquid Two Phase Flow

Sümer M. Peker
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Preface

Being an ‘underpinning technology’, fluid flow closely reflects and sometimes precedes
the developments of the ‘core technologies’ of the time. Only in the second half of 19th
century that the term ‘two-phase flow’ was pronounced and added as a chapter to fluid
mechanics and unit operations books. At that time, two-phase flow term was used pre-
dominantly to denote gas–liquid flow, which is not coincidental, as the leading technolo-
gies were nuclear and thermal, addressing mainly vapor–liquid systems. Development of
secondary and tertiary oil recovery technologies in 1980s focused the attention of the sci-
entific world on surfactants and liquid–liquid systems incorporating surfactants. The new
millennium brought with it a vision toward a change in the scale of processes and dimen-
sions from macroscale to microscale. Along with it came the need for a fundamental
understanding of processes in the molecular scale, in place of empirical models.

The subject of solid–liquid two-phase flow is something we live with. Man is acquainted
with solid–liquid mixtures since he first made his brick house, and she, her bread.
Solid–liquid systems are within us, as our blood, around us in our everyday living and in
fundamental technologies such as ceramics, cement, plastics, and grain-based food indus-
tries. However, the outlook on solid–liquid systems has changed in the meantime, in par-
allel with the advancement in the global interests and technologies. The excellent books
written on solid–liquid two-phase flow about two decades ago addressed particulate tech-
nologies of noncolloidal materials. Reduction in the scale of the particulate materials
brought with it inevitable involvement in surface sciences. Inspection of the foresight and
research framework contents gives an insight into the powerful role of liquid–solid inter-
actions and two phase flow in the technologies of the future. Some new concepts are
expected to be introduced in the future; for example, the ‘solid wall’ was generally meant
to be the metal pipe wall, or a particle of a mineral. In the future, it may mean a surfactant
bilayer, the cell membrane, or a tissue. Until that time there is a great gap to be covered.

Solid–liquid two-phase flow in its present state of development is a multidisciplinary
subject: The size of the particles being processed in the developing technologies has
reduced from the order of micrometers to nanometers. Solid–particle interactions in this scale
are investigated in the field of colloid and surface science. Interfacial phenomenon is an
indispensable counterpart of the rheology of colloidal suspensions. The nonlinear rheo-
logical behavior, in turn, affects the fluid dynamics of solid–liquid mixtures. On the other
hand particles of noncolloidal dimensions settle under the action of gravity. Transport phe-
nomena together with the averaging techniques are required to analyze the flow problems
of settling suspensions. The analysis of the flow of settling slurries is still not free of
empiricism brought by the use of drag coefficients and friction factors.

Thirty years of experience of one of the authors in teaching fluid mechanics showed us
that a thorough understanding of fluid mechanics is possible only when the mechanism
underlying empirical results can be explained on a molecular scale. Models can then be
used for the prediction of the phenomena. The present book is written with this
understanding. The Solid–Liquid Two Phase Flow book consists mainly of three parts.
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viii Preface

The first three chapters handle the flow behavior of micron and submicron particles. The
next three chapters are related with particle sizes where Brownian motions are negligible.
The final two chapters are related with mixing and separation processes that are an insep-
arable part of solid–liquid flow. Within this context, a coherent and consistent approach is
adopted in interrelating the individual chapters.

Chapter 1 deals with the formation of the particulate phase of colloidal suspensions
starting with the molecular interactions. The role of surface forces in the aggregation of
primary particles is then taken up. This chapter is fundamental in the understanding of the
behavior of solid–liquid suspensions on all concentration levels and frequently referred to
in the subsequent chapters.

Chapter 2 gives the fundamentals of non-Newtonian flow together with examples for the
visualization of flow in channels of various geometries.

Chapter 3 is founded on the concepts given in Chapters 1 and 2 and extends these con-
cepts to concentrated suspensions where the interactions between particles predominate the
flow behavior. The chapter also deals with the effect of viscoelasticity of the suspending
medium and the particulate phase and recapitulates these effects in the most complicated of
all the flow systems, that of blood flow.

Chapter 4 takes up the motion of primary and aggregated particles. In parallel with the
contents of Chapter 1, the motion of porous, fractal aggregates and the particles with a
nonuniform density distribution and shape are also taken into consideration. This chapter
is closely interrelated with Chapters 6–8.

Chapter 5 reviews mathematical tools such as Eulerian and Lagrangian approaches and
averaging techniques that can be used in transport equations in analyzing dispersed systems
on microscale and macroscale. 

Chapter 6 deals with the flow behavior of settling solids based on the concepts given in
Chapters 4 and 5. The flow patterns, concentration distribution of particles in each flow
pattern and the pressure losses are taken up in this chapter.

Chapter 7 takes up the introduction of solids into the liquid phase. The interfacial phe-
nomena associated with the dispersion of solids is taken up first followed by the introduc-
tion of the solid phase into the liquid phase. Principles of macroscale mixing in agitated
vessels, static mixers and micromixers are then given.

Chapter 8 deals with the classification of particles according to their sizes and its exten-
sion, separation of solids from the liquid phase. Principles of continuous classification
processes in sedimentation, fluidization, and hydrocyclones are given as frequently used
macroscale processes. Examples of novel separation processes in the microscale are also
introduced in this chapter.

With this content, the book gives an overview of the recent developments in solid–liquid
two-phase flow. In writing the book, we tried to reach all the available literature on subjects
within the scope of this book, to the best of our knowledge. We looked for experimental
work supported by theoretical development or modeling work supported with experiments
in the selection of material to be included within the text, whenever possible. We hope that
it will be a useful guide to graduate students, researchers and professionals working in the
industry who are interested in solid–liquid systems.

We are grateful for the enthusiasm and support given by our graduate students, Alp
Alparslan, H. Banu Yener, and Berrin I

.
kizler who contributed so much in shaping up



this book. The help of our graduate students Volkan Çakır and Selin Şarkaya are grate-
fully acknowledged. We deeply appreciate the peaceful working environment provided
by Prof. Dr. Süheyda Atalay, the Head of the Chemical Engineering Department during
the writing of this book. We are grateful to Prof. Dr. Mustafa Demirciog�lu for critical
reading of some of the chapters Prof. Dr. Deniz Üner for her helpful suggestions and to
Pakize Peker for her help extended in the drawing of the Figures. Suggestions by the
academic members of Clinical Biochemistry and Hematology Divisions of Faculty of
Medicine of Ege University are highly appreciated.

This book would have never been written if it were not for the positive energy of
Sybrand Boer-Iwema, Publishing Editor of Chemistry and Chemical Engineering of
Elsevier Science Ltd. to whom we are deeply indebted. We also thank our Editors Joan
Anuels and Kristi Green for their helpful suggestions, guidance and support throughout the
writing of this book and Dr. M.S. Rajkumar for the careful typesetting. Finally we are
thankful to our families and friends who waited patiently for us to finish the writing of this
book symbolized as “Chapter 4”.

Sümer M. Peker
Şerife Ş. Helvacı
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The Particulate Phase: A Voyage from the

Molecule to the Granule

Flow behavior of solid–liquid two-phase flow systems depends on the properties of the
dispersed solid phase, the continuous liquid phase that suspends the solids and the inter-
actions between the two phases. This chapter is an overview of molecular interactions
leading up to the formation of solid particle aggregates and surface forces responsible for
the stability of suspensions.

1.1 MOLECULAR INTERACTIONS

Molecules of all matter at a temperature above absolute zero possess internal energy expressed
as motion in the form of rotation, vibration, and translation, provided there is enough space to
permit these motions. Because of the random translatory motion, the molecules frequently
collide with each other. The statistical average distance traveled between two collisions is
called the mean free path. When the energies of the colliding molecules are not “high
enough” to end-up in a coalition, the original molecules keep colliding with other molecules
on their paths, their energies being redistributed after each collision. This random motion,
called Brownian motion, is expressed as thermal energy in the terms of kBT, where kB is the
Boltzmann constant [1.381�10�23 JK�1] and T, the absolute temperature in [K]. All the
molecules would be free and would move randomly within the medium, if thermal energy
or internal energy were the only sources of energy the molecules possess. If there is any
aggregation or some kind of an order between the molecules, it is due to the attractive forces
existing between the molecules. For the attractive forces to be effective, the potential energy
they generate should be equal or greater in magnitude than the thermal energy. The thermal
energy at 25°C amounts to 1.381 � 10�23 �298�4.12�10�21 J, so bonds with energies
less than this are bound to break up at 25°C.

All the interactions between atoms and simple molecules are essentially electrostatic in
origin. This stems up from the structure of the atom: A positively charged nucleus sur-
rounded by a negatively charged electron cloud. The electron density in between atoms of
equal electronegativity, making up a molecule is symmetrical. If there is a deficiency of
electrons in this cloud in comparison with a neutral atom or a molecule, the molecule

1



2 1. The Particulate Phase

attains a positive charge, called a cation. If, on the other hand, there is a surplus of elec-
trons, the molecule becomes negatively charged and is called an anion. Two similarly
charged ions repel and dissimilar ions attract each other. The ionic charge Q of the ionic
molecule is the product of the number of missing/surplus electrons, the valence zi, and the
charge of a single electron e in Coulombs, e�1.602�10�19 C, Q � zi e. Due to the sym-
metry of the electron cloud, the electric field, E, around an ion is considered to have spher-
ical symmetry and to decrease with the square of the radial distance r:

(1.1)

Charge alone does not determine the electric field; the electrical permittivity of vacuum, �0

[�0 �8.854� 10�12 C2 J�1m�1], and the relative permittivity with respect to vacuum of the
medium in which the charged ions exist, �r , determine the effective charge around which
the field is set up. If an ion of charge Q2 is brought into the electrical field of another ion,
E, it acquires potential energy given by

(1.2)

The potential energy U is positive if the charges are similar, and negative if they are not.
The interaction force, F, is the negative of the derivative of the potential energy with
respect to r, the distance between the central Q1 and the incoming Q2 charges

(1.3)

If the charges Q1 and Q2 are similar, the ions repel each other, both the potential and the
force being positive. Unlike charges attract each other and are denoted by a negative force
and potential. Since this force of attraction or repulsion is much larger than kBT, the inter-
action is not affected by random molecular motions in the temperature range of solutions
or suspensions under ordinary conditions.

The basic assumption of these equations is that the ions act like point sources and do not
disturb the electron density distribution of each other. When the molecules are composed of
atoms with different electronegativity, the electron distribution departs from symmetrical in
favor of the more electronegative component. The electronegative atom acquires a slightly
negative charge, while the other atom or group of atoms, a slightly positive charge: The
molecule acts like a rod with different charges at either end. When such a dipole enters into
the electric field of an ion, the ion attracts the end carrying the opposite charge and repels
the other end. This dual interaction causes the dipole to rotate within the electric field of the
ion to orient itself with respect to the other ion and monoatom–diatom transition takes
place. The charge on a dipole is denoted by the dipole moment, m, the product of the charge
on one of the poles and the length l of the molecule in between the two charged ends.
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Even though the origin of the charge is not due to deficiency or excess of electrons, dipoles
also interact like ions with the charge Qi replaced by the dipole moment, m (Stokes and
Evans, 1997). In this way, the potential energy between a dipole and an ion, a distance r
apart is given by 

(1.5)

� is the angle between the axis of the dipole and the line joining the centers of the ion and
the dipole. Cos� term takes into account the interaction of both the positive and the nega-
tive ends of the dipole with the ion. For a cation, zi is positive and the maximum interac-
tions (attraction and repulsion in sequence) occur when the angle is a multiple of � radians
and the axis of the dipole is congruent with the line joining the centers. For this same rea-
son, a sphere of dipoles oriented radially toward the ion surrounds an ion in solution in a
polar compound, such as water.

Dipoles also interact with each other. Since the potential created by the dipoles is not
as strong as that of the ions, the dipoles are free to rotate. Hence, the potential energy
between the dipoles is a function of distance r between their centers, as well as the
angles in � and � directions between their axes in spherical coordinates. Through
trigonometric calculations, the potential between the two dipoles is obtained with an
equation similar to eq. (1.5)

(1.6)

To take into account all possible orientations of the dipoles, the angle average of the poten-
tial energy is taken through the use of Boltzmann distribution

(1.7)

which gives the fraction of the ions xi that possess a given potential energy, Ui, to the dis-
turbing thermal energy, kBT, ratio. The free rotation of the dipoles signifies that their ther-
mal energy is greater than their interaction potential, U(r, � ,� ) � kBT. The exponential
term can then be expanded and integrated

(1.8)

to give the angle-averaged potential between two dipoles, known as the Keesom interaction
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This angle-averaged interaction potential between two dipoles is always attractive (due to
the negative sign) and is the only interaction dependent on temperature, decreasing as the
temperature increases.

Dipoles, when close enough to another molecule, perturb their electronic cloud and
cause a redistribution of electrons opposite to their own. This redistribution shifts the
charge center of the molecule from the positively charged nucleus, generating a restoring
force, analogous to Hooke’s law, which counteracts the attractive force of the electric field
of the dipole. The total potential created between the permanent and induced dipoles is the
sum of the attractive and restoring forces, given in terms of polarization coefficient, �

(1.10)

as one half the potential between a dipole and an ion of electric fields �E and E, respec-
tively. The full potential energy cannot be used in the case of induced dipoles because half
the potential energy is expended during the inducement, in the displacement of the elec-
tron cloud from its original distribution. The electric field to which the polarized molecule
is subjected to is dependent on the angle between the permanent and induced dipole, �, and
the distance between their centers, r

(1.11)

where m is the dipole moment of the polar molecule. Replacing this expression for E in
eq. (1.10) and angle averaging the resultant equation gives

(1.12)

where the subscripts 1 and 2 refer to permanent and induced dipoles. This equation is
known as the Debye interaction potential which is always attractive.

The induced dipole in turn, induces a dipole in an adjacent molecule. The interaction
potential derived theoretically from the Schrödinger equation is known as the London
potential

(1.13)

In this equation, � is the Planck constant[��6.626�10�34Jsec],� the characteristic vibra-
tional frequency of electrons [sec�1], and their product �� the ionization energy of the atoms.

1.1.1 Attractive forces among molecules

Attractive forces among molecules are classically grouped as electrostatic or electrodynamic
in origin. Ions with opposing electrostatic charges create a potential given by eq. (1.2) and
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attract each other with a force given by eq. (1.3). The attractions between ions and perma-
nent dipoles also belong to this group, the potential or the free energy of interaction given by
eq. (1.5). It should be noted that the free energy of interaction of ion–ion interactions vary
inversely with the distance in between the ions while that of ion–dipole interactions vary with
the square of the distance. This means that these forces are effective over long distances of
separation of the molecules. 

van der Waals attractions

The interaction potential between permanent dipoles, the Keesom equation (eq. (1.9)),
between permanent and induced dipoles, the Debye equation (eq. (1.12)), and between
induced dipoles, London equation (eq. (1.13)) are collectively known as van der Waals
attractions. These forces originate from the asymmetry in the distribution of electrons
within the molecules and are created by induction of a polar or an induced-polar molecule
in close proximity in the process of constant rotational and translational motion. So, these
forces are dynamic in origin and are short-range attractive forces as shown by the r�6

dependence in each case. Keesom interactions are effective in the alignment of polar mole-
cules; on the other hand, the London interactions are effective among all types of molecules
and mainly responsible for the attraction of particles as will be shown in the next section.

1.1.2 Repulsive forces among molecules

Like attractive forces, repulsive forces also arise between ions carrying similar charges and
dipoles the magnitudes of which are calculated with the same equations. Due to the simi-
larity of the charges, both the force and the potential energy are always positive.

Apart from these forces of electrostatic origin, repulsion can also arise due to overlap-
ping of electron clouds, at extremely short distances. The potential energy that arises due
to repulsive interaction of electron clouds are given by the general expression

(1.14)

� is related to the size of the molecule defined by the very short-range steric repulsive
forces that determine the identity of the molecule by setting the limits of closest approach.
r is the distance between the “closest-approach boundaries” of the atoms. In the hard-
sphere concept of the molecule, the exponent n is taken as n�
. In such a case, the poten-
tial energy is either zero, when r ��0, or goes to infinity when r ��0. Generally, the
electron clouds show a limited flexibility, so the Lennard–Jones potential is the most
widely used potential energy expression

(1.15)

The first term on the right hand side (RHS) that shows a 6th power variation with distance
separating the molecules signifies the three van der Waals attractions and the second term,
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with the 12th power variation signifies the repulsion due to the close approach of the elec-
tron clouds. ALJ and BLJ are adjustable constants related with the size of the molecules.

1.2 INTERACTIONS OF ELECTRICAL ORIGIN BETWEEN PARTICLES

The same forces that exist between a pair of molecules also exist between a great number
of molecules aggregated in the form of a particle. The interactions may be attractive based
on electronic distributions (van der Waals) or repulsive due to ionic distributions (double
layer repulsions).

1.2.1 Attractions between particles

If the particles are not ionic, and have a uniform distribution of molecules, one of the com-
ponents of the van der Waals forces will be effective in forming attractive forces between the
particles. Assuming each molecule in one particle to interact with a molecule on another par-
ticle and that, these interactions can be added pair wise, attractive forces between two bod-
ies can be calculated. In the original derivation of Hamaker (1937), the number distribution
of molecules in a differential volume element is taken and the potential energy between the
molecules of the control element and a single molecule is calculated (Stokes and Evans,
1997). The general form of the van der Waals interaction potential can be written as

(1.16)

All the molecules in the differential volume dv, (�NA/M)dv, will interact with this single
molecule, that is situated at a normal distance along the axis in cylindrical coordinates,
causing the evolution of a potential

(1.17) 

where � is the density of the particle, NA the Avogadro number [6.023�1023 molecules per
mol], and M the molecular weight. If this single molecule is one of the many in another
particle, then the potential due to all the molecules per unit area [J m–2] facing the first par-
ticle ((�NA/M )dh) would be

(1.18)

The integration limits in eq. (1.18) is the distance between the parallel plates, h, and the
other end of the planar particle that is at a very large distance approaching infinity, in
terms of the attraction range. The result turns out to be inversely proportional to the square
of the distance separating the particles, which can be classified as long-range interaction.
The coefficient of the interaction potential ALJ and the term related with the number of
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molecules are collected in a single parameter, which is a material constant called the
Hamaker constant, H.

(1.19)

The attractive interaction potential between two flat plates in vacuum is given as

(1.20)

As only the particle–particle interactions are considered in the derivation, it is denoted by
the symbol, H11, where the subscript 1 indicates that the two particles are made of the same
material. The most general attractive force effective between all types of molecules is the
dispersion or the London forces between two induced dipoles. For particles composed of
identical particles, eq. (1.13) is reduced to

(1.21)

and the Hamaker constant for the two particles interacting in vacuum becomes

(1.22)

If the particles are suspended in a liquid medium, the attractive potential is greatly reduced
due to the intervening medium. Denoting the intervening liquid with the subscript 2, the
Hamaker constant would be denoted by H121, approximated as

(1.23)

Water as the most frequently suspending agent has a Hamaker constant of H22�3.7�10�20J.
If the two particles are not identical in properties, the interactions between the first particle 
1 and the medium 2, as well as the second particle 3 and the medium 2 should be taken into
account, approximated by the expression

(1.24)

Eq. (1.23) is always positive due to the squared term, so unless the Hamaker constant in
vacuum of the suspending medium is equal to that of the particles, the two particles will
always attract each other. Naturally when H121 equals zero, the particles will be inert
toward each other. When two dissimilar particles are under consideration, the value of the
Hamaker constant of the medium becomes important: If H22 is in between H11 and H33 in
value then H123 in eq. (1.24) will be negative and the particles will repel each other lead-
ing onto a stable suspension.
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An expression similar to eq. (1.20) for planar particles is derived for spherical parti-
cles by using the Derjaguin approximation (Stokes and Evans, 1997), assuming the sur-
face of the sphere is made up of an infinite number of planar steps. Applying the
equation for planar surfaces to each vertical surface of the step and integrating over the
surface of the particle, gives the interaction potential between two spheres of equal
radii R as

(1.25)

and for spheres of unequal radii R1 and R3 at a distance h much smaller than the radius of
either particle

(1.26)

In both cases, the potential changes inversely with the distance separating the spherical
particles and the attractive force, equal to the derivative of the potential, changes with the
square of the distance.

If the particles were suspended in a liquid medium, eq. (1.20) for flat plates, eqs. (1.25)
and (1.26) for spheres would be

(1.20a)

(1.25a)

(1.26a)

In the above derivation originally made by Hamaker in 1937, the sum of all the pair-wise
interactions among the molecules or atoms in a particle were taken into account. Hamaker
constant is a material constant of the interacting particles and the medium within which
they are suspended in terms of polarizabilities and number densities of the molecules mak-
ing up the particles, as given in eq. (1.22). In the more rigorous treatment of Lifshitz (1956),
instead of being considered in terms of their component molecules, the particles are taken
as a continuum with given dielectric properties. van der Waals interaction is the result of
fluctuations in the electromagnetic field between the two particles, modified by the inter-
vening suspension medium. Hamaker constant can be estimated from knowledge of fre-
quency-dependent dielectric properties of the interacting materials together with the
intervening medium and the geometry of the particles. Accuracy of the Hamaker constant
is related to the precision and accuracy of dielectric spectra and mathematical representa-
tion of the data. Bergstrom (1997) has critically evaluated the available optical data in the

U h
H R R

h R R
( )

6 ( )sphere
123 1 3

1 3

��
�

U h
H R

h
R h( ) ,sphere

121

12
�� ��

U h
H

h
( )plate

121
212

��
�

U h
H R R

h R R
( )

6 ( )
13 1 3

1 3

��
�

U h
H R

h
R h( ) ,sphere

11

12
�� ��

8 1. The Particulate Phase



literature and calculated the Hamaker constant by the full Lifshitz method. Table 1.1 is
abridged from the results of Bergstrom.

1.2.2 Ionic interactions between charged surfaces

Particle surfaces in a liquid medium acquire surface charge either through dissolution and
diffusion of ions of the particle from the surface into the solution leaving the particle sur-
faces in an ionized state, or through adsorption of ions from solution onto the particle sur-
face. If in addition, the suspension medium is an electrolyte solution, then ions of the
solution will interact with the ions on the surface of the particle. If the ionization or adsorp-
tion sites are uniformly distributed over the surface, the charge concentration on the parti-
cle surface can be quantified in terms of surface charge density, �0 [Cm–2]. In the solution
side of the solid/liquid interface, ions of opposite charge will accumulate nearby the sur-
face to maintain electrical neutrality. The charge density in solution (zieCiN), will increase
as the particle surface is approached. A potential, �, will then be created between the sur-
face of the particles and the ions in solution that have accumulated near the particle. The
charge density in solution is proportional to the potential gradient, in accordance with the
Poisson equation

(1.27)

where CiN is the number concentration. The proportionality constant, the inverse of the per-
mittivity or the dielectric constant of the solution, �r�0, takes into account the van der Waals
interactions among the molecules of the solution, so that only the ions are taken into con-
sideration. The concentration term CiN in the expression giving the charge density of the
solution is the number of ions per unit volume [m�3] of the solution. These ions have suf-
ficient potential energy to overcome the dispersive thermal or internal energy (kBT ) to

� �2

r 0

1
��

� �
z eCi iN

i
∑
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Table 1.1

Hamaker constants

Material Crystal structure Hamaker constant�1020 J

In vacuum In water

�-Al2O3 Hexagonal 15.2 3.67
PbS Cubic 8.17 4.98
SiO2 (quartz) Trigonal 8.86 1.02
SiO2 (silica) Amorphous 6.50 0.46
TiO2 Tetragonal 15.3 5.35
ZnO Hexagonal 9.21 1.89
ZnS Cubic 15.2 4.80
ZnS Hexagonal 17.2 5.74

Source: With permission of Elsevier Science Ltd.



gather around the particle, instead of being uniformly distributed in random in the solu-
tion. So the Boltzmann distribution, analogous to eq. (1.7) can be used to relate the frac-
tion of ions in solution with the potential created by the particle �

(1.28)

where CiN
0 is the concentration when there is no potential (�� 0). Replacing eq. (1.28) into

eq. (1.27), Poisson–Boltzmann equation is obtained which relates the potential gradient
with the concentration of ions in solution.

(1.29)

Assuming the particles as flat flakes with surfaces exposed to the solution in one direc-
tion only, eq. (1.29) is solved to give the Gouy–Chapman relation, valid for symmetrical
electrolytes containing equal numbers of cations and anions in a molecule (Stokes and
Evans, 1997)

(1.30)

The potential � is given implicitly in terms of the Boltzmann distribution in the �0 term as

(1.31)

In eq. (1.30), h is the distance from the particle surface and 	 the gradient of the potential
near the surface. From dimensional analysis, 	 must have the dimension of inverse length
[L�1]. 	�1 is called the Debye screening length.

It should be noted that eqs. (1.30) and (1.31) relate the potential � created by the
charged particle to the charge distribution in the solution. On the ground that electrical
neutrality should be maintained within the particulate suspension, the total charge on the
particle surfaces should be neutralized by the opposite charged ions in the solution. Stokes
and Evans (1997) related the potential � to the charge density on the surface of the parti-
cle, �0, using the Poisson–Boltzmann relation

(1.32) 

The concepts and the effect of different parameters introduced so far are illustrated
schematically in Figure 1.1. The potential decreases steeply with distance from the solid
surface as the ionic concentration increases as shown in the left hand side (LHS) of the
plate corresponding to Figure 1.1(a), in accordance with eq. (1.29). The effect of the
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valence number in symmetrical electrolytes containing equal numbers of cations and
anions in a molecule are shown on the RHS of the plate corresponding to Figure 1.1(b).
Higher valence (2:2) causes a steeper decline of the potential with distance from the sur-
face according to eq. (1.30). 

The distribution of ions around a particle is given in Figure 1.2(a), in an exaggerated scale
to show the different layers. The ions of the particle are shown as being homogeneously
distributed over the surface area. A layer of ions of opposite charge adjacent to the particle
is called the Stern layer. As the Debye length, designated as 	�1, is an imaginary layer with-
out a physical existence, it is arbitrarily shown to be several atomic diameters in thickness.
The Debye length is defined by the simplified solution (Stokes and Evans, 1997) of the
Poisson–Boltzmann equation valid for ze���kBT as

(1.33)

Debye length is defined as the distance from the surface (h�1/	), where the electrical
potential decreases to 37% of its value at the particle surface:

(1.33a)

and changes parametrically with the electrolyte concentration and charge, permittivity of
the medium and temperature according to eq. (1.34)

(1.34)
1
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(a)
distance from the surface, h distance from the surface, h

increasing ion
concentration

increasing ion
valence

Potential Energy

(b)

Figure 1.1 Effect of (a) ion concentration (b) ion valence (1:1 (NaCl), 2:2 (ZnSO4)) on the poten-
tial as a function of distance from the surface. 



A decrease in Debye length, 	�1, signifies closer approach of the particles, and in the limit,
one of the particles being entrapped in the secondary or primary energy minimum of the
other, leading on to coagulation, as will be explained in the following sections.
Concentration of electrolytes in solution, CiN

0 , should be increased if coagulation is desired
to take place among the particles. Debye length varies inversely with the square of the
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Figure 1.2 Distribution of counterions around charged particles. (a) Various layers defined within
the diffuse ions. (b) Variation of electrical potential between two approaching ions. (c) Potential
increase due to overlap of diffuse ions on close approach of the particles. 



valence of the ions. For this reason, multivalent ions with zi �1 are able to approach very
closely to charged surfaces. This effect has a bearing in many important cases such as in
the aggregation of red blood cells (RBCs), and the production of metal oxides in microemul-
sions, where the metal ion is situated very close to the hydrophilic heads of the anionic sur-
factants, making up the inner surface of the micelles that serve as nanoreactors.

Zeta potential is the only experimentally measurable length scale in the ionic diffuse
layer that can be measured with electrophoresis. The method is based on the calculation of
the particle diameter based on the diffusion rate of the particle in an electric field. The
hydrodynamic diameter, dh, includes not only the particle diameter itself but also the Stern
layer and a portion of the diffuse layer; i.e., the ions on which the effect of attractive forces
of electrostatic origin are greater than the hydrodynamic shear forces acting on the parti-
cle during its travel.

Hitherto, the charged molecules were simply referred to as “ions” without regard to their
interactions with the particles. The ions can be classified into three groups in terms of their
effect on the particle: Indifferent ions, potential determining ions, and charge reversing ions.

Indifferent ions do not affect the potential or the charge distribution on the particle sur-
face; they affect the Gouy–Chapman diffuse layer of ions surrounding the particle. An
increase in the concentration of indifferent ions in the suspension medium causes a
decrease in the Debye length, permitting closer approach of the charged particles, eventu-
ally leading up to coagulation. Generally, sodium chloride (NaCl) is used to bring about
the indifferent electrolyte effect.

Potential determining ions change the surface potential �0 of the particle when adsorbed
on the surface. If the particles are ionic, such as metal salts or metal hydroxides, then the
potential of the ions in solution and those adsorbed on the surface are equal according to
the Gibbs adsorption isotherm (�EC

sol � �EC
surf ). �EC includes both the electrical and chemical

effects (Reid, 1990)

(1.35)

Rearrangement of eq. (1.35) gives

(1.36)

where ai is the activity, F the Faraday constant [9.648 �104 C mol�1], zi the valence of the
ion, and �i

surf ��i
sol the electrical surface potential �0 on the particle. For dilute solutions,

the activity of the solution approaches 1 and eq. (1.36) is reduced to the Nernst equation

(1.36a)

In addition, activity can be replaced by concentration for dilute solutions.
When the ions are adsorbed from the solution in amounts equivalent to the surface

charge, the electrical potential of the particle surface is zero. These zero surface potential
concentrations can be calculated from the Nernst equation by setting �0 �0. The particle
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grows in size under the condition of zero surface potential. At other concentrations, the
particle acquires a positive or a negative potential according to the ion that is preferentially
adsorbed on the particle surface. For colloidal particles that have weak acidic or basic
groups, H� and OH� ions are potential determining. In such a case, pH of the suspension
medium is taken into consideration, instead of the ion concentration as in the case of ionic
particles. At the pH corresponding to zero surface charge (isoelectric point), repulsive
forces no longer exist and attractive forces dominate the interactions between the particles.

Charge reversing ions are selectively adsorbed from the suspension medium which
changes the composition of the surface as well as the potential and the charge. Examples
are the cationic surfactants adsorbed on clay (montmorillonite) particles and polyelec-
trolytes adsorbed on nanosized particles to maintain stabilization.

1.2.3 The DLVO theory

Charged particles are so abundant in nature and in industrial operations that their interac-
tions were the first to be investigated historically. As initially formulated by the authors
(Derjaguin and Landau, 1941; Verwey and Overbeek, 1948), the theory accepts the total
interaction energy between two charged particles to be the sum of the repulsive and attrac-
tive forces:

(1.37)

The assumptions behind this statement are:

1. Particles have smooth surfaces with a uniform charge distribution.
2. Electrical double layer does not affect the van der Waals forces and these two forces

are additive.
3. The charge density and the electrical potential of the surface are constant.
4. Uniform charge distribution is assumed to prevail at the surface.
5. The solid particles do not affect the molecular structure of the liquid suspension

medium even at very close distances to the interface. 

The attractive interaction potential is given by eq. (1.20a) for plate-like, flaky particles and
by eqs. (1.25a) and (1.26a) for spherical particles. The repulsion term in eq. (1.37) inher-
ently includes the molecular repulsion term of the Lennard–Jones potential given as the sec-
ond term in the RHS of eq. (1.15). But this repulsion varies inversely with the 12th power
of the distance between molecules and the range of effectiveness is too short to be signifi-
cant in particle–particle interactions. As the particles approach each other under attractive
forces in the suspension medium, another force of entropic origin evolves that keeps off the
particles from approaching each other. The ionic distribution in the solution as two nega-
tively charged particles approach each other is shown in Figure 1.2(b). As the particles
approach each other, the diffuse double layer ions are confined in the space between the par-
ticles and the ionic concentration increases (Figure 1.2(c)). This confinement ends up with
the evolution of a repulsion force due to the decrease in entropy in the interparticle space

U h U h U hT att rep( ) ( ) ( )� �

14 1. The Particulate Phase



that opposes further approach of the particles. If an electrolyte is present in the medium, the
compressed diffuse layer will be in equilibrium with the bulk solution. In this case, the net
pressure pushing the particles apart can be taken as the osmotic pressure between the com-
pressed double layers and the suspension medium. Gouy–Chapmann solution permits lin-
earization of the Poisson–Boltzmann equation, yielding the interaction energy between flat
plates due to osmotic pressure as (Stokes and Evans, 1997)

(1.38)

A similar expression can be obtained for two spherical particles of radius R, with the
Derjaguin approximation

(1.39)

With this expression, DLVO interaction energy given by eq. (1.37) for two spherical par-
ticles becomes

(1.40)

This equation states that as the distance h between the particles increases, both the attrac-
tive and the repulsive terms tend to zero. If attractive forces dominate in the system, the
total potential becomes negative, and if this domination is for a limited h range only, it
results in a minimum in the total energy curve. If the repulsive forces dominate, the total
potential becomes positive, resulting in a peak (repulsive energy barrier) if this domination
is for a limited range in h, only. The shape of the attractive Uatt and repulsive Urep poten-
tials are given in Figure 1.3(a), and the general shape of the total interaction potential in
Figure 1.3(b). Core repulsion energy UCR evolving from the overlap of the electron clouds
is too short ranged to affect the total energy UT, which determines the interactions between
the particles. Figure 1.3(c) represents a case with an easily surmountable energy barrier
Umax coupled by a deep potential energy minimum, the primary energy minimum (PM).
Under such a case, the reaction or aggregation rate is controlled by the resistance of the
suspension medium toward the motion of the particles only. Figure 1.3(d) represents a case
of selectivity, where only the molecules with energies high enough to surmount the poten-
tial energy barrier (PEB) can aggregate. In Figure 1.3(e), a secondary minimum (SM) in
the total energy profile is observed at distances of approach greater than the energy barrier.
This means that there is no resistance to bonds formed in the range of the secondary min-
imum; but the reverse is also true: There is no resistance to the breakage of the bonds also.
Reversible attachments as in the case of flocculation are formed in the range of the sec-
ondary minimum. Figure 1.3(f) is a case where there is no secondary minimum, but nei-
ther the energy minimum PM is very deep, nor the energy barrier Umax, very high. This
allows the molecules with high enough energies to wander around for a better place to
bond on the particle, called restructuring, as will be discussed in the next section. 
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Figure 1.3 Variations in the potential energy of interaction with distance h from the surface of the
particle. (a) Variation of potential energy under attractive and repulsive forces, (b) total potential
energy of interaction, (c) total potential energy under low repulsive, high attractive forces, (d) case
of a high repulsive energy barrier, (e) appearance of a secondary energy minimum and (f) low attrac-
tive and repulsive potential energies. 



In any system of particles suspended in an electrolytic solution, the attractive and
repulsive forces can be manipulated to maintain stabilization of the suspension, or to aid
coagulation to bring about settling of the solid particles. The shape of the total interaction
energy function determines which process will take place according to the average
distance h between the particles. This distance is determined by electrostatic and hydro-
dynamic forces, as well as by the shape of the particles. The last two factors will be dis-
cussed in the following sections in connection with cluster formation. Electrostatically,
the distance between the particles can be controlled by the Debye length, which in turn is
a function of temperature, dielectric constant of the suspension medium, valence of the
ions of the electrolyte, and the ionic concentration through eq. (1.34). The attraction and
repulsion potentials are related to the properties of the suspension medium, through the
parameters of the Hamaker constant and Debye length, respectively. For a given system
of particles and suspension medium, the total interaction potential can be adjusted toward
a given aim through the manipulation of repulsion forces by the addition of salt, an elec-
trolyte, or by changing the temperature. Solution properties also affect the charge density
on the surface of the particle, �0, in accordance with eq. (1.32). This effect on the charge
density of the particle is not taken into account, according to the third assumption of the
DLVO theory.

The validity of the DLVO theory at low to moderate ionic strengths of electrolyte solu-
tions, where the distances between surfaces are large in comparison with molecular dimen-
sions, is established through extensive experimental work. Electrostatic forces are present
in a wide range of colloidal systems under moderate conditions and DLVO theory can be
successfully used to evaluate the interactions between the particles. The DLVO theory fails
to explain the interactions under (1) high ionic strengths, (2) heteroaggregation, (3) dis-
crete surface charges, (4) strong electrostatic interactions as in the case of multivalent
counterions or low dielectric constant of the solvent, and (5) specific ion effects. As the
theory is based on bulk phase physical properties such as density and permittivity, it can-
not be used to predict interaction potentials at very close distances of approach of the par-
ticles where the intervening suspension medium can no longer be taken as a continuum.
Under such cases, solvation forces determine the interactions between particles.

When other colloids such as polymers, nanoparticles, and surfactants are present in the
suspension medium, different forces, collectively called the non-DLVO forces, control the
particle interactions. 

1.3 INTERACTION OF PARTICLES DUE TO NON-DLVO FORCES

As the particles approach each other within a few molecular diameters, the intervening
fluid behaves as discrete particles that have different properties from the bulk. Under these
conditions, non-DLVO forces mainly of entropic origin dominate at very small separations
and may overcome the effect of the DLVO forces. Depending on the interactions between
the solid surface and the components of the suspending medium, these forces can be oscil-
latory, attractive (hydrophobic), or repulsive (hydration). In all cases, they decay expo-
nentially within a few nanometers, corresponding to several molecular diameters, from the
surface and coincide with the effective long-range DLVO forces between the particles.
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Other non-DLVO forces of entropic origin arise due to the effect of osmotic pressures
in the presence of adsorbed short-chain molecules (steric forces) or nonadsorbing poly-
mers (depletion forces). Another non-DLVO force that is effective over long ranges and of
energetic origin is called the bridging force. Bridging forces cause aggregation through
simultaneous adsorption of high molecular weight polymers to more than one particle.
Another type of bridging force arises when polymers grafted (chemically bonded) on dif-
ferent particles attract each other.

1.3.1 Forces of entropic origin

The fifth assumption of the DLVO theory, that the liquid in which the particles are sus-
pended is not affected by the particle surfaces is believed not to be valid based on meas-
urements with surface force apparatus (SFA) and atomic force microscope (AFM). The
potential between a pair of particles can be affected by the interactions among the molecules
of the suspending liquid medium; and between the liquid molecules and the molecules at
the surfaces of the particles, called the many-body interactions. Especially if the solid sur-
faces are smooth and orderly structured, the liquid molecules in the immediate vicinity of
the particles are affected also and form an ordered solvation layer, with properties signifi-
cantly different from the bulk physical properties due to increased level of compaction.
Solvation (structural) forces arise in between two particles when the free energy associated
with the configuration of the surrounding solvent molecules changes as the particles
approach each other (Israelachvili, 1991).

From the first and second laws of thermodynamics, the change in the free energy of
interaction dw can be related to the internal energy and entropy through the relation

(1.41)

The change in the free energy of interaction is brought about by the decrease in the volume
of the intervening liquid between the two particles. The increase in the concentration of
this intervening layer causes the evolution of osmotic pressure between this layer and the
bulk liquid phase

(1.42)

Equating these two expressions for the free energy of interaction, the osmotic pressure can
be related to the variation of internal energy and entropy with the decreasing volume in
between the two particles through

(1.43)

If there are no interactions between the molecules or colloids suspended in the medium,
the internal energy does not change as the particles approach each other, the first term on
the RHS of eq. (1.43) becomes zero and the osmotic pressure is controlled solely by
variations in entropy. Entropy is related to the number of configurations �, which is a
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function of the quantum states of the intervening molecules through the relation (Kuhn and
Försterling, 2000)

(1.44)

where N is the number of solute molecules (or colloidal entities other than the particles) in
the suspension medium. Since ln(1 � dv / v) � dv / v, the equation simplifies to

(1.45)

and the osmotic pressure can be related to the concentration Ci of colloidal entities through

(1.46)

where RG is the universal gas constant. The difference between the osmotic pressures in
the intervening layer and the bulk liquid gives the repulsive (or attractive) pressures oper-
ating between the particles: Regular arrays of molecules lead to a crystal-like structure
with a packing density greater than that in the bulk. The osmotic pressure in the confined
volume in between the particles then becomes greater than the bulk osmotic pressure,
resulting in a net repulsive force. When the packing density of the distorted layers are
approximately equal to the bulk packing density, the osmotic pressures become equal and
the interaction between the particles are controlled by other forces operative at those dis-
tances. On the other extreme, when the intervening layer between the particles is so short
as not to allow in the molecules or colloids, the osmotic pressure in between the particles
become zero and less than the bulk osmotic pressure leading to strong attractive forces.

If there are only solvent molecules in between the particles, eq. (1.46) reduces to the
contact value theorem

(1.47)

where �s is the molar density [mol m�3] of the liquid at the surface of the particles, which
is a function of the distance between the particles, h, with 0 � h � 
. Contact value the-
orem gives the pressure that arises due to a density increase in between two approaching
particles, provided there is no interaction between the components of the intervening liq-
uid and the particle surfaces (Israelachvili, 1991). This theorem can be used to find the
pressure between two charged particles when �s is used for the ion concentration at the sur-
faces; to give solvation interactions when �s is the surface concentration of solvent mole-
cules or to give the steric and depletion interactions when �s is the surface concentration
of polymers. The significance of this general application is that as long as a variation in
the configurations of molecules or colloids in the intervening liquid are involved in the
interaction of particles, the underlying mechanism is basically entropic in origin, even
though energetic variations may also be present.
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1.3.1.1 Oscillatory forces

In the case of simple molecules separating hard-sphere particles, a solvation force was
found to arise when the liquid density changes as the surfaces approach each other. If the
surfaces of the particles are smooth and unyielding, and the molecules in the confined
space spherical with free access to the bulk liquid phase, the solvation force is a decaying
oscillatory function of distance (Israelachvili, 1991)

(1.48)

where � is the diameter of a liquid molecule. With simple molecules without any
electrostatic repulsion, oscillations are superimposed on the attractive van der Waals force
curve; i.e., the attractive force curve oscillates with a decaying amplitude until it
converges with the long range van der Waals forces. The intercept of the oscillating
curve with the force axis at contact (h � 0) gives the adhesion force. Depending on the
relative dominance of other attractive and repulsive forces, oscillations were found to
coincide with the attractive, repulsive, or total energy curves. If the liquid molecules are
not symmetric, or the particle surfaces are not smooth, then no oscillations were
observed. Instead, the energy curves varied monotonically with distance of separation
(Israelachvili, 1991).

Similar oscillating phenomena are observed when colloids with regular shapes such as
nanoparticles (Wasan et al., 2005), and spherical micelles (Adler et al., 2000) are
suspended in a liquid used as a suspension medium for larger microparticles. The total
potential energy curve oscillates in this case, due to unavoidable alignment of the
nanoparticles at distances that are multiples of the nanoparticle diameters as the microscale
particles approach each other. The oscillations in the interaction forces are given
schematically in Figure 1.4 to illustrate the role of entropy. The unyielding hard walls of
the microparticle surfaces force the smaller particles into alignment, which becomes more
regular as the possible number of columns that can be formed decrease. The decrease in
entropy due to ordering of the particles creates a repulsive force proportional to the order
in the alignment. Thus, the amplitude of oscillations increase as the number of columns
that can be fitted into the confined space decreases. Oscillations always end-up with a
negative value, a strong attraction, at h=0 due to depletion forces. 

The oscillations die out after a separation distance of about five diameters of depletant
molecules or colloids. Thus, the oscillatory forces are short ranged in comparison with the
van der Waals forces with a range of 5 nm, when only simple molecules with a diameter
of few Angstroms are present in the suspending medium. When the depletant molecules
are colloids with diameters of several nanometers, the oscillating forces are considered to
be long ranged in comparison with van der Waals forces.

There are two other forces whose existence are proven by experimental measurements
(Israelachvili, 1991), even though the origins are not clearly understood but thought to be
of entropic origin: Repulsive hydration forces and attractive hydrophobic forces in an
aqueous suspending medium.
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1.3.1.2 Hydration forces

It is believed that, affected by the regular arrays of solid phase molecules, water molecules
exist in a crystal structure adjacent to solid surfaces. The network extends a long distance
away from the particle surface due to hydrogen bonds (type of van der Waals forces between
H and O atoms in a molecule). If the hydrophilic surface of a particle forms stronger bonds
with water, a strong repulsive force develops that decays exponentially within about
3–5 nm. Hydration forces can be controlled if the hydrophilicity of the surface can be reg-
ulated by ion exchange. If the hydrophilic groups are in-built within the surface structure of
a particle, hydration forces exist under all conditions and stabilize the suspension.

1.3.1.3 Hydrophobic forces

Contrary to hydration forces, hydrophobic forces arise when the surface molecules of the
particles have no attraction to water molecules, such as hydrocarbons and fluorocarbons and
are responsible for the enclosure of the hydrocarbon groups within self-assemblies of sur-
factants. Hydrophobic forces are strongly attractive with a range and magnitude greater
than the van der Waals forces. Recently, the attraction between two mica surfaces made
hydrophobic with physisorbed double-chained cationic surfactant (dimethyl dioctadecyl
ammonium bromide) was measured with the dynamic method in a SFA (Lin et al., 2005).
With this method, the distance–time variations of the surfaces could be detected down to sep-
arations of 10Å. As the surfaces approached each other, the distance versus time paths first
deviated from the trajectory based on viscous forces only and then converged to a single path
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at the same points for all velocities of approach (10, 75, 115Åsec�1). The slope of this sin-
gle path decreased at very short distances of approach (50Å in the experiments) until the
clarity was lost at the end (10Å). The deceleration at very close distances was taken to be an
indication of frictional losses within the liquid medium that persists even at such short sepa-
ration distances. The convergence of the different paths was taken as an indication of a very
strong short-range attraction that affects the stability. The authors concluded that what appears
to be a hydrophobic force might be a combination of short-range and long-range forces as was
suggested previously by other researchers. Reduced force curves as a function of distance are
obtained by integration of experimental data taken as the variation of distance–time and are
strongly dependent on the assumed boundary conditions which cannot be verified at the pres-
ent. The reduced force curves calculated with the no slip assumption confirm the strong
increase in force very near the surface (h�50Å), the origins of which are still unknown.

Polymers, short-chain hydrocarbon groups and nanoparticles also cause forces of
entropic origin, repulsive steric forces and attractive depletion forces, as shown in
Figure 1.5. They are analogous to attractive and repulsive counterparts of oscillating forces
encountered at various distances of separation from the surface. The conditions in the col-
loidal system can be designed or engineered to enable these forces to be effective in stabi-
lization or destabilization of suspensions. 
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1.3.1.4 Depletion forces

Depletion forces arise when nonadsorbing polymers are present in the suspension medium.
At a ratio of polymer to particle concentration depending on the properties and conditions
of the system under consideration, the particles can approach each other up to such short
distances that polymer molecules cannot enter the intervening layer. The osmotic pressure
of the bulk liquid will then force the particles toward each other, as the Posm will be zero
in the confined intervening (excluded) volume (Figure 1.5(b)). The same effect can also be
produced by nanoparticles, which do not adsorb on the surfaces of the micro- or macro-
scale particles but create an osmotic pressure outside of the confined layer sufficient to
cause depletion forces to arise (Tohver et al., 2001; Wasan et al., 2005).

Basing on AFM measurements, Burns et al. (2002) found the depletion layer in poly-
acrylic acid (PAA) on polystyrene latex dispersion to decrease as the concentration of the
polymer increased. The decrease was found to be very sharp at very low concentrations of
the polymer, leveling off to a constant value of about 2nm as the concentration increased.
In very dilute polymer solutions, the thickness of the depletion layer increases as the
molecular weight increases.

Fleer et al. (1984) relate the depletion force, Fdep, between a sphere and a flat plate to
the depletion layer thickness �, through the area on which the osmotic pressure acts with
the equation

(1.49)

where R0 is the radius of the particles, h the interparticle separation, and � the deple-
tion layer thickness. Accepting the depletion force to be additive to the attractive and
repulsive forces of the DLVO theory, it is possible to observe a secondary minimum in
the total energy curve, even when no such minimum exists in the presence of DLVO
forces only.

1.3.1.5 Steric forces

Contrary to depletion forces, steric forces arise due to adsorbed molecules. These mole-
cules could be surfactants, physically adsorbed polymers, grafted polymers that are
chemisorbed at specific sites on the particle surface, freely dangling sections of polymers
that are a part of the integral structure of the particle surface, or nanoparticles adsorbed on
the particle surfaces. Repulsive forces arise when the adsorbed layers of the particles over-
lap on close approach, as sketched in Figure 1.5(a). Then, the increase in Pi

osm due to
increased concentration in the overlap layer will cause the particles to repel each other. The
closest distance of approach of the particles are determined by the chain length of surfac-
tants, diameter of nanoparticles or radius of gyration Rg of the polymers given by

(1.50)

where M0 is the molecular weight of the unit monomers with length l, M the molecular
weight of the polymer made up of these monomers. Radius of gyration depends on the
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compatibility of the polymer with the solvent. The polymer volume based on Rg includes
the void spaces in between the coils and excluded volume within the polymer coils where
solid segments cannot enter.

1.3.2 Forces of energetic origin

If the molecules or colloidal entities interact, then the internal energy term in eq. (1.43)
should also be taken into account, where the internal energy, U

(1.51)

is the sum of electronic, translational, rotational, and vibrational internal energies of the
molecules, respectively. If the molecules attract each other, one or more of these internal
energy components will change, causing the interaction to be energetic in origin, even
though entropic considerations still play a role in the extension of the polymer chains.
“Bridging force” is a term used to denote binding of particles within a network formed by
simultaneous adsorption of polymers to more than one particle: If the solvent serving as
the suspending medium for the particles is compatible with the polymer, the polymer
stretches fully into the suspension medium. This is observed above a critical temperature
called the theta temperature, T�, above which the liquid becomes an ideal solvent for the
polymer. Polymers adsorbed on different particles may attract each other if there are seg-
ments available on the polymer chain that can react with each other. These segments can
also adsorb on neighboring particles if there are available sites for adsorption on the par-
ticles. If the polymer length is long enough as in Figure 1.5(c), then the particles can be
attracted to each other even though the net interactive DLVO force between the particles
is repulsive.

Steric forces stabilize the particles in suspension. The microstructure of the aggregates
formed by depletion forces is closely spaced particles. Bridging forces create highly
porous clusters. The consequences of the microstructure of the aggregates on their rheo-
logical properties will be examined in Chapter 3, and on their sedimentation rate in
Chapter 4. The surface forces responsible for interactions between particles and cases
where such interactions are observed are summarized in Table 1.2. 

1.4 AGGREGATION OF PARTICLES

Unless the particles are neutrally buoyant, that is they have the same density as the sus-
pending medium, all particles will settle under the action of gravity. The smaller the par-
ticle diameter, the slower will be the settling rate as will be explicated in Chapter 4. In the
case of colloidal particles, the settling rate may be extremely slow for the suspension to be
kinetically stable, even though it is thermodynamically unstable. Kinetic stability is main-
tained if aggregation is prevented through repulsive forces. Destabilization begins when
repulsive forces cannot counterbalance attractive forces.

U U U U U� � �el trans rot vib+
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Table 1.2

Summary of surface forces

Force Effecta Cause Observed in

van der Waals A Asymmetric distribution van der Waals forces are present in
of electrons every case from the molecule to the 

particles and will tend to aggregate 
particles if not resisted by a 
repulsive force.

Double layer R Decrease in entropy due Charged particles, microorganisms,
to overlap of diffuse ionic uncharged particles that adsorb 
layers charged ions from the medium,

ionic surfactant micelles, red 
blood cells

Oscillatory A/R Decrease in entropy due Smooth, hard surfaced particles 
to alignment in the suspended in symmetric molecules 
confined volume between or in nanofluids
approaching particles

Hydration R Entropic due to attractions Colloids with hydrophilic surfaces 
between water and surface such as those bearing silicate,
being greater than that phosphate groups or polyalcohols:
among water molecules clays, silicates in ceramics,

particles on which sugar based 
surfactants are adsorbed

Hydrophobic A Entropic due to Folding of protein chains,
incompatibility of surface self-assemblies of surfactants,
molecules with water nonwetting characteristics,
molecules separation of minerals by 

froth flotation

Depletion A Entropic due to excluded Red blood cell aggregation to form
volume between particles rouleaux, destabilization of 

colloidal particle suspensions 
at low polymer or nanoparticle 
concentration

Steric R Entropic due to increase Stabilization of particle suspensions
in Posm in regions of in all scales, pattern formation in 
overlap nanoparticles, prevention of 

collapse in micelles and bilayers

Bridging A Energetic due to Coagulation for separation of
simultaneous adsorption colloids in wastewater treatment
of a polymer chain to plants. Aggregation of
more than one colloidal microorganisms
particle

aR, repulsive; A, attractive. 



1.4.1 Kinetics of aggregation

The crucial step in the destabilization of colloids is the formation of a dimer, as implicated
within the context of surface forces given above. Once formed, these dimers aggregate
through further collisions. After a nucleus is formed, the initial growth process proceeds
by the addition of individual particles to the cluster. If the shear rate prevalent in the aggre-
gation medium is not high enough to break apart the attachments formed, cluster–cluster
unions may also take place.

The aggregation process involves two basic steps: The first step is the transportation of
the particles to the aggregation site. Transportation can be brought about by random ther-
mal Brownian motion (perikinetic aggregation), by the effect of a shear field inducing dif-
ferent velocities to the particles (orthokinetic aggregation), or through a difference in the
terminal velocities in differential sedimentation. Transportation step ends with an
inevitable collision between the particles. The frequency with which the particles collide
with each other per unit time and unit volume is called the collision frequency. Collision
frequency depends on the hydrodynamics of the medium, the volume occupied by the clus-
ters (Birdi, 1993; Vicsek, 1999), and the average number concentration of particles within
a cluster, which in turn depends on the level of shear stress the bonds within the clusters
can withstand.

The second step is the formation of a bond between the two particles. The success of
the collision in causing such a bond is rated as the collision efficiency, which depends
on the shape of the interaction potential between the particles. A deep minimum in 
the potential with a negligible repulsive barrier, as in Figure 1.3(c) leads to diffusion-
limited aggregation (DLA), whereas, an increase in the repulsive energy barrier 
(Figure 1.3(d)) causes reaction limited aggregation (RLA). In the limiting case of an
insurmountable energy barrier, colloidal stability is maintained under the prevalent
conditions.

The presence of a high repulsive barrier is not enough to prevent destabilization if
there is a second minimum observed in the potential energy profile, as given in Figure
1.3(e). An energetically low second attractive minimum at distances larger than the
repulsive barrier in the potential energy curve leads to reversibility in cluster formation:
Aggregation and fragmentation processes occur simultaneously during growth, since
the escape of a captured particle cannot be prevented if the depth of the minimum is not
deep enough. If the captured particle is in the primary minimum that is not deep enough
with a relatively surmountable energy barrier, as in Figure 1.3(f ), then external forces
applied can only bring about restructuring, ending up with the formation of more com-
pact clusters.

The rate processes involved in aggregation can be given compactly by the expression

(1.52)

where r is the rate of aggregation in terms of number of particles [m�3 t�1], � the dimen-
sionless collision efficiency factor, and � the collision frequency factor [m3 t�1], ni and nj

the number concentrations of components i and j, respectively.
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Aggregation rate based on a particle population balance was formulated for the first time
by Smoluchowski (1917), and still used with some modifications and revisions today:

(1.53)

The theory underlying population balances is given in Appendix B. This balance equation
written for the conservation of particles of size k states that the rate of accumulation of par-
ticles of size k is equal to that formed by the collision of particles of size i and j (the first
term on the RHS) minus the loss of particles of size k, due to enlargement through collision
and aggregation with another particle of size i. This equation should be written for all sizes
of particles within the range of high probability of occurrence. Smoluchowski made a
number of assumptions to simplify the solutions of the resulting equations given in
Appendix B. Collision efficiency � was taken as equal to one to eliminate the resistances
due to adsorption and bond formation. This assumption presumes that all collisions end-up
with bond formation. In later developments regarding the rate equations, the collision effi-
ciency factor, �, is taken into account by the stability ratio W (Fuchs, 1934), defined as the
inverse of collision efficiency factor �, or as the ratio of the rate constant of the fast diffusion
limited aggregation (DLA) to the rate constant of the slow reaction limited aggregation (RLA)

(1.54)

Stability ratio can also be defined in terms of potential energy of interaction, taking into
account the effect of surface forces through the total energy potential, UT

(1.55)

In this equation, Ri and Rj are the radii of the colliding particles, UT the total energy includ-
ing the repulsive and attractive forces, kB the Boltzman constant, T the temperature, and s
the distance between the centers of the particles.

UT is generally calculated with the DLVO theory. If other forces are also effective, the
necessary terms are added to the UT expression if they can be identified. In actual practice,
it is a hard task to integrate the effective forces, theoretical basis of which are not well
developed yet.

1.4.2 Structure of aggregates

Aggregates range from highly porous structures with weak bonds in between the primary
particles, called flocculates, to gel-like structures, called coagulates. Cluster is a more gen-
eral term denoting aggregates of any size range, heterogeneity, and strength of interactive
forces. Structure of clusters can range from extreme order as in a crystal to a completely
amorphous mass. Clusters are formed by random collisions of particles in suspension.
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Crystal structures can not form unless all the particles are homogeneous and strong attrac-
tive forces exist among them. On the other hand, completely amorphous clusters are
formed by heterogeneous particles and polymers. The most frequently encountered struc-
ture in the aggregation of particles is a self-repeating pattern, called a fractal, which
reflects the sequential stepwise formation mechanism of the cluster.

1.4.2.1 Fractal theory

Steric effects orient the collision of particles to such an extent that aggregation proceeds
through preferable sites, resulting in a pattern formation. Sterically inhibited sites result in
an increase in the porosity and in the variation in the distribution of porosity within the
volume of the aggregate, so that its shape cannot be described by any of the geometrical
forms. Fractal theory developed by Mandelbrot (1983) defines the volume, �, of the parti-
cles with a noninteger power of the characteristic dimension, L

(1.56)

where df, the fractal dimension, is a nondigit number, a fraction, whence the name fractal
originates. The fractal dimension df of a particle is always less than three, the dimension
of the geometrical form enveloping the fractal object

(1.57)

The relation between the mass, M, and the characteristic length, such as the average radius
Ragg of a fractal aggregate, arises from the repeating forms of fractal aggregates. For a frac-
tal object made up of N particles of mass m and radius R0

(1.58)

Clearly, the density of the aggregate is less than the density of the particle (�agg � �p) pro-
portional to the porosity of the aggregate. To take into account the porous structure of the
aggregates, the mass M can be expressed with the df power of Ragg, where df�3

(1.59)

If the same repeating structure prevails throughout the aggregate, then df becomes inde-
pendent of the size of the cluster. This equation also describes the scale invariance or self-
similarity of the fractal aggregates: The geometrical shape remains the same under
isotropic rescaling of lengths (Meakin, 1998), such as that between two aggregates of mass
M2 and M1 and radius R2 and R1
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Clusters can grow by two types of mechanisms (Vicsek, 1999): In the first type of cluster
formation, the structure of the whole cluster can affect the probability of addition to a site
at a given position. Clusters formed under diffusion-limited (DLA) or reaction-limited
(RLA) conditions, and clusters undergoing simultaneous aggregation–fragmentation
processes (restructuring) during the growth process belong to this group. In these cases,
fractal clusters are characterized by the radius of the cluster, fractal dimension and related
with it, the density of the aggregates, as given by eqs. (1.56–1.58). In homogeneous frac-
tal aggregates, an increase in the characteristic radius R at a ratio of , is reflected onto the
mass of the aggregate as the df power of , df

(1.61)

Since the mass of the aggregate varies with a power of R that is less than the variation of
its volume (df �3), density of the aggregates decreases with an increase in their size. This
decrease in density toward the edges of fractal clusters is exemplified in the case of ZnCO3

nanoparticles forming a fractal aggregate (Ikizler, 2005) in Figure 1.6. 
In the second type of cluster formation, the growth is local and depends only on the

immediate environment of the position to which a new particle or cluster is to be added.
Percolation clusters and gels belong to this group and may have a much greater poros-
ity than the first type of clusters if growth proceeds along preferential sites. Self-
similarity of the structure with an increase in the size is not valid in the case of gels
described by percolation theory (Meakin, 1998; Berthon et al., 2001; Takenaka et al.,
2004). These types of clusters are called statistically self-similar fractals, as the statisti-
cal quantities used in characterization remain invariant to a change in length scales, pro-
vided the length scale remains in the range between the characteristic length of the
particles, r, and the cluster, R.

The composition of the medium between the particles affects the mechanism of clus-
ter formation through its effect on the surface forces bringing about the interactions. In
the previous sections, attractive forces were observed to have different ranges causing
bonds of different strengths among particles. Fractal dimension represents the mecha-
nisms effective in the aggregation process; namely, the effect of surface forces binding
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Figure 1.6 Fractal structure of ZnCO3 nanoparticles (a) clusters and (b) detail of a cluster. 



the components of the cluster and the hydrodynamics of the system, which may be
effective in bringing together or tearing apart the components of the cluster. Under stag-
nant conditions where particles form the cluster through collisions resulting from ran-
dom Brownian motion, the fractal dimension, df, represents the role of surface forces
on the structure of resulting aggregates. When only DLVO forces are effective in the
process, the magnitude of df gives an indication of the kinetics of aggregation during
the formation, and the extent of fragmentation and restructuring in later stages. Non-
DLVO forces operative in the aggregation process change the variation of the magni-
tude of df with the rate of aggregation from that expected under the action of DLVO
forces alone.

1.4.2.2 Factors that affect the fractal dimension

Fractal dimension is affected by (a) the size and shape of component or primary particles,
(b) the hydrodynamic forces that bring them to close approach, and (c) the surface forces
that bind these particles. Only a brief review on these three basic factors will be given here.
Actually all the factors that affect the surface forces also affect the aggregate structure and
the fractal dimension. A more extensive review of these issues on the structure of fractal
aggregates is given in Peker (2006).

1.4.2.2.1 Effect of the shape factor of primary particles on the fractal dimension

The primary particles making up the aggregates are generally assumed spherical for math-
ematical simplicity. Advent of nanotechnologies necessitates the stability of suspensions
of hexagonal micelles, rod shaped nanoparticles and nanotubes, which cannot be handled
with the assumption of spherical geometry. These dimensionally anisotropic particles are
characterized by their length-to-diameter ratio, called the aspect ratio. Recently, Mohraz
et al. (2004) studied the aggregation behavior of rod type boehmite colloids with aspect
ratios, ��3.9, 8.6, and 30.1, and compared the results with the aspect ratio of spheres,
��1. Fractal dimension of the clusters formed under DLA conditions was found to be an
increasing function of the monomer aspect ratio, with values of df �1.81, 1.94, 2.14, and
2.21 for ��1, 3.9, 8.6, and 30.1, respectively. The simulated fractal dimensions varied in
the range, 1.80 �df �2.16 for the aspect ratios 1 ���11, in good agreement with exper-
imental results. In the aggregation of rod shaped particles, DLA and RLA regimes cannot
be distinguished. As � increases, a more branched and compact structure is formed in com-
parison with the structure of the aggregates formed by spherical primary particles. Above
an aspect ratio �8.6, df values of the aggregate structures were found to be approximately
the same for both the DLA and RLA regimes. This was explained by the excluded volume
effect of the rods that prevented them from penetrating into the pores of the aggregate
structure, which were already compact due to the orientation of the rods.

Another work by Chen et al. (2004) on the aggregation behavior of nanotubes support
the results obtained by Mohraz and coworkers (2004). Due to the flexibility and large
aspect ratios of the nanotubes, entanglement becomes inevitable under the action of strong
attractive dispersion forces. Determination of the fractal dimension by light scattering gave
df �2.27 for sterically stabilized and df �2.5 for acid treated nanotubes.
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1.4.2.2.2 Effect of fragmentation and restructuring on the fractal dimension

Shear stresses deform the aggregates, convective motion of the suspending medium
causes the aggregates to extend, and stretch the bonds, collisions with other aggregates
cause compression of the aggregates. These external forces cannot exert their full effect
on the component particles, due to the fractal structure of the aggregates, i.e., the poros-
ity and limited number of contacts per particle within the structure. The aggregate
responds to the acting external forces by undergoing structural revision: If there is a weak
bond in the structure, it may fracture and break apart, known as fragmentation. It may
then recombine with the same or another aggregate under conditions that are more favor-
able. If the weak points can withstand the stress, then parts of the aggregate can rotate and
form more bonds within it, called restructuring. In both cases, the aggregate becomes
more compact reflected as an increase in the fractal dimension. Particles in the range of
a few hundred nanometers undergo restructuring rather than fragmentation under low to
moderate shear rates. In the process of restructuring, the diameter of the aggregate
increases, passes through a maximum and then decreases, and levels off to an equilibrium
size range. An increase in the diameter of the primary particles causes the equilibrium
diameter of the aggregate to decrease.

The light scattering index (scattering exponent) SE in light scattering methods of parti-
cle size characterization is equivalent to fractal dimension df in compact structures and is
used to characterize the degree of restructuring. In aggregates formed by small diameter
particles in the order of a few hundred nanometers, SE is found by Selomulya et al. (2002)
to approach the 2.6–3.0 range with time, much above the RLA limit of 2.1 for electrolyte
induced aggregation. On the other hand, when the diameter of the primary particles
approach the micrometer range, fragmentation–reaggregation process predominates over
restructuring. The scattering index SE asymptotically approaches an equilibrium constant
value in the range of 2.6–2.8 with time. The rate of approach to the equilibrium scattering
index (SE) is directly proportional with the shear rate for all primary particle sizes. 

1.4.2.2.3 Effect of DLVO forces on the fractal dimension

If the suspending medium of the colloids is a solution of indifferent electrolytes only,
the colloids aggregate under the action of DLVO forces. The value of df is then deter-
mined only by the mechanism controlling the rate of aggregation. When transport to the
aggregation site is the only rate limiting factor (DLA), the value of df was shown to
vary in the range 1.7–1.8 by theoretical considerations (Jullien and Botet, 1987), and
confirmed by experimental results of the aggregation of various colloids in solutions of
different electrolytes (Lin et al., 1990). When adhesion to the cluster is the rate limiting
step (RLA), df was found to be in the range of 2.1–2.2 through simulations and exper-
iments with electrolytes indifferent to the surfaces of the particles. These values are
taken as criteria for testing the effect of a variable on the structure of the aggregates
formed.

The rate of aggregation proceeding slowly due to PEBs (Figure 1.3) or steric hindrance is
related to the rate of diffusion controlled aggregation through the stability ratio W. Aggregation
may also proceed at an intermediate rate in between the two limiting cases of DLA and RLA,
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representing zero and maximum PEBs for dimer formation, the initial step in aggregation.
Berka and Rice (2005) obtained the relation

(1.62)

in the range, 5 �W�100, with dilute suspensions of natural kaolinite of particle size
Rh � 100  5nm through light scattering experiments. The limiting values of df estimated
with this equation (eq. (1.62)) are 1.78 and 2.1, in agreement with the universally accepted
values for the DLA and RLA regimes, respectively. Similar results were found for salt-
induced aggregation of polystyrene particles (Tirado-Miranda, 2003). Fractal dimension
varied linearly from 1.75 to 2.1 with an increase in the electrolyte concentration. In the
more concentrated suspensions employed in industrial applications the compaction of the
clusters and hence, the fractal dimension, may change during aggregation.

1.4.3 Role of polymers and polyelectrolytes on the coagulation of

suspensions

Polymers and polyelectrolytes present in a suspension of solid particles, as in the case
of paints, surface coatings, ceramics, wastewater suspensions, slow-release vehicles,
bioreactors, blood, etc., have such a wide range of application that they deserve special
attention. The effect of polymers on colloidal stability depends on the bonds formed
with the particles, as well as on the chemical or electrolytic nature of the polymer. So a
classification in terms of nonadsorbed and adsorbed polymers, and in the case of the lat-
ter, neutral or polyelectrolyte type of polymers would be more appropriate in terms of
their effect on colloid stability. This classification should be preferred over grouping in
terms of surface forces, since several forces can be simultaneously effective in parti-
cle–polymer interactions. Forces induced by the interactions of polymers present in the
suspension such as depletion, steric, and bridging forces come to be effective in the
aggregation of particles, in addition to the DLVO forces with a change in the pH, and
ionic strength of the medium.

1.4.3.1 Particle–polyelectrolyte interactions

As most solid particles have charged surfaces, the interactions become more complicated
when the polymer is a polyelectrolyte. In fact, polymer–particle interactions can be con-
sidered as a subgroup of polyelectrolyte–particle interactions at the isoelectric point of the
polyelectrolyte when it is completely neutral. Recently, Claesson et al. (2005) reviewed
polyelectrolyte–solid particle interactions under four categories. 

1.4.3.1.1 Category 1: Polyelectrolytes adsorbed on oppositely charged particle

In this group of interactions, the charge density of both the polyelectrolyte and the particles
affect the interaction as well as the pH and ionic strength of the medium. When polyelec-
trolytes and particles carry opposite charges, simple electrolytes such as Na�Cl� become
competitive in adsorbing to vacant sites on the particle reducing the polyelectrolyte
adsorption on the particles (screening-reduced adsorption). Repulsions between segments
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of polyelectrolyte chains are affected by the screening also, ending up with large loops and
extended polymer chains, increasing the thickness of the steric layer on the particles. On
the other hand, if electrostatic forces are not negligible, screening reduces the repulsions
between polyelectrolyte chain segments increasing the number of contact points with the
particle surface, resulting in a thinner steric layer (screening-enhanced adsorption).
Repulsion forces existing in the absence of polyelectrolyte can be converted into attrac-
tions at low concentrations of polyelectrolyte and ionic strengths sufficient to extend the
polymer chains. If the particle/polymer ratio is sufficient to bring different particles within
the reach of adsorbed polyelectrolytes, particles may be bridged together within a floccu-
late. Higher polyelectrolyte concentrations decrease the repulsive forces between particles
through neutralization of their surface charge and may even cause charge reversal if
adsorption is increased by nonelectrostatic attractions. Increase in the polymer charge den-
sity produces a thinner coating due to increased attachment sites along the chain; whereas,
a decrease in the charge density of the polymer produces a thicker steric layer due to the
size of loops in between the adsorption sites. On the other side, decrease in the charge den-
sity of the particle surface leads to adsorption of polyelectrolytes around the discrete
charges increasing the heterogeneity of the particle surfaces. 

1.4.3.1.2 Category 2: Polyelectrolytes adsorbed on uncharged particles

As adsorption decreases the entropy of the polyelectrolytes through restriction of ran-
dom motion of polymer segments, adsorption is possible only if the enthalpy (energetic)
variations are very favorable for adsorption to take place. Due to repulsion between
chain segments, the polymers lie flat on the particle surfaces where the energetic effect
is maximized. Presence of electrolytes in the medium screens the repulsive forces
between polyelectrolyte segments, favoring the attractive forces between the particle and
the polymer. 

1.4.3.1.3 Category 3: Polyelectrolytes adsorbed on similarly charged particles

Polyelectrolytes adsorb on particles bearing the same charge only if the charge density is
low and screened by the presence of simple electrolytes. If the charge densities of both the
polyelectrolyte and the particle are high, then adsorption can be brought about by linkages
with the cations of the second group in the periodic table. This linkage is strongly depend-
ent on the hydration level of the cation: With the heavier cations in the group having low
hydration levels, adsorption of charged polymer on the charged surface becomes quantita-
tive leading to strong long-range repulsive forces and suspension stability. On the other
hand, highly hydrated ions form limited number of bonds with the surface; but, as they also
form bonds between polymer segments, bridging forces may lead to destabilization. These
effects are optimized in the case of Ca2� that can form bridges between similarly charged
entities. The role of Ca2� concentration is extremely important in such divergent cases as
in coagulation and viscosity increase of blood and in determining the green (wet) and dry
strengths of sand–clay mixtures in molds used for casting metals in the foundries. If the
polyelectrolyte is not adsorbed on the particles and is linear, oscillatory forces can be
observed that are of longer range and smaller amplitude in comparison with the oscillatory
forces observed in pure liquids described above. 
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1.4.3.1.4 Category 4: Grafted polymers

Grafted polyelectrolytes are attached by chemisorption onto the particle surface; the type
of interaction, steric or bridging, depends on the length of the polymer segments. This in
turn is a function of the theta temperature, T�, in the case of neutral polymers and elec-
trolyte concentrations in the case of charged polymer segments. In biological cells, seg-
ments of proteins extending out of the membrane as sensors also act as grafted polymers.
Elasticity of the membrane of biological cells and microorganisms also has an effect on
the interactions as explained in the next section.

1.4.3.2 Effect of polyelectrolyte interactions on the fractal dimension of clusters

There is only a limited number of experimental work done to determine the effect of
parameters on the fractal dimension of the aggregate formed. Some of the results given in
the literature are discussed here in terms of (1) nonadsorbing and (2) adsorbing polyelec-
trolytes to show their effect through depletion, bridging and steric forces. 

1.4.3.2.1 Effect of nonadsorbing polyelectrolytes

AFM studies show that a secondary minimum in the potential energy profile of the parti-
cles may result because of the presence of nonadsorbing polymers (Milling, 1996, 1997;
Burns et al., 1999, 2002; Biggs et al., 2000). The variation of the reduced force (force
measured in an atomic force microscope (AFM) divided by the cantilever tip radius) with
the distance of separation between the silicon-nitride cantilever tip and a flat silica surface
is given by Burns et al. (2002) as a function of polyelectrolyte poly acrylic acid (PAA)
concentration and molecular weight in Figure 1.7(a) and (b), respectively. The sections
given in Figure 1.7(a) and (b) correspond to the secondary minimum after the PEB in
Figure 1.3(e). The secondary minimum is caused by the summation of attractive depletion
force and electrostatic repulsion force. In addition to the depletion forces, the increase in
attractive forces is attributed to the reduction of electrical double layer repulsion in the
presence of the charged polymers. At extremely low polyelectrolyte concentrations, deple-
tion forces are negligible and the net force is repulsive without a secondary minimum. As
the concentration of polymer increases, depletion forces also increase. The depth of the
minimum increases and its position changes to lower separation distances. Increase in
polyelectrolyte concentration produces a combined effect of reduction in double layer and
depletion layer thicknesses. This effect is partially offset by a decrease in the depletion
forces depending on the size and concentration of the polymer resulting in a leveling off
of the total force at high concentrations as shown in Figure 1.8(a).

The depth of the secondary energy minimum given in Figure 1.7(a) in terms of force
units is expressed as potential energy per unit surface area as a function of concentration
of PAA in Figure 1.8(a), for the three molecular weights investigated by Burns et al.
(2002). The negative sign of the ordinate indicates attractive energy. The secondary mini-
mum approaches zero at extremely low concentrations of the polyelectrolyte. The energy
of attraction decreases to lower negative values (the depth of the minimum increases in
force units) as the concentration of polyelectrolyte increases, leveling off to a constant
value at concentrations greater than 20gL�1. Clearly, the depth of the attractive minimum
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decreases as the molecular weight decreases. This shows that the bonds formed become
reversible as molecular weight decreases. The shift of the minimum to smaller separation
distances shows that more compact structures are to be expected as the concentration of
polyelectrolyte increases.

The fractal dimensions of polystyrene latex particle aggregates in the presence of PAA
in the same range of concentrations and molecular weights as in Figures 1.7(a) and 1.8(a)
are given in Figure 1.8(b). The similarity in the shapes of the curves in Figures 1.8(a) and

1.4 Aggregation of Particles 35

Figure 1.7 Reduced force (F/r0) versus surface separation curves for a silicon nitride cantilever tip
interacting with a flat silica surface: (a) in the presence of various concentrations of PAA (50,000g
mol�1): (�) 1g L�1, (�) 3gL�1, (�) 5gL�1, (�) 10gL�1, (�) 20gL�1, and (�) 40gL�1 ; (b) in the
presence of various PAA molecular weights: (�) 250,000g/mol, (�) 50,000gmol�1, and (�) 5000g
mol�1, all at a fixed PAA concentration of 10gL�1. (Reproduced from Burns et al., 2002, with per-
mission of Elsevier, Figures 6 and 7 in the original.) 

Figure 1.8 Dependence of the: (a) secondary energy minimum, (b) mass fractal dimension of
aggregates of polystyrene latex particles, on changes in the PAA molecular weight and concentra-
tion (notation given in Figure 1.7(b)). (Reproduced from Burns et al., 2002, with permission of
Elsevier, Figures 5 and 8 in the original.) 



(b) shows the effect of the depth of the secondary energy minimum on the structure of the
aggregates. The low-energy of the secondary minimum allows the flocs to escape from
their initial location and move around until they find an energetically more favorable place.
The wandering of the detached flocs was physically observed by the authors under the
microscope (Burns et al., 1999). A high-energy minimum located at a short distance from
the surface of the particle, observed at high polymer concentrations causes the aggregation
to proceed in the RLA regime. The scattering exponent (SE) equivalent to the fractal
dimension df, determined by static light scattering method, confirmed this physical model:
At very high concentrations of the polymer, SE was found in the range of 2.0–2.2,
inversely proportional with the particle concentration. At polymer concentrations less than
5gL�1, SE sharply increased with decreasing polymer concentration reaching a limit of
2.99 at 1gL�1 confirming the extensive restructuring that had taken place. 

1.4.3.2.2 Effect of adsorbed polyelectrolytes

Effect of the presence of polymers on the structure formed by DLVO forces alone were
observed by partially coating polysyrene particles with bovine serum albumin (BSA)
molecules (Tirado-Miranda, et al., 2003). An overall increase in df of 0.3 units was
observed irrespective of the pH, even though the configuration of the BSA molecules
changed in the range investigated. At pH 4.8, the isoelectric point, the polyelectrolyte is
at its most compact configuration. At pH 9, both the polystyrene particles and the poly-
electrolyte are negatively charged. Polyelectrolyte coated particles were stable at pH 9 but
aggregated with a close-packed structure of df �2.2 at pH 4.8. The observed instability at
the isoelectric point was attributed to the partial shielding of the particle charges by the
neutral polyelectrolyte at its isoelectric point, causing the particles to come as close as 3
nm, a distance comparable with the length of polymer segments which “bridge” them
within a compact aggregate.

Effect of the steric forces was investigated by varying the configuration of grafted poly-
styrene chains on silica particles in cyclohexane by varying the temperature above and
below the theta (�) point (Huang and Berg, 2004). The fractal dimension df was found to
be a function of both time and temperature: It increased from a value of 1.75 at the transi-
tion temperature, to its equilibrium value of 2.13 with time while this equilibrium value
increased to 2.84 as the temperature was decreased toward the end of the transition inter-
val. Transformation to a more compact structure with time was attributed to spontaneous
restructuring due to reduced rate of aggregation as the cluster size increased.

1.5 AGGREGATION OF FERROMAGNETIC PARTICLES

Interest in the aggregation of particles with magnetic properties increased recently due to
the possibility of controlling their rheological and physical properties by an external
magnetic field. A suspension of ferromagnetic particles of about 10 nm in diameter steri-
cally stabilized by long-chain surfactants, or through electrostatic repulsion of adsorbed
ions, is called a ferrofluid. As in other colloidal systems, the ferromagnetic particles inter-
act through surface forces, such as van der Waals, electrostatic repulsion and steric forces.
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In addition, the particles of a ferrofluid interact through long-range anisotropic
dipole–dipole potentials. At low particle concentrations where there are no interactions
between the suspended particles, a ferrofluid system behaves like an ideal paramagnetic
gas. In this case, the equilibrium magnetization of the ferrofluid system ML is given by the
equation (Wang et al., 2002)

(1.63)

where n is the number concentration of particles, m the magnetic moment of the particles,
�0 the magnetic permeability of vacuum, H the magnetic field, and the term in parenthesis
is the Langevin function, connoting the relative effects of thermal energy (kBT) and mag-
netic energy (mH). The initial susceptibility of the medium toward the effect of a magnetic
field, �i is given by

(1.64)

Dipole moment of a ferromagnetic particle, �, is given as the product of its volume �M

based on its magnetic radius, rM, and its magnetization at saturation, ms:

(1.65)

The initial magnetic susceptibility is seen to be a function of the volume fraction of parti-
cles, n�M, from eqs. (1.64) and (1.65)

(1.66)

Eq. (1.66) predicts a linear increase of the initial susceptibility with the particle concen-
tration. Deviation from linearity signifies interaction between the particles, depicted by
the dipolar coupling constant 

(1.67)

where dp is the particle diameter. Interaction between the particles increases as  increases,
or equivalently formation of aggregates enhances the magnetization of ferrofluids at weak
magnetic fields. The thermal energy term in eq. (1.67) signifies that the aggregates formed
are subjected to thermal fluctuations and are flexible. Under an applied external magnetic
field, the dipole moments tend to align in the direction of the applied field in proportion to
the field strength. This causes a lengthening of the needle-like strings into flexible chains
together with unavoidable entanglement that causes the viscosity to increase.
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1.5.1 Effect of the direction of the magnetic field on the 

aggregate structure

The structures formed on application of an external magnetic field depend on the relative
directions of the magnetic field and the plane of the film of ferrofluids. Formation of
chains of needle-like aggregate structures is observed when the magnetic field acts paral-
lel to the film of magnetic particles. An increase in the field strength or in the concentra-
tion of particles causes more particles to aggregate, increasing the number and length of
the chains. The spacing between the chains and the chain width decreases as the field
strength H increases. When the magnetic field acts perpendicular to the ferrofluid film
cylindrical magnetic columns are formed. The distance between the columns decreases as
the field strength increases. The characteristic spacing in the ordered structures could be
manipulated (Horng et al., 2001) within a range from submicrometers to many microme-
ters by adjusting controlled parameters such as the magnetic field, the sweep rate, the film
thickness, the concentration of the fluid and the temperature. Significant optical properties
could be generated with these ordered structures.

1.5.2 Reversibility of aggregation

Reversibility of aggregate formation is an important issue if the end use of the ferrofluids is
in the field of electronics. Ferromagnetic particles aggregate to reduce their enthalpy; but
alignment in the form of strings decreases their entropy, so that aggregation and disintegra-
tion should be in balance dictated by the equilibrium conditions of the system. Klokkenburg
and Erné (2006) tested the reversibility of zero-field aggregation of magnetic nanoparticles
in a ferrofluid by two methods: By decreasing the dipole moments of the particles and by
decreasing their concentration. Unoxidized iron–carbon particles (Fe0.75C0.25) in decalin sta-
bilized sterically by polyisobutene were used in the first case. The particles were subjected
to gradual oxidation to decrease their magnetic moments. Oxidation turned out to cause
chemical interactions between the particles making the aggregation irreversible. Effect of a
concentration decrease was tested on colloidal magnetite dispersions stabilized by surfac-
tants. The results showed that zero-field dipolar structures disintegrated upon dilution indi-
cating the reversibility of aggregation process through dipolar attractions.

Small-angle neutron scattering and light scattering measurements were used by Shen
et al. (2001) to elucidate the structure of magnetite aggregates in aqueous and organic sol-
vents stabilized by surfactants in situ. The magnetite particles were stabilized by a mono-
layer of adsorbed decanoic acid in organic (hexane) solvents. A second adsorptive coating
by dodecanoic acid that would form a bilayer with the already adsorbed decanoic acid was
necessary to reduce the attractive forces among hydrophobic surfaces in aqueous solutions
and maintain stability through repulsion of the charged head groups. The results of the
measurements indicated the formation of fractal structures with df �2.52 and a characteris-
tic dimension of 350Å in aqueous media. As long as the second (outer) surfactant layer of
the bilayer stabilizing the clusters could be kept intact, the cluster size remained stable. This
was attributed to the increasing height of the PEB formed by the charged hydrophilic groups
of the surfactants as the size of the cluster increased, approaching the 15kBT limit for
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electrostatic stability (Vold and Vold, 1983). The stability of these clusters in aqueous media
was strongly dependent on the ionic strength of the medium, as stability is maintained by
electrostatic forces only. In organic solvents where there is no electrostatic repulsion, small
chain-like clusters with df �1.22 and a characteristic dimension of 400Å were formed,
which were sensitive to volume fraction of the clusters in solution. Because of the orienta-
tion of the surfactant molecules of the coating in organic media, the surfactant layer does
not make any contributions to the Hamaker constants because of the similarity of surfactant
chains and the solvent molecules. In the absence of repulsive forces and weak van der Waals
forces, the magnetite particles are expected to form chain-like structures by coupling end-
to-end through the action of magnetic dipole moments. This is only a weak bond, however,
because the magnetic dipole–dipole interactions are counteracted by the steric effect of the
surfactant layer as well as the thermal energy, kBT, resulting in the small size of the clusters,
low df values and fragile chain-like structures that are sensitive to dilution.

1.5.3 Light-induced aggregation of ferrofluids

Recently, reversible light-induced aggregation in the absence of a magnetic field of ferro-
magnetic particles were reported (Hoffmann and Köhler, 2003; Kellner and Köhler, 2005).
Magnetite particles of about 10 nm in size suspended in kerosene and initially stabilized
by the steric action of an adsorbed layer of surfactants were found to aggregate when
exposed to light. Light absorbance of the particles was maximum around 400nm that
decayed rapidly to a negligible constant value at wavelengths greater than 650nm. The
particles were found to aggregate to sizes reaching a few micrometers and moving ran-
domly with Brownian motion when exposed to white tungsten light at an intensity of
100 Wm�2. The aggregates were found to disintegrate upon the use of a filter that permit-
ted radiation greater than 645nm. Two different rates of growth under reduced light inten-
sities were attributed to fast initial aggregation of particles and a sequent slower growth of
the clusters. The process was found to be completely reversible with no aging effects.
When the same ferrofluid was subjected to a weak magnetic field, no aggregation was
observed; but if light-induced aggregation was conducted under a weak magnetic field,
isotropic clusters were formed as in the absence of a magnetic field, which then aligned
along the magnetic field lines to form highly anisotropic linear superstructures. As a pos-
sible mechanism underlying the observed phenomenon of light-induced aggregation, an
increase in the average population of the electronic states with higher electric polarizabil-
ity than in the absence of light was proposed. The enhanced van der Waals forces could
then overcome the steric barrier and cause the reversible aggregation.

1.6 FORMATION OF GLASSES AND GELS

Equilibrium states of solid particles are the crystal, liquid and gas states. Crystal states
require close packed conditions satisfied through strong attractive forces between the
particles at solid volume fractions of approximately, � � 0.74. When this close-packed
structure is expanded in volume by about one-third, � � 0.545, rigidity of the hard sphere
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crystal is lost (Poon, 2002 and the cited references). If the particles are still within the
attractive potential field of each other, a dense liquid phase is observed. If the distance cov-
ered by the attractive potential field is less than the interparticle distance, a gas state is
reached where the particles act independent of each other. A configuration different from
the one expected at equilibrium for the same volume fraction of particles leads to non-
equilibrium states of the suspension.

1.6.1 The glassy state

There are cases when crystallization is not observed even at � � 0.58. This is attributed to
the local caging of particles, each particle being entrapped itself, besides being a member
of a cage for surrounding particles (see Figure 3.1(e)). This nonequilibrium solid state is
called, glass.

Pham et al. (2002) showed that two types of glass states could exist in a mixture of poly-
mers and hard spheres at two different polymer to solid sphere ratios, corresponding to dif-
ferent modes of repulsive and attractive interactions. With a model system of sterically
stabilized polymethylmethacrylate (PMMA) spheres (R�202nm) suspended in decalin,
which also contains nonadsorbing polystyrene (Rg �17nm) they obtained the phase dia-
gram given in Figure 1.9. When there is no polymer in the suspension fluid, fluid–crystal
coexistence and crystal regions are observed as the volume fraction of PMMA particles
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Figure 1.9 Equilibrium and nonequilibrium behavior of a colloid–polymer mixture at Rg/R�0.08.
Samples that reached thermal equilibrium (open symbols) are as follows: fluid (triangles),
fluid–crystal coexistence (diamonds), and fully crystalline (inverted triangles). Samples that did not
reach thermal equilibrium (solid symbols) are as follows: repulsion-driven glass (circles) and
attraction-driven glasses (squares). Dashed curves are guides for the observed glass transition lines.
Solid curves are Mode Coupling Theory predictions of glass transition lines. (Reproduced with the
caption of Pham et al., 2002, Figure 1 in the original with permission of Science AAAS.) 



increased. Steric repulsion between the particles prevented crystal formation and glass
state was observed above � � 0.58. As the polymer concentration was increased at con-
stant solid particle fraction of � � 0.6, crystalline particles were observed again due to the
action of depletion forces. Above the dashed line, denoting the glass transition lines, glassy
states reentered the phase diagram, this time brought about by attractive forces. Glassy
states are observed at high volume fractions of solid particles. This topic will be taken up
again in relation to concentrated suspensions in Chapter 3.

1.6.2 Formation of gels

Another type of aggregation that confers non-Newtonian behavior to solid–liquid suspen-
sions is gelation. A gel is a nonequilibrium state where the diffusive motions of the parti-
cles are prevented through long-range attractions. Recent studies show that even
short-range forces in the order of a fraction of a particle radius can bring about gelation
out of a homogeneous liquid phase if the attractive forces are strong, and concentrations
high enough (Shah et al., 2003 and the cited references). The requirement for gel forma-
tion is the existence of attractive forces between the particles sufficient to form a network
spanning the available volume. The attractive forces can be anything such as bridging or
electrostatic as in the case of clay (electrostatic), microemulsions (bridging of inverse
micelles) and polymer suspensions (bridging) as given in Figure 1.10(a)–(c), respectively.
In the case of particle–polymer mixtures where the polymers do not adsorb on the parti-
cles, depletion forces supply the required attraction. The stability of the suspensions
depends on the strength of these attractive forces acting against thermal energy (kBT ) and
hydrodynamic forces, as well as on the volume fraction of solids that maintain the stabil-
ity of the network toward the action of gravity on the solid particles. The rheological prop-
erties are an indication of the stability of the gels, as will be explained in Chapter 2 for
polymer gels and Chapter 3 for clay gels.

Gels are also formed by fractal aggregates. When the number and the size of the clus-
ters are sufficient to fill the available space through edge-contact. Clusters formed by dif-
fusion limited aggregation (DLA) are greatly ramified at the edges. Restructuring
increases the compaction of the cluster indicated as an increase in df above that for reac-
tion limited aggregation (RLA), simultaneously enlarging the void space between clusters
opening up space for percolation of the suspending medium. If the cluster structure is very
dense and particle concentration not sufficient to form a compact gel structure, clusters
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(a) (c)(b)

Figure 1.10 Various types of gels: (a) clay suspensions, (b) microemulsions, and (c) polymers in
solution. 



may settle under the action of gravity, as will be explained in Chapter 4. Very compact
structures can also form in gels with a high volumetric fraction of particles (Shah et al.,
2003). The heterogeneity in the particle distribution necessitates the formation of voids,
though they are very small as the attraction is controlled by depletion forces with the range
of attraction proportional to the radius of gyration of the polymer, Rg, which is much less
than the particle radius, R.

Fractal aggregates are also observed in gels of polymeric (Huang and Berg, 2004;
Takenaka et al., 2004) or microemulsion origin (Bordi et al., 1996; Antalek et al., 1997;
Letamendia et al., 1998), in fat-crystal networks (Narine and Marangoni, 1999) or in the
sol–gel processes (Berthon et al., 2001; Chiavacci et al., 2004). Fractal dimension not only
determines the compactness of the aggregate structure, but also affects the rheological
behavior of concentrated suspensions (Lapasin et al., 1998), and migration of charges
resulting in an increase of the conductivity (Bordi et al., 1996; Antalek et al., 1997).
Relaxation phenomena in critical microemulsion systems is attributed to the formation of
transient polydispersed fractal aggregates of df�2.5. Fractal dimension of �2.5 was also
obtained in different gel systems in experimental observations (Narine and Marangoni,
1999; Berthon et al., 2001; Chiavacci et al., 2004; Takenaka et al., 2004).

Another type of gel of current interest is that formed by wormlike micelles, used as
nanoreactors containing nanoclusters for the production of nanowires. Cylindrical micelles
are made of surfactant molecules that pack-up in a liquid crystal structure. These cylindri-
cal micelles align in a hexagonal order and continue growing length-wise until they span
the available volume. Bouchama et al. (2004) investigated the thermal gel–fluid transitions
of the hexagonal phase and showed that hexagonal phase can melt and recrystallize repeat-
edly, allowing trapping of various metal clusters in pre-prepared hexagonal phases.

1.7 SELF-ASSEMBLIES OF SURFACTANTS

In the previous sections, the polyelectrolyte molecules with electrophilic groups attached to
a hydrocarbon chain were discussed in terms of the forces created by their local concentra-
tion and interactions with the particle surfaces. Surface active agents, or shortly surfactants,
are similar to polyelectrolytes in that they are also amphiphilic molecules that have both a
hydrophilic and a hydrophobic moiety in their structure. The main differences are that the
hydrocarbon chains of the surfactants are much shorter than the backbone chain of the poly-
electrolytes and they usually have only one or two hydrophilic groups gathered at one end of
the molecule instead of being dispersed along the chain length. Surfactants have an immense
area of applicability in processes related with emulsions, foams, as dispersion agents in sus-
pensions, and in emerging technologies based on vesicles and microemulsions. The signifi-
cance of surfactants in solid–liquid two phase flow resides on their use as stabilizing agents
for microparticles, as flotation agents in mineral processing, as reactors for nanoparticles, as
carriers in targeted delivery and slow release of drugs in the blood stream, as building blocks
of the membranes of “soft” particles such as microorganisms and  red blood cells (RBCs),
and in drag reduction. Surfactants can be synthesized by conventional chemical synthesis or
produced by living cells and microorganisms. Biologically produced surfactants generally
have a much more complicated structure than the synthetically produced surfactants.
Examples for the types of surfactants and their structures are given in Table 1.3. 
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Table 1.3

Types of surfactants and their structures

Type of Example Molecular structure
surfactant

Anionic Sodium 
dodecylbenzenesulphate

Cationic Cetyltrimethylammonium 
bromide 

Nonionic Polyoxyethylenesorbitan 
monooleate (Tween 80) 

Sorbitan monostearate 
(Span 60) 

Zwitter Phosphatidyl 
ionic ethanolamine

Double- Sodium-bis(2-ethylhexyl)-
chained sulfosuccinate (AOT)

Gemini surfactant

Na+ −O3S

CH3N+

CH3

CH3 
Br−

O

CH2

CH

(OCH2CH2)wOH

(OCH2CH2)xOH
(OCH2CH2)yOH
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O
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O

O
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To help in the visualization of the amphiphilic nature of a surfactant molecule and
understanding of its orientation at interfaces, a render model of a biosurfactant, rhamno-
lipid R2, produced by Pseudomonas aeruginosa is given in Figure 1.11(a). The dark
spheres denote oxygen, the small spheres, hydrogen, and large spheres, carbon atoms in
the structure. The surfactant modeled at its minimum energy position with ChemSite Pro
software has two decanoic acid groups coupled with an ester bond. A free carboxylic
acid group is attached to one of the hydrocarbon chains and two rhamnose groups
attached to the other chain. The two hydrocarbon chains are separated by the ester group.
The lower part of the molecule including the carboxylic acid, rhamnose, and intercon-
necting ester group is rich in oxygen atoms and constitute the hydrophilic part of the
molecule. The rest of hydrocarbon chains are rather short, with effectively eight meth-
ylene groups each, so the molecule preferentially dissolves in water. As the hydrophylic
functional groups are connected by single bonds to the hydrocarbon chains they can
reorientate depending on the interactions between the hydrophilic groups and the
constituents of the aqueous medium (Peker et al., 2003; Helvacı et al., 2004; Özdemir
et al., 2004). 

The presence of the hydrophobic groups within the structure of the surfactant molecule,
makes its existence energetically unfavorable within the bulk medium, so the surfactant
molecules are distributed in the form of monomers in solution, as monolayers at gas/liq-
uid, liquid/liquid, or solid/liquid interfaces, whichever exists, or in the form of micelles.
The total concentration of surfactants Cs

o in a system is the sum of all the concentration of
surfactants in different states:

(1.68)

where Cmon is the monomer concentration, Cmly the concentration of surfactants that are asso-
ciated as monolayers at gas/liquid interfaces, Cads the concentration of surfactants adsorbed
on solid surfaces and Cmic is the concentration in micellar aggregates. The solubility of the

C C C C Cs
o

mon mly mic ads� � � �

44 1. The Particulate Phase

Figure 1.11 Rhamnolipid R2 surfactant, (a) in its minimum energy configuration and (b) in the
form of bilayers. 



monomers in aqueous solutions is determined by the relative volumes of the hydrophobic
and hydrophilic groups in its structure, increasing with an increase in the latter. Surfactant
molecules decrease their free energy by residing at interfaces, with the hydrophobic group
oriented toward the nonpolar liquid in the case of two-liquid systems, toward air in the case
of liquid–gas systems, toward the solid in the case of uncharged solid particles in an aque-
ous medium. Cmly is limited by the extent of gas/liquid interfacial area available in the
macrosystem and the minimum area occupied by a surfactant molecule at the interface,
aint. Cads is limited by the total surface area of the solids and the fraction of this area avail-
able for adsorption (distribution of adsorption sites or fractional coverage) depending on
the heterogeneity of the solid surface. Finally, the remaining surfactants in solution will
aggregate in the form of micelles.

1.7.1 Thermodynamics of self-assembly of surfactants

All forms of existence of surfactant molecules will be in equilibrium with each other
including surfactants adsorbed on solid surfaces if adsorption is through reversible physi-
cal bonds only. Equilibrium condition, in the case of reversible aggregation, dictates that
the free energy of a molecule (equivalent to its chemical potential) should be the same
under all conditions. It is possible to find the concentration of each form of existence using
the free energy relations. The number of surfactant molecules making up a micelle can be
calculated starting with this principle. Adopting the notation of Israelachvili (1991), the
chemical potential can be written as

(1.69)

In this equation � denotes the chemical potential, �N
0 is the mean interaction free energy

per molecule or the standard free energy, N the number of surfactant molecules making up
the aggregate and X is the concentration of the molecules in the aggregate in terms of mol
fraction. As this relation is general it can be used to relate the free energy of the monomer
with that of a molecule in the fully aggregated state:

(1.70)

(1.71)

where the subscripts N and 1 indicate the aggregate and monomer, respectively.
The ratio of the concentrations in the associated and unassociated states is

(1.72)
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The term on the LHS of the equation is by definition, the equilibrium reaction constant K
for the reversible formation and dissociation rates of the micelles

(1.73)

Micelles are dynamic aggregates with surfactant molecules going in and out of the micelle.
The residence time of a surfactant molecule in the micelle, tR, depends on the interactions
of the molecule with the surrounding molecules in solution and in the aggregate, or equiv-
alently the difference in the mean interaction free energies, �N

0 ��1
0. Characteristic colli-

sion time, t 0, of a molecule is then equal to the product of the mean residence time the
molecule spends in the micelle and the probability that the energy of the collision will be
sufficient for escape from the surrounding interacting molecules:

(1.74)

Characteristic collision time of surfactants is in the order of 10�9 sec for micelles and
10�7 sec for bilayers (Israelachvili, 1991). Therefore, the residence time of a surfactant
in the micelle is a function of its interactions with the neighboring molecules. These
interactions depend on the charge of the hydrophilic group, the van der Waals interactions
between the hydrocarbon chains and between the O and H atoms in the hydrophilic group
(H-bonds). As these interactions will be much stronger in double-chained surfactants with
compact structures, their mean interaction free energies, �N

0 will be much lower than that
of surfactants aggregated as spherical micelles, where the distance between hydrocarbon
groups are increased due to curvature. Based on the characteristic collision time of sur-
factants, the membrane forming bilayers are expected to be much more stable than the
spherical micelles.

1.7.2 Self-assemblies in solution

The concentration at which aggregation starts is called critical micelle concentration (CMC).
This term is used exclusively for self-assembly of surfactants in solution. A more general
term critical aggregation concentration (CAC), is also used for surfactant aggregation on
solid surfaces, and aggregations in polymer–surfactant mixtures. The CMC depends on the
temperature, through the solubility; and structure of surfactant molecules, through steric
effects: Solubility of surfactants increase slightly with temperature up to a point called the
Krafft point, after which it increases drastically. At concentrations below the solubility limit,
the surfactant molecules exist in the form of monomers. The temperature should be above
the Krafft point to prevent solubility becoming a parameter in the aggregation of surfactants.
Micelles are formed at concentrations above the solubility and temperatures above the Krafft
point of the surfactant. Various shapes of micelles are given in Figure 1.12. A model of
bilayer formation by rhamnolipid R2 molecules is given in Figure 1.11(b). The shape that
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will be favored by a surfactant system depends on the type and structure of the surfactant,
and the ionic strength of the solution, which will be discussed next. 

The model of a rhamnolipid molecule, a double-chained surfactant at its minimum
energy position given in Figure 1.11(a) could be circumscribed by a cylinder in three-
dimensional space. Had there been only one hydrocarbon chain, the geometrical shape that
would circumscribe the molecule would be a cone. The bulky hydrophilic head group
would constitute the base and the hydrocarbon tail would determine the height of the cone.
When a number of molecules would assemble, the preferred shape of the aggregate of
single-chained surfactants would be a sphere and that of the double-chained, a flat layout,
such as a bilayer, due to the inflexibility of the cylindrical form. In a bilayer, either the
head groups, or the tails could be encompassed within the bilayer, depending on the con-
tinuous phase in between the double-layers. In the case of spherical micelles, the group
that occupies the larger volume fraction constitutes the external surface. The compatibility
of the external surface structure with that of the continuous medium determines in which
phase the micelles exist: In the aqueous phase, the hydrophilic group constitutes the exter-
nal phase, whereas in the oil phase, the hydrocarbon tails protrude out from the surface
(inverse micelles). The in-between case would be a truncated cone, where cylindrical
micelles would be favored, and orientation of the molecules being dependent on the exter-
nal continuous phase. In geometrical terms, these conditions are expressed in terms of the
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Figure 1.12 Types of micelles: (a) normal spherical, (b) reverse spherical, (c) normal hexagonal,
(d) reverse hexagonal, (e) lamellar (bilayer) and (f) vesicle. 



base area and height of the circumscribed volume of the molecule, known as the critical
packing parameter (CPP):

(1.75)

where � is the volume of the molecule, as the area occupied by a molecule at an interface,
and lc the length of the hydrocarbon chain given in [Å] units by the equation

(1.76)

where nC is the number of carbon atoms in the hydrocarbon chain. A CPP value less than
1/3 signifies spherical micelles, 1/3�CPP�1/2, cylindrical micelles, 1/2�CPP�1, vesi-
cles, and CPP�1, bilayers.

The bilayer structure is of particular interest as it constitutes the cell membranes. Two
properties of the bilayer are of particular importance, elasticity, and bending modulus.
Balance between attractive and repulsive forces (in the case of ionic surfactants) deter-
mines the optimum interfacial area a0 for a surfactant molecule, where the total interactive
energy will be minimum. Just as in the case of spring forces, if the interfacial area is
stretched, attractive forces will act to draw the molecules to the minimum area. In other
words, the molecules at the interface behave elastically toward an extension or compres-
sion in the same plane. The elastic energy Eel [J], is given by

(1.77)

where a0 is the optimum interfacial area, a the area under stretched conditions, and Kel the
modulus of elasticity [Jm�2]. Through energy considerations, modulus of elasticity is
found to be Kel �2� for monolayers and Kel �4� for bilayers where � is the surface tension
(Israelachvili, 1991). Experimental values of the modulus of elasticity of fluid lipid bilay-
ers and free biological cell membranes are found to be in the range of 0.10–0.23Jm�2

(Kwok and Evans, 1981; Evans and Rawicz, 1990; Marsh, 1990).
Interaction between the hydrophilic and hydrophobic groups also leads to a resistance

to bending or variation of radius of curvature of the bilayer (Israelachvili, 1991):

(1.78)

where Eb is the energy of bending [Jm�2], � the bilayer thickness, d the distance from the
hydrocarbon–water interface where the repulsive forces are centered, R the radius of cur-
vature, � the surface tension [Jm�2], and Kb the bending modulus [J]. When head-group
repulsion dominates, d is positive and Kb is negative; and when chain repulsion domi-
nates, d is negative and Kb is positive. Experimental values of Kb (positive) of fluid bilay-
ers are in the range of (2 � 20) � 10-20J. When Kb is negative, stable vesicles cannot form,
which occurs in the case of large repulsive head groups and short hydrocarbon chains.
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Bilayers, biological membranes and other surfactant aggregates such as vesicles and
micelles in microemulsions are not rigid but fluid-like, moving constantly under thermal
fluctuations. In the case of bilayers and membranes, the component surfactant layers can
move in wave-like motion (undulation), bringing about forces of entropic origin during
these random motions (Israelachvili, 1991). The first of these, the protrusion force arises
if a side chain dangling into the space between the component layers becomes “squeezed”
during the random motion of the layers. The response is repulsion due to entropy decrease
on confinement within a limited space. An undulation force arises during the wave-like
motion of the membrane and is associated with the bending modulus Kb, as given above.
The component surfactant layers of a membrane can also undergo peristaltic motion: The
component layers may approach and retract from each other without bending. In this case, a
peristaltic force arises related with the modulus of elasticity (or resistance to expansion) Kel.
Resistance to close approach of the component layers also contributes to this force.

1.7.3 Self-assemblies on solid surfaces

Surfactants aggregate on the surfaces of solids on which they are adsorbed with the same
motivation of reducing their free energy by secluding their hydrophobic groups from the
aqueous phase. Surfactants may adsorb on surfaces either with their hydrophobic or with
their hydrophilic groups. The first case occurs when the solid is hydrophobic. The hydro-
carbon chain of the surfactant molecule is adsorbed on the solid surface, leaving the
hydrophilic ends suspended in the aqueous solution. The net effect of this adsorption is
similar to formation of micelles, with the particle enclosed by a layer of surfactants.

Since most solid surfaces are negatively charged, cationic surfactants are preferably
adsorbed on the surfaces of the particle rendering it hydrophobic. This may be a desirable
situation if the aim is suspension of the particles. Stabilization of the suspension occurs
over a limited range of concentrations only, for the surfactants form a second layer
(bilayer) on the free hydrocarbon chains with the hydrophilic groups facing the aqueous
solution when present in concentrations in excess of that required for full coverage of the
particle surfaces. Spherical or disc shaped micelle formation is also possible if the attrac-
tive forces between the hydrophobic chains are greater than the attractive forces between
the solid surfaces and the hydrophilic groups. The CPP is an indication of the strength of
adsorption of surfactants whether the solid surface is hydrophobic or hydrophilic:
Adsorption increases as CPP increases (Jönsson et al., 1998). Therefore, double-chained
surfactants with CPP value �1 are preferably adsorbed on solid surfaces and are excellent
suspension reagents. In the case of Gemini surfactants with double hydrocarbon chains and
two cationic groups, both the increased adsorption energy of the two hydrophilic groups
and density of the hydrocarbon chains contribute to the compactness of the adsorbed
monolayer (Rabinovich et al., 2005). A high repulsive barrier toward aggregation is
formed even at the low CMC values of these surfactants. Addition of an electrolyte also
increases the CPP leading to increased adsorption of ionic surfactants on solid surfaces.
Maximum repulsive force was found to increase linearly with the chain length of the
cationic surfactants (Adler et al., 2000) at surfactant concentrations twice the CMC value.
This maximum repulsion force that is an order of magnitude greater than expected from
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electrostatic repulsion forces was attributed to elastic deformation of adsorbed surfactant
layers and specifically to the resistance to compression of surfactant self-assemblies in the
adsorbed layer, as will be explained below.

1.8 STABILIZATION OF SUSPENSIONS

In some processes, particularly technologies related with nanoparticles, stability of the sus-
pension and control of the size distribution of the particles is a prerequisite for the expected
performance of the particles. The only long-range repulsive forces that can be employed
to overcome the attractions caused by ubiquitous van der Waals forces are double layer
repulsions and steric forces. Double layer repulsions handled by the DLVO theory is rele-
vant under mild strengths of electrolytes and pH. Stabilization by repulsive forces is used
with success in operations involving particles in the micrometer scale. As the particle size
is reduced to nanoranges, the charges carried by these small volume bodies decrease. The
repulsive ionic cloud around these particles is not sufficient to overcome the attractive van
der Waals forces, necessitating the employment of steric forces to maintain stabilization.
Steric repulsion can be brought about by the adsorption of three different entities: (1) sur-
factants, (2) polymers and polyelectrolytes, (3) nanoparticles. As each of these methods is
an issue of current interest and intensive research, some of the recent developments are
summarized below.

1.8.1 Stabilization by surfactants

Stabilization by surfactants is a complicated phenomenon involving surfactant–surface,
surfactant–surfactant, surfactant–solvent, and solvent–surface interactions. By manipulat-
ing these interactions, surface morphology, hydrophobicity, surface layer strength, and
rheological properties can be changed according to the process requirements. In the flow
of concentrated suspensions, in high shear processes such as mixing, and in extrusion of
pastes, the adsorbed surfactant layers are forced to interact under high shear and close dis-
tances. To reduce the deformative and destructive effect of close approach under stress, the
surfactant layer should have adequate yield strength and modulus of elasticity (Rabinovich
et al., 2004). In this section, structure of surfactant layers will be related to resistance
toward deformation.

It is possible to change the surface morphology of solid particles by adsorption of sur-
factants. The surface concentration of surfactants � [mol m�2 or molecules Å�2 units] on
solid or liquid surfaces is in equilibrium with the bulk phase concentration or more cor-
rectly with the activity of surfactants in solution, determined by the Gibbs adsorption
isotherm. Increase in the bulk concentration above that required for compact film forma-
tion at solid surfaces (�max) changes the structure of the surfactant film on the solid sur-
faces. This concentration is closely related with the CMC or CAC of the surfactant. The
structure of the film depends not only on the concentration but also on the structure of the
surfactant and the hydrophobicity of the solid surface: Surfactants adsorb with their hydro-
carbon chain on hydrophobic solid surfaces. As the bulk concentration increases, surface
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concentration also increases, bringing the surfactant molecules into an upright position as
depicted in Figure 1.13(a). At maximum concentration, only the hydrophilic groups are
accessible from the exterior, rendering the particle hydrophilic. Surfactants adsorb with
their hydrophilic groups on solids bearing an opposite charge, such as in the case of pref-
erential adsorption of cationic surfactants on negatively charged clay surfaces. The struc-
ture of the surfactant film depends on the surface charge density of the solids. If uniform
charge density prevails, as in the highly charged solids, then a similar compact monolayer
forms rendering the solid surfaces hydrophobic, as in Figure 1.13(b). The surface mor-
phology depends on the surfactant structure at higher concentrations. Possible configura-
tions are shown in Figure 1.13(c). 

1.8.1.1 Variation of surface forces with the structure of the surfactant layer

The structures in Figure 1.13(c) are for surfactants with head groups made up of electrophilic
atoms only. Ethoxylate type of surfactants with hydrophilic end groups of the form
[–O(–CH2–CH2–O)–H] are widely used in many processes and are of special interest. This
group can attach to the surface by hydrogen bonds via –O– atoms, or through hydrophobic
forces via the ethylene groups. Grant et al. (2000) prepared engineered surfaces by
chemisorbing thiohexadecane (CH3(CH2)15–SH) and thiohexadecanol (CH2OH(CH2)15–SH)
via –S– bridges on gold surfaces, so that the external surface of the particle would have
known percentages of –CH3 and –OH groups, thus, known percentage of hydrophobicity.
They adsorbed an ethoxylate type of surfactant octa(oxyethylene) n-dodecyl ether (C12E8) on
the engineered surface and measured the surface forces as a function of configuration of the
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Figure 1.13 Structure of surfactant layers on solid surfaces. (a) Hydrophobic surfaces,
(b) hydrophilic surfaces, (c) possible configurations at high surfactant concentrations and (d) varia-
tion of the layer structure with the hydrophobicity of the surface related with Figure 1.14. 



surfactant layer. Possible surfactant layer structures in conformation with AFM images and
force measurements are redrawn in Figure 1.13(d) and the variation of interactive forces with
distance of approach are shown in Figure 1.14(a)–(d). 

Figure 1.14(a) shows that there are no interactive forces between the AFM tip and the par-
ticle with a surface of 25% hydrophobicity up until a separation distance of �2nm. Resistive
barrier is observed on further approach. The stepwise character of resistance implies that lay-
ers or groups with different adsorption strengths are being removed on approach of the tip,
before the tip adheres with the surface, indicated by the steep rise in force at �0nm. The sur-
face of adherence is the external surface of the thiohexane/hexadecanol layer that behaves as
a solid surface because of the high strength of chemisorption. The continuity of the force
curve indicates that the adsorbed ethoxylate layer is labile and escapes from the site of com-
pression without being disrupted. The sharp rise of the repulsion barrier on approach of the
tip and the break in the force curve indicates that the adsorbed ethoxylate layer structure is
disrupted before the tip “jumps” into contact with the solid surface. As the hydrophobicity of
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Figure 1.14 Forces between the AFM tip and the surface. (a) 25% CH3 surface, (b) 50% CH3
surface, (c) 75% CH3 surface and (d) 100% CH3 surface (Redrawn from Grant et al., 2000. Figure 5
in the original, with permission of American Chemical Society). 



the surface increases, the height of the repulsion barrier before the disruption increases to
higher values (Figure 1.14(b)). This shows the strength of adsorption, confirming that
adsorption takes place through hydrophobic forces far outreaching the effect of van der
Waals forces (hydrogen bonds) under the competition of water molecules of the suspension
medium, which also try to adsorb to those hydrophilic –OH groups. The onset of the repul-
sive barrier indicates the layer thickness. The layer thicknesses at 50 and 75% hydrophobic-
ity (Figure 1.14(b)–(c)) are similar (�6nm) almost twice the length of ethoxylate molecules.
Either close-packed micelle formation or bilayer formation could have a layer thickness of
this magnitude. Bilayer formation at 75% (Figure 1.14(c)) was inferred from the smooth
appearance of the adsorbed layer (Grant et al., 2000). The decrease in the onset value of
resistance, together with an increase in the barrier height (force) indicates that a monolayer
has formed with a concomitant reversal in the configuration of surfactant molecules, adsorb-
ing much more strongly through the hydrocarbon chains than through the ethylene groups of
the ethoxylate groups.

1.8.1.2 Deformability of surfactant coated particles

Work conducted on the resistance of adsorbed layers toward compression inferred from the
force–distance profiles in AFM (Grant et al., 2000; Adler et al., 2000) show that surfactant
chain length and configuration of the surfactants in the adsorbed layer has a strong bear-
ing on the steric repulsion of the particles, sustaining the suspension stability. Steric repul-
sion acts through the yield stress and modulus of elasticity in terms of rheological
properties (see Chapter 2). Rabinovich et al. (2004) analyzed the mechanical strength of
the adsorbed layers through the Hertz (1986) theory taking the effect of the underlying
hard-sphere core into account by the Shull et al. (1998) correction. The authors assumed
the surface of the coated particle as a plane, in comparison with the dimensions of the pen-
etrating sphere, to simplify the mathematical treatment. The adsorption layer is accepted
as a homogeneous elastomer with an average thickness of h0. Hertz theory relates the con-
tact area of a penetrating sphere of radius R with the force through the bulk modulus of
elasticity, Kelb [Nm�2] related to the young’s modulus of elasticity E through the poisson

ration � �Kelb � �:

(1.79)

where a is the radius of the contact area. The force applied by the colliding (penetrating)
sphere, is shown in Figure 1.15(a). The penetrating body causes an indentation � in the
adsorbed layer proportional with the contact area:

(1.80)

The indentation can be related to the applied force through these equations by
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The indenting sphere causes the evolution of normal stresses within the elastomer
film. The distribution of normal stresses p(r) along the indenting sphere is given by
Hertz theory as

(1.82)

The pressure just when the sphere begins to indent into the adsorbed layer is the yield
stress in the normal direction, Y:

(1.83)

where the subscript Y indicates the values of the variables at the yield point. The yield
stress is associated with the “jump-in” value of the force as shown in Figure 1.14(b)–(c),
where the force curve is interrupted at its maximum value and the distance suddenly drops
to zero as the two surfaces adhere. Hertz theory is valid for low values of indentation,
expressed as, a/h0 �� 1, after which the hard core beneath the elastomer film affects the
stress distribution. This effect is taken into consideration by the Shull correction factors for
the indentation

(1.84)

and for the force assumed to act in a frictionless medium
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Figure 1.15 Dimensions related with deformabilities (a) of surfactant coating (Reproduced from
Rabinovich et al., 2004. Figure 2 in the original, with permission of Elsevier.); (b) of an elastic
particle on interaction with a hard surface. 



where the subscripts H denote the values found by the Hertz equation. At low values of
a/h0 the indentation and force approach the Hertz values. Increasing values of a/h0 cause
an increase in the force created.

The yield stress Y bears significance as an indication of suspension stability. Rabinovich
et al. (2004) showed that a linear relation exists between the yield stress and the number
of carbon atoms in the alkyl chain of the adsorbed surfactants, the yield stress increasing
linearly with the length of the chain. They also showed that the yield stress of adsorbed
layers on hydrophobic surfaces and of layers with compact worm-like micelles to be
greater than that of hydrophilic surfaces and spherical micelles, respectively, confirming
the results of Grant et al. (2000). 

1.8.1.2.1 Effect of particle deformability

In addition to the deformability of the adsorbed layers, the particle itself may also be
deformable as in the case of polymer colloids, elastomers, and biological cells such as the
red blood cells (RBCs). In such a case the contact area between the two particles becomes
flattened by the repulsive force causing an increase in the contact area and hence the force,
as shown in Figure 1.15(b). Vakarelski et al. (2003) analyzed the forces created in
deformable bodies theoretically, backed up by experiments with AFM. They found that the
critical force Fc necessary to destroy the adsorbed layers on deformable particles and to
bring the surfaces into adhesive contact was �10 times higher than that for the case of solid
particles. If the force is below the critical force, the particles rebound and do not adhere.
This result is significant in explaining the stability of deformable particles under variable
forces, such as in the case of RBCs flowing in blood vessels of different diameters.

1.8.2 Stabilization by polymers and polyelectrolytes

Interactions of polymers and polyelectrolytes with particles were presented in
Section 1.4.3 in connection with aggregation of particles. Steric forces brought about by
adsorbed polymers can be used in stabilizing the suspensions. An advantage of steric sta-
bilization is the possibility of complete coverage of the surface in maintaining the stabil-
ity of particles. The disadvantage of this method is the difficulty in determining critical
concentration of polymers at which the particle surfaces will be completely covered but the
chains will be prevented from extending into the solution to avoid bridging between parti-
cles. Polyelectrolytes could also be used for steric stabilization. At pH values other than
the isoelectric point of the polyelectrolytes, the stability will be maintained essentially by
the steric repulsion between the functional groups of the polyelectrolytes. In this case, a
thick adsorbed layer of polyelectrolytes will decrease the effect of van der Waals forces as
well as the charge density on the particle, both helping the stabilization of the particles.
The disadvantage of this method is that the repulsions between the charged layers will
decrease at high ionic strengths making this procedure usable only under moderate
strengths where DLVO theory is relevant.

An issue that is more challenging than the stability of individual particles is the stabil-
ity of clusters within a narrow size range. This becomes a problem in the use of ferro-
magnetic nanoparticles in the high-gradient magnetic separation of proteins under high
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ionic strengths. Particle clusters together with their adsorbed proteins should be above a
definite size range to overcome the drag forces to be captured within the retention time in
the separator. The difficulty of the situation lies in the control of the “start” and “stop” pro-
cedures for aggregation: It is easy to start the aggregation but very hard to stop it when a
certain size range is reached and then ensuring that stability is maintained under all con-
ditions prevalent in the environment of application. A comprehensive approach to the prob-
lem is reported recently by Ditsch et al. (2005) where magnetic particles of nanometer size
range were subjected to partial coating by random copolymers of acrylic acid/styrene sul-
fonic acid/vinyl sulfonic acid (AA/SSA/VSA). By applying the polymers in amounts
below that required for full coating, and adjusting the hydrophobicity by SSA and attach-
ment density by AA, the cluster size could be kept under control. The authors found that
the size and stability of the clusters could not be maintained by a single coating of poly-
mer, no matter what the composition of the polymer or the ratio of polymer to particle is.
Clusters of any desired charge or hydrophobicity could be made by applying the coating
in two steps: First to proceed the clustering to the desired size range and the second to sta-
bilize the already formed clusters. The critical parameters in the first coating were found
to be the molecular weight of the polymer (denoted as the extent of polymerization, or
number of repeating units, Xw) and the amount of polymer used. At low molecular weights
of the polymer, coverage of the particles is not complete and large-sized clusters were
formed under the action of van der Waals forces. As the molecular weight increased, bet-
ter coating of the particles could be achieved and steric stabilization decreased the cluster
size down to single primary particles. Bridging forces became dominant with further
increase in the number of repeating units of polymer and caused the formation of clusters
approximately two orders of magnitude larger than the size of primary particles. An exam-
ple to the variation of the hydrodynamic diameter with the degree of polymerization is
reproduced in Figure 1.16. The size of the clusters formed under the dominance of van der
Waals forces were calculated for an energy barrier of 15kBT. 
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Figure 1.16 An example to the variation of cluster sizes with the degree of polymerization of the
coating polymer (Reproduced from Ditsch et al., 2005. Figure 11(a) in the original, with permission
of American Chemical Society). 



The three dotted-lined curves depict the variation of the hydrodynamic diameter of the
cluster if only the represented force (i.e., van der Waals or bridging) were operative and
the size of single particles sterically stabilized with a polymer of given molecular
weight. The heavy line indicates the net effect, with the largest force controlling the
hydraulic diameter for any given molecular weight of polymer used in the process.
Contrary to low molecular weight polymers that produce particle-rich clusters, high
molecular weight polymers were found to produce stable aggregates of bridged polymer
networks low in solid particle content. Regardless of the charge of the hydrophilic group
(cationic or anionic), all dimensionless diameters (diameter scaled to the minimum
diameter) fell on the same curve at the same value of Xw/Xmin, where Xmin, is the number
of repeating units in the polymer causing the formation of minimum diameter clusters.
These results showed that hydrophobicity of the polymer chain is effective in determin-
ing the minimum number repeat units that should be present to minimize the diameter
of the cluster and not the charge of the hydrophilic group. When limited amounts of
polymer were used in the first stage of coating, the size of the clusters was found to
reflect the relative rates of particle–particle aggregation and polymer–particle aggrega-
tion. Due to the insufficient amount of polymer used, the initially formed clusters are
unstable. These clusters are stabilized soon after they are formed by a second polymer
coating in amounts adequate to fill in the empty adsorption sites on the particle but not
to cause bridging among the particles.

The authors (Ditsch et al., 2005) modeled the aggregation process during the first stage
of coating by the DLVO theory, using the Vold generalized van der Waals attractions
applied to the polymer-coated materials:

(1.86)

This equation is a combination of eqs. (1.23), (1.24), and (1.25a) with R term nondimen-
sionalized with the core diameter d; and separation distance s, scaled with the pertinent
diameter, combined as an equation of the form:

(1.87)

where s* and R* are nondimensional distance and nondimensional diameter, respectively,
the values of which are indicated in the functions of eq. (1.86). Hm, Hc, and Hp are the
Hamaker constants for the medium, polymer coating and core particle, respectively. The
other dimensions are shown in Figure 1.17. 
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The energy of repulsion between two coated spheres is estimated (Reiner and Radke,
1993) by

(1.88)

The sum of eqs. (1.86) and (1.88) will give the total interaction potential between two par-
ticles. Vold and Vold (1983) gives the required energy barrier for stabilization to be at least
15 times the thermal energy, 15kBT. The required thickness of the polymer coating � is
estimated from the solution of eqs. (1.86) and (1.88). The height of the energy barrier in
the resulting total interactive energy is a strong function of the ionic strength. Therefore,
the authors suggest the employment of higher � values than required for stabilization if the
synthesized particles are to be used under higher ionic strengths. Typical value of the
thickness � is around twice the radius of gyration of the polymer (Aubouy and Raphael,
1998). As the radius of gyration of the polymer increases, the curvature of the particle lim-
its the effective thickness of the layer.

The core size of the clusters are found (Ditsch et al., 2005) from the rate of particle
aggregation, and the cluster size dclus, is related to the primary magnetic particle size dc, by
an equation similar to eq. (1.59):

(1.89)

where Mclus /m is the number of primary magnetite particles in an average cluster, also
called the aggregation number and df is the fractal dimension, for diffusion-limited col-
loidal aggregation. The thickness of the polymer coating around the cluster is approxi-
mated as twice the radius of gyration of the polymer, Rg, given by eq. (1.50). 

1.8.3 Stabilization by nanoparticles

Another recent development involved the use of nanoparticles to stabilize the microparti-
cles (Tohver et al., 2001). As in the case of polyelectrolytes, surfaces of uncharged
particles are energetically more favorable places for adsorption of charged nanoparticles.
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Figure 1.17 Dimensions of coated particles as used in eqs. (1.86)–(1.87).



Repulsions between microparticles coated with nanoparticle halos are essentially electro-
static in action. However, it also depends on the sizes of the nano- and microparticles and
the ratio of their diameters, as well as on their volume fraction. Particle mixtures exhibit
phase behavior much like their fluid counterparts. In a study of phase equilibrium among
binary mixtures of different diameter particles (radius of nanoparticles�3 nm and radii of
microparticles either 285 or 590 nm), Tohver et al. (2001) found that a region of stability
exists in between two gel phases, where the suspension acts like a fluid. This phenomenon
was attributed to microspheres coated with charged nanoparticle halos. The phenomenon
opens up many possibilities. Lee and Kramer (2004) used nanoparticle haloing to enhance
self-assembly of colloidal crystals on patterned surfaces. Theoretical model studies of
nanoparticle haloing (Karanikas and Louis, 2004) showed that halos are not a static layer
of adsorbed particles, as in the case of steric stabilization. The nanoparticle halo is dilute
and is in dynamic equilibrium with the bulk of the suspending fluid. A consequence of the
dynamic nature of the halos is that stabilization cannot be maintained if the velocity of the
microparticle is too fast for the nanoparticles to catch-up with. Nanoparticle haloing is a
promising technology but needs further research for wide-scale application. 

1.9 AGGREGATION IN BIOLOGICAL SYSTEMS

Aggregation takes place among living cells also: Aggregation in algae and microorganisms
and subsequent sedimentation of the aggregates are responsible for the carbon cycle in the
seas. Aggregation of microorganisms together with other inorganic colloids is desired in
wastewater treatment. Reversible aggregation of red blood cells (RBCs) in blood regulates
the retention time of these cells in various blood vessels through variations in viscosity,
while irreversible aggregation of platelets help to repair injuries of the blood vessel wall
even under high shear rates. The mechanisms that bring about aggregation of inorganic
particles are also effective in the case of microorganisms. Two typical cases, blood cells
and algae, will be taken up in this chapter as examples of cell aggregation. 

1.9.1 Aggregation behavior of blood cells

Presence of blood cells, generally called hematocrit, give non-Newtonian characteristics
to blood rheology through their aggregation and redispersion under the effect of shear.
Hematocrit is mainly composed of RBCs, called erythrocytes, white blood cells (WBCs),
called leucocytes, and platelets, called thrombocytes, at an approximate order of magnitude
ratio of 106:103:105, respectively, in terms of number of cells per cubic millimeter. The
liquid phase, plasma, is a solution of proteins (albumin, globulin, and fibrinogen),
coagulation factors and electrolytes, mainly Na�, K�, and Ca2�. Interaction and aggrega-
tion of blood cells are thus complex mechanisms involving electrostatic forces, van der
Waals forces, surface forces related with polymers, and molecular recognition of receptors
on another cell or colloid, all within a context of interrelated functions. As either aggrega-
tion or stabilization of the suspension is desired in various parts of the circulatory system
in accordance with the function of the cells, the respective mechanisms must be in a
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delicate balance. The mechanism of aggregation is determined by the requirement of these
cells to perform their functions: RBCs are responsible for mass transfer of O2, CO2, and
various nutrients and their consecutive transportation throughout the body. The velocity of
the RBCs is reduced through aggregation under low shear rates to allow the required reten-
tion time for mass transfer. To speed up the transportation in between the sites of mass
transfer, for example, to and from the lungs, the aggregates have to be broken up under
high shear rates in the arteries and veins. In order to pass through narrow capillaries of
diameter equal to their width they have to disaggregate into individual cells to be able to
pass through. Therefore, the aggregation mechanism of RBC should be reversible, and be
a function of the balance between attractive forces and shear stresses acting over the exter-
nal surfaces. Platelets are mainly responsible for the repair of the damaged blood vessel
walls, so the aggregates they form should be able to withstand the action of high shear
rates. In addition, they should not form nonspecific aggregates with all the particles but
only with those with which they can form a network for repair of the injured vessel wall.
Therefore, aggregation based on molecular recognition of specific receptors is suitable
with their function.

A water soluble protein, fibrinogen, plays a crucial role in the aggregation of all blood
cells; therefore, its structure deserves special attention: Fibrinogen is an acute phase reac-
tant whose concentration increases in times of injury to blood vessel walls, besides due to
other factors. It is a glycoprotein with two symmetric parts, called D domains, each con-
sisting of a set of three polypeptide chains denoted as A�, B	, and 
, linked together by
disulfide bridges which forms the central amino-terminal E domain of the elongated com-
plex (MW�340,000 Da). Adsorption to other entities take place only at specific sites at a
specific orientation, i.e., there are sites on the D and E domains, which specifically bind to
platelets, endothelial cells, thrombin, leukocytes or other blood components (Herrick et al.,
1999; Mosesson, 2000). Fibrinogen does not directly adhere to erythrocytes (RBCs) and
also blocks erythrocyte–platelet aggregations. (Goel and Diamond, 2002). The self-asso-
ciation (D:D) sites are present at the two ends of the elongated molecule making possible
the end-to-end linkages among the molecules (Mosesson, 2000). Thrombin generated
upon vascular injury cleaves the complex molecule into fibrin and other cleavage products.
The remaining fibrin monomers polymerise spontaneously and form insoluble fibrin clots
after being cross-linked by transglutaminase (factor XIIIa) (Herrick et al., 1999;
Mosesson, 2000).

1.9.1.1 Aggregation of RBCs

Aggregation of RBCs is controlled by two factors: Their surface structure and their shape.

1.9.1.1.1 Surface structure of RBCs

A typical section of a cell membrane is given in Figure 1.18(a). A purely viscous phos-
pholipid bilayer constitutes the cell wall of RBCs. Dispersed among the lipids are the
membrane proteins with sialic acid residues suspended freely outside of this membrane.
No receptor sites are reported in the literature for RBCs, so there are no specific adsorp-
tion sites for proteins and other molecules on the cell surface. Due to dissociation of the
sialic acid groups, the surface bears a negative charge, with a surface charge density of
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0.036 C m�2 (Vargas et al., 1989; van Damme et al., 1994). These charges are not fixed
in space but are free to move together with the section of the polymer to which it is
attached. The mobility of the hydrocarbon segments to which the sialic acids are
attached cause the RBCs to act as soft particles instead of behaving as hard solid
spheres. The average length of this section is around 5 nm which can be approximated
as the width of the glycocalyx of an RBC. Debye length of the counterions is 	�1 � 0.76
nm (Neu and Meiselman, 2002). Viscoelasticity of the phospholipid membrane which
resists expansion also contributes to the effect of the mobile glycocalyx on the aggrega-
tion mechanism. 

1.9.1.1.2 Shape of the RBCs

The attractive forces, mainly van der Waals, between the hydrophilic and hydrophobic sec-
tions of the membrane lipids resist stretching during an increase in surface area upon
deformation of the shape. A cytoskeleton made up of a network of proteins, mainly spec-
trin, is attached to the cell wall through interactions with membrane proteins. This protein
network is responsible for the shape of the RBCs and the elasticity of the cell. The RBCs
are elliptical concave discs of length equal to 8 �m and thickness 1.5 �m at the center and
2.5�m around the circumference as sketched in Figure 1.18(b). The second centrally
located concavity in the cell permits flexibility in cellular motion, making shape changes
possible without an increase in surface area (Baskurt and Meiselman, 2003). These shape
changes are required in the stacking of the aggregates, as well as orientation under shear
forces to reduce drag.

Under the given conditions of surface structure and shape, interactions among RBCs are
expected to be due to electrostatic charges, to van der Waals attractions and to the effect of
polymers suspended in the plasma and integrated within the cell membrane. 
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Figure 1.18 Red blood cells. (a) Surface structure, (b) shape and dimensions and (c) rouleaux
formation in different sections of the circulatory system. 



1.9.1.1.3 Experimental observations of RBC aggregation

Ellipsoid disc shaped RBCs form stacks sketched in Figure 1.18(c), called rouleaux, when
the shear rate is low. This aggregation is reversible, the rouleaux being dispersed into indi-
vidual cells under high shear stresses. RBCs do not form aggregates in electrolyte (isotonic
salt) solutions indicating the effect of repulsive electrostatic forces in the aggregation
mechanism. It also indicates the role of polymers in bringing about the aggregation. 

1.9.1.1.4 Effect of electrostatic charges

Erythrocytes, as other biological cells have a negative surface charge due to sialic acid end
groups of glycoproteins located in the cell membrane. Sialic acid groups leave the cell wall
with age or under the action of other molecules in the plasma such as trypsin and neu-
raminidase (Godin and Caprani, 1997). The surface charge density of normal and fresh
erythrocytes is �0.036 Cm�2. The negative surface charge on RBCs reduce the aggrega-
tion effect due to van der Waals forces and the bridging or depletion forces brought about
by the polymers in the suspension medium (Armstrong et al., 2004). This charge density
decreases with the age of RBC, the decrease becoming more significant after 6 days. Cell
rigidity accompanies the decrease in surface charge probably due to the modification of
the integrated protein structure of the cell membrane, reducing the effect of viscoelasticity
on cell repulsion and favoring aggregation.

The attractive and repulsive forces are important not only in the self-association of RBCs
but also in their adherence to other surfaces, such as artificial organs. Measurement of forces
between a RBC and a hydrophilic glass surface immersed in phosphate buffered saline with
AFM (Luckham, 2004) showed the existence of repulsive forces at all interparticle separa-
tions. The repulsive interactions were found to become significant around 60nm to the cell
surface and increased very slowly as the cell surface was approached. A very strong repulsive
force similar to the hydrophobic forces in inorganic systems was observed around 10nm. 

1.9.1.1.5 Effect of van der Waals forces

Attractive interactions of RBCs due to van der Waals forces were observed with hydropho-
bic surfaces by AFM (Luckham, 2004). When a glass surface was hydrophobized with
silane, essentially replacing (–OH) groups with (–CH3) groups, a minimum was observed
at distances less than 100 nm, signifying the existence of attractive forces. 

1.9.1.1.6 Effect of polymers

Polymers are present in blood in the form of proteins in plasma, or as sections of mem-
brane proteins in the glycocalyx. Thus, steric, bridging, and depletion forces could all be
effective in the polymer-mediated interactions. Steric forces evolve because of the repul-
sion between short-chain hydrocarbons adsorbed on particle surfaces. In the case of RBCs,
the free end groups of polymers integrated into the cell membrane can create a repulsive
steric force effect. However, due to high electrostatic repulsion, cell–cell distances at
which minimal interaction energy occurs are always greater than twice the thickness of the
cell’s glycocalyx. Thus, steric interactions between glycocalyx on adjacent RBCs can be
neglected (Neu and Meiselman, 2002).
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Structures of plasma proteins are much more complicated than the nonionic polymers
used in medical practices, such as dextran, and can be of various sizes and shapes. The most
important plasma proteins in the order of decreasing concentration are albumin, globulin,
immunoglobulins (IgA, IgG, and IgM) and fibrinogen. The presence of polymers suggests
two possible mechanisms of aggregation: That of bridging through adsorbed polymers and
that of depletion forces due to unadsorbed polymers. As explained above, bridging involves
bonding of different cells together with the same polymer chain or direct bonding to poly-
mers. To be able to form a bridge between different cells, the polymer should be long enough
on expansion to span the distance between the cells. This rules out the short-chain polymers
with low molecular weights and polymers with a spherical shape, such as immunoglobulins
from bridge formation. Binding by depletion forces requires only the existence of an
excluded volume in between the cells, on which the osmotic pressures act. As no bonds or
polymer–particle interactions are involved in aggregation through depletion forces, it is rel-
atively more reversible than aggregation through bridging which requires the simultaneous
breakage of more than one bond on different cells. Armstrong et al. (2004) observed the
molecular weight dependence of aggregation, when brought about by synthetic polymers,
dextran, PVP and POE: Polymers with hydraulic radius less than 4 nm were either found to
inhibit or not to affect the aggregation, whereas, polymers with hydraulic diameters greater
than 4 nm were found to be strongly pro-aggregant. The aggregation effect was maximum
in the range 6 � rH � 12nm, slightly greater than the size range of the RBC glycocalyx.
Polymers of size, rH � 12nm were found to deteriorate the aggregation of RBCs causing the
formation of rounded and compressed clumps rather than elongated rouleaux (Armstrong
et al., 2004). Photographs taken in vivo by Pearson and Lipowski (2004) of rat RBCs flowing
through a precapillary bifurcation after administration of fibrinogen (a) and Dextran 500 
(b) are reproduced in Figure 3.14 in Chapter 3. Whereas, the rouleaux formed by fibrinogen
cannot resist the shear under turbulent conditions existing at a bifurcation and tend to break
up into irregular shapes, the rounded clumps formed by the action of Dextran 500 are quite
stable. As the hydraulic radius rH of Dextran 500 is 15.90 nm while that of fibrinogen is
10.95 nm (Armstrong et al., 2004), the observed deterioration may perhaps be due to the
effect of bridging bonds in addition to the action of depletion forces.

1.9.1.2 Aggregation of platelets

When a blood vessel is injured, the punctured endothelial cell lining of the vessel wall
opens up, exposing the underlying extracellular cells. Disc shaped cells 1–4 �m in diam-
eter, called platelets, are responsible for the control of bleeding (hemostasis) from these
disrupted blood vessels. So they are equipped with receptor sites which selectively adhere
to specific molecules on endothelial cells, collagen of the extra cellular matrix, other
platelets, or on ligand complexes which form bridges between platelets and the cells to
which they adhere. This selection mechanism, called molecular recognition, controls the
adhesion to correct entities during the process of coagulation. Coagulation proceeds
through the steps of molecular recognition, adhesion, signaling, activation of binding sites
and final aggregation. Molecular recognition is carried out mainly by glycolipids (GP) act-
ing as adhesion receptors embedded within the platelet membrane (Yip, et al., 2005).
Examples of adhesion receptors are GPVI that binds to collagen and GPIb-IX-V that binds
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collagen-bound von Willebrand Factor (vWF). The latter, vWF, is an adhesive glycopro-
tein secreted by the platelets or endothelial cells into plasma or subendothelial matrix.
Their very large size (MW�20�106 Da) and string-like shape facilitate the adhesion
even under high shear rates observed in cases of high volumetric rates of blood flow. An
argenine–glycine–aspartine (RGD) peptid sequence present in one of the subunits of vWF
recognizes and strongly binds to an integrin in the platelet membrane, GPIIb/IIIa (�IIb	3),
responsible for strong aggregations with vWF, and similarly with fibrinogen. Because of
the critical role played by the platelets in stopping blood flow, there are more than one
mechanism (molecular pathways) for controlling blood flow, in vivo. However, at high
shear rates above �650s�1 the pathway involving GPIb-IX-V becomes critical: A subunit
of GPIb-IX-V in the platelet membrane, GPIb�, has a negative patch in its peptid sequence
which strongly attracts a positive patch (A1) on vWF. The energy potential of this electro-
static attraction makes the adhesion resistant to shear forces.

When a plaque adherent on the interior lining of arteries is broken, a signal similar to
vessel wall rupture may be transmitted to the platelets. This signal starts a similar proce-
dure of aggregation of platelets within the internal cross section (lumen) of the blood ves-
sel causing blockage of the vessel (thrombosis), observed in heart attacks and strokes,
[Andrews and Berndt, 2004].

1.9.1.2.1 Prevention of blood coagulation

Ca2� ions are closely involved in the aggregation of platelets and fibrin, through its effect
on the activation of GPIIb/IIIa (�IIb	3) (Guyton and Hall, 2006) and in the conversion of
prethrombin to thrombin that converts fibrinogen into fibrin that enmesh the blood cells in
forming the clot. Inhibition of coagulation is maintained by removing Ca2� ions from the
blood to decrease its concentration below the threshold level. This can be accomplished by
precipitating the Ca2� ions with citrate or oxalate anions.

Another way to inhibit coagulation is by addition of heparin to the blood. Heparin is
normally present in blood, secreted by mast cells around capillaries where the probability
of coagulation is highest due to slow rates of blood flow. When its concentration is
increased, it forms a complex with antithrombin III, greatly increasing the effectiveness of
the latter in removing thrombin and many other coagulation factors.

Still another way of preventing coagulation is through the addition of ethylenediamine
tetracetic acid (EDTA). EDTA changes the shape of the platelets from discoids into spiny
(thorny) spheres. The fibrinogen receptor located in the membrane matrix of the cells,
GPIIb/IIIa (�IIb	3) dissociates into its constituents, GPIIb and GPIIIa under the action of
EDTA. The platelets exposed to EDTA lose their binding ability to fibrinogen with a decreased
response to thrombin and collagen. As a result, clotting of blood is prevented. Recent studies
show that this effect is reversible, and the platelets can bind to fibrins through which they can
sustain clot retraction which necessitates tension development, even after being exposed to
EDTA. The causes for this reversibility in the functions of EDTA are not clear as yet. Presence
of GPIIb/IIIa deep in the glycocalyx matrix not reachable by EDTA molecules could be one
reason (White, 2000), reassociation of GPIIb and GPIIIa be another, as well as another recep-
tor such as an integrin assuming the functions of GPIIb/IIIa (Cohen et al., 1989; Rooney
et al., 1998). The effect of EDTA on blood rheology will be discussed in Chapter 3. 

64 1. The Particulate Phase



1.9.2 Aggregation of microorganisms

Similar mechanisms, with some provisions, are operative in the aggregation of microor-
ganisms including bacteria, algae, and yeasts. Aggregation processes include adhesion
among microorganisms; between microorganisms and inorganic particles within a floc
structure; and formation of microcolonies which develop into biofilms on solid surfaces.
Aggregation of microorganisms to produce flocs involves a sequence of steps in the order:

1. weak reversible attraction, generally within the second energy minimum from the
surface,

2. strengthening of the attraction through the excreted polymers to form a compact
microaggregate of several cell diameters in characteristic dimension,

3. flocculation of these compact microaggregates in a loosely bound porous floc,
generally described by the fractal theory.

The first step is sensitive to the ionic strength of the medium and takes place if attractive
forces overcome the effect of electrostatic repulsion and shear forces when the suspension
medium is in motion. DLVO theory should be used with caution in the case of microbial
adhesion, taking into account the structural differences between inorganic particles and liv-
ing microorganisms that have different capabilities. Pieterse and Cloot (1997) outlined
these differences as:

1. The electrostatic charge distribution on a cell surface is not uniform. Overall, they are
negatively charged but local positively charged sites cause specific orientations to be
favored. Especially, if the microorganisms have fibrils that have positively charged
areas along its length, attachment is maintained by the fibrils, even though the cell
itself is negatively charged.

2. Microorganisms have irregular shapes. They have the ability to change their shapes
to reduce the hydrodynamic resistance during motion.

3. Separation distance between cells is not well defined. As the length of the fibrils
approaches the cell diameter in some microorganisms, the separation distance
between the particles in the DLVO theory cannot be defined clearly.

4. Microorganisms with flagella can swim out of the flocs. Since the attractive forces in
the second energy minimum are not strong, the living microorganisms can easily
overcome these forces.

5. Gravitational forces may not be negligible. Gravitational forces, Fg, are of the same
order of magnitude as the van der Waals forces for microorganisms of ~10–30 �m
in diameter

(1.90)

where G is the universal gravitational constant (6.670 � 10�11m3kg�1s�2), m1 and m2

are the masses of two colliding bodies and s is the center-to-center distance (s�h� R1

�R2) between the bodies of radii Ri, and surface-to-surface separation h. Under the
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action of gravitational forces the two microorganisms revolve around their common
center of mass, facilitating aggregation.

6. Mass transfer during photosynthesis can affect the hydrodynamics around the cell.
Algal cells assimilate CO2 and other nutrients and excrete O2 and organic molecules
during photosynthesis. The net mass uptake perturbs the hydrodynamics in favor of
flocculation. The photosynthetic pulling force, Fph, can be approximated by

(1.91)

where U is the mass up-take speed (ms�1) and �, the viscosity of the suspension
medium (Pas)

7. Algal cells can react to perturbations in their environmental conditions. In case their
charge is neutralized by the addition of flocculants to reduce the intercellular repul-
sion, the algal cells can react to re-establish their initial negative charge. 

The second step in the floc formation involves the strengthening of the bonds formed by
DLVO forces by the action of non-DLVO forces, generally exerted as bridging by poly-
mers. These polymers could be provided by the cells as excretions or could be added as
flocculants, as in the case of wastewater treatment (Chu and Lee, 2004).

The third stage of floc formation encountered in wastewater treatment processes
involves other suspended solids and macromolecules to form irregularly shaped, fragile,
highly porous and heterogeneous flocs (Chu and Lee, 2004). A minimum of two fractal
dimensions, df1 and df2 were suggested to be used to describe the micro- and macrostruc-
ture of biological flocs: Wu et al. (2002) determined the fractal dimensions of sludge flocs
by light scattering to elucidate the structure of the micro flocs of kaolin and activated
sludge, presumably mixtures of kaolin and bacteria, captivated within macro clusters
formed by a cationic polyelectrolyte. In the absence of polyelectrolytes, the fractal dimen-
sion of kaolin aggregates were df�2.0, and those of activated sludges, df�2.12, designat-
ing close-packed structures formed by electrostatic attractions. Addition of a cationic
polyelectrolyte to the kaolin flocs caused a reduction in df, determined by light scattering
down to DLA levels. Fractal dimensions of activated sludge clusters determined by free
settling tests were much less, in the order of df�1.33–1.48, denoting a loose, porous struc-
ture which controls the settling rate. In view of the fact that much smaller amounts of poly-
mer are required for charge neutralization, the authors propose that the flocculation
mechanism of activated sludge could be through bridging by polymers rather than charge
neutralization of kaolinite. 
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Non-Newtonian Behavior of Solid–Liquid

Suspensions

Rheological behavior of solid–liquid suspensions are dependent on the interactions between
the dispersed components and the suspending medium which cause the diversion of the
shear stress versus shear rate relation from the linearity observed in Newtonian fluids. The
type and extent of this diversion will again depend on the strength of the attractive and
repulsive forces, and the ratio of the time for reorientation of the components to their orig-
inal configuration to the timescale of measurement. The relationship between the surface
forces and the rheology of the suspension will be taken up in Chapter 3. In this chapter, an
overview of non-Newtonian fluids will be given.

Metzner (1965) classified the non-Newtonian fluids into three categories: (1) Viscoelastic
fluids where a part of the stress is recovered after the removal of deforming shear, (2) fluids
with shear stress–shear rate relations independent of the time over which the shear is applied,
or purely viscous fluids, (3) fluids with shear stress–shear rate relations dependent on
the duration of the application of shear, or thixotropic, rheopectic fluids and fluids with
“memory.” The first two categories will be taken up in this chapter with special emphasis
on the second category that constitutes the majority of the non-Newtonian fluids. The third
category is closely related with concentrated suspensions and will be covered in Chapter
3 together with the interfacial and physicochemical background of the time-dependent
behavior. 

2.1 VISCOELASTICITY

Elasticity originates from the potential energy associated with extensional stretching of
bonds. Atoms, forced to be displaced from their equilibrium positions, store this energy in
the form of potential energy. After the removal of the force, the molecules will relax and
return to their minimum energy configuration. Presence of extendable bonds and adequate
lattice space to allow stretching within the molecular network are two prerequisites for the
manifestation of elasticity.

Under low stresses, the rate of deformation of the fluid is slow in comparison with the
characteristic time for the reorientation of the molecules in the direction of the applied
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stress. Then there will be no need for the stretching of the bonds and the response of the
fluid will be purely viscous.

In intermediate cases, the bonds of some of the molecules will be broken down, while oth-
ers will be stretched. The simultaneous existence of elastic and viscous behavior is called vis-
coelasticity. Another cause for viscoelasticity is the retardation in the relaxation of the stored
potential energy in the stretched bonds due to the complexity of the molecular structure or
the high viscosity of the medium in which the molecules are suspended and reorientation
takes place. In the latter case, the rheological behavior of the fluid will be time dependent.

The stretching and relaxation of the bonds may pertain to individual molecules entangled
in a network, or molecules at the surfaces of “particles.” Various cases where viscoelasticity
are observed are summarized in Table 2.1. The examples given in the table will be extended
and mechanisms underlying the viscoelastic behavior will be explicated in Chapter 3. 

2.1.1 Effect of viscoelasticity on flow behavior

Stretching of the bonds, solely responsible for the elastic behavior of the fluid, can be
brought about either by extension or by shearing of the fluid. Generally, these two stresses
are simultaneously in action in operations such as kneading, mixing, and extrusion through

Table 2.1

Cases and causes of viscoelasticity

Case Viscoelasticity due to Reference

Suspensions: Neutrally buoyant Viscoelasticity of the Aral and Kalyon (1997)
noncolloidal glass spheres in suspending medium,
non-Newtonian binder a polymer solution.
(poly (dimethyl siloxane)).

Gels: Uniform spherical Interactions between the Rueb and Zukoski (1997)
silica particles with grafted grafted octadecyl chains
octadecyl chains on their on the particles and the
surfaces suspended in decalin suspending medium and
or tetradecane. overlapping among flocs 

of particles.

Pastes: Soft deformable- Repulsive forces at Seth et al. (2006)
particle pastes (colloidal jammed flat facets.
pastes, micro-granular suspensions)
with jammed amorphous 
microstructures.

Nanoparticle gels: Fractal Polymer bridging and Surve et al. (2006)
nanoparticle—polymer depletion forces among
mixtures. particles.

Blood Deformability of erythrocytes Bas,kurt et al. (2002);
and depletion forces between Schramm (1994)
cells; polymers in plasma



a contracting die. Elastic counterpart of the fluid will be activated on sudden expansion and
contraction of the channel; on withdrawal of the fluid as a thin film or fiber (as in stretch-
ing of polymer films and spinning of fibers); in coating operations (as in paints and coat-
ing of latex layers on surfaces); in change of direction (as in flowing around a submerged
body, in elbows, in packed beds); in couette flow or flow induced by impellers in mixers
and centrifugal pumps. Even in the simplest case of flow through cylindrical channels, vis-
coelastic aspect of the fluid will become overt in the appearance of normal stresses, and
becomes more so in converging channels.

As stretching of the fluid increases the potential energy of the molecules from the level
of minimum energy, the molecules tend to escape from regions of higher to lower energy,
or equivalently from regions of high to low extension zones. Thus, for example, the linear
velocity of the fluid will increase radially outwards from the shaft for constant angular
velocities of the impeller. Molecules subjected to high levels of extension in the peripheral
regions try to escape inwards where the linear velocity is low. The crowding of the mole-
cules around the impeller end up with the excess fluid climbing up the shaft that is known
as the Weissenberg effect. This tendency to escape from regions of high extension is
responsible for the emergence of forces normal to the shear plane, denoted in general as �ii.
Generally, the differences in these stresses are used in conformation with their effect on
the system. The first normal stress difference, N1,

(2.1)

exerts an axial pressure, while the second normal stress difference, N2,

(2.2)

is related with the pressure variation in the radial direction (Schramm, 1994). Thus, three
relations are needed to describe the general flow of viscoelastic fluids: the first and second
normal stress coefficients �1( ·�) and �2 (�). For flow in cylindrical channels in the z-direction

(2.3)

(2.4)

together with any of the shear viscosity relations given in Section 2.1.3. Relative magni-
tude of the normal stresses to shear stresses in a viscoelastic fluid due to its dual nature is
represented by the dimensionless Weissenberg number, Ws,

(2.5)

Another manifestation of shear dependency of viscoelasticity is observed in the swelling
(instead of contracting) of a viscoelastic fluid on sudden expansion, generally known as
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die swelling. The molecules forced to extend and stretch in passing through the narrow
tube relax on sudden expansion resuming their minimum energy configuration. In doing
so, they occupy more space resulting in the expansion of the fluid. Another dimensionless
number, the Deborah number, De, controls this expansion.

(2.6)

In this equation, � is the characteristic relaxation time of the fluid, and � the characteris-
tic time associated with the flow situation. It can be the inverse of the typical deforma-
tion rate ·��1, or L/Vav in macro scale quantities in flow through channels, and amplitude
of the oscillatory strain times its frequency, (�0�)�1 in oscillatory flows (Macosko, 1994;
Papanastasiou, 1994).

Resistance of the fluid molecules toward stretching is quantified by the extensional vis-
cosity, �e, defined as

(2.7)

Extensional viscosity is measured in contracting channels where the area varies as

(2.8)

in the flow direction z, to keep the velocity gradient in the flow direction (dVz /dz) constant.
In this equation, V1, L, D1, and D2 indicate the velocity at the inlet of the channel, the total
length, diameter at the entrance, and the exit of the channel, respectively. The extensional
viscosity is three times the shear viscosity in dilute polymer solutions exhibiting Newtonian
behavior, known as the Trouton’s rule (1906). Generally, the extensional viscosity is much
higher than the shear viscosity in viscoelastic fluids, increasing with an increase in the
shear rate. In polymer solutions, this increase is attributed to forced parallel orientation of
the macromolecules. Addition of fibers to polymeric materials increases the extensional
viscosity by several orders of magnitude with the applied strain (Ooi and Sridhar, 2004),
known as strain hardening. The phenomenon is beneficially used in increasing the strength
and toughness of lightweight composites.

With the advent of laser Doppler anemometry (LDA) technique of local velocity meas-
urement, it became possible to elucidate the effect of viscoelasticity on flow behavior in
the micro scale. The resistance of polymer molecules to reorientation and stretching was
found to increase the laminar boundary layer and alter the turbulence structure, by enhanc-
ing the turbulent fluctuations in the axial direction and reducing fluctuating velocities in
the normal directions (Escudier and Smith, 2001; Poole and Escudier, 2004).
Viscoelasticity was also found to be responsible for the enlargement of the vortex region
in sudden expansions. Effect of elasticity in increasing the size and intensity of recircula-
tion vortices in sudden contractions was confirmed by numerical computations as a func-
tion of Deborah number and contraction ratio (Alves et al., 2004).
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2.1.2 Assessment of viscoelasticity

A wide range of materials ranging from elastic solids to viscous liquids is covered by the
term “viscoelasticity.” Creep and recovery tests are performed to assess the elastic nature
of the fluid through its response to a given stress and recovery after the release of the stress
under steady conditions. A constant stress in the form of a step function is assigned for a
definite period; deformation created in the fluid and its recovery afterwards is measured as
a function of time in creep and recovery tests (Schramm, 1994). The deformation of the
fluid may range between two limit responses: (1) Storage of all the energy given as potential
energy and relaxing to the original configuration immediately after release, (2) deforming
irreversibly under the applied stress and dissipating the energy as heat in the process.
Materials showing the first response are called ideal solids. The induced strain, � is related
to the applied shear stress �, through the relation

(2.9)

where G is the shear modulus, a material constant that indicates how easily the material
can be deformed. A similar relation holds if a tensile stress TT , is applied on the material

(2.10)

where E is Young’s modulus of elasticity and � the deformation expressed as the difference
in the final and initial length to the initial characteristic length. As � (�� L /L) is a dimen-
sionless extension in length, the moduli have stress units.

Materials that deform irreversibly are called ideal Newtonian liquids. The rate of
deformation, ·�, brought about by the applied stress is dependent on another material con-
stant, the dynamic viscosity, 


(2.11)

As these materials dissipate all the given energy through the applied stress as friction
during deformation, they cannot recover their original configuration after the release of
the stress.

Viscoelastic materials show a combination of these two limiting responses: The applied
stress and the induced deformation are related with the equation

(2.12)

The time related proportionality constant J(t), is called compliance, and is a material con-
stant of the fluid. The higher the compliance, the more deformable is the fluid under a given
stress. Even though the responses of ideal solids and Newtonian liquids are not dependent
on time, the response of viscoelastic materials is. The time dependence is introduced
through the viscous resistance to elastic deformation under stress and in the rate of recov-
ery to the original configuration after the release of the stress. If the applied stress and the
resulting strain are below the rupture limits of the bonds between the molecules, the relation
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between the stress and strain is linear and the test is a nondestructive method for the evalu-
ation of the rheological behavior of the fluid. As long as these linear viscoelasticity condi-
tions are retained, the compliance of the fluid will be independent of the magnitude of the
applied stress. Under stresses higher than the limit of linear viscoelasticity, the structure of
the fluid is broken down and its compliance becomes nonreproducible.

2.1.3 Dynamic methods in the assessment of viscoelasticity

Creep and recovery tests will show if a fluid is more solid- or liquid-like in its response
but it will not give a quantitative measure of these aspects. For this end, dynamic tests are
used under controlled shear rate (CR), where an oscillatory strain, �, with an amplitude �a

and angular velocity �

(2.13)

is assigned to the system and the induced stress with an amplitude �a and phase shift angle �

(2.14)

is evaluated. In the more sensitive controlled stress mode of operation (CS), a sinusoidal
stress with an amplitude �a, and frequency f, is assigned and the response of the system in
terms of induced strain and phase angle is evaluated. The angular velocity is related to the
frequency of oscillation through

(2.15)

Complex modulus of elasticity, G*, is defined as

(2.16)

and denotes the total resistance of the fluid to the imposed strain. The complex modulus
of elasticity can be broken down to its real and imaginary parts as

(2.17)

where G� is the elastic or the storage modulus defined as

(2.18)

and G��is the viscous or loss modulus given by
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where � is the delay or the phase shift angle by which the stress response lags behind the
assigned strain. For an ideal elastic solid, the stress is in phase with the strain and ��0;
for an ideal Newtonian fluid, the stress is 90	 (� �2 radians) out of phase with the strain.

The total resistance of the fluid to dynamic shear can also be expressed in terms of com-
plex viscosity, �*,

(2.20)

which can be broken down as storage viscosity, ���, related with the elastic counterpart

(2.21a)

and dynamic viscosity, related with the viscous counterpart, ��

(2.21b)

These concepts will now be illustrated over an experimental case. 

Example 2.1: Viscoelastic behavior of starch gels

The case

Starch exists in the form of granules, in which the amylose and amylopectin polymers exist
in a compact wound-up state. Under the action of heat and stirring in water, these granules
are swollen. The soluble amylose polymers diffuse out and are solvated to produce a gel
through interaction with each other and the remaining swollen granules of amylopectin
[Beşün, et al., 1996]. The consistency of the gel increases as the volume fraction of starch �,
increases. In this case, the rheological behavior of gels with 3%, 8% and 19% by volume
of starch are investigated in a controlled stress rheometer with cone and plate sensors to
illustrate the use of equations given in Section 2.1.

Rheological analysis

The behavior of ideal elastic solids and viscous Newtonian liquids in a creep and recovery
test are given in Fig. 2.1(a) in terms of induced deformation under an assigned stress of 1.5 Pa
for a period of 45 seconds, as an example. The response of an elastic solid is immediate:
it is deformed in proportion to the applied shear stress (� � 1 in the example given), and
then snaps back to its original configuration as soon as the stress is relaxed. Since no bonds
are broken up, viscous effects do not exist and the response of the ideal solid does not
change with time as long as there is no change in the applied stress. When the applied
stress is greater than the chemical and physical bonds of the material can withstand, the
bonds are broken reversibly in proportion to the applied stress. The breakage of the bonds
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is displayed as a linear increase of strain with the shear stress. As the energy is dissipated
during the break-up process, the material cannot return to its original minimum energy state
at the cessation of the applied stress and remains permanently deformed. The material
showing this behavior acts as an ideal or Newtonian fluid. 

Depending on the magnitude of the shear stress exerted, the material can give a response
that has ideal solid and liquid counterparts, or in other words, act viscoelastically. An exam-
ple to a viscoelastic response in creep and recovery tests of the gels is given in Fig. 2.1(b)
for 3% starch. If it were not for the curved section in the first 150 seconds (and for approx-
imately the same time during relaxation after the termination of the stress), the gel would
behave almost like a solid. The immediate hop of the strain to �0.01 % is a result of the
ideal solid response of the curve. If it were not for the viscous counterpart, the initial jump
would be up to the equilibrium value. The rate at which the equilibrium value is reached,
both on the application of the stress and on relaxation, depends on the relative magnitude
of the viscous counterpart. The magnitude of the equilibrium value after relaxation gives
the strain left in the gel that cannot be recovered due to irreversible dissipation of energy
by the viscous counterpart. 

Dynamic tests give the response of the material under periodically oscillating conditions.
The conditions can be the amplitude of shear stress or strain. The response of the material
toward a variation in the frequency of oscillations can also be investigated as a parameter.
The immediate response of ideal elastic solids is expressed by zero lag: the strain response
of the ideal solid is in phase with the oscillatory stress input. On the other hand, the strain
response of Newtonian liquids is 90° (	/2 radians) out of phase with the sinusoidal stress
input, as shown in Fig. 2.1(c). These responses are shown by ideal elastic and plastic materi-
als. Many of the fluids, including gels and suspensions show a response which has both plas-
tic and elastic components activated under different modes, as shown by the filled circles
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in Fig. 2.1(c). The lag in the response to the input stress in this example is shown in the
figure as a double sided arrow and expressed as the phase shift angle �, a fraction of the
total period of 2	 radians. � has a value in between the two limits of zero and 	/2 radians
in the case of real materials. The maximum amplitudes of the assigned stress and the
resulting strain response variations shown as �a and �a, respectively, are used to calculate
the complex modulus of elasticity, G*.
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It is a good idea to start characterization of the rheological behavior by determination of
the linear viscoelastic range. For this end, an initial amplitude sweep test is run, where
maximum strain is recorded as a function of the maximum amplitude of stress assigned, at
an oscillation frequency of 1 Hertz. The elastic range, phase shift angle, complex modulus
of elasticity G* (eq. (2.16)) and its elastic counterpart, the storage modulus G� eq. (2.18)), and
its viscous counterpart, the loss modulus G (eq. (2.19)), complex viscosity �* (eq. (2.20)) and
its elastic � (eq. (2.20a)), and viscous �� (eq. (2.20b)) counterparts and yield stress of the
gel can be all obtained from the results of this test. Frequency sweep tests are run at the
constant value of the shear stress in the linear viscoelastic region obtained from the stress
amplitude sweep tests. Maximum strain amplitude is recorded as a function of frequency,
from which variations of G�, G and �* with frequency of oscillations are calculated.

Termination of the linear viscoelastic region can further be confirmed by running a yield
stress test. In this test, the shear stress is increased steadily and variation in strain is recorded.
The yield stress is identified by a divergence in the strain, as illustrated in Fig. 2.1 (d). The
slope of the linear region before the yield stress is the compliance J(t) (eq. (2.12)), the
inverse of G, the shear modulus of elasticity (eq. (2.9)). 

Normal stresses arise in polymeric solutions exhibiting viscoelastic behavior due to
resistance of entangled polymer molecules to stretch. The polymers escape from the plane
of maximum shear toward the normal directions, exerting a pressure in that direction.
Normal stresses are expressed as stress differences N. In the case or rotational flow, the
first normal stress difference N1 is the difference between the normal stress in the direction
of motion and the axial direction, N1 � ��� � �zz, is analogous to eq. (2.1). The second nor-
mal stress difference involves the difference in normal stresses in the radial and the axial
directions, and is much smaller than the first normal stress difference. Shear stress �z� and
the first normal stress difference N1 that evolve under steady application of shear at a
predetermined rate of increase of the shear rate �. are recorded. Dynamic shear viscosity is
obtained from the slope of the �z� � �. data. First normal stress coefficient �1(�

.
) is calculated
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from the N1 ��. data using eq. (2.4) and Weissenberg number from the ratio of first normal
stress difference to the shear stress, using eq. (2.5).

Evaluation of results of the rheological tests 

Stress amplitude sweep; frequency sweep; creep and relaxation; steady shear and yield
stress tests are run with gels of 3%, 8% and 19% by volume starch content in this case to
illustrate the use of eqs. (2.1)–(2.5) and (2.9)–(2.20) in this example. 

A stress amplitude sweep test is run at the start in controlled stress mode of operation
of the rheometer to determine the linear elastic range for each starch gel. In these tests, the
amplitude of the input stress (� � �a sin(�t)) is increased gradually within a program, and
the response of the system is given as strain (� � �a sin(�t � �)) and phase shift angle �,
from which all the other properties are evaluated. At each level of the assigned stress
amplitude �a, the ratio of �a��a is calculated to give the complex modulus of elasticity G*
given by eq. (2.16). The elastic part of the complex modulus, the storage modulus, is cal-
culated with eq. (2.18) and the viscous counterpart, the loss modulus, is calculated with
eq. (2.19) and the results plotted in Fig. 2.1 (d), for 8% starch gel. 

The almost horizontal section between the two cross-over points of G� and G signify the
linear viscoelastic region. At very low values of the stress, the viscous modulus is greater
than the elastic modulus, as the material has to start deformation before being counteracted
by elastic forces. Shortly afterwards, the moduli cross over with the elastic modulus G� being
greater than the viscous modulus G. In the range of shear stresses where the moduli are lin-
ear and horizontal, the gel is linearly viscoelastic. At the yield point the moduli crossover
once more, after which the gel flows. This transformation is marked by the value of �, given
in the same figure. If the transition were from an ideal elastic solid to a Newtonian liquid,
then the value of � would jump up from zero to 90°, the phase lag of viscous Newtonian flu-
ids. Both the lowest (� � 3°) and the highest (� � 85°) value show that the gel is not an ideal
elastic solid and the remaining inter-chain bonds after the yield point prevent it from being a
viscous Newtonian fluid where there should be no interaction between the components.
Nevertheless, in the linear viscoelastic region, the value of � is close enough to zero for elas-
tic modulus G� to be nearly equal to complex modulus of elasticity G*, and viscous modu-
lus G to be more than an order of magnitude less than G� according to eqs. (2.18) and (2.19).
Both the elastic and the viscous moduli increase with the volumetric fraction of solids in the
order, 58, 1125, and 15040 Pa in the case of G� and 6, 55, and 638 Pa in, G for the same
order of increase in the volumetric fraction of solids. As the compaction of the starch poly-
mers increase, the recoil of the gel increases due to decrease in the entropy and the material
resists with a greater force to elastic compression brought about by shear forces, in compar-
ison with the resistance to viscous shear of the polymers.

The complex viscosity �* and its elastic �, and viscous �� counterparts are obtained from
the same dynamic tests, by dividing the respective moduli with the angular velocity � � 2	
rad s�1 in this case, through eqs. (2.20), (2.20a), and (2.20b). The magnitude of the complex
viscosity in the linear viscoelastic region constitutes a point value corresponding to f � 1
Hertz in the complex viscosity curve in Fig. 2.1(g), calculated from the data obtained in fre-
quency sweep tests. Complex viscosity is very sensitive to variations in the concentration of
polymer and conformation of the polymer molecules. This is especially important in the case
of starch where the polymers unwind and leave the swollen granules under shear. 
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The gel yields right after the arrow marking the yield stress at �60 Pa in Fig. 2.1(e).
This value of the yield stress obtained under dynamic oscillatory stress, is confirmed with
the yield stress value obtained by the application of steadily increasing shear stress in a
yield stress test given in Fig. 2.1 (c) for the 8 % starch gel. The point marked yield stress,
�60 Pa is nearly the same value as obtained in a dynamic test. The slope of the linear section
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below the yield stress in Fig. 2.1 (c), gives the compliance, J(t) by eq. (2.12), the inverse
of the shear modulus G eq. (2.9). The variation of compliance and yield stress with the
polymer concentration, given as % by volume, is given in Fig. 2.1(h). 

Yield stress is an important property, as it gives the firmness to the gel and determines
the flow behavior as will be given in the following sections. The yield stress shows an
almost order of magnitude increase, �7, 63 and 1286 Pa, while compliance shows a steeper
decrease, 4.5 
 10�2, 2 
 10�2, and 8.5 
 10�1 Pa�1 as the volumetric concentration of
solids increase in the order, 3, 8, and 19%, respectively. The practical significance of these
values is that the gels become harder to process.

Normal stresses are evaluated together with shear stresses by increasing the shear rate
at a predetermined rate under steady rotational flow. The results of such a test are given in
Fig. 2.1(i). The first normal stress difference shows the same trends but is about an order
of magnitude less than the shear stress. The dynamic viscosity �, defined as the ratio of the
shear stress to shear rate, decreases non-linearly with an increase in the shear rate, as com-
monly observed in polymer solutions with viscoelastic properties. The shear behavior of
the starch gels can be described by the Herschel-Bulkley model with a regression constant
r 2 � 0.99, using the yield stress values given in Fig. 2.1(h). The consistency K values are
1.0, 23.0, and 31.3 and the viscosity index n values, 0.67, 0.49 and 0.58, for 3.8. and 19 %
concentration, respectively. The significance of these constants and the model will be
discussed in the following sections.

Dynamic viscosity � is the resistance of the fluid to steady shear, while the complex
viscosity �* is the resistance to dynamic oscillating shear. Comparison of Fig. 2.1(g), and
Fig. 2.1(i) show that complex viscosity is greater than the dynamic viscosity by an order
of magnitude or two and is more sensitive to variation in shear rate.
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An analogous property to dynamic shear is the first normal stress difference coefficient
�1 calculated by using eq. (2.3) and given in Fig. 2.1 (j). The coefficients approach to zero
at high shear rates, due to very large values of �. 2 in the denominator. The behavior of the
gels at low shear rates is more significant. The negative values of 8 and 19 % starch gels
indicate that the normal stress in the axial direction �zz that exerts a thrust on the cone of
the rheometer is greater than the normal stress ��� in the flow direction. The positive value
of 3% gel shows that compaction in the gel network is required for the development of this
thrust. 
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The viscoelastic behavior of the gels can be quantitatively characterized with the help
of these rheological tests. Creep and recovery tests are qualitative but nevertheless, give
significant insight into the behaviour of the gels. The effect of the magnitude of the shear
stress applied is given in Fig. 2.1(k) and (l) for 8 % starch gel. As the yield stress is approached
the initial immediate response increases, but the permanent strain level after relaxation
increases, also. The gel yields progressively with increasing stress until it flows like a
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Figure 2.1 (l). Response of 8% (v) starch gel above the linear viscoelastic region.

Newtonian liquid at stresses above 150 Pa, as given in Fig. 2.1 (l), in full confirmation with
the dynamic test results.

2.2 RHEOLOGICAL MODELS OF TIME-INDEPENDENT 

NON-NEWTONIAN FLUIDS

This group of non-Newtonian fluids is characterized by viscosity relations that are a func-
tion of shear rate, but not a function of time of application of shear. The rheological behav-
ior of these fluids, of which solid particle suspensions in liquids is a special case, are
described by governing relations, called constitutive equations, between shear stress (�)
and shear rate ( ·�) 

(2.22)

This form of the equation is generally used for simple, unidirectional shear flows of
Newtonian and non-Newtonian fluids. However, under the action of interparticle attrac-
tions and in the presence of complex molecular structures, such a relation between shear
stress and shear rate cannot encompass all the stresses associated with the deformation.
Manipulation is more convenient with the use of tensors in three-dimensional space.
Macosko (1994) generalized the constitutive equations for a variety of fluids with differ-
ent rheological behavior as a single equation for viscous flow: Starting with the postulate
that the total stress tensor, T depends only on the rate of deformation tensor ·�

(2.23)T � f ( )��

� �� f ( )�



An equation form covering all possible stresses are obtained through the expansion of the
function in a power series

(2.24)

For an incompressible fluid, the shear rate tensor raised to the zero power, is the identity
tensor with its invariant equal to the negative of the pressure. With the use of
Cayley–Hamilton theorem, eq. (2.24) can be written in terms of the scalar functions �1 and
�2 of the invariants of ·�

(2.25)

This general constitutive equation is known as the Reiner–Rivlin equation. The �1 term is
the viscosity function that determines the shear behavior of the system. The �2 term gives
rise to normal stresses in steady shear flow. As the normal stresses in steady shear flow
cannot be related to any function of the rate of deformation tensor in this group of fluids,
�2 term is set equal to zero. The general constitutive equation for viscous fluids then
reduces to

(2.26)

In simple shear flows, like flow through pipes I3, ·� �0 (see Appendix A2), reducing the
general constitutive equation to

(2.27)

or, in terms of a relation between shear stress and shear rate to

(2.28)

2.2.1 Models which describe the rheological behavior with a 

viscosity function

The viscosity function, �(I2,·�) determines the rheology of the fluid in the absence of a yield
stress. If the function turns out to be too complex, numerical solution of the equation is
called for. Some of the functions that lend themselves to analytical solution and the mod-
els for which they form the constitutive equation are given below:

2.2.1.1 Newtonian fluids

The simplest function, where �1(I2,·�)��, a material constant defines a Newtonian fluid
with the equation

(2.29)� �� � �
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�
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or in the case of unidirectional flows

(2.30)

The material constant ��
, the dynamic viscosity of the fluid is a physical property in the
case of liquids and gases made up of simple molecules.

2.2.1.2 Power-law model

In dispersions with moderate concentration of dispersed phase, a widely observed phe-
nomenon is a decrease in the apparent viscosity with an increase in the shear rate. In the
case of concentrated dispersions, shear thickening is observed following a shear-thinning
process, with an increase in the shear rate. This rheological behavior is described by the
power-law model, also known as the Ostwald–de Waele model:

(2.31)

(2.32)

In steady, unidirectional shear flows | I2,·�| � ·�2, and the constitutive equation is reduced to

(2.33)

with the apparent viscosity given by the equation

(2.34)

The viscosity index n is less than one in shear-thinning fluids, also called pseudoplastic
fluids; whereas, it is greater than one in shear thickening or dilatant fluids. K, the consis-
tency, is the value of the shear stress when ·� � 1. The model becomes identical to
Newton’s model when the viscosity index is equal to one. The power-law model is widely
used for medium range of shear rates. In processes covering a wide range of shear rates the
model is unable to converge to steady-state values at the limits. Of special importance is
the case of n � 1 at extremely low shear rates, where the apparent viscosity calculated by
the power-law approaches infinity. Experimental observations of suspensions and dilute
polymer solutions show that the apparent viscosity approaches a constant value at low
shear rates, and that Newtonian behavior is observed at high shear rates.

2.2.1.3 Sisko model

A correction for the approach to a steady-state value of the apparent viscosity at high val-
ues of shear rate, �, is made in the model developed by Sisko (1958).

(2.35)� � � �ij ij ijK� �
�( )n 1
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�K n
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This equation can be considered as the sum of Newton and power-law expressions with
different viscosity functions. Since the apparent viscosity is defined as the ratio of shear
stress to shear rate, the apparent viscosity � is given as

(2.36)

The three-dimensional form of the Sisko model is given with the equation

(2.37)

2.2.1.4 Cross model

To overcome the shortcomings of the power-law, Cross (1965) developed an expression for
the viscosity function, �(I2, ·� ), to describe the experimentally observed apparent viscosity
variations.

(2.38)

For simple shear flows, � � K1�n and |I2,�| � ·�2, so the Cross model reduces to

(2.39)

For very low shear rates, the apparent viscosity approaches to its zero value, �0, whereas,
at high shear rates it approaches a steady-state value of �. In between the two extremes,
the Cross model approaches the power-law model.

2.2.1.5 Carreau–Yasuda models

These models developed by Carreau et al. (1979) and Yasuda et al. (1981) are very simi-
lar and can be regarded as the generalizations of the Cross model with the general fitting
parameter a, replacing the exponent 2 in the Cross equation. The Yasuda equation in terms
of the shear rate invariant is

(2.40)

This equation reduces to eq. (2.36) for simple shear flow. Carreau equation is expressed as
the difference between the apparent viscosity at the given value of shear rate and its value
at zero shear, instead of at high shear rates:

(2.41)
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2.2.2 Models for fluids with a yield stress

Fluids which do not deform below a threshold stress �0, called the yield stress, and flow
readily above it are called plastic fluids. During flow through a channel, only those
regions where the shear stress is greater than the yield value will deform continuously or
flow. Regions where the shear stress remains below the yield value will have a much
higher apparent viscosity and will form either stagnant regions or be dragged along as a
plug over the flowing annular region, depending on the geometry of the channel. The
behavior of these fluids below the yield stress is an unresolved issue as regards
instrument-dependency of the measured values of the yield stress: In the original models,
it was assumed that there would be no flow, or deformation, below the yield stress,
denoted by the equation

(2.42)

This equation implies the acceptance of an initial rise in shear stress as an unsteady behav-
ior before the establishment of steady-state conditions, depending largely on the sensitiv-
ity of the instrument, that should be totally disregarded in the stress measurements with the
use of eq. (2.42).

On the other hand, the nearly linear initial rise in the shear stress at very low shear rates
during measurement in a rheometer is accepted as viscous shear behavior by some
researchers, who propose a two-viscosity model to describe the rheology of these fluids.
As there is no yield stress concept in such an interpretation, � � �0 condition is replaced
by a critical shear rate ·�c, where a sudden change in apparent viscosity is observed:

(2.43a)

(2.43b)

where �I and �II are the slopes of the shear stress–shear rate plots before and after the
critical shear rate, respectively. With this condition, eq. (2.42) is restated as

(2.44)

A further refinement to eq. (2.42) is made by accepting the fluid to deform elastically
below, and undergo plastic deformation above the yield stress (Macosko, 1994), which can
be expressed as

(2.45)

�0 denotes the critical stress after which the physical bonds between the molecules, or
the colloidal particles are broken and the material yields under stress. Either one or all of
the conditions expressed by eqs. (2.42)–(2.45) may be valid depending on the interactive
forces and microstructure of the fluids. In the case of starch gels analyzed in Example 2.1,
linear elasticity implied by eq. (2.45) is shown to be valid through different measurements.

� � � �� �0 G

� � �� � � � �� �c I

� �� � � �� �c II
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��� �0 0��
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The models with a yield stress term differ from each other in the flow behavior observed
at stresses above the yield value: Bingham model predicts a linear dependence of the shear
stress on the shear rate, while the Herschel–Bulkley model, a power-law relation. Casson
model takes into account the gradual transformations within the microstructure of the fluid
that bring about yielding and flow.

2.2.2.1 Bingham plastics

As originally given by Bingham (1922), plastic behavior with a constant viscosity
describes the rheological behavior of the fluids for stresses above the yield value.

(2.46)

To convert the Bingham equation to three-dimensional form, a scalar function of the
invariants of � should be used instead of the yield stress. The most commonly used method
(Macosko, 1994) is the von Mises criterion, which uses the second invariant of�

(2.47)

2.2.2.2 Herschel–Bulkley model

In effect, Herschel–Bulkley (1926a, b) model is similar to the Bingham model, in terms of
discontinuity in behavior. Unlike Bingham plastics, at stresses greater than the yield stress,
Herschel–Bulkley fluids exhibit shear-thinning behavior obeying power-law

(2.48)

Defining the apparent viscosity as the ratio of shear stress to shear rate, eq. (2.48) can be
written in the form

(2.49)

for deformation in three dimensions.

2.2.2.3 Casson model

A model similar to the Herschel–Bulkley model but with a more gradual transformation
over the discontinuity in the rheological behavior is derived by Casson (1959)
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Eq. (2.50) can be written in three-dimensional form as

(2.51)

Papanastasiou (1987) modified the Herschel–Bulkley model with a continuous exponential
equation

(2.52)

where a is a fitting parameter. The approach of the equation to the original model improves
with an increase in the value of a. Papanastasiou modifications of Herschel–Bulkley and
Casson equations can be expressed with eqs. (2.53) and (2.54), respectively.

(2.53)

(2.54)

2.2.3 Models for specific end-use

Models given in Sections 2.1 and 2.2 are general, widely used equations without a speci-
fied application. There are constitutive equations specifically developed to describe the
rheological behavior of industrially important fluids, also. One example is the Robertson
and Stiff model developed in 1976 (Robertson and Stiff, 1976) to describe the rheology of
drilling fluids in petroleum wells and cement slurries, though it can be used for other flu-
ids as diverse as maize flour pastes (Nunez-Santiago and Santoya, 2003) and gels. Another
example is the Quemada model (1978) generally used for blood flow.

2.2.3.1 Robertson–Stiff model

Similar to Herschel–Bulkley (1926) and Casson (1959) models, the constitutive equation
of this model takes into account the yield stress and the power-law variation of the appar-
ent viscosity. In addition, the yield stress is also taken as a power-law function of shear rate
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Eq. (2.55) can be written in an alternative form

(2.56a)

(2.56b)

where the yield stress is defined as

(2.56c)

Robertson–Stiff model requires an initial estimate for one of the three parameters.
Gücüyener and Mehmetoğlu (1992) used the following procedure for the estimation of
these parameters: ·�0 is estimated first with the equations (Kök and Alikaya, 2005)

(2.57a)

where ·�* is the shear rate corresponding to the geometric mean of the maximum and
minimum shear stresses

(2.57b)

Taking the logarithm of eq. (2.56b),

(2.58)

and plotting it on logarithmic coordinates of � versus ( ·�� ·�0), one obtains, the flow behavior
index, n, from the slope and K, by calculation. 

2.2.3.2 Quemada model

The model is specifically developed to predict the viscosity of blood based on its compo-
sition and volume fraction of hematocrit (Quemada, 1978). The constitutive equation

(2.59)

contains three parameters, ·�c, k, and k0which are in turn a function of the hematocrit level:
·�c, is the critical shear rate level for the associations ( ·��� ·�c ) and dispersion ( ·� �� ·�c ) of
rouleaux. Hematocrit, �H, is the volume fraction of the RBCs. k0and k are the lower and
the upper limit of the constants indicating the RBC aggregation at zero-shear stress, and
orientation of the dispersed RBCs at significant shear stress and shear rate levels. �pl, the
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viscosity of plasma, remains more or less constant around 1.2 
10–3 Pa sec. Eq. (2.59)
can be written in terms of apparent viscosity of the blood � as

(2.60)

where ·�r �
·�/ ·�c is the relative shear rate under the prevalent condition and k is a constant

characterizing the conditions of the solid contents, and the flow rate of the blood.

2.2.4 Significance of the terms used in the constitutive equations

The models given in Sections 2.1 and 2.2 are general in that they can be applied to all kinds
of non-Newtonian fluids with strong interactions between their constituents, including col-
loidal solutions, emulsions, foams, and suspensions. It must be emphasized here that the
models are only descriptive relations that represent the effect of the combined surface
forces and the concentration of the dispersed phase. One or more of these models can
describe a dispersion depending only on the goodness of fit to the experimental data, i.e.,
the regression coefficient. A closer inspection of the models shows that they can be
regrouped into two “families.” In the first group given in Table 2.2, the equations are
obtained by partial simplifications. Herschel–Bulkley model is obtained from the Casson
model by equating all the exponents to one except that on the shear rate term. Bingham,
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Table 2.2

Rheological models for interactive particle suspensions

Models Constitutive equations General application

Casson (1959) Blood, paint, chocolate, xanthan 
gum solutions, waxy crude oil 
slurries, wastewater sludge,
viscoplastic slurries

Herschel–Bulkley Synthetic clay dispersions,
(1926a, b) sludge suspensions, drilling 

fluids, semisolid metals, plastic 
propellant, dough, mineral 
tailings, kaolin slurries

Power-law Colloidal suspensions such as 
[Ostwald–de Waele] clay, milk, gelatin, blood, starch,

polymer solutions

Bingham (1922) Toothpaste, paint, ash–gypsum 
slurries

Newtonian All fluids made up of simple 
molecules
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Table 2.3

Rheological models used for concentrated particle suspensions

Models Constitutive equations Applications

Carreau et al. (1979) Aqueous solutions of flexible 
elongated micelles

Cross (1965) Colloidal stable suspensions
of ceramic powders and 
whiskers

Sisko (1958) Suspensions of synthetic 
clay, minerals (TiO2, laterite,
silica flour), coal in water
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n

power-law and Newton model equations can be obtained from the Herschel–Bulkley
equation by further simplifications, even though their proposal as constitutive equations
followed the opposite trend historically. On the same table are given examples to the appli-
cation areas, though by no means they are exhaustive. 

The second family of equations given in Table 2.3 has as the common characteristic, a
function of a power-law term, corrected for the viscosity at high shear rates, �. The equa-
tions do not have a yield stress term, but have an equivalent term in terms of viscosity at
zero-shear rate, �0. The group of equations in Table 2.3 is generally used to describe the
flow behavior of concentrated suspensions, whereas the ones given in Table 2.2 are used
in suspensions stabilized with surface forces, although there are no hard and fast rules as
to which model to use for a given suspension, except for the goodness of fit. 

The terms generally used in these equations and their significance are summarized in
Table 2.4. The rheological parameters in Table 2.4 and the surface forces that affect them
will be dealt with in Chapter 3 on the flow behavior of concentrated suspensions. In this
chapter, moderately concentrated suspensions stabilized with interactive forces, flowing
under moderate shear rates will be taken up. The flow behavior will be explicated in
terms of shear and velocity distributions in pipes, design equation for pipe-flow systems in
laminar, and turbulent flow regimes for four constitutive equations in Table 2.2, e.g.,
Herschel–Bulkley, Bingham, power-law, and Casson models. 

2.3 FLOW OF NON-NEWTONIAN FLUIDS THROUGH CYLINDRICAL PIPES

Many industrially important solid–liquid suspensions such as cement slurries, mineral tail-
ings, drilling fluids, and clay suspensions are generally conveyed in cylindrical pipes. Non-
Newtonian fluids falling into group 2 and 3 of the Metzner classification (1965) given in
the introduction to this chapter flow under an applied shear stress (or equivalently, pres-
sure gradient in the flow direction). Viscoelastic fluids can flow only if their viscous mod-
ulus G�� is greater than their elastic modulus G�. In what follows, velocity distributions and
design relations for the flow of non-Newtonian fluids in cylindrical pipes will be given.
The velocity distributions of non-Newtonian fluids depend on the flow regime coupled to
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Table 2.4

Significance of the parameters used in the constitutive equations

Term Units Significance Affected by Used ina

Yield stress, �0 [N/m2 	 Pa] The limiting stress below which the fluid Type of surface forces involved; B, HB, Cs
is stagnant or else gives an elastic response concentration, size distribution,
and above which, deforms plastically. and aspect ratio of particles.

Consistency, K [kg/ms2–n 	 Pa�sn] Resistance to deformation determined by Magnitude of the attractive PL, HB, Ca,
the magnitude of particle interactions forces between particles. Cr, S
remaining under applied shear.

Flow behavior [–] The ease with which the microstructure The shape and coordination PL, HB, Cs,
(Viscosity) can be broken down or restructured: number of the particles; the Ca, Cr, S
index, n n � 1 signifies shear thinning, n � 1 strength of interparticle bonds.

signifies shear thickening suspensions.

Zero-shear [Pa�s] Asymptotic viscosity at zero-shear rate: The same parameters that affect Ca, Cr
viscosity, �0 the maximum resistance to flow shown the yield stress in concentrated 

by the suspension just before its initial suspensions.
structure is broken down.

Limiting [Pa�s] Asymptotic viscosity at infinite shear rate: Structural factors in alignment Ca, Cr, S
viscosity, � the limiting particle interactions which of particles.

cannot be broken down by further 
application of shear.

aB: Bingham, HB: Herschel–Bulkley, Cs: Casson, Ca: Carreau, Cr: Cross, S: Sisko, PL: power-law. 



the rheological model through the viscosity term in the Reynolds number. Information on
flow parameters, which can be used in the present state until a more coherent theory is
established, will be given next. The section will end with the available information on flow
through fittings and sudden expansions, for a complete overview of non-Newtonian flow
through cylindrical pipes.

2.3.1 Laminar flow of non-Newtonian fluids

Laminar regime, where the fluid flows in concentric layers of infinitesimal thickness is
more commonly encountered in nonsettling solid–fluid suspensions due to high viscosities
of these non-Newtonian fluids. High volumetric concentration of solids employed in prac-
tical applications and/or a high level of interaction between particles cause an increase in
the apparent viscosity of the suspensions, or create a yield stress within the suspension,
increasing the resistance to flow, in either case. Flow in the laminar regime becomes eco-
nomically feasible, in view of the much higher costs of power and equipment required for
flow in the turbulent regime. Only in the case of dilute suspensions, such as fruit juices,
can turbulent flow be feasible. In the intermediate cases, working just above the critical
Reynolds number for transition to turbulence becomes economically the optimum choice
with rather low operating costs and relatively higher throughputs. Determination of the
velocity distributions in flow through pipes is important from the standpoint of local mod-
ifications of microstructure within the flowing fluid. Velocity distributions also affect the
rate of heat transfer from the walls and other processes such as mass transfer or a reaction
that may be taking place within the flowing fluid.

2.3.1.1 Velocity distributions in the laminar regime

Velocity distributions are obtained through differential momentum balances applied over
a differential control volume of thickness �r within a section of pipe of length L as given
in Figure 2.2. 
The general momentum balance,

{rate of momentum flow out of the pipe}�{rate of momentum flow into the pipe}�

{sum of external forces acting on the fluid}�{rate of accumulation of momentum}

yields

(2.61)

where, � is the shear stress tensor, A the area vector, defined as a vector equal in magni-
tude to the peripheral area, directed normally outwards, V, the average velocity vector in
the pipe, m, the mass of the fluid, and t, the time. The force vector F represents the exter-
nal forces acting on the system. Eq. (2.61) written in scalar form for steady-state flow in
pipes under the action of combined gravity and pressure forces becomes

(2.62)2 2 (2 ) (2 ) 0	 � 	 � 	 	 �rL rL r r P rL r grz r r rz r�
� � � �

�
� � �  

� �.A .A F
V

out in

( )
� � �

d m

dt∑
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Division by the control volume and taking the limit as �r approaches zero gives,

(2.63)

The same equation could have been obtained from Navier-Stokes equation in Table A3.2
in Appendix A by taking the pertinent terms.

Since the RHS of the equation is not affected by the shear stress distribution, it is
denoted by a constant such as �. Integration and division by r yields

(2.64)

The value of C1 can be found and the shear stress distribution can be evaluated if a bound-
ary condition in terms of stress exists in the system.

For cylindrical channels, maximum velocity is encountered at the center of the pipe, at
r � 0, where the shear rate ( ·�	 dV/dr)is zero since the first derivative of maximum veloc-
ity is zero,

(2.65)

shear stress is zero at the center of the pipe. Since C1 becomes zero in eq. (2.64), a linear
distribution is obtained for shear stress

(2.66)

The shear stress distribution by reference to wall conditions is obtained by taking the ratio
of eq. (2.66) to the shear stress at the wall (r � R, � � �w)

(2.67)
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Figure 2.2 Differential control volume for the application of a momentum balance within a pipe. 



This equation is valid for all types of flow, independent of the rheological model with
which the fluid flow is described. The velocity distribution, however, is determined by the
constitutive equation of the fluid. The velocity distribution of Herschel–Bulkley fluids will
be derived below as an example.

The constitutive equation for Herschel–Bulkley fluids, eq. (2.48) is substituted in
eq. (2.66) to find a relation between the velocity gradient (shear rate) and the shear stress

(2.68)

Integrating eq. (2.68), after some rearrangement, the equation is solved for V.

(2.69)

Applying the boundary condition, V � 0 at r � R to evaluate C1, the velocity distribution
is found as

(2.70)

If the yield stress is not exceeded at the center of the pipe, the region 0 � r� rp will flow
at constant velocity, V�Vp, where rp and Vp are the radius and the velocity of the plug zone,
respectively. Velocity distribution of Herschel–Bulkley fluids in the sheared region
between the radii of plug zone rp and the wall, R, rp � r � R can also be written as a func-
tion of the wall shear stress, �w

(2.71)

where

The velocity gradient within the plug zone will be zero and the boundaries of the plug zone
can be defined by solving eq. (2.72) for rp

(2.72)
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Replacing r with rp in eq. (2.71) gives the velocity of the plug region

(2.74)

Mean velocity for Herschel–Bulkley fluids is obtained by integrating the local velocities
in the plug zone (eq. (2.74)) and the annular region along the walls of the pipe (eq. (2.71))
over the cross-sectional area

(2.75)

The indicated integrations in eq. (2.75) give the average velocity of Herschel–Bulkley fluids
in flow through a pipe

(2.76)

Similar derivations are made for non-Newtonian fluids conforming to the constitutive
equations given in Table 2.2 and the results are summarized in Tables 2.5–2.8. In plastic
fluids with a yield stress, the radial extent of the plug zone is solely determined by the ratio
of yield stress to the applied pressure gradient, rp�(�0R)/�w�(2�0)/(�P��gL/L), increasing
with an increase in the yield stress. 

For very low values of the flow behavior index n, power-law fluids exhibit a velocity
profile similar in shape to a plug: As n decreases, maximum velocity approaches the
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Table 2.5

Velocity relations in fluids conforming to the Herschel–Bulkley model

Constitutive 
equation (2.48)

Velocity 
distribution (2.71)

(2.74)

Average
velocity (2.76)
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Table 2.6

Velocity relations in fluids conforming to the Casson model

Constitutive 
equation (2.50)

(2.77)

Velocity 
distribution

(2.78)

Average 
velocity (2.79)
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Table 2.7

Velocity relations in fluids conforming to the Bingham model

Constitutive 
equation (2.46)

Velocity 
distribution (2.80)

(2.81)

Average 
velocity (2.82)
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Table 2.8

Velocity relations in fluids conforming to the power-law model

Constitutive 
equation (2.33)

Velocity 
distribution (2.83)

(2.84)

Average 
velocity (2.85)
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average velocity, Vmax/Vav � (3n � 1)/(n � 1). This is the case generally observed during
structure evolution in a suspension or gel. Eventually, when the structure is formed, n
approaches zero, deformation is prevented by the bonds formed between the con-
stituents, and the gel acts as a viscoelastic material.

2.3.1.1.1 Laminar flow of viscoelastic fluids

Presence of normal stresses identifies viscoelastic fluids from other viscous, time-independent
non-Newtonian fluids. Because of the complexity of  their behavior, shell balances are not
adequate to set up the momentum balance equations and Navier-Stokes equations become
the convenient starting point. Navier-Stokes equations in Table A3.2 in Appendix A3 are
used in viscoelastic fluids to give eq. (2.63), since the normal stresses cancel out in the
simple, unidirectional, fully developed flow of viscoelastic fluids in laminar regime. The
relation between the normal and shear stresses are then accounted for by the constitutive
equations. Two widely used physical models form the basis of the constitutive equations
of viscoelastic fluids: Finitely-Extensible-Nonlinear-Elastic dumbbell (FENE-P) model
with Peterlin approximation (Bird et al., 1980) and the network model of Phan-Thien and
Tanner (1977), the (PTT) model.

The FENE-P model is based on the random motion of single polymer molecules, with-
out any interactions with other polymer or solvent molecules in a dilute solution.  Thus,
the molecules move under Brownian motion (whence the kBT thermal energy term appears
in the model) among other polymer molecules taken into account by a distribution func-
tion. The general constitutive equation for the FENE-P model is given as,

(2.86)

with the stress coefficient function Z(tr �) defined as,

(2.86a)

Phan-Thien and Tanner (PTT) model considers the microstructure as a network of poly-
mers with temporary and reversible junction points, or cross-links. The model applies to
concentrated polymer solutions, and can be extended to suspensions with similar
microstructures.  The constitutive equation of the PTT model is

(2.87)

with the stress coefficient function defined as
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tr � in this equation is the trace of the stress tensor (tr ���ii ��zz ��rr for simple visco-
metric flows). In these equations, � is the extra stress tensor, �, the relaxation time, n, the
number density of dumbbells, b, the parameter of the FENE-P model, T, the absolute tem-
perature, kB, the Boltzmann constant, � is the constant viscosity coefficient of polymer, �
is a parameter that accounts for the slip between the molecular network and the continuum
medium, �

�
is the Oldroyd’s upper convective derivative, (�

�
� (DV/Dt)���V��(�V)r)

and � is the parameter limiting the extensional viscosity related with the stretching of the
network.

The stress coefficient function Y(tr �, T ) has an exponential form (Phan-Thien, 1978) to
take into account the large extensions in the network as may take place in converging chan-
nels. A linearized form of eq.(2.87a) can be used in flow through pipes, channels and in
couette flows where only small extensions and molecular deformations take place (Tanner
and Huilgol, 1975). Hence the linearized form of stress coefficient function (Phan-Thien
and Tanner, 1977) at isothermal conditions (�(T )�1) becomes

(2.88)

Eq. (2.87) reduces to a set of three equations for the normal stresses in the direction of flow
and momentum transfer and the shear stress,

(2.88a)

(2.88b)

(2.88c)

A simplified version of PTT model known as simplified Phan-Thien and Tanner (SPTT)
model neglects the slip between the solvent and solute molecules by taking ��0, so the
normal stress equation in the radial direction vanishes and

(2.89)

(2.90)

Equations of velocity distribution and average velocity for a fluid flowing through the
pipe are derived based on the PTT model, widely used for concentrated suspensions, under
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no slip conditions at the wall of the pipe (Oliveira and Pinho, 1999). The derivation starts
with eq.(2.63), eq. (2.88) and eq.(2.87) with the simplifications encompassed in eqs.(2.89)
and (2.90), to give 

(2.91)

(2.92)

The parameter � is the general pressure driving force. If the parameter limiting the elon-
gational viscosity � is equal to zero as in the case of non-viscoelastic fluids, eq.( 2.91)
becomes similar to eq. (2.83) with n�1. The parameter � serves as a scale for the resist-
ance of the molecules (and microstructure in general) toward stretching under the effect of
shear and elongation. The velocity gradients are reduced and velocity profiles flatten and
with increasing � due to high viscoelastic nature of the fluid. 

The effect of the viscosity contribution of the solvent can be taken into account in both
PTT and FENE-P by adding relevant shear stress terms into the general Navier-Stokes
equations ( Cruz et al., 2005)

(2.93)

Then, the axial (z) momentum equation (eq.(2.94)) is used as the starting equation, instead of
eq. (2.63), to determine the velocity distribution of viscoleastic fluids in flow through pipes:

(2.94)

where 
0 is the viscosity of the solvent.

Example 2.2: Velocity distributions during flow of non-Newtonian fluids

The case : The velocity distribution during the flow of synthetic hectorite clay (laponite)
suspensions in 4 inch pipes is to be evaluated. To illustrate the effect of model parameters
on the velocity distributions for different rheological models, the equation of the fitted
curve to the data of synthetic hectorite clay (laponite) suspensions obtained in controlled
stress and controlled strain rate rheometers (Escudier et al., 1996) will be used as a basis

(2.95)

Analysis of the case : The constitutive equations used in these illustrations
(Figures 2.3–2.6) are based on this equation with the values of the parameters standardized
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Figure 2.3 Velocity distributions of Herschel–Bulkley Fluids: (a) effect of n at constant Q,
(b) effect of n at constant �w, (c) effect of K at constant Q, (d) effect of K at constant �w, (e) effect of
�0 at constant Q, (f) effect of �0 at constant �w. 



as �0 �4.5Pa n�0.5 and K�0.24Pasec0.5. Half and twice of these values are evaluated
also, to show the effect of a change in the parameters. 

The velocity distributions are evaluated both at constant Q and at constant pressure gra-
dient dP/dz. To make the comparison on the same basis, the flow rate Q and pressure
gradient (or equivalently,�w) are adjusted in these plots to maintain laminar regime. The
velocity profiles nearly coincide at constant flow rate. For better visibility of the shape of
the profiles, the velocity values in the overlapping distributions are multiplied by a con-
stant factor of (1.5–2), to obtain separate curves.

For a given pressure difference(�P), equivalent to a constant wall shear stress, �w and
flow rate Q, the velocity distribution of Herschel–Bulkley fluids is a function of three
parameters, K, n, and�0. The limits of the plug flow region at the center are only a function
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Figure 2.5 Velocity distributions of Bingham fluids; (a) effect of �0 at constant Q, (b) effect of �0
at constant �w, (c) effect of K at constant Q, (d) effect of K at constant �w.

of the yield stress, �0 according to eq. (2.73). In other words, changing the yield stress will
affect both the magnitude of the core velocity (dependent on n) and the range of the plug
flow region. Consistency K, will inversely affect the core velocity given by eq. (2.74).
Viscosity index, n will affect both the core velocity and the annular velocity distribution
in a complex manner, both directly and through an exponential relation with consistency
and yield stress.

The effects of the parameters on the average velocity are demonstrated in Figure 2.7 for
a hypothetical suspension in the ranges given in Table 2.9. Other than n�1 and K�
 for
Bingham and n�0.5 for Casson models, values of the constants are the same in each case.
An increase in the values of K and �0 reduces the average velocity, as expected. The effect
of n is negligible at these high values of K or �0. However, average velocity increases syn-
ergistically when a decrease in the yield stress or consistency is coupled with a decrease
in the viscosity index n. 



A general evaluation of Figures 2.3–2.6 shows that a core region in plug flow is
observed in fluids exhibiting a yield stress, and in the case of very low value of 
flow behavior index n, even in the absence of a yield stress. The width of this core
region increases with an increase in the yield stress �0 and a decrease in the flow
behavior index, n. Peixinho et al. (2005) quantified this observation by relating the
radius of the plug zone to the radius of the pipe through Herschel–Bulkley number
(Hb � �0/K(V/R)n) and flow behavior index, n, by solving the mechanical energy and
total mass balance equations for Herschel–Bulkley fluids in laminar flow. As Hb � 0,
Herschel-Bulkley fluids approach power law behavior and the relative size of the plug
zone is given by

(2.96a)
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Figure 2.6 Velocity distributions of power-law fluids: (a) effect of n at constant Q, (b) effect of n
at constant �w, (c) effect of K at constant Q, (d) effect of K at constant �w.



As Hb � , that is for very high yield stresses the relative size of the plug zone is
given by

(2.96b)
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Figure 2.7 Effect of parameters K, n, and �0 on the average velocity of the (a–c) Herschel–Bulkley
fluids, (d) Casson fluids, (e) Bingham fluids, (f) power-law fluids. 



Peixinho et al. (2005) experimentally verified that the maximum velocity, i.e., the core
velocity, increased as the diameter of the plug region of the Herschel–Bulkley fluid
decreased with an increase in the Reynolds number.

Huilgol and You (2005), applying the augmented Lagrangian method based on the
concept of variational inequalities to the steady flow of Bingham, Casson, and
Herschel–Bulkley fluids found that

(2.97)

applies, regardless of the constitutive equation of the yield-viscoplastic fluid. Od, the
Oldroyd number is defined as the ratio of the yield stress to the effective shear rate
expressed in terms of the pressure gradient

(2.98)

Increase in the yield stress, causes a decrease in the average velocity. The value of the crit-
ical Oldroyd number, Odc, where the fluid ceases to flow is calculated analytically by
Mosolov and Miasnikov (1965) for Bingham fluids as, Odc � 0.5.

This analytical result is confirmed by model studies as Odc � 0.498 for Bingham fluids
by Moyers-Gonzales and Frigaard (2004). Basing on their model calculations, Huilgol and
You (2005) give the estimates for the Odc as 0.499 for Bingham fluids, 0.478 for Casson
fluids, 0.495 and 0.483 for Herschel–Bulkley fluids with flow behavior index of 0.75 and
0.5, respectively. In general, the greater the nonlinearity, the lower is the Odc.

The effect of flow parameters on the system curves in the design of piping systems in
laminar flow is given in Section 2.3.1.2.

2.3.1.2 Design equations for flow of non-Newtonian fluids through pipes

Design of piping systems is based on knowledge of head (pressure) requirement, includ-
ing frictional losses and potential energy, for a given transfer duty. The system curve is a
plot of the mechanical energy balance on the piping system, drawn as the pressure require-
ment per unit length, �P/L, as a function of flow rate, Q. This information is necessary for
the selection of the pump that maintains the flow. Such a relation depends only on the flow
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Table 2.9

The range of the parameters used in Figure 2.7

�0–K relation n–K relation n–�0 relation

Variables Constants Variables Constants Variables Constants

�0 �1–7Pa �w �8Pa n�0.4–1.2 �w �8Pa �0 �1–7Pa �w �8Pa

K�1–4Pa�sn n�0.8 K�1–4Pa�sn �0 �4Pa n�0.4–1.2 K�2Pa�sn



regime in Newtonian fluids where it is given by Hagen–Poiseuille equation in the laminar
regime

(2.99)

In non-Newtonian fluids, the system curve depends not only on the flow regime, but also
on the constitutive equation of the rheological model of the fluid. Since the constitutive
equations are given as a relation between the shear stress and shear rate, �P�Q data
should be converted into � � ·� form. Variation of shear stress with radius in flow through
pipes is given with eq. (2.67). Since the maximum shear stress is exerted at the walls, it is
also the region where the maximum effect of non-Newtonian behavior is observed.
Consequently, the shear rate, or the velocity gradient should be evaluated at the wall region
and related with the flow rate, Q.

Pressure is related to the shear stress at the wall, �w, through a force balance and is inde-
pendent of the flow regime and the rheological model (constitutive equation) of the fluid

(2.100)

(2.101)

On the contrary, shear rate, or velocity gradient, at the wall depends both on the flow
regime and on the rheological model through the relevant velocity distribution, which is to
be derived next (Holland and Bragg, 1995).

2.3.1.2.1 Relation between flow and rheological parameters

The velocity gradient at the wall is found by taking the derivative of the velocity distri-
bution in laminar flow for Newtonian fluids. The velocity distribution for the general
case of pressure and gravity acting simultaneously in the z-direction is given with the
equation

(2.102)

and the maximum velocity at the center of the pipe at r � 0, with

(2.103)

The local velocity Vz in terms of the maximum velocity at the center can be written as
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Since the average velocity is equal to one-half of the maximum velocity in the laminar
regime of Newtonian fluids

(2.105)

the local velocity in terms of the average velocity is

(2.106)

This equation is the starting point for the relation between the flow rate and the shear rate
at the wall. In these equations and for the rest of this section, V stands for Vav , the subscript
showing the direction of flow, only. The velocity gradient at r�R

(2.107)

gives the flow characteristic for Newtonian fluids

(2.108)

or, in terms of volumetric flow rate, Q, through the pipe

(2.109)

Flow characteristic gives the relation between the shear rate (or velocity gradient) at the wall
and the volumetric flow rate (or the average velocity). Flow characteristic for non-Newtonian
fluids is obtained by multiplying the flow characteristic for Newtonian fluids with a correction
factor. The relation used to obtain the correction factor is known as the Rabinowitsch–Mooney
(Rabinowitsch, 1929; Mooney, 1931) equation.

The flow characteristic for Newtonian fluids does not contain any term that can be
related to the rheology of non-Newtonian fluids. Therefore, an expression is required
which contains a term that can be related with the constitutive equations. This could be the
continuity equation written in differential form

(2.110)

from which, the volumetric flow rate can be found by integration.
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In Newtonian fluids the relation between r and V depends on the flow regime, whereas,
that of non-Newtonian fluids depends in addition on the rheological model that best
describes the physical behavior of the system. To obtain a general equation that covers all
the models, eq. (2.111) is solved through integration by parts, taking u�Vz and v� r 2/2.
Under the no-slip boundary conditions of r�0, V�Vmax, and r�R, V�0, the first term
of the integral vanishes and the second term becomes

(2.112)

In flow through pipes, velocity decreases to zero as the radius increases from zero to R, at
the wall. The negative sign before the velocity gradient accounts for the inherent negative
value of the gradient.

The velocity gradient at the wall depends on the velocity distribution, and the applied
shear stress for a given model of non-Newtonian behavior. Therefore, the relation between
the velocity gradient and the radius cannot be predicted a priori. Since the constitutive equa-
tions of the rheological models (as in Table 2.2) are given as a relation between shear stress
and shear rate, eq. (2.112) should now be written in terms of shear stress, �, using eq. (2.67).

(2.113)

An expression for the flow characteristic of non-Newtonian fluids can now be found by
replacing eq. (2.113) into eq. (2.109)

(2.114)

using the equivalent expression in eq. (2.108). This equation is general and can be used for
any model when the appropriate relation for ·� is used in the equation. In case of slip flow
along the walls where the boundary condition V�0 and r�R does not hold (see
Chapter 3), eq. (2.114) should be revised to include the increase in flow due to slip,

(2.115)

where Vs is the velocity of the fluid at the wall. Before going on to the next section, an
expression for converting Newtonian shear rate at the wall, ·�wN into its non-Newtonian
equivalent ·�w should be derived. Eq. (2.114) can also be expressed as the shear rate, ·�wN,
as given by eq. (2.108) for Newtonian fluids. Multiplying each term of this equation with
�w

3 , taking the derivative with respect to �w and rearranging the equation to give the shear
rate at the wall, Rabinowitsch–Mooney equation is obtained which gives the shear rate at
the wall for non-Newtonian fluids ·�w in terms of its Newtonian equivalent ·�wN
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(2.116)

(2.117)

The slope of a plot of �wversus ·�wN on logarithmic coordinates is denoted by n�(instead
of n) to signify that it is obtained from pipe flow data instead of rheometric measurements.
Eq. (2.117) can be written in terms of this slope n� as

(2.118)

The difference between Newtonian and non-Newtonian behavior becomes most prominent
at the pipe wall where the shear stress is maximum. Eq. (2.33) under the conditions at the
pipe wall becomes

(2.119)

Comparison of eq. (2.119) with the constitutive equation for power-law fluids give the
relation between data obtained with a rheometer (K, n) and data obtained by measurements
of pipe flow (K�, n�)

(2.120)

and

(2.121) 

Eq. (2.114) is applied to fluids conforming to the models given in Table 2.2, and the results
summarized in Table 2.10. Calculations are shown as an example for the Herschel–Bulkley
model, with the constitutive equation

(2.48)

The equation is rearranged to give the shear rate as a function of shear stress
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Substituting eq. (2.122) into eq. (2.114)

(2.123)

and integrating the resultant equation gives the relation between the flow rate and shear
stress at the wall, equivalent to the pressure difference over the length of the pipe through
eq. (2.101).

(2.124) 

Example 2.3: Flow curves of non-Newtonian fluids in the laminar regime

The case: The system curves for the flow of synthetic hectorite clay (laponite) suspen-
sions in 4 inch pipes, the velocity distributions of which are found in Example 2.2, will be
drawn for use in the design of piping systems.
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Table 2.10

Flow rate-wall shear stress relations for different models

Model Shear rate Design equations

Herschel– ·�� ((���0 )/K )1/n

Bulkley

(2.124)

Casson ·�� (�1/2 ��0
1/2)2/�

(2.125)

Bingham ·�� (���0)/�
(2.126)

Power-law ·�� (�/K)1/n

(2.127)
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Analysis of the case : The relations given in Table 2.10 are converted into pressure gradi-
ent �P/L versus volumetric flow rate Q form through eq. (2.101) and plotted in
Figures 2.8–2.11 as a function of the flow parameters �0 , K, and n. Figures 2.8–2.11 are
based on fluid flow with characteristic values of �0 � 4.5Pa, n � 0.5, and K � 0.24Pas0.5

as also used in Figures 2.3–2.6. The range of the flow rate, Q, values was selected so that
laminar conditions would prevail in a 4 inch diameter pipe. These relations can be used as
system curves in designing piping systems for non-Newtonian fluids flowing in the laminar
regime. The Reynolds number ranges are given in terms of Metzner-Reed Reynolds num-
ber ReMR, and Re� (ReHB or ReB) for each model as explained in the following section.

2.3.1.3 Inverse design equations for non-Newtonian fluids

Eqs. (2.124)–(2.127) in Table 2.10 are implicit in �w, and therefore, in the pressure gra-
dient. Using these equations the design can be made as a function of pressure gradient
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Figure 2.8 Volumetric flow rate versus pressure difference relations of Herschel–Bulkley fluids:
(a) effect of n (53 � ReMR � 9590 and 15 � ReHB � 1393, (b) effect of K (73 � ReMR � 6646 and
18 � ReHB � 1241), (c) effect of �0 (147 � ReMR � 3323 and 11 � ReHB � 1547).



acting on the system. This type of solution is called “direct.” It would be desirable to use
an equation giving the pressure gradient as an explicit function of the flow rate using a
friction factor, f, similar to Newtonian fluids. This method is called “inverse” design of
non-Newtonian fluid flow. Fanning friction factor f is defined as the ratio of shear stresses
at the wall, to the kinetic energy of the fluid
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Figure 2.9 Volumetric flow rate versus pressure difference relations of Casson fluids: (a) effect of
�0 (5 � ReMR � 2158), (b) effect of � (5 � ReMR � 1045). 
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Replacing the value of the wall shear stress from eq. (2.101), one obtains the well-known
Darcy–Weisbach equation for the pressure gradient

(2.129)

For flow of Newtonian fluids in the laminar regime, pressure-driving force is given by the
Hagen–Poiseuille equation, eq. (2.99)

(2.99)

Equating eqs. (2.99) and (2.129) the well-known relation for the Fanning friction factor of
Newtonian fluids in laminar regime is obtained as

(2.130)

Friction factor relations of non-Newtonian fluids can be derived from the Q��w relations
given in Table 2.10 to obtain a relation similar to Fanning friction factor using the
Reynolds number for Newtonian fluids, DV�/� with the incorporation of a correction
factor for the nonlinearity, �.
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2.3.1.3.1 Friction factor for power-law fluids

Eq. (2.127) can be rearranged to

(2.132)

Multiplying both the numerator and the denominator of eq. (2.85) by 4, and taking the
n th power yields

(2.133)

Replacing in the value of �w from eq. (2.128) yields after rearrangement

(2.134)

comparing eq. (2.134) with eq. (2.131) the Reynolds number for power-law fluids is
obtained as

(2.135)

which is also known as the generalized Reynolds number of Metzner and Reed (1955).
Eq. (2.134) can be rearranged to yield the general form of the friction factor relation

(2.131)

where

(2.136)

The design of the piping systems as a function of flow rate, Q can now be made using
eqs. (2.129), (2.131), (2.132) and (2.136) for power-law fluids. This method is called
“inverse” design.

2.3.1.3.2 Friction factor for Bingham fluids

Eq. (2.126) can similarly be rearranged to obtain the friction factor for Bingham fluids.

(2.126)Q
V D D

� � � �
	 	 �

�
�
�

�
�

2 3
w 0

w

0

w

4

4 32
1

4

3

1

3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� �
� ��

� �

D n n

V

n n

n n

1

1 1

(4 (3 1))

8

⎡

⎣
⎢

⎤

⎦
⎥

f
Re

�
16

�

Re
D V

K n n

n n

n nMR

2

18 ((3 1) 4 )
�

� �

�

�

�

f
V K

D n n

n n

n n
�

� �

� �

16
8

(4 (3 1))

1 2

�

⎡

⎣
⎢

⎤

⎦
⎥

V
D

K

n

n
n

n

n

n

�
�8

1 4

3 1 w
⎛
⎝⎜

⎞
⎠⎟

�

Q
D

V
D

K

n

nn
n� �

��

�	 	
�

2 3

1 w
1

4 8

1

3 1
⎛
⎝⎜

⎞
⎠⎟

2.3 Flow of Non-Newtonian Fluids through Cylindrical Pipes 119



Replacing the value of �w from eq. (2.128) yields after simplification

(2.137)

giving the friction factor for Bingham fluids as

(2.138)

where Re��ReB.
The nonlinearity correction factor � in eq. (2.138) can also be written in terms of rel-

evant dimensionless numbers, Hedström number, He � �D2�0 /�2, and Reynolds number,
Re � DV�/�, and the definition of the friction factor, eq. (2.128)

(2.139)

Eqs. (2.138) and (2.130) can be rearranged to an equivalent friction factor expression as

(2.140)

2.3.1.3.3 Friction factor for Herschel–Bulkley fluids

The expression for the nonlinearity correction factor � in the general friction factor expres-
sion, eq. (2.141) is obtained by Hanks (1978) as

(2.141)

giving the Reynolds number for Herschel–Bulkley fluids as ReHB �Re�. � can also be
expressed in terms of the dimensionless numbers, He, and Re as an implicit function
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2.3.2 Turbulent flow of non-Newtonian fluids

If either the yield stress or the initial viscosity of the fluids is high, then flow in the lami-
nar regime is the economically optimum choice. Since many non-Newtonian fluids meet
these conditions, flow in the laminar regime is better understood, at least for the fluids
conforming to the more commonly observed rheological models. On the other hand, com-
plications inherent in the rheology and flow behavior of non-Newtonian fluids pose diffi-
culties in the development of a coherent theory for turbulence. Variation in the viscosity
with the shear rate is mainly responsible for these complications. Even in the case of
Newtonian fluids with constant viscosity, a single equation is not sufficient to characterize
turbulent flow: velocity distribution in the laminar sublayer, transition (buffer) layer and
turbulent core, observed under different shear stress levels existing between the pipe wall
and center, demand different equations. Due to fluctuations in velocity and resulting local
shear stresses, regularity in the change of viscosity across the flow cross-sectional area
cannot be maintained. In addition, the presence of high yield stresses and zero-shear vis-
cosities cause the appearance of a high viscosity core in the central region that dampens
the velocity fluctuations. As a result, maximum turbulence intensity is observed in an
annular region near the wall, instead of being located in the center.

Experimental work on non-Newtonian flow also involves problems that have to be
resolved to obtain reliable data (Escudier and Presti, 1996; Chilton and Stainsby, 1998):
Average velocity measurements bear no significance in analyzing turbulent flow. Local
velocities should be measured by nonintrusive techniques such as Laser-Doppler
anemometry LDA, not to interfere with velocity fluctuations. Laser techniques require
transparent suspensions, transparent gels, and polymer solutions, which, albeit conforming
to a rheological model, may not represent the concentrated solid suspensions and sludge
met in practical applications. Use of polymers brings with it inevitable viscoelastic
behavior with an increase in the concentration of solids. Viscoelastic behavior results in
drag reduction and slip at the walls with a sequential increase in the velocity, extended
thickness of the laminar sublayer, reduced level of tangential and radial turbulence inten-
sity, and in general, delayed transition from laminar to turbulent regime. Rheological mod-
els, obtained over a limited range of shear rates, may not be sufficient to describe turbulent
flow where a wide range of shear rates is involved. High flow rates encountered in turbu-
lent flow do not permit equilibrium shear rates and viscosities to be established, making it
difficult to use rheological data obtained under equilibrium conditions.

In spite of all these technical difficulties encountered, significant advances are being
made toward the elucidation of the mechanism of the development of turbulence. In the
absence of a coherent theory, advanced experimental and numerical techniques are being
developed for a comprehensive understanding of turbulent flow of non-Newtonian fluids.
Modeling and direct numerical simulation techniques are being developed to bypass the
experimental complications, (Malin, 1997, 1998; Rudman et al., 2004). Local velocities
and velocity fluctuations measured with LDA with a high resolution give valuable infor-
mation on the mechanism of transition to the turbulent regime, and the effect of the model
parameters on this mechanism (Escudier et al., 1996, 2005; Peixinho et al., 2005).

Special emphasis is paid on the conditions at the onset of turbulence. Operation at the tran-
sition from laminar to turbulent regime requires the minimum energy for the transport of the
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suspension. To avoid the flow instabilities during the transition, employment of flow rates
just above the transition point is generally advised in the design of the transport system
(Escudier and Presti, 1996; Rudman et al., 2004; Vlasak and Chara, 2004; Peixinho et al.,
2005). Economic considerations form a strong motivation for the understanding of the flow
conditions during transition to turbulence, placing the issue beyond academic interest.

2.3.2.1 Definitions of the Reynolds number in turbulent flow

Reynolds number is a ratio of momentum flux by convective mechanism, �t, to the flux by
molecular mechanism, �l

(2.143)

where V
i
 and V
j
 denote the average fluctuating Reynolds stresses. Since the turbulent shear
stresses are proportional to the kinetic energy of the fluid, Reynolds number is usually
written as a dimensionless ratio in the form

(2.144)

where, � is the viscosity evaluated under the conditions of the wall where momentum flux
by molecular mechanism dominates over the convective mechanism. Reynolds number
can also be written in the form

(2.145)

by equating eqs. (2.128) and (2.130). In the use of the latter equation an equivalent expres-
sion for �w is taken according to the rheological model to which the fluid conforms.

The Reynolds numbers and the correction factor �, given in Section 2.3.1.3 for laminar
flow of fluids conforming to the power-law, Bingham, and Herschel–Bulkley models cannot
be used in the turbulent flow of these fluids because molecular mechanism for momentum
transfer does not persist throughout the cross-sectional area of flow. For this reason, an equiv-
alent expression for the viscosity at the wall is used in Reynolds numbers as the conditions
at the wall reflect best the nonideality of the fluid behavior. In the case of yield-plastic fluids,
with or without shear-thinning behavior, a correction factor for the effect of yield stress is
also incorporated into the Reynolds number. The generally used definition employs the
expression of the viscosity of Herschel–Bulkley fluids evaluated at the wall

(2.146)
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The general Reynolds number Reg is obtained by substituting eq. (2.147) into eq. (2.144)

(2.148)

Further modifications are also made in this equation to take into account the nonlinear-
ity introduced by the presence of a yield stress. One such example is (Chilton and
Stainsby, 1998)

(2.149)

where

(2.149a–c)

Reynolds number as defined by Metzner and Reed (1955) is used most often together with
the velocity distribution (Bogue and Metzner, 1963) and friction factor (Dodge and Metzner,
1959) equations. The equation is based on eq. (2.145) with the wall shear stress �w, replaced
by its equivalent expression for power-law fluids, using eqs. (2.108) and (2.119)

(2.135)

The denominator of eq. (2.135), K�, is obtained from the regression of wall shear stress
versus shear rate plots of data obtained in pipe flow experiments

(2.150)

and

(2.151)

where Vm is the mean velocity and Dh is the hydraulic diameter. In general, for any geo-
metrical shape of pipe with geometrical characteristics a and b, eq. (2.135) can be written
as (Kozicki et al., 1966, 1971)
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and n� and k� are given by the equations

(2.153)

(2.154)

Although originally derived for power-law fluids, the equation is used for
Herschel–Bulkley fluids also, with K� and n� redefined to include yield stress, such as
eqs. (2.155) and (2.156) (Peixinho et al., 2005).

(2.155)

(2.156)

where rp is the plug radius given by

(2.73)

Use of the wall properties is advised (Pinho and Whitelaw, 1990; Rudman et al., 2004;
Peixinho et al., 2005) to be used in the Reynolds number or any function of the Reynolds
number, as it is in this region that the effect of shear stress is the maximum, which brings
forth the characteristic properties of non-Newtonian fluids.

At present there is no conformity among the various definitions of Reynolds numbers in
the literature, especially where the yield stresses are involved. In view of the very complex
behavior of non-Newtonian fluids and furthermore, solid–liquid suspensions, a universal
critical value, or a range of values, for the transition from laminar to turbulent regime can-
not be assigned to the Reynolds number. Experimental verification covering a wide range
of shear rates and rheological properties are needed to arrive at such a universal definition
of Reynolds number for non-Newtonian fluids. A practical criterion in the absence of a
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universal critical Reynolds number Rec, is to take the intersection of theoretical pressure
gradient, �P/L (or equivalently �w) versus average velocity plots drawn for laminar and
turbulent regimes, as the critical value of the Reynolds number (Shook and Roco, 1991).
Chilton and Stainsby (1998) claim that when the Reynolds number corrected for the yield
stress and flow behavior index is used (eq. (2.149)), transition from laminar to turbulent
regime falls in the region 2500 � ReCS � 5000, increasing with an increase in �0, and
decrease in n. An example of criteria developed for specific models is the criterion pro-
posed by Hanks (1963) for Bingham fluids

(2.157)

The critical wall shear stress at the transition, �wc, is related to the Hedström number
through the equation

(2.158)

where the Hedström number relates the physical properties of the fluid and the pipe
diameter D through the equation

(2.159)

Results obtained by Peixinho et al. (2005) and Malin (1997) support the use of Hanks
criterion with moderate Hedström numbers, less than about 104.

2.3.2.2 Transition from laminar to turbulent regime

The mechanism of transition from laminar to turbulent regime could only be clarified
recently (Peixinho et al., 2005) with the advent of LDA techniques to experimental fluid
flow studies. Three parameters, friction factor, centerline velocities, and average fluctua-
tions in velocity, were used to assess transition from laminar to turbulent flow.

1. Friction factor: In Section 2.3.1.3, it was shown that the friction factor of all fluids
show a linear variation with the Reynolds number, provided a necessary correction �
is made for the nonlinearity in the rheology of the fluid. Termination of the linear
relation between the friction factor f and the generalized Reynolds number followed
by a slight increase in f signifies transition to turbulent flow.

2. Centerline velocity corresponds to maximum velocity in Newtonian fluids and
remains at a value of two times the average velocity throughout the laminar regime.
In shear-thinning fluids, the ratio of centerline to the average velocity decreases
slightly as the viscosity of the fluid around the wall region decreases and velocity
increases due to increasing shear. Fluids exhibiting a yield stress develop a stagnant
core region at the center where the shear stress is below the yield stress of the fluid.
As the flow rate and the extent of deformation increases, and the radius of the plug
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flow decreases with a concomitant increase in its relative velocity. A sudden drop in
the value of the ratio of centerline velocity to the average velocity, Vc/Vav, is an indi-
cation of the dominant role played by the velocity fluctuations in increasing the rate
of momentum transfer, signifying the beginning of the transitional regime.

3. Velocity fluctuations: A sudden increase in the relative average velocity fluctuations
at the center, u

�
c
2

|V
c
, takes place at the onset of turbulence during transition, which
then decreases rapidly exhibiting a peak value at the transition. The value of the
Reynolds number at which the fluctuations are first observed to increase is accepted
as the critical Reynolds number signifying the start of the transition (Peixinho et al.,
2005). The relative increase in the velocity fluctuations is the maximum in
Newtonian fluids, which decreases in shear-thinning and yield-pseudoplastic fluids,
in the respective order.

In the work of Peixinho et al. (2005), eq. (2.135) was used, by redefining the generalized
n� and k� for the Herschel–Bulkley model with eqs. (2.155) and (2.156). The critical
Reynolds number for the laminar to turbulent transition was found as 2100, 2050, and 1800
for the Newtonian fluid, according to the friction factor, relative centerline velocity, and rel-
ative average fluctuation velocity at the center criteria, respectively. The authors have exper-
imentally shown that the fluctuation measurements are the most sensitive to the onset of
turbulence, in the case of Newtonian and shear-thinning fluids, and not sensitive at all for
yield stress fluids due to damping by the high-viscosity region at the core. These measure-
ments, in agreement with other experimental (Park et al., 1989; Pinho and Whitelaw, 1990;
Escudier and Presti, 1996), and simulation (Rudman et al., 2004) work confirm that shear-
thinning (low n values) and high values of yield stress delay the transition to turbulence to
larger Reynolds numbers. How large these Reynolds numbers will be, depends on the
rheological properties.

Maximum velocity fluctuation intensity is observed at around r � (0.8–0.9) R as a peak
that rapidly declines radially toward either side, reaching a minimum level at the core
region, where plug flow is observed (Escudier and Presti, 1996; Peixinho et al., 2005). In
this annular region, the fluctuations in the axial direction are greater by about 2–3 times
in magnitude than the fluctuations in the radial or tangential directions. These experi-
mental results are supported by direct simulation techniques (Rudman et al., 2004),
which show in addition that the radial and tangential fluctuations are less in shear-
thinning fluids and decrease further with decreasing n. After the onset of turbulent fluc-
tuations in the transitional regime, individual turbulence spots are observed in the core,
intervened by laminar flow regions. As the Reynolds number increases, more and more
of these spots are observed, gradually changing the velocity distribution with a plug zone
at the center to the hyperbolic profile, typical of turbulent regime (Peixinho et al., 2005).
Intermittency in turbulent intensity in shear-thinning fluids in the form of slugs is also
supported by simulation studies and drawn as a mechanism for the transition to turbu-
lence (Rudman et al., 2004).

An interesting observation first made by Escudier and Presti (1996) and later confirmed
by other independent experimental work (Escudier et al., 2005; Peixinho et al., 2005) is
the asymmetry in the velocity profiles during transition, which is not observed previously
in the laminar regime, or the subsequent turbulent regime. The cause of the asymmetry has
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not been identified yet. Several possibilities are proposed, one of them being the random
high-activity puffs or slugs of turbulence sustained in a certain azimuthal location by the
existence of a preferential triggering mechanism (Rudman et al., 2004).

2.3.2.2.1 Effect of particles on the transition Reynolds numbers

Experimental (Matas et al., 2003) and direct numerical simulation studies (Li et al., 1999;
Rudman et al., 2004) have shown that the presence of particles within a given fluid
increase the intensity of the turbulent fluctuations of the continuous phase, notably if the
particles are large and very near the wall. Experimental results obtained through visual
observations and pressure fluctuations showed that the critical Reynolds number Rec for
the onset of turbulence initially decreases with an increase in the volume fraction of solids,
� and then increases with a further increase of � (Matas et al., 2003) passing through a
minimum point. The extent of this minimum below the critical Reynolds number of the
continuous phase (2100 in the case under consideration) and the value of � at which the
minimum is observed increases with an increase in the particle size. When the Reynolds
number based on pipe diameter and average fluid velocity is converted into particle
Reynolds number, through, Rep � (dp

2/D2)Repipe, it was found that particles with Rep � 1
were effective on the transition. On the other hand, there could be a lower limit, presum-
ably the Kolmogoroff length scale lk, lk � (
 /��1/3)3/4, below which the transitional
Reynolds number could not be affected by the presence of particles. Here � denotes the
energy dissipated per unit mass of fluid per unit time (J kg�1 s�1). The authors concluded
that a steep increase in the value of the critical Reynolds number for � � 0.25 with all
particle sizes can be taken as an indication that an additional mechanism for dissipation
of kinetic energy beyond that through viscous dissipation is operative in Stokes flow of
concentrated suspensions.

2.3.2.3 Velocity distributions and average velocity in turbulent flow

Velocity distribution in the turbulent flow of Newtonian fluids is given by the boundary
layer theory (Schlichting, 1955) for the laminar sublayer, transition region, and turbulent
core regions by three separate equations

(2.160)

(2.161)

(2.162)

where the dimensionless velocity,V�, is defined as the ratio of average velocity, V, to fric-
tion velocity V*

(2.163a)V
V

V
� �

�

V y y� � �� � �2.5ln 5.5 for 30

V y y� � �� � � �5 3 05 5 30ln . for

V y y� � �� �for 5

2.3 Flow of Non-Newtonian Fluids through Cylindrical Pipes 127



dimensionless distance, in terms of the distance from the wall y, y�R – r, and frictional
velocity V*

(2.163b)

and frictional velocity is defined in terms of wall shear stress as

(2.163c)

Similar equations can be derived for power-law fluids (Chhabra and Richardson, 1999):
Shear stress at any point in the fluid in terms of wall shear stress �w is

(2.164)

within the laminar sublayer close to the wall, y � 0, and

(2.165)

integration with no-slip condition and placing in the value of �w from eq. (2.163c), the
velocity distribution for turbulent flow of power-law fluids is obtained

(2.166)

Eq. (2.166) can be written in standard form after dividing through by V*

(2.167)

(2.168)

where the dimensionless distance for power-law fluids is defined as
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Velocity distribution of power-law fluids in the turbulent core, including the transition
region in between the laminar sublayer and turbulent zone is given by Bogue and Metzner
(1963) equation

(2.170)

in the interval, 104 � ReMR � 105, 0.6 � n � 1.0. I(n, ReMR) can be approximated as I � 5.6.
Increased viscosity in the plug at the core region causes a synergistic increase above the value
of 5.6 when n � 0.6, and ReMR � 104.

Based on experimental measurements where n varied in the narrow range of 0.7�n� 0.8,
Clapp (1961) proposed the following equations for the transition region and the turbulent
core

(2.171)

(2.172)

where yT
� is the y� value at the intersection of the two equations. Simulation studies of the

turbulent pipe flow of shear-thinning fluids (Rudman et al., 2004) support Clapp’s scaling
of the velocity distribution with n, though the value of the constants 2.78 and 3.8 cause a
slight under-prediction of velocity distributions.

Experimental measurements (Peixinho et al., 2005) and simulation studies (Rudman
et al., 2004) show that the flow behavior of the non-Newtonian fluid can be successfully
described when the Reynolds numbers and the friction factor relations are based on vis-
cosities evaluated under the conditions prevalent at the wall.

The general problem with the boundary layer theory is that neither the centerline
velocity nor the plug flow in the core region can be predicted with the velocity distribution
equations, though a good prediction is obtained outside the core region.

Chilton and Stainsby (1998) evaluated the models for turbulent flow with the conclusion
that the models which assume a negligible thickness of the laminar sublayer and in which
the turbulent eddy viscosity dominates the molecular viscosity over the majority of the
cross-sectional area of the pipe cannot be valid for the flow of non-Newtonian flows. This
is especially true for fluids with a yield stress �0 , or with a very low flow behavior index
n, where an undeformed core at plug flow exists in the center region. The high viscosities
at the center suppress turbulent convection until very high Reynolds numbers are reached,
which are not feasible in practice. They recommend the model by Thomas and Wilson
(1987) as the best available analytical model for Herschel–Bulkley fluids for highly tur-
bulent flows, because (a) it takes into account cross-sectional area occupied by the plug
zone, (b) corrections for change in the thickness of the viscous sublayer according to
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rheology, (c) the empirical constants take the same values for Newtonian flow, (d) has
theoretical justification, and (e) is in good agreement with experimental data. Wilson’s
equation for the average velocity of yield-power-law fluids is

(2.173)

where VN is the average velocity of the equivalent Newtonian flow at the same �w and with
the same viscosity as that of non-Newtonian fluid at � � �w. � gives the effect of the plug
flow region at the core

(2.174)

with the � term which takes into account the extent of the core region in plug flow given as

(2.175)

Another model that takes the roughness effect of solid particles in fine-grained slurries on
turbulence is the Slatter model (1995). In eq. (2.163b), the dimensionless distance is
defined in terms of the fluid properties of �, �, and wall shear stress �w. Slatter (1996)
assumed that the roughness effect is caused by the solid particles in the slurry, and scaled
the distance with the particle dimension dx responsible for the turbulence. For the slurries
investigated, d85 was found to be a good representation of the turbulent roughness size
effect of the solid particles; dx � d85. Subscript 85 refers to the 85th percentile of the par-
ticles passing.

(2.176)

In case of smooth wall turbulent flow, B�2.5ln Rer �5.5, thus, the average velocity

(2.177)

and in case of fully developed rough wall turbulent flow, B � 8.5, thus, the average velocity

(2.178)

where the Reynolds number, Rer a modification of eq. (2.145) for Herschel–Bulkley fluids
is defined as
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2.3.2.4 Friction factors in turbulent flow

The accuracy in the calculation of frictional losses, or the pressure gradient by the
Darcy–Weisbach equation

(2.129)

relies on how closely the friction factor f describes the wall conditions where the deviation
from Newtonian behavior is maximum. The most extensively used equation is Dodge and
Metzner’s correlation (1959) originally derived for power-law fluids

(2.180)

For the flow of polymer solutions and particulate suspensions exhibiting shear-thinning
power-law behavior with 0.36 � n� � 1.0 in the range of 2900 � ReMR� 36,000, the con-
stants A(n�)and C(n�) are given with the relations, A(n�) �4(n�)�0.75 and C(n�) � �0.4(n�)�1.2.
With these values of the constants Dodge and Metzner’s correlation becomes

(2.181)

This equation is the basis for the Fanning friction factor f versus ReMR charts of Dodge and
Metzner (1959). When n��1, the equation reduces to Nikuradse equation for Newtonian
fluids. The equation can be used with fluids conforming to other models when the slope of
log�w versus log(8V/D)plot is evaluated at the relevant value of the wall shear stress.
Metzner’s correlation is the most widely used correlation presently, with the use of cor-
rection factors to fit into models other than the power-law, as detailed in Sections 2.3.1.3
and 2.3.2.1.

More recent work by Malin (1997, 1998) is the most comprehensive treatment of
Herschel–Bulkley fluids at the present, including power-law and Bingham fluids as spe-
cial cases. The parameters in the computation are the flow behavior index, n, Reynolds,
and Hedström numbers. Metzner–Reed definition of the Reynolds number

(2.135a)

and the general Hedström number

(2.182)

are used as parameters.
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The friction factors in Figures 2.12–2.14 are found by solving the general momentum
balance equation

(2.183)

taking into account the turbulence effect. The apparent viscosity, �l, is based on the
Herschel–Bulkley model and the turbulent viscosity, �t, on Lam–Brenhorst k–� model for
turbulent kinetic energy and dissipation rate of turbulent energy (Lam and Bremhorst,
1981). The equations developed are numerically solved by the finite volume solution
technique. 

The results of the computation are checked against the Hanks correlation, eq. (2.141)
given in Section 2.3.1.3.3 for laminar flow, and against the Dodge–Metzner correlation
eq. (2.181) for well-developed turbulent flow. The squares and circles give the results of
these correlations, respectively, and “predictions” gives the computational results of Malin.
Figures 2.12 and 2.13 give the friction factor plots of the special cases of
Herschel–Bulkley fluids, power-law fluids with He � 0, and Bingham fluids with n � 1.
In the absence of a yield stress, n, does not appear to be a factor in the laminar regime. For
Newtonian and shear thickening fluids n � 1 and 1.2, respectively, Malin’s results over-
predict, and for low values of n, such as 0.4, under-predict the friction factors in
Figure 2.12, for power-law fluids.

� � � � � �� �� � � � � �� � � � �VV V Vp t t
T( ) ( )( )1 1
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Figure 2.12 Frictional resistance of power-law fluids. (Malin, 1998. Figure 1 in the original,
reproduced with permission of Elsevier.) 
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Figure 2.13 Frictional resistance of Bingham fluids (Malin, 1998. Figure 2 in the original,
reproduced with permission of Elsevier Science Ltd.) 

Figure 2.14 Frictional resistance of Herschel–Bulkley fluids with (a) n � 0.8; (b) n � 0.6; (c)
n � 0.4. (Malin, 1998. Figure 5 in the original, reproduced with permission of Elsevier.) 



In the presence of a yield stress there is a separate laminar regime curve for each value
of the Hedström number. Laminar regime end point on the straight line denotes the critical
Reynolds number for the transition from laminar to turbulent regime. Due to the thicken-
ing of the laminar sublayer, wall-roughness effects are negligible and the turbulent regime
is represented by a single line, that of Dodge–Metzner correlation in the figures.
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Figure 2.14 (Continued.)



2.3.3 Flow through sudden expansions and fittings

Sudden expansions in different diameter pipes connected in series, as in heat exchangers,
and entrance to process equipment are frequently used in process plants. Sudden expan-
sions are also observed in biological systems such as in veins carrying blood.
Understanding of flow behavior in sudden expansions is important from the standpoint of
distortion of velocity profiles before and immediately after the expansion, as well as for
the calculation of pressure losses in the design of flow systems. The distortions in the
velocity profile lead to emanation of high-viscosity regions around the corners after the
expansion and inside the plug flow cores leading to local variations in viscosity. Flow pat-
terns in a sudden expansion are schematically shown in Figure 2.15. 

The jet flow issuing from the upstream pipe is generally assumed to be fully developed.
Recirculation motion arises at the corners of the downstream pipe. Laminar boundary layer
reattaches to the wall shortly after the vortex motion. Fluid remaining in the center of the
vortex and in the core region of the pipes has a high viscosity due to low shear rates. The
center of the vortex is denoted by lmax in the figure. Dimensions significant in the analysis
of flow are the ratio of the diameter of the downstream to the upstream pipe, D2/D1, length
to width ratio of the turbulent vortex region, lc/Ra, the distance from the expansion plane
to the point of onset of the plug flow region, lp (lp1 and lp2 for the upstream and downstream
pipes, respectively).

2.3.3.1 Size of the recirculation region

The extent of the recirculation (or stagnation) zones around the periphery of the issuing jet
is denoted by a dimensionless ratio, lc/Ra, where lc is the distance from the expansion plane
to the reattachment point of the boundary layer and Ra � (D2 � D1)/2 is the width of the
recirculation zone. Pinho et al. (2003) numerically studied the laminar flow of shear-
thinning power-law fluids through a sudden expansion with a diameter ratio of 1:2.6 as a
function of the Reynolds number and flow behavior index, n. The size of the recirculation
zones expressed as lc/Ra was found to decrease linearly with the Reynolds number to a con-
stant asymptotic value under creeping flow conditions. The value of this constant was
found to be lc/Ra � 0.47 for Newtonian fluids that are supported by previous numerical
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Figure 2.15 Schematic representation of flow through a sudden expansion.



studies in the literature. The size of the recirculation zone was found to decrease with flow
behavior index n to a value of approximately 0.1 when n � 0.2. The authors also found
that the vortex intensity in the recirculation zone increased steeply for ReMR � 1, leveling
off at high Reynolds numbers, Re � 300. Calculations showed that the final intensity of
recirculation at high Reynolds numbers and the value of the Reynolds number at which a
steep increase was initiated, decreased with decreasing n. These results are tantamount to
saying that the size and intensity of recirculation in vortices decrease and they form at
greater Reynolds numbers with a decrease in the flow behavior index, n.

The effect of the yield stress on the recirculation zones in the laminar flow of
Herschel–Bulkley fluids was studied numerically by Vradis and Ötügen (1997) and
Hammad et al. (2001). The reattachment length lc is a linear function of the Reynolds num-
ber for a fixed yield stress, and decreases rapidly with increasing yield stresses.

These results are in agreement with the synergistic effect of an increase in the yield
stress with a decrease in the flow behavior index given in Section 2.3.1.1 and are con-
firmed by the viscosity variations in the same zones.

2.3.3.2 Viscosity variations on sudden expansion

Viscosity contours after a sudden expansion obtained by numerical solution of continuity
and momentum equations are plotted as a function of nondimensional apparent (or effec-
tive) viscosities for shear-thinning power-law fluids (Pinho et al., 2003) (Figure 2.16) and
Herschel–Bulkley fluids (Hammad et al., 2001) (Figures 2.17–2.18) in laminar flow. Even
though the conditions are not the same, the results of the two studies are in conformation
in a broad sense. 

Contours given in Figure 2.16, were obtained (Pinho et al., 2003) by solving the conti-
nuity and momentum equations together with the constitutive equation for power-law flu-
ids with a general purpose CFD code developed by Oliveira (1992), which is based on the
finite volume method applied to nonstaggered meshes. The dimensionless viscosity is
based on the apparent viscosity, defined as the ratio of shear stress to shear rate, at the wall
of the upstream pipe. Up to 10-fold increase in the viscosity is observed in the center of
the recirculation zone and the core region in the downstream pipe. The increased viscos-
ity within the recirculation zone causes a reduction in its size (lc).
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Figure 2.16 Contours of dimensionless viscosity, 
/
aafter a 1:2.6 expansion of cylindrical pipes
for a power-law shear-thinning fluid (n � 0.6) for ReMR � 19.69. (Pinho et al., 2003. Figure 7 in the
original, reproduced with permission of Elsevier.) 



Hammad et al. (2001) obtained the viscosity variations of Herschel–Bulkley fluids on
flow over a sudden expansion, D2/D1 � 2, by solving the continuity and fully elliptic
momentum equation by finite difference technique. The viscosity profiles as a function of
Reynolds and yield numbers are reproduced in Figures 2.17 and 2.18. Reynolds and yield
numbers, Y are defined with the equations

(2.184)
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Figure 2.17 Effective viscosity contours on sudden expansion as a function of Reynolds number
(a) Y � 1, Re � 50, and n � 1; (b) Y � 1, Re � 100, and n � 1; (c) Y � 1, Re � 100, and n � 0.6.
(Hammad et al., 2001. Figure 5 in the original, reproduced with permission of ASME.) 



In these equations the subscript 1, denotes the upstream narrow pipe. K and n are the con-
sistency and flow behavior index determined in a rheometer. Effective viscosity is equiva-
lent to the apparent viscosity of Herschel–Bulkley fluids based on the viscosity in the
upstream pipe.

Comparison of (a) and (b) in Figure 2.17 gives the effect of an increase in Reynolds
number. Note the enlargement of the deformation zone denoted by the 
eff � 2 area at the
entrance and recession of the 
eff �200 contour signifying the plug flow region, on
increase in shear rate at increased Reynolds numbers in Bingham fluids (n � 1).
Comparison of (b) and (c) in Figure 2.17 gives the effect of a decrease in flow behavior
index as an advancement of the 
eff � 200 contour in the plug area and recirculation region
at the corners. Comparison of Figure 2.17(c), for Herschel–Bulkley fluids with Figure 2.16
for power-law fluids gives the effect of the yield stress at the same flow behavior index
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Figure 2.18 Effective viscosity contours on sudden expansion as a function of Reynolds number
(a) Y � 2, Re � 50, and n � 1; (b) Y � 2, Re � 100, and n � 1; (c) Y � 2, Re � 100, and n � 0.6.
(Hammad et al., 2001. Figure 6 in the original, reproduced with permission of ASME.) 



n � 0.6, as steeper gradients in viscosity and much higher viscosities in the relatively stag-
nant zones, in spite of a fivefold increase in the Reynolds number.

The cases are given in Figure 2.18, in the same order as in Figure 2.17, at an increased
level of yield stress. The recession of the 
eff � 2 area at the entrance and advancement
of the 
eff � 200 contour in comparison to their counterparts in Figure 2.16 is a direct
result of an increase in yield stress. Comparison of (b) and (c) in Figure 2.18 gives the
synergistic effect of the yield stress and the flow behavior index in converting the recir-
culation region into a stagnation zone, in addition to the advancement of the plug flow
zone. Stagnation regions are also observed at low Reynolds and high yield numbers as in
Figure 2.18(a).

2.3.3.3 Pressure losses in expansion

Variation in the expansion loss coefficient between Newtonian and non-Newtonian fluids
become significant in laminar regime, when the loss coefficient is a function of the
Reynolds number which in turn is a function of the rheological parameters of the fluid as
given in Section 2.3.1.3.

A mechanical energy balance between any two points, 1 and 2 in Figure 2.15, located
in the undisturbed, well-developed flow zones away from the expansion site in the
upstream and downstream pipes, respectively, yields

(2.186)

The first term on the RHS is the reversible kinetic energy variation on expansion corrected
for velocity distribution within the pipes; the second term given in parenthesis is the irre-
versible frictional dissipation of mechanical energy in the well-developed flow sections of
the downstream and upstream pipes, respectively. The third term is the dissipation of
mechanical energy around the expansion site where the velocity profiles are severely dis-
torted. The pressure loss coefficient on expansion, Cl, can be obtained from this equation
after corrections are made for the kinetic energy and momentum distortions on the change
in flow area.

2.3.3.3.1 Correction for the variation due to non-Newtonian behavior

Pinho et al. (2003) found that the loss coefficient decreases monotonically with decreas-
ing n in shear-thinning power-law fluids, if the loss coefficient Cl is plotted as a function
of the modified Reynolds number defined as

(2.187)

as given in Figure 2.19 for a D1: D2 � 1:2.6 expansion. The loss coefficient Cl varies lin-
early with the Reynolds number up to Remod � 10, and levels off to a constant value around
Remod � 100.
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The value of the loss coefficient decreases with decreasing n for all Reynolds numbers.
The flat velocity profiles observed in highly shear-thinning fluids brought about by the rel-
atively high apparent viscosities resist further deformations related with the expansion, and
the pressure losses decrease.

2.3.3.4 Pressure losses in flow through fittings

Unfortunately there is no comprehensive literature covering the effect of rheological
parameters, solids concentration and pipe diameter, or wall effects on pressure losses of
non-Newtonian fluids in flow through fittings. In the work done by Turian et al. (1998),
flow of laterite (3.6–12.7 v%) and gypsum (10.7–30.6 v%) slurries were investigated for
two sizes (2.5 and 5 cm in diameter) of bends, elbows, and gate and globe valves. When
pressure losses through the fittings including the effects of increased turbulence, second-
ary flows, flow separation, and recirculation in the adjacent pipes were correlated as a
function of Metzner–Reed Reynolds number, eq. (2.135), an inverse variation with the
Reynolds number of the form

(2.188)

was found for laminar regime. The constant AF varied only with the type of the fitting,
independent of its size. Transition Reynolds number from laminar to turbulent regimes was
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Figure 2.19 Variation of the pressure loss coefficient in sudden expansion of shear-thinning fluids
as a function of modified Reynolds number, Remod and flow behavior index n. (Pinho et al., 2003.
Figure 8b in the original, reproduced with permission of Elsevier.)



found to be dependent on the size, increasing with an increase in the nominal diameter. A
constant loss coefficient KT was approached in fully developed turbulent flow, the value of
which varied with the diameter and design of the fitting only, and was independent of the
concentration of solids and the value of the flow behavior index n, as Reynolds number
was no longer a parameter. Experimental determination of KT is unavoidable due to the
variations in the design of the fittings, but the experimental evidence presented in this
work, that the KT values for the suspensions are the same as that of water bears practical
significance.

In another work on non-Newtonian flow of polymers through fittings (Etemad, 2004), a
strong dependence of the loss coefficients on the flow behavior index n, in relation to
increased concentration of polymer was found. Frictional losses correlated with the mod-
ified Reynolds number (eq. (2.187)), confirmed that the effect of the polymer concentra-
tion is exerted through variations in viscosity relations, stressing the importance of using
the appropriate definition of the Reynolds number in correlating non-Newtonian flow.

2.4 FLOW THROUGH NONCYLINDRICAL CHANNELS

Cylindrical pipes, flow equations for which are given in Section 2.3, are most widely used
in all processes. However, in specific applications ducts of noncircular cross-section are
used also. Open channel and free flows of mud and debris are encountered in floods and
volcano eruptions. Ditches, ducts, and even valleys can act as a natural open channel in
mudflows after torrents and landslides. Mud can also flow freely over sloping land sites.
Rectangular ducts through which phase change materials flow are important in cooling
electronic circuits. They are also used in high-efficiency heat exchangers in processes of
food technology. On the other hand, annuli serving as channels are encountered in double
pipe heat exchangers, extruders, and discharge pipes in drilling. The last of these opera-
tions bears considerable economical significance in oil well drilling justifying the exten-
sive research in this field. An extensive literature survey of research on flow through
annular channels done until 2002 is provided by Escudier et al. (2002). In drilling pipes
not only is mud a solid suspension in liquid, but the stone cuttings carried up by the mud
also makes the subject significant for the contents of this book. A recent application of
annular geometry is in purification of water and treatment of wastewater by heterogeneous
photocatalysis, where a concentrated slurry of semiconductor photocatalyst TiO2 flows
down the annular space around an ultraviolet light source in plug flow in the closed chan-
nel or in free fall as a thin film (Puma and Yue, 2001, 2003). As the viscosity of non-
Newtonian fluids depend on the shear rate and velocity gradients within the channel, the
above equations have to be revised to account for the noncircular cross-sections.

2.4.1 Flow through annular channels

Parameters which control flow through annular channels are the ratio of the radii of the
inner cylinder and outer cylinders; and the relative positions of the centers of the inner and
outer cylinders with respect to each other, defined as the eccentricity; magnitude and
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direction of the velocity of inner and outer cylinders; the rheological model of the flowing
fluid. The simplest case relevant to solid–liquid two phase flow is that of a non-Newtonian
fluid flowing through a concentric annular space between two stationary cylinders, for
which a general derivation will now be made. 

2.4.1.1 Flow through concentric annuli

A schematic drawing of a concentric annular channel is given in Figure 2.20 on which the
relevant dimensions and the velocity and shear stress distributions of a yield-pseudoplastic
fluid are given as the most general case of non-Newtonian fluid flow. The inner radius Ri is
generally expressed as a fraction of the outer radius Ro, in an annular geometry

(2.189)

In the most general case, a plug flow region may exist, due to the presence of a yield stress,
�0, or very low value of the flow behavior index, n. The inner and outer surfaces of the plug
flow zone are located at distances of �iR and �oR, respectively. The width of this plug flow
region is of prime importance in the characterization of flow through annuli. A cylindrical
control volume over which a momentum balance can be made is located at an arbitrary dis-
tance, r from the center

(2.190)

where � � � � 1. 
A momentum balance equation similar to the case of flow through pipes can now be

written for flow in a concentric annulus under gravitational and pressure forces to obtain

(2.191)
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Figure 2.20 Dimensions and velocity and shear stress distributions in a concentric annulus.



Using the relation � � r/R for scaling the radial distance and integrating the resulting equa-
tion with respect to � gives

(2.192)

The integration constant C1 is evaluated at the radial distance �R (� � �), the point of
maximum velocity where the velocity gradient and the shear stress vanish. Then the shear
distribution is obtained as

(2.193)

The momentum generation terms in brackets on the RHS of the equation can be denoted
by �. � multiplied by R/2 can be used as a scaling factor in the nondimensionalization of
the shear stress distribution equation

(2.194)

where Trz is the nondimensional shear stress

(2.195)

Eq. (2.194) is valid for all types of fluids. The velocity distribution depends on the rheo-
logical model which best describes the flow behavior. A general case is a fluid exhibiting
a yield stress and nonlinear shear stress–shear rate relation. Herschel–Bulkley model could
be suitable for the depiction of the general fluid behavior. A further complication could be
the yield stress �0 being nonlinearly dependent on the initial shear rate exerted on the fluid,
instead of having a constant value regardless of the magnitude of the initial strain

(2.196)

For mathematical simplicity, eq. (2.196) could be written in the form
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which is in the form of the Robertson–Stiff model (eq. (2.56b)). With the use of dimen-
sionless shear stress definition in eq. (2.195), eq. (2.197) becomes

(2.198)

Taking the 1/n th power of each term, the nondimensional eq. (2.199) is obtained after
rearrangement

(2.199)

where the nondimensional velocity �vand yield stress T0 are defined by eqs. (2.200) and
(2.201), respectively.

(2.200)

(2.201)

Equating the nondimensional equivalents of the yield stress in eqs. (2.194) and (2.199)
yields

(2.202)

Plug flow is observed in yield-pseudoplastic fluids where the shear stress remains less than
the yield stress at low flow rates. As a general case, a plug flow region with an inner bound-
ary at r � �iR, and an outer boundary at r � �0R could be considered with deformation
regions in the interval �R � r � �iR and �0R � r � R, or equivalently, �� � � �i and
�0 � � � 1, respectively. In the inner deformation region �R� r � �iR, the velocity gra-
dient is positive if the inner tube is either stagnant, or moving with an axial velocity less
than that of the outer tube. As yield stress is always nonnegative, the LHS of eq. (2.202) is
always positive; whereas, the RHS is negative, since � � �i. To eliminate the inherent neg-
ativity, a minus sign is placed in front of the RHS parenthesis in eq. (2.202). Taking the
1/nth power of each term, the differential velocity distribution

(2.203)
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is obtained where s � 1/n. In the outer deformation region �0R � r � R, velocity decreases
toward the outer wall making the velocity gradient negative. As the yield stress is a pos-
itive quantity, eq. (2.204) is obtained with a similar procedure, as above, for the outer
region

(2.204)

Integration of eqs. (2.203) and (2.204) with the boundary conditions of �v (� ) at � � �
and �v (1) at � � 1 yield, respectively, eqs. (2.205) and (2.206) which still contain integral
terms on their RHS which have to be solved numerically with any of the iterative solution
techniques for known values of the rheological parameters and the ratio of the radii, �

(2.205)

(2.206)

Before proceeding on with the solution techniques, an expression for a nondimensional
flow rate Q* has to be made starting with the definition of the flow rate Q

(2.207)

Replacing Vz by its nondimensional form �v from eq. (2.200) and using nondimensional
radii, � � r/R,

(2.208)

where the LHS of the equation is defined as the dimensionless flow rate Q*

(2.209)

�v from eqs. (2.205) and (2.206) must be replaced into eq. (2.208), to find the volumetric
flow rate in the inner and outer deformation regions after the indicated integrations.
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With the boundary conditions of eqs. (2.205) and (2.206), the region extends from an
undefined arbitrary boundary �, to the inner and outer pipe wall, respectively, in these
equations. If there is a plug flow region within the flow area it cannot be taken into account
in this form. To integrate the shear surfaces at either sides of the plug flow region into the
expression to be developed, the boundary conditions are initially replaced with �� � and
� � � in eqs. (2.205) and (2.206), respectively. Here � denotes the radial distance at which
�rz � 0. This distance can be a single plane where the velocity is maximum, or it may cover
a radial range from �i to �o where the velocity is at its maximum value and �rz � 0 within
a plug region depending on the relative magnitude of � and T0. Eqs. (2.205) and (2.206)
with the new integration boundaries of � and � are now placed into the integral at the RHS
of eq. (2.208). The integration boundaries of eq. (2.208), in turn, are taken from � to �i and
�o to 1 for the two deformation regions, respectively. The resultant dimensionless flow rate
equation still contains integral terms.

(2.210)

To eliminate the integral terms in eq. (2.210), an alternative expression for Q* may be
obtained by integrating eq. (2.208) by parts as

(2.211)

The integral covering plug flow is not included into this equation as the velocity gradient,
d�v/d� is assumed to be zero in this region. The dimensionless flow rate is

(2.212)

In this equation �v (1) and �v(� ) are the dimensionless velocities of the two walls and
are equal to zero if the pipe walls are stationary. Since the integral terms in both
eqs. (2.210) and (2.212) are in the same form, these equations are combined and
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rearranged to obtain the analytical equation for the dimensionless volumetric flow rate of
a fluid flowing through the annulus formed by two pipes moving with dimensionless
velocities �v (� )and �v (1)

When the pipe walls are stationary, eq. (2.213) is reduced to the form originally derived by
Gücüyener and Mehmetoğlu (1992). This equation is also in agreement with that derived
by Filip and David (2003) (eq. (41) in their paper) after redefining Q and setting the veloc-
ity of the outer pipe to zero. By setting the yield stress term To equal to zero, volumetric
flow rate for power-law fluids is obtained in confirmation with Filip and David (2003) and
Malik and Shenoy (1991). Fordham et al. (1991) derived similar equations for
Herschel–Bulkley, Robertson–Stiff, and Casson models.

Eq. (2.213) interrelates flow parameters, Q*, � , �i , �o and rheological parameters, To, s
(	 1/n). Eq. (2.194) written for the two shear surfaces of the plug flow region is equated,
at inner and outer surfaces, respectively. Equating these two equations

(2.214)

is obtained. Substituting �2 from eq. (2.214) into eq. (2.194) written at the outer surface of
the plug region, � is eliminated and the plug width is related to the yield stress through

(2.215)

The velocities at the two surfaces (�i and �o) of the plug flow region are assumed to be
equal. Eqs. (2.205) and (2.206), giving dimensionless velocities, are rewritten for these
plug surfaces by changing the integration boundaries to �� �i and �o� 1, respectively, and
equating to each other. The resulting equation in terms of �o is

(2.216)

For known values of � (eq. (2.189)) and the yield stress T0 (eq. (2.201)) and flow behavior
index n(	 1/s), this equation is solved by using any of the iteration methods.
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(2.213)



Results of the numerical solution of eq. (2.216) in terms of �o � f (�, n, T0 )for the case
of stationary pipe walls are tabulated (see Appendix C) for Robertson–Stiff model by
Gücüyener and Mehmetoğlu (1992), and for Herschel–Bulkley model by Hanks (1979) for
the evaluation of Q for a given �P. The procedure for the design of laminar flow in annu-
lar channels by using these tables can be summarized as: For given rheological constants
(n, K, �0 , ��0 ), flow conditions (�P) and channel shape (�), �o is found from the tables. �i

and � are found from eqs. (2.215) and (2.214), respectively. Replacing these quantities in
eq. (2.213), volumetric flow rate Q is found from the definition of Q* in eq. (2.209). This
type of solution is called the “direct” solution. Solution of the equation for �P for a given
Q is called an “inverse” solution. The results of such a solution by Fordham et al. (1991)
is reproduced in Figure 2.21, where dimensionless pressure is plotted as a function of
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Figure 2.21 Variation of dimensionless pressure with dimensionless flow rate in concentric
annuli with � equal to (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8 as a function of n values. (Fordham et al.,
1991. Figure 1 in the original, reproduced with permission of American Chemical Society.)



dimensionless flow rate, for different values of n and �. The dimensionless pressure given
as the ordinate of the plots, r2P(1�R1)/2�0 is equivalent to R(�dP/dz)(1��)/2�0 � (1��)
�w/�0 with the notation of this book and inherently contains the yield stress �0 as a rheo-
logical parameter. The dimensionless flow rate, Q/(		r2

3) equivalent to Q/(		R3), with the
notation adopted here, inherently contains the shear rate, given as 	 in the general form.
The value of 	 assumes the values

(2.217a)

(2.217b)

(2.217c)

for the Casson, Herschel—Bulkley, and Robertson–Stiff models, respectively. The plots
are given for the radii ratio � � 0.2, 0.4, 0.6, 0.8 in Figure 2.21(a)–(d), respectively. As the
inner and outer pipes approach each other in diameter, that is, as the gap width decreases,
the effect of flow behavior index, n, on pressure gradient increases. Pressure requirement
for a given flow rate and diameter ratio decreases as n decreases because of a decrease in
the apparent viscosity near the wall region that becomes more effective as the gap width
decreases (� increases). 

2.4.1.2 Flow through eccentric annuli

When the axis of the inner tube is displaced from the concentric position, the flow area
varies in the azimuthal direction. The eccentricity is defined as the displacement of the axis
of the inner pipe with respect to the outer pipe, d, scaled with the difference in the radii of
the respective pipes

(2.218)

The velocity and pressure variations concomitant with flow area variation result in a
sequential change in the shear-dependent rheological behavior. Variation of fluid proper-
ties brought about along the azimuthal direction makes analytical solutions of mass and
momentum balances possible only with thin slit approximations as ��1. Such an analytical
solution was made by Üner et al. (1988) approximating the annular area with a slit of vari-
able height. Flow equations were derived for power-law, Bingham, and Sutterby models.
A similar analytical treatment was made by Walton and Bittleston (1991) for flow of
Bingham fluids through narrow-gap annular channels. Limitations on the gap width of
annular channels and the need for information on the local values of shear stress and
velocity for all values of radii ratio � and eccentricity � necessitates the use of numerical
methods in flow analysis.
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de Pina and Carvalho (2006) used lubrication approximation to solve the three-dimensional
momentum conservation equations defining the flow of Newtonian fluids through an
annulus with variable eccentricity and stationary walls. Their results showed that the ratio
of maximum to the average velocity to decrease, the extent of secondary (vortex) flow in
the wider section of the gap to increase and the pressure losses expressed as f �Re to decrease
as the eccentricity of the annulus is increased. For eccentricities less than 0.65, the radius
ratio � was found to have no effect on the ratio of maximum to average velocities.

Momentum equations for laminar flow of power-law fluids (0.2 � n � 1) through
eccentric annuli with annuli radius ratios in the range 0.2 ��� 0.8 and inner pipe eccen-
tricities in the range 0 � �� 0.8 were numerically solved by Fang et al. (1999) using the
method of finite differences. The variation of the velocity distributions with flow behavior
index n were similar to those given in Figure 2.6(a): Flow rate varied in the azimuthal
direction decreasing toward the narrow gap side and increasing toward the wider side.
The maldistribution of flow rates increased with increasing eccentricity of the annulus.
The plug-like velocity distributions observed in low values of n, coupled with increasing
eccentricities cause the flow in the narrow gap side to be nearly stagnant, bringing with
it the tendency of blockage. The combined effect of the geometrical parameters, radii
ratio, �, eccentricity, �, and rheological property, flow behavior index n, on the pressure
requirement for flow is given in Figure 2.22. In this figure, r* and �* are equivalent to �
and � with the notation of this book. Reynolds number in the f �Re term is based on the
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Figure 2.22 Influence of annuli radius ratio r*, eccentricity �* and flow behavior index n on the
friction factor. (Fang et al., 1999. Figure 8 in the original, reproduced with permission of Elsevier.) 



hydraulic diameter of the annulus (Dh � 2(Ro � Ri)) and the generalized viscosity expres-
sion for power-law fluids

(2.219)

Increased wall shear of power-law fluids cause the frictional losses to be less than the
Newtonian fluids. The variation of the frictional losses of Newtonian fluids is more sensi-
tive to increases in eccentricity than the power-law fluids. The circles around the groups
of lines for a given n, indicate the critical eccentricities when the slope, or variation of
pressure losses with the eccentricity becomes steeper. 

2.4.1.3 Helical flow in annuli

When the inner pipe rotates, while the outer pipe is stationary, the axial flow under an
external force, such as a pressure gradient or gravity, follows a helical or spiral path. In
addition to the Reynolds number, Taylor number Ta

(2.220)

where � is the angular velocity of the inner cylinder also becomes effective. Escudier et al.
(2002) generalized the results found by Fang et al. (1999) to helical flow through the ratio
of velocities in the azimuthal and axial directions, � defined as

(2.221)

The velocity ratio is related to the nondimensional shear rate �� F through,

(2.222)

The results of Fang et al. (1999) for stationary pipes are also relevant for � � 1 when the
effect of axial velocity on the direction of bulk flow is much greater than the effect of rota-
tional velocity component. At high rotational velocities when � � 10, f � Re was found to
depend on the recirculation region observed in the wider section of the gap at high rota-
tional speeds and eccentricities greater than � � 0.5.

Flow patterns in terms of axial velocity and streamlines in helical flow within concentric
and eccentric annuli are obtained numerically by Hussain and Sharif (2000) using the
finite volume technique in solving the momentum conservation equations. The results
are reproduced in Figure 2.23 for eccentricities of � � 0.25, 0.5, 0.75 under a pressure
gradient of 25 Pa m�1, and rotational velocity of 16.67 rad s�1, � � 0.5 with Ro � 0.12m.
The fluid was assumed to conform to power-law model with n � 0.75 and K � 0.1Pasn.
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Figure 2.23 Axial velocity distributions in the annulus for varying eccentricity and streamlines on
the cross-sectional plane for varying eccentricity, (a) � � 0.25, (b) � � 0.5, (c) � � 0.75, P � 25 Pa
m�1, � � 16.67 rad s�1. (Hussain and Sharif, 2000. Figure 11and 12 in the original, reproduced with
permission of Taylor & Francis.) 



The distortion of the velocity profiles in the azimuthal direction and enlargement of the
recirculation zone at eccentricities greater than 0.5 are apparent in the figure. 

As in the case observed with recirculation zones in sudden expansions (Section 2.3.3),
the viscosity of the fluid becomes higher within the recirculation region in comparison with
the high shear region around the inner rotating cylinder. As the volume fraction of fluid
passing through the wider side of the gap is larger than that passing through the high shear
zone, the friction factor increases. Only at very high values of the eccentricity or the rota-
tional speed of the inner cylinder, do the velocities in the recirculation zone increase, lead-
ing to a decrease in the viscosities and the friction factor (Escudier et al., 2002).

The effect of the flow behavior index is rather complicated in helical flow in parallel
with the complexity of the flow. A decrease in n down to 0.6 increases the volumetric flow
rate through the annulus. As n approaches very low values of around 0.2, the flattened
velocity profiles stagnate the flow in the narrow section of the annulus and hinder the for-
mation of recirculation patterns in the wider section.

2.4.2 Flow through rectangular channels

The parameters that control the flow of shear-thinning fluids are the Reynolds number,
the height to width ratio (aspect ratio) of the channel, and the rheological parameters such
as the flow behavior index, yield stress, and the normal stresses indicative of the
viscoelasticity of the fluid. Literature on the flow of non-Newtonian fluids through
noncircular channels is meager and fragmentary, and not all of the above parameters are
fully investigated for any one rheological model. 

2.4.2.1 Velocity distributions in rectangular channels

2.4.2.1.1 Laminar flow

Velocity distribution in the laminar flow of yield stress fluids in square channels were
found numerically by Huilgol and You (2005) by the application of the augmented
Lagrangian method. Bingham, Casson, and Herschel–Bulkley models were investigated
in this work. The results of the Herschel–Bulkley fluids with n � 0.75 and n � 0.5, each
at Oldroyd number, Od � �0 /[(�P/L)R] �0.2 are reproduced in Figure 2.24 to show the
effect of the flow behavior index, n. The almost circular inner contour constitutes the
boundary of the plug flow zone. As the channel walls are approached, the contours
become more rectangular in shape. A decrease in the flow behavior index n results in an
extension of the plug flow zone at the center, with consequential steeper velocity gradi-
ents toward the walls, similar to cylindrical pipes. 

As the Oldroyd number is increased, that is, either the yield stress is increased or the
wall shear stresses are reduced, the plug zone at the center extends toward the corners.
Similar to the case in sudden expansion (Figures 2.17–2.18), stagnant zones appear at the
corners that extend in area as the Oldroyd number is increased.

The increase in the plug flow region and plug velocity in square pipes relative to that of
cylindrical pipes of the same hydraulic diameter, Dhwere found to cause the average veloc-
ity to be greater in the former case.
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2.4.2.1.2 Turbulent flow

Velocity distributions of shear-thinning fluids in turbulent flow are investigated experi-
mentally by Escudier and Smith (2001). In experimental measurement of local velocity
variations with the laser Doppler anemometer, requirement of transparency necessitates
the use of polymers that introduce unavoidable complications of viscoelasticity in addi-
tion to shear thinning. The fluids used in this work, 0.1% w/w sodium carboxymethyl-
cellulose (CMC) blended with an equal concentration of xanthan gum (XG), and
0.125% w/w polyacrylamide (PAA) showed both shear thinning and normal stresses rep-
resentative of viscoelastic behavior. The rheological properties of the solutions were
described by the Cross model. The equivalent power-law models at the inflection point
of the flow curves, and the variation of normal stress (N1) with shear stress are given by
��0.275 ·�0.52, N1 � 1.35�1.18 for the CMC/XG solution and � � 0.733 ·�0.32, N1�16.3�1.48

for the PAA solution, respectively.
The high values of the normal stress and the low values of the flow behavior index indi-

cate that PAA is the more viscoelastic of the two solutions. The mean axial velocities
scaled by the centerline velocity in each case are given in Figure 2.25 together with the
velocity contours of water as the Newtonian fluid. These data were taken around the max-
imum Reynolds number that could be obtained in the channel, i.e., Re* � 43,000, 10,500,
and 16,400 for water, CMC/XG, and PAA, respectively. Re* is the Kozicki generalized
Reynolds number defined as eq. (2.152) in Section 2..3.2.1. Momentum transport from the
high velocity region at the center to the relatively stagnant regions at the corners cause sec-
ondary flows, which cause a diagonal distortion of the velocity contours. This motion is
counteracted by the elasticity of the polymer solutions in proportion with the normal
stresses generated as given in Figure 2.25(b) and (c). The plug flow region also extends as
flow behavior index decreases, as in the case of laminar flow. 
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Figure 2.24 Velocity contours in laminar flow of Herschel–Bulkley fluids in square pipes (Od � 0.2)
(a) n � 0.75, (b) n�0.5. (Huilgol and You, 2005. Figure 10 and 11 in the original, reproduced with
permission of Elsevier.) 



The effect of the drag reduction at the channel walls is given by the experimentally
determined boundary layer equations in the same work (Escudier and Smith, 2001): the
velocity distribution of water are given by the equations

(2.223)

(2.224)

In the case of polymer solutions, the slope of the turbulent boundary layer equations were
shown to increase in proportion with the degree of viscoelasticity and eq. (2.224) approach
the asymptotic equation for drag reduction proposed by Virk et al. (1970)

(2.225)V y1 11.7 ln 17� �� �

V y y1 2.5 ln 5 for 10� � �� � �

V y y1 for 10� � �� �
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Figure 2.25 Contours of mean axial velocity scaled by the centerline velocity in turbulent flow in
square channels; (a) water, (b) CMC/XG, and (c) PAA. (Escudier and Smith, 2001. Figure 9 in the
original, reproduced with permission of the Royal Society.) 



A second proof of drag reduction at the wall was the reduction of the friction factors after
the onset of turbulence as will be explicated below.

2.4.2.2 Frictional losses in rectangular channels

Kozicki et al. (1966) proposed that the analog of Rabinowitsch–Mooney equation 
(eq. 2.114) could be applied to noncircular pipes with the introduction of two geometric
parameters a and b.

(2.226)

A practical method proposed by Mahfoud et al. (2005) which has good agreement with
available correlations is obtained by taking the derivative of eq. (2.226)

(2.227)

Rearrangement gives an expression for the function of shear stress at the wall

(2.228)

Eq. (2.226) in terms of maximum velocity were written as

(2.229)

Taking the derivative of eq. (2.229) and rearrangement gives

(2.230)

Parameters a and b are independent of the rheological characteristics of the fluid and can
be determined through the solution of eqs. (2.228) and (2.230)

(2.231a)

(2.231b)

These parameters were experimentally determined by Mahfoud et al. (2005) through the
measurement of pressure gradient, dP/dz, and Vmax, as a function of volumetric flow rate
through rectangular tubes of aspect ratio (height/width of channel) 0.1 and 0.4.
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Measurement of velocity at only a single point, at the centerline, by LDA is sufficient for
the determination of the parameters. The parameters a and b can be determined from the
slope of the pressure gradient versus volumetric flow rate and the maximum velocity for a
given flow rate. These parameters are used in the general definition of the Reynolds num-
ber, eq. (2.152) in the correlations of friction factor, eq. (2.130) for laminar flow and
Dodge–Metzner correlation (1959), eq. (2.181), for turbulent flow of inelastic power-law
fluids in square channels as shown by Kostic and Hartnett (1987).

Appearance of elasticity reduces the friction factor in fully developed turbulent flow.
Escudier and Smith (2001), experimentally showed that the friction factor of fluids with
varying degrees of elasticity could be correlated with the general equation of Kostic and
Hartnett (1987),

(2.232)

which is lower than the friction factor correlation of Blasius for Newtonian fluids in tur-
bulent flow

(2.233)

The peak value of f observed in the plot of friction factor f versus the generalized Reynolds
number Re* is taken to be an indication of the establishment of fully developed turbulence
in Newtonian flow. Escudier showed that power-law fluids with varying degrees of elas-
ticity show only a variation in slope from the linear plot, at the onset of turbulence. The
peak value in the fluctuation intensity of axial flow, regarded to be an indication of the
transition to turbulence (Park et al., 1989), nearly coincides with the inflection of the fric-
tion factor. Experimental observations by Escudier and Smith (2001) showed that the flow
is fully turbulent for Re* � 7000 for the polymer suspensions investigated.

2.4.3 Flow in microchannels

Channels with diameters of 1–1000
m are called microchannels. Microchannels are used
along with miniaturized devices in developing microtechnologies as bioreactors and bio-
logical separations, biomedicine, micropower generation, micro-electromechanical sys-
tems (MEMS) covering communication and information systems, automotive, and
aerospace. The increased efficiency in heat removal brought about by the high surface area
to volume ratio of microchannels make them attractive in cooling of micro- and macro-
electronic devices and other heat-exchange operations (Bayraktar and Pidugu, 2006).
Development of manufacturing technologies of microchannels is still in its infancy stage,
as are the underpinning technologies such as flow measurement.

Flow through a microchannels could be under a driving force of, (a) pressure gradient
along the channel length, (b) electro-osmotic forces, (c) magnetic forces, or (d) surface
forces.
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Cross-sectional areas of microchannels can be of any geometrical shape, with vary-
ing aspect ratios. The minute dimensions of the microchannels causes parameters of
negligible importance in the flow of non-Newtonian fluids in macrochannels to be a
determining factor in this scale. As the manufacturing technologies are not fully devel-
oped, many parameters such as roughness cannot be kept under control for all of the
materials from which the channels are manufactured. As a result, experimental results
could be misinterpreted and relations that are not substantiated could be developed.
This section will cover only those factors that are found to be effective in flow through
microchannels.

2.4.3.1 Flow under a pressure gradient

The Navier–Stokes equations are based on the assumption that fluids can be considered as
a continuous medium, even though they are composed of individual molecules. This pre-
sumes that the dimensions of the molecules are negligible in comparison with the channel
dimensions. In microchannels, where the channel dimensions may approach molecular
scale, the Knudsen number, Kn��/L is taken as the criterion for deciding if the
Navier–Stokes equations can be used. � is the mean free path of the molecules, and L, a
characteristic dimension of the microchannel. If Kn � 0.01, the fluid may be assumed as
a continuum. This sets a limit to the dimensions of microchannels where the flow prob-
lems can be handled with conventional theories.

Considerable pressures are required to maintain flow in microchannels. Naturally,
research effort is concentrated on pressure losses in flow through microchannels. Due to
the very small diameter of the microchannels, the Reynolds numbers are quite low until
very high velocities are approached. As in this stage of development only the flow of
Newtonian fluids are considered, the friction factors, or equivalently, f �Re compared with
their equivalents in the macro size. Evaluation of correct pressure gradients required for
flow depends on elimination of error due to parameters often overlooked in macro scale.
These are the entrance effects, wall roughness scale, correct diameter assessment, slip,
pressure measurement, flow rate determination, viscous dissipation, and pressure depend-
ence of thermophysical properties.

Entrance effects arise due to variation of the velocity profiles along the entrance length
until a fully developed velocity profile is established. The entrance length, Le, is correlated
with the diameter of the tube, D.

(2.234)

The Reynolds number is based on the inlet (average) velocity and the physical properties
of the Newtonian fluid. At Reynolds numbers close to transition to turbulence, entrance
length is around a hundred diameters, which represents a considerable fraction of the total
pressure difference across the tube length in view of the short lengths of microchannels.
The friction factor relation given by Shah and London (1978) is
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The Reynolds number is based on hydraulic diameter of the channel, Dh, average velocity at
the entrance and physical properties. In this equation fp Re�14.23, K �1.43, c � 0.00029,
and � � (z /Dh)/Re and z is the axial distance from the inlet. Not taking the entrance length
into account, may be misleadingly interpreted as an early transition to turbulence (Kohl,
2005). Celata et al. (2006) took the entrance effects into account by using two tubes of dif-
ferent lengths and estimating the pressure gradient from the difference in pressure differences
measured for the two tubes.

Accounting for losses outside of the channel could be another source of error in the meas-
urement of pressure differences. This problem was successfully handled by Kohl et al.
(2005) by integrating tap lines and pressure sensing membranes into a system of silicon
chips, thus, measuring the pressure within the channel.

Roughness could be a factor in determining the frictional losses in the length scale of
microchannels. However, deviation of the pipe perimeter from circularity is more effective
in increasing f than roughness (Shah and London, 1978). With the existing procedures in
manufacturing technology, it may be difficult to identify the roughness scale from the
deviations in the geometry for different materials, and maintain uniformity in roughness
scale. Therefore, any correlations with the roughness scale should be approached with
caution. Similarly, incorrect measurements of diameter could be another source of error
(Xu et al., 2000)

In this scale, flow measurement could also introduce inaccuracies if evaporation cannot
be controlled. The slip effect, which could be attributed to wall surface phenomena, is
shown to be not the case. Celata et al. (2006) showed that slip is due to the lubrication
effect of air bubbles of nanometer size range by eliminating the effect through using
degassed water. The minimum diameter used in this work was 70
m. The effect of surface
forces at the lower limits of size range D � 50
m is yet to be discovered.

An effect, totally disregarded in flow through macroscale pipes is the effects of heat
released by viscous dissipation and more important still is the transfer rate of this heat. As
long as the released heat can be transferred away from the generation sight, the effect can
be tolerated. Otherwise the rise in temperature affects the local viscosity and the friction
factor through variations in the Reynolds number (Judy et al., 2002; Koo and Kleinstreuer,
2004; Celata et al., 2006).

High pressures are employed to maintain flow in microchannels. Pressure dependence
of thermophysical properties might be considered under ultrahigh pressures. Specifically
an increase in the viscosity due to high pressures may decrease f �Re (Judy et al., 2002).

Experiments in which the above sources of error are taken into consideration (Xu et al.,
2000; Judy et al., 2002; Kohl, et al. 2005; Celata et al., 2006) showed that there is no dif-
ference between micro and macro sized channels in terms of mechanism of momentum
transfer. This is reflected as the validity of eq. (2.235) for the Fanning friction factor, and
the same range (� 2000) of critical Reynolds numbers for transition to turbulence.

2.4.3.2 Velocity distributions in microchannels

Three different techniques for velocity measurement are developed to measure the veloci-
ties in microchannels:

Infrared thermal velocimetry (ITV) (Chung et al., 2003) makes use of the transparency
of silicon to infrared radiation. An infrared laser heats the flowing fluid in a silicon
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microchannel and the thermal image of the heated moving liquid is used to determine the
average velocity. Velocity distributions cannot be determined with this method and effect
of temperature rise on the flow characteristics remains to be evaluated.

Particle image velocimetry (PIV), uses 200 nm diameter flow-tracing particles, a pulsed
Nd:YAG laser, epi-fluorescent microscope, and a camera to record high-resolution parti-
cle image fields (Meinhart et al., 1999; Li and Olsen, 2006). The spatial resolution of the
PIV technique by the diffraction-limited resolution of the recording system. Measurements
showed an agreement within 2% with the theoretical calculations.

Particle tracking velocimetry (PTV) uses the principle of electro-osmotic flow
(Devasenathipathy and Santiago, 2002) in conjunction with PIV to measure velocity dis-
tributions in microchannels.

Techniques of flow measurement in microchannels have only been developed recently,
so no parametric investigation of effects on the velocity distribution in microchannels
could be done yet.

2.4.4 Flow in open channels

The most widespread application of open channels is mudflows in constructed and natural
trenches. Therefore, in the models developed for flow in open channels, the flowing fluid
is taken as a clay–water mixture without the sedimenting debris usually dragged along
with the mudflow (Coussot and Proust, 1996; Piau, 1996; Mei and Yuhi, 2001; Balmforth
and Liu, 2004). Under these conditions, mud acts as a yield-plastic fluid that can be mod-
eled with Bingham or Herschel–Bulkley equations.

Generally, the channel shape is given by a power-law relationship where the height of
the channel, h, varies as

(2.236)

where W is a scale parameter that indicates the steepness of the banks, and exponent m
sets the shape of the channel. The origins, y � 0, is the centerline and h � 0 is the base of
the channel. When, m � 0, the open channel is a flat bed with a depth W, of flowing mud.
m � 1, denotes a triangular channel and m � 2, a parabolic basin.

Flow in open channels differs from that in the previous channels in having a free sur-
face open to the atmosphere. The velocity is a maximum with respect to the variation along
the depth of the channel. Because of the limited width of the channel, a velocity gradient
also exists in the y-direction along the width of the channel, giving the flow profile a
tongue shape as in Figure 2.26. The arrows indicate the velocity at a distance �y from the
bank walls where the local velocity is equal to the length of the arrows. The velocity dis-
tribution profile can also be envisaged as a velocity profile in closed channels, sliced lon-
gitudinally at the center. 

Since the channel is open to the atmosphere, flow is possible only under gravitational
acceleration. The channel contents can flow under steady-state conditions provided the
slope of the channel is sufficient for the resulting wall shear stress, to overcome the yield
stress of the fluid. As pressure is not a parameter in open channel flow, deformation is

h W ym�
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dictated by the slope of the channel (tan�) in the flow direction and the height of the fluid
in the channel. The critical height of mud slurry to start the flow, hc, is given as

(2.237)

This equation can be nondimensionalized by scaling with a characteristic dimension H,
which could be defined as the height of a mud layer at the entrance (Mei and Yuhi, 2001).
For steady flow, the height of the slurry should be larger than hc.

Maximum velocity at the free surface is equivalent to zero-shear stress. A plug layer
forms at the surface, given as the constant velocity region in Figure 2.26. The thickness of
this layer is a function of �w and �0, which in turn depend on the slope of the channel and
the solid content of the slurry, respectively. If the side walls of the channel deviate from
the vertical, pockets of relatively stagnant fluid form between the plug layer and the side
walls (banks), since the depth of fluid in this region is not sufficient to develop wall shear
stresses greater than the yield stress. The existence of these regions keeps the plug layer
intact and stabilizes the flow against small disturbances.

In shallow channels where the depth of the mud is not sufficient to sustain flow, the mud
slurry is almost stagnant. If mud is surged into this channel, as in an outbreak, mud slurry
advances in the form of roll waves along the channel. Similar waves also develop in steep
channels at high volumetric flow rates of slurry. This issue is closely related with the con-
cept of the yield stress phenomena given in Section 2.2.2. The three concepts of yield
stress assume complete rigidity, plastic or elastic behavior with a high viscosity below the
yield value, given by eqs. (2.42), (2.44), and (2.45), respectively. The capability of the plug
layer in offsetting these roll waves depends on the rigidity of non-Newtonian fluids below
the yield stress. In case elastic behavior below the yield value is accepted to be valid, then
normal stresses are expected to evolve on straining this layer, such as in the case of a rough
basin, or elongation of the surface layer on a sudden change of slope. The normal stresses
can then contribute to increasing the stress level of the surface layer above the yield stress
to obtain a deformable plug film. Elasticity may also help to restore the stability and pre-
vent fracture formation in the plug layer.
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Plug zone

Shear zone

Figure 2.26 Velocity profile in an open channel with vertical side walls and a parabolic basin. 



How the system behaves depends very much on the composition of the mud and existing
surface forces among the particles making up the slurry as will be taken up in Chapter 3.
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Concentrated Suspensions

Concentrated suspensions have an immense significance, not only in the classical tech-
nologies, but also in the emerging technologies as well as in biological systems. In the
classical technologies paints, coatings, cement slurries, coal slurries, mineral tailings,
ceramic oxides, drugs, and food materials are only a few of the many diverse applications.
Microstructure and flow behavior of concentrated suspensions is an underpinning science
for nanotechnologies covering a wide scope of applications from electronics to “intelli-
gent” materials. The aggregation and flow behavior of blood, a concentrated suspension,
sustains the functioning of all organs.

The aim of this chapter is twofold: The first is to show how the surface forces reviewed
in Chapter 1 affect the non-Newtonian behavior of solid–liquid suspensions, with the aim
of having a deeper understanding of the rheological phenomena introduced in Chapter 2.
The second aim is to show how an increase in the volume fraction of the solids affects the
microstructure of the suspension and its rheology.

3.1 ORDERING IN CONCENTRATED SUSPENSIONS

Spatial organization of the particles within the suspension is called its microstructure. The
microstructure of a suspension is determined by the freedom with which particles can wan-
der around in the suspending medium, quantified by its diffusivity. The motion of the par-
ticle is given by a balance of forces acting on the particles known as the Langevin
equation; i.e., the interactive forces (FI) between the particles, dispersive Brownian forces
(FB) due to their thermal energy, and hydrodynamic forces (FH), mainly as shear exerted
through the intermediary suspending medium.

(3.1)

The net effect of these three forces (FP) on the particle of mass m, causes a variation in the
position of the particle, denoted by the second derivative of the position in space x with
respect to time t. The extent and nature of this motion depend on the forces dominant in
the system.
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Brownian forces result from the internal energy of the molecules making up the sus-
pending fluid, and appear as random isotropic motion of the particles. Brownian motion
is significant only in the colloidal scale covering a size range from a few nanometers up
to a few micrometers and very short time and length scales. In this scale of dimensions,
the momentum of the particle is supplied by the thermal fluctuations of the surrounding
liquid molecules that bombard it from all directions, as well as causing it to collide with
other Brownian scale particles. The momentum delivered by these collisions cause the
particle to overcome the inertia of the surrounding fluid molecules and displace them,
altering the flow field, which appears as viscosity of fluid counteracting the Brownian
motion. Naturally, the particle is diverted to regions where the resistance toward its
motion is minimal. This tendency can be used to advantage in exploring the topography
of structured materials such as polymers, and gels, by following up the particle’s trajec-
tory (Lukic� et al., 2005). Brownian forces are represented by the thermal energy of the
fluid, given as a product of the Boltzman constant (kB � 1.38 � 10�23 JK�1) and absolute
temperature T [K] as kBT. The diffusion coefficient D0 is related to the thermal energy
through the Einstein (1906) equation,

(3.2)

where R is the radius of the particle and � the viscosity of the suspending medium. To take
into account the many-body interactions between the diffusing particle and the surround-
ing molecules, the viscosity of the suspension can also be used instead of the suspending
medium. The random Brownian motion tends to disperse the particles and opposes their
aggregation.

Contrary to Brownian forces which arise due to motion in the molecular scale, hydro-
dynamic forces are macroscopic forces arising due to shear stresses exerted by the fluid on
the particles. In addition, shear forces push the particles toward each other favoring aggre-
gation, counteracting the effect of Brownian forces. As the volumetric concentration of
particles increases, the distance of separation between the particles is reduced to a fraction
of their diameter. The motion of the fluid through these narrow spaces is then described by
the lubrication equations.

Interaction between particles can be through volume exclusion effects, through the
mediation of polymers or through surface forces. If the particles are completely inert with
no attractive or repulsive forces between them, the only interaction can be through arrest-
ment by physical obstruction of the escape ways of a particle by the neighboring particles.
In concentrated suspensions, each particle is arrested, in turn, by its own circle of neigh-
boring particles. These inert particles, called hard-sphere particles are an idealization: The
closest approach to this ideal case is by steric stabilization of electrostatic charges and sus-
pension in liquids of matching refractive index to equate the Hamaker constant and thus,
the van der Waals forces to zero. These hard-structured particles behave as model hard-
sphere particles, provided the additional excluded volume due to the polymer coating is
accounted for. Under these conditions, the interactive forces are equivalent to the energy
required to overcome the physical barriers of particles. In the second case, if there is an
unadsorbed polymer in the suspending medium, the osmotic pressures created in the
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excluded volume between the particles will create attractive depletion forces, even if the
particles are neutral. In the third case, attractive forces due to bridging of polymers
adsorbed on the particles, or attractive–repulsive forces due to DLVO forces constitute the
interactive surface force, FI.

Brownian forces exist under all conditions for all particle types, even in cases where
they are dominated by other forces, such as hydrodynamic forces. Brownian forces tend to
disperse and hence, stabilize the suspensions. Hydrodynamic forces are present only when
an external force acts on the system and shears the fluid phase with respect to the particles.
Interactive forces between the particles depend on the particle characteristics and compo-
sition making up the particulate phase, which can be grouped under the main headings of
“hard sphere” and “soft” particles, denoting the conditions of absence and presence of sur-
face forces, respectively.

3.1.1 Characterization of the particle size

Ordering of hard-sphere-like colloidal particles in Newtonian suspending media depend on
the polydispersity index (PDI) of the particles defined as

(3.3)

where Ni is the number of particles of radius Ri, NT the total number, and –R the average
radius of particles in the sample.

Unlike the free hard-sphere particles, soft particles with attractive forces between them
exist as aggregates or porous clusters. Either the radius of gyration Rg, or the hydrody-
namic radius RH, can be used for the radius of the aggregate, R, to take into account the
porous structure.

(3.4)

(3.5)

where M0i is the mass of the primary particles of size i of distance ri from the center of mass
of the aggregate, kB the Boltzmann constant, T the absolute temperature, � the viscosity of
the suspending medium, and D0 the Stokes–Einstein diffusion coefficient of the aggregated
particles in the suspending Newtonian fluid, given by eq. (3.2), for a single particle.

In highly concentrated suspensions, the distinction between well dispersed and
aggregated structures becomes vague due to the decreasing volume fraction of void space.
In the case of particles sterically stabilized by adsorption of polymers or surfactants, the
excluded volume of the adsorbed film also decreases the free interparticle space by the
thickness of the adsorbed film. The volume fraction of the polymer-coated (structured)
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particles � resides somewhere between the volume fraction of hard-sphere particles,
calculated from their mass concentration, CM, and density, �p,

(3.6)

and the effective volume fraction of the structured particles calculated from the product of
the number concentration of the particles, n, and the volume of a single particle (Smith and
Zukoski, 2004),

(3.7)

Mass concentration, CM, and the number concentration n, denote mass and the number of
total particles per unit volume of suspension. In the case of soft particles and rather dilute
systems such as gels, the fractal dimension df should be taken into account in the calcula-
tion of the volume of the aggregates, given by eq. (1.56).

3.1.2 Phases and states in concentrated suspensions

There are three equilibrium and two nonequilibrium states of colloidal dispersions. The
equilibrium states are designated as gas, liquid, and crystal states, as shown in
Figures 3.1(a), (b), and (c), respectively. At very low concentrations in a suspension, the
particles act independent of each other reminiscent of molecules in the gas state, in ran-
dom Brownian motion conferred by the isotropic bombardment of the solvent molecules.
At higher concentrations, particles interact with each other through binary collisions
without the formation of regular arrays, very much like molecular liquids. The state
reached at higher concentrations depends on the attractive forces between the particles
and their morphology. Colloidal crystals with regular array of particles form under strong
attractive forces. In Figure 3.1(c), various sizes of crystal structures are depicted as sep-
arated out from the suspension phase. The attractions between the particles are so strong
that aggregation results in a regular crystal structure, without need for further com-
paction. Liquid crystals form such regular textures under their phase transition tempera-
tures. Colloidal particles with dielectric constant or magnetic susceptibility that is
different from the solvent acquire a dipole moment parallel to an externally applied elec-
tric or magnetic field. Dipolar hard-spheres exhibit fluid, face-centered cubic (fcc),
hexagonal-close-packed (hcp), body-centered tetragonal phases (bct) as a function of the
dipole moment strength and packing fraction according to the phase diagram. Dipolar soft
particles exhibit a body-centered orthorhombic (bco) phase in addition to the phases
observed with hard spheres (Hynninen and Dijkstra, 2005). Formation of defect free,
monodispersed colloid crystals has a significant technological application in optical
band-gap adjustment (van Dillen et al., 2004; Vermant and Solomon, 2005), but forma-
tion of crystal phases is outside the scope of this book. 
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Ideal hard-sphere particle suspensions exist in a disordered fluid state up to volume frac-
tions of �f � 0.49, the so-called freezing point of the suspension manifested by the initial
appearance of ordered clusters within a disordered suspension. The melting volume fraction
of the hard-sphere suspension occurs around �m � 0.55 by the Lindemann criterion, which
corresponds to �1/3 expansion by volume of the close-packed crystal structure at �max �
0.74. At this volumetric fraction of solids, the suspension loses its rigidity. If the thermal
energy, kBT of the particles is sufficient to overcome their mutual attraction, a dense liquid
phase is possible, where particles are mutually caged-in by surrounding particles. In the
melted state, average interparticle spacing is increased around 10%, according to the
Lindemann criterion. If the range of attractive forces is about twice this interparticle dis-
tance, then the suspension will stay in this caged configuration (Segre et al., 1995., Poon,
2002). Figure 3.1(d) depicts such a cage structure around the shaded reference particles.
Some of the hard spheres, taken as references, are shown in gray to bring out the cage-like
configuration of the particles. The configuration depicted in the Figure is still far from reg-
ular, as can be observed in the number of particles ranging from five to seven, surrounding
a reference particle shaded gray for illustration. Nevertheless, a periodicity in the occur-
rence of gray reference particles in all directions is still observable. Within their cage, the
particles can freely rotate and vibrate, but translation out of their locations is restricted by
the barriers formed by the neighboring particles, which in turn, are arrested in their own
cages. The only way the reference particle can escape from the cage is by hopping over the
surrounding particle barriers to an unoccupied location. This process is well known from
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Figure 3.1 Ordering in hard-sphere suspensions: Equilibrium structures of (a) the gas phase,
(b) the liquid phase, (c) the solid crystal phase, (d) development of cages in concentrated suspen-
sions, (e) glassy state with jamming of random particle chains shown in gray, (f) the gel state.



the kinetic theory of liquids. The probability of occurrence of a hop is higher in the case of
hard spheres as there are no interactive energy barriers to be overcome.

In this structural conformation, particles can undergo two types of diffusion with
different time scales: short range within the cage and long range outside of the cages.
The frequency of the collisions within the cage is in the timescale of Brownian motion,
tB � mD0 /kBT�10�8 s, time taken for the particle to transfer its extra momentum to the
surrounding molecules. The hopping process out of this cage is more difficult than the
diffusion process and therefore takes a longer time, depicted as the Péclet time (Verberg
et al, 1997):

(3.8)

The diffusion process then involves a short-time Brownian diffusion and a long-time cage-
hopping and translational counterparts, the latter becoming more dominant as the volu-
metric fraction of solid particles increases.

The translation and diffusion mechanisms are linked with the Péclet number,

(3.9)

which relates shear rate, ·�, in the scale of the hard-sphere radius R with the diffusion rate
D0 given by the Stokes–Einstein relation at infinite dilution eq. (3.2). Another interpreta-
tion of the Péclet number is the ratio of energy of shearing to thermal energy or the shear
rate with the thermal energy,

(3.10)

where � is the viscosity of the Newtonian suspending medium and kBT the thermal energy,
which causes diffusion.
Particle dynamics discussed above are related to the equilibrium microstructure repre-
sented by the structure factor S(q), determined by scattering techniques. The internal
microstructure of colloidal suspensions can be probed with the static light scattering tech-
nique through the measurement of the intensity of light I(q), scattered from the suspension
as a function of wave vector q, defined as,

(3.11)

where � is the wavelength of light in the suspension medium and � the scattering angle.
The scattered light intensity I(q) is given by the relation,
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where I0(qdp) is the scattering intensity from a single particle at infinite dilution, also
known as the form factor; N the total number of particles, and S(q) the intraparticle struc-
ture factor which depends on the microstructure of the suspension (Ferretti et al., 1998):

(3.13)

In this equation, n is the number concentration of scattering particles, g(r) the radial
distribution function or the pair correlation function at contact, and gives the probability
of finding a particle at a distance r from the reference particle, taken as the origin. Plots of
g(r) versus r, and S(q) versus (qdp) are closely related with each other and indicate the con-
figuration of particles, as shells surrounding the reference particle spaced in multiples of
dp. The magnitude of the first peak in the structure factor S(q) when plotted against (qdp),
gives an indication of the compactness of the cage structure, or particles immediately
surrounding a reference particle within the suspension.

As the volume fraction of the particles is increased above � � 0.35, the suspension
becomes compacted. The resulting order in the configuration depends on the polydispersity of
the suspension: Highly polydisperse particles retain the liquid-phase disorder while becoming
more concentrated. The glass state portrayed in Figure 3.1(e) looks more like a supercooled
liquid, with a more close-packed structure than the liquid state depicted in Figure 3.1(b).
Albeit the retention of randomness, local or widespread ordering of particles is observed with
nearly monodisperse particles as depicted in Figure 3.1(e). Glass transition is observed around
� � 0.58 when the particles are arrested by their neighbors in the process of crystallization.
Crystallization, which requires short-range strong attractive forces, cannot proceed under
these conditions, where the translations of the particles are hindered by the longer-range
attractions of the surrounding particles. Only the short-range Brownian diffusion within the
cages formed by surrounding particles is permitted for the individual particles. Glassy state is
not an equilibrium state, for the space left in the cages prevent the particle to assume a posi-
tion for close-packed conformation. If the arrestment were somehow loosened, the particles
would tend to form close-packed regular structures, the equilibrium solid crystal state. But the
glasses are so rigid that equilibrium cannot be achieved within practical time scales, unless the
temperature exceeds the glass transition temperature, Tg, above which the glass melts and
becomes a liquid in the case of molecular glasses. Hard-sphere glassy structures are not sen-
sitive to temperature, but to the variations in the packing density of the suspension.

A similar nonequilibrium state of colloidal particles is the gel state. Gels are network of
colloids spanning the available volume. Typical manifestation of gel formation is the
development of a yield stress and viscoelastic behavior. Appearance of a yield stress indi-
cates a self-supporting network, while elasticity requires free volume for relaxation.
Colloidal gels are reversible, unlike the polymer gels with chemical bonds or attracted with
bridging bonds given in Example 1 of Chapter 2, even though they exhibit similar proper-
ties. Typically, depletion forces supply the necessary reversible attractions. Consequently,
gel behavior is observed in the presence of polymers used for steric stabilization, unad-
sorbed polymers, grafted polymers, or soft particles with DLVO forces. The greater the
strength of attraction, the less is the requirement for an adequate volumetric fraction of
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solids for supporting the gel structure. The gel structure depicted in Figure 3.1(f) involves
the attachment of individual clusters through percolation (interconnectivity). Percolation
threshold is a term used to denote the minimum solid particle concentration where a self-
supporting continuous network is formed which can distribute an applied force within its
components. Such a state is called nonergodic signifying that the structure is not homoge-
neous and any part taken out does not represent the configuration of the overall structure.
This portrayal of the gel structure can be generalized as localization phenomena in col-
loidal suspensions. Localization can be brought about by local cage-like formations,
fractal clusters, or simply aggregations in suspensions of inhomogeneous composition.
They can be thermodynamic or hydrodynamic in origin (Foss and Brady, 2000;
Gopalakrishnan and Zukoski, 2004). Clusters of thermodynamic origin signifying the
effect of surface forces is presented in Chapter 1. Clusters of hydrodynamic origin result
when the component of shear forces in the direction of flow dominates the interparticle and
dispersive Brownian forces and compresses the particles into a cluster (Bossis and Brady,
1989). These clusters are called hydroclusters to indicate their origin. Clusters will be
taken up again in the following sections on shear and viscoelastic behavior of concentrated
suspensions.

Rheology of concentrated suspensions is not only affected by the volumetric fraction
of solids, �, but also by the existence of interparticle attractive forces and the state of the
suspension. Attractive forces among the particles lead to either uniform or localized high-
density regions, increasing both the shear viscosity and the elastic modulus.
Consequently, hard-sphere particle suspensions where no interactive forces exist, serve as
a reference for the evaluation of the rheology of soft-particle suspensions. The states of
the particle suspensions can be grouped as glassy state, gels, and concentrated pastes. In
what follows concentrated hard-sphere suspensions will be given first, followed by the
soft particle suspensions.

3.2 RHEOLOGY OF CONCENTRATED HARD-SPHERE SUSPENSIONS

Hard-sphere suspensions in the glassy state are peculiar in that they do not deform and
show limited viscoelasticity even under very high external stresses. Therefore, the glassy
state will be taken up first before going on to the rheology of other states of hard-sphere
suspensions.

3.2.1 Colloidal glasses and jamming

As the particle concentration is increased, a transition to high-density glass state is
observed around � � 0.58 (Vanmegen and Underwood, 1994). If glass state is overpassed
somehow, then the suspension reaches its maximum compaction as a randomly close-
packed solid at �m � 0.63. As the polydispersity of the suspension increases, it deviates
from equilibrium behavior. Fluid–solid two-phase region contracts, disappearing com-
pletely above a polydispersity of around 10%, and a continuous transition from the fluid
to the glass state is observed, instead.
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Glassy state is characterized by the appearance of a yield stress and apparent solid
behavior in spite of a random fluid microstructure. Even though the particles are not at
their maximum compaction, and a certain free volume exists within the suspension, the
particles are arrested within the network, as the interparticle space is not sufficient for the
particles to exchange positions. Under an applied shear, the suspension has to dilate to
open-up space to be able to deform. Dilation is prevented as long as there is an incom-
pressible suspending fluid in the interparticle space, where cohesive forces, Fcoh exist
among fluid molecules, and adhesive forces, Fadh, act at the fluid–solid interface, regulated
by surface and interfacial tensions, respectively. As a result, glasses cannot deform and are
fragile.

A consequence of the inability to deform is jamming among the particles associated
with the glassy state. A linear array of particles randomly formed within the glass struc-
ture delivers external stress acting in the collinear direction through the chain, and the sus-
pension counteracts the stress like a stiff solid (Cates et al., 1998). The shaded spherical
particles in Figure 3.1(e) depict such random chains of particles collinear with the direc-
tion of the external stress acting on the suspension. Should the compressive strength
change its direction, the suspension will react similarly if transmitting chains of particles
are available (or could be formed by limited deformation in less concentrated suspensions)
in the direction of the new force; otherwise, it will break apart unable to support the exter-
nal stresses. The jamming mechanism in colloidal glasses is used advantageously in the
process of granulation from highly concentrated pastes in high-shear mixers. The paste
breaks down into irregular pieces that become uniform in size after repeated disintegration
and aggregation steps. Granules are used in medicines, powder detergents, and fertilizers,
among other applications. Granules have peculiar properties (Cates et al., 2005): They are
matt in appearance due to protruding colloidal particles at the surface, rearrange under
vibration to smooth-surfaced spherical particles but become matt again under an external
force due to jamming. The effect of vibration on jamming transition in opening up space
is similar to the effect of temperature on molecular glasses, which melt and start to flow
above the melting temperature.

Jamming may be observed at solid fractions below � � 0.35 under dynamic conditions
if particle chains form within the suspension, or in filled material composites, which are
more important technologically. For example, oscillating behavior of vulcanized elas-
tomers filled with hard-sphere particles such as carbon black used in automobile tires is a
determining factor in the useful life of these tires. The behavior of these suspensions under
oscillating strain was investigated in a model system below the compaction volume frac-
tion of � � 0.35 by Robertson and Wang (2005). Suspensions of polydispersed silica par-
ticles in the size range of 10 � dp � 500 nm dispersed in oil at volume fractions of 0.08
� � � 0.35 was subjected to homogeneous oscillatory strain in a cone and plate rheome-
ter at a temperature well above the glass transition temperature of the oil. The variation of
dynamic elastic and viscous moduli as a function of percent strain ((� � 	

�
L
L
	) � 100) is

shown in Figure 3.2(a) for different volumetric fraction of hard spheres. At low strains, a
strain-independent jammed state was observed with solid-like behavior characterized by
an elastic modulus G
, much greater than the viscous modulus G�, depicted as the more or
less horizontal initial section of the elastic modulus, G
. A breakup of the jammed state
was found to occur just after the maximum point in the G� plot, which corresponded to the
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initiation of a decrease in G
, to a value below that of the viscous modulus G�. In all the
experiments with different volume fractions, the shear stress created in the suspension, 	
(� 
 in Figure 3.2) was found to decrease with an increase in the strain, �. When the
moduli were normalized with the elastic modulus at very low strains G
0 as G
/G
0, and with
the maximum in the viscous modulus, G�max as G�/G�max and plotted against the mechanical
energy dissipated in straining a unit volume of suspension, 	� (� 
�) (J m–3), the curves for
different volume fractions were found to be superimposed on each other. This superimposition
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Figure 3.2 Dynamic behavior of random solid–liquid mixtures, (a) Variation of elastic and viscous
moduli with volume fraction of solids and percent strain, (b) Variation of the critical stress and
energy with inverse volume fraction for oil–silica mixtures (	 � 
 ). (Robertson and Wang, 2005.
Reproduced with permission of The American Physical Society, Figures 1 and 3 in the original).



was taken as an indication of thermodynamic control of jamming transition, which was
confirmed by the constant value of 	c�c when plotted against 1/� as given in Figure 3.2(b).
The critical stress and strain values, 	c and �c denote the transition from the jamming state,
right after the maximum in G�. These results were in parallel with the results of Payne
(1962), who first observed the phenomena, and show that jamming transition takes place
at constant energy, 	c �c. The rheology of the suspending phase, and size distribution and
volume fraction of the particles do not change the trend but affect the absolute value of the
constant, 	c �c. The authors associated the onset of the nonlinearity in viscoelasticity at the
jamming transition, 	c �c, with the yield stress (
0) and yield strain (�0) and proposed a scal-
ing relation with the volume fraction of solids in filled materials as

(3.14)

Since the transition energy 	c�c is independent of the volume fraction of solids, the expo-
nent of � should be zero. From the experimental results, the authors found a � 3.3 � 0.2
and b � 1.7 � 0.1 in conformation with values found for other solid–liquid suspensions
given in the literature. 

3.2.2 Relative viscosity of colloidal suspensions

The viscosity of hard-sphere suspensions is a function of the volumetric concentration of
the solids, �(�), but as it also depends on the medium viscosity �0, it is generally expressed
in the form of relative viscosity, �r � �(�)/�0.

Einstein first derived the relative viscosity of dilute suspensions of hard spheres in a
Newtonian fluid in 1906, based on the additional resistance of the suspension to shear by
the change in the velocity field of the fluid due to a single hard-sphere particle placed in it:

(3.15)

In this equation, � is the viscosity of the suspension, �0 the viscosity of the suspending
medium, a Newtonian liquid, and � the volumetric concentration of solids. Rearrangement
of the equation in terms of relative viscosity (�r � �/�0) to the form

(3.16)

converts the LHS of this equation to the viscosity number or reduced specific viscosity that
is equated to a constant in Einstein’s equation, known as the intrinsic viscosity [�] of the
suspension at infinite dilution. Eq. (3.15) is extended to include moderately concentrated
suspensions by the addition of nonlinear terms:
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The first two terms describe the diffusion of a particle in a dilute suspension. The third
term is used in the case of concentrated suspensions and its coefficient (called Huggins
coefficient) is very sensitive to the structure of the suspension.

Viscosity of suspensions is closely related to their microstructure and the rate of diffu-
sion of the particles through the microstructure. The microstructure of the suspensions are
described by the pair correlation function, g(R,� ), the probability of finding two particles
of radius R at contact in the suspension, which is an inverse function of the void fraction
�v in the suspension. The diffusion rate is also proportional to the free volume or void frac-
tion �v in the suspension,

(3.18)

where �m is the maximum packing fraction of the suspension. As the Brownian contribu-
tion to the viscosity is inversely proportional to the diffusion rate, the viscosity of the sus-
pension is inversely proportional to the square of void fraction, when the contributions of
both the Brownian motion and microstructure are taken into account:

(3.19)

Real suspensions show systematic deviations from this equation which are taken into account
by more complicated functions of volumetric fraction of the solid particles, �, that can be
increased up to the random close packing fraction of uniform hard spheres, �m. Under low-
shear rate, or quasistatic conditions, �m � 0.63. Alignment of the particles at higher shear
rates increases the maximum volumetric fraction of solids to �m � 0.74, that of the face-cen-
tered cubic packing. This is the limiting compaction for particles acting as hard spheres, with
the suspending medium preserving its continuity. The maximum volumetric fraction of solids,
�m, is a function of the shape and size distribution of the particles as well as the shear rate.
Relative viscosity of real suspensions is correlated with the ratio of the solids to its maximum
value, in the form of a dimensionless equation, to make it independent of the effects of shear
in the correlations given in Table 3.1. Due to complexity of the interacting mechanisms, �m is
generally found as a fitting parameter and checked against experimental findings. Some of the
semiempirical correlations for relative viscosity of hard-sphere suspensions are given in
Table 3.1. Of the equations given, that of Krieger and Dougherty (1959) have found general
acceptance as to its applicability for a wide range of noninteracting hard-sphere pastes. The
term in square parenthesis, [�], is the intrinsic viscosity or the crowding factor originally pro-
posed by Mooney (1957), generally found as a curve fitting parameter. As the volumetric frac-
tion of solid particles approach its maximum value, �m, relative viscosity term �r diverges, and
the suspension viscosity approaches infinity. 

3.2.3 Theoretical models of concentrated suspension viscosity

In summary, particles in concentrated suspensions with a microstructure such as given in
Figure 3.1(d), interact through Brownian, FB, interparticle, FI, and hydrodynamic, FH,
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forces. Langevin equation, eq. (3.1) gives the displacement �x of the particle as a result of
the forces acting on it. Brownian forces arise out of the thermal energy of the particles and
are completely random, acting toward the dispersion of formed clusters. Interactive forces
in terms of attraction and repulsion does not exist in hard-sphere particles: The only inter-
active forces possible are volume exclusion in terms of formation of barriers by the sur-
rounding particles against long-range diffusive motion and depletion forces.
Hydrodynamic forces are the effect of imposed forces on the suspension transmitted to the
particles through the intermediacy of the liquid suspending medium, and arise in the pres-
ence of an applied external shear. Unfortunately, there is no comprehensive theory that
takes into account the effect of all these forces, to date. Two theoretical developments will
be presented below which that into account the thermal and interparticle forces (Verberg
et al., 1997; Cohen et al., 1998), and that is based on thermal and hydrodynamic forces
(Brady, 1993; Foss and Brady, 2000, and other publications cited in these references).

3.2.3.1 Theoretical model of viscosity based on suspension microstructure

When no external shear stresses or strains are applied to the system, the suspending medium
does not take an active role in transferring momentum and hydrodynamic forces are not
involved. The suspension is in equilibrium under the balance of interactive and Brownian
forces. Verberg et al. (1997) developed a theoretical model that could correctly predict the
experimental results given in Figure 3.3(a), in the range 0 � � � 0.55 encompassing both
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Table 3.1

Empirical equations for the relative viscosity of suspensions

Equations References Equation 
numbers

Mooney (1957) (3.20)

Robinson (1957) (3.21)

Krieger and Dougherty (1959) (3.22)

Quemada (1984) (3.23)

Chong et al. (1971) (3.24)

Eilers (1941) modified by 
Wildemuth and Williams (1984) (3.25)
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Figure 3.3 Variation of the relative Newtonian viscosity of suspensions at zero shear rate with the
volume fraction of solids. (a) Relation based on direct particle interactions of Verberg et al. (1997)
Experimental points: Crosses (van der Werff and de Kruif, 1989), open triangles, (van der Werff
et al., 1989); circles, (Jones et al., 1991, 1992); squares, (Papir and Krieger, 1970). (Reproduced with
permission of The American Physical Society, Figure 3 in the original) (b) Relation based on
Stokesian Dynamics simulations (Foss and Brady, 2000) (Reproduced with permission of
Cambridge University Press, Figure 1 in the original).



the viscous and viscoelastic counterparts of hard-sphere suspension viscosities. The model
is based on the microstructure depicted in Figure 3.1(d), with the reference particles (or
equivalently cages formed by neighboring particles) recurring with a wave number, k. As
the concentration of the suspensions increases, the distribution of particles become more
homogeneous and the wave number approaches k � k* � 2�/dp, leaving a surface–surface
clearance between the particles of only 10% of the particle diameter, dp. The viscosity of
the suspension is based on two processes, a short-time process, t � tB when momentum is
transferred by binary collisions among the particles, the probability of which is related to
the equilibrium radial distribution, (the pair-correlation function at contact), g(r), now a
function of both the particle diameter and volumetric fraction of solids

(3.26)

and diffusion coefficient, given by the Stokes–Einstein relation, eq. (3.2). �(�) is the num-
ber concentration distribution function of the particles. At high-particle concentrations,
momentum is transferred mainly by the particles jumping out of their cages, which occurs
at relatively longer Péclet time scales tP ,

(3.27)

where tc and Dc are the time and diffusion coefficients associated with the hopping of the
particles out of their cages, respectively. 

The shear viscosity is defined by the authors in the most general terms, as the linear
response of the suspension to an applied shear rate given as,

(3.28)

� � 0, gives the maximum amplitude of the shear rate ·� � ·�0 . Very high frequencies, as
� � �, denote very short-time conditions where the suspension viscosity �� increases
above the suspending medium viscosity �0 as a function of the volumetric concentration
of particles �(�) due to contact (collisions) between particles only,

(3.29)

where �0 is the viscosity of the Newtonian suspension medium. The self-diffusion of the
particles, Ds decreases below the diffusion coefficient in the suspension medium, D0 by the
same function as

(3.30)

Shear viscosity can also be defined in terms of the applied shear stress, 
xy. In the plane
of the deformation x�y, the component of the shear stress tensor �xy has static, 
xy,s, and
dynamic counterparts, 
xy,d, which are given in functional form as

(3.31)
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The static contribution is obtained when the dynamic contribution is zero at ���:

(3.32)

The dynamic contribution to the shear stress is based on the Smoluchowski equation for
the aggreation of an N-particle system under a shear rate ·�(t):

(3.33)

where � is the volume of the suspension, ri the position of particle i (i � 1, �, N), rij � ri � rj,
U(rij) the interparticle potential between particles i and j at a distance rij � �rij�, and the
ensemble average of the summation function is taken with respect to a nonequilibrium (ne)
distribution function.

The total shear stress can then be expressed as the sum of short-time static, t � tB

(� � �) and long-time dynamic, t � tp contributions. In the first case, given by eqs. (3.29)
and (3.32), the time allowed for any interaction is so short that viscosity can increase only
by the dissipation of energy due to binary collisions, which increases with the number con-
centration of particles given by the function, � (� ). Generally, an extension of Einstein’s
equation is used for � (� ):

(3.34)

the last term gives the remaining terms as a quadratic function of �. Another function,
also used to describe the concentration distribution of solid particles, Carnahan–Starling
approximation,

(3.35)

given as the dotted line in Figure 3.3(a), was found to describe short-time experimental
results (not given in the figure) in the range 0 � � � 0.55, by the authors (Verberg et al.,
1997; Cohen et al., 1998).

The potential term in the long-time dynamic contribution (eq. (3.33)) essentially gives
the resistance due to the difficulty in overcoming the particle barriers in the cages.
Therefore, the potential in the case of hard-sphere particles with no interactive forces can
only be direct interaction associated with the structure of the suspension described by the
structure factor S(q). The resistance evolves from the highly reduced diffusion coefficient
of the particles into and out of the cages, Dc, again associated with the microstructure of
the suspension. The derivation that associates the structure is long and detailed, so only the
basic equations will be given below. For the details of the derivations refer to (Verberg
et al., 1997; Cohen et al., 1998).
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The long-time resistance of the suspension has two counterparts: (1) Newtonian viscos-
ity, �N (�) observed by setting � � 0, (2) Complex viscosity � *, with elastic and dynamic
counterparts due to viscoelasticity of the suspension.

3.2.3.1.1 Newtonian viscosity of concentrated hard-sphere suspensions

The result of the derivations for long times and � � 0 gives:

(3.36)

where Seq is the equilibrium structure factor, � � kdp where k is the wave number, S
eq is its
derivative and d(�) is the spherical Bessel function. Although eq. (3.36) is derived for solid
particle volume fractions � � 0.35, it is also valid for smaller solid concentrations due to
the first term in parenthesis. Evaluation of this equation gives an approximate equation that
can be used in practical applications in the range, 0 � � � 0.55, with a relative error less
than 0.25%:

(3.37)

The plot of eq. (3.36) is drawn in Figure 3.3(a) as the solid line. The agreement with exper-
imental results identified in the captions is remarkable, even though no hydrodynamic
forces, for example, momentum transfer through the suspending liquid, was taken into
account. This might be due to the dominancy of direct interactions over hydrodynamic
effect under nearly close packing conditions.

Microstructure-based predictions of zero-shear viscosity cannot go beyond a volumet-
ric fraction of solids � � 0.50 (Verberg et al., 1997; Cohen et al., 1998). Schweizer and
Saltzman (2003a,b) incorporated the hopping time of the encaged particles as an additional
diffusion time, enabling the model to predict the zero-shear viscosities of much more con-
centrated suspensions. Eq. (3.30) is then converted into

(3.38)

where the second term in the denominator gives the resistance due to hopping defined as
� � kBT/Ds and Ds

c is the short time diffusion of the encaged particles.

3.2.3.1.2 Viscoelastic behavior of concentrated hard-sphere suspension

Spaces left between particles in random packing allow the suspension to exhibit limited
ability to store an applied energy, and deform (at low-solid concentrations), making them
viscoelastic. The resistance of the suspension toward dynamic shear can be expressed as
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the complex viscosity, �*, with the real (�
) and imaginary (��) parts expressed in terms of
dimensionless quantities, �R

* and �i
*, respectively:

(3.39a)

(3.39b)

The authors (Verberg et al., 1997) found good agreement between eqs. (3.39a) and (3.39b)
with the limited number of experimental values. The real part of the complex viscosity �R*
varies between 1 (� � 0) and 0 (� � �). The imaginary part, �i* equals zero at both lim-
its and shows a maximum in the intermediate values of �.

3.2.3.2 Theoretical model of viscosity based on Stokesian Dynamics simulations

Stokesian Dynamics is a simulation technique similar to molecular dynamics applied to
particles suspended in a Newtonian fluid. In the previous model Péclet number was taken
into consideration in terms of time scales for diffusion processes taking relatively longer
times for occurrence than the Brownian motion. In Stokesian Dynamics, it enters as a sec-
ond parameter, besides the volume fraction of solid particles, �, to denote the ratio of
hydrodynamic shear to thermal forces. The theory is based on hydrodynamic equations
written for the suspending liquid and multiparticle solid phases, separately, that are linked
to the Brownian forces through the Péclet number (Foss and Brady, 2000). Navier–Stokes
equation of motion given in Appendix A3, describes the flow of the suspending liquid.
Langevin equation (eq. (3.1)) for coupled N-body systems is used as the starting relation
for the motion of the solid particle phase. In vector notation,

(3.40)

where m is the generalized mass/moment of inertia tensor; V the particle rotational/trans-
lational velocity vector for N particles in six directions; FH, FB, and FI are the force/torque
vectors of 6N dimensions representing, respectively, hydrodynamic forces on the particles
due to their motion relative to the fluid phase, Brownian forces and interactive forces
among the particles. Since interactive forces do not exist in hard-sphere suspensions, FI �
0. For small Reynolds numbers based on particle diameter, dp,

(3.41)

the hydrodynamic force/torque exerted on the particles of a suspension in linear flow is
given as
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The first term on the RHS of the equation gives the difference between the velocity of the
particle V in vector form, and the imposed bulk flow evaluated at the particle centers, ��V��
defined as,

(3.43)

where ��E�� and ����� are the bulk rate of strain and vorticity tensors, which take into account
shear and rotational flows in the bulk suspension phase, respectively. The microstructure
of the suspension is taken into account by the configuration-related tensors RFV�x		 and
RFE�x		, giving the hydrodynamic force (or torque) on the particles due to their velocity rel-
ative to the fluid, and due to an imposed external flow, respectively. The vector x specifies
the location and orientation of all N particles.

The Brownian motion arising from the thermal energy ( kBT ) of the fluid phase mole-
cules are related to the component of hydrodynamic force RFV on the particles due to their
velocity relative to the fluid through the time correlation function

(3.44)

The LHS of the equation gives the average amplitude of the correlation between random
Brownian fluctuations at t � 0 and t � t. The overbar denotes an average over the fluctu-
ations of the solvent molecules. �(t) is the delta function, giving the displacement of the
particle as a function of time.

Bulk stress, 
� , over a volume, �, containing N particles is given by the relation,

(3.45)

The first term in the gives the pressure of the medium, the second term, stress contribution
of the fluid stress to the total stress and the last term gives the total contribution of the par-
ticles including the components:

(3.46)

where n is the number density of particles, the first term on the RHS is the isotropic stress
associated with the Brownian motion of the particles due to their thermal energy. The
stress terms S in the parenthesis denote the mechanical stress transmitted by the suspend-
ing fluid in shear flow (SH), stress due to interparticle forces (SP), stress developed during
Brownian motion (SB).

Simulations based on eqs. (3.40)–(3.46) were performed in the range 0.316 � � � 0.49
and 0 � Pe � 10000 by Foss and Brady (2000). In the theoretical development of Brady
and coworkers (Bossis and Brady, 1989; Brady, 1993; Foss and Brady, 2000), the Péclet
number is used to relate the dispersive Brownian motion due to thermal energy, to the shear
strain that distorts the structure of the suspension through eq. (3.10). Brownian forces dom-
inate at Pe � 10: For comprehension in quantitative terms, this is equivalent to ·� � 17s�1

for particles 1 �m in diameter, suspended in water at 25�C. Since there are no attractive or
repulsive forces among hard-sphere particles, hydrodynamic forces dominate for Pe � 10.
Viscosity by definition is the ratio of the stress created by these forces to the shear rate.
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Assuming the viscosity of the suspending medium �0 to be constant, the relative viscosity
of the suspension �r can be designated as the sum of the contributions due to the molecules
of the suspending medium, and due to the Brownian and hydrodynamic stresses:

(3.47)

The contributions of the reduced suspending medium viscosity (�0/�0 � 1) and the contri-
bution of hydrodynamic viscosity, �r

H can be equated to the high-frequency dynamic vis-
cosity, �
�, which represents the viscous contribution to the stress at equilibrium as Péclet
number approaches zero. As Brownian motion creates a rapidly fluctuating stress, the
Brownian contribution to the viscosity is calculated by integrating the autocorrelation
function over a large time span, through the Green–Kubo formula:

(3.48)

where � is the volume, 
xy the instantaneous shear stresses in the xy plane and �0, the zero-
shear viscosity of the suspension, the relative viscosity as Pe � 0. The results of the zero-
shear-rate viscosity calculations are redrawn in Figure 3.3(b). Comparison of Figure 3.3(a)
and (b) shows that the results of the two theories are similar, even though the starting equa-
tions and models are different. This similarity holds for the “zero-shear rate” viscosities, the
viscosity of suspensions at very low-shear rates when the hydrodynamic forces are not dom-
inant. Localizations leading to cage formation as in the theory developed by Verberg et al.
(1997) are confirmed in a recent article by Gopalakrishnan and Zukoski (2006), for volumet-
ric fractions greater than �0.40 and are held responsible for the high viscosities observed in
dense suspensions. On the other hand, the model developed based on Stokesian Dynamics
correctly predicts the shear behavior of dense suspensions as will be given in the next section.

The variation of the viscosity contributions in eq. (3.47) with the Péclet number found by
Foss and Brady (2000) is given in Figure 3.4(a). At Pe � 10, the hydrodynamic contribu-
tion to the viscosity remains approximately constant, equal to �


�, and increases at Pe � 10.
On the other hand, the Brownian contribution decreases with an increase in the Péclet num-
ber. The sum of these contributions bring about a minimum in the relative viscosity of the
suspension, or equivalently the suspension shear thins from the level of zero-shear viscos-
ity shown by the dotted lines on the figure to a minimum around Pe � 10 after which shear
thickening is observed. The variation of the extent of shear thinning and thickening
expected with the variation in volumetric fraction of solids is given in Figure 3.4(b),
together with the experimental data confirming the simulation results. 

Brady and coworkers (Bossis and Brady, 1989; Foss and Brady, 2000) explain the shear-
thinning behavior by the relative rates of deformation and relaxation of the equilibrium
structures of concentrated suspensions. The distortion of equilibrium structures by flow-
induced shear is relaxed by the back diffusion of particles under the action of thermal
forces. At very low-shear rates, when the diffusion rate of the particles is equal to the defor-
mation rate, the viscosity remains constant at the “zero-shear” viscosity value. As the shear
rate, or equivalently Péclet number increases to a value greater than the Stokes–Einstein dif-
fusion rate of particles D0 (eqs. (3.2) and (3.9)), the back diffusion of the particles to their
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Figure 3.4 Variation of the relative viscosities of concentrated hard-sphere suspensions with the
Péclet number. (a) Contribution of Brownian, �B ,and hydrodynamic, �H, counterparts to the total rel-
ative viscosity at � �0.45, (b) variation of the relative viscosity with the volumetric concentration
of solids � and the Péclet number. (Foss and Brady, 2000. Reproduced with permission of
Cambridge University Press, Figures 2 and 3 in the original)



equilibrium configuration remains below the rate of deformation. Brownian viscosity then
decreases inversely with the Péclet number. At high Péclet numbers, hydrodynamic forces
dominate everywhere except within a thin boundary layer around the particles, where
Brownian motion still exists. Lubrication flow takes place within this narrow channel.
Component of shear in the direction of flow pushes the particles together to form reversible
aggregates, called hydroclusters, when the separation distance between the particles is
around one percent of their radius. The clusters grow as Péclet number increases. The
Brownian motion, now unable to disrupt the cluster, determines the compaction and size of
the clusters by breaking the connectivity of the cluster, preventing gel formation in the
process. The simulations predict an increase in the rate of both shear thinning and shear
thickening as volumetric concentration of solids increases.

3.2.4 Shear behavior of concentrated hard-sphere suspensions

It is now generally accepted that hydrocluster formation by the compression effect of shear
stress component, acting in the flow direction proposed by Brady and coworkers (Bossis
and Brady, 1989; Foss and Brady, 2000), is responsible for shear thickening. Shear thick-
ening found by Stokesian Dynamics simulations described in the previous section is not
the same as the shear thickening in dilatant power-law behavior observed when n � 1 in
power-law fluids given in Chapter 2 (eq. (2.34)): Dilatant behavior of non-Newtonian flu-
ids is generally associated with an increase in the number of “particles” such as in the
cleavage of clay platelets, breakup of drops in an emulsion or particles in a suspension,
with an increase in the shear rate; whereas, shear thickening in concentrated suspensions
is due to grouping of particles by hydrodynamic forces in the form of clusters.
Hydroclusters are also different from the fractal clusters and aggregates formed by attrac-
tive forces, as given in Chapter 1, which for this reason are called thermodynamic clusters.

3.2.4.1 Shear thinning and shear thickening behavior of suspensions

Hydroclusters are formed whenever hydrodynamic forces overcome the dispersive
Brownian forces. The critical shear stress for the onset of shear thickening is found by a
force balance between hydrodynamic forces, FH and Brownian forces, FB (Bender and
Wagner, 1996; Maranzano and Wagner, 2001). As Brownian motion is instantaneous and
random, averaging (mean field approximation) is made by multiplying the thermal energy,
kBT with the derivative of the equilibrium radial distribution function g(r), to take into
account the distribution of particles surrounding a given particle:

(3.49)

As any cluster formation starts with the collision of two particles, hydrodynamic force is
taken as the force between two particles (Boersma et al., 1992)

(3.50)F
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where h is the interparticle separation distance defined in terms of the volumetric fraction
of solids,

(3.51)

The maximum volumetric fraction taken as 0.71 in this equation is the experimentally
found value where monodisperse, hard-sphere suspensions do not flow (deKruif et al.,
1985). Interactions exist not only between two particles but also among many particles
present in the concentrated suspension. Further correction is made for this many-body
effect by using eq. (3.19) (Maranzano and Wagner, 2001). The critical stress at which
hydrocluster formation starts is found by equating eqs. (3.49) and (3.50), and using the
identity (
hc � � ·�);

(3.52)

The LHS of the equation is a dimensionless stress and 
hc is the critical stress for the onset
of hydrocluster formation. As hard-sphere properties can also be maintained by steric sta-
bilization and by electrostatic repulsive forces among particles, shear thickening will arise
whenever hydrodynamic forces dominate the dispersive forces.

Gopalakrishnan and Zukoski (2004) used the well-defined system of silica particles of
radius R � 103nm, stabilized with octadecanol, and suspended in decalin. The results of
the experiments are redrawn in Figures 3.5(a) and (b), as the variation of relative viscos-
ity, �r with the nondimensional shear stress, 
R3/kBT (in the abscissa (a) is used to denote
R, the particle radius). The zero-shear viscosity at low-shear rates increases with an
increase in the volumetric fraction of solids in Figure 3.5(a). The suspensions show shear
thinning behavior up to 
R3/kBT � 10. The minimum in the viscosity where shear thick-
ening starts remains approximately constant with the volumetric fraction of hard-sphere
solids, �. Gopalakrishnan and Zukoski (2004)] propose that the critical shear rate for the
onset of shear thickening, ·�c, should not be taken as the critical shear rate for the onset of
hydrocluster formation ·�hc, even though hydrocluster formation is a prerequisite for shear
thickening. Equally important are the thermodynamic attractions, such as that brought
about by depletion forces due to presence of nonadsorbing polymers in the suspension
medium. 

Even though the particles have no attractive or repulsive interactions, attractions can still
arise as depletion forces due to nonadsorbed polymers in the suspending medium.
Presence of nonadsorbing polymers creates different effects on the microstructure and rhe-
ology of concentrated hard-sphere suspensions depending on the molecular weight and
radius of gyration of the polymer molecules and the ratio of the radius of gyration of the
polymer to the hard-sphere radius of the particle. Radius of gyration of the polymer, Rgp

determines the distance (range) over which attractive forces act. The concentration of the
polymer affects the osmotic pressure between the bulk of the solution and the excluded
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volume among the particles. The greater the concentration, the greater the osmotic pres-
sure and hence the strength of the depletion forces leading to localization.

Gopalakrishnan and Zukoski (2004, 2006) made in-depth studies of the effect of deple-
tion forces on the shear behavior of hard-sphere-like suspensions of silica particles stabi-
lized with octadecanol. The particles are suspended in decalin with varying concentrations
of nonadsorbing polymer polystyrene. Decalin is a good solvent for polystyrene in which
it can fully extend (theta solvent).
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Figure 3.5 Steady-state viscosity flow curves for hard-sphere suspensions, (a) at different
volumetric fractions, �, for R � 103nm. (b) as a function of increasing polymer concentration for
��0.45 and R � 103 nm (a � R) (Gopalakrishnan and Zukoski, 2004. Reproduced with permission
of The Society of Rheology, Figures 2(a) and 4 in the original.)



The concentration of the polymer Cp is nondimensionalized with the overlap concentra-
tion of the polymer Cp

*, defined as

(3.53)

where MW is the molecular weight of the polymer, NA, the Avogadro’s number and Rgp is
the radius of gyration of the polymer defined with the general expression for the radius of
gyration eq. (3.4) for a polymer made up of the same identical monomers (homopolymer)
of equal mass as

(3.54)

where Np is the number of monomers in the polymer, rcM the center of mass of the poly-
mer, and ri the distance of the ith monomer from the center of mass. As the polymer con-
tinuously changes its configuration, only the average distances are taken. Rgp is the radius
of the shell that circumscribes the molecule. The radius of gyration of a polymer does not
specify the shape or the configuration of the polymer.

At very low concentrations of the polymer, only weak attractions prevail between the
hard-sphere particles. Similar to the melting of glasses described in Section 1.6.1, these
weak attractions draw the particles closer together, opening up sufficient space for the
encaged particles (Poon, 2002) to escape freely as shown schematically in Figure 3.6(a).
The variation of the relative viscosity of the suspensions with the polymer concentration
is drawn in Figure 3.6(b) as a function of dimensionless stress, 
dp

3/8kBT � 
R3/kBT. The
plot in the insert is actually a cross view of the figure at low values of the shear stress,
the profile that would be observed if the data were plotted on a three-dimensional graph,
the third axis being Cp/Cp

*. The breakup of the cage structure causes a large reduction in
the zero shear viscosity: As the dimensionless polymer concentration increases, the
zero-shear viscosity decreases to a minimum around Cp /Cp

* � 0.03 and then increases
again as shown in the insert of the figure. The increase in the zero-shear viscosity after
the minimum shows that attractive forces due to increasing polymer concentration re-
establish the cage-like structure, which is also reflected on the infinite shear viscosity as
an increase. 

Attractive depletion forces facilitate the formation of both the thermodynamic clusters
leading to formation of gels, and the hydrodynamic clusters leading to shear thickening.
As a result, either shear thickening or gel formation is observed at lower shear stresses and
strains. The rheological behavior will be dictated by the dominant mechanism. In the case
of high polymer concentrations, the strong thermodynamic attractive forces among the
particles prevent formation of hydroclusters and shear thickening will not be observed
after the minimum in relative viscosity. At low concentrations of polymer, attractive deple-
tion forces are too weak to prevent hydrocluster formation at high-shear rates (or shear
stresses) and shear thickening is observed.
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The relative viscosity of the same silica particle system but with lower particle concen-
tration of � � 0.45 and different particle radii R � 103nm, and polymer radius of gyra-
tion (Rgp � 5.53 nm, Rgp/R � 0.05) at � � 0.45 is given in Figure 3.5(b). In the fluid state
shown with open symbols, the relative viscosity goes through a constant zero-shear region
at very low shear stresses. A minimum and subsequent shear thickening are observed only
when Cp/Cp

* � 0.03. At higher concentrations, the minimum region could be observed at
higher stresses, if slip flow and secondary flow could be eliminated.

Shear thickening is not observed also, in the case of irregular or rough particles as the
asperities prevent the close approach of particles to the point of overlapping boundary lay-
ers, necessary for hydrocluster formation.

3.2.4.2 Shear behavior of colloidal hard-sphere gels

Gopalakrishnan and Zukoski (2004, 2006) draw attention to the similarity of mechanisms
in the formation of dense suspension gels, hydroclusters, and glasses. All of the three states
are manifestations of localization phenomena, which destroy the uniformity and homo-
geneity of the suspension on all length scales, termed as ergodicity. Concentrated suspen-
sion gels consist of clusters with sizes of 3–8 particle diameters (Shah et al., 2003). As
shown in Figures 3.1(d) and (f), the particles encaged in the clusters of a gel have a lim-
ited freedom of Brownian motion. This freedom does not exist in glasses where the parti-
cles are much more closely spaced and the interparticle distance is reduced to the order of
radius of gyration of polymer molecules. Hydroclusters are also cases of localization
brought about by shearing. The rheological properties associated with localization in the
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(a) (b)

Figure 3.6 Effect of nonadsorbing polymers on hard-sphere suspensions: (a) opening-up of the
cage structure, (b) effect of structural variation on the relative viscosity plotted as a function of
dimensionless shear, as in Figure 3.5. (	 is stress denoted as 
 in this text, and D is the particle diam-
eter, dp). dp � 48, Rgp � 1.31nm, Rgp/R � 0.055. (Gopalakrishnan and Zukoski, 2006. Reproduced
with permission of The American Chemical Society, Figure 6 in the original).



case of gels are development of yield stress, and elastic moduli (G
 and G�); and in the case
of hydroclusters, is shear thickening. Both the elasticity and shear thickening arise when
the clusters formed span all of the available volume as an interconnected network, termed
as percolation.

Gels exhibit measurable viscosities in a very limited shear stress (or shear rate) range
due to development of yield stresses as a result of strong attractive forces between the
particles. Slip at the walls is also considerable because the attractive forces between the
particles severely decrease the adherence of the suspension to the wall. The low-shear vis-
cosities diverge to very high values indicating the appearance of yield stresses character-
istic of gel behavior as shown by the filled symbols in Figure 3.5(b). The greater the yield
stress, the narrower is the region where shear behavior could be measured. Shear viscos-
ity measurements are limited in the high-shear regions, also, because of the secondary
flows observed in the case of viscoelastic behavior (see Chapter 2, Figure 2.23). Within the
narrow measurable region, gels are highly shear thinning.

3.2.5 Viscoelastic behavior of hard-sphere gels

Gels are nonequilibrium structures typically characterized by the formation of a continu-
ous network structure extending over the available volume. Existence of attractive forces
is a prerequisite for gel formation. The greater the strength of the attractive forces, the less
is the particle concentration required for the continuity of the network. Another closely
related phenomenon is localizations in the microstructure of the gels. If the attractions
between particles are very strong, such as in the case of hydrophobic forces among parti-
cles the localizations are not observed. An example is the thermal gels obtained on cool-
ing of a suspension of silica particles (dp� 90nm) in decalin that behaves as a hard-sphere
suspension at elevated temperatures. Reversible clusters formed by the action of applied
shear are reported to disintegrate with the recovery of the original nonlocalized structure
on the cessation of shear (Ramakrishnan et al., 2005; Ramakrishnan and Zukoski, 2006).

The ratio of the radius of gyration of the polymer to the radius of the hard-sphere
particle determines the equilibrium and nonequilibrium states to be expected (Chen and
Schweizer, 2004): In the case of high molecular weight polymers with Rgp /R � 0.3
fluid–fluid phase separation is observed in the suspension. Either of the two states can be
observed with the use of low molecular weight polymers, Rgp /R � 0.3: A transition from
fluid to the solid state under equilibrium conditions or from fluid to gel states under non-
equilibrium conditions. Particle gels are characteristically amorphous, nonergodic, have
very long relaxation times, are viscoelastic with the modulus of elasticity weakly depend-
ent on frequency of strain under low stresses and have an apparent yield stress above which
they deform continuously, i.e., flow. As long as the attractive forces prevail, the gel struc-
ture will form again upon relaxation.

Gel microstructure has two counterparts: The backbone network that transmits the
applied stresses throughout the gel network and the clusters which may or may not be vis-
coelastic themselves, depending on the compaction of their microstructure. The greater the
concentration of the particles, the stronger will be the interlinking bonds among the
clusters, the greater will be the yield stress and the magnitude of the modulus of elasticity.
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The rheology of the gels depends largely on the cluster structure, which can be grouped
under three broad classes:

3.2.5.1 Hard-sphere gels with a fractal microstructure

Gels in this group are formed when the fractal clusters grow sufficiently in size and over-
lap with each other to fill the available volume. There are several models proposed to
relate the microstructure of the fractal gels to their rheological behavior. Russel et al.
(1989) assumed all the primary particles are in aggregated form in clusters of character-
istic size Ragg, with particle-free spaces among the clusters. The ratio of the size of clus-
ters to that of the primary particles R0 is related to the volumetric fraction of solids, �
through a relation in terms of the fractal dimension, df obtained by a mass balance using
eq. (1.59),

(3.55)

�m is the volumetric fraction of solids at random close packing, �m� 0.64.
Shih et al. (1990) assumed that the cluster structure remained constant with an increase

in the volumetric fraction of solids, but the number of bonds interlinking these clusters
increased with �. The shear modulus of elasticity G
 is related to the cluster size Ragg and
volumetric fraction of solids � with a power-law relation of the form,

(3.56)

(3.57)

where dfb is the fractal dimension of the backbone clusters of the gel, which bear the exter-
nal shear stress, (1 � dfb � df) while df is the fractal dimension of the clusters. Rheological
measurements of alumina gels in the range 0.03 � � � 0.12 led to an empirical relation
of the form

(3.58)

in agreement with the results of Buscall et al. (1986), who found the exponent as 4.5 under
reaction limited conditions and 3.5, under diffusion limited conditions.

Overlapping fractal cluster model of hard-sphere particle gels are relevant at low values
of the volumetric fraction of solids. At increasing solid fractions, overlapping becomes so
extensive that identity of individual clusters becomes ambiguous.

3.2.5.2 Percolation gels

Percolation clusters grow at the sterically more favorable sites along the edges of the clus-
ter resulting in a more porous structure. When clusters are linked at the edges to form a
highly porous volume-spanning network, the suspension is said to percolate. As all the
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fractal clusters are now interlinked, the gel structure behaves as an infinite-sized cluster,
i.e., the cluster size diverges. Gels form when continuity within the network is maintained,
after which an applied force can be transmitted throughout the gel. This volumetric frac-
tion, denoted as �G, marks the transition to gellation. As � increases, interlinking mecha-
nism becomes stronger at the expense of decreasing porosity.

Carbon black particles of 30 nm diameter compacted into very dense clusters forming
the primary particles of radius, R0�0.25�m, and fractal dimension df � 2.2 � 0.1 stabi-
lized with double-chained surfactants suspended in oil to simulate motor oils were inves-
tigated by Trappe and Weitz (2000). The system behaved nearly as a percolation gel
when attractive interactions were kept under control. The appearance of the gels taken
under an optical microscope and elastic behavior of the gels at three volumetric concen-
trations of 0.097, 0.064, and 0.033 are reproduced in Figure 3.7. The curves for differ-
ent volumetric fractions were found to coincide for both G
and G� when the elastic and
viscous moduli are normalized by dividing with the plateau value of the elastic modulus
and the frequency, by the frequency where the elastic and storage moduli cross over. At
the lowest volumetric fraction of � � 0.033 the interconnectivity of the gel is lost and
the gel flows like a fluid. 

As the interlinking between the clusters increases, the gel behaves more like a vis-
coelastic solid. When the bonds between the clusters are not very strong, the gel behaves
like a yield stress fluid, (Section 2.3.2 in Chapter 2) responding elastically to applied shear
stress below the yield value and flowing as a Newtonian fluid at stresses above the yield
stress value.
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Figure 3.7 Appearance and viscoelastic behavior of carbon black gels. Solid symbols denote
G
(�) and open symbols G�(�) (a) � � 0.097 denoted by squares, (b) � � 0.064 denoted by hexa-
gons (c) � � 0.033 denoted by solid (G
(�)) and dashed lines (G�(�)). Circles with the highest
values of G
(and) G�(�) denote the rheological behavior at � � 0.149 where the gel is too dense
for its microstructure to be visible. (Trappe and Weitz, 2000. Reproduced with permission of The
American Physical Society, Figure 1 in the original.)



3.2.5.3 Locally densified nonfractal gels

In dense depletion gels approaching the glass transition volumetric fractions, the exponent
of the power-law dependence of elastic modulus x, G
� �x , reaches very high values of
5 � x � 8 (Ramakrishnan et al., 2005) implying very small changes in the local com-
paction will have very large effects on the elasticity of the gels. The interpenetrating clus-
ters are very compact, unlike the ramified fractal clusters, and are small with a size range
of Ragg�(3 – 5)R0 . The localization length, or the scale of freedom of particle motion, rloc

is found starting from the equation of motion. Given this length scale and the structure fac-
tor as inputs, an expression for the shear modulus of elasticity is obtained as

(3.59)

This relation can predict the elastic behavior of dense gels (Shah et al., 2003): The elastic
modulus G
 increases with an increase in the volumetric fraction of solids �; the energy
of attraction that has to be overcome, expressed in terms of thermal energy, kBT; and with
a decrease in the localization length, rloc . Good agreement could be obtained with exper-
imental results (Ramakrishnan et al., 2005) when the predicted shear modulus G
pr is scaled
with the ratio of the primary particle to cluster dimension R0/Ragg

(3.60)

Example 3.1: Viscoelastic behavior of sterically stabilized clay gels

The case: Nonswelling montmorillonite type of clays form unstable suspensions in water
and settle in a short-time interval after dispersion. Adsorption of cationic surfactants, such
as cetyl trimethyl ammonium bromide (CTAB) or double-chained surfactants on the clay
platelets, sterically stabilizes the particles keeping them in suspension. Above a critical con-
centration, the particles form a volume spanning gel. Nonswelling montmorillonite type
clay particles stabilized with CTAB are used in this example, to illustrate the rheological
properties of the gels. Volumetric fraction of clay suspensions is � � 0.023, �� 0.029,
� � 0.033. Rheological characterization is made under stress control with cone and plate
sensors (35 mm in diameter, with a cone angle of 1�) at 25�C to characterize the clay gels.
The samples are not subjected to preshearing to illustrate the effects of structure formation
on standing in thixotropy tests. 

Analysis of the Case: Creep and recovery tests are used to characterize the viscoelastic
behavior qualitatively under an applied shear stress. The results of the creep tests of clay
suspensions stabilized with a 10% coverage of surfactants, run at a step increase in the
shear stress of 1Pa, are given in Figure 3.8(a). The common features for all the volumet-
ric fractions are the initial jump in the strain, a region of gradual increase in strain and a
final linear region. In the most concentrated suspension, the final linear region is horizon-
tal; whereas, a linear region with a positive slope is observed in lower volume fractions.
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The initial step in strain increases in the order 0.01, 0.03, 0.05 with a decrease in the vol-
umetric fraction of solids 0.033, 0.029, 0.023. The immediate response to a sudden
increase in stress is due to the elasticity of the gels, exhibiting Maxwell behavior. The
inverse relation can be attributed to the restricted motion of the particles in concentrated
suspensions. If the gel would deform linearly after this initial response, the fluid would be
called a Maxwell liquid. However, instead of a linear increase, the rate of deformation of
the gel decreases with the time during which it is subjected to the step increase in stress.
This type of response is termed Kelvin–Voigt behavior, typically exhibited by viscoelastic
solids. If the gels were Kelvin–Voigt solids, the rate of decrease in the strain response
would end up with an equilibrium situation, whereby the gel would completely comply
with the applied stress. This response is observed only in the case of most concentrated gels,
� � 0.033. In the other cases, a linear increase in strain is observed, i.e., Maxwell behavior.
It should be noted that Burger or Kelvin-Voigt model behavior could also have been observed
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Figure 3.8 Viscoelastic properties of clay suspensions stabilized by adsorption of a cationic sur-
factant: (a) creep and recovery tests, (b) viscoelastic properties under dynamic conditions, (c) yield
stress analysis, (d) thixotropic behavior under shear.



if the applied stress were much lower than 1 Pa. When the step stress is removed at the end
of 300 s, all the gels react with a sudden jump back to their initial configuration equal in mag-
nitude to the initial jump in the reverse direction. A nonlinear decrease in strain follows the
step decrease during which the gel relaxes (recovers) from the effect of the stress. The longest
relaxation time is observed with the least concentrated suspension that had undergone the
severest deformation. The strain level where the relaxation ends up finally, is an indication
of the frictional losses in the process. Since the starting points were the same (zero strain) in
all cases, the level of strain remaining after the cessation of stress shows the equivalent
energy that is lost through friction and cannot be used to return to the original configuration.
Figure 3.8(a) shows that the frictional losses increase with the magnitude of the initial strain
response to the applied stress. A fluid that shows a Kelvin–Voigt solid behavior linked in
sequence with Maxwell liquid behavior is said to behave as a Burger fluid (Schramm, 1994).
Burger model is very flexible and can be adjusted to fit the responses of most of the real flu-
ids by adjusting the relative contribution of Maxwell and Kelvin–Voigt counterparts. The
strain response of fluids to a step increase in stress is given in Table 3.2 for the Burger model
and its counterparts, the Maxwell and Kelvin–Voigt models. The subscript (1) in eq. (3.63)
denotes the Kelvin–Voigt and (o), the Maxwell  contribution.

The dynamic response of the gels to oscillatory shear stress is given in Figure 3.8(b).
In all of the cases, the storage modulus G
 is greater than the loss modulus G� displaying
gel behavior or a linear viscoelastic response in this interval. As the volumetric fraction of
clay decreases below 0.023, the strength and stability of the gel decreases. Regression of
the plateau values of storage modulus with the volumetric fraction of clay particles yield
an expression

(3.64)

indicating a compact microstructure for the gels.
The shear stress values at which G
 and G� curves cross over are closely related with the

yield stress of the gels given in Figure 3.8(c). The stress values at which a sudden diver-
gence in strain is observed are the yield stress values of the gels.

G r
  ��6 4 2 0 996. .with
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Table 3.2

Strain response in viscoelastic models

Model Response to stress Equation 
numbers

Kelvin–Voigt model (solid) (3.61)

Maxwell model (Liquid) (3.62)

Burger model (3.63)
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The behavior of the gels under shear stresses above their yield value is presented in
Figure 3.8(d). The variation of the shear stress with the rate of shear is given for the initially
undisturbed gels to illustrate the thixotropy of the gels: The microstructure of the gel is
formed by the clay platelets coated with surfactant. Under the effect of the applied shear,
the microstructure is broken down and the particles are forced to assume a position parallel
to the direction of the shear. The shear stress created in the gel is reduced as more and more
particles assume a parallel direction with an increase in the shear rate. The upper curve
(upflow curve) in each cycle represents the structural breakdown in the gels. The initial steep
decrease in the shear stress is an indication of the structural break-down. The slope after the
intial decrease gives the extent and difficulty in the reorientation of the particles. In the case
of concentrated suspensions � � 0.029, and � � 0.033, the shear stress remains constant
indicating that the viscosity decreases steadily in association with the reorientation. In the
case of rather dilute suspension � � 0.023, the structural breakdown is completed at very
low-shear rates, after which the shear stress increases in conformation with power-law
behavior. The shear rate is reduced after the maximum shear rate set for the experiment at
·�� 300s�1. All of the curves in downflow from high to low-shear rate levels (lower curves)
are similar and represent power-law behavior. Fit to Herschel-Bulkley model eq. (2.48)
through the regression of the downflow curves yields the equations

(3.65)

(3.66)

(3.67)

Eqs. (3.65)–(3.67) show an increase in the yield stress 
0, and consistency, K, and a
decrease in the power-law index n with an increase in the volumetric fraction � of clay.
Note the severe reduction in the yield stress 
0 after structural break-down. The area
remaining in between the upflow and downflow curves is called thixotropy index (TI) and
gives the energy per unit time and unit volume (J m�3 s�1) expended for the breakdown of
the network structure and reorientation of the particles

(3.68)

Regression of the TI values for the thixotropic cycles given in Figure 3.8(d) yields a rela-
tion of the form

(3.69)

implying both the strength of the network structure and the difficulty experienced by the par-
ticles in changing their orientation with an increase in the volumetric fraction of the solids.
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3.2 Rheology of Concentrated Hard-Sphere Suspensions 199



3.3 RHEOLOGY OF SOFT-PARTICLE SUSPENSIONS

In Section 3.2 of this chapter, the particles were identified as “hard sphere”, meaning the inter-
actions are zero at all separations except in contact when the repulsive forces rise up to infin-
ity due to the inelasticity of the particles. This ideal case is approached through steric
stabilization by short-chain hydrocarbons, with hydrocarbon chain length, l, being only a few
percent of the particle radius, R0, l�� R0. Particles with interactive forces such as electrostatic
or surface forces have a halo of charges or sections of hydrocarbon chains, respectively, sur-
rounding their hard core. Neither the charges, nor the chains are impenetrable, as can be seen
in Figures 1.2(c) and 1.5(a–c). The ionic, or hydrocarbon halo around the particle leads to an
increase in the effective radius of the particle, Reff, depending on the pair-interaction energy of
the particle, U(r), scaled with the dispersive thermal energy, kBT, (Persello et al., 1994),

(3.70)

Pair-interaction function depends on the interactive forces effective on the particles. If only
electrostatic forces are acting, as in the case of DLVO theory, then the pair-interaction
function can be given by eq. (1.39), reorganized as

(3.71)

where h is the surface-to-surface distance of the particles (h � r � 2R0) and r, the
center–center distance. The number of free counterions in the diffuse ionic halo, is estimated
by the so-called Z criterion of Persello et al. (1994),

(3.72)

in terms of the Bjerrum length LB, which can be obtained from the ion–ion potential energy
given in Chapter 1, eq. (1.2) by dividing with the thermal energy, kBT.

(3.73)

Reff found from eq. (3.70), is used with eqs. (3.71)–(3.73) to correct the volume fraction of
hard-sphere particles, �, for the effective increase in volume due to presence of soft parti-
cles in the suspension,

(3.74)

With the ionic (or hydrocarbon) halo surrounding the particles, the soft-particle suspension
reaches close-packed conditions at a number density of particles much lower than that of
hard-sphere particles. Depending on the volumetric fraction of solid particles and extent of
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the ionic (or hydrocarbon) halo, the soft-particle suspension can exist in three states:
(1) Gas state where there is no interaction between the particles. In this state, both the vis-
coelastic and the shear response of the suspension are linear. (2) Soft solids at intermedi-
ate volumetric fractions, where the limited overlap between the halos confer rheological
properties of a gel to the suspension, even though the particles repel each other. This state
is marked with the appearance of a yield stress. (3) Rigid, concentrated suspensions that
have a very high-yield stress, after which they either slip or fracture (Persello et al., 1994).

Because of the elastic halo that surrounds these particles, soft particle pastes behave like
elastic solids at low stresses but they can flow when the yield stress is exceeded. The nature
of the flow after the yield depends on the microstructure of the fluid. The dependence of
the flow on the deformation of the microstructure introduces the effects of shear thinning,
memory or shear history dependence, normal stresses and migration, wall slip, and aging
phenomena into the rheology and flow behavior of soft particle pastes (cloitre, 2005). The
elastic nature of the particles is reflected onto the shear behavior by the scaling of the yield
stress, 
0 with the shear modulus of elasticity, G.

The existence of a yield stress is an indication of the role of attractive forces among the
particles. The yield stress reflects the aggregation state and the attractive forces between
the particles within the aggregates, given by the relation (Burns et al., 2003).

(3.75)

where � is the volumetric concentration of the primary particles within the suspension, R0

the radius of the primary particles, n the coordination number, or average number of con-
tacts per particle (divided by two to show the contribution of each particle in a pair), and
Esep the energy required to separate the aggregate into single primary units. Esep is closely
associated with the total potential energy U(r), through the radial distribution function g(r)
and the strength of the attractive and repulsive forces bringing the primary particles
together in the form of an aggregate.

Esep also determines the non-Newtonian flow behavior of the suspension and the consti-
tutive equations given in Chapter 2. If the primary particles can be dispersed easily under
shear, then the suspension will behave like a Newtonian fluid after the yield stress is
exceeded, which can be modeled with the Bingham relation (eq. (2.46)). If the clusters do
not disintegrate readily, then the suspension will shear-thin, which can be modeled with
Herschel-Bulkley (eq. (2.48)) or Casson (eq. (2.50)) equations. If the particles cannot
totally relax from their sheared positions after the reduction of the shear within the time
scale of measurement, then the suspension will exhibit thixotropy.

These effects can be manipulated by varying the process conditions as explained below.

3.3.1 Control of rheology through manipulation of surface forces

In view that the states of soft particle suspensions are determined by surface forces
(eqs. (3.70)–(3.74)), the rheology of the suspensions can be manipulated through the con-
trol of these forces. Rigid, concentrated suspension behavior determines the working



�0

0
32

1

4 3
� �

n
E

R
sep

( / )

3.3 Rheology of Soft-Particle Suspensions 201



conditions in extrusion of ceramics, for example. Otherwise, such high-volumetric con-
centrations are not desirable since they cannot flow in the sense of other non-Newtonian
fluids with a noninterrupted shear stress gradient in the radial direction of the channel.
Readily flowable suspensions with a low-yield stress are aimed for in ordinary opera-
tions, where transfer of solids is the main concern. If the process aims to collect the par-
ticles, then attractive forces should be enhanced to increase the particle collection
efficiency, such as in sedimentation. Two alternative routes are possible: The particles can
coagulate as discrete aggregates or flocs that readily settle in an almost Newtonian
medium; or, they can coagulate in the form of gels, which will be more difficult to han-
dle due to development of yield stresses and increased viscosities. If the stability of the
suspension is aimed for, then repulsive forces should be enhanced to keep the particles in
suspension. The yield stress should be minimized to reduce the energy costs in transfer-
ring the suspension, and during filtration, and yet the yield stress should be high enough
to reduce settling of the particles.

In a series of articles (Scales et al., 1998; Franks et al., 1999; Johnson et al., 2000; Zhou
et al., 2001), surface forces affecting the rheological properties, particularly, the yield
stress, are investigated, with applications to mineral-oxide suspensions. Table 3.3 on the
manipulation of surface forces, and Figure 3.9 on the variation of zeta potential with pH,
and Figure 3.10 on the effect of surface forces on the yield stress are redacted from the
work of Johnson et al. (2000). Not all the parametric effects are fully understood at the
present. Table 3.3 should be taken as a guide only, because the effects of the parameters
and the underlying mechanisms through which they act may be very complicated. 

To evaluate the effect of surface forces on the yield stress, Table 3.3 should be evaluated
together with Table 1.2, Figures 1.2 and 1.5 of Chapter 1. Figure 3.9 gives the zeta
potentials of two metal oxides �-alumina and zirconia as a function of the pH of the sus-
pending medium. The isoelectric point where there is no charge on the particles is pH�9.5
for �-alumina, and pH�7.8 for zirconia. We know that the zeta potential is the nearest
approximation for the surface potential, �0 of the particles that can be measured experi-
mentally, as given in Figure 1.2(a). The repulsive force FR between two particles of radii
R can be approximated in terms of the zeta potential, �, with the equation of Hogg et al.
(1966),

(3.76)

written with the notation identified in Chapter 1 (eqs. (1.1) and (1.33)). Then the total
DLVO force, FT between two spherical particles in terms of the zeta potential will be,

(3.77)

The repulsion force term can become zero only under two conditions: very large distances
between two particles h, as h � �, or the isoelectric point where � � 0. In concentrated
suspensions, keeping the pH at the isoelectric point is the only way of eliminating the
repulsive forces. Under these conditions, attractive van der Waals forces become dominant
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and the yield stress reaches its peak value. As the pH of the suspending medium increases
or decreases from the isoelectric point, the increasing absolute values of zeta potential, or
equivalently, �2 , causes an increase in the repulsive forces, and the yield stress declines
from its maximum value toward either direction. The shape of the yield stress curves in
Figure 3.10 reflects the combined effect of attractive van der Waals and repulsive electri-
cal double-layer forces, as given by eq. (3.77).

The variation of yield stress with the volumetric concentration of solids (indicated on
the curves) is given in Figures 3.10(a) and (b) as a function of pH. The zeta potential of
alumina is much greater than that of zirconia, implying greater repulsion between alumina
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Table 3.3

Manipulation of surface forces

Force Manipulated by

van der Waals 1. Particle size
2. Volume fraction of solids

Double layer repulsion 1. pH (zeta potential, �)
2. Electrolyte type and concentration
3. Charged surfactants
4. Size of particles

Depletion 1. Maintaining nonadsorbing conditions by the 
adjustment of pH and electrolytes

2. Choice of polymer size

Steric Selection of polymer with
1. Good adsorption properties
2. Concentration adequate for complete surface coverage
3. Low molecular weight to prevent bridging selection of

appropriate pH and ionic strength in the case of
polyelectrolytes

Bridging Selection of appropriate polymer or polyelectrolyte type
in terms of

1. Molecular weight of polymer
2. Polymer concentration
3. pH
4. Electrolyte concentration

The dissociation and conformation of polyelectrolytes
are strongly affected by pH and electrolyte 
concentration.

Hydrophobic Enhancing/preventing surfactant adsorption on the 
particles to regulate the attractive forces.

Structural (hydration) 1. Adsorbed ions at the surfaces of the particles to 
determine the strength and range of repulsion

2. Type and concentration of electrolytes in solution to 
determine the strength and range of repulsion

3. pH-induced changes of the surface charge



particles. This is observed as a greater yield stress in the case of zirconia for equivalent
volumetric solid fraction, �. These curves for different volumetric fractions coincide into
a single curve, when the yield stress is scaled with the maximum yield stress at the iso-
electric point, � � 0 (Scales et al., 1998).

Another effective parameter is the thickness of the double layer, indicated by the Debye
length, ��1. We know from Figure 1.1, that neutral (passive) electrolytes compress the
double layer, causing the particles to come closer to each other. This is manifested in
Figure 3.10(c) where the concentrations of the electrolyte KCl (mol dm�3) are indicated
on the curves. The yield stress increases with an increase in the concentration of electrolyte
wherever the repulsive forces are active, except around the maximum point, where only
attractive van der Waals forces are active. Maximum yield stress also decreases, because
of the repulsion created by hydrated K� ions adsorbed on the surfaces of the particles keep-
ing them apart. As a result the yield stress curve becomes flatter as the ion concentration
increases.

The effect of particle size on the yield stress is given in Figure 3.10(d) at � � 0.250.
The increase in the yield stress with decreasing particle size is due to the immense increase
in the surface area that also impedes the creation of slip layers where the suspension yields.
Decrease in the particle size also increases the coordination number of each particle, which
means greater support among the particles. The effect of polymers is illustrated with the
case of PAA (polyacrylic acid) with molecular weights of 2000 and 750,000 adsorbed on
zirconia at � � 0.184 in Figures 3.10(e) and (f), respectively. The numbers on the curves
denote the concentration of the polymer in terms of dry weight percentage. Low molecu-
lar weight PAA strongly adsorbs on the surfaces, stabilizing the particles with steric forces.
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Figure 3.9 Variation of the zeta potential with the pH of aqueous suspensions of zirconia and
�-alumina (Johnson et al., 2000. Reproduced with permission of Elsevier Science Ltd., Figure 2 in
the original).
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Figure 3.10 Variation of yield stress with pH and (a) volumetric concentration of alumina, (b) vol-
umetric concentration of zirconia, (c) electrolyte concentration, (d) particle size, (e) polyelectrolyte
concentration at low molecular weights, (f) polyelectrolyte concentration at high molecular weights,
(Johnson et al., 2000. Reproduced with permission of Elsevier, Figures 3, 4, 8, 13, 17 and 21 in the
original).



Since PAA is anionic, the isoelectric point of the composite particles decreases with an
increase in the polymer concentration. The flat adsorption of PAA molecules on the sur-
faces increases the distance between the particles, decreasing the van der Waals forces, and
hence the maximum yield stresses. When the molecular weight of the polymer is large as
in Figure 3.10(f), not all of the polymer can be adsorbed on the particle surfaces. The dan-
gling polymer pieces interact with each other, bridging the particles together. The polymer
shifts the isoelectric point to lower pH values because of its charge. Even though polymer
bridges attract particles together, the yield stress is not increased due to unavoidable repul-
sion brought about by the adsorbed portions of the polymers that sterically stabilize the
particles.

3.3.2 Flow behavior of soft-particle suspensions under steady shear

Soft-particle suspensions can flow continuously only under limited conditions. These lim-
itations are set by the interaction forces between the particles, volumetric fraction of par-
ticles, and for a given fraction, the shear stress the suspension can withstand. The
interactions between particles are necessarily repulsive, for otherwise, gel formation and
arrestment of particles would prevent continuous deformation. The repulsive forces can be
steric, or more commonly electrostatic in origin. In either case, the particles with their
increased diameter fill up the available volume at volumetric fractions much less than that
of the hard-sphere particles. Only in the gaseous state, at extremely low particle fractions
can the particles diffuse freely.

3.3.2.1 Continuous flow of monodispersed suspensions

Under low-shear rates, the diffusivity of the particles is high enough to permit the particles
to diffuse back to their minimum energy configuration. Under these conditions, the soft-
particle suspension behaves like a Newtonian fluid.

Particles impede the free diffusion of each other at higher concentrations. The concen-
tration at which this impediment becomes effective depends on the range of the repulsive
forces, or equivalently the Debye length given in Chapter 1 and is controlled by the param-
eters effective on the Debye length. Monodispersed soft particles typically exhibit constant
shear stresses spanning several orders of magnitude in shear rate, at very low values of
shear rates. Since within this range the suspension can be sheared at any rate, the constant
value of the shear stress is called dynamic yield stress. If the compaction of the suspension
is still below the maximum, then the shear stress increases after the dynamic yield stress
is exceeded. If the compaction is around the maximum, then shear localizations take place
and the suspension fractures.

Typically, the viscosity of hard-sphere suspensions has a constant zero-shear value at
low-shear rates, decreases with increasing shear rates (shear thinning region) and reaches
again a constant value at very high-shear rates, the infinite shear-viscosity. On the other
hand, soft-sphere suspensions exhibit different flow behavior with increasing shear rate. In
the order of increasing shear rates the suspension (1) behaves elastically at small defor-
mations, (2) behaves like a Newtonian fluid with “zero-shear viscosity”, (3) shear thins
steadily under constant stress, (4) shear thins at a decreasing rate like a power-law fluid,
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(5) behaves like a Newtonian fluid under extremely high rates of shear. Which of these
regimes does the suspension undergo under a given range of shear rates depends com-
pletely on its microstructure.

3.3.2.2 Effect of polydispersity on the flow behavior of soft-particle pastes

One way to overcome the limitations in the flow of soft-particle pastes is to use mixtures
of different particle sizes. In this way, it is possible to decrease the viscosity of a suspen-
sion and obtain a more flowable suspension at the same total volumetric fraction of solids.
Bimodal suspensions are used industrially in inks, paints, and ceramics (Olhero and
Ferreira, 2004 and references therein), low-calorie high solid content food products (Marti
et al., 2005) as well as in other suspensions.

Primary factors that control the flow behavior of monodispersed soft-sphere suspen-
sions are the total volume fraction of solids and the particle size range (e.g., nanoscale or
microscale). Other variables in bimodal mixtures of particles are (1) ratio of particle sizes,
(2) ratio of volumetric fraction of each size range, and (3) the range of surface forces under
the existing conditions of the suspending medium.

Another factor that also affects the performance of mixed suspensions but cannot be
quantified easily is the segregation of particles. Segregation is a natural outcome of deple-
tion forces when small-sized particles are present in the medium together with larger par-
ticles. As given in Chapter 1, small particles in the nanoscale range dispersed between
larger particles create an osmotic pressure gradient if they are excluded from the spaces in
between the particles, pushing the larger particles together. Under equilibrium conditions,
regions of densely packed large diameter particle zones will exist within the less densely
populated small-particle suspensions, creating zones with different local volumetric frac-
tion of solids. Shear modulus of elasticity, G is related with the volumetric fraction of
solids and will be higher in the densely packed large particle zones. In turn, small particle
zones are more deformable (Hunt and Zukoski, 1999).

Osmotic pressure shows the same qualitative dependence on the volumetric fraction of
solids, �, as the dynamic yield stress (Persello et al., 1994). Under the action of shear, the
equilibrium structure of the suspension will be distorted and free space will be opened up.
This will create an imbalance of forces, which will cause the particles to jump to the new
locations. The equilibrium microstructure and its distortion is characterized by the shear
modulus of elasticity, G. Yield stress indicates the span of shear rates over which the sys-
tem responds elastically and indicates the resistance shown by the liquid molecules toward
the motion of the solid particles in the distorted microstructure. When yield stress is scaled
with the shear modulus, the dimensionless yield stress, 
0 /G, becomes independent of par-
ticle composition, volumetric fraction, ionic strength and depends only weakly on the par-
ticle size with values in the range, 0.01�
0/G � 0.035. Shear rate is nondimensionalized
with the rate of energy dissipation that is proportional to G/� , where � is the viscosity of
the suspension medium. When dimensionless yield stress, 
0/G is plotted against the
dimensionless shear rate, ·��/G, the flow curves of both the monodispersed suspensions and
the mixtures fall on a single master curve (Hunt and Zukoski, 1999).

Bimodal suspensions shear thicken at very low-shear rates and low volumetric fractions
compared with the hard-sphere suspensions, whereas, monodispersed suspensions of soft
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particle do not show any thickening. Since the suspensions do not flow below their yield
stress and irreversible aggregation and shear localization take place above the critical shear
stress where shear thickening is observed, bimodal suspensions of soft particles in the
nanometer size range have a very narrow range of operation where flow can be sustained.
Working with particles in the micrometer size range, Olhero and Ferreira (2004) found that
the suspension shear thickens when the ratio of small to large particles increase, and shear
thins when the ratio decreases.

3.3.2.3 Effect of aspect ratio on the flow behavior of soft-particle pastes

Spherical geometry is a simplification used to model the physical and rheological proper-
ties of particles. Many industrially important materials have particle geometries that are
highly anisotropic and cannot be treated as spheres. Examples are some mineral crystals,
clay, nanoparticles, fibers, polymers, and protein molecules. The dynamics and viscosity
of these particles depend on their sizes, whether in the colloidal size range or larger, as well
as their geometrical shape and aspect ratio.

3.3.2.3.1 Characterization and microstructure of nonspherical particles

Anisotropic particles may be in the form of spheroids, rods, flakes, or discs. They are char-
acterized by their aspect ratio, L/D, where L is the length and D is the diameter or the width
of the particles. If there are large repulsive forces among the particles, they exist as indi-
vidual entities. If there are attractive forces between the particles, they exist as aggregates.
The specific orientation in the group depends on the localization of attractive forces. Clay
platelets with negatively charged surfaces and positively charged edges group in the form
of a card-house structure, or in the form of a ladder. As the volumetric concentration of
solids increase, the network structure percolates, or spans the available volume and a gel is
formed. The particles disperse under high shear. In the case of surfactants and polymers, lat-
eral electrophilic groups (such as –OH groups) form hydrogen bonds, a form of van der
Waals attractions, which causes the alignment of the colloids in the form of a nematic phase.
Application of moderate shear enhances the alignment by bringing the particles together. In
the absence of attractive forces, the dispersions are isotropic.

Besides the aspect ratio, the orientation of the particles with respect to the direction of
flow is also important in determining the rheology of suspensions. A good review of the
theoretical and experimental work on the viscosity of rod-shaped particles can be found in
Wierenga and Philipse (1998).

3.3.2.3.2 Physical basis for the deviation of viscosity from the hard-sphere case

In the particle-size range, where the Brownian motion is not negligible, the contribution of
the translational motion of the particles to the viscosity is negligible in comparison with
the rotational motion. So the Péclet number for translational flow, eq. (3.9) is replaced by
its equivalent in terms of rotational diffusivity, Dr,

(3.78)Perot
r
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For flow in a channel in the z direction, a velocity gradient will exist in the r direction,
forcing the particles to align parallel to the z direction, as shown in Figure 3.11(a) and in
the fully aligned condition in Figure 3.11(b). This is possible for particles greater than the
Brownian-size range. The Brownian particles rotate in the � direction under the action of
shear induced by the velocity gradients. A rotating particle under the action of velocity
gradients is shown in the square box in Figure 3.11(a). 

Three factors contribute to the viscosity of anisotropic particles (Wierenga and Philipse,
1998): (1) Rotation of the particles, (2) the distribution of the orientations of the particles
with respect to the flow direction, and (3) the thermal fluctuation of solvent molecules that
induce Brownian particles to rotation. The aspect ratio is the single factor that causes the
particles to rotate and change the flow field. As the concentration of the particles increase,
they tend to entangle, decreasing the rotational freedom of the particles. For this reason,
the viscosity relations are correlated in terms of the effective parameters of aspect ratio,
L /D, and the volumetric fraction of solid particles, �.

3.3.2.3.3 Viscosity relations for elongated particles: Prolate spheroids and rods

Volumetric concentration of the particles can be expressed in terms of the number density
of particles, n, and the maximum rotational volume of the particles that is proportional to
L3, as

(3.79)

Then eq. (3.17) can be written in the form

(3.80)

The rotational motion of the particles under shear affects the intrinsic viscosity term, [�]
in eq. (3.80). In very dilute dispersions where each particle can rotate freely, the shear rate
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Figure 3.11 Rod-shaped particles (a) randomly distributed in the flow field, (b) after alignment in
the direction of flow, (c) Rod-shaped Zn(C2O4) particles (I·kizler, 2005).



is very low with, Perot �� 1 and particles are long with L/D ��1, the intrinsic viscosity is
given by the Onsager equation

(3.81)

The Onsager equation can be used with both hard sphere and soft particles, whether they are
rigid or flexible. It gives a good estimate of the intrinsic viscosity in the range of aspect ratios,
20 � (L/D) � 1000, where particle dimensions of most materials fall (Wierenga and
Philipse, 1998), as in the case of rod-shaped particles of Zn(C2O4) in Figure 3.11(c). For
lower aspect ratios, end-effects become dominant and Onsager equation underestimates [�].

At higher shear rates, the distribution of particle orientations also become important.
Péclet number limits are given in terms of the aspect ratio, signifying the excluded
volume allowed for an individual particle. In the high-shear region where Perot � (L/D)3

and L/D��1, the equation proposed by Hinch and Leal (1972) can be used to estimate the
intrinsic viscosity:

(3.82)

Comparison of eqs. (3.81) and (3.82) shows that intrinsic viscosity at high-shear rates is
lower than the viscosity at low-shear rates by a factor of � L/D. In between the two limits
of Péclet number for low-and high-shear regions, 1 � Perot�(L /D)3, intrinsic viscosity
decreases in proportion with the cube root of Péclet number, [�]Perot

1/3..

3.3.2.3.4 Effect of an increase in the volumetric concentration of particles

Comparison of eqs. (3.80), (3.81), and (3.82) shows that an increase in the shear rate
affects the coefficient (intrinsic viscosity) of the second term of eq. (3.80). An increase in
the concentration of the particles affects the microstructure of the suspension, and there-
fore, the coefficient of the third term in eq. (3.80), the Huggins coefficient will be affected.
As the concentration of particles increases, a limiting concentration will be approached,
where one particle will be present in each rotational volume, or in terms of the number
concentration, n,

(3.83)

where n* is the overlap concentration, above which the particles will interfere with the
rotation of each other. For particle concentrations less than the overlap concentration, the
equation of Berry and Russell (1987) can be used to estimate the relative viscosity:

(3.84)�
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where the Huggins coefficient kH, is given by the relation,

(3.85)

For higher concentrations of particles Krieger–Dougherty (eq. (3.22)) or Quemada (eq. (3.23))
relations can better describe the variation of the relative viscosity with the volumetric con-
centration of particles. Although the two equations approach each other under certain condi-
tions, Krieger–Dougherty equation gives better fit to Brownian particles and Quemada
equation to non-Brownian particles. Examination of the equations in Table 3.1 shows that they
differ in the exponent of the dimensionless volume fraction, �. The exponent, (�2) in the
Quemada model arises from the similar dependence (power of (�1)) of diffusion coefficient
and the radial distribution function on the volumetric fraction of solids (eqs. (3.18) and (3.19)).
At high-aspect ratios, the rotational and translational diffusivities of rod-like suspensions are
highly retarded due to the entanglement of the particles. Experimentally, Solomon and Boger
(1998) found the exponent of the dimensionless volume fraction, �, to increase with aspect
ratio as � � 1.7, 2.2 and 2.8, for aspect ratios of L/D � 1, 4.8 and 8.4, respectively. � was not
found to be a function of ionic strength, but maximum volumetric fraction, �m was. As the
concentration of electrolyte was increased, �m increased also due to the decrease in the thick-
ness of the diffuse ionic layer, or Debye length, ��1, leaving more space for compaction.
Solomon and Boger, rescaled the effective volumetric fraction with the aspect ratio as

(3.86)

This correction for the effective concentration was found to be valid for rather dilute
suspensions of �/�m � 0.6. For more concentrated suspensions around �/�m � 0.6,
overlapping starts between the particles, restricting the freedom to rotate in any direction.
Thus, the excluded volume is reduced from a sphere to a cylinder in the direction of flow
(Doi and Edwards, 1986) through which the particle can pass with only restricted rotation.
Solomon and Boger (1998) found all their experimental values to fall onto a single curve
regardless of ionic strength and aspect ratio when they rescaled the effective volume
according to these restrictions.

An alternative correction for maximum volumetric fraction, �m was proposed by
Philipse and coworkers (Wierenga and Philipse, 1998; Philipse, 1996) in terms of average
number of contacts experienced by a rod. Experiments showed that the microstructure of
randomly packed rods is a glass state, which is highly probable in view of the entangle-
ments restricting the free motion of particles.

3.3.2.3.5 Effect of surface forces

The effect of the surface forces on anisotropic particles is not much different from spherical
particles. For the suspension to be able to flow under applied shear, the repulsive forces
should be dominant, generally in the form of electrostatic forces. As in the case of spheri-
cal particles, ionic double layers increase the effective volume of the particles, decreasing
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the volumetric fraction at maximum compaction. The effect of shear on the double layers
of the anisotropic particles in a suspension is taken into account under three groups: (1) The
primary electroviscous effect is due distortion of the ionic cloud and hence the potential
under shear. This distortion directly affects the intrinsic viscosity, as it does not depend on
the microstructure. (2) The secondary electroviscous effect is due to the overlapping of the
double layers at high concentrations or under compressive stress. The information in this
area is meager, especially as concerns the variation of the double-layer thickness with
aspect ratio and locally over the particle surface. (3) The tertiary electroviscous effect is due
to the flexibility of the polymer chains. The flexibility of the chain decreases the effective
length and increases the effective diameter of the rod encasing the polymer. In addition,
internal coil formation within the colloid may cause local repulsions due to overlapping of
the ionic clouds.

Existence of attractive forces will generally result in gel formation, with similar proper-
ties as the gels of spherical particles if the aspect ratio is low or polymeric gels if the aspect
ratio is very high. A particular form of attraction, leading to nematic phases is important
in terms of viscosity: The aggregation and alignment of particles form larger particles
above the Brownian range, which easily align in the direction of flow (shear). As a result,
the viscosities of equilibrium crystalline phases are lower than isotropic suspensions of
anisotropic particles.

3.4 MIGRATION, SLIP, AND DRAG REDUCTION

Migration, slip, and drag reduction are associated phenomena taking place along the solid
wall boundaries in general, and along the pipe walls in flow through pipes. The latter case
bears significance in relation to industrial applications, and used advantageously in reducing
the pumping costs during the transfer of concentrated pastes. The same phenomena have a
deterrent effect on the assessment of rheological properties in rheometers. Migration has sig-
nificant consequences in bifurcational flow of the vascular system: The reduced hematocrit
level and consequential reduction in viscosity in the capillaries is due to migration of red
blood cells (RBCs) toward the central sections of the arteries.

3.4.1 Migration

Migration results from the diffusion of particles from an area of high shear to a region of
lower shear. Migration is especially severe in shear thinning suspensions and power-law
fluids where there is a severe reduction in viscosity. The underlying physical phenomena
could be the ease of diffusion of the particles in a medium of reduced viscosity. It could
also result from the resistance of the particle toward deformation if the particles are
viscoelastic. If particles exist in the form of aggregates, attractive surface forces could also
resist disintegration, whereby migration to a low-shear area would be the easiest escape. If
there is a microstructure in the flowing suspension, the equilibrium microstructure is
deformed under high shear. The particles tend to diffuse back to their equilibrium position
to minimize their potential energy. This can be done more conveniently in the central
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regions of the pipe where the velocity distribution is flatter as discussed in Section 2.4.1.1
of Chapter 2. Due to one or all of these reasons, particles migrate toward the central
regions of the pipe leaving a more dilute suspension, and in the extreme, only the sus-
pending medium along the walls as depicted in Figure 3.12.

One of the outcomes of migration is the evolution of slip flow, which will be discussed
next. Another outcome is the effect on particle distribution. 

3.4.2 Slip flow

Slip flow signifies a discontinuity in momentum transfer. It may arise due to absence or
insufficiency of adhesion forces between the liquid and the solid molecules. In this case,
the liquid will not adhere to the surface of the solid walls, invalidating the basic assump-
tion in the derivation of velocity distribution equations (Chapter 2), that the velocity of the
liquid is equal to that of the solid wall to which it adheres. This is called true slip.

Slip flow can also be apparent due to formation of a liquid-rich layer along the walls,
such as in the case of migration. Since the viscosity of concentrated suspensions is very sen-
sitive to solids concentration, the viscosity decreases and velocity increases in a very thin
layer, observed as the slip velocity. Another mechanism operative in the apparent slip could
be a fracture within the suspension causing layers of suspension to slip past each other.

Slip is generally encountered over smooth walls. When the walls are rough, slip is
negligible or does not exist at all along the walls. This shows that slip flow is closely
related with the flow conditions and rheology of a very thin layer along the wall. In the
case of Couette flow, momentum is transferred from the wall to the fluid, creating homo-
geneous flow or deformation within the bulk of the suspension if the walls are rough. If
slip is extensive, momentum transfer between the bulk of the fluid and the wall is inter-
rupted. Then a constant stress is observed over a wide range of shear rates in measurements
with a rheometer. Slip causes plug flow in the case of flow through pipes.

Rough walls can prevent slip formation along the walls, but if heterogeneities exist in
the suspension, a fracture plane will develop if the microstructure of the suspension can-
not sustain the applied stress. The fracture plane may form due to an irregularity of struc-
ture, due to presence of air bubbles, due to water (solvent) layer formed along the walls or
at boundaries of clusters, or due to a random accumulation of void spaces in the
microstructure. Slip can occur even in the absence of these defects. Persello et al. (1994)
studied slip flow in suspensions of silica particles, 9 nm in diameter, stabilized with elec-
trostatic repulsions, at a volume fraction of � � 0.329 corresponding to an effective
volume fraction of �eff � 0.74 together with the ionic cloud, forming a soft-particle paste.
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Under a step strain in a rheometer, the stress increased linearly up to a maximum value
and then decreased to a constant plateau level, just below the dynamic yield stress value,
depending on the volumetric fraction of the solids. This maximum stress is called the
critical stress, and the plateau is the stress that the suspension can withstand. Results of
the flow visualization experiments and rheological measurements lead to the conclusion
that if slip does not take place at the walls, then any plane could be transformed into a slip
layer under these conditions: (1) Slip occurs at a threshold stress, called the dynamic
yield stress, (2) Threshold stress is a function of volumetric fraction of solids only; it is
not dependent on the shear history. (3) As long as the strain level is above the critical, the
stress level is fixed by the existence of these slip planes that localize the strain, (4)
Transformation of a plane into a slip layer is a reversible process: slip layer may form or
an existing slip layer can be self-healed depending on the balance between the osmotic
pressure and the magnitude of the shear stress. Variation in microstructure triggers a
change in the osmotic pressure: If solvent (water) fills a layer, osmotic pressure will tend
to redistribute the liquid among spaces between the particles. In general, heterogeneous
flow (with slip layers) will occur in soft particle pastes exhibiting a yield stress. Similar
heterogeneous flows were observed in laponite (Pignon et al., 1996) and bentonite
(Coussot et al., 2002) pastes.

Meeker et al. (2004) studied the slip flow in microgel pastes by flow visualization and
rheological measurements. Microgel pastes behaved like yield stress fluids under high-
shear stresses conforming to the Herschel-Bulkley model (
 � 24 � 6.7 ·� 0.48). Correlating
flow visualization of slipping paste with the flow curves, they were able to identify three
regimes of slip: Regime I is observed at stresses much greater than the yield stress
(
/
0 �1.5 for microgels): Slip is negligible compared to the bulk flow. Rheological
properties are not affected by the presence of slip. Regime II is observed just above the
yield stress (1� 
/
0 � 1.5) where the slip becomes significant and should be considered
in the flow equations. Regime III is observed just below the yield stress, where deforma-
tion in the bulk is negligible and the suspension flows by sliding over the slip plane along
the walls. In the case of soft particles, such as microgels, yield stress depends on the elas-
tic shear modulus G0 through,

(3.87)

As the elastic shear modulus is increased, characteristic slip velocity of the paste, V *,
occurring at or just above the yield stress increases and the onset of slip is found to shift
to higher shear rates, �*. The characteristic slip velocity could be correlated with the paste
properties through the relation

(3.88)

for all except the most concentrated pastes, where �0 is the suspending medium (solvent)
viscosity and R, the particle radius. This relation implies that slip is affected by the bulk
elasticity of the paste, which in turn is a function of the degree of compression of soft par-
ticles, or equivalently osmotic pressure of the solvent that compress the soft particles.

V � �
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Since hard-sphere particles cannot be compressed, slip does not depend on the shear mod-
ulus of elasticity, G0, in hard-sphere suspensions (Aral and Kalyon, 1994). Solvent vis-
cosity enters into the relation through the lubrication effect: greater the viscosity, the less
will be the probability of slip. That slip occurs readily in suspensions of large particles is
generally accepted. The slip layer thickness � of soft-particle pastes is about 1% of the par-
ticle radii as inferred from different research work with different types soft particles
(Meeker et al., 2004 and references in Table 1 of the article).

Slip is an important phenomenon, both in large-scale operations such as extrusion, and
in microscale operations such as flow through microelectromechanical devices. For this
reason, slip phenomena is an area of extensive research. Experimental work on the slip of
Newtonian fluids over solid surfaces is critically reviewed by Neto et al. (2005). The fac-
tors that may cause slip are given as surface wettability, surface smoothness, shear rate,
formation of nanobubbles and gas films, adsorption of surfactants from solution, polarity,
and viscosity of the liquid. The main conclusion was that slip is a surface phenomenon and
needs a comprehensive study of solid surfaces on the molecular scale. In the realm of
microfluidics, parameters affecting slip change scale also: For example, roughness in the
macroscale is a protrusion or a crevice on the surface. In the microscale, patches of
adsorbed surfactant on the surface produce a roughness.

3.4.3 Drag reduction by surfactants and polymers

Drag reduction is related with slip phenomena in that it is controlled by the mechanisms
taking place in the turbulent boundary layer. Drag reduction has practical significance on
all scales where it is observed. At the largest scale, it is observed in the flow of rivers:
Under the action of constant gravitational force, the flow rate in a river is inversely
proportional to the resistance of the basin (Wang and Larsen, 1994). In the industrial scale,
polymer or surfactant solutions are injected to the pipelines to reduce the energy costs in
delivering concentrated slurries over long distances.

Drag reduction is expressed as the percentage savings in power due to a use of additive,
such as polymers or surfactants:

(3.89)

where Po is the power consumption in flow (the product of frictional losses and the volumetric
flowrate). Drag reduction is achieved if the frictional losses could be decreased with the use
of an additive.

The actual mechanism of drag reduction is not resolved yet. It is known that polymers
of molecular weights in the range of �106 gmol�1 cause a drag reduction around 30%
(Drappier et al., 2006). Typically, around 60% reduction in power consumption can be
obtained with the use of surfactants. Generally, a cationic (quaternary) surfactant is used
with a salt of salicylic acid as the surfactant, which show birefringence properties. Cationic
surfactants adsorb strongly on negatively charged surfaces. However, the mechanism of
drag reduction is more complex than simple adsorption, when salicylic acid is used
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together with the cationic surfactant. These two surfactants, when present above their
critical micelle concentration, aggregate in the form of worm-like micelles, an extension
of hexagonal micelles shown in Figures 1.12(c) and (d). The diameter of these micelles is
around two times the length of a surfactant molecule, but the length spans thousands of
molecules. In this way, they resemble long-chain polymers.

The mechanism of drag reduction is generally attributed to the elongational viscosity of
long-chain structures that resists extensional flow. As given in Chapter 2, the greatest
extension exists in the laminar sublayer due to the velocity gradient in turbulent flow
through pipes, where these long-chain molecular structures partly adsorbed on the walls
exert their full effect. They decrease the flow rate, prevent the formation and penetration
of turbulent eddies, increasing the thickness of the sublayer and the entrance length of the
pipe required for the establishment of steady-state velocity distributions. In this way,
mechanical energy dissipation through turbulent eddies is reduced. However, two counter-
acting mechanisms operate in the process: energy dissipation by turbulence is reduced, but
viscosity is increased and velocity is decreased in the sublayer. Frictional losses are deter-
mined by the net effect of these mechanisms.

Under high-shear rates, polymers are observed to degrade. Surfactants are preferred in
the drag reduction because of their stability and effectiveness. The mechanism through
which they act involves shear-induced arrayed structures. With the formation of these
structures, the surfactant solution shear thickens at low-shear rates, and then suddenly
starts shear thinning. This behavior may be attributed to initial entanglement followed by
dissociation of the micellar structure. Elongational viscosity also increases exponentially
up to a maximum and then shows a sudden exponential decrease approaching the
Newtonian limit at long times. Due to this peculiar rheology, surfactants exhibit superiority
over polymers that cannot display these sudden changes. Drappier et al. (2006) suggest
that drag reduction takes place through slip formed in the sublayer when the elongational
and shear viscosities reach their maximum. Although they cannot submit evidence to
explain the mechanism, they show that both the slip flow and the drag reduction show a
maximum at the same surfactant concentration. In addition, instantaneous orthoradial
velocities were measured with magnetic resonance imaging (resolution time, 0.1 s), in a
couette-type flow cell with two counter-rotating discs at Re � ��Rdisc

2 /� � 5 � 104. The
data shows that pure water and polymer solutions are highly turbulent with root mean
velocity fluctuations of 22.1 and 17.9 cm s�1, respectively. On the other hand, the
surfactant solution appears iridescent showing that turbulence is greatly suppressed and an
order has set in among the surfactant molecules, with a root mean square velocity of only
3.8 cm s�1. This is mainly due to inhibition of momentum transfer from the rotating disc
to the bulk due to slip in the boundary layer, showing that drag reduction mechanism by
surfactants involve the formation of a slip layer.

Clay platelets also show chain-like structures when they aggregate face-to-face, forming
long ladders. When clay concentration exceeds 4%, a network structure is formed in the
suspension, with shear-thinning properties and appearance of yield stress typical of gels.
Wang et al. (1998) tested the existence of drag reduction in the flow of clay slurry in a wide
channel of 23.5 m length and 0.6 m width to simulate river flow. The degree of roughness
was set by using gravel or stones in the bed of the channel. Drag reduction was observed
only in the case flow over the gravel bed under conditions where turbulent shear dominated
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the resistance. Gel structure suppressed the fluctuating turbulent eddies, reducing the
power requirement. Under all other conditions, the increase in the viscous resistance con-
trolled the power requirement; therefore, no drag reduction was observed.

3.5 SHEAR FLOW OF VISCOELASTIC SUSPENSIONS

Viscoelastic behavior in concentrated suspensions may develop due to viscoelasticity of
the suspension medium, the viscoelasticity of the suspended particles, or the existence of
a microstructure of soft particles that deform under shear. In all cases, the effect of vis-
coelasticity is observed under dynamic conditions. These cases will be reviewed in the
following sections.

3.5.1 Effect of the viscoelasticity of suspending medium

Viscoelasticity of the suspension medium affects the overall viscoelastic properties of the
suspension, as well as causing deviations in the microstructure under steady shear flow.
Experimental evidence (Aral and Kalyon, 1997; Scirocco et al., 2004) in the literature shows
that string-like alignment of particles in the direction of flow under an applied continuous
shear is due to the viscoelasticity of the suspending medium.

Aral and Kalyon (1997) conducted systematic investigations of highly filled suspensions
in a viscoelastic medium. Glass beads of 6 �m radius were suspended in a viscoelastic
medium of poly dimethyl siloxane (PDMS) fluid of approximately equal density to
obtain a neutrally buoyant suspension. In this particle size range, Brownian motions are
dominated by hydrodynamic forces (high Péclet numbers), and variations in the
microstructure are correlated with the rheological characteristics under imposed shear.
The viscoelastic behavior was assessed through the response of the suspension 1) to an
increase in the amplitude, and frequency of oscillations in strain, 2) to the time the sus-
pension was subjected to dynamic and steady shear, 3) through the measurement of
normal stresses and 4) through visual observation of the Weissenberg effect. Strain
amplitude sweep tests showed that the storage modulus G
of the suspension medium
remained constant throughout the measured range. Addition of particles caused a
decrease in the range of strain amplitudes over which the viscoelastic response of the
suspension is linear. As the volumetric fraction of the particles increased, the range of
amplitudes where G
 remained constant decreased, both in magnitude and in range. The
value of G
 decreased with a greater slope as the amplitude of oscillations increased in
concentrated suspensions, � � 0.3. The response of the suspension to variations in the
frequency of oscillations were found to differ with the volumetric fraction of solids, �:
For � values approaching the compaction limit, 0.6, storage G
 and loss G� moduli
approached constant values at low values of frequency, indicating the development of
yield stress. Time-dependent response observed for � � 0.4 indicated structuring effects
and thus deformation history under oscillatory shear. The breakup of the network struc-
ture is again associated with the yield stress. Concentrated suspensions took a longer
relaxation time after an applied step-strain was removed.
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Primary normal stress difference N1 (eq. (2.1)) indicates the development of normal
forces in a direction perpendicular to the direction of flow, which is manifested as the
Weissenberg effect, or climbing of the viscoelastic suspension around a rotating shaft. In
the experiments of Aral and Kalyon, the suspension medium exhibited Weissenberg effect,
but at increasing fraction of solids, this effect disappeared completely, leading instead to a
depression of the fluid level around the rotating shaft, vortex formation, as in the case of
Newtonian fluids. This effect was attributed to the formation of particle strings in the flow
direction that lengthened up by capturing approaching particles.

Confirmation to the effect of medium viscoelasticity on particle alignment came
through recent observations of polystyrene particles of diameter dp � 2.7 � 0.1�m
suspended in fluids with a wide range of first normal stress differences and viscosities
(Scirocco et al., 2004). The string formation was confirmed by microscopic images and
small-angle light scattering patterns of the suspension microstructure taken with a digital
video camera. The flow behavior was investigated at the shear rates covering a range of
particle Reynolds numbers, 3 � 10�11 � Rep � 4 � 10�8. The interparticle distance
between the particles in the strings, 1.1�m were constant in time. Compared with the par-
ticle diameters, interparticle distances are too long for the particle surfaces to be effec-
tive. Wall effects seemed to hinder rather than promote string formation. High-shear
regions near the walls in non-Newtonian fluids were also thought to cause aggregation of
strings into crystalline structures observed on the walls. The authors concluded that align-
ment into strings is determined by the rheology of the suspending fluid, with shear thin-
ning as the prerequisite, and viscoelasticity as the necessary condition. In addition,
time-dependent transient rheological behavior is also thought to be important in the cap-
ture mechanism into strings.

3.5.2 Effect of the viscoelasticity of the particles

Biological cells, vesicles, and microcapsules consist of surfactant–polymer membranes
that envelope a liquid, generally with viscoelastic properties arising from their composi-
tion. The membrane undergoes undulatory motion under shear flow. If these particles were
solid with rigid surfaces, shear gradient in a flow field would induce rotary motion to the
particles, with an angular velocity �, equal to half of the local shear rate � � ��/2. If these
particles were liquid drops with mobile liquid–liquid interfaces, then the induced internal
circulation and transmitted shear stress would deform the particle, which would move with
a fixed orientation to the flow direction at steady state. Viscoelastic particles behave like
solid particles under low-shear rates, and approach liquid-like behavior at high-shear rates.
Even under pure shear flow of the suspending medium, these particles will behave elasti-
cally with a normal stress,

(3.90)

� is the angle between the axis of the particle rotating in the positive or negative directions
normal to the flow direction, with a maximum value of the angle of  maximum deformation
�m. For a fixed normal stress, at low-shear rates the viscoelastic particle would show a
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similar behavior to solid particles, whereas at high-shear rates � will approach a constant
value. Snabre and Mills (1999) analyzed the rheology of viscoelastic particles under the
conditions of hydrodynamic effects and inertial forces dominating the motion of the parti-
cles, i.e., dp � 1�m and Rep � dp

2 ·��/�0 �� 1, where Rep is the Reynolds number based on
the particle diameter, dp; ·�, the shear rate in the medium where the particle is situated, �,
and �0 are the density and viscosity of the suspending medium, respectively. Their analysis
is outlined below with the nomenclature adopted in this book. In the analysis, Kelvin–Voigt
model of viscoelasticity is assumed to describe the behavior of the viscoelastic particles:

(3.91)

where �P is the viscosity of the viscoelastic particle (intra particle viscosity) and
dy(t)/d�(t) � sin� � (R�r)/R. For an element on the surface of a particle located at the
origin of the axes, with y � r, x � z and making a rotary motion in the � direction,

(3.92)

Equating the Kelvin–Voigt stress (eq. (3.92)) to the normal stress (eq. (3.90)) on the sur-
face element

(3.93)

the time dependence of the radius of the particle was found by integrating eq. (3.93) with
respect to �

(3.94)

where �(� �p/G) is the relaxation time of the viscoelastic fluid inside of the particle. The
angular position �(t) is defined in terms of the angular frequency and shear rate as

(3.95)

Eq. (3.94) is nondimensionalized with the use of the variables, � � (r – R)/R, giving the
relative particle deformation; � � t/�, the ratio of time to the relaxation time of the
viscoelastic fluid in the interior of the particle, �; � � �p/�0, the ratio of the effective vis-
cosity of the fluid inside the particle to the viscosity of the suspending medium, used to
denote the continuity of shear stresses at the interface, or the ability of an external shear to
sustain deformation within the particle; De � � ·�, Deborah number, the product of the
relaxation time and shear rate, relating the time scales of deformation, ·�, to that required
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for the particle to recover from the effect of the deformation, �, also called the characteri-
stic time of the particle.

The resulting nondimensional equation relates the rate of deformation, d�/d� of an
initially spherical viscoelastic particle to its relaxation time �, the ratio of intraparticle (�p)
to suspending medium (�0) viscosities, �, and the shear rate through the Deborah number,

(3.96)

The general solution of this equation describes the motion of the particle,

(3.97)

In this equation �m is the angle of maximum deformation. The maximum relative defor-
mation �m is related to the Deborah number and ratio of viscosities through,

(3.98)

The normal �xx and shear �xy components of the strain tensor � evaluated at � � 0 and
� � �/4 then follow as,

(3.99)

(3.100)

The authors derived a hard-sphere model to be used as a reference for the relative
viscosity of a suspension of viscoelastic particles (Mills and Snabre, 1988; Snabre and
Mills, 1996),

(3.101)

Under low-shear rates, there is no orientation of particles and maximum packing frac-
tion �0

*, does not depend on the shear rate. When random packing fraction near the glass
transition is taken as the maximum packing fraction, �0

* � 4/7 � 0.57, eq. (3.101) could
describe experimental values up to � � 0.50.

Eq. (3.101) has to be corrected for the effect of the shear rate, if it is to be used to give
the shear viscosity of diluted suspensions of viscoelastic particles. This was done by
expanding the maximum packing fraction �0

* ( ·�) as a function of the shear strain gradient,
�xx ( ·�) in the direction of flow
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where �0
* is the maximum packing concentration around the zero shear rate limit and � a

constant related to the flow type.
Combining eqs. (3.99), (3.101), and (3.102), an expression for the relative viscosity of

dilute viscoelastic suspensions can be obtained as

(3.103)

If the internal viscosity of the particles is much greater than the external viscosity of the
suspension medium, and the suspension not too concentrated, then the viscous dissipation
within the particle phase can be neglected in comparison with the external phase.

Snabre and Mills (1999) assumed that the viscoelastic particles in a concentrated sus-
pension behave as isolated particles in a fluid with viscosity equal to the effective suspen-
sion medium viscosity � � �(�, ·�) and experience an effective shear stress 
 � � (�, ·�) ·�.
Using eqs. (3.101) and (3.102), an equation giving the relative shear viscosity of concen-
trated suspensions of viscoelastic particles were obtained as

(3.104)

This equation could capture the shear thinning behavior of the suspensions associated with
the shear-induced deformation of viscoelastic spheres with �/� � 0.1 and �0

* � 0.57. At
high-shear rates, the relative viscosity was found to reach a constant value of �r�(�, �00

* ,
�/�) which decreases with the maximal particle strain �xx(De � �) � 1/� � �0 /�p in the
flow direction.

3.5.3 Elastic behavior of soft particles with a microstructure

Under long-range interactions, solid suspensions behave like a soft solid with elastic prop-
erties, generally called, soft-particle pastes. Of special interest in this group are the micro-
gel pastes, such as microemulsions, microgels, or polymer-coated particles, due to their
technological importance. Contrary to hard-sphere particles, the “soft” particles can be
compressed above their maximum packing fraction of �0.64, due to the interpenetrability
of their “halos” of diffuse ionic clouds, polymer coating, or surfactant hydrocarbon chains
(see e.g., Figures 1.2 and 1.5). Up to this point, this overlapping was considered as a repul-
sive force among particles freely suspended in a medium. When the number concentration
of particles within a fixed volume of suspending media is increased above the critical con-
centration of maximum compaction, these repulsive forces act as compressed springs and
create another source of elasticity in addition to that arising from the microstructure of the
gels (Figure 3.1(f)). The actual physical case is the interpenetration of the “halos”, but it
may be simpler to visualize this compaction as a flattening of the contact points or faces,
similar to the appearance of high internal phase ratio emulsions or polyhedral foams.

The elastic properties of these soft pastes were simulated by Seth et al. (2006) supported
by experimental results, which will be presented below. The basis of the simulation study
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is a model based on soft spheres arranged randomly, which on compression deform
elastically up to 10% of their radii, so as to conform to the Hertz theory of elasticity (see
Section 1.8.1.2 in Chapter 1). It is also assumed that the deformation due to a pair inter-
action does not affect the deformations in other directions due to surrounding particles.
Under these conditions, the overlap distance hij between two compressed particles of
radius Ri and Rj with their centers located at ri and rj, respectively, is given by

(3.105)

The pair-wise elastic energy arising from this contact is given as

(3.106)

based on Hertz theory. In this equation, E * is the elastic contact modulus of the particles
and gives the contribution of the particles to the total elasticity. The stiffer the particle, the
greater the energy required for a given deformation and hence, greater the elastic contact
modulus. This is similar to Young’s modulus, E and the two moduli are related through the
Poisson’s ratio � by the relation

(3.107)

Rc in eq. (3.106) is a composite radius related to the radii of the contacting particles i and
j through

(3.108)

The total potential energy U for a random packing of N particles is the sum of pair-wise
interaction energies of the particles

(3.109)

Total energy U of the initial microstructure of the system is given in terms of the radial dis-
tribution function g(r) around a particle and the pair-wise interaction energy function u(r) as,

(3.110)

The function for a single particle is extended throughout the suspension by multiplying the
integral with the number density of particles n.
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The osmotic pressure � is related to the stress tensor � through the relations,

(3.111)

(3.112)

where � is the volume of the suspension and tr (
) is the transpose of the stress tensor.
These relations arise from the variation of osmotic pressure as a function of local concen-
tration of ions or polymers within the suspension. Local variations in concentration arise,
in turn, from the action of stresses that compress the particles and their halos together.
Osmotic pressure in an undeformed, isotropic suspension can be given in terms of the
potential energy gradient and radial distribution function as

(3.113)

When an isotropic suspension is stretched uniaxially, the elastic energy per unit volume
changes as a function of the shear modulus G. Deformation affects the microstructure,
causing a variation in the particle density along the extended axis. The pair correlation
function in the extended condition, g(r, �) is now a function of both the radial position from
the particle and the angular distance from the stretched axis, �. When the shear modulus
G, and the osmotic pressure � are scaled with the elastic contact modulus E*, excellent
agreement was obtained between the simulated and the analytical results. Figure 3.13
shows that the shear moduli at high (G�) and low frequencies (G0) are different for
monodisperse random packings. Since the gel relaxes partially at low frequencies, G0 � G�,
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Figure 3.13 Variation of shear moduli and osmotic pressure in soft particle gels as a function of
packing fraction. Simulation results for monodispersed packings are shown with symbols and ana-
lytical results with the lines. (Seth et al., 2006. Reproduced with permission of the Society of
Rheology, Figure 1 in the original).



both moduli and the osmotic pressure are zero below the critical packing volume �c � 0.64
when the particles do not touch each other (C � Cm). At concentrations above the critical,
deformation begins at the contact surfaces and the moduli show an immediate step increase
at �c � 0.64. The increase in the moduli with � above the critical concentration is much
greater than that of regular lattices, covering a range of two orders of magnitude, due to
development of many facets as particles approach each other. Osmotic pressure does not
show a jump but rather a sharp increase. 

The other results of this work and related studies, (Borrega et al., 1999; Cloitre, 2005)
can be summarized as follows:

3.5.3.1 Rheological parameters

Elastic modulus G
 becomes greater than the loss modulus G� and exhibits a plateau at low
frequencies with the onset of solid-like behavior at �c � 0.64 . The polymer concentration
at this volumetric fraction is taken as another criterion for the onset of solid-like behavior,
C � Cm. The value of Cm increases with an increase in the cross-link density and electrolyte
concentration. The shear modulus is found to depend on the concentration of the polymer
with a power-law relation, G0  Ck , when C � Cm. k is found in the range of 6–7, experi-
mentally, and G0 �6 through simulations. This power relation is in agreement with the
results of Ramakrishnan et al. (2005) for hard-sphere gels given in Section 3.2.5.3, above.
The rheology of concentrated dispersions of soft particles can be controlled through the
adjustment of solvent viscosity �0 and the storage modulus of elasticity G
 (Cloitre, 2005).

3.5.3.2 Assessment of the volumetric fraction of solids �

Volumetric fraction of solids in hard-sphere suspensions can be calculated from either the
mass or the number concentration once the density and the size distribution are known. On
the other hand, polyelectrolyte microgels are formed by emulsion polymerization with cross-
linking. Even though the particle size is limited with the micelle size, the cross-linked poly-
electrolyte globules swell at pH values above the isoelectric point coupled with dissociation
of the ionic groups. Soft particle gels swell under the effect of osmotic pressure gradients
within the gels. At high concentrations of the polymer, the reverse process of deswelling
takes place both sterically (by the limitation of the available solvent for full swelling) and
osmotically. In the latter case, the concentration of counterions is closely related to the con-
centration of the polyelectrolyte that produces osmotic pressure gradients between the inside
and outside of the globules. The osmotic pressures can be counteracted by the addition of
neutral electrolytes. At high concentrations above the critical where the globules become
compressed, osmotic deswelling is not significant (Borrega et al., 1999). When osmotic
deswelling is supressed, volumetric fraction varies in proportion with the polymer concen-
tration, �C. Since the critical volumetric concentration for randomly packed soft particle
pastes is �c � 0.64, the volumetric fraction can be calculated using the relation

(3.114)

Cm is the polymer concentration at the onset of solid-like behavior where the zero shear
viscosity diverges.
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3.5.3.3 Effect of polydispersity

Polydispersity was found to have no effect on G0 or � up to 20% deviation in particle diam-
eter, in agreement with experimental observations cited in the article (Seth, et al., 2006).
Percolation threshold where the network forms is not affected by the polydispersity within
this range, either.

3.6 FLOW OF BIOLOGICAL FLUIDS: BLOOD FLOW IN THE 

CIRCULATORY SYSTEM

Blood flow as a complex solid–liquid two-phase flow system incorporates many of the
issues given in this and the previous chapters for the flow of nonliving materials. Based on
these properties, blood flow is chosen as a case to recapitulate this chapter.

Blood is a concentrated suspension with hematocrit levels �H � 0.3 (�H � 0.4 on the
average). As introduced in Chapter 1, it is a mixture of particles and colloids of different
dimensions and shapes. Red blood cells (RBCs), the main component of hematocrit, can
form reversible aggregates that dissociate under high shear. RBCs have polymers integrated
into the membrane: sections of these proteins dangle freely outside of the cell, contributing
to the steric stabilization of the cells besides the electrostatic repulsion. The electrolytes of
the serum further regulate the stabilization. Proteins present in the plasma such as fibrino-
gen and the globulins that are not adsorbed on the cells affect the local osmotic pressures,
causing the depletion forces to become active. The RBCs are viscoelastic, deformable, soft
particles. In addition, the presence of proteins (polymers) in blood confers viscoelastic
properties to the suspension medium of the cells, the plasma. The viscoelastic suspension
medium helps the RBCs to form string-like structures. In addition, the particles migrate to
the central regions of the vessels due to the shear thinning rheological behavior of the
plasma. The RBCs aggregate in the form of rouleaux (Figure 1.18(c)) in the low-shear
regions of the blood vessels. The rouleaux act as flexible rod shaped particles. These prop-
erties cover almost all the topics given under Section 4 of this chapter.

No other flow system has been investigated as much as the circulatory system. Naturally,
most of these are devoted to the effects of the disease conditions. Nevertheless, the system is
so complex that no model developed up to the present can capture all the aspects of blood flow
of even healthy individuals. Complexities are brought about by being in the control of the
nervous system that regulates the flow rate, pressure, and even the composition of the blood
and diameter of the vessels according to conditions existing in other tissues of the body. The
complexities of the circulatory system can be classified under three groups: (1) Flow condi-
tions: Pulsatile flow under periodically varying pressure, and variable flow rate with local
changes in the flow regime. (2) Vascular system: Complex network of blood vessels with walls
of varying flexibility and varying diameters. (3) Rheology of Blood: The nonlinearity intro-
duced to the rheology of the suspension by the interactions between living cells and proteins.

3.6.1 Flow conditions of blood

The circulatory system can be modeled as a highly branched piping network consisting
of pipes of decreasing diameter in the arteries (increasing diameter, in the venous part)
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connected in series, which, in turn are connected in parallel, all within two closed
cycles, systemic and pulmonary, attached to the two compression sides of a double-
acting membrane pump the heart. The energy for recirculation of blood within the cir-
culatory system is supplied by the heart that serves as a membrane type double-action
positive displacement pump. In the systemic cycle, that recycles the blood in various
organs of the body, maximum pressure of compression (systole) is 120 mm Hg and
minimum pressure (diastole) is 80 mm Hg under normal conditions. These values
change with the flexibility of the blood vessel walls, roughness produced by complex
lipids and stenosis (blockage). The cyclic nature of the pressure averaging 100 mm Hg,
persists through the aorta and the large arteries. The amplitude of the cyclic pressure
decays in the small arteries and arterioles and does not exist in the capillaries (Guyton
and Hall, 2006). The magnitude of the average gage pressure decreases significantly in
the small arteries, arterioles, and capillaries connected in series. The average pressure
in the capillaries is �10mm Hg. The gage pressure is effectively zero in the veins and
at the entrance to the atrium of the heart. The flow is again pulsatile in the pulmonary
circulation through the lungs, with the pressure cycling between 25 mm Hg (systole)
and 8 mm Hg (diastole), averaging 16 mm Hg. The magnitude as well as the amplitude
of the fluctuations decays in the arterioles of the lungs reaching a minimum of 7 mm
Hg (in place of zero as in the systemic cycle) in the venules and pulmonary veins. The
same volumetric �8.3 � 10�5m3s�1(� 5Lmin�1) recycles through both the systemic
and pulmonary system. The ratio of the maximum pressure difference between the exit
of the heart and the capillaries in the systemic cycle to the pressure difference in the
pulmonary system

(3.115)

is equal to the ratio of the frictional losses in the systemic and pulmonary blood vessel
systems.

Flow rate, Q, and pressure, or more correctly pressure drop �P are controlled by sepa-
rate mechanisms in the circulatory system. Flow rate is controlled by the tissue require-
ments. The chemical composition of nutrients, wastes, and oxygen are monitored by the
capillaries, arterioles, and venules in the tissues that dilate or constrict to meet the tissue
requirements. In case, the local adjustments are not sufficient, the central nervous system
sends a signal to the heart to increase its capacity, which can be increased four to seven
times, in addition to controlling the diameter of the vessel through constrictions and expan-
sions. Pressure of the blood is controlled by a stronger positive displacement of the heart,
by contraction of the venous system (the blood reservoirs) to increase and by constricting
the arteries to reduce the blood throughput (Guyton and Hall, 2006).

The flow regime is regulated by the mechanisms controlling the rheology of the blood,
the cross-sectional area and the roughness of the blood vessels and velocity of the blood.
The regime is generally laminar, with local turbulence arising when the vessel makes a
sharp change in direction, in bifurcations, in case of internal wall surfaces highly rough-
ened by lipid deposits and obstructions (stenosis) within the vessel.
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3.6.2 The vascular system

The average diameters, wall thicknesses, and elasticities of various blood vessels are given
in Table 3.4. The equivalent area in the table is the total cross-sectional area of a given type
of blood vessel. The average velocities are based on the data given in Guyton and Hall
(2006) with an average blood flow rate of 83 mL s�1 under resting conditions. The calcu-
lated velocities are based on the total material balance, or the continuity principle, which
states that under steady-state conditions blood flow rate in both systems are equal. These
values are valid under at-rest conditions only, as the self-regulatory system of the blood
vessels (constriction and dilation) and the pulsation rate of the heart increase or decrease
the volumetric flow rate of blood according to the necessities of the tissues. 

The walls of the arteries are thicker because of the higher pressures and thicker muscle
cells that provide the elasticity of the walls to convert the extra kinetic energy during the
systole (pulse) to potential energy. This stored potential energy is then converted into lat-
eral pressures during the diastole (flow in between the pulses). In this way, the pulsations
are absorbed by the walls and blood is given to the tissues at a more or less constant rate.

The thinner elastic walls of the veins can dilate to store about 64% of the total amount
of blood (Guyton and Hall, 2006). The inner walls of the blood vessels are lined with a
layer of soft endothelium cells to reduce the frictional losses. The length of the capillaries
varies in the range of 0.2 � L � 0.8 mm. Arteries and veins are much longer, but due to
the highly branched vessel system, the length between bifurcations is generally too short
to reach steady-state conditions.

With the variations of the diameters and velocities in the different section of the circu-
latory system, the Reynolds number is expected to be highly variable, determined largely
by the local value of the viscosity under the prevalent shear conditions. As the diameter of
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Table 3.4

Average properties of blood vessels

Aorta Arteries Arterioles Precapillaries

(a) Arteries
Diameter (mm) 18 4 0.030 0.035
Wall thickness (mm) 2 1 0.020 0.030
Equivalent area (cm2) 2.5 20 40 a

Average velocity (cm sec�1) 33 4 2
Elasticityb H M–H M L

Capillaries Venules Veins Venae Cavae

(b) Veins
Diameter (mm) 0.008 0.020 5 31
Wall thickness (mm) 0.001 0.002 0.5 1.5
Equivalent area (cm2) 2500 250 80 8
Average velocity (cm sec�1) 0.03 0.33 1 10
Elasticityb Not elastic Not elastic M–L M

aCalculated together with the capillaries.
bH: high, M: medium, L: low.



the vessel walls decrease, the rouleaux disintegrate into smaller segments, until only sin-
gle cells remain in the capillaries (see Section 1.9 in Chapter 1). Apparent viscosity of
blood decreases as the capillary tube diameter decreases, reaching a minimum value
around 6–8 �m, corresponding to the diameter of RBCs. RBC deformability has a signif-
icant role in the disintegration of the rouleaux causing the appearance of this minimum in
viscosity, which does not exist with rigidified RBC. The cells deform into thimble shapes
to reduce the shear stress acting on the surfaces. Negative charge carried by both the RBC
and the endothelial cells prevent contact of the cells with the walls facilitating the passage.
Further decrease in the tube diameter causes a sharp increase in apparent viscosity known
as the Fahraeus–Lindquist effect.

Another factor that contributes to the decrease in viscosity in small capillaries is branch-
ing (bifurcation) from the main arteries to the capillary blood vessels: Capillary vessels
generally open up along the walls of the main blood vessels, where the shear rate is high-
est. Similar to the behavior of other colloids given in Figure 3.12 in Section 4.1 of this
chapter, RBCs tend to migrate toward the axially central sections of the vessel, where the
velocity distribution flattens signifying a low-shear region, leaving the plasma with
decreased concentration of RBC along the walls of the vein. In bifurcations, this plasma
layer with highly decreased hematocrit, enters the capillaries. Due to the reduced level of
solids content, the viscosity of blood in the capillaries is less than that in the larger veins
under the same shear rate (Baskurt and Meiselman, 2003).

3.6.3 Rheology of blood

The blood circulatory system is a case of solid–liquid two-phase flow with hematocrit as
the solid phase and plasma as the liquid phase. Hematocrit is mainly composed of
erythrocytes or RBCs, leucocytes or WBCs, and platelets (thrombocytes) at an approxi-
mate order of magnitude ratio of 106:103:105, respectively, in terms of number per cubic
millimeter. The liquid phase, plasma, is a solution of proteins (albumin, globulin, and fib-
rinogen), coagulation factors and electrolytes, mainly Na�, K�, and Ca�2. The presence of
proteins causes nonlinearity in the rheological behavior of plasma, proportional with their
concentration.

Rheology of blood is extremely complicated for reasons that can be grouped under three
headings. (1) Aggregation behavior of RBC and other cells brought about by shear rate and
interaction with other noncellular components. (2) The viscoelasticity of the particulate
phase RBC, as the main component of hematocrit. (3) The viscoelasticity of the plasma,
the suspending medium, due to the presence of proteins, which are complex polymers.

3.6.3.1 Aggregation behavior of RBCs

Aggregation behavior of RBCs and platelets are discussed in Chapter 1, Section 9.1.
Platelet aggregation takes place in case of injury to the vessel walls. Aggregation of RBCs
controls the rheology of blood. In turn, the shear rate in a particular vessel and the con-
centration of proteins, or other polymers infused into the blood vessels. Polymers should
play an important role in aggregation of RBCs as aggregation does not take place in saline
solutions. How the polymers affect the aggregation is not clearly elucidated yet. Of the two
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surface forces that could be effective, depletion and bridging, depletion mechanism seems
to be more plausible, in regard to the reversibility of aggregation with respect to shear rate
(blood flow rate) in healthy individuals with normal levels of plasma proteins. High molec-
ular weight polymers like Dextran infused into the blood may bring about bridging forces
into effect as given in Figure 3.14(b). The change in the mechanism of aggregation is evi-
dent from the shape of the RBC clusters in Figure 3.14(b), that are far different from the
rouleaux shape observed in (a). The stability of these clusters under different flow distur-
bances as in the case of bifurcations also imply the stability of the bridging bonds formed
in the aggregate, as given in the figure: The rouleaux deform into shapeless clusters after
the bifurcation whereas clusters formed in the presence of Dextran are not affected at all. 

Polymers also affect the aggregation mechanism by changing the rheology of plasma.
Normal forces arising in the case of a viscoelastic suspending medium cause the particles
to assume string-like shapes, as will be discussed in the sections below.

3.6.3.2 Viscoelasticity of blood cells

Biological cells and macromolecules are soft, viscoelastic particles, and behave as solid
particles under low-shear conditions, and as liquid-like under high shear. That is, they try
to rotate under the effect of the shear stresses acting on their external surfaces at low-shear
rates, whereas; deform to assume the least resistive configuration under high-shear rates.

Cells are essentially Newtonian fluids wrapped up in a viscoelastic gel (as in the case of
spectrin network beneath the membrane) that in turn is covered by the phospholipid
bilayer, the membrane. The proteins embedded in the membrane attach the spectrin net-
work to the membrane, besides serving other functions summarized in Chapter 1. The very
strong van der Waals and hydrophobic forces among the phospholipid molecules resist
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Figure 3.14 Photographs of rat RBC aggregates (a) RBC aggregates flowing slowly through a pre-
capillary bifurcation following administration of fibrinogen. (b) RBCs flowing through a precapil-
lary bifurcation after the enhancement of aggregation by in vivo infusion of Dextran 500. (Pearson
and Lipowsky, 2004. Reproduced with permission of Taylor & Francis, Figures 1(a) and 2(a) in the
original.)



stretching but allow deformation, in a way limiting the elastic strain that may be imposed
on the cell, displayed through the relative magnitudes of the moduli given in Table 3.5.

Evans and coworkers (Waugh and Evans, 1979; Hochmuth et al., 1979) experimentally
investigated the viscoelastic properties of the cell membrane and found that the elastic
shear modulus of the cell membrane remained constant �6�10�6Nm�1 independent of
the degree of cell deformation. The experimental value of the elastic shear modulus found
by Evans and coworkers were confirmed by further experimental and theoretical work
(Stokke et al., 1985, 1986) and was attributed to the ionic-gel network of spectrin. The
relaxation time of the membrane was found to range in the interval, 0.1 � � � 0.01,
decreasing with increasing deformation rate of the cell (Chien et al., 1978). This again is
expected from the strong intermolecular forces between the phospholipids of the bilayer
that resists stretching (dilatation) in the lateral direction. 

RBCs isolated under high shear deform into ellipsoids, and align at a certain angle to
the direction of flow with a tank treading (undulatory) motion of the membrane at a fre-
quency that depends on the shear rate, f � �/2 (Fisher et al., 1978).

Snabre and Mills (1999) applied the analysis given in Section 3.5.2 above, to blood flow
with RBCs as the viscoelastic particles. The Deborah number De, is related to the relax-
ation time of the cell membrane under small deformations (�0 � 0.1s) with a power-law
relationship,

(3.116)

n varying in the range, 0.7 � n � 0.8. The normal strain is related to the Deborah number
through the relation
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Table 3.5

Rheological constants of red blood cells

Property Units Values References

Internal (cytosolic) 
viscosity, �i Pa s 6 � 10�3 Snabre and Mills (1999)

Surface viscosity 
of membrane, �s N s m–1 6 � 10�7 Waugh and Evans (1979)

Hochmuth et al. (1979)

Shear modulus, G N m–1 6 � 10�6 Waugh and Evans (1979)

Hochmuth et al. (1979)

Relaxation time, � s 0.1 Chien et al. (1978)

Bending modulus, Kb J 1.8 � 10�19 Evans (1983)

Modulus of elasticity, Kel
(modulus of isotropic dilatation) N m�1 0.5 Chien et al. (1978)



Approximating the particle viscosity by the viscosity of the fluid inside the cell membrane
(cytosolic viscosity) �i, the authors found a relation that could describe the relative vis-
cosity of blood:

(3.118)

The relative viscosity at high-shear rates was reduced to

(3.119)

The authors tested the model with experiments conducted with RBCs dispersed in saline
solution. The variation of relative viscosity with volumetric fraction of solids (RBC) and
shear rate is reproduced in Figure 3.17(a) within the context of Example 3.2.

3.6.3.3 Effect of the viscoelasticity of plasma

The suspending medium of the blood cells (hematocrit) is the plasma that contains pro-
teins of different sizes and shapes in an ionic solution, the serum. When the concentration
of the proteins is high, the rheology of the plasma can no longer remain linear.
Viscoelasticity and shear thinning of plasma may be observed at high concentration of
plasma proteins. The non-Newtonian behavior of the plasma has two effects on blood flow:
a high-shear region develops along the walls, and normal forces develop perpendicular to
the direction of flow. Particles orient in the form of strings under high-shear rates as given
in Section 3.5.1. The Weissenberg number, Ws, the ratio of first normal stress difference to
the shear stress controls the string formation. In a recent study performed with fluids of
different viscoelasticity (Scirocco et al., 2004), the formation of string-like structures of
varying lengths were detected by microscopy and alignment of particles were evaluated by
small-angle light scattering technique. The results showed that shear thinning is an essen-
tial factor in string formation. As the particles escape from the high-shear regions along
the vessel walls, migration effects are stronger than in the case of Newtonian fluids. As a
result, tendency of string formation in the central regions of the channel was observed. The
critical Weissenberg number was not constant but varied in the range 0.5–16.5. These
results support the well-known Fahreus and Fahreus-Lindqvist effects in blood rheology,
that the viscosity and hematocrit value in micro blood vessels and capillaries that withdraw
the blood from bifurcations along the wall of the main arteries are lower than their sys-
temic values. In addition, an alternative effect on the agglomeration of RBCs in the form
of rouleaux is suggested as a form of string-like formations. Basing on small-angle light
scattering results, Scirocco et al. (2004) showed that the individual particles in a string do
not touch each other. Similarities in the rheological properties of blood suggest that simi-
lar mechanisms may be involved during the reversible aggregation of RBCs. Further
research is required to assess the effect of the suspending medium rheology on the aggre-
gation behavior of RBCs.
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Example 3.2: Rheology of blood

The case: Blood samples obtained by venipuncture are subjected to rheological analysis
in a controlled stress/strain rheometer. Cone and plate sensors with diameter 35 mm and
cone angle, 1�, are used in the tests. Tests are performed at 37 �C, normal body tempera-
ture, with the use of a solvent trap to prevent drying of the sample. The concentrations of
the components in the blood analysis that may affect the rheology of blood are given in
Table 3.6. Tests are conducted both with fresh blood, immediately after transpiration, and
with blood mixed with EDTA at a ratio of 1.5 mg EDTA mL�1 blood during transpiration.
The clear serum remaining above the fresh blood samples after sedimentation and plasma
remaining above the blood sample taken into EDTA is separated and subjected to the same
tests. pH of fresh blood is 7.3 at 25 �C.

Rheological analysis: Blood viscosity is a highly variable property, varying not only
between different individuals, but also with disease conditions and nutrition. The compo-
sition of blood is given in Table 3.6 to define the conditions under which the rheological
behavior is observed. The variation of the viscosities of fresh blood are given in
Figure 3.15 together with the blood withdrawn into a tube containing EDTA and mixed
right after transpiration. Viscosities of the fresh blood are given together with its serum,
and blood taken into EDTA with its plasma, respectively, for comparison over a range of
shear rates, 10�4� ·� � 10�4 for full evaluation of blood rheology under different condi-
tions, especially at very low-shear rates significant under prolonged inactivity (stasis).
Range of shear rates encountered in blood flow is 10�1� ·� � 10�2 under normal condi-
tions. The nominal values of blood viscosity reported by Baskurt and Meiselman (2003)
are shown with crossed symbols corresponding to 10, 20, and 100 mPa s at the shear rates
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Table 3.6

Composition of blood samples in Example 3.2a

Component Units Concentration Reference range

Blood cells Hematocrit 32.7 35.9–44.6
Erythrocytes mm�3 5.57 � 106 4.1–5.1 � 106

Leucocytes mm�3 7.1 � 103 4.5–11 � 103

Thrombocytes mm�3 3.38 � 105 1.5–4.5 � 105

Hemoglobin g L�1 105 120–156
Proteins Total g L–1 79 64–83

Albumin g L–1 46 35–52
Globulin g L–1 33 25–35
Fibrinogen g L�1 5.48 1.75–4
IgG g L�1 11.58 7–16
IgA g L�1 2.61 0.7–4
IgM g L�1 6.85 0.4–2.3

Ions Ca g L�1 0.105 0.086–0.102
Na meq L�1 140 136–145
K meq L�1 4.3 3.5–5

a The laboratory results are published with the permission of the Clinical Biochemistry Division of the Faculty
of Medicine, Ege University.



of 10, 1, 0.1 s�1, respectively. Since blood coagulates rapidly, generally the blood viscosi-
ties in EDTA are reported. The serum viscosity is around 1.2 mPa s and plasma viscosity
2.1 mPa s, and the blood viscosities around 5–6 mPa s in the Newtonian region at high-
shear rates in agreement with the accepted nominal values. 

Evaluation of blood viscosities in qualitative terms brings the effect of platelets on blood
viscosity. EDTA destroys the structure of platelets as discussed in Chapter 1 and greatly
reduces blood coagulation. The effect of EDTA does not change the shape of the viscosity
curve, except at very low-shear rates approaching zero shear, but creates an order of mag-
nitude decrease, as evaluated at ·� � 1s�1. At higher shear rates, the viscosities approach
each other since the viscosity of fresh blood decreases more steeply with the shear rate.
The more densely coagulated fresh blood drags along some of the plasma proteins during
sedimentation leaving serum of lower viscosity. The effect of reduced polymer content is
significant at ·� � 1s�1, under stretched conditions. The most significant observation given
in this plot is the shear thinning, or power-law behavior of all the samples, and the
Newtonian viscosities observed at high-shear rates. Shear thinning in fresh blood results
from the dissociation of RBC in addition to the effect of alignment of the proteins. The
shear rate at which constant viscosity is observed decreases with a decrease in the colloid
content. Fresh blood, richest in colloid and particle composition, approaches constant vis-
cosity around 200 s�1, whereas, serum with the lowest colloid content approaches constant
viscosity around 20 s�1. Within the measurement range, (10�4 � ·� � ·10�4) only fresh
blood approaches a constant value of zero-shear viscosity at low values of shear rate. This
is to be expected, as only the fresh blood is a concentrated suspension of particles. Plasma
and serum act more like polymeric solutions, the flow behavior of which is given in
Chapter 2. 

Variation of shear stress with shear rate given in Figure 3.16 gives further informa-
tion about the mechanism of shear flow. Only in the case of fresh blood, a linear
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increase of shear stress with shear rate is observed corresponding to zero-shear viscosity,
below the dynamic yield stress range of shear rates. The constant stress or dynamic
yield stress region explained in Section 3.3.2.1 above for the shear-rate behavior of soft
particles indicates the underlying mechanism for the steadily decreasing viscosities in
this region. Effect of the platelets can be seen by comparing the relative magnitudes of
the dynamic yield stress of fresh blood and that withdrawn into EDTA. Shear stress
increases for all the blood components above the yield stress because the volumetric
fraction of particles, the hematocrit is below the maximum compaction level, �m. The
polymers set the lowest level of the shear stress; in fact, the shear stress of plasma and
serum does not remain constant, but increases slightly in accordance with a power-law
relation with the shear rate. 

Effect of the viscoelasticity of RBCs is observed with the analysis of Snabre and Mills
(1999). The variation of the relative viscosity of RBCs suspended in saline solution with
shear rate and volumetric concentration of cells is redrawn from the original article in
Figure 3.17(a). Blood withdrawn into EDTA in this example is used for comparison, to
approach similar conditions as in the original experiments. The relative viscosity of blood
with hematocrit level of 32.7, corresponding to � � 0.327 falls in between the curves for
� � 0.35 and 0.25 onto the correct place. This result is remarkable and shows that Snabre
and Mills analysis is relevant even when the suspending medium shows non-Newtonian
behavior, provided the viscosities corresponding to the same shear rates are used in the cal-
culation of relative viscosity. 

Presence of RBCs and rouleaux in the central regions of the blood vessels are mainly
due to migration. But normal stress differences present in polymer solutions may also be
effective in forcing the particles in a direction normal to the flow direction, i.e., radially,
also causing the aggregation. The first normal stress difference N1, eq. (2.1) is the
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difference between the flow direction and the radial direction. When the normal stress in
the radial direction is greater than the normal stress in the flow direction, N1 becomes
negative. Figure 3.18 shows that the first normal stress difference of fresh blood is almost
equal to that of serum. This signifies that the suspending medium also has viscoelastic
properties, which may be one of the reasons for string (rouleaux) formation of RBC as pre-
dicted by the observations of Scirocco et al. (2004) in Section 3.3.5.1 above. Normal
forces were not observed in blood mixed with EDTA. 

Creep and recovery tests given in Figure 3.19 indicate the viscoelastic behavior under
prolonged applied stress. Under a constant stress of 0.07 Pa, fresh blood behaves almost
like a Burger fluid, if it were not for the decaying overshoots on relaxation. Similar over-
shoots were observed in concentrated soft-particle suspensions by Persello et al. (1994)
and were interpreted as a fast linear response in the direction of the change and a slow
relaxation back to the plateau value. It was taken as an indication of resistance to shear,
if the shear rate is increased, and augmenting this resistance if the shear rate is reduced.
Similar nonlinear response is observed in the case of serum, which essentially behaves
like a fluid. 

Dynamic tests give further support to the viscoelastic behavior observed in fresh blood
and serum, as given in Figure 3.20. The storage modulus of elasticity G
 is higher than the
viscous modulus G� in fresh blood, indicating the dominance of elastic forces. The increas-
ing moduli indicate that blood shows nonlinear viscoelastic behavior at low-shear rates
approaching linearity in the range of physiological interest. On the other hand, serum acts
like a liquid with the viscous modulus G� greater than the modulus of elasticity G
and
shows a linear response over the shear-rate interval of physiological interest. 

Various models are used to predict the shear behavior of blood. Within the context of
this example Quemada model cannot be used, because the determination of maximum
compaction of blood cells is outside the scope of this book. The fit to the Casson model
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(eq. (2.50) of fresh blood and serum is given in Figures 3.21(a) and (c), respectively. The
regression equations for fresh blood,

(3.120)

and serum,

(3.121)
 �0 5 0 5 0 5 0 5 20 0041 0 0012 0 9946. . . .( . ) ( . ) .� � �r


 �0 5 0 5 0 5 0 5 20 165 0 0067 0 9972. . . .( . ) ( . ) .� � �r
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The yield stress of the serum is equal to the yield stress reported for blood of 2–4 mPa
(Baskurt and Meiselman, 2003) but the yield stress of the blood is much higher. The excess
concentration of the polymers, fibrinogen, and Immunoglobulin M may be one reason for the
increased yield stresses. The viscosity at infinite shear, 6.7 mPa s for blood and 1.2 mPa s for
serum are in complete agreement with the values given in the same reference. 

For colloidal suspensions with constant zero shear and infinite shear viscosities, the vis-
cosity variation with shear stress is described by the equation,

(3.122)

The viscosity at the critical stress 
c is defined by the equation,

(3.123)

Dimensionless viscosity plotted against the dimensionless shear stress is given in
Figure 3.22. The drop in the dimensionless viscosity by more than two orders of magni-
tude at the critical shear stress (
 /
c) supports the existence of the dynamic yield stress
observed in Figure 3.16. Viscosity of fresh blood within the measured shear rate range is
fitted to eq. (3.122) giving

(3.124)
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The exponent 2.36 is close to the range of typical values 1 � � � 2 (Russel et al., 1989).
The exponent indicates that the rouleaux length, formation, and disintegration are highly
effective in determining the shear stress dependence of the viscosity, in accordance with
experimental observations.
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– 4 –

Motion of Particles in Fluids

Motion of particles other than Brownian motion will be the subject of this chapter. There
will be a relative motion between the particles and the suspending fluid unless: (a) the par-
ticles form a gel and become captured within the network structure; or (b) interact strongly
with each other and with the suspending fluid to form a single-phase non-Newtonian fluid;
or (c) have the same density as the suspending fluid so their moment of inertia cannot be
identified from that of the fluid. The aims and conditions of the process determine the
desirability of this relative motion: if a stable and homogeneous suspension is the aim, then
measures are taken to prevent the relative motion, such as stabilization by repulsive sur-
face forces coupled with introduction of turbulent convection to enhance random motion
of particles and prevent settling. Convective motion may disperse the weak aggregations;
but may also be used to enhance aggregation if surface forces are adjusted accordingly. On
the other hand, motion of particles in fluids is the basis of all separation processes and the
design of the separation equipment is based on enhancing or manipulating the relative
motion. Under all conditions, the motion of particles should be under control for proper
and efficient operation of the processes. The parameters that affect velocity of particles in
Newtonian fluids, namely, the forces acting on the particles, and the particle characteristics
that affect the motion of particles will be presented in this chapter, which will form the
basis for flow of settling slurries taken up in Chapter 6, mixing of solid-liquid mixtures, in
Chapter 7 and separation of solids from liquids, in Chapter 8.

4.1 MOTION OF THE FLUID PHASE

The drag force on the particle, or equivalently Stokes’ law for the shear force, expressed as
energy of shearing in the definition of Peclet number in eq. (3.10), is of prime importance
in determining the rheological behavior of concentrated suspensions. Stress distribution on
the surfaces of the solid particles created by the velocity distribution of the flowing liquid
will affect the motion of the particles even if the suspension is not concentrated. The effect
of fluid flow on the particle should then be taken up first, before an analysis of the other
forces acting on the particles.
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4.1.1 Creeping flow

Creeping motion, also known as Stokes’ flow, takes place when the velocity of the flow-
ing fluid is very low, or when the viscosity of fluids is very high and/or size of the parti-
cles small. In creeping flow the Reynolds number is very small (Re ��1) such that the
inertial effects can be ignored in comparison with the viscous resistance.

Motion of the fluids is described with the help of streamlines and stream functions. A
streamline is defined as a path within a fluid across which no flow occurs and the tangent
of which gives the direction of the local velocity at that point. Velocity in creeping flow
regime is so slow that the streamlines can diverge as the particle approaches, flow around the
surface of the particle and then converge again downstream of the particle as depicted in
Figure 4.1(a). As the Reynolds number increases, vortices start to appear in the wake of the
sphere indicating the separation of the boundary layer from the surface as in Figure 4.1(b).
The separation point of the boundary layer moves down to the equator of the sphere, with
an increase in the velocity of the fluid to much higher values.

Stream functions, �, are used to define and plot streamlines. Lines of constant � are
streamlines of the flow; i.e., they are everywhere parallel to the local velocity vector. Thus,
selected � lines can be interpreted as boundaries of the flow. Velocity components in any
coordinate system at a given point are described by the partial derivatives of � at that point.
The stream function is generally defined for two-dimensional flow through or around var-
ious geometries as �� (x, y).

4.1.2 Velocity distribution around a sphere in creeping flow

Flow of an incompressible Newtonian fluid around a stationary sphere of radius Rp will be
taken as an example for creeping flow. Fluid with a uniform free stream velocity V�

approaches a fixed sphere of diameter dp vertically upward in the z-direction as shown in

(a) (b) (c ) 

Figure 4.1 Flow patterns for the flow around a sphere (a) for creeping flow condition; (b) as the
Reynolds number increases; (c) for high Reynolds numbers.



Figure 4.2(a). Creeping flow conditions are valid provided Reynolds number based on free
stream velocity V� and particle diameter dp is less than one,

(4.1)

where � and � are the density and viscosity of the fluid, respectively.
Spherical coordinates (r, �, �) will be used to analyze the system with the origin at the

center of the sphere and with the velocity components of the form

(4.2)

Solutions of the equation of motion (Navier–Stokes’ equations) in three dimensions are
difficult to obtain because of the dependence of both velocity and pressure on the vari-
ables. Hence, the solution is simplified with the assumption of axisymmetric flow around
the z-axis, for which ���� � 0 and V� � 0. With the elimination of variation in the third
direction, it becomes possible to solve the equation of motion in two-dimensional flow
by introducing the stream function, � (r, �). Velocity components (Vr and V�) of the
flow first will be presented as derivatives of �. Then, r- and �-components of the
Navier–Stokes’ equations of motion are combined into one equation using stream func-
tions. Velocity components can thus be obtained after � is found (Bird, et al., 2002).

Equation of continuity for the two-dimensional incompressible flow in spherical coor-
dinates can be rewritten from eq. (A3.1.3) as
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Figure 4.2 (a) Schematic representation of a sphere, to which fluid approaches with a velocity V�

in the z-direction; (b) surface element taken on the sphere, dAr, shown as shaded area.



Multiplying the above equation with r 2sin � gives

(4.4)

Stream function must automatically satisfy the continuity equation and it is also an exact
differential:

(4.5)

Comparing eqs. (4.4) and (4.5) gives the expressions for velocity components in terms of
the stream function as

(4.6)

(4.7)

The equation of continuity is automatically satisfied by replacing eqs. (4.6) and (4.7) into
eq. (4.3).

The Navier–Stokes’ equations for spherical coordinates with incompressible flow are
given in Table A3.5. These equations can be written in operator notation as

(4.8)

where V is the velocity vector of the fluid at a fixed point in space in three-dimensional
form, DV/Dt gives the total derivative of V, and V	
V term indicates the inertial term.

The r-component (eq. (A3.5.7)) and �-component (eq. (A3.5.8)) of the Navier–Stokes’
equations are first written in terms of � by substituting eqs. (4.6) and (4.7). Then, differ-
entiation operations, i.e., the �-equation with respect to r and r-equation with respect to
�, are carried out and equating the second derivatives of the pressure gives (Slattery, 1978;
Bird et al., 2002)
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where � is the kinematic viscosity and equals ���/�, and the Jacobian notation 
�(�, E 2�)/�(r, � ) can be expressed as

(4.9b)

and also E 2 represents the second derivatives with respect to r and � in the form of:

(4.9c)

If the creeping flow conditions are satisfied, the term V	
V can be neglected and for
steady state, i.e., ���t�0, the LHSs of eqs. (4.8) and (4.9a) become zero. Hence, the
Navier–Stokes’ equation in terms of stream function for creeping flow becomes

(4.10a)

(4.10b)

The boundary conditions (BC) are:

(4.11)

(4.12)

(4.13)

BC1 and BC2 describe the nonslip condition at the sphere surface. The third condition
arises from the assumption of semi-infinite medium where Vz � V� as r � �. The last
boundary condition suggests that �(r, � ) is of the form

(4.14)

Although �(�)� sin2�, �(r) is not as straightforward as �(r) � r 2 due to the velocity
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separating the variables leads to a linear, homogenous and fourth order differential equa-
tion in terms of function f in eq. (4.14):

(4.15)

A solution of the form f (r)�Cnr n is assumed to exist, where Cn is a constant. Repeated
differentiation of f (r) and substitution of these derivatives into eq. (4.15) gives solutions
for n��1, 1, 2, 4. Therefore, f (r) has a general solution of the form

(4.16)

Using BC3, constants C3 and C4 are found as

(4.17)

and also using the boundary conditions BC1 and BC2 at r � Rp, one can evaluate the con-
stants C1 and C2 after some mathematical manipulations as

(4.18)

Hence, the stream function expression takes the form

(4.19)

The velocity components within the fluid are obtained after substituting the stream func-
tion definition of the above equation into eqs. (4.6) and (4.7) giving, respectively

(4.20)

(4.21)

Equations confirm the zero velocity at the surface of the sphere and also show that for r��,
the fluid velocity is in the z-direction as Vz � V� (Vr � V�cos� and V� ��V� sin�).
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4.1.3 Pressure and shear stress distribution on the surface of a sphere

The pressure distribution within the fluid under creeping flow conditions is found by sub-
stituting the velocity components into the r - and �- components of the Navier–Stokes’
equations (eq. (4.8)) reduced to

(4.22)

After some mathematical manipulation, the pressure distributions within the fluid in the r-
and �- directions are given as

(4.23)

(4.24)

where P is the modified pressure and equals P�p��gz.
The pressure distribution is determined after integration of eqs. (4.23) and (4.24) with

the condition that as r � � the modified pressure equals p0 (ambient pressure, the pres-
sure in the plane z � 0 far from the sphere)

(4.25)

where �gz denotes the hydrostatic pressure resulting from weight of the fluid and the last
term represents the contribution of the fluid motion. The pressure distribution on the sur-
face of the solid particles is found by evaluating eq. (4.25) at r � Rp and z � Rpcos�

(4.26)

The shear stress 	, acting tangentially on the sphere, as shown in Figure 4.2(a), is
obtained by substituting the velocity components into eq. (A3.4.11) as

(4.27)

The normal (p) and tangential (	) forces exerted by the flowing fluid act at every point
on the sphere surface. The net force Fp acting on the sphere will be in the z-direction
because of the axisymmetric flow around the z-axis. So, the net force is obtained by
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integrating the z-components of the normal and tangential forces over the surface of the
sphere (r � Rp) as

(4.28)

where ((�p)|r�Rpcos�) and ((	r�)|r�Rp sin�) denote the z-components of the normal and
tangential forces, respectively. A differential surface element of the system is shown in
Figure 4.2(b) that equals dAr �Rp

2 sin�d�d� at the sphere surface. The pressure
(eq. (4.26)) and shear stress (eq. (4.27)) distributions are substituted into eq. (4.28) at
r � Rp and the net force of the fluid on the sphere is obtained as

(4.29)

The first term on the right is the buoyancy force that the fluid exerts on the sphere, the sec-
ond term corresponds to the form drag as a result of the normal forces and the third term
gives friction drag as a result of the tangential forces. So, the total drag force, FD, acting
on the particle due to motion of the fluid is

(4.30)

which is known as Stokes’ law.

4.2 FORCES ACTING ON PARTICLES

Force could be briefly described as an influence on a body, which causes it to accelerate.
In this way, force is defined through Newton’s laws of motion. Newton’s laws of motion
have two fundamental principles, which form the basis of classical mechanics. The first
law, also called the law of inertia, states that if a body is at rest or moving at constant
speed, it will continue to do so unless it is acted upon by another force. The second law
states that the force Fp acting on a body is equal to the mass m of the body times its accel-
eration a, as

(4.31)

where �p is the density and �p the volume of the body.
Force can also be defined in terms of an energy gradient as
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Of special interest is the gradient in potential energy, which is called potential, in short.
Any particle captured within a field is subjected to a force acting on it. Field strength
describes a measure of the force that a field exerts on a mass. Examples are gravitational,
magnetic, and electrostatic forces acting under gravitational, magnetic, and electric fields,
respectively.

It is misleading to classify the forces according to their range as “short” and “long”
ranges without denoting the length scale. Surface forces act on the length scale of mole-
cules and colloidal particles; therefore, their effect is observed in such processes as aggre-
gation of particles as presented in Chapter 1. The forces that will be presented in this
chapter are effective over much greater distances than the particle or aggregate dimensions.

4.2.1 Gravitational force

The gravitational field strength (in vector notation) is defined as the force per unit mass
acting on a body

(4.33)

The gravitational force, Fg, of a particle is expressed in terms of volume of the particle as

(4.34)

where �p is the density of the particle, �p the volume of the particle (�p �
dp
3 /6 for

spherical particles of diameter dp) and g the acceleration due to gravity (9.81ms�2) at the
Earth’s surface. For small particles with a low terminal velocity, motion under the effect of
gravity will be slow. To speed-up the process, the acceleration can be increased by rotation
in a centrifugal field at an angular velocity, �

(4.35)

where r is the distance between the particle and the axis of rotation. Under a centrifugal
field, the particles move radially outwards.

4.2.2 Buoyancy force

Buoyancy is caused by the pressure difference on the lower portion of an object being
higher than the portion on the top. The result is a force that points in the opposite direction
of gravity. It is calculated using Archimedes’ Principle, which states that the magnitude of
the buoyant force is equal to the weight of the displaced fluid. So, the buoyancy force, Fb,
is proportional to the volume of liquid that it displaces, the gravitational acceleration, and
the density of the liquid; and can be written as

(4.36)F gb p� ��

F mr rc
2

p p
2� �� � ��

F gg p p� � �

g F� m
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Both the gravitational and buoyancy forces depend on the volume of the particle and act
on a particle whether it is stagnant or moving in a fluid. Buoyancy under a centrifugal field
is expressed with an analogous equation

(4.37)

4.2.3 Magnetic force

Magnetic fields can be produced by magnetic materials or by electric currents. Magnetic
particles can be classified as ferromagnetic, paramagnetic, and diamagnetic based on mag-
netic susceptibility of particle’s material, �m. Ferromagnetic materials have a very high
susceptibility to magnetic forces. Magnetic force acting on a magnetic particle in the pres-
ence of a nonuniform magnetic field is given by

(4.38)

where �0 is the magnetic permeability of vacuum [4
 � 10�7 TmA�1], �mp relative mag-
netic permeability of the material, H the magnetic field strength inside the particle, and H0

the external magnetic field strength at a given point (Svoboda and Fujita, 2003; Smolkin
and Smolkin, 2006). The magnetic force acting on a particle becomes zero in a homoge-
nous magnetic field.

Freely moving charged particles also experience a magnetic force when passing through
a magnetic field. The magnetic force, FM, acting on a single charged particle is written as

(4.39)

where q is the charge of the particle, V the velocity vector of the particle, and B the mag-
netic induction. The magnetic force is perpendicular to the plane formed by the velocity
vector and the magnetic field vector.

4.2.4 Electrostatic force

An electric field (in the vicinity of charged surfaces or charged particles) at any point in
space causes a charged particle in this space to experience a force, the electrostatic force.
The strength of electric field, E, is defined as the force FE per unit charge (q)

(4.40)

A charged particle in the presence of both an electric field E and a magnetic field B will
feel a force, given by the Lorentz equation

(4.41)F E V B� � �q( )

E
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Electrostatic force acts in the direction of the electric field, but the magnetic force acts per-
pendicular to the magnetic field. In addition, the electrostatic force acts on a moving or sta-
tionary charged particle, whereas the magnetic force acts only on a moving charged particle.

4.2.5 Acoustic force

A colloidal particle with dimensions comparable to the wavelength of sound (kRp ��1)
will be subjected to a force Fac

(4.42)

with

(4.43)

when a standing wave field is set up in the fluid, in which the particle is suspended
(Kapishnikov et al., 2006). In this equation, E�st is the time averaged acoustic energy den-
sity of the standing waves, cp/c the ratio of the velocity of sound in the particle to that in
the fluid, Rp the particle radius, k the wave-number (k � 2
/),  being the wavelength,
and r0 the vector normal to the force node. Acoustic forces are proportional to the volume
of the particle in the expression and the frequency of the ultrasound waves, f ( f � kc/2
).

4.2.6 Shear force

Forces presented above have a common characteristic of being dependent on the body
(mass or volume) of the particle. As a result, they act on the particles even under static con-
ditions. On the other hand, shear forces are dynamic forces and act on the surface area to
deform a particle

(4.44)

where S is the surface area of the particle. An analogous force, the drag force, is again area
dependent, and acts on the cross-sectional area, A, of the particle. Shear forces exist wherever
there is a relative motion and adhesive/cohesive forces acting between the molecules (no-slip
condition). In the absence of adhesive forces, the fluid and the solid velocities are not equal at
the interface and there is no shear force, so the fluid slips past the particle. Shear forces exist
between fluid layers as well as between a solid boundary and a fluid flowing past it.

4.2.7 Drag force

The resistance of the particle to motion is called the drag force. The magnitude of the drag
force exerted on a body moving in a fluid depends on the velocity of the body relative to
the medium, the viscosity and density of the medium, the shape and cross-sectional area
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of the body, and the roughness of its surface. Drag force always acts opposite to the direc-
tion of the particle’s velocity, and is expressed as

(4.45)

where CD is the drag coefficient, A the projected area of the particle onto the flow direc-
tion, and V the velocity of the particle relative to the medium. The drag coefficient CD

depends on the velocity of the particle, viscosity of the medium, the shape of the particle,
and the roughness of the particle’s surface. The particle Reynolds number, Rep, is found to
be a useful dimensionless number that can characterize the drag coefficient’s dependence
on the velocity. Within this context, the Reynolds number is the ratio of the inertial force
of the particle to the viscous force, on the length scale of the particle

(4.46)

where Vt is the terminal velocity of the particle which will be given in detail in the next section.
The drag force for a spherical particle is defined as

(4.47)

There are three regimes for the drag coefficient in flow around a spherical particle:

– Laminar regime (Rep � 1): Creeping flow conditions are valid for small values of the
Reynolds number, where inertial effects are negligibly small compared to the viscous
forces. Stokes derived the total resisting force on a spherical particle for this flow condition
as shown in Section 4.1. Eq. (4.30) can be rewritten in terms of particle diameter as

(4.48)

One-third of this drag force is a form drag coming from normal stresses on the sphere, and
the remaining 2/3 is a friction drag coming from shear stresses on the sphere. The total
drag force acting on the particle is obtained by integrating the normal and the tangential
forces over the surface of the particles (Section 4.1.3). The drag coefficient for spherical
particles in Stokes’ regime can be expressed by combining eqs. (4.47) and (4.48) as,

(4.49)

– Intermediate regime (1 � Rep � 1000): When the inertial effects cannot be neglected,
the drag coefficient cannot be predicted theoretically, and so an approach has to be
developed to correlate data for CD and V.

– Turbulent regime (Rep  1000): When the flow is turbulent, the drag coefficient CD is
approximately constant, independent of velocity or Re. Drag coefficient of a spherical
particle in turbulent flow (known as Newton’s regime) becomes
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(4.50)

At Rep �2 � 105 the drag coefficient decreases abruptly due to boundary layer separation in
the form of vortices carried by the fluid downstream, reducing the friction on the particle.

4.3 MOTION OF SPHERICAL PARTICLES

Uniform particle motion through a fluid confined within a chamber is the result of the
action of two groups of forces: a constant external force (Fext) such as gravity, buoyancy,
electrostatic, or magnetic forces and the resistance of the fluid to particle motion. The type
of fluid involved, flow regime, the size and shape of the particles, and the dimensions of
the chamber are also important factors affecting the motion. In a gravitational field, motion
of spherical particles is governed by Newton’s law of motion, where all the affecting forces
sum up to the net force, Fp, as:

(4.51)

with the direction of gravity taken as the positive direction and where Fg  Fb. When the
particles are charged, electrostatic (eq. (1.3)) or double layer repulsion (eq. (3.76)) should
also be included into the force balance. The force balance equation can be written in terms
of particle characteristics as

(4.52)

The velocity of spherical particles as a function of time under the action of gravitational,
buoyancy and drag forces in Stokes’ regime (Rep � 1) is:

(4.53)

The solution of this differential equation is

(4.54)

This is a decaying function of time approaching the term outside of the parenthesis at a
rate dependent on the particle characteristics and viscosity of the medium.

The solution to the differential equation, eq. (4.52), under the same forces in the Newton’s
regime (taking CD as constant) gives a more complex function of time for the decay rate
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Eqs. (4.54) and (4.55) imply that there are two stages during the motion of the particle: the
acceleration and then constant velocity, known as the terminal velocity or free settling
velocity, Vt, stages. The terminal velocity of a particle is the constant speed it reaches when
all the forces exerted on it are in equilibrium:

(4.56)

Substitution of eqs. (4.34), (4.36), and (4.45) into the above equation gives

(4.57)

Eqs. (4.54) and (4.55) then reduce to eq. (4.58) for Stokes’ regime (Vts) and eq. (4.59) for
Newton’s regime (VtN), respectively, for spherical particles

(4.58)

(4.59)

The terminal velocity of particles in the intermediate regime can be written in the general
form of

(4.60)

which reduces to the following equation for spherical particles:

(4.61)

In the case of charged particles settling in an electrolyte solution, fluid flowing around the par-
ticle distorts the electrical double layer and gives rise to an induced electrical field. Keh and
Liu (1997) and Liu and Keh (1998) found that the presence of fixed charge reduces the settling
velocity of the charged particle in comparison with uncharged particles given by eq. (4.61).

4.3.1 Correlations for drag coefficient

The drag coefficient, CD, is not a constant and decreases linearly with increasing Reynolds
number. Hence, it is dependent on the flow regime of the fluid. CD in the laminar (Rep � 1)
and turbulent regimes (Rep  1000) can be calculated by Stokes’ (eq. (4.49)) and Newton’s
equations (eq. (4.50)), respectively. Except in the Newton’s regime, the terminal velocity
appears in the equations of both the drag coefficient and the particle Reynolds number. No
closed form solutions are possible for the intermediate region of 1� Rep �1000. Numerous
sphere drag correlations have been proposed in the literature relating CD to the particle
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Reynolds number and some of these are listed in Table 4.1. Brown and Lawler (2003) ana-
lyzed all the correlations in the list using 480 experimental data points, which were corrected
for wall effects. They suggested a model, which is the modification of Haider and Levenspiel
(1989), that fits to �82% of the data lying within �5% of the correlation. The correlation of
Clift et al. (1978) appears to model the drag on spheres the best. As more than one correla-
tion is used to describe the drag coefficients in the different ranges of Reynolds numbers, it
includes slight discontinuities at the transitions from one Reynolds number range to another. 

4.3.2 Correlations for terminal velocity

Determination of the terminal velocity, Vt, from any of the proposed equations for CD ver-
sus Rep requires a trial and error procedure, since Vt is present in both variables, and also
the relation between the drag coefficient and the Reynolds number is highly nonlinear.
This difficulty, however, can be circumvented by introducing a new dimensionless group
as dimensionless terminal velocity, V *, as a function of a dimensionless sphere diameter,
d * (Brown and Lawler, 2003).

The terminal velocity of rigid spheres can be directly predicted using these dimension-
less numbers:

(4.68)

(4.69)

The third power of d * is called the Archimedes number, Ar.

(4.70)

The terminal velocity can be written in terms of dimensionless terms in Stokes’ regime as

(4.71)

and 

(4.72)

in Newton’s regime. Terminal velocity correlations in terms of dimensionless functions
developed by various authors are given in Table 4.2. For moderate Reynolds numbers
(Rep � 5000), terminal velocity can be calculated by introducing a new factor to eq. (4.71),
that gives the deviation of the terminal velocity from that of Stokes’ velocity. Eqs. (4.76)
and (4.77) are obtained in this manner. 
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Table 4.1

Drag coefficient correlations for spherical particles

References Rep range Correlation

Clift et al. (1978) 0.01 �Rep �20 (4.62a)

260�Rep �1500 (4.62b)

1500�Rep �1.2�104 (4.62c)

4.4�104 �Rep �3.38�105 (4.62d)

Flemmer and Banks (1986) Rep �8.6�104 (4.63)

Turton and Levenspiel (1986) Rep �2.6�105 (4.64)

Khan and Richardson (1987) 0.01 �Rep �3�105 (4.65)

Haider and Levenspiel (1989) Rep �2.6�105 (4.66)

Brown and Lawler (2003) Rep �2�105 (4.67)
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4.3.2.1 Wall effect on terminal velocity

Wall effect refers to the retardation of the motion of a particle due to the opposing motion of
the displaced fluid. When the diameter of the particle approaches the length scale of the
container, the retardation effect of the walls is quantified by introducing a quantity called
wall factor, f. The wall factor is defined as the ratio of the terminal velocity of a sphere in a
bounded fluid medium (Vtw) to that in an unbounded fluid (Vt), i.e., f � Vtw/Vt. Wall factor is
a function of Reynolds number and the spherical particle-to-tube diameter ratio,  � dp/D.

In the laminar flow region, the empirical equations obtained by Francis (1933)

(4.78)

and theoretical expression due to Haberman and Sayre (1958)

(4.79)

were found to be satisfactory for  � 0.9 and Rep � 0.2.
In the turbulent region, wall factor again becomes independent of Rep. Munroe’s (1888)

equation is the most satisfactory for 1000 � Rep � 3000 and  � 0.8

(4.80)
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Table 4.2

Terminal velocity correlations in dimensionless form

References Correlation

Zigrang and Sylvester (1981) (4.73)

Khan and Richardson (1987) (4.74)

Turton and Clark (1987) (4.75)

Nguyen et al. (1997) (4.76)

Brown and Lawler (2003) (4.77)
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Newton’s correlation, eq. (4.81), also gives the best prediction in Newton’s regime
especially at around Rep �104

(4.81)

Wall factor values depend only on the diameter ratio in both laminar and turbulent regimes
while they are a function of both the diameter ratio and Reynolds number in the intermedi-
ate regime. For the intermediate flow regime, Fidleris and Whitmore (1961) reported the
effect of the column diameter on a single particle settling velocity in the range of Reynolds
numbers, 0.05 � Rep � 20,000 and diameter ratios 0 �  � 0.6. They presented wall effect
correction factors given in Figure 4.3, based on 3000 experimental velocity measurements,
plotted as (Vtw /Vt) versus the Reynolds number, Rep (Rep is calculated at Vt), for various
diameter ratios. They found that the retarding effect of the wall on a falling sphere is
reduced on transition from laminar to turbulent flow and decreases with increasing Rep to
an approximately constant value. They showed that the wall effect is greatest at low Rep and
high  values. For small  values (� 0.1), wall effect becomes negligible for Rep  30. Di
Felice (1996) gives another relation for the wall effect over the whole range of flow condi-
tions, in conformation with the results of Fidleris and Whitmore (1961) as

(4.82)
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Figure 4.3 Wall effect correction factors for different particle-to-tube diameter ratio (d/D) falling
in a cylindrical vessel. V/V� � Vtw / Vt and Ret � Rep (Fidleris and Whitmore, 1961. Figure 4 in the
original, reproduced with the permission of British Journal of Applied Physics). 



where � is a function of Rep and can be given as

(4.82a)

4.4 MOTION OF NONUNIFORM PARTICLES

The relations for drag force and terminal velocity in Section 4.3 are valid for spherical
geometries even though very few processes involve perfectly spherical particles. The cor-
relations for spheres serve as a basis to develop expressions/correlations for nonspherical
particles. In this section, motion of nonspherical particles and porous particles including
fractal aggregates and clusters, motion of particles with nonhomogenous density distribu-
tion will be presented. Since the settling velocity of a particle depends strongly on its drag
coefficient, correlations for the drag coefficient of these irregular particles are required for
the understanding of the processes and the design of equipments. Also, motion of particles
with nonhomogenous density distribution, will be presented at the end of this section, for
the case of microorganisms in motion.

4.4.1 Motion of nonspherical particles

The terminal velocity and the drag coefficient of a particle are dependent on many
parameters: particle size, shape and orientation, the viscosity of the medium, densities of
the particle and the fluid medium. Although the development of a single correlation for all
shapes and orientation of nonspherical particles is very difficult, the correlations can be
improved using various shape factors and parameters.

4.4.1.1 Shape factors and parameters

The basic equations for drag coefficient CD (eq. (4.45)) and terminal velocities Vt

(eq. (4.60)) have terms related with particle cross-sectional area and volume. For an irreg-
ularly shaped particle, it is difficult to assess these quantities, such as in a natural sponge
settling in the sea. Various expressions are developed to define an equivalent diameter on
which the effective cross-sectional area and volume calculations will be based. Some of
these expressions are presented below:

– Equivalent-volume sphere diameter, dv, is the diameter of a sphere having the same
volume as the particle. It can be defined as dv �

3
�6��p�/
�, where �p is the particle

volume and is widely used as the characteristic size to calculate Reynolds number,
Renp, of nonspherical particles

(4.83)

– Equivalent projected area diameter, dA, is the diameter of a sphere having the same
projected area as the particle. It can be written as dA � �4�A�/
� .
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– Equivalent surface area diameter, ds, is defined as the diameter of a sphere having the
same surface area as the particle and is expressed as ds � �S�ns�/
�, where Sns is the sur-
face area of nonspherical particles.

– Sphericity, �, is a dimensionless number for characterizing the shape of isometric or close-
to-isometric nonspherical particles. It is defined as the ratio of the surface area of the equiv-
alent-volume sphere, As, to the actual surface area of the particle having the same volume:

(4.84)

Thus, ��1 for perfect spheres and 0.846 for octahedrons, 0.806 for cubes, 0.67 for
tetrahedrons, and �0.67 for disks are examples of commonly encountered sphericity
values for nonspherical particles (Hartman et al., 1994). However, � is difficult to
determine for strongly irregular particles because it requires a measure of the surface
area, which is not easy to accomplish in every case.

– Circularity, C, is another shape factor, which is easier to determine for irregular particles
and can be written as follows:

(4.85)

where Pp is the projected perimeter of the particle in the direction of motion. A
disadvantage of the difficulties of using the circularity, C, is that rarely it yields the
same value for three-dimensional and two-dimensional objects. For example, cubes
and squares that fall on their flat sides have the same circularity.

– Corey shape factor, Co, is another approach for characterizing the shape of three-
dimensional irregular particles and defined as the ratio of the shortest particle axis (c)
to the square root of the product of the other two axes (a and b). The Corey shape fac-
tor seems to be appropriate to characterize the flatness of particles that exhibit a com-
pact shape. One of the disadvantages of using this shape factor is that Co � 1 for
spheres as well as for noncompact particles having three perpendicular axes of the
same length, such as star-shaped particles

(4.86)

– Aspect ratio (L /D) is defined as the ratio of particle length along the symmetry axis to
the largest diameter of the cross-section. It is used to account for the particle elonga-
tion and conveniently describes axisymmetric shapes.

– Skin factor, �, is another approach, which takes into account the surface roughness,
defined as � � ds /dv.

4.4.1.2 Drag coefficients of nonspherical particles

Experimental results show that the departure of a particle from the spherical shape causes a
decrease in its terminal velocity in a fluid. This implies a higher CD for the nonspherical par-
ticles. Numerous forms of expressions for relating the particle shape factor to the drag
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coefficient are available in the literature. Only the widely used correlations are included in
Table 4.3. Chhabra et al. (1999) reported a comparison of available expressions for the drag
of nonspherical particles by using 1900 data points covering a range of Reynolds numbers
(10�4 � Renp�105), geometrical shapes of particles, and sphericity values of 0.09 � � � 1.
Based on the discussion by Chhabra et al. (1999), expressions derived by Haider and
Levenspiel (1989) and Ganser (1993) give more accurate results with an average error of
16.3%. Tran-Cong et al. (2004) reported drag coefficient measurements of six different geo-
metrical shapes, including isometric, axisymmetric, orthotropic, plane, and elongated con-
glomerates of spheres. 

Table 4.3 shows that calculations of drag coefficient involve the use of Reynolds number,
which is a function of terminal velocity. Therefore, the estimation of the terminal velocity
corresponds to a given shape factor and physical properties of a system, and requires an iter-
ative solution of one of the CD equations in Table 4.3 and eq. (4.60), simultaneously. 

Eq. (4.96) can further be simplified and written in terms of CD by defining �p and A in
terms of the generally used equivalent-volume sphere diameter d�,

(4.96)

Instead of the equivalent-volume sphere diameter d�, the equivalent volume can be
divided by the actual projected area (Tran-Cong et al., 2004):

(4.97)

4.4.1.3 Motion of cylindrical particles

Cylindrical particles ranging from short rods to fibers and wires have a wide range of
applicability. The determining shape factor in cylindrical particles is the aspect ratio, L/D.
Instead of using the concept of sphericity, the drag coefficient of cylindrical particles can
be correlated with the orientation and the Reynolds number, based on the diameter of the
cylinder, D. The Reynolds number increases with an increase in the aspect ratio, in the set-
tling of cylindrical particles, and terminal velocity of particles approach a constant value
when their aspect ratio is high enough. 

It is found that (Fan et al., 2004; Jianzhong et al., 2003; Yin et al., 2003) cylinders tend
to exhibit preferential orientation during settling and the torque induced, causes the parti-
cle to rotate until it assumes a stable position with its axis of symmetry aligned horizon-
tally, no matter what the aspect ratio is. High and low-pressure regions located at the ends
of a cylindrical particle at any tilt angle away from the vertical causes the center of pres-
sure to shift from the location of the center of mass of the body, and a torque is generated. 

Two types of torque act on particle in rotational motion. A torque (T1) arises when the cen-
ter of pressure does not coincide with the center of mass (Yin et al., 2003) of the particle:
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Table 4.3

Drag coefficient correlations for nonspherical particles

References Renp range Correlation

Haider and Renp � 25,000
Levenspiel (1989)

(4.87)

0.026 � � � 1.0

Ro and 15� Renp � 87
Neethling (1990)

(4.88)

Thompson Renp � 104

and Clark (1991)
(4.89)

Swamee and 1 � Renp � 104

Ojha (1991) 0.3 � Co � 1.0
(4.90)

Ganser (1993) RenpK1K2 � 105 (4.91)
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0.026 � � �1.0 (4.91a)

Chien (1994) Renp � 5000 (4.92)
0.2 � � � 1.0

Hartman 10�2 � Renp � 16,000 (4.93)
et al. (1994)

0.67 � � � 1.0

(4.93a)

see eq. (4.64) for logCD(Rep, 1)

Xie and Renp � 1
Zhang (2001) 0.2 � � � 1.0 (4.94)

Tran-Cong 0.15 � Renp � 1500
et al. (2004)

(4.95)

0.4 � C � 1.0

aCD and CDs are drag coefficients of the particle and sphere having equal volumes at Re � 104. 
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Here, Fp is the total pressure force acting on the particle and xcp the distance between the
points of action of net pressure and body forces (gravity, buoyancy) that act at the center
of mass of the particle. Another type of torque (T2) is caused by the viscous resistance
shown by the liquid suspending medium to rotation when the particle has an angular
velocity, � (Rosendahl, 2000):

where Kw is a constant, of the order of unity, and uf the fluid undisturbed velocity at the
center of mass of the particle. 

Through the joint action of two torques, the cylindrical particle rotates, oscillates, and
stabilizes in a horizontal position. Under the action of random disturbances, the particle
oscillates vertically in either direction while falling in a horizontal position. 

4.4.2 Motion of porous aggregates

4.4.2.1 Fractal aggregates and their permeability models

Theory of fractals, structure of aggregates, and parameters affecting fractal dimension, df,
were given in Chapter 1 and Appendix B. Three-dimensional fractal dimension, df, is used
to quantify the porosity of an object. The fractal dimension of an aggregate is related to
packing of the particles forming the aggregate and will reflect the aggregate packing fac-
tor. In summary, the significant properties of such clusters are their irregular shape and
porous structures, self-similarity, and scale-independence. A fractal aggregate cluster
mass, M, varies with the radius of the aggregate, Ragg, as

(4.98)

The fractal dimension of an aggregate is df � 3, with the value of 3 corresponding to a solid
spherical structure. Thus, the effective density of the cluster, �eff, varies with the radius as:

(4.99)

The settling behavior of aggregates is dependent on the drag force and the permeability
of the aggregates, due to their porous structure. The porosity of the fractal aggregates, �, is
defined as the fraction of void space of interconnected pores with respect to the bulk vol-
ume. It is expressed in terms of the number of primary particles in the aggregate, N, vol-
ume of a primary particle, �0, and the volume of the aggregates, �agg, as:

(4.100)

Porosity can also be related to the effective density as
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where �agg, �p, and � are density of aggregates, primary particles, and suspending liquid,
respectively. Calculation of porosity based on eqs. (4.100) and (4.101) assumes aggre-
gates have homogenous pore distribution. However, fractal aggregates in reality have
nonhomogenous distribution of primary particles due to the aggregation mechanism
(Appendix B). So, the size of the pores of the aggregates tends to increase with an increase
in aggregate size and the pores are larger around the peripheries of the aggregates. Hence,
equations based on the homogenous distribution assumption will not correctly describe the
settling behavior of fractal aggregates. Veerapaneni and Wiesner (1996) express the non-
homogenous distribution of particles by assuming that the porosity of fractal aggregates
varies radially from the center of gyration, and increases with the distance away from the
center of the aggregate. They define the porosity in terms of the diameter of primary par-
ticles, dp, diameter of the aggregates, dagg, and fractal dimension, df, as

(4.102)

Although the porosity of aggregates does not necessarily vary in the radial direction, the
above equation might give better results in porosity determination because it does not
assume homogenous distribution of particles within the aggregate.

The permeability through the aggregates can be described as a function of porosity. Various
models have been developed for expressing the permeability of an aggregate, �, where the
most commonly used correlations are listed in Table 4.4 (Li and Logan, 2001). These models
consider aggregates of spherical primary particles under creeping flow conditions. 

Permeability models indicate that increasing the aggregate diameter or decreasing the
fractal dimension would also increase the permeability. The disadvantage of the
Carman–Kozeny model is that it is only valid when the porosity is less than 0.5. So, it
cannot be used to predict permeability for highly porous aggregates. Brinkman and Happel
models are the most appropriate models based on simulation and experimental results in
the literature (Lee et al., 1996; Veerapaneni and Wiesner, 1996; Li and Logan, 2001).
A combination of Stokes’ law with permeability models, such as Brinkman or Happel,
may be used to describe the settling behavior of permeable aggregates.
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Table 4.4

Aggregate permeability functions

Correlation Permeability, �

Carman–Kozeny (4.103)

Brinkman (4.104)

Happel (4.105)
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4.4.2.2 Terminal velocity of fractal aggregates

The resistance experienced by a permeable sphere with a high porosity is much lower than
that of an impermeable sphere due to the internal flow through the aggregates. As a result,
flow through the interior of an aggregate can increase the settling velocity of an aggregate
compared with an identical impermeable particle. Terminal velocity of fractal aggregates
depends both on the flow regime of the suspending medium along the particle boundaries
and the porous structure of the aggregates. In this section, the terminal velocity consider-
ations are presented in two groups based on the flow regime of the suspending liquid:
(a) under creeping flow conditions and (b) above creeping flow conditions. 

4.4.2.2.1 Motion of fractal aggregates under creeping flow conditions

Impermeable spherical aggregates The terminal settling velocity of a spherical imper-
meable aggregate under gravity can be calculated from a force balance (eq. (4.56)) as

(4.106)

Terminal velocity of impermeable aggregates is obtained when the geometrical relations
of �agg �
d agg

3 /6 and A � 
dagg
2 /4 for spheres are used:

(4.107)

Drag coefficient, CD, is a function of the Reynolds number

(4.108)

where Vt is the actual settling velocity. Under creeping flow conditions (Re � 1), the sub-
stitution of eqs. (4.49) and (4.101) for the density differences into eq. (4.107) gives

(4.109)

which is equivalent to the conventional form of the Stokes’ law. For an aggregate made up
of N particles, each of volume �0, the porosity term in the above equation can be written
as in eq. (4.100) yielding

(4.110)

Stokes’ law is the fundamental equation describing the settling behavior of an aggregate
(Johnson et al., 1996; Li and Yuan, 2002). However, this equation is only applicable when
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the particle is spherical and relatively impermeable. As the nonsphericity and porous struc-
ture alter the settling behavior of real aggregates, Stokes’ law should be improved to take
into account these deviations. The developments that can be made are: (1) assuming
homogenous distribution of particles in the aggregate; and (2) describing the porosity in
terms of fractal size and dimension. 

Homogenous permeable spherical aggregates When a permeable sphere settles, part of
the displaced liquid will move up from the open pores of the particle or the aggregate. The
drag will then be exerted on the fraction of the total cross-sectional area occupied by the
solid. The total drag force exerted on a porous particle will then be lower compared with
an impermeable sphere of the same diameter. The reduction of the drag force is taken into
account by the use of a correction factor, �, defined as the ratio of resistance experienced
by a permeable sphere of diameter dagg to the resistance experienced by an impermeable
sphere of the same diameter. Hence, the drag force exerted on the aggregate takes the form:

(4.111)

Brinkman model is one of the widely used models to describe the fluid velocity within the
porous sphere by taking into account the viscous effects and high porosity of the aggre-
gates. Under creeping flow conditions, the correction factor, �, based on Brinkman model
is found analytically with the equation (Naele et al., 1973):

(4.112)

where � is a dimensionless permeability factor of porous aggregates and is related to the
size and permeability of the aggregate, �, through

(4.113)

Brinkman model is suitable in the description of the sedimentation of highly porous
homogenous aggregates, in laminar flow (Naele et al., 1973).

Flow through an aggregate decreases its drag force compared to impermeable aggregates.
So, a settling velocity, that is faster than that of identical impermeable sphere (calculated
using Stokes’ law (Vts,agg) of eq. (4.110)), is expected. The settling velocity of a permeable
aggregate, Vt, can be related to that predicted by Stokes’ law Vts,agg (Matsumoto and
Suganuma, 1977; Johnson et al., 1996; Lee et al., 1996) through a function of �,

(4.114)

based on Brinkman model where � is the settling velocity ratio. As the aggregate perme-
ability increases, � as given in eq. (4.113) decreases and � increases. ��1 for relatively
impermeable particles as � approaches infinity. 
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Johnson et al. (1996) showed that fractal aggregates composed of inorganic microspheres
could settle on the average 4–8.3 times faster than predicted by calculations for impermeable
or permeable spheres of homogenous distribution of identical mass, cross-sectional area, and
primary particle density. The experiments were done for the three different fractal dimen-
sions. Experimentally found settling velocities of aggregates are compared with the imper-
meable sphere settling velocity (eq. (4.110)) in Figure 4.4 and compared with the settling
velocity of aggregates having homogenous porosity distribution (eq. (4.114)) in Figure 4.5.
These differences in settling velocities should be a consequence of the nonhomogenous dis-
tribution of primary particles and hence of the pores in a fractal aggregate. Pores become
larger as fractal aggregates increase in size. The permeability of the macropores between
clusters is much greater than the permeability inside the smaller clusters. These pores then
operate as pipes connected in parallel, with flow through the large cross-sectional area pipe
much greater than others. This results in a greater flow through the aggregate interior than
possible for homogenous permeable spherical aggregates. These large pores must produce a
smaller overall drag per total cross-sectional area of the fractal aggregate, part of the drag
force being converted to shear of lesser magnitude in flowing through the pores. 

Many expressions for drag coefficient CD are derived to cover a wide range of
Reynolds numbers and many different irregular shapes. The correlations given in
Table 4.3 applicable to impermeable individual particles may not be applicable for frac-
tal aggregates, which have macrosized pores in addition to micropores of the particles.
Drag coefficients of porous aggregates developed by Masliyah and Polikar (1980) can be
given as an example of one of the empirical CD correlations. It is derived using regression
analysis based on the settling experiments assuming the shape of the aggregates to be
spherical and valid for the range 15 � � � 33.

(4.115)

(4.116)

Modification of porosity terms The calculation method of settling velocity or � can be
generalized by including the fractal dimension df that determines the permeability of an
aggregate. In order to incorporate the structure of fractal aggregates into the expressions
of aggregate permeability, Li and Logan (2001) introduced two new porosity definitions
using single-particle-fractal model or cluster-fractal model.

(a) Single-particle-fractal model: Porosity is calculated based on a uniform distribution
of primary particles in the aggregate. The number of primary particles, N, in this
model is defined as (Li and Logan, 2001):
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So, the porosity of the aggregate, �, is calculated by combining eqs. (4.100) and
(4.117) using �0 � 
dp

3 /6 and �agg � 
dagg
3 /6, as

(4.118)

where c is a packing coefficient. Once the aggregate (dagg) and primary particle (dp)
sizes are determined experimentally, the settling velocity of porous fractal aggregates
Vt can be calculated by using eq. (4.118) for �, Table 4.4 for �, eq. (4.113) for � and
eq. (4.114).
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Figure 4.4 Settling velocities of aggregates
versus aggregate size. Comparison of experi-
mental results of (A) df � 1.79 (�) and 2.19
(�); and (B) df � 2.25 (�) with the predicted
for impermeable spheres using Stokes’ law
(�). D denotes df in figures (Johnson et al.,
1996. Figure 4 in the original, reproduced with
permission of The American Chemical
Society). 

Figure 4.5 Settling velocities of aggregates
versus aggregate size. Comparison of experimen-
tal results of (A) df � 1.79 (�) and 2.19 (�); and
(B) df � 2.25 (�) with the predicted for homoge-
nous permeable spherical aggregates using
eq. (4.114) (�). D denotes df in figures (Johnson
et al., 1996. Figure 6 in the original, reproduced
with permission of The American Chemical
Society). 



(b) Cluster-fractal model: In this approach, aggregates are composed of clusters with a
range of sizes, with each subcluster formed by successively smaller clusters having
the same self-similar shape. The largest cluster is defined as the principle cluster.
The pores between the largest clusters control the overall aggregate permeability
(Li and Logan, 1997). With the assumption that all of the largest clusters forming
an aggregate have the same size and an aggregate has k number of principal clus-
ters, one can write

(4.119)

where dc is the size of the principle cluster and volume of clusters equals �c � 
dc
3 /6.

The porosity of a fractal cluster aggregate �c can be written as

(4.120)

Rearrangement of the above equation gives the porosity of cluster aggregate as

(4.121)

The settling velocity of porous aggregates of clusters Vt are calculated by using
eq. (4.114), eq. (4.113) for �, eq. (4.121) for � and Table 4.4 with dp and � replaced by dc

and �c, respectively. 
Settling experiments on aggregates of latex microspheres are compared with the calcu-

lated values of the two models in Figure 4.6. The cluster-fractal model was found to fit the
experimental data well for df �1.81 but estimated lower values for df �2.33. However,
experimental results were much larger than the calculated ones with the single-particle-
fractal model. Results showed that the overall permeability of the aggregate and settling
velocity were controlled by the largest holes formed by the principal clusters, even though
there is relatively little flow within the small clusters. 

4.4.2.2.2 Motion of fractal aggregates above creeping flow conditions

If the creeping flow conditions are not valid, modified Stokes’ law correlations are used
regardless of the aggregate Reynolds number. Lee et al. (1996) express that owing to the
advection flow through the floc interior, boundary layer separation and the after-sphere
wake might not occur as in the nonporous case, so correlations like Stokes’ law can be used
even under high Reynolds numbers. Wu and Lee (1998) found that boundary layer sepa-
ration and wake formation, mainly responsible for the deviation of Stokes’ law at elevated
Re, had not occurred for a highly porous sphere even at Re � 40 from the results of their
simulation studies. The expressions using modified Stokes’ law are given in Table 4.5. 
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Settling velocity of flocs Flocs are defined as highly porous, irregularly shaped, and
loosely connected aggregates composed of smaller primary particles that exhibit a fractal
dimension ranging between 1.4 and 2.8 (Li and Ganczarczyk, 1989; Wu et al., 2002).
Sedimentation rate is one of the most important methods used in measuring floc size and
structure (Jarvis et al., 2006). The drag force exerted on the floc can be expressed as in eq.
(4.111). The product of CD� for flocs can be roughly taken as inversely proportional to the
floc’s Reynolds number (Wu and Lee, 1998; Wu et al., 2002; Jarvis et al., 2006), as

(4.127)

where a(�) is the correction factor accounting for the advection flow through the interior
of aggregate over a wide range of Reagg. Also, the effective density of flocs can be
expressed by scaling relations, with the diameter and fractal dimension of the aggregates:

(4.128)

where C is a proportionality constant. Eq. (4.128) states that the density of a fractal aggre-
gate decreases with increasing floc size. The terminal velocity of flocs can be written after
a force balance between drag force and net gravity force (eq. (4.56)) (Wu and Lee, 1998;
Wu et al., 2002; Jarvis et al., 2006) as

(4.129)

If the correction factor a(�) can be regarded as a constant over the range of Reagg investigated,
then the log–log plot of the floc terminal velocity versus the floc size is a line of slope “df�1”
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Figure 4.6 Settling velocity ratios of the aggregates. Comparison of experimental data of (a) df �
1.81 (�) and (b) df � 2.33 (�) with the estimations from the cluster-fractal model and the single-par-
ticle fractal model (—) taking c � 0.15. D denotes df in figure (Li and Logan, 2001. Figure 5 in the
original, reproduced with permission of Elsevier Science Ltd.). 



as in Figures 4.4 and 4.5. The slope of the line in Figure 4.4(A) is nearly 1.3, so df can be
calculated as 2.3, which is in good agreement with the df value (2.25) in Figure 4.4(A).

4.4.3 Motion of particles with nonuniform density distribution

Microorganisms (i.e. algae, Paramecium, ciliate and flagellate protozoa, and planktonic
larvae) have asymmetry in their internal density. A torque is generated as a result of the
nonuniform density distribution within them to orient the organism either upwards or
downwards.
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Table 4.5

Modified Stokes’ law expressions for aggregate settling

Reference Assumptions Correlation*

Tambo and Vt and dagg were measured
Watanabe (1979) experimentally. � is constant (4.122)

at 0.8. Aggregates were 
assumed to be impermeable

Adachi and Shape of the flocs is taken
Kamiko (1993) as an ellipse. Homogenous (4.123)

distribution of pores within 
the aggregate

Gmachowski Overall shape of the fractal
(1996) aggregate is spherical. (4.124)

The settling velocity of a 
single aggregate increases 
by a factor of N �0/�agg from 
settling velocity of a single 
primary particle obeying 
Stokes’ law

Allain et al. V0 represents the settling 
(1996) velocity of primary particles. 

Vt and Ragg were measured (4.125)
experimentally

Johnson et al. Vt and dagg were measured
(1996) experimentally. Spherical 

particles are assumed. df2 � 2 
(4.126)

when df � 2, and df2 � df when 
df � 2. In creeping flow 
(Reagg � 1), b � 1, and when 
0.1 � Reagg � 10, b � 0.871

*Rp: radius of primary particles; Dmax: maximum distance between primary particles in the projected aggregate;
Ragg: radius of aggregate; df2: two-dimensional fractal dimension. 
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The external forces acting on a microorganism in an aqueous medium are gravitational,
buoyancy and the drag force and are described as given in Section 2 of this chapter with
the force balance of eq. (4.56). Gravitational force, Fg acts at the center of mass but buoy-
ancy force, Fb and drag force, FD act at the volumetric center of the particle. Motion of the
microorganisms are in the Stokes regime since the Reynolds number is considerably low
(in the order of �10�2), so the drag force is directly proportional to the velocity. When a
microorganism, having a uniform density distribution within its body, falls in a liquid, all
the three forces act at the same point as in Figure 4.7(a), so no torque will be generated
with in the organism to rotate it. If the density is not equally distributed within the parti-
cle, the three forces will act at different centers; hence, a difference in distance (Lg)
between the centers of action of the forces appears as shown in Figure 4.7(b). A torque will
be generated because of the region of higher density within the microorganism.

The torque resulting under the action of gravity is given as

(4.130)

where Lg is the distance between the centers of action and � the orientation angle of the
fore–aft axis of the body to the vertical. If the Reynolds number of rotational motion is
adequately small, all torques can be expressed as proportional to the first power of rota-
tional velocity (d�/dt). In such a case, rotational motion can be written as

(4.131)

where K is the coefficient of resistance for rotational motion. Consequently, the rotational
velocity can be given as

(4.132)
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Figure 4.7 Illustrative drawing of a microorganism having a (a) homogenous density distribution
and (b) nonuniform density distribution. 



if gravitational force, Fg � �p �pg is placed into the above equation;

(4.133)

a differential equation in terms of � is obtained where Bv � �p�p gLg/K� is a constant spe-
cific to the microorganism and its environment.

The Reynolds number of rotational motion (Rer) of the microorganisms with a charac-
teristic body length of l and an angular velocity of rotation, �, is defined (Happel and
Brenner, 1973) as

(4.134)

Mogami et al. (2001) found that Rer � 2�10�3 for the Paramecium or sea urchin larvae
and also found that Paramecium oriented upwards in a medium of lower density (� � �p)
during sinking due to gravity, while they oriented downwards during floating up in a
denser medium (�  �p). Fukui and Asai (1985) proposed that the upward orientation of
Paramecium is strongly influenced by the torque resulting from the higher density of the
posterior part of the organism due to the accumulation of food vacuoles.

4.5 HINDERED SETTLING

The free settling behavior of a single solid sphere in a Newtonian fluid media is given in
Section 4.3. The settling velocity of single particles can be predicted by equating net grav-
itational force and drag force using an appropriate drag coefficient for spheres. As the con-
centration of solids in the suspension increases, interaction between the particles becomes
significant. Consequently, the settling velocity of a particle in a liquid suspension is
affected by the presence of nearby particles and the drag force created by the settling par-
ticles will affect the movement of nearby particles, and settling will be hindered.

Sedimentation velocity of a particle in a concentrated suspension is significantly less
than its terminal falling velocity under free settling conditions and depends on the volu-
metric fraction of particles, �. The density of a suspension, �s, is given as

(4.135)

from which the volumetric fraction of particles is obtained

(4.136)

When many particles fall simultaneously, the displaced fluid will create an upwards
flow with a velocity Vf against the downward motion of the solid particles, and of the fluid
dragged along with them. Collisions between particles and other interactions are also
factors, which effectively decrease the free fall terminal velocity of particles. This terminal

� �
�

�

� �
� �

s

p

� � �s p (1 )� � �� �

Re
l

r

2

�
��
�

d

dt
B

�
�� v sin

278 4. Motion of Particles in Fluids



velocity of the particles under hindered settling conditions is denoted by Vht. In a closed
system such as a sedimenting tank, downward flow of the solid must be balanced by the
upward flow of suspending liquid for conservation of mass in a system:

(4.137)

Settling velocity of the particles relative to a fluid (relative velocity), Vr, is expressed as the
difference between the downward velocity of the particles (Vht) and the velocity of dis-
placed fluid (Vf ) as

(4.138)

This velocity definition is used especially in batch settling.
Dilute suspensions with fine particles, however, tend to behave quite differently from

concentrated suspensions. Experimental results of Kaye and Boardman (1962) and Koglin
(1971) demonstrated that the settling velocity of particles at very low volume fractions is
higher than the single particle free fall velocity, Vt. They also found that settling velocity
of particles in very dilute suspensions (� � 0.01) was 1.5 times greater than Vt due to the
cluster formation of particles. The flocculation behavior of fine particles can be the results
of interaction between the charged regions on the particle surfaces (Smith, 1998). The
effect is less significant for concentrated suspensions because of the increase in interparti-
cle collisions and aforementioned reasons.

Sedimentation of suspensions will be analyzed in this section giving hindered settling
correlations available in the literature, for both monodisperse and polydisperse particles,
and mainly for spherical particles to simplify experimental and theoretical analyses.

4.5.1 Sedimentation of monodisperse suspensions

Settling of monodisperse suspensions involves nearly uniform spheres having the same
physical characteristics. The settling velocity, Vht, of the solid particles is determined
experimentally by observing the rate of fall of the suspension–supernatant interface during
constant-rate sedimentation (Trian et al., 1997).

The settling velocity (or the relative velocity of particles) is defined as a function of

(4.139)

where Vt is the terminal velocity of a single particle, falling through the same fluid and
container in any flow regime. Rep is the particle Reynolds number (eq. (4.46)) based on Vt,
which can be calculated by eq. (4.61) using the solid–fluid properties. Settling velocity
also depends on the size of the sedimentation tank, mainly to the particle-to-tube diameter
ratio (). The effect is more significant for higher  values.

Suspensions generally settle in the Stokes’ regime. Then, terminal velocity of single par-
ticles, Vt in eq. (4.139), is replaced with Stokes’ velocity, Vts, given in eq. (4.58) in Stokes’
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regime. Various relations are proposed to predict hindered settling velocity. One of them is
to express Vht by introducing a correction factor, h(�) (Richardson and Zaki, 1954;
Batchelor, 1972; Davis and Gecol, 1994; Di Felice, 1999), into the Stokes’ equation as

(4.140)

where h(�) is called the hindered settling function, a function of volumetric fraction of
particles, �. Another approach accounting for the multiparticle effect is to modify the
Stokes’ equation by replacing liquid viscosity, �, by suspension viscosity, �s, as

(4.141)

This approach takes into account the particle collisions during settling. Frequent collisions
between particles in concentrated suspensions appear in effect as an increase in the vis-
cosity of the suspending medium. The suspension viscosity is a function of the volume
fraction of particles given by various correlations based on Einstein equation (eq. (3.15))
for dilute suspensions (� � 0.02) and eq. (3.17) for moderately concentrated suspensions
(see also Table 3.1 for more correlations). These correlations express �s in the form of rel-
ative viscosity �r as

(4.142)

Hence, the hindered settling velocity, Vht, can be defined in terms of suspension viscosity
as (Shojaei and Arefinia, 2006)

(4.143)

4.5.1.1 Settling of dilute suspensions

When the volumetric fraction of solids is not high enough to be considered as concentrated
and yet low enough for flocculation to occur, the case is referred as dilute suspension
where settling velocity can be expressed in terms of hindered settling functions.

Batchelor (1972) expresses the hindered settling function h(� ) �1 � n� and gives
settling velocity of randomly dispersed spheres in suspensions with this linear relation of
� in Stokes’ regime as

(4.144)

where n is an empirical parameter, n�6.55 for perfectly spherical monosized suspensions,
but a function of the Peclet number for a suspension made up from particles of the same
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density but with slightly polydisperse size distribution. Peclet number (Pe) gives the mag-
nitude of the motion due to gravity relative to the motion due to Brownian diffusion.
Batchelor and Wen (1982) proposed n values for negligible interparticle forces as n�5.5
for suspensions with very large Pe and n�6.5 for suspensions with very small Pe. In
experimental studies n was found to vary from 5.1 (Cheng and Schachman, 1955) to 7.5
(Al-Naafa and Selim, 1992).

Di Felice (1999) measured the settling velocity of dilute suspensions of spheres (� � 5%)
in the Reynolds number range of 0.01 � Rep � 1000 and proposed a linear function of �,
similar to Batchelor’s approach. The coefficient n is given as

(4.145)

where n � 6.5 for Ret � 1 and n �3 for Ret 980.
Hindered settling velocity can be given as a function of the particle volume concentration

to the power of 1/3 as an alternative approach

(4.146)

Happel and Epstein (1954) give the n value of eq. (4.146) as 1.5 for dilute suspensions.
Barnea and Mizrahi (1973) reported n values varying in the range of 1–2.1 dependent on
the system.

Di Felice and Parodi (1996) experimentally showed that the settling velocity of spheres
of �  0.1 in viscous flow regime was not affected by the wall, even for dp /D  0.2.

4.5.1.2 Settling of concentrated suspensions

Richardson and Zaki (1954) equation is the most widely used semi-empirical correlation for
high volume fraction of particles (0.05 � � � 0.50) and for slightly polydisperse suspensions:

(4.147)

Richardson and Zaki (1954) defined the hindered settling function as h(�) � (1 � �)n and
used uniform spherical particles (dp 100�m) in their research, that could be assumed to
be sufficiently large for viscosity effects and flocculation to be negligible. The variation of
n was derived based on experiments in all flow regimes and is expressed in terms of wall
effects by including the particle-to-tube diameter ratio (dp/D) as given in Table 4.6. 

Rowe (1987) gives the index n of eq. (4.147) in a compact form as a function of flow
regime as

(4.148)

The most frequently encountered equations in detailed reviews on the settling velocity
in sedimentation are given in Table 4.7. 
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4.5.2 Sedimentation of polydisperse suspensions

Settling of polydisperse particles requires a separate definition of the volume fraction and
densities of each species in the suspension. Sedimentation of these particles can be
described by assuming K number of species of spherical particles and low Reynolds num-
ber hydrodynamics. The net flux in batch sedimentation can be defined as

(4.153)

where �i and Vi are the volume fraction and the velocity of solids species i, respectively,
with i � 1,���, K and � � �1 � � � �K (Berres et al., 2005).

The behavior of concentrated suspensions during sedimentation and the interparticle
forces are usually analyzed with Kynch’s (1952) theory, in which sedimentation is
approximated by multiplying the Stokes’ velocity of the particles (Vts,i) by the hindered
settling functions, hi(�). Settling velocity of solid particles can then be written in the
form of

(4.154)

where Vts,i is the settling velocity of species i at infinite dilution (� � 0). If the retarda-
tion effects of container walls are negligible, Vts,i will be the same as Stokes’ equation of a
single particle:
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Table 4.6

n values of Richardson and Zaki equation

Rep range n values

Rep � 0.2 (4.147a)

0.2 � Rep � 1 (4.147b)

1 � Rep � 200 (4.147c)

200 � Rep � 500 (4.147d)

Rep � 500 (4.147e)
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Table 4.7

Hindered settling velocity correlations for monodisperse suspensions

References Rep range Correlation

Letan (1974) 1.5 � Rep � 2200
(4.149)

� � 0.50

Garside and 10�3 � Rep � 3 � 104

(4.150)
Al-Dibouni (1977)

0.10���0.60

Or

B � 0.8(1 � �)1.28 for 
�  0.15; B � (1 � �)2.65 (4.151)

for � � 0.15

Concha and 
Almendra (1979)

(4.152)

Chong et al. (1979) Rep � 0.2
0.10 � � � 0.35

Vt was obtained by linearly n � 4.8 for smooth spheres; �5.4 for cubic shapes; (4.147)
extrapolating Vht as � � 0 �5.8 for brick-like and angular particles
on a log-log plot of 
Vht versus (1 – �)

V

V

Re

Re V V
r

t

p
0.687 3.5

p
0.687

r t
0.687

(1 0.1 )(1 )

1 0.15 ( ) (1
�

� �

� � �

�

�))1.72

V

V
n

n
Re

nr

t

1

p
0.9

(1 )

5.1

2.7
0.1

� �

�

�
�

��

( ) (1 )

( )
r t

4.14

r t
p
(1 ) 2V V

B V V
Re

� � �

� �
� � �� �

d
d

g
p

p
2

p
1 3(3 (4( ) ))

� �
� � �� � � �

V
d

f d f

f

r
p

1 p
3 2

2
1 2 2

1

20.52
( )[(1 0.0921[ ] ( )) 1]

( )
(1 )

� � �

�
�

� �

�

�� �

�
� 22 1 3

1.83 2 3 3 2

2

(1 0.75 )

(1 1.45 ) (1 1.2 )

( )
(1 1.45 )

�

� � �

�
�

�

� �

�

� � �

�
�

f
11.83 2 3 3 4

1 3

(1 1.2 )

(1 )(1 0.75 )

� �

� �

� �

�

� �

� �

V V n
ht t (1 )� ��



If the wall effect cannot be neglected, a correction factor of Khan and Richardson (1989)
may be used as

(4.156)

The hindered settling function hi(�) of eq. (4.154) proposed by Batchelor and Wen (1982),
(eq. (4.157)), is generally applied to dilute suspensions only and by Davis and Gecol
(1994) (eq. (4.158)) to concentrated suspensions.

Batchelor and Wen (1982) expressed the hindered settling function, hi(�), for the poly-
disperse suspensions as

(4.157)

The settling coefficients Sij depend on size ratio  � dj /di and buoyant density ratio � �
(�j � �)/(�i � �), where di and �i are the size and the density of species i, respectively, and
� the density of the fluid. Sij are calculated by Batchelor and Wen (1982) as Sii �� 6.55
for  � 1 and � � 1; Sii �� 5.6 for  � 1 and � � 1; and Sii ��2.6 for  � 1 and � � 1.
Batchelor’s theory for dilute suspensions predicts the settling velocity in the presence of
other spheres that differ in size or density. However, this theory is based on the assump-
tion that identical spheres have identical velocities, and leads to significantly differing
results for spheres that differ only slightly in size or density. Batchelor’s equation (with
Sii =�6.5 for  � 1 and � � 1) appears to work well at small Peclet numbers in the absence
of interparticle forces. In this case, Brownian motion ensures that the random distribution
of sphere centers remains uniform. Hydrodynamic diffusion is very important at large
Peclet numbers, but is not taken into account in the Batchelor–Wen analysis (Höfler et al.,
1999; Berres et al., 2005).

Davis and Gecol (1994) assumed that Batchelor’s results could be extended to higher
concentrations as

(4.158)

The sedimentation coefficients Sij are given by the theory of Batchelor and Wen (1982).
For very small values of �, second order terms can be neglected, and eq. (4.158) reduces
to eq. (4.157). The equation also takes the same form as Richardson and Zaki (1954) equa-
tion for monodisperse suspensions (with n ��Sii).

Settling velocity of solid particles can also be written in a different form of eq. (4.154)
in terms of relative velocity Vht,i � (1 � �)Vr,i,
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where (1 � �) is calculated from eq. (4.136). This equation is not as straightforward as in
the former case (Xue and Sun, 2003). �s is the density of the suspension given as

(4.159a)

If �1 � �2 �			 � �K, then the above equation becomes

(4.160)

The above equation reduces to Richardson–Zaki equation when only a single species is
present.

The most commonly used hi(�) functions for the approach given in eq. (4.159) are pro-
posed by Masliyah (1979) as 

(4.161)

and Patwardhan and Tien (1985) as

(4.162)

where

(4.162a)

As in the Richardson–Zaki equation, the value of n can be chosen to fit the experimental
data and can be taken as 4.65 for creeping flow conditions (Xue and Sun, 2003; Berres
et al., 2005). 
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Modeling the Flow of Settling Suspensions

Flow of settling particles differs substantially from the flow of nonsettling particles in
three basic aspects: need for averaging, flow pattern formation, and extension of the con-
cept of interface. Since the particles tend to settle during transport through the pipe, dif-
ferent packing densities exist in the radial direction of the pipe in horizontal flow.
Averaging techniques have to be developed to be able to use Navier–Stokes equations to
model the flow behavior. Variation of compaction densities of the particles in the radial
direction causes the formation of different flow behaviors of particles to arise within the
same cross-sectional area. The segregation of particles into different sections necessitates
an extension of the concept of the interface. Along with the solid–liquid interfaces on the
surface of the particles, interfaces also exist between layers of different compactions in the
pipe. The variations in these interfaces should also be taken into account in the momentum
balance equation. The mathematical methods and models used in describing two-phase
flow will be taken up in this chapter.

5.1 BASIC CONCEPTS IN MODELING OF TWO-PHASE FLOW

Whatever the flow pattern that exists in solid–liquid two-phase flow an interface between
the solid particles and the liquid is always present. Besides the phase interface between the
solids and the liquid, another type of interface is defined between layers of a flowing sus-
pension with different compaction levels.

There are two main approaches used in flow models, the Lagrangian and Eulerian
approaches. These approaches are initially explained for a single-phase (fluid) flow and
then for homogeneous solid–liquid suspension flow.

5.1.1 Eulerian and Lagrangian approaches for single-phase flow

In the Eulerian approach, a control volume is fixed in space (constant x, y, and z) through
which the fluid flows. However, the control volume moves with the fluid in the Lagrangian
approach with a velocity equal to that of the fluid stream V.

The difference in the Eulerian and Lagrangian approaches can best be illustrated with
the continuity equation. The continuity equation in Eulerian form is derived by using a

291



292 5. Modeling the Flow of Settling Suspensions

control element of constant volume and variable mass at a fixed position in space and
given as

(5.1)

where � is density, t the time, and V the velocity vector. The Lagrangian form of the con-
tinuity equation for a control element of variable volume and constant mass moving with
the velocity of the stream is defined in terms of substantial derivative as

(5.2)

The above equation can be written as in eq. (5.3) using the substantial derivative definition
given in Appendix A1

(5.3)

The RHS of the above equation can also be expressed as �V ��� � ���V � ����V, using
the vectorial relations in Appendix A1, reducing to eq. (5.1). This proves the mathematical
equivalency of the Eulerian and Lagrangian forms of the continuity equation.

Other transport equations such as momentum, energy, and mass can also be expressed in the
Eulerian and Lagrangian forms, which are mathematically equivalent (Bird et al., 2002; Fahein,
1983). The Eulerian form of the equation of motion (momentum equation) in vectorial form is

(5.4)

where � is shear stress tensor, g the acceleration vector, and p the pressure. The Eulerian
form of the equation of motion is converted to the Lagrangian form by the same procedure
with the use of the equation of continuity:

(5.5)

5.1.2 Eulerian and Lagrangian approaches in solid–liquid suspension flow

In modeling of solid–liquid suspension flow, both the Lagrangian and the Eulerian
approaches can be used for the dispersed particle phase, whereas only the Eulerian
approach is used for the continuous fluid phase (Zhang and Prosperetti, 1997; Marchioro
et al., 2000; Patankar and Joseph, 2001a,b; Rani and Balachandar, 2004; Gudmundsson,
2005). Selection of the approach to be used for the dispersed phase depends on the size of
particles, dp; or particle response time, tpr, compared to the characteristic time-scale of the
continuous liquid phase, tc; and the particle volume fraction, �(t, x).
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The particle response time, tpr, is the time that a particle takes to respond to a change in
suspending liquid flow velocity. tpr is generally defined in terms of velocity vectors and the
drag coefficient (Rani et al., 2004) as

(5.6)

where CD is drag coefficient, and Vt, dp, and �p the terminal velocity, diameter, and density
of the particle, respectively. If the particles are small, the particle Reynolds number Rep is
less than unity, so the particles move in the Stokes regime. Using CD (eq. (4.49)) and Vt

(eq. (4.58)) expressions for this regime, the particle response time, tpr, is

(5.7)

The characteristic time-scale of the continuous liquid phase, tc, is taken as the time the liq-
uid passes through a system of length L

(5.8)

where Vc is superficial velocity of the liquid based on the free cross-sectional area for fluid
flow.

The ratio of the particle response time to the characteristic time of the liquid is known
as Stokes number, St

(5.9)

When St � 0.1, the particles have sufficient time to respond to the changes in the liquid
velocity and the particle velocity approaches the liquid velocity. In cases where St � 10,
the particles do not have sufficient time to respond to changing liquid velocity, so the par-
ticle velocity shows small variations.

As an example, the general case summarized in Table 5.1, is taken up to show the selec-
tion of the approaches for modeling the dispersed phase with the conditions of �p	� �� 1
and very low solid volume fractions, � � 10�4.

– When the particle size is extremely small with � � 10�4, then solid particles cannot have
relative motions with respect to the liquid phase. So, the mixture is considered as a
single-phase or a homogeneous mixture and a single fluid (mixture) model is selected for
modeling the suspension flow. This model is based on Eulerian approach. If the particles
are too small, evaluation of the particle velocity, Vp(t,x), becomes hard. In this case, smaller
time-steps than used in the fluid phase are taken to determine the Eulerian velocity dis-
tribution of the particulate phase. In cases where a particulate phase shows a wide size
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distribution of very small particles, the particle velocity is found by fast or equilibrium
Eulerian approach.

– If the particle size is large, particles are considered as a separate phase from that of the
liquid phase. In this situation, two-fluid model based on Eulerian–Eulerian approach
can be used. The constitutive equations required to define particle–particle interactions
can be defined by empirical formulas or from kinetic theory (Ni and Xia, 2003; Wang
and Ni, 2003; Fu et al., 2005). In two-fluid model, distributions of the particle volume
fraction, �(t,x), and particle velocity, Vp(t, x), are evolved along the liquid flow that
has a velocity distribution is Vc(t,x). This approach cannot be used when the number
density of particles is too low which may result in an interruption of the continuity of
the system.

– In a polydisperse system, distributions of the particle volume fraction and particle
velocity must be defined separately for each particle size. So, Lagrangian approach
can be used to model the dispersed phase, where the particles are treated individually
through force balances. However, the evaluation of the effect of the particles on the liq-
uid phase is not so simple in this approach.

– For very large particles, neither of the two approaches is appropriate in modeling the
system. So, a new approach called superparticle Lagrangian method is suggested
(Dukowicz, 1980). This approach assumes that particle groups (parcels), having same
characteristics (size and concentration) interact with the liquid phase and their position
is calculated by Newton’s equation of motion. Hence, the number of parcels describes
the total particle phase.

5.1.2.1 Eulerian–Lagrangian approach

Eulerian–Lagrangian approach (also called dispersed phase model) considers the motion of
each particle separately and the equation of motion is written for each individual particle.
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Table 5.1

Example to select a suitable approach for modeling suspension flow

Particle Particle size Approach for Model Basis of model
dispersion dispersed phase (approach of model)

Conditions: �p 	� �� 1, � �10�4

Monodisperse St � 0.1 – (not considered Single fluid Eulerian
as a separate phase) (mixture)

St � 10 Eulerian Two-fluid Eulerian–Eulerian

Polydisperse Very small Fast (equilibrium) Two-fluid Eulerian–fast
Eulerian (equilibrium) Eulerian

Small, Lagrangian Dispersed Lagrangian
medium, large phase Eulerian

Very large Superparticle Dispersed 
Lagrangian phase Eulerian–superparticle 

Lagrangian



The effect of particles on the flow field of the continuous phase is studied by the momen-
tum transferred from each particle to the continuous phase. The momentum transfer is
obtained by computing the change in the momentum when an individual particle passes
through each control element.

In the Lagrangian approach the position of the particle, xp, is found as

(5.10)

and the particle velocity vector, Vp, is determined after solving the Newton’s equation of
motion. The most general form of the equation of motion in differential form (Ferry and
Balachandar, 2001) is given under unsteady-state conditions for the Stokes regime as

(5.11)

where mp and mc denote the mass of the particle and continuous phase, respectively, and J


is called Saffman lift function taken as �2.255 (Ferry and Balachandar, 2001). The terms
at the RHS of the equation give Stokes drag, fluid acceleration, virtual (added) mass, grav-
ity, Basset history, and Saffman lift (Saffman, 1965) forces, respectively. Basset history and
Saffman lift forces originate from collision of a particle with other particles and pipe wall
resulting in a slip velocity. Saffman force furthermore causes a rotational motion of the
particle, which results in vorticity (�) of the liquid flowing around the particle. For other
particle flow regimes or for high particle Reynolds numbers the drag force term (first term)
needs modification. The fluid acceleration force (second term on the RHS) is effective in
the absence of particles.

The equation of motion (eq. (5.11)) is also defined in terms of the density parameter, �,
in a more compact form

(5.12)

The density parameter � covers all particles: for the dense particles �p /���1, �
approaches zero; and � � 3 for light particles �p /� �� 1 (Rani and Balachandar, 2004).
Eq. (5.11) is written in terms of � as

(5.13)
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where �[Vc � Vp] is a linear operator and defined as

(5.14)

5.1.2.2 Eulerian–Eulerian approach

This approach can be applied when the particle size is small enough to move with the
fluid flow. So, the model considers the dispersed (particle) phase as a continuous (fluid)
phase, interpenetrating and interacting with the fluid phase (Gidaspow, 1994). Local
equations for the instantaneous changes in each phase are introduced together with the
local instantaneous conditions at the interface. Mass, momentum, and energy balance
equations are also expressed in integral form for both phases. These equations must be aver-
aged either in volume, in space, in time, or as an ensemble (Sections 5.2 and 5.5).
Additional equations, known as the constitutive equations (closure laws), are required to
describe particle–particle interactions as well. The constitutive equations are derived
under empirical assumptions or kinetic theory describing granular-matter or flow.

The number of model equations is also affected by the particle size and size distribution.
If the particles forming the dispersed phase have a wide size distribution, the number of
model equations describing velocity and concentration profiles for the particulate phase
increases as a result of the simultaneous consideration of all particles. Besides, the solution
of the momentum equations for the particle phase becomes difficult for very small particles.

The fast or equilibrium Eulerian approach is proposed to find the Eulerian velocity dis-
tribution of the particulate phase Vp(t,x) for small particle time-scales, tpr (eq. (5.7)). This
approach eliminates the additional momentum equations arising from the small particle
size and/or wide size distribution of particles. When tpr, time-scale, is small, Vp � Vp(t,x)
is solved in terms of Vc � Vc(t, x). If � � 1, Vp(t, x) equals Vc(t, x), the equation of the
particle velocity becomes:

(5.15)

where a includes the substantial derivative of the liquid phase and gravitational accelera-
tion term, as

(5.16)

and d 1/2�dt1/2 in the definition of �[Vc � Vp] in eq. (5.14) is replaced with D1/2�Dt 1/2

collecting the difference into the O(tpr
5/2) term in eq. (5.15), the general expansion for

the equilibrium Eulerian velocity distribution of the particle phase. For instance, when
the gravitational force is dominant, Vt � (1 � �)tpr g, the general equation is reduced
to eq. (5.17) given in Table 5.2. Other simplifications are also given in the same table
(Ferry and Balachandar, 2001).
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5.2 AVERAGING TECHNIQUES FOR MODEL EQUATIONS

In a flow system, properties of solid–liquid suspensions change in all directions due to its
heterogeneous nature. So, the corresponding transport equations are averaged and written
in terms of time, volume/area, or ensemble averages depending on the used averaging tech-
nique to simplify the variables of the system.

5.2.1 Time averaging techniques

Macroscopic properties are generally expressed as the averages of molecular properties
with respect to time and/or position. Statistical averaging techniques are used to obtain
useful property calculations from molecular states, since they are realistic and consistent
with experiment. A time-averaged value of a molecular property, g�pf, is described using the
local instantaneous values of a property, gpf, which may be in scalar, vector, or tensor form.
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Table 5.2

Simplified forms of particle velocity distribution based on fast Eulerian approach

Gravitational force is dominant:

(5.17)
Generally g and, consequently, Vt are constant over space and time, so the Basset force component
of �Vt = 0 and the Saffman lift force becomes dominant:

(5.18)

In the dense particles � → 0, the Saffman lift force is not effective:

(5.19)

For too small particles, Basset and Saffman lift forces are omitted, � is ignored.

(5.20)

Drag force, gravitational force, and collisional effects are omitted (Rani and Balachandar, 2004):
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g�pf can be written (at around the fluctuation values of local property, gpf) in terms of
continuous function as in eq. (5.22) or in terms of discrete function as in eq. (5.23)

(5.22)

where t� is time and t the total time.

(5.23)

where gpf,i is local instantaneous value of a property, gpf.

5.2.2 Volume and area averaging techniques

Volume averaging is done around a fixed point, x, in space at a certain time. The mean
(volume-averaged) value of a property at position x is defined in terms of the continuity
function as

(5.24)

where � denotes volume and �T the total volume or in terms of discrete function as

(5.25)

The averaging procedures have some limitations because of the dimension of the control
element. In the case of the volume averaging technique, the dimension of the selected con-
trol volume must be larger than that of the particle size and less than that of the physical
system.

Area averaging is done similarly around a fixed point x at a certain time along an area
and can be calculated in terms of continuity function as

(5.26)

where A is area and AT the total area. The area-averaged property is also defined as a func-
tion of discrete function as

(5.27)g
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The relation between the area- and volume-averaged values of a property is given as in the
following equation in the form of continuous functions:

(5.28)

or given in terms of discrete function as

(5.29)

where L is the length of the system in the flow direction.

5.2.2.1 Averages of volume-averaged properties

Volume and area averages of a volume-averaged property are written in eqs. (5.30) and
(5.31), respectively. If the dimensions of the particulates forming the phase are too small
compared to the characteristic length of the system (i.e., pipe diameter in the pipeline),
the RHS of eq. (5.30) is defined by eq. (5.24) to find the volume average of the local 
volume-averaged property and hence, g�pf �x,�T,�T = g�pf �x,�

T
. Similarly, eq. (5.26) is used to

define the RHS of eq. (5.31) under the same conditions and then, the area average of the
local volume-averaged property is found to be g�pf �x,�

T
,A

T
= g�pf

�x,A
T

(Slattery, 1978)

(5.30)

(5.31)

The volume and space averaging can also be considered as approximations of ensemble
averaging, because it can be viewed as the statistical average.

5.2.3 The ensemble averaging techniques

A macrosystem or state constituted of atoms, molecules, or particles is statistically con-
sidered to be formed of a large number of distinct microstates (or microsystems) at any
time under the same macroscopic conditions.

The microstates at any time are defined by specifying the instantaneous positions (xi) and
momenta ( pi) of all particles depending on the three dimensions of the coordinate system.
If N number of particles exist in the system, a 6N-dimensional space, called phase space, is
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identified by the 3N positions (i.e., x1, x2,..., x3N) and 3N momenta (i.e., p1, p2, ..., p3N)
coordinates. So, a representative phase point defined by xi and pi coordinates for a
microstate, (xi,pi), continuously changes as time passes. The changes form a path of the
microstate moving under given forces, so a trajectory is taken from the microstate. At any
time, the direction of the trajectory is determined by the generalized velocity, x·i (x·i �dxi �dt),
and the corresponding generalized momentum, p· i, known as conjugate momenta (one cor-
responding momentum for each generalized velocity).

A statistical collection of representative phase points for all microstates through which
the macrosystem would pass in time is called an ensemble (a set of motions possible in the
system). So, expected value of a property (gpf ) found statistically from this local instanta-
neous representation and its probability is called the ensemble average, g�pf ,E.

(5.32)

where Pi is the probability of the quantity (gpf ), found in a particular region of the phase
space. Ensemble average in terms of probabilities can be written as a continuous function
(Drew and Passman, 1999; Tiwari et al., 2006):

(5.33)

where dP(
) is the probability density function obtained by observing the quantity (gpf) for
some particular collection (realization) 
, on the ensemble, E, that is the set of all possible
motions in the system.

5.3 MATHEMATICAL REQUIREMENTS FOR AVERAGING 

TRANSPORT EQUATIONS

In a mixture where more than one phase exists, the volume averaging of a property in
any phase k can be defined similar to eq. (5.24) over the whole volume, �T, as in 
eq. (5.34) or over the volume of phase k, �k, as in eq. (5.35) (Wörner, 2003; Munkejord,
2006)

(5.34)

(5.35)

where Xk is a factor known as a phase indicator function or characteristic function that
depends on position, x, and time, t. The phase indicator function, Xk, theoretically separates
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each phase and identifies the presence of kth phase. If the position vector, x, is in the phase k
at time t, Xk becomes 1 and equals 0 for other states

(5.36)

In ensemble averaging, Xk is defined (Munkejord, 2006; Tiwari et al., 2006) by

(5.37)

If eq. (5.34) is compared with eq. (5.35)

(5.38)

The ratio obtained signifies that these averages are linearly related to each other through the
volume fraction of the phase k, ��k. The local average of the volumetric fraction of phase k
can similarly be expressed by the phase indicator function as ��k � X�k,E (x, t;
) according
to the ensemble averaging technique (eq. (5.33)) at the interface of the phases
(Munkejord, 2006; Tiwari et al., 2006) as

(5.39)

Derivation of model equations for two- or multi-phase flows requires the use of both vol-
ume and ensemble averaging techniques. Mathematical operations, used in averaging tech-
niques, are the averages of derivatives, topological equation, and Gauss and Leibniz rules.
In addition to these, Reynolds rules are necessary in ensemble averaging to derive the aver-
aged model equations.

The average of derivatives based on position is defined by the Slattery volume averag-
ing theorem (1978) of a gradient as

(5.40)

where nk is the normal vector and Sk the surface area of volume, �k. A special case of
eq. (5.40), known as the theorem for the volume average of a divergence (Slattery, 1978), is
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where the property gpf,k is considered as vector or tensor field. The volume average of time
derivatives is determined by the Reynolds transport theorem (Munkejord, 2006) as

(5.42)

where Vi is the velocity vector at the interface and Vi �nk the rate of displacement of the
interface.

The Gauss rule (Wörner, 2003; Munkejord, 2006) is written as

(5.43)

where gpf,k may be scalar or vector quantity and gpf,k,i is the value of this quantity on the k
phase side of the interface. Subscript J in this equation becomes � in volume averaging and
E in ensemble averaging. In volume averaging, Gauss rule is also written as

(5.44)

where (Si � �T) shows the part of the interface which remains inside the averaging volume, �T.
Similar to eq. (5.43), the averages involving the time averages are given by

(5.45)

Xk � t in the above equation can be expressed from the topological equation, given as

(5.46)

The above equation is the substantial derivative of Xk at the interface and this derivative is
zero due to constant jump in Xk for a point moving with the interface velocity. Substitution
of Xk �t definition in eq. (5.46) into eq. (5.45) gives the Leibniz rule (Wörner, 2003;
Munkejord, 2006) as

(5.47)

The above equation can be used for both volume and ensemble averaging. Leibniz rule for
volume averaging is also written as
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The Reynolds rules, required in the development of the model equations for the multiphase
flow, are related to linearity property (Munkejord, 2006) as explained before. If collections
of the property gpf in phases (fields) 1 and 2 (gpf,1 and gpf,2, respectively) are in the same
ensemble, E, or in different ensembles such as E1 and E2, the Reynolds rule is

(5.48)

where C1 and C2 are constants. Furthermore, if collections are in the same ensemble, another
Reynolds rule definition can be used as

(5.49)

5.4 BASIC EQUATIONS FOR SOLID–LIQUID SUSPENSION FLOWS

The continuity and momentum equations for a single-phase flow were given in eqs. (5.1)
and (5.4), respectively. The continuity equation can be rewritten for any phase k in a sus-
pension flow as

(5.50)

where �k is the density and vk the velocity vector of k phase. Also, the momentum equa-
tion for any phase k becomes

(5.51)

or is written in terms of total stress tensor, Tk, as

(5.52)

where pk and �k are the pressure and the shear stress in k phase. The total stress tensor is
defined as

(5.53)

where I is the unit tensor.
Due to existence of more than one phase, an interface formed between the two phases

necessitates additional relations, which are derived by considering two control volumes
given in Figure 5.1: one of the control volumes includes more than one phase (i.e., suspen-
sion—s phase) and the other one corresponds to interacting phase k (i.e., particulate or sus-
pending liquid phase). The control volume of s phase is �s and its total volume, �T. The
volume of k phase remaining inside the control volume, �s, in Figure 5.1 is �k. The interface
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mass balance is written on the interface (denoted by curved dash line in Figure 5.1) between
k and s phases and expressed as

(5.54)

where Vi is the velocity vector at the interface of s and k phases, and �s and Vs the density
and the velocity vector of s phase. Eq. (5.54) states that the mass transfer from k to s phase
equals that from s to k phase and they are opposite to each other. If (Vk �Vi) �nk �0 or 
Vk �Vi � Vs, the mass transfer at the interface does not take place.

The most general form of the momentum balance at the interface can be written as

(5.55)

where � is the interfacial tension and K the mean curvature along the interface. The first
two terms in this equation only take place in the presence of mass transfer between s and
k phases. The third and fourth terms show the momentum due to pressure and shear
stresses in k and s phases, respectively. The fifth term indicates the momentum arising due
to changes in the interfacial tension along the interface, since variations in temperature,
pressure, and the composition of the material at the interface affect the interfacial tension.
The interfacial tension related  the curvature of the interface causes the appearance of a
force normal to the interface and causes a momentum defined by the last term in eq. (5.55).

In cases where there is no mass transfer at the interface between the phases, the forces
due to interfacial tension are balanced by the pressure and shear stress forces and eq. (5.55)
becomes

(5.56)

In addition to the absence of mass transfer, if interfacial tension is negligible, the pressure
and shear stresses of each phase become equal at the interface and eq. (5.55) is reduced to
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Figure 5.1 Schematical presentation of control volumes of interacting s and k phases.



5.5 ENSEMBLE AVERAGED EQUATIONS FOR TWO-FLUID MODEL

One of the convenient ways of averaging is to integrate the differential conservation equa-
tions of the kth phase, eqs. (5.50) and (5.52), over a control volume, �, that is known as
volume averaging. The other way is to integrate the differential equations over an ensemble,
E, so it is called ensemble averaging. Ensemble averaging technique is taken up in this
section.

5.5.1 Ensemble averaging of the generalized equation

Both the continuity and momentum equations (eqs. (5.50) and (5.52)) of phase k can be
reduced to a single equation (eq. (5.58)) by introducing new variables such as gpf,k, T,
and G

(5.58)

In continuity equation, gpf,k �1, and T and G equal to zero, whereas gpf,k�Vk, T�Tk, and
G�g in the momentum equation of the kth phase.

Each term of eq. (5.58) is then multiplied by the density probability function of gpf,k for
some particular realization, 
 on the ensemble E, dP(
), and integrated over E as

(5.59)

All the terms in the above equation conform to the definition of the ensemble averaging
similar to eq. (5.33) and the resultant equation is

(5.60)

The ensemble averaged equation (eq. (5.60)) is averaged once more to take the effect of
the portion of the phase k in s phase into consideration: each term of eq. (5.60) is multi-
plied by the phase indicator function Xk and dP(
) and then integrated for the ensemble
averaging; the equation becomes
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Integration of the above equation yields

(5.62)

Applying the Reynolds rule (eqs. (5.49)) to the above equation gives

(5.63)

Each term in this equation comprises the local average of the phase indicator function,
(X�k)E. Multiplication of two averaging quantities can be collected in the same averaging
sign as

(5.64)

Using eq. (5.45), the first term in the above equation is defined as

(5.45a)

The change in phase indicator function with respect to time in the above equation is
described by using the topological equation, eq. (5.46). Then, the Leibniz rule is obtained as

(5.47b)

The second and third terms in eq. (5.64) are written by applying the Gauss rule (eq. (5.43)) as
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where Tki is the value of tensor, Tk, at the interface of the continuous and dispersed phases.
Substitution of eqs. (5.47b), (5.44a), and (5.44b) into eq. (5.64) gives

(5.65)

Rearrangement of the above equation yields the ensemble averaged conservation equation

(5.66)

The ensemble average of the phase indicator function, (X�k)E (or X�k,E ), equals the local
average of volume fraction of the kth phase (��k) (eq. (5.39)) as explained in Section 5.3
and the general ensemble averaged equation becomes

(5.67)

5.5.2 Ensemble averaged continuity equations

The ensemble averaged continuity equation for k phase from eq. (5.67) is derived by
neglecting the bulk motion of the kth phase (the  phase indication function gpf,k�1), pressure,
shear stress and gravitational effects (T � G � 0) as 

(5.68)

or

(5.68a)

where Mms,k is the ensemble averaged mass source of k phase at the interface of k and s
phases, defined by

(5.69)

This term takes place in continuity equation in the presence of the mass transfer at the
interface due to phase change. Sum of the ensemble averaged mass sources of dispersed
(particle) and continuous (liquid) phases at the interface of these phases satisfies the con-
servation of the mass (eq. (5.54)), known as the jump conditions for mass transfer as
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In the absence of the mass transfer at the interface, the velocity at the interface is contin-
uous and hence, Vp � Vc � Vi and Mms,p � Mms,c � 0.

In solid–liquid suspension flow, application of the continuity equation related to multi-
phase flow (eq. (5.68) or (5.68a)) gives two different continuity equations: the first one is
for the dispersed phase and the other for the continuous phases. These equations are sum-
marized in Table 5.3 for the case of no mass transfer at the interface.

5.5.3 Ensemble averaged momentum equations

The ensemble averaged momentum equation is derived from eq. (5.67) by considering the
effects of the bulk motion of the kth phase (gpf,k � Vk), gravitational (G � g), pressure and
shear stresses (Tk as in eq. (5.53)).

(5.71)
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Table 5.3

Ensemble averaged continuity and momentum equations for suspension flow

Equation Dispersed phase (k � p)

Continuity (5.68b)

(5.77a)

Continuous phase (k � c)

Continuity (5.68c)

(5.77b)
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The third and fifth terms of the above equation are written using Reynolds rule (eq. (5.48)) as

(5.72)

where the sixth term points out the averaged interfacial momentum transfer Fk,ms,i, due to
mass transfer at the interface between the phases and is also defined using eq. (5.69) by

(5.73)

The last term in eq. (5.72) gives the averaged interfacial momentum transfer or interfacial
force per unit volume due to pressure and shear stress. It can be written in terms of Tki as

(5.74)

The interfacial force per unit volume, Fki (or interfacial force density) generally includes
additional two terms in addition to the terms given in eq. (5.74), that corresponds to the
drag and other interfacial (lift, virtual mass, turbulent dispersion etc) forces. Using the
ensemble averaging concepts for these drag and other interfacial force densities such as
FDk and Fo,k, respectively, eq. (5.74) becomes

(5.75)

where Fo,k term covers the lift, FLk, virtual (added) mass, FVM,k, turbulent dispersion, FT,k,
and other effects

(5.76)

The averaged momentum balance (eq. (5.72) is also written by using the definitions given
in eqs. (5.73)–(5.75) as

(5.77)

The sum of the momentum transfers of any two phases at the interface satisfies the inter-
face momentum balance, known as the momentum jump. Substituting the equations of the
averaged interfacial forces due to the mass transfer taking place at the interface
(Fk,ms,i,Fs,ms,i) and due to the total stresses (Fk,i, Fs,i) for the phases k and s into eq. (5.55),
the jump condition at the interface becomes 
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where similar to eqs. (5.73) and (5.74) Fs,ms,i � Mms,sV
�

si and Fsi � �Tsi�
�

�
� �s

� , respectively.
F� is the interfacial force due to surface tension. If the surface tension is independent of
position, the ensemble averaged force due to surface tension equals F� � �K�.

Momentum equations for the dispersed and continuous phases are defined using eq. (5.77)
together with eqs. (5.73) and (5.78) in the absence of mass transfer at the interface and sum-
marized in Table 5.3, where p�c and p�p are the ensemble averaged pressures of the continuous
and dispersed phases, respectively. p�ci and p�pi are the interfacial pressures of the correspon-
ding phases. Similarly, ���c and ���p are the ensemble averaged shear stresses of the continuous
and dispersed phases. ���ci and ���pi are interfacial shear stresses of the phases. The last two
terms in eq. (5.77a) denote the jump conditions across the interface.

The relation between the pressures of the phases and their pressures at the interface
depends on the rigidity of the particles forming the dispersed phase: for deformable parti-
cles such as liquid droplets or gas bubbles, an interfacial pressure jump in eqs. (5.77a) and
(5.77b) occurs due to surface tension

(5.79)

where K� is the curvature of ensembled particle. When the particles are rigid, the pressures
within the solid particle and on its surface are the same, so  p�p � p�pi � p�ci. The effect of
the pressure jump is neglected for small rigid solid particles, so p�pi � p�ci. If the deforma-
tion of the particles is very small, the shear stress across the particle–liquid interface main-
tains continuity, and ��p � ��pi � ��ci. 

Due to the equivalence of pressures at the interfaces of the particles, the terms giving the
pressure and shear stress differences between the interface and the particle, and their gra-
dients vanish. Hence, eq. (5.77a) is reduced to the following equation:

(5.80)

The shear stress term for the liquid phase in eq. (5.77b) refers to the total shear stress
including viscous, turbulent (Reynolds), particle-induced-turbulent, and the interfacial
shear stresses. Eqs. (5.77b) and (5.80) are satisfied for fully developed flows if the condi-
tion ��p � ��pi � ��ci � ��c is valid, indicating that there is no direct contact between parti-
cles in dilute particle suspensions.

Forces effective on the suspension flow, which arise from particle–particle and particle–
liquid interactions (Chapters 3 and 6), are given with eqs. (5.75a) and (5.78) in ensemble
averaged form. The equivalent expression of the terms in these equations is presented below
in terms of velocities.

5.5.3.1 Averaged pressure difference

The local flow conditions affect the pressure difference ( p�c � p�ci) in eq. (5.77b). Drew and
Passman (1999) defined the pressure difference by assuming potential flow around an indi-
vidual spherical particle, as
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where Cp is the interfacial continuous phase pressure parameter and is suggested as 0.25
(Drew and Passman, 1999).

5.5.3.2 Averaged drag force

If solid particles in a dilute suspension are less than 100�m in diameter, the interfacial drag
has a dominant effect as described by Ishii and Zuber (1979):

(5.82)

where |V�p � V�c| is the absolute value of the slip velocity (or difference between the veloc-
ities of solid and liquid phases) and Aip the total particle interfacial area per unit particle
volume, given as

(5.83)

where dp is the diameter of a spherical particle and calculated from the particle volume of
�p. For two phase flows of very small dispersed particles, which moves in Stokes’ regime,
the interfacial drag force is defined by eq. (5.82) with the help of Aip (eq.(5.83)) and CD

(eq. (4.49)) equations:

(5.84)

As shown in Stokes'regime, CD in Eq. (5.82) depends on particle Reynolds number, Repi

in all particle flow regime and solid volume fraction. Particle Reynolds number, Repi, used
in the interfacial drag force is defined as

(5.85)

which is based on the slip velocity (V�p � V�c) (Section 5.7) and the solid–liquid suspension
viscosity, . Slip velocities are taken instead of terminal velocities in the calculation of
interfacial drag force, in all the expressions used for the drag coefficient.

5.5.3.3 Averaged interfacial forces

The turbulent dispersion force, FT,c, becomes zero in laminar flow and the other interfacial
forces for the continuous phase Fo,c, only consists of lift and virtual (added) mass forces.
Hence, eq. (5.75a) becomes

(5.86)F F Fo,c L,c VM,c� �

Re
d

ip
p c p

�
��



V V

F F
V V

Dc Dp
p c p

p
2

18 ( )
�� �

�� �

d

A
d

d dip
p
2

p

p
3

p

p6

6
�

	
�

�

�

� �

F F V V V VDc Dp D p c p c p
1

8
( )�� � � �C Ai�

5.5 Ensemble Averaged Equations for Two-Fluid Model 311



The lift force acting on spherical particles in shear flow is in opposite direction to the flow
and it is expressed (Arnold et al., 1989) as

(5.87)

where CL is the lift coefficient that depends on particle Reynolds number (Asakura et al.,
1997) and CL � 0.25 for dilute suspension flows including spherical particles. The term 
(��V�c) in the equation is the liquid flow vorticity due to rotational motion of particles and
is proportional to the lift force.

The motion of an object immersed in a fluid may cause acceleration of the surrounding
fluid. This results in an interfacial force on the object, which is called the virtual (added)
mass force. This hydraulic force exerted on a particle in time and/or position depends on
velocities in each phase and is given by

(5.88)

where CVM is the virtual mass coefficient and CVM� 0.5 for dilute suspensions of spheri-
cal particles (Drew and Passman, 1999).

5.6 EULERIAN SINGLE FLUID MODEL: MIXTURE MODEL

Single-fluid model based on mixture theory, one of the approaches in modeling the suspen-
sion flow, assumes that both solid and liquid phases forming the suspension exist at each
point in the mixture, the properties of the suspension depend on the properties of each indi-
vidual phase and on their concentrations. This mixture model can be applied to suspensions
flowing in turbulent regime since the turbulence models (i.e. differential stress, linear or non-
linear eddy viscosity models such as k–� models) can readily be introduced into the model.

5.6.1 Mixture model in laminar flow

A three-dimensional two-phase mixture model is based on a single fluid two-phase flow.
In this case, a slurry system consisting of dispersed and continuous phases is considered
as a single phase, and continuity and momentum equations are derived (Ling et al., 2003;
Xu et al., 2004) as

(5.89)
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Second term on the RHS of eq. (5.90) denotes the momentum transfer due to slip velocity.
In this equation, �Gs is the generalized stress and SM is the momentum source defined by

(5.91)

Here, L is the length of the conduit and Vs the local suspension velocity. The density of
the suspension, �s, and its velocity vector, Vs, are given with the equations

(5.92)

(5.93)

where �k, �k, and Vk are the volume fraction, density, and velocity vector of the kth phase,
respectively. The volume fraction of particles, �p, is determined by writing a continuity
equation for the dispersed phase in the presence of slip velocity as

(5.94)

where DMp is the turbulent dispersion (diffusion) coefficient and (Vp � Vc) the relative
velocity of the dispersed phase over the liquid phase which is called the slip velocity
(Section 5.7). The slip velocity is defined by

(5.95)

���Gs and DMp ��p terms in the mixture momentum (eq. (5.90)) and the dispersed phase
continuity (eq. (5.94)) equations, respectively, indicate the effect of turbulence. �Gs

includes both viscous and turbulent shear stresses in each phase as

(5.96)

where t and ks are the turbulent viscosity and turbulent kinetic energy of the suspension,
respectively. t is defined by eq. (5.101) for k�� model (Section 5.6.2), and (�Vs)

T is the
transpose of �Vs.

The equations given above are used to model two-phase flow in laminar regime by drop-
ping DMp ��p term in the continuity equation of dispersed phase and describing �Gs in the
momentum equation from eq. (5.96) as
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5.6.2 Mixture model in turbulent flow

The general model equations given in the above section are directly used to model the
solid–liquid suspension flow in turbulent regime. However, additional definitions and
equations are required for the turbulent flow. One of them is the turbulent diffusion co-
efficient, DMp, which describes the effects of all turbulent stresses existing in the two-phase
flow. DMp is given for dense suspensions as

(5.98)

and will be covered in Section 6.3 in detail.
Turbulent flow of solid–liquid suspensions can be computed in two ways: (1) the averaged

Navier–Stokes equations with suitable turbulent flux models are solved which will be given
in this section and (2) computation of fluctuating quantities. Turbulent flux models are lin-
ear eddy viscosity (k�� and k��) models, nonlinear eddy viscosity, and differential stress
models (Aspley, 1995, 2006; Aspley and Leschziner, 1998). k, � and � denote kinetic energy
of turbulence, dissipation and specific dissipation rates, respectively. � relates to k and � as
���/(C�k) where C� is an empirical constant of k–� linear eddy viscosity model, widely
used. So, the Navier–Stokes equations including k�� model are given as an example in this
section. As the density ratio (�p ��) is almost unity, the use of mixture properties and veloci-
ties is appropriate to describe the features of the turbulent flow. The transport equations of
k�� model are based on the solution of the conservation of the kinetic energy of turbulence,
ks, and its dissipation rate, �, and are given by eqs. (5.99) and (5.100) for multiphase flow

(5.99)

(5.100)

where C1�, C2�, �k, and �� are empirical constants of the k�� model (Aspley, 1995, 2006;
Aspley and Leschziner, 1998). t is the turbulent viscosity defined by

(5.101)

Non-Newtonian suspension flow in laminar and turbulent regimes are generally modeled
by this single fluid (mixture) model as given in Chapters 2.

Mixture model can also be applied to the flow of settling suspensions having different
flow patterns in which different layers exist (Chapter 6). Each layer is considered as a sep-
arate mixture with different properties and the model is applied to each layer. A set of the
model equations can be developed on both micro- and macro-scales. In the case of
microscale modeling, the general equations given in this section are applied to each layer
separately. The mixture model is widely used on macroscale for layered flow, so the general
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balance equations independent of flow geometry are developed for heterogeneous set-
tling suspension flow in Section 5.7.

5.7 MIXTURE MODEL ON MACROSCALE: GENERAL 

BALANCE EQUATIONS

Heterogeneous flow (Figure 6.1) is a characteristic behavior of solid–liquid suspension
flows and a distribution of particle volume fraction (� or �p) occurs along the cross-sec-
tional area and in the flow direction. The heterogeneous flow is schematically portrayed in
Figure 5.2 at steady-state conditions with flow of solid particles, Qp, and fluid, Qc, through
the cross-sectional area of an inclined hydraulic transportation line. The velocities and vol-
ume fractions of the phases are usually not equal and may vary. Therefore, total mass,
momentum, and energy balances for the system given in Figure 5.2 are written independ-
ent of flow geometry to define the flow behavior of suspensions.

The properties of the suspension flow vary across the cross-sectional area (sections A,
B, C, and SS�) and throughout the flow path due to the settling of the particles during flow.
A differential cross-sectional area, dA, is defined as shown in Figure 5.2 to take into
account the variations across the cross-sectional area and along the flow path. The local
values of particle volume fraction, the particle and liquid velocities on this differential area
are taken as �, Vp, and Vc, respectively.

General balance equations on macroscale between any two sections such as A and C given
in Figure 5.2 can be written by representing the inlet and outlet properties for the whole cross-
section, so the area-averaged properties must be used. Therefore, the local values are inte-
grated along the cross-sectional area to describe the area-averaged properties (eq. (5.26)) as
explained in Section 5.2. If a property is required to define the whole system from inlet to out-
let in any balance equation i.e., density used in the gravitational force term in a force balance,
volume-averaged properties are used. To describe the volume-averaged property, eq. (5.24) is
applied to the local values of this property. Besides, if the area-averaged form of this property
is known, its area-averaged form is converted into volume-averaged property using eq. (5.28).
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Figure 5.2 Flow of solid liquid suspensions in an inclined channel. V is local velocity and � is
the local particle volume fraction. The subscripts p and c denote particle and liquid phases. This
system makes an angle � with the horizontal.



5.7.1 Total mass balance

Total mass balance for suspension flow from inlet section A to outlet section C under
steady state conditions, so the suspension mass flow rate is constant between Section A
and C in

(5.102)

The suspension mass flow rate, m· s, can be written in terms of the solid, m· p, and liquid, m· c,
components of flow as

(5.102a)

or

(5.103)

in terms of volumetric flow rate, Q. The subscripts s, p, and c denote suspension, particle
(dispersed), and liquid (continuous) phases, respectively. Here, the suspension density, �s,
is written from eq. (5.92) as a function of the densities of solid particles and liquid as

(5.104)

where �d (widely used as Cvd in literature) is the delivered volume fraction of the solid
phase in this suspension flow system. �d is defined as the ratio of the volumetric flow rate
of solid particles to the total volumetric flow rate of the suspension:

(5.105)

The delivered solid concentration �d should be less than 0.30 for dispersed (fully sus-
pended) flow where rather high velocities are used. �d can be as high as 0.5 in the trans-
portation of dense suspensions at relatively low velocities (two layer flow).

The volumetric flow rates in two-phase flow can also be written in terms of superficial
velocity, Vi,av, based on the cross-sectional area, A, of the transportation line as

(5.106)

where subscript i may be p, l, or s denoting particulate and liquid phases and their mixture
(suspension), respectively. A relation between the superficial solid and suspension veloci-
ties can be given using eqs. (5.105) and (5.106) as
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To find the area-averaged properties of the liquid and particle phases, the cross-sectional
area, A, can also be expressed in terms of the particle volume fraction as

(5.108)A A A� � �� �(1 )
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Table 5.4

Mean quantities of dispersed phase based on dA on SS� line in Figure 5.2

Quantity Dispersed phase

Area-averaged volume fraction (5.109)

Mass flow rate (5.110)

(5.110a)

Volumetric flow rate (5.111)

(5.111a)

Mean velocity (5.112)

(5.112a)

Momentum (5.113)

(5.113a)

Kinetic energy (5.114)
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and the differential cross-sectional area, dA, on a section SS� in Figure 5.2 normal to the
suspension flow is given as

(5.108a)

dA does not cover the whole cross-sectional area since the volume fraction of solid parti-
cles shows variations across this area (normal to flow direction). Thus, the local values such
as the local volume fraction, �, and the local velocities (Vp, Vc) on dA are used to define
area-averaged quantities (mean volume fractions, �t, and mean velocities of the solid, V�p,
and liquid, V�c, phases and their flow rates) using eq. (5.24). For example, integration of
the local volumetric fraction of solids across the cross-sectional area gives the area-
averaged volume fraction, �t. The resultant area-averaged equations for the dispersed and
continuous phases are summarized in Tables 5.4 and 5.5, respectively.

In a similar way, substitution of eq. (5.111a) to define Qp into the equation of the
delivered volume fraction of the solid phase, �d (eq. (5.105)), gives a relation between
area-averaged solid particle and superficial suspension velocities

(5.120)

or

(5.120a)

Eq. (5.120) indicates that there is slip between the phases, so that V�p �Vs,av, and the average
and delivered volume fractions are different. The slip velocity is expressed as the difference
between the velocities of solid and liquid phases. The local (Vc � Vp) and mean (V�c � V�p)
slip velocities are defined at an incremental area dA and across the cross-section SS�, respec-
tively. The equations in Tables 5.4 and 5.5 are used to derive the following equation, the
equation of mean slip velocity, which shows that there is no simple relation between local
and mean velocities:

(5.121)

However, sometimes the slip velocity (or lag) and the dimensionless slip velocity (lag
ratio), �slip , are defined as the velocity difference between the suspension and the solid
phase (Vs,av �V�p) and given by
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In addition, substituting Vs,av /V�p � 1 � �slip into eq. (5.120a), the delivered volume frac-
tion of the solid phase �d in terms of dimensionless slip velocity �slip is obtained as

(5.123)

�slip decreases with decreasing slip velocity and 1/(1��slip) ratio in the above equation
increases. Thus, the difference between the area-averaged and the delivered volume frac-
tions decreases and they become identical under no-slip conditions.
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Table 5.5

Mean quantities for continuous phase based on dA across SS� line in Figure 5.2

Quantity Continuous phase

Mass flow rate (5.115)

(5.115a)

Volumetric flow rate (5.116)

(5.116a)

Mean velocity (5.117)

(5.117a)

Momentum (5.118)

(5.118a)

Kinetic energy (5.119)
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5.7.2 Linear momentum balance

The linear momentum balance for the suspension flow is written as a difference of area-
averaged inlet and outlet quantities in the volume element (from section A to B) in Figure 5.2
under steady-state conditions

(5.124)

where J�Ms is area-averaged momentum of the suspension, P the pressure, � the angle of
inclination, S the peripheral area of the transportation line (conduit) which is parallel to the
flow direction, A is the area perpendicular to the suspension flow, and �s,av the volume-
averaged suspension density in the control volume since the density of the suspension
changes depending on the solid volume fraction along the flow (from section A to B and
across the cross-sectional area) in heterogeneous flow.

The terms in square bracket in the equation show the area-averaged total momentum flow
rates (eqs. (5.127)–(5.127c) in Table 5.6), the second and third terms give the momentum
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Table 5.6

Mean quantities for suspension based on dA on SS� line used in Figure 5.2

Area-averaged quantities Suspension

Density (5.125a)

Mass flow rate (5.126)

Momentum (5.127)

(5.127a)
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(5.127c)

Kinetic energy (5.128)
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due to external forces (pressure and gravity), and the fourth term is associated with the
momentum loss due to shear stresses at the walls. Eq. (5.124) in differential form is

(5.124a)

The suspension density �s is given in terms of the local solid volume fraction and the den-
sities of each phase as

(5.125)

across the differential cross-sectional area, dA. The area-averaged suspension density, ��s, is
expressed by eq. (5.125a) in Table 5.6 replacing the local solid volume fraction, �, with the
area-averaged volume fraction, �t. Area-averaged quantities related to suspension flow such
as mass, momentum, and kinetic energy flow rates are summarized in Table 5.6.

The area-averaged suspension density, ��s, is converted into volume-averaged quantities
through

(5.129)

An expression for the volume-averaged suspension density ��s,av is obtained by substitut-
ing eq. (5.125a) into eq. (5.129), then taking the integral and applying the integral bound-
aries:

(5.130)

The rearrangement of the above equation gives

(5.130a)

With the inclusion of the expressions for averaged quantities into the momentum equation
(eq. (5.124a)), a general linear momentum balance equation describing the pressure drop
along the hydraulic transportation line is derived at steady-state conditions for both homo-
geneous and heterogeneous flows

(5.131)

where the first term denotes shear stresses at the wall, the second term the gravitational
effect due to the weight of the suspension, and the third term the acceleration of the two
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flowing phases. In the case of multilayered flow, �w in the first term denotes the summa-
tion of shear stresses at upper and lower boundaries of each layer.

The linear momentum balance equation (eq. (5.131)) can be simplified in the following
cases:

Fully developed heterogeneous flow: There is no change in the area mean velocities of
the two phases along the pipe and the acceleration term is zero in this type of flow.
In this case, the equation simplifies to

(5.131a)

Fully developed homogeneous flow: The volume fraction of the phases across sections A
and B normal to the flow of the suspension remains constant through the transporta-
tion line, so �tA � �tB � �t and, consequently, the second term in eq. (5.131a) is
reduced to a simpler form:

(5.131b)

These equations are general and can be used for any inclination angle, �, of the pipeline
from horizontal to vertical position. In the equation, sin ��0 for horizontal flow and 
1 for vertical flow.

5.7.3 Total mechanical energy balance

The total mechanical energy balance between the sections A and B in Figure 5.2 is

(5.132)

where P is the pressure, P�KE the area-averaged kinetic energy in pressure units, and �Ploss is
the pressure or frictional losses due to energy dissipation in the transportation line. The area-
averaged kinetic energies of the dispersed and continuous phases on SS� line in Figure 5.2
in terms of local and area-averaged quantities are given in Tables 5.4 and 5.5, respectively.
The area-averaged kinetic energy of the suspension on the same section is also given in 
Table 5.6. The suspension kinetic energy in terms of pressure unit can be expressed as

(5.133)

Eq. (5.132) can also be rewritten in differential form:

(5.134)� �� � �
dP

dL

dP

dL

d P

d L
gloss KEs

s,av

(
sin

)

�
� �

P
E

V A

E

V A

V V
KEs

Kp

p t

Kc

c t
p

p
2

c
2

(1 ) 2 2
� �

�
� �

� �
� �

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝⎜
⎞

⎠⎟

( sin ) ( sin )KE s,av A s,av B lossP P Lg P P Lg P� � � � � �� � � �KE �

dP

dL

S

AdL
gt

⎛
⎝⎜

⎞
⎠⎟

�� � � �
�w

p t[ (1 ) ] sin� � �� �

dP

dL

S

AdL

L L

L
g

t⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥��

� �
�

�w p t B A( )(( ) ( ) )
sin

� �
� �

� �

�

322 5. Modeling the Flow of Settling Suspensions



Eq. (5.134) defines the total mechanical energy per unit volume. To express the total
mechanical energy based on the total volume, eq. (5.134) is written by replacing P�KEs with
E�Ks, �s,av with (m·p + m·c), and multiplying dP/dL and dPloss/dL terms with the total volu-
metric flow rate, Qs, as

(5.135)

The rearrangement of the above equation by substituting Qs � Qp � Qc and by using 
eq. (5.128a) yields

(5.136)

where the ratio of (m· p + m· c) to (Qp + Qc) in the last term gives the density, known as the
mean delivered suspension density, �s,av

(5.137)

Further substitution of eqs. (5.131) and (5.137) into eq. (5.136) gives

(5.138)

where first, second, and third terms indicate shear stress at the wall, gravity effect, and
the acceleration of the dispersed and continuous phases, respectively. Thus, the terms
designate the same quantities as eq. (5.131). In the case of fully developed heterogeneous
flow, the third term becomes zero and the total mechanical energy balance becomes

(5.138a)

For fully developed homogeneous flow, the second term in the above equation is simplified
when there is no change in the volume fraction of the dispersed phase throughout the sys-
tem and the total mechanical energy balance reduces to
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The terms in square brackets show the difference between the area-averaged (eq. (5.125a))
and the mean delivered suspension densities, so the average slurry density is taken into
account.

5.7.3.1 Effect of slip on total mechanical energy balance

The density difference given by the square brackets in eq. (5.138b) can also be defined by
using eqs. (5.125a) and (5.123) in terms of dimensionless slip velocity, �slip

(5.139)

If the suspension can flow upwards, this means that the superficial suspension velocity is
greater than the area mean velocity of the particles, Vs,av �V�p, and the dimensionless slip
velocity, �slip, becomes positive. Hence, the density difference from eq. (5.139) used in the
second term of the total mechanical energy balance equation (eq. (5.138b)) becomes pos-
itive. This indicates mechanical energy dissipation, since eq. (5.138b) has a negative sign.
In the case of downward flow, sin � becomes negative and Vs,av �V�p which causes the
dimensionless slip velocity, �slip, and the density difference in eq. (5.139) to be negative.
As a consequence, slip of the dispersed phase causes mechanical energy dissipation in both
upward and downward flows of suspensions.

5.8 Drift Flux Model

The presence of relative motion between the solid and liquid phases in a mixture with
respect to each other and with respect to the average flow of the mixture in a solid-liquid
suspensions necessitates modelling the suspension flow by using the two-fluid
(Section 5.4), mixture (Sections 5.6) or drift-flux models depending on the degree of the
coupling of the motion of the phases. Two-fluid model that takes the relative motion of all
phases with respect to each other is the most general form. If the phases move with the
same velocity that indicate the existence of mechanical equilibrium between the phases,
the slip velocity vanishes and the most simple model called the homogeneous model can
be used. Therefore, there is only one velocity (V�p�V�c�V�m) in the homogeneous model
and a momentum equation is written based on the mixture properties. In addition, conti-
nuity equations for particulate (eqs.(5.68b) and (5.68c)) for liquid phases or only a single
continuity equation for the suspension (eq. (5.89)) can be used.  

The two-fluid model is appropriate for modeling the suspension flow when the veloci-
ties of the solid and liquid phases are different. However, the two momentum equations
used in the model causes significant difficulties due to mathematical complications
together with uncertainities to specify the interactions between the solid and liquid phases
at the interface. Improper selection of the interactive relations causes numerical instabili-
ties in the solution of the model equations. These difficulties in the modeling of the two-
phase flow can be reduced by using a new approach called drift-flux model (Munkejord,
2006). In the drift flux model, the mixture is considered as a whole rather than as solid and

� � � � � � �s s,av p t d p d slip( )( ) ( )� � � � � �� � �
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liquid phases and the slip velocity V�ls, is approximated by an algebraic expression that is
a function of flow variables. 

(5.140)

The drift-flux model provides a constitutive equation for the drift-flux velocity Jls, of the
dispersed phase (Zuber and Findley, 1965), that is the velocity of the phase relative to the
volume averaged velocity of the mixture (Zuber and Findley, 1965; Wörner, 2003). The
volumetric flux density of the mixture Jm is given as

(5.141)

where Jc and Jp are the volumetric flux densities of the continuous and disperse phases,
respectively. The drift velocities of the phases related to the slip velocity V�ls, are 

(5.142)

(5.143)

The drift-flux model is derived by considering the two fluid model in two ways: In the
first way, the interfacial pressure is assumed to be the same for the solid and liquid phases
(P�p�P�pi�P�ci) and the interfacial momentum source terms (��p���pi���ci���c) are neglected
in the momentum equations (eqs. (5.77a) and (5.77b)). Then the mixture momentum equa-
tion is obtained by adding the momentum equation for the liquid phase (eq.(5.77b)) to that
for the solid phase (eq. (5.77a)):

(5.144)

For the two-phase flow, the gradient of the volume fraction is equal and opposite, so
p�i � �� i (where i � p, c, or i) does not appear in the above equation. In addition to this
momentum equation, the drift-flux model incorporates two continuity equations (eqs.(5.68b)
and (5.68c)). 

The second way is to formulate the drift-flux model is by mixture momentum
(eq.(5.144) and mixture continuity equations (eq.(5.89), together with the continuity equa-
tion for the dispersed phase (eq.(5.68b)).  

When the motion of two phases are strongly coupled, it is more appropriate to use the
drift-flux model instead of the more complex two-fluid model. It is usually applied its one
dimensional form that is obtained from time-averaging of the three dimensional drift- flux
model (Hibiki and Ishii, 2003).
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– 6 –

Flow of Settling Slurries

Solid–liquid suspensions may consist of solid particles in different size ranges such 
as particles in nano-, micro-, and milli-meter scales and different densities: If densities
of particles and liquid forming a suspension are approximately the same or the sizes 
of the particles are too small, the particles do not settle. Nonsettling suspensions can be
treated as pseudofluids with effective rheological properties and their flow through
circular and noncircular pipes can be evaluated as single-phase flow. First group of
nonsettling suspensions is non-Newtonian slurries covered in Chapter 2. The other
group of nonsettling suspensions shows Newtonian behavior and will be taken up 
in this chapter as a fully suspended (homogeneous) flow together with the settling
slurry flow.

The slurries comprising small and coarser particles or particles having higher density
than that of liquid tend to settle from the suspending liquid. These particles accumulate at
the bottom of the channel, resulting in the emergence of different flow patterns depending
on the flow homogeneity and velocity. The internal structures of the flow patterns of set-
tling slurries are effective in determining the pressure drop due to friction over the length
of the slurry transportation system.

Various aspects of suspension flow such as flow patterns, flow regimes, transition veloc-
ities, and the flow behavior in pipes of different geometries based on experimental and
model studies will be covered in this chapter, as a function of concentration, shape, size,
and size distribution of particles. Model equations for fully suspended, two- and three-
layered flow patterns derived in this chapter are based on the general balance equations
given in Section 6 of Chapter 5.

6.1 FLOW PATTERNS AND FLOW REGIMES

Flow patterns are defined with respect to the dispersed phase to describe the flow behav-
ior of settling slurries. Depending on the suspension flow rate, the dispersed phase may
form a homogeneous or heterogeneous single-phase flow, or a layered flow such as two-
or three-layer flow.
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6.1.1 Flow patterns

Settling slurries exhibit different flow patterns based on visual observations of the dis-
persed phase flow as shown in Table 6.1. A general classification of the flow patterns
based on the solid distribution in the transportation line can be made as (Doron and
Barnea, 1996): (1) fully suspended flow with two sub patterns—pseudohomogeneous
and -heterogeneous flow, (2) flow with moving bed, and (3) flow with a stationary bed
including saltation.

6.1.1.1 Fully suspended flow

This type of suspension flow is single phased and generally observed at high suspension
flow rates. All solid particles are uniformly suspended across the flow cross-section at any
position throughout the flow direction resulting in a pseudohomogeneous suspension flow
(Figure 6.1(a-1)). If the solid particles are randomly distributed in the normal direction to

Table 6.1

Classification of flow patterns

Nomenclature for flow References Flow pattern classification 
patterns in the literature of this book

Nondeposit flow regime Durand (1953) Fully suspended flow
Flow regime with deposits Condolios and Chapus (1963) Two-layer flow

Saltation � Moving bed Bain and Bonnington (1970) Two-layer flow
Turian and Yuan (1977)

Homogeneous flow Fully suspended flow
Heterogeneous flow Vocaldo and Charles (1972) Fully suspended flow
Heterogeneous and sliding flow Goedde (1978) Two-layer flow
Saltation and stationary bed Parzonka et al. (1981) Three-layer flow

Saltation and stationary bed Ayazi Shamlau (1970) Three-layer flow

Fully segregated flow regime Layered flow
Heterogeneous flow regime Brown (1991) Fully suspended flow

Homogeneous flow Fully suspended flow
Pseudohomogeneous flow Fully suspended flow
Heterogeneous flow Fully suspended flow
Fully moving bed Lazarus and Neilson (1978) Two-layer flow
Part stationary bed Three-layer flow
Stationary bed Three-layer flow

Pseudohomogeneous flow Fully suspended flow
Heterogeneous flow Fully suspended flow
Moving/stationary bed Ercolani et al. (1979) Three-layer flow
Moving dunes Two-layer flow
Stationary bed Three-layer flow



flow, a particle concentration gradient is formed, causing a heterogeneous suspension flow
(Figure 6.1(a-2)). The absence or presence of a particle concentration gradient in fully sus-
pended flow does not change the number of phases.

6.1.1.2 Flow with a moving bed

Solid particles accumulate at the bottom of ducts resulting in a dense packed layer at low
suspension flow rates. The packed layer moves along the lower wall, and a heterogeneous
suspension forming the upper layer flows in the rest of the duct (Figure 6.1(b)). This type
of the suspension flow with a moving particle bed is defined as two-layer flow. 
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Figure 6.1 Schematic presentation of flow patterns and concentration distributions in normal
direction to flow (a) fully suspended flow, (b) two-layer flow (flow with moving bed), (c) three-layer
flow (flow with a stationary bed). 



6.1.1.3 Flow with a stationary bed

A stationary bed is observed at the bottom of the duct (Figure 6.1(c)) since the suspension
flow rate is too low to move all the immersed particles. There is a separate moving layer on
the top of this bed. In many cases a phenomenon known as saltation, that is the formation
of dune-like forms on the surface of the bed, can also be observed. The rest of the flow sys-
tem is filled with heterogeneous suspension flow where the solid concentration profile is
much steeper than in the other flow patterns. This flow pattern of heterogeneous suspension
together with stationary and moving bed layers can also be interpreted as three-layer flow.

These three main flow patterns will be mentioned as fully suspended, two- and three-
layer flows in this book. The flows including more than one layer such as two- and three-
layers are also generalized as stratified flow as given in Figure 6.1. The flow patterns
given in the literature are regrouped as fully suspended, two- and three-layer flows in the
last column of Table 6.1.

The transitions between flow patterns are usually determined by visual observations.
The definition of the transition velocity varies with a change in the definition of the flow
patterns. However, summary of the definition of transition velocities given in Table 6.2
shows that there are two fundamental transition velocities, limit deposit and suspending
velocities as shown in the last column of the table. Limit deposit velocity is the velocity
that marks the lowest velocity required for a fully suspended flow. The limit deposit
velocity conditions in slurry flow comprise stationary bed flow with a stagnant lower
zone. Prevention of this limit deposit velocity is essential for the avoidance of the partial
blockage of the pipes that reduces the efficiency of the pipelines, enhancing pipe wear
in industrial applications.

6.1.2 Particle support mechanisms in the flow of settling slurries

The solid particles forming slurries tend to settle under the action of gravity due to 
density difference with the suspension medium during slurry flow. Particles are supported
by several mechanisms depending on the flow patterns to overcome the gravitational force.

The suspended weight of particles in homogeneous and heterogeneous flow is supported
by the turbulent diffusive action of the conveying fluid. However, the concentration of solid
particles along the bottom of the pipe increases in all types of flow patterns in heteroge-
neous suspension flow shown in Figure 6.1. With increasing solid concentration, packing
of particles and interactions among the solid particles also increase, so the interparticle
contact opposes the effect of gravity and is the dominant mechanism for particle support.
Particle–particle and particle–fluid interactions taken up in Chapter 1 have an important
bearing on the flow of settling slurries and will be used in related sections of this chapter.

6.1.3 Parameters describing the flow of slurries

Density and viscosity of solid–liquid suspensions are effective parameters controlling the flow
of slurries. The density of slurries �s is defined by eq. (5.125). Viscosity of the solid–liquid
suspensions, � depends on the viscosity of the suspending medium, � and the densities of
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the phases forming the suspension and is defined in the form of relative viscosity, �r as
(Kofanov, 1964; Stokes and Evans, 1997)

(6.1)

where �p is the density of the particle and �, the density of the suspending medium. This
equation is used for dilute suspensions formed by uniform fine or coarse spherical parti-
cles. The density ratio in eq. (6.1) refers to the solid volume fraction, � as defined by 
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Table 6.2

Transition velocities

Transition velocity Definition References Definition used 
in this book

Limit deposit Marks the separation Durand (1953)
velocity between the deposit 

and nondeposit flow 
regimes 

Limit deposit Limit velocity for the Wilson (1976, 1984);
velocity stationary bed Toda et al. (1980)

Critical deposition Transition velocity Doron and Barnea
velocity between the deposit (1996); Graf et al.

and nondeposit (1970); Bain and
flow regimes Bonnington (1970); 

Stevens and Charles 
(1972); Limit deposit
Kazanskij (1979) velocity

Deposit velocity Limit velocity for the Wood (1979); 
stationary bed Parzonka et al. (1981)

Deposition velocity Limit velocity for Shook and Roco (1991)
the stationary bed

Critical velocity Velocity below which Zandi and Govatos
there are deposited (1967); Vocaldo and
particles Charles (1972); 

Ercolani et al. (1979); 
Oroskor and Turian 
(1980); Goedde (1978); 
Turian et al. (1987)

Settling velocity Velocity above which Smith (1955) Suspending 
fully suspended flow  velocity
is observed

Minimum velocity Spell (1955)
Suspending velocity Doron and Barnea (1996)



eq. (4.136). Replacing the density ratio with the solid volume fraction � converts eq. (6.1)
into eq. (3.15). There is a linear relation between the suspension viscosity and the volume
fraction of dispersed phase in eq. (6.1). However, viscosity–volumetric fraction relation is
not linear in concentrated suspensions and eq. (6.1) becomes inadequate with increasing
concentrations. Additional terms of order two or higher are required to describe the inter-
actions between particles such as

(6.2)

where C1, C2, and C3 are constants, which are given in the same order as 10, 0.0019, and
20 by Gillies et al. (1999), 10.05, 0.00273, and 16.6 by Shook (1993) and Fangary et al.
(1997). The suspension viscosity can also be defined in terms of the solid mass fraction,
�w (Shook, 1993; Choi and Cho, 2001)

(6.3)

where �w is given as

(6.4)

Krieger and Dougherty (1959) equation given in eq. (3.22) can also be used to define the
relative viscosity of settling slurries. The power of eq. (3.22), [�]·�m (Krieger, 1972) is
taken as 1.82 and �m � 0.6 (Averbakh et al., 1997; Shauly et al., 1997).

Liu and Masliyah (1996) proposed an equation similar to eq. (3.17) that can be used to
estimate the viscosity of both dilute and concentrated suspensions,

(6.5)

where kH is the Huggins constant and �m is the volume fraction at the maximum packing.
Both �m and kH are strong functions of shear rate. Under low shear rates, or quasistatic
conditions, �m � 0.63 and kH � 6. At higher shear stresses �m � 0.74 due to the align-
ment of the particles and kH � 7.1.

6.2 GENERAL BALANCE EQUATIONS FOR FLOW 

OF SLURRIES THROUGH PIPES

Flow patterns observed during flow of settling suspensions through cylindrical pipes are
similar to those given in Section 6.1 and schematically illustrated in Figure 6.2. Starting
with the most general forms of the balance equations given in Chapter 5 for a fully sus-
pended flow, balance equations for all flow patterns in Figure 6.2 will be derived.
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6.2.1 Fully suspended flow

Homogeneous fully suspended flow illustrated in Figure 6.2(a) occurs when the sizes of
particles making up the suspension are too small or when the average velocity Vs,av is 
sufficiently high. Hence, the area-averaged solid volume fraction of the suspension �t is
uniformly distributed throughout the pipe cross-section. The total mechanical energy 
balance for fully suspended homogeneous suspension flow through a cylindrical pipe of
any inclination, vertical, or horizontal is expressed by eq. (5.131b). A and S are replaced
with A� (�D2�4) and S��D(dL), respectively, and the shear losses at wall, �w with
Darcy–Weisbach expression

(6.6)

where fs is friction factor, Vs is the superficial velocity of the suspension and equals Vs,av in
Chapter 5. Hence, the total mechanical energy balance for fully suspended flow is defined as

(6.7)

where dP/dL is the pressure loss per unit length of pipe, g the acceleration of gravity, the
expression in square brackets is the area averaged effective density of the suspension, –�s is
defined by eq. (5.125a), and � is the angle of inclination of the pipeline. Under no-slip
conditions, –�s becomes identical to the volume averaged suspension density, �s according
to eq. (5.139).

Depending on the type of the fluid and the flow regime of the suspension, several rela-
tionships are used to find the friction factor, fs. For Newtonian fluids, fs for laminar flow is
given by 
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Figure 6.2 Schematic presentation of flow patterns in cylindrical pipes.



and for turbulent flow (Doron et al., 1987; Kelessidis and Bandelis, 2004)

(6.9)

where Res is the Reynolds number of the suspension flow defined as

(6.10)

where D is the diameter of the pipe.
In heterogeneous fully suspended flow (Figure 6.2(b)), solid particles are nonuniformly

distributed over the pipe cross-section, which necessitates the use of an area-averaged solid
volume fraction, �t throughout the pipeline. Thus, total energy balance for fully developed
heterogeneous flow in a pipeline at any position is derived by using eq. (5.138a)

(6.11)

�t is constant in the normal direction to flow and changes along the pipeline.

6.2.2 Two-layer flow

Suspension flow may change its flow pattern from fully suspended to two-layer flow
(Figures 6.2(c) and 6.3(a)) with a decrease in average suspension velocity, Vs,av. In this type
of flow, the solid–liquid mixtures in each layer are considered to have the solid and liquid
phases in different volume fractions, so that continuity equations for solid and liquid
phases are separately written. The upper layer is the heterogeneous dispersed phase
denoted by 1 and the moving bed by 2 in Figure 6.3. The flow in each layer has distinct
properties, which are defined by means of the averaged quantities such as mean velocity,
V, and concentration, �d. If the area-averaged mean velocity of the solid particles,

–
Vp

equals that of the liquid,
–
Vc in each layer, or

–
Vp �Vs , this is an indication that there is no

slip between the two phases as explained in Section 5.7.3 in Chapter 5. Momentum trans-
fer due to shear forces between the layers takes place at the interface, which characterizes
the thickness of the interface. Continuity equation for each phase and force (linear momen-
tum) balance on each layer are written under no-slip conditions at steady state using the
notations given in Figure 6.3.

6.2.2.1 Continuity equations

The continuity equation for the solid phase is
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and for the liquid phase

(6.13)

where 
–
V1 and 

–
V2 are the area-averaged mean velocities of the upper and the moving bed lay-

ers. �0 is the mean concentration (volume fraction) of the suspension at the inlet, �d,1 and
�d,2 are the solid concentrations of the upper and moving bed layers in succession. A, A1,
and A2 are the cross-sectional area of the pipe, upper and moving bed layers, respectively.

6.2.2.2 Linear momentum balances

Linear momentum balance on each layer in Figure 6.3(a) is defined by eq. (5.131a) or 
eq. (5.131b). Forces due to shear stress, S�w and cross-sectional areas, A for the two-layer
flow in eqs. (5.131a) or (5.131b) are replaced with the related definitions given in Table 6.3.
As the heterogeneous upper layer is considered as pseudohomogeneous liquid with effec-
tive properties, eq. (5.131b) for the upper layer under no-slip conditions is reduced to

(6.14)
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Figure 6.3 Two-layer flow: (a) velocities and shear stresses, (b) area definitions (bold line below
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where �1 is the upper layer shear stress at the pipe wall, �12 the interfacial shear stress 
acting on the interface between the upper and moving bed layers, and �s,1 is the averaged
density, based on the delivered solid volume fraction, �d,1 of the upper layer. 

The upper layer shear stress at the pipe wall, �1 is found by Darcy–Weisbach equation
(eq. (6.6))

(6.15)

where f1 is the friction factor. In the calculation of the friction factor for Newtonian fluids,
eqs. (6.8) and (6.9) are used depending on the flow regime. However, the Reynolds number,
Res in these equations are defined in terms of hydraulic diameter, Dh,1 and the suspension
viscosity, �1 as 

(6.16)

The hydraulic diameter of the upper layer is defined by

(6.17)

where S1 is a portion of the peripheral area of the pipe corresponding to the upper layer
and S12 the area of the interface between the upper and moving bed layers. To find Dh,1, the
required cross-sectional and peripheral areas of the upper-layer are described in Table 6.4
in terms of pipe diameter, height of the moving bed, y2 and central angle to the edge of
the moving bed, �2. �2 is required to determine the position of the interface between the
particle bed and the heterogeneous upper layer or the size of the deposition region of the
particles and is defined according to the center of the pipe as shown in Figure 6.3(b). Using
the hydraulic diameter definition together with the area equations of the upper layer given
in Table 6.4, Dh,1 is found to be
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Table 6.3

First terms of eqs. (5.108a) and (5.108b) for two-layer flow

Layers in two-layer flow S�w A

Upper layer (S1�1 � S12�12) A1
Moving bed layer (F2 � A2�2 � S12�12) A2



The interfacial shear stress, �12 at the interface between the two layers is expressed in
terms of the relative velocity between the layers.

(6.24)

where fi is friction factor at the interface between the upper and moving bed layers which
is estimated by the Colebrook equation with an effective interfacial roughness, assumed to
be equal to the particle diameter, dp. The collisions of suspended particles with the bed and
their deposition at the interface are effective on the friction factor fi. These effects are taken
into consideration by multiplying the friction factor by 2 (Televantos et al., 1979; Doron
et al., 1987).

(6.25)

The linear momentum equation for moving bed layer under no-slip conditions is

(6.26)

where �s,2 is the effective density of the suspension in the moving bed and �2 the hydro-
dynamic shear stress acting at the surface of the moving bed contacting with the pipe wall.
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Table 6.4

Cross-sectional area and peripheral area equations for two-layer flow

Cross-sectional area

Upper-layer flow (6.19)

Moving bed (6.20)

Peripheral area

Upper-layer flow (6.21)

Interface of the upper 
layer and the moving bed

(6.22)
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� �

�
�⎛

⎝⎜
⎞
⎠⎟

S D dL12 2� cos�

S D dL1 22
� �

�
�⎛

⎝⎜
⎞
⎠⎟

A
D y

D2

2

2
2

24 2

2
1� � � �

�
� �⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

cos

A
D y

D1

2

2
2

4 2

2
1� � � �

�
� �⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

cos 2



�2 is caused by the liquid film (viscous sublayer) between the wall and the particles adja-
cent to the wall. Similar procedure used to find the shear stress at the pipe wall, �1 is
applied to find the shear stress, �2 in the moving bed with the properties of the suspension
in this bed. However, the effect of the concentration of the particles on the viscosity
(Section 6.1.3) depends on the particle size and the thickness of the viscous sublayer: If
the particles are coarser or larger than the thickness of the viscous sublayer, the apparent
viscosity is not affected by these particles. Hence, the viscosity of the solid–liquid sus-
pension is taken to be equal to that of the suspending liquid; otherwise, the suspension vis-
cosity must be used in the calculations of �2. Models, based on this approximation, are
known as the equivalent liquid model (ELM) (Matous�ek, 2002). The hydraulic diame-
ter of the moving bed, Dh,2 is defined by

(6.27)

where S2 is a part of the peripheral area of the pipe along the moving bed layer. Using A2,
S12 and S2 given in Table 6.4, the hydraulic diameter is obtained as

(6.28)

F2 in eq. (6.26) is the mechanical (or Coulombic) friction force acting on the bottom of
the pipe, which occurs due to contact of particles moving within the bed layer with the pipe
wall. It is defined according to Coulomb’s law as

(6.29)

where FN,2 is the total normal force applied by the solid particles forming the bed on the
pipe wall. fCf is the mechanical or dry-state friction factor between the particles and the
wall of the channel, which is constant for a given solid particle and depends on the flow
conditions.

The total normal force, FN,2 has two components: normal forces due to the submerged
weight of the solid particles, FNw2; and normal forces due to the conduction of normal
stresses resulting from the shear on the bed-suspension interface, FN�,2;

(6.30)

Substitution of eq. (6.29) into eq. (6.30) gives

(6.31)

where the normal, FNw2 and shear, FN�2 stresses are multiplied by the dry-state friction fac-
tor, fCf to find the friction force, F2. The normal force at the pipe wall due to submerged
weight of the particles, FNw2, is determined by the bed-wall friction model of Wilson
(Wilson, 1970; Matous�ek, 2002). Wilson’s method assumes that the normal force FNw,2
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shows a hydrostatic variation in the vertical direction through a solid bed and can be inte-
grated to give

(6.32)

over the bed perimeter. �d,2 is the delivered solid volume fraction in the moving bed layer.
FNw2 can also be defined in terms of only the central angle of the bed �2. 

(6.33)

where Fw2 is due to the submerged weight of the particles in the bed given as

(6.34)

and A2 is the cross-sectional area of the bed, illustrated in Figure 6.3 and defined by eq. (6.20)
in Table 6.4.

The normal forces arising from the transmission of normal stresses from the interface
between the upper and moving bed layers through the particles in the bed, FN�2, is observed
whenever a fluid flows over a deposit of solid particles (Bagnold, 1954). It is dependent
on the shear stress at the interface, �12 and the peripheral area of the interface, S12 through

(6.35)

where 	 is the angle of internal friction (repose) between the particles. 	 is determined
experimentally by introducing sufficient amount of solid particles to form a bed in the
lower half of the horizontal pipe. With a gradual increase in the inclination of the pipe, the
first movement of a few individual particles is evaluated as the relocation of the individual
particles. The angle of inclination at which many particles move is taken as the angle of
the internal friction. Depending on the type of flow and the particle characteristics, the
angle of internal friction varies in the interval 0.35 � tan 	 � 0.75 (Doron et al., 1987).

Thus, the two-layer flow is described by a set of four conservation equations (eqs.
(6.12)–(6.14) and (6.26)). The six unknown parameters are the mean velocities (

–
V1 ,

–
V2)

and the mean concentrations (�d,1,�d,2) of the upper and the moving bed layers, respec-
tively, the height of the moving bed (y2) and the pressure gradient (dP�dL). The particles
are generally assumed to be in close contact in the moving bed. Thus, �d,2 is taken as 0.52,
which is the maximum cubic packing of the deposited particles. With five remaining
unknowns, there are still four equations. This necessitates an additional equation to esti-
mate the concentration distribution of solid particles, �1 in the upper heterogeneous layer.
The equation that describes the dispersion of solid particles in the layer, is the diffusion
equation (Section 6.3, in this chapter). The set of five equations together with additional
expressions and constitutive relations is solved to describe the concentration profiles, the
flow patterns and their transitions.
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6.2.3 Three-layer flow

Three layers exist when the flow rate is too low to move all immersed particles in sus-
pension flow through horizontal or slightly inclined pipes: a stationary bed over the pipe
wall, a moving bed above this stationary bed, and a heterogeneous mixture at the top of
the moving bed (Figures 6.2(c) and 6.4(a)). The continuity equations are obtained by
assuming uniform velocities in the three layers and no changes in their thicknesses. The
continuity equations, similar to eqs. (6.12) and (6.13), for solid and liquid phases and
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A  : cross-sectional area
D  : diameter of the pipe
S   : peripheral area
V  : superficial velocity
y  : thickness of the moving layer
�  : angle of inclination
�  : shear stress
�  : central angle of bed (defined  according to the center of the pipe and used to determine the
      positions of the interfaces between 1-2 and 2-3 layers)

subscripts
1   : heterogeneous dispersed layer
2   : moving bed
3   : stationary bed
12 : interface between layers 1 and  2
23 : interface between layers 2 and  3
w  : wall
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Figure 6.4 Three-layer flow: (a) velocities and shear stresses, (b) area definitions, (c) forces act-
ing at the interface between the moving and stationary bed layers (bold lines below S12 indicate the
interface between the upper and moving bed layers, and the bold lines above S23 indicate the inter-
face between the moving bed and stationary bed layers). 



the force (linear momentum) balances on each layer are written under no-slip conditions
at steady state using the notations given in Figure 6.4.

The momentum balance equation, eq. (6.14) derived for the heterogeneous upper layer
in the two-layer flow is also used for the upper layer in the three-layer flow. For the
moving bed layer, the momentum balance similar to eq. (6.26) is written as

(6.36)

where F2 is the friction force effective at the upper and moving bed layer interface. The
cross-sectional, A2 and the peripheral, Si areas are defined in Table 6.5 for the three-layer
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Table 6.5

Cross-sectional area and peripheral area equations for three-layer flow

Cross-sectional area, Ai

Upper-layer flow (6.39)

Moving bed

(6.40)

Stationary bed (6.41)

Peripheral area, Si

Upper-layer flow (6.42)

Interface of the 
upper layer and
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flow. F23 is the friction force acting at the interface between the moving bed and the sta-
tionary bed, and �23, the hydrodynamic shear stress acting on that interface. Both F23 and
�23 are caused by the presence of a stationary bed adjacent to the moving bed layer.
Consequently the two friction forces, F2 and F23, exist in three-layer flow due to pres-
ence of the two interfaces. Although F2 is defined by eq. (6.31), a definition different
from that of eq. (6.32) is required for its normal force component FNw2 because it is
due to the submerged weight, is affected by the presence of the stationary bed:

(6.37) 

In this equation, y3 is the thickness of the stationary bed, �3 is the central angle of the sta-
tionary bed layer required to determine the position of the interface between stationary and
moving bed layers as shown in Figure 6.4(b). Similar to �2, it is defined according to the
center of the pipe. The friction force, F23 is expressed in terms of the total normal force, FN,3

(6.38)

FN,3 consists of two components: the force due to the submerged weight of the particles,
FNw3 and the force due to the stress at the interface between the moving and stationary bed
layers, FN�3. Hence, eq. (6.38) becomes

(6.47)

FNw3 is defined (Doron et al., 1997) as

(6.48)

and is effective at the interface between the moving and stationary bed layers and through
the stationary bed. The force arising from the shear stress (�23) at the interface between the
moving and stationary beds FN�3, is defined similar to eq. (6.35) as

(6.49)

where S23 is the peripheral area of the interface given in Table 6.5.
The presence of the stationary layer is verified by a force balance written on the sta-

tionary bed in an inequality form.

(6.50)

where F3 is the dry-state friction force acting on the perimeter of the stationary bed. It is
described by eq. (6.31) with its components, the normal hydrostatic force distribution,
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FNw2 (eq. (6.37)) and the normal force based on the normal shear stress, FN�2 (eq. (6.36))
using the area definitions given in Table 6.5.

A3 is the cross-sectional area of the stationary bed based on the hydraulic diameter. The
hydraulic diameters are defined by eqs. (6.18) and (6.28) for the upper and moving bed
layers, respectively. The hydraulic diameters of the upper, Dh,1 and the stationary bed, Dh,3

layers are found to be identical as Dh,1 � Dh,3 � Dh. Thus, Dh is given as 

(6.51)

The hydraulic diameter of the moving bed layer, Dh,2 is expressed as

(6.52)

The particles at the interface between the moving and stationary bed layers are at the bor-
der of rolling (Figure 6.4(c)). Under this condition, the drag exerted by the moving bed
layer on a particle causes a torque, FDLD. This torque should be equal to an opposing
torque acting on that particle to prevent rolling. The opposing torque consists of two com-
ponents: One of its components is FwL arising from the submerged weight of the particle
and the other, FNLN due to the solid particles in the moving bed layer pressing on that par-
ticle. By writing a balance between the torque due to drag and the opposing torques, the
minimum velocity of the moving bed, Vmin,23 is derived as (Doron et al., 1997) 

(6.53)

where CD is the particle drag coefficient based on Vmin,23. In any two-layer flow, a station-
ary bed layer forms at the lower section of the pipe if the velocity of the moving bed is
less or equal to the minimum velocity, Vmin,23. Selection of the velocity of the moving bed
as Vmin,23, signifies the formation of a stationary bed and as a consequence three-layer
formation.

The three-layer flow is described by a set of five equations, eqs. (6.12), (6.13), (6.26),
(6.36), and (6.53) with seven unknowns: the mean concentrations (�d,1, �d,2) and mean
velocities (

–
V1,

–
V2) of the upper and the moving bed layers, respectively, the heights of the

moving bed ( y2), and the stationary bed ( y3) layers, and the pressure gradient (dP/dL). 
�d,2 is taken as equal to the maximum packing of the deposited particles (�d,2 � �m � 0.52).
Hence, the number of unknowns becomes six with five equations. An additional equation,
covered in Section 6.3, is required to estimate the concentration distribution of solid par-
ticles in the upper heterogeneous layer, �1. The conservation and the diffusion equations
are simultaneously solved using additional expressions and constitutive relations given in
this section to predict the flow patterns, and concentration distributions.
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6.3 DISPERSION MECHANISMS OF SOLID PARTICLES

Distribution of the particles carried by the liquid in suspension flow is taken into account
by writing a mass balance. The related balance equation is based on the averaged prop-
erties due to the heterogeneous nature of the suspensions, since their properties change
in all directions. In the case of settling suspensions, the effect of the gravity on the 
sedimentation flux is considered by an averaged unsteady state mass-balance equation
(Liu, 1999).

(6.54)

where t is the time, Jp the total particle flux. The total particle flux mainly covers two types
of particle motion as

(6.55)

where Vp is the particle velocity vector. Vp� denotes the convective transport of particles
caused by their bulk motion and JD, the dispersive transport of particles in vectorial form.
Substitution of eq. (6.55) into eq. (6.54) gives

(6.56)

The particle-dispersion flux, JD generally covers the motion of particles from high to low
concentration regions leading to isotropic flow. Dispersion flux consists of three compo-
nents due to (1) shear-induced particle migration, Jsi, (2) flow-induced particle dispersion,
Jfi, and (3) Brownian diffusion of particles, Jpb. Thus, JD is expressed as the summation of
these three particle dispersions:

(6.57)

Depending on the properties of suspensions, one or more than one of these dispersion
mechanisms may be effective. For example, the Brownian motion is less effective on the
dispersion of coarse particles.

The bulk velocity of the particle, Vp is the sum of the average suspension velocity, Vs

and hindered settling velocity of uniform particle mixtures, Vht.

(6.58)

The average suspension velocity in vectorial form is defined as
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where V is the velocity vector of the suspending liquid. Substitution of the average sus-
pension velocity into the particle velocity equation yields

(6.60)

where (Vht �(1 � �)) indicates the settling velocity of the particles relative to the suspend-
ing liquid, which is known as relative velocity, Vr and defined by eq. (4.138) in Chapter 4.
The random fluctuations of the two velocities, V and Vht are independent of each other.
Substitution of eqs. (6.60) and (6.56) into eq. (6.46) gives 

(6.61)

Eq. (6.61) shows that the particle dispersion increases as the fluid velocity or the settling
velocity of the particles increases. This equation is the most general form of particle-mass
balance equation and can be applied to all types of solid–liquid suspensions using appro-
priate definitions related to hindered settling velocity given in Section 4.4 in Chapter 4
under several conditions. For the concentrated suspension, (Vht �(1 � �)) term is replaced
by (Vht � V) according to eq. (4.138) and eq. (6.61) is written as

(6.62)

6.3.1 Shear-induced particle migration

In settling slurries, particles migrate from the higher-shear region near the wall to the low-
shear region in the center of the pipe similar to concentrated suspensions. As a conse-
quence, the concentration of the particles becomes higher in the center and lower near the
wall region. The motion of the particles induced by shear is known as shear-induced
particle migration, and defined by the product of the shear rate, ·
 (velocity gradient,
dV/dy), and the square of the particle diameter, dp

2 in eqs. (6.63) and (6.64). The particle
diameter is taken as the length scale of the dispersion (Leighton and Acrivos, 1987).

In the shear-induced particle migration, the particle-dispersion flux consists of three
components: (1) dispersion flux due to shear-induced particle–particle collision, Jsi,c

(6.63)

(2) dispersion flux due to viscosity gradient in the shear field, Jsi,�
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and (3) the self-diffusion flux due to Brownian motion, Jpb (Phillips et al., 1992) 

(6.65)

where Dsi,c and Dsi,� are adjustable parameters in eqs. (6.63) and (6.64), which are esti-
mated using the experimental data. Phillips et al. (1992) determined these parameters as
Dsi,c � 0.1075 and Dsi,� � 0.1625 using the Krieger’s equation for the suspension viscosity,
� given in Chapter 3 with �m � 0.68. Dp in eq. (6.65) is the diffusion coefficient of the
particle or aggregates.

The particle dispersion due to both shear-induced particle–particle collision and vis-
cosity gradient takes place in the shear field. The variation in the shear rate and changes in
the viscosity gradient in this field affect the migration of particles, so the particle distribu-
tion. Therefore, the first two fluxes arising from shear can also be represented as a single
flux for the shear field in terms of the adjustable parameter of the dispersion flux of the
shear-induced particle–particle collision, Csi,c.

(6.66)

The shear-induced particle migration can also be described in a general form based on the
volume- and time-averaging techniques (Liu, 1999)

(6.67)

where Ds is the shear-induced particle migration coefficient, which is a function of the par-
ticle volume fraction defined by

(6.68)

and 
 is the absolute value of the shear rate matrix and described in terms of the vectorial
operation of the suspending liquid velocity vector and its transpose as 

(6.69)

The equations given in this section show that an increase in particle diameter or the parti-
cle concentration increases the effect of the shear-induced migration. 

6.3.2 Flow-induced particle dispersion: turbulent diffusion

The bulk flow of the particle itself and its rotation give rise to the distribution of the particles
due to its random movement in concentrated suspensions. Hence, the fluctuations in particle
velocity causes the flow-induced dispersion mass flux, Jfi (Liu, 1999) and is described by
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where the first term shows the translational flow of the particle, which is directly propor-
tional to the particle diameter, dp and the second term, its rotational flow, proportional to
its square, dp

2. Cr is a constant which is estimated as 2.4 (Liu, 1999). DN is the flow-induced
dispersion coefficient for the particle transport in the normal direction to the flow. �L is the
ratio of dispersivity in flow direction to that in the normal direction, which is found to
change in the range of 14 and 40 for sedimenting suspensions (Ladd, 1993, 1994, 1997).
However, there is no experimental data related to �L for the suspension flow. DN�L is the
axial-dispersion coefficient which is approximated by Liu (1999) as

(6.71)

Eq. (6.70) together with eq. (6.71) indicates that the flow-induced dispersion is a strong
function of particle volume fraction, �. The particle dispersion due to bulk flow becomes
zero when � � 0 and increases with increasing particle concentration up to a maximum
value, the random packing limit, �m. Due to the dependence of the translational and rota-
tional motions of the particles on the particle diameter, the influence of the flow-induced
dispersion on the total mass flux increases with increasing particle size.

6.3.3 Particle-dispersion mechanisms in settling suspensions

In stratified solid–liquid suspension flow, the displacements of solid particles are generally
controlled by the large eddies in a turbulent diffusion process. Upward movement of par-
ticles is counteracted by the gravitational force, which causes the particles to settle to the
bottom of the pipe. 

6.3.3.1 Particle dispersion in two-/three-layer flow

To determine the distribution of the particle concentration (solid volume fraction) in any
layered flow (Section 6.2) at steady-state conditions, eq. (6.62) is used by neglecting the
unsteady-state, and the shear- and flow-induced particle-dispersion terms. The term Jpb in
this equation only covers the molecular motion of particles based on their Brownian
motion. To take into account the turbulent diffusion of the particles in the balance equa-
tion, the particle Brownian diffusion coefficient, Dp is replaced by the mean particle dif-
fusion coefficient, DpM. Hence eq. (6.62) is reduced and written for the turbulent flow as 

(6.72)

The particle concentration generally shows a distribution in the vertical (y) direction to
the flow in any inclined pipeline transportation. Assuming constant particle settling veloc-
ity that is independent of the position, the governing equation becomes

(6.73)

where �1( y) is the local volumetric fraction of the solid particles in the upper layer, y is the
distance in the normal direction to the flow as shown in Figures 6.3(b) and 6.4(b), Vht,y is
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the component of the mean hindered terminal settling velocity in y direction (Vht,y � Vht cos �).
The negative sign in front of Vht,y in eq. (6.73) shows the direction of the settling velocity
is opposite to that of the suspending liquid velocity (or opposite to the flow direction).
As the volumetric fraction depends only on the vertical direction y, integration of eq. (6.73)
gives the distribution of the particle concentration in the upper heterogeneous layer using
the moving bed volumetric fraction, �d,2 as the boundary condition

(6.74)

Eq. (6.74) can also be written in terms of the central angle of the bed, �: y and y2 defined in
Figure 6.3(b) for the two-layer and Figure 6.4(b) for three-layer flows can be expressed as

(6.75)

(6.76)

where �B� �2 and �B � �3� �2 for the two- and three-layer flows, respectively. Then, the
integration of eq. (6.74) over the cross-sectional area of the upper layer gives the area-
averaged mean concentration, �t,1

(6.77)

The mean hindered settling terminal velocity in eq. (6.77), Vht can be calculated from semi-
empirical Richardson and Zaki correlation (1954) given in eq. (4.147) in Chapter 4.

The mean diffusion coefficient, DpM can be evaluated according to Taylor (1954) or
Prandtl (1952) approach, which assumes that the coefficient of the mass transfer is almost
equal to that of the momentum transfer, DM and it is described by

(6.78)

where rh,1 is the hydraulic radius of the upper-layer cross-section (Doron et al., 1987, 1997;
Doron and Barnea, 1996) and V* is the shear or friction velocity defined by

(6.79)

The mean diffusion coefficient, DpM in equations given above is also considered to be inde-
pendent of solid concentration, particle size, and shape for the monodispersed suspensions.
However, the effect of these particle properties on DpM and the variation of the particle
diffusivity must be taken into account (Kaushal and Tomita, 2002; Kaushal et al., 2002a, b;
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Kumar et al., 2003) in suspensions including multisized particles. For polydispersed
suspensions, Karabelas (1977) considered the variation in the particle diffusivity, which is
defined as

(6.80)

where � is the dimensionless particle diffusivity defined as a function of the area-averaged solid
volume fraction, �t and the static-settling volume fraction, �ss (Kaushal and Tomita, 2002).

(6.81)

in which �ss exhibits the highest concentration obtained from the settling of particles under
the effect of gravity. However, the variation in particle concentration may affect the dimen-
sionless particle diffusivity along the cross-sectional area of the pipe and thus, it is con-
sidered by Kaushal (1995) as

(6.82)

The variation of the momentum diffusivity along the cross-sectional area of the pipe due
to the turbulent motion affects the particle diffusivity, although, both the particle and
momentum diffusivities are assumed to be constant across the cross-section (Karabelas,
1977). The variation of DM depends on many parameters such as pipe diameter and the
flow conditions. Hence, DM is defined in turbulent flow (Longwell, 1977) as

(6.83)

(6.83a)

(6.83b)

where R is the radius of the pipe. 

6.3.3.2 Particle dispersion in fully suspended flow

In heterogeneous suspensions flowing at higher velocities than the limit deposition
velocity, the concentration distribution of the solid particles is approximated by the
Rouse–Schmidt turbulent diffusion model across the entire pipeline cross-section.
Hence, the mass flux of the solid particles due to gravity is balanced by the mass flux of
particles moving upward in vertical (y) direction due to the turbulent diffusion
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This model can be applied both to dilute and concentrated suspensions: The hindered
settling terminal velocity, Vht is used in concentrated suspensions, whereas, the settling
terminal velocity of single particles, Vt is directly used in dilute monodispersed sus-
pensions due to negligible effect of particle concentration on the particle motion. In the
case of dilute polydispersed suspensions, the hindered settling velocity, Vht is defined
by eq. (4.147) with the exponent n � 4.7(1 � 0.15Rep

0.687)�(1 � 0.253Rep
0.687) (Matous�ek,

2002).
The particle diffusion equation, eq. (6.84) can also be written in the form of force

balance by taking the square of the both sides of this modified diffusion equation and
replacing Vht with Vt(1 � � )n where Vt is defined by eq. (4.61) as Vt � {(4�3)[(�p� �)dp g �
(CD� )]}1/2. Its rearrangement gives 

(6.85)

The LHS of this equation denotes the turbulent diffusion and mixing effects whereas its
RHS indicates the submerged weight of the particles in the absence of interparticle con-
tact. The sign of the LHS term is conserved by using one of (�(y)/y) terms in absolute
form. The dispersive stress due to turbulent diffusion depends on the solid volume fraction
as shown in eq. (6.85).

In cases where the interparticle contact occurs, the submerged weight of the particle
is conducted to the pipe wall by mechanical friction causing stresses due to this contact
as explained in Section 6.2. In this case, the Bagnold dispersive stress is effective in
determining the distribution of the particle volume fraction. The submerged weight of
the particle at the RHS of eq. (6.85) is balanced by the Bagnold dispersive stress differ-
ence, (�yy �y),

(6.86)

Substitution of this balance equation in eq. (6.85) gives

(6.87)

As the viscosity of the suspension, � strongly depends on the solid particle concentration,
the changes in viscosity are effective on the particle dispersion. Thus, the higher-order
terms in the viscosity equation (eq. (6.2) in Section 6.1.3) should be taken into account in
the definition of the repulsive stress, �yy as shown in eq. (6.64). Its derivative used in
eq. (6.87) is evaluated by considering this effect, so a dispersion equation is developed for
the shear-induced particle migration due to velocity and viscosity gradient in the presence
of the turbulent effects.
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6.4 MECHANISM OF FRICTIONAL LOSSES

The pressure drop due to friction over the length of the pipeline is related with the internal
structure of the suspension flow. To elucidate the basis of all types of frictional losses in any
suspension flow, interactions of solid particles with (1) each other, (2) the suspending
liquid, and (3) the boundary of the flow must be known.

The fundamental assumption is that the friction is confined to the boundary of the sus-
pension flow. Solid particles affect the total friction of the suspension flow through fric-
tion due to permanent, temporary or zero contact of particles with pipe wall, and friction
at the interface of the granular bed and heterogeneous suspension layer. The frictions due
to the interactions of the particles with the wall are related to the layers of the suspending
liquid formed near the pipe wall region. The friction at the top of the bed is related with
the boundary layers formed by the liquid around the solid particles. These liquid layers
cause viscous friction, which also affects the friction arising from the contact of the solid
particles with the pipe wall. Therefore, the liquid boundary layers and the shear stresses
formed will be given first.

6.4.1 Frictional losses due to viscous flow

A very thin liquid film over the pipe wall is formed in the flow of a settling suspension
through a pipeline similar to liquid flow. The thin liquid film between the wall and the par-
ticles adjacent to the pipe wall always shows laminar flow behavior independent of the
flow regime of the suspension, since its velocity is too low for inertial forces, so turbulent
effects to exist. The liquid film is called laminar sublayer.

The flow of liquid in the laminar sublayer is affected by the roughness of the pipe caus-
ing a resistance to flow. To estimate this resistance to the flow a parameter known as the
relative roughness, (ks ��s) is defined as the ratio of the height of the wall roughness, ks to
the thickness of the laminar sublayer, �s. The wall roughness completely remains within
the sublayer. The relative roughness becomes negligible with an increase in the laminar
sublayer and a decrease in the roughness of the wall.

The flow regimes for a liquid flowing in a pipe and the parameters effective on the fric-
tion factor are determined based on the experiments carried out in pipes roughened with
sand (Nikuradse, 1930, 1933). The flow regimes are found to be related to the relative
roughness, (ks ��s) (or Reynolds number) formed with the sand size of roughness and the
friction velocity, V* as

(6.88)

where the thickness of the laminar sublayer is �s� (� �(V*�)) , ks denotes the sand size
in Nikuradse’s sand roughness. The flow regimes and the related parameters effective
on the friction factor in Darcy–Weisbach equation (eq. (6.6)) are determined for
(1) hydraulically smooth regime, 0 � Reks � 5 where the friction factor only depends
on Reks , (2) transition regime, 5 � Reks � 70 where both Reks and ks �R are effective in
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the estimation of the friction factor. Here R is the radius or hydraulic radius in circular
and noncircular ducts, respectively. The roughness extends partly outside of the laminar
sublayer and part of the roughness remaining in the boundary layer forms an additional
resistance to flow due to form drag, (3) Completely rough regime, Reks � 70 where only
ks �R is effective on the friction factor. In this regime, roughness height extends outside
the laminar sublayer and the largest amount of the resistance to flow arises from form
drag acting on the roughnesses (Schlichting, 1979).

When a solid–liquid suspension flows instead of a single-phase liquid through a pipe,
the suspending liquid forms a boundary layer around the solid particles in addition to the
boundary layer along the pipe wall. Thus, the ratio of the Nikarudse particle roughness
height to the size of the particles forming the suspension (ks �dp) becomes an important
parameter instead of (ks �R) in deciding the flow regime. This ratio will be taken up in
Section 6.4.3.

6.4.2 Frictional losses due to particle–pipe wall interactions

6.4.2.1 Friction due to contact of solid particles with pipe wall

The presence of solid particles in the suspending liquid adjacent to the pipe wall causes
viscous friction as the particles are not in contact with the pipe wall. The continuous con-
tact of particles with the pipe wall causes the formation of stress with normal and shear
components. The normal, FN,i and shear stresses, F�,i related through the dry-state friction
factor, fCf was given in Section 6.2. If the suspended particles temporarily contact with the
pipe wall, frictional losses due to interactions between the particles, suspending liquid and
pipe wall occur.

The diameters of suspended coarse and fine particles cannot be differentiated clearly in
the suspension. However, their friction behavior is essentially different and is considered
to be related to the thickness of the viscous sublayer near the pipe wall. If the diameter
of the solid particles is smaller than the thickness of the sublayer, the particles in the
sublayer change the properties of the suspending liquid forming the sublayer, so the sus-
pension properties are used to find the frictional losses. The description of the viscous
shear stress as a function of the mixture properties is considered in equivalent liquid model
(ELM). (Matous�ek, 2002).

The particles larger than the thickness of the laminar sublayer do not affect the viscous
friction: The larger particles always tend to move outside of the laminar sublayer and
migrate toward the interior to escape from the large shear existing in this region. The par-
ticles outside of the laminar sublayer have no effect on the properties of the suspending
liquid forming the sublayer. Hence, the properties of the suspending liquid are used to
define the wall shear stress. The suspending liquid may form a sharp velocity gradient in
coarse-particle suspensions at high flow rates. The coarse particles existing near the wall
region cause collisional (or mutual collisions) and turbulent dispersive actions.

In collisional dispersive action, particles with different local velocities collide with each
other and with the wall. The particles are impelled in the direction of the pipe wall. They
generate stress acting against the pipe wall, which is known as the Bagnold dispersive
stress. The Bagnold dispersive stress, �p,B is defined for two different flow regimes, viscous
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and turbulent flows (Bagnold, 1954). To distinguish the flow regimes, a dimensionless num-
ber, B is defined as

(6.89)

where d50 is the median particle diameter, which is found from the cumulative size distribution
of the particles, � a parameter known as the linear concentration of the particles and given as 

(6.90)

where �i is the local volume fraction of the particles, and �m the volume fraction at the
maximum packing.

The dispersive stress, �p,B in viscous regime (B � 40) is described as a function of fluid
viscosity as 

(6.91)

and �p,B in turbulent regime (B � 450) for the sheared flow is

(6.92)

where, KB is a proportionality constant, found to be 0.013 by Bagnold’s measurements.
The Bagnold-type solid shear stress can also be defined in the absence of contact of the par-

ticles with the pipe wall. In this case, the dry-state friction is neglected and stress is defined as

(6.93)

where KB� is a proportionality constant.
�p,B in the presence and absence of contact of the particles with the pipe wall are cali-

brated using the pressure drop data in vertical pipe flows. The relations are summarized in
Table 6.6. The results for horizontal flow obtained by neglecting the dry-state friction are
also given in the same table.

The solids stress, �p,B arising from these particle collisions with the pipe wall can be
decreased by removing the coarse particles from the region near the pipe wall. Their
removal is brought about by the liquid stream due to its lift (buoyancy) effect and this force
is called as hydrodynamic off-wall lift.

6.4.2.2 Frictional losses due to particle–liquid interaction: hydrodynamic lift

The liquid flows across the particles with a steep velocity gradient near the pipe wall. The
particles rotate and a pressure gradient over the particles, known as the hydrodynamic (lift)

� �p,B B
2

s,av
2� �K V

� � �p,B B p 50
2 2 c

2

� K d
dV

dy

⎛
⎝⎜

⎞
⎠⎟

� � 
p,B

2

3

(2 )

(1 )
�

�

�

� �

�

⎡

⎣
⎢

⎤

⎦
⎥ �

� � �

�

�

�
m

i

0.3 1

1
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B
d

�

�� � 


�
p 50

2 1 2
�

6.4 Mechanism of Frictional Losses 355



force is created normal to the pipe wall due to this velocity gradient. It repels the particle
from the wall of the horizontal pipe and decreases the collisional stress (dry-state friction)
at the wall. The lift force is found to be effective in a certain portion of the turbulent region,
but not in the transition layers. The lift diminishes throughout the transition layer range 
(5 � y� � 30) and drops to a negligible value on reaching the laminar sublayer (y�� 5).

The lift force, FL for a solid particle interacting with water in the horizontal direction
can be expressed as

(6.99)

where fl is the Darcy–Weisbach friction factor for the liquid flow over the pipe wall and 
y� is the dimensionless distance from the wall. In horizontal flows at high velocities
(Matous�ek, 2002), there is no effect on solid volume fraction. The same trend is also
observed in the vertical flow of fine and coarse particles at low and moderate solid con-
centrations (Newitt et al., 1961; Matous�ek, 2005). The lift force increases with increasing
particle diameter, therefore, is not effective in fine suspensions. Particle size range, in
which the lift force is effective, is found to be in the range of 0.15–0.40mm for sand–water
slurries (Wilson and Sellgren, 2003).
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Table 6.6

Modified expressions for Bagnold’s dispersive stress

Dry-state dp (mm) References
frictiona

Vertical flow

E 1.4–3.4 Shook and 
Bartosik (1994); (6.94)
Bartosik (1996)

where Re � �DVs,av �� and �l,w � (1�2)fl �Vs,av
2  

E 1.8–4.6 Ferre and 
Shook (1998)

(6.95)

where Rep � Vs,av�pd50 ��

NE 0.37 Matous�ek (2005) (6.96)

Horizontal flow

NE 0.175 Gillies and Shook 
(2000)

(6.97)

NE 0.37 Matous�ek (2005) (6.98)

aContact of the particles with the wall, E: exist, NE: nonexistent. 
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In heterogeneous suspension flow, the vertical pressure distribution across the channel
is measured to detect a lift force: The pressure observed may be positive or negative
relative to the hydrostatic head of water (Campbell et al., 2004). In dilute region near the
top of the channel, the pressure is positive, which shows that the particles are supported
by the turbulent eddies of the liquid. The pressure is negative near the wall region at the
lower section of the channel indicating that the negative lift force moves the particles
toward the wall. 

6.4.2.3 Friction at the top of the granular bed

The upper boundary of the granular bed consists of mobile particles and causes frictional
losses in the flow of settling suspensions in stratified flow patterns. The shear stress at this
boundary, �B,top (equivalent to �12 in two- and �23 in three-layer flow) for closed conduits is
defined by Wilson and Pugh (1995) as

(6.100)

where fB is the friction factor, defined in terms of Darcy–Weisbach friction factor 
as fB�4fi, and 

–
Vs,top is the mean velocity of suspension above the contact bed. For pressure gra-

dient ratio, (Hs�/(�p��) � 0.0167, fB is experimentally determined as 

(6.101)

where Hs is the hydraulic gradient of the suspension flow.
In the determination of the shear stress at the top of the bed, the upper boundary has a

roughness height related to the particle size in a nondistorted bed given in eq. (6.25).
However, the particle size is not a proper boundary roughness parameter for distorted beds.
Another characteristic size that can be used as a boundary roughness parameter is the
thickness of the sheared portion of the bed.

A rough-boundary concept based on Nikuradse particle roughness height, ks is used to
determine the shear stress, �B,top (Wilson, 1989; Sumer et al., 1996; Ribberink, 1998;
Matous�ek, 2005). The roughness height is given as 

(6.102)

The LHS of this equation indicates the relative bed roughness, which depends on the
Shield number (particle mobility), ShB, defined as the square of the ratio of the shear velocity
at the upper surface of the bed, V*,B to the characteristic velocity, Vch.
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The characteristic velocity of the particle Vch, the counterpart for settling particles of the
friction velocity in pipe flow V*,B, is given by

(6.104)

and the shear velocity, V*,B is related to fi through eq. (6.79). Using eqs. (6.102) and
(6.103), the shear stress at the upper surface of the bed is calculated by taking the rough-
ness of the boundary into consideration.

Function of f (ShB) given at the RHS of eq. (6.102) is formulated by using the data
obtained from closed conduits and the results are summarized in Table 6.7. Eq. (6.102) can
be generalized as the ratio of Nikuradse equivalent roughness size to any sediment parti-
cle size as ks �dx. Here dx is the diameter of particles with percentage in a cumulative par-
ticle size distribution of x%. Using one of these particle sizes in determining ks �dx,
resistance to flow of settling suspensions due to formation of a bed with a boundary con-
sisting of movable particles are reported in both pipes and channels (Yen, 1991; Yen and
Asce, 2002). 

6.5 PRESSURE LOSSES IN PIPE FLOW

In the flow of solid–liquid suspensions through a pipe, the solid particles at any concentra-
tion may form a homogeneous or heterogeneous single-phase flow or layered flow such as
two-layer (Figures 6.2(b) and 6.3) or three-layer (Figure 6.4) flow depending on the flow
rate, causing a particle concentration distribution along the vertical direction across the
cross-section of the pipe as illustrated in Figure 6.1. These flow patterns affect the pressure
losses along the pipe. Superficial particle and suspension velocities also change with deliv-
ered particle volume fraction due to variation in flow pattern of the suspension flow.
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Table 6.7

RHS of eq. (6.118) for the Nikuradse’s friction equation

f (ShB) ShB range Comments References

5ShB Wilson’s close conduit data Wilson (1989)

1 � 6(ShB � 1) 1 � ShB � 7 Wilson’s close conduit data Ribberink (1998)
in given ShB range

ks/d50 0.8 � ShB� 5 Acryl particle Sumer et al. (1996)
Vt

* �Vt /Vch � 0.72

with

0.13(ShB � 1.38)2.34 4 � ShB � 25 0.2–25mm sand particles Matous�ek (2004, 2005)

aDh,B: Hydraulic diameters (hydraulic diameter of the upper layer, Dh,1 and of the moving bed in
three-layer flow, Dh,2). 

–
Vs,top: Mean suspension velocity at the surface of the bed (mean suspension

velocity of the upper layer,
–
Vs,1 and of the moving bed in three-layer flow,

–
Vs,2).

V V f D k
a

s,top *,B B h,B s� � � � � �8 2 46 14 8 4′ ⎡⎣ ⎤⎦. ln . ( )



Therefore, plots of these parameters can be used as a tool to show the flow patterns such as,
frictional losses against the mean suspension velocity (Section 6.5), particle concentration
distribution along the vertical distance, y above the pipe wall (Section 6.6), and superficial
suspending liquid velocity against the particle superficial velocity or suspension velocities
as a function of delivered solid volume fraction (Section 6.9). All of these plots show the
flow patterns of suspensions flowing through horizontal and inclined pipes whereas only the
plot of frictional losses against the mean suspension velocity is used to indicate the flow pat-
terns of the suspensions in vertical pipes. Due to gravitational force, only homogeneous or
heterogeneous fully suspended flow is observed in vertical flow and a bed never forms.

Flow patterns both estimated theoretically and based on experimental measurements are
given in this section, Sections 6.6 and 6.9. Models used in the estimation of theoretical
flow patterns and related sections in this chapter are summarized in Table 6.8.

In Figure 6.5, the general relation between the pressure loss and suspension velocity is
given as a function of solid volume fraction. In the case of pure liquids, which do not con-
tain any particles, the pressure loss changes linearly with velocity. At high velocities where
a homogeneous region is formed, the pressure drop of the suspensions approaches that of the
pure liquid. As the suspension velocity decreases, the relation between the pressure loss and
velocity becomes nonlinear. The velocity at this transition point is called suspending (or
homogeneous suspension) velocity, Vsusp. A further decrease in velocity causes a decrease in
pressure loss which shows a minimum at a point, called limit deposit velocity, Vdep. The
velocities below the Vdep cause formation of the moving bed (bedload), which results in an
increase in pressure loss due to the increase in hydrostatic head and particle–particle,
particle–wall, and particle–liquid interactions. The velocity at which the pressure loss
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Table 6.8

Models used in flow patterns

Flow Model used for

Momentum

Model Wall– Particle Related Figure
particle dispersion sections numbers
interactiona

Fully ELMb NE 6.2.1, 6.4 6.7
suspended

Two-layer Two-LFM E Rouse– 6.2.2, 6.3.3, 6.4 6.8, 6.11
Schmidth 
model,
eq. (6.84)

Fully Bartosik– E 6.2.1, 6.4 6.9
suspended Shook 

(eq. (6.110))

Three-layer Three-LFM E 6.2.3, 6.4 6.10, 6.15

aE: exist, NE: nonexistent.
bELM: Equivalent liquid model.



increases and the velocity below which there is no flow is called minimum deposition velocity,
Vm,dep. A stationary bed forms since the velocity is not sufficient to cause particle motion.

Initial formation of a stationary bed below the moving bed causes an opposing torque
acting on the moving particles that helps the particles to overcome gravitational force,
minimizing the pressures losses. The particles move with a minimum velocity at this con-
dition. Hence, the minimum velocity can theoretically be based on the initial formation of
a stationary bed. The velocity corresponding to the minimum energy gradient for a given
solid volume fraction is expressed as limit deposit velocity, Vdep (Matous�ek, 2002, 2005;
Wilson et al., 2002; Almedeij and Algharaib, 2005; Kaushal et al., 2005).

An increase in solid volume fraction increases pressure losses due to increase in inter-
actions among the particles in the bed region, so both minimum deposition and limit
deposit velocities increase. The homogeneous suspension velocity remains constant since
the homogeneous phase is always dilute, and independent of the particle concentration.

The other parameters affecting pressure losses are pipe inclination, pipe diameter, density
and diameter of the solid particles, properties of the liquid phase, and dry-state friction factor.

6.5.1 Pressure losses in horizontal flow of suspensions

Variation of pressure losses with mean velocity as a function of area averaged solid 
volume fraction are given in Figure 6.6 (a)–(c) for spherical glass beads of sizes 125 and
440�m and their mixture on an equal mass basis (Kaushal et al., 2005).
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Pressure gradients of 125�m particle suspensions increase with increasing solid volume
fraction at any suspension velocity as given in Figure 6.6(a). The rate of increase in 
frictional losses is greater at high velocities than at low velocities. No minimum is observed
in the pressure gradients for any of the volume fractions. The nonlinear pressure loss sus-
pension velocity relationship together with Figure 6.5 can be interpreted as an indication
of fully suspended heterogeneous flow pattern. A similar relation between the pressure
gradient and solid volume fraction is observed for 440�m particles as a function of veloc-
ity (Figure 6.6(b)) for all particle concentrations, except 50% by volume. The pressure
gradient curves corresponding to different solid particle concentrations converge to a sin-
gle curve as the velocity increases above 4 m s�1. At solid concentrations equal or greater
than 20%, a minimum is observed in the pressure gradient (pointed out by arrows), which
signifies the formation of stratified flow in Figure 6.6(b). The velocity corresponding to
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Figure 6.6 Effect of particle size distribution on pressure gradient in the flow of highly concen-
trated slurries with specific gravity of 2.47 in 54.9mm diameter horizontal pipe. (Kaushal et al.,
2005. Figures 3–5 in the original, Redrawn with permission of Elsevier.) 



the minimum pressure is the limit deposit velocity as presented in Figure 6.5. Due to the
effect of gravity, the amount of coarse particles in the bed increases as suspension veloc-
ities decrease below the limit deposit velocity in Figure 6.6(b) and, so does the height of
the bed. This causes an increase in hydrostatic head and in the interactions among the par-
ticles causing the pressure losses to increase. The increase in the thickness of the bed
reduces the pipe free cross-sectional area and the pipeline is choked. These trends show
the significance of the limit deposit velocity as an important parameter in the design of
solid–liquid suspension pipelines. Above the limit deposit velocity the pressure losses for
suspensions of coarse particles is less than that of the fine particles since the viscous fric-
tional forces arising from the liquid film near the pipe wall is only dependent on the prop-
erties of the suspending liquid in the flow of the coarse particles larger than the thickness
of the laminar sublayer (Section 6.4.2).

For mean velocities greater than 5ms�1, the frictional losses, determined experimentally
and predicted by ELM, in horizontal flow for medium and fine sands and their mixtures
are given in Figures 6.7(a) and (b) as a function of solid volume fraction (Matous�ek, 2002).
Both the size and the specific gravity of the particles are in the range of the particles stud-
ied by Kaushal et al. (2005). Although the diameter of the pipe is large (D�150mm), the
mean velocities are higher than that of given in Figure 6.6, because of the high volumetric
flow rates.

In Figure 6.7, ELM explained in Sections 6.2 and 6.4 gives good results in agreement
with the experimental results at low solid volume fractions (up to 0.43) and low mean
suspension velocities (up to 5ms�1) independent of the particle size. Both an increase in
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Figure 6.7 Frictional losses measured and predicted in horizontal flow for medium and fine sands
and their mixtures. (Matous�ek, 2002. Figures 5(a) and (b) in the original. Redrawn with permission
of Elsevier.)



volume fraction and mean velocity cause an increase in the difference between the exper-
imental and model results due to extremely thin sublayers near the wall at high velocities
which prevents the remaining of particles in the sublayer. However, the ELM model uses
the suspension properties as that of the sublayer as explained in Sections 6.2 and 6.4. Thus,
the ELM model overpredicts the experimental results and is not appropriate to predict the
pressure losses at high velocities in horizontal flow.

The nonlinear relation between the pressure gradient and mean velocity in Figure 6.7 is
both theoretically and experimentally observed. Lack of a minimum indicates fully sus-
pended heterogeneous flow. In Figure 6.7(a), the increase in pressure loss as a function of
solid volume fraction is observed up to the mean velocity of 7ms�1, above which solid vol-
ume fraction has no effect on pressure loss, except �d � 0.13. The pressure losses given
in Figure 6.7(b) for medium, fine and their mixture shows that there is no effect of the par-
ticle size on the pressure loss at constant solid volume fraction �d � 0.27 for all mean sus-
pension velocities.

Pressure losses in flow of coarse and coarse-fine suspension mixtures, are given in
Figure 6.8. The experimental pressure losses showing a minimum around 3–4ms�1 points
out a transition from a heterogeneous single- to two-phase flow. Therefore, two-layer flow
model together with particle-dispersion equation is considered in modeling the flows of
coarse particles and their mixture with fine particles. Model results in Figure 6.8 are
obtained using two-layer flow equations (Section 6.2.2) together with solid concentration
equation (eq. (6.84)) with Richardson–Zaki exponent given in Section 6.3.3 and the bed
wall friction model of Wilson (solids friction due to permanent contact of the particles with
a pipe wall is taken into consideration) (Section 6.4.2). In coarse–fine suspensions, the sus-
pending liquid is considered as pseudohomogeneous fine particle–water mixture. A reason-
able agreement between the model and measured results is observed in Figure 6.8 with the
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Figure 6.8 Frictional losses measured and predicted in horizontal flow for coarse and coarse–fine
sand particles. (Matous�ek, 2002. Figure 7 in the original. Redrawn with permission of Elsevier.)



addition of fine sand to coarse sand flow in the range of velocity from 2 to 4ms�1

(Matous�ek, 2002).
The evaluation of the pressure losses measured in horizontal pipes can be summarized

as: the size of particle is effective on the pressure losses and the flow patterns at low and
moderate velocities; the pressure losses are independent of the particle size at high veloc-
ities where a heterogeneous, fully suspended flow is observed.

6.5.2 Pressure losses in vertical flow of suspensions

In vertical pipes, solid–liquid suspension flowing under the effect of gravity only forms homo-
geneous or heterogeneous flow, without a bed formation. The flow behavior of sand suspen-
sions of medium size range (d50 � 0.37mm) through a vertical pipe is given in Figure 6.9 in
terms of pressure losses at different solid volume fractions (Matous�ek, 2002). The solid effects
due to Bagnold dispersive stress acting against the pipe wall are taken into account with the
use of eq. (6.94) (the Bartosik and Shook model). In this model, the frictional head loss, Hs,l

equation for the vertical pipe is obtained from the force balance at equilibrium in terms of
liquid, �w,l (eq. (6.6)) and solid, �p,B shear stresses (Section 6.4.2.1) at the pipe wall as

(6.105)

where the unit of Hs,1 is given in the units of (m liquid head/m pipe length).
The model underpredicts the pressure losses of the suspensions at different solid volume

fractions in Figure 6.9 and coincides with that of water. Thus, it can be concluded that the
solids effect due to Bagnold stress is negligible in medium-sized particle flow through a
vertical pipe. Application of Bartosik and Shook model to the suspensions with different
particle size also gives the same results observed in Figure 6.9, so there is no effect of
Bagnold stress on suspension flow. The pressure losses determined experimentally in this
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Figure 6.9 Pressure losses measured and predicted in vertical flow for medium sand. (Matous�ek,
2002. Figure 4(a) in the original. Redrawn with permission of Elsevier.)



figure do not exhibit a difference depending on the particle volume fraction and they are
very close to those of water. This shows that the suspension behaves as a viscous 
liquid with the physical properties of the suspension up to a mean velocity of 5ms–1.
Above 5 m s�1, a slight increase in pressure loss is observed with increasing velocity. 
It is found to be independent of solid volume fraction and particle size (Matous�ek, 2002). 

6.5.3 Pressure losses in flow through inclined pipes

Inclination of a transportation line is effective on the pressure losses given by the momen-
tum balance equations (i.e., eqs. (6.7), (6.14), (6.36)). As the suspension flows upward, an
increase in inclination causes an increase in pressure loss due to increase in the effect of
gravity in reverse direction. In the downward flow of the suspension, the gravity acts as a
driving force. Consequently, the pressure losses increase with increasing inclination rela-
tive to horizontal flow (� � 0) in both positive and negative scales for up- and down-
flows, respectively.

Results of experiments conducted in an experimental setup, which could be tilted up to
an angle of 7 from the horizontal position, together with the related model studies are
given in Figure 6.10. The inclination of the pipe affects the magnitude of the pressure
losses but not the trends in the pressure loss curves in Figure 6.10. When suspension veloc-
ity is too low to move the solid particles, a stationary bed forms at the lower part of the
pipe over the pipe wall. The change in the pressure losses is insignificant, at these low
velocities. As the mean suspension velocity increases, the pressure losses decrease and a
minimum appears in the pressure drop curve denoting a transition to flow with a moving
bed. Beyond this minimum, the head losses increase with increasing velocity and fully
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Figure 6.10 Effect of angle of inclination on frictional head loss measured and predicted; 
(a) Cs ��d � 7%, (b) Cs ��d � 13%, ���: Angle of inclination. (Doron et al., 1997. Figure 4 in
the original. Redrawn with permission of Elsevier.)



suspended flow sets in. The experimental results show the presence of a three-layer flow.
Therefore, three-layer flow model (Section 6.2.3), considering the effect of inclination on
the pressure loss, is used and the model results of pressure loss are found to be in good
agreement with the measured data (Doron et al., 1997) in Figure 6.10.

Both model and experimental results indicate that the pressure losses increase with
increasing inclination in positive or negative scale depending on the direction of the sus-
pension flow. As in horizontal pipes, higher solid volume fractions also bring about higher-
pressure losses in inclined pipes (Figure 6.10(a) and (b)).

6.6 PARTICLE CONCENTRATION DISTRIBUTIONS 

IN DIFFERENT FLOW PATTERNS

Another way to elucidate the flow patterns in settling suspensions is to plot distribution of
particle concentration against the vertical distance above the pipe wall (Figure 6.11(a)).
The particle distribution can both experimentally and theoretically be determined. Its
theoretical estimation is based on solution of a particle-dispersion equation derived
depending on the flow conditions (Section 6.3 in this chapter). Experimental observations
of the effect of particle size, flow velocity, and addition of the fine particles on the par-
ticle concentration distributions will be given in this section.

6.6.1 Effect of particle size on flow pattern

Concentration distributions, determined experimentally, for fine (d50 �0.37mm) and
coarse (d50 � 1.85mm) sand particles suspended in water flowing through a 150 mm pipe
are given in terms of the volume fraction in Figure 6.11 (Matous�ek, 2002). In Figure 6.11b,
fine sand particles indicate that there is no contact bed at 6ms�1 mean suspension veloc-
ity that is higher than the limit deposit velocity in a horizontal pipe whereas a contact bed
occupies at around �d �0.4 volume fraction at the bottom of the pipe in the flow of
medium sands.

Analysis of the experimental data given in this figure shows that the solid-dispersion
coefficient DpM remains constant throughout the turbulent suspension flow for both fine and
medium sand particles. The ratio of the solid-dispersion coefficient to the shear velocity,
(DpM �V*) defined by eqs. (6.78) or (6.83) is taken as 0.009 and 0.0115 for fine and medium
sands, respectively. Theoretical concentration distributions illustrated in the same figure are
based on Rouse–Schmidt turbulent diffusion model (eq. (6.84)). However, this model can
only be applicable in the absence of the contact bed at mean velocities higher than the limit
deposit velocity in a heterogeneous suspension flow. Therefore, the modeled concentration
distribution in medium-sized sand particles is linked to the contact bed at the bottom of the
pipe in Figure 6.11c. The results of the model are in good agreement with the experimental
distributions of fine, medium (up to contact bed) and mixtures of fine–medium sands. 

In the flow of coarse sands (dp,50 �1.85mm), the experimental concentration distribu-
tion in Figure 6.11(c) indicates a sharp decrease but not the distribution found by the 
turbulent diffusion model in which DpM �V* is taken as 0.0115. This shows that the shearing
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of the upper surface of the contact bed is more effective than the support of the sand par-
ticles due to turbulent diffusion of the suspension in the development of the concentration
distribution above the contact bed. The turbulent eddies formed in the suspending liquid
cannot suspend the coarse and heavy particles completely and a large shear stress at 
the upper surface of the contact bed is produced by the pressure gradient acting along the
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Figure 6.11 Particle concentration distribution measured and predicted by the Rouse–Schmidt
turbulent diffusion model at mean velocity 6ms�1 in 150mmpipe (Matous�ek, 2002. Figures 2 and
3 in the original. Redrawn with permission of Elsevier.) 



pipeline. Hence, the shear stress causes the development of a shear layer with the charac-
teristic shape of a concentration distribution illustrated in Figure 6.12. When the shear
stress at the top of the bed is effective, a concentration distribution similar to Figures 6.12
and 6.11(c) is observed. Thus, the turbulent diffusion model seems to be appropriate in the
shear layer and the distribution of particle concentration found by the model is linked to
the contact bed.

Results in Figure 6.11(b) and (c) show that flow patterns of sand–water suspensions
gradually change from fully suspended heterogeneous flow to stratified flow based on the
formation of the contact bed with increasing particle diameter at constant mean suspen-
sion velocity that is higher than the limit deposit velocity. The concentration profiles,
determined experimentally, show that the solid particle volume fraction in the stationary
bed at the lower portion of the pipe is about 0.43–0.45 in Figure 6.11(c) and 0.65 in
Figure 6.12, respectively. An interfacial ramp exists above this stationary bed that denotes
a linear decrease of solid volume fraction with height along the diameter of the pipe.

In Figure 6.11(c), the region between bottom of the fully suspended region and top of
the stationary bed (the interface between top and bottom layers in Figure 6.12) shows two
types of behavior: In the case of mixed-sand mixture, the interface is sharp, which denotes
that the effective interfacial roughness depends on the particle size (Section 6.4.3).
However, the interfaces in coarse particles and in Figure 6.12 form a ramp, which indicates
an interfacial thickness (height) of many grain diameters.

In Figure 6.12, the solid concentration above the ramp is smaller and the concentration
profile is curved which can be interpreted as particles supported by eddies. In Figure 6.12,
height of the ramp corresponding to the nearly linear portion of the profile is known as the
shear layer thickness, �s. At the bottom of the ramp, the shear stress (or Bagnold shear force)
and the submerged weight of the contact bed (Sections 6.2.2 and 6.4.2) are always effective
resisting the motion of the particles. Thus, the shear layer thickness, �s is proportional to the
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Figure 6.12 Concentration profile due to the shearing of the upper surface of the bed and shear layer
between the suspended and dense phases: Silica particles (dp � 0.56 mm, SGp � 2.65 in a 10 cm pipe
at 1.5ms�1. (Pugh and Wilson, 1999. Figure 2 in the original, with permission of Elsevier). 



shear stress, which signifies that the interfacial friction factor depends on the pressure gradi-
ent ratio ([Hs,l ��(�p��)]), but not on the particle size.

6.6.2 Effect of flow velocity on flow pattern

Another parameter affecting the flow pattern is the flow velocity, which signifies the asym-
metric distribution of particles with respect to the degree of asymmetry, increasing with
decreasing flow velocity for the same overall solid volume fraction as shown in Figure 6.13.
A decrease in flow velocity causes a decrease in turbulent energy that keeps the solids in
suspended form in the liquid. An increase in delivered solid volume fraction, �d reduces the
asymmetry due to an increase in particle–particle interactions that are extremely strong at
lower velocities, and at higher concentrations (Figures 6.13(a) or (b)). With an increase in
the particle size, the asymmetry in the distribution also increases due to the gravity effect
for a given delivered solid volume fraction (i.e., �d � 0.10 or 0.30 in Figures 6.13(a) and
(b)). It can be concluded that solid particle concentration distribution depends on the flow
velocity, overall concentration of the suspension, and the particle size.

The maximum solid concentration at the bottom of the pipe does not change. It expands
up to the center of the pipeline and then suddenly drops at the upper half of the pipeline at
�d � 0.30 in 440�m coarse particles whereas it remains constant along the vertical direc-
tion above the pipe wall in 125�m particles. This difference in the concentration distribu-
tion can be attributed to the moving bed regime for coarse particles.

The mixed suspension including both 125�m and 440�m particles show solid concentra-
tion distributions similar to those of 125�m particles and the solid concentration at the bottom
of the pipe is also comparable with that in 125�m particles (Figure 6.13(c)). With increasing
�d for a given suspension velocity in the same figure, the distributions become steep and the
flow exhibits the lower stratification. However, the distributions are wider than those in 
125�m particles, since the particle size range of the suspension increases and becomes broad.
Comparison of the distributions in Figure 6.13 shows that the solid volume fraction, the size
of particles making up the suspension, and their size range are effective on flow pattern.

6.6.3 Effect of fine particles on flow pattern

Addition of fine sand particles to medium and coarse particles changes the properties of
the suspending liquid, and the flow pattern. In this case, the larger particles will move in
a fine-particle suspension instead of liquid water. The density difference between the sus-
pending medium and the sand particles decreases, resulting in a decrease of the settling
velocity of the particles, hence, a decrease in stratification.

The added fine sands decrease the stratification behavior of the medium sands in Figures
6.11(b) and (d) at the same delivered solid volume fraction. Increasing this fraction
increases the solid concentration at the wall and reduces the asymmetry in the concentra-
tion distribution due to the interference effect between solid particles.

In contrary to the coarse particles, the flow of mixed particles shows a lower stratifica-
tion behavior due to the hindered settling effect on the coarse particles in the mixed flow,
hence a decrease in the solid effect, which is the difference between the pressure losses of
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the suspension, Hs,l and the suspending liquid, H, (Hs,l�H). Thicknesses of the contact
beds formed in the flows of both mixed coarse and coarse particles are the same. The
authors attributed the decrease in the solid effect in the mixed flow to buoyancy effect on
the coarse particles forming the contact bed. This effect is predicted by two-layer flow
model in Figure 6.8 in Section 6.5.1. 
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Figure 6.13 Effect of flow velocity and particle size on concentration profiles in the flow of con-
centrated slurries in 54.9 mm diameter horizontal pipe (Kaushal et al., 2005. Figures 6(a) and (b),
7(a) and (c), and 8(a) and (b) in the original. Redrawn with permission of Elsevier)



6.7 DEPOSITION VELOCITY

Deposition limit is a critical parameter in the formation of stationary bed of solids in the
pipe. For trouble-free operation, stationary bed formation is generally avoided in industrial
applications.

Due to stratified behavior of settling suspensions, a lower, particle rich and an upper, par-
ticle-lean zones generally exist in a pipeline. Therefore, the equations related with the two-
layer flow model (Section 6.2.2) are applied to find the limit deposit velocity. Two driving
forces are considered, one is related to the pressure gradient in the pipe, Hs,l and the other,
the shear force at the interface. As the driving force just exceeds the resisting force produced
by the contact of the particles with the pipe wall, the lower, particle-rich layer is set in
motion. The resisting force is proportional to the dry-state friction factor, fCf and the sub-
merged weight of the solid particles through the bed as explained in Section 6.2.2. The shear
stress at the interface, is calculated using an equivalent roughness which is proportional to
the size of solid particles in prior applications of two-LFM (Section 6.4.2).

Pugh and Wilson (1999) prepared the nomogram in Figure 6.14 to determine the limit
deposit velocity. In Figure 6.14, the vertical line at the center of the nomograph corresponds
to the limit deposit velocity, Vdep (equivalent to Vsm in the figure) for particles of specific
gravity SGp � 2.65, narrow particle grading and fCf � 0.4. The vertical axis at LHS of Vdep

axis shows the internal pipe diameter, D and the particle size, dp is located on the curved
axis in this region. Hence LHS of the Vdep axis is used to find the limit deposit velocity for
particles with SGp � 2.65. The curved dp axis located in this region has two sides: Its RHS
shows sizes of small particles and the LHS, large particles. As an example, if the pipe and
particle diameters for the particles with SGp � 2.65 are taken as 0.3m and 5mm, respec-
tively, the limit deposit velocity, Vdep at this condition is determined joining the pipe and
particle diameters with a straight line at RHS of the vertical Vdep line at the center of the
nomogram and then, taking the intercept of this straight line with the vertical line at the cen-
ter. This intercept gives the limit deposit velocity as 2.65ms–1. If the specific gravity of the
particles is different from SGp � 2.65 and if it is, i.e., SGp � 1.6 under the same conditions,
2.65ms–1 limit deposit velocity and SGp � 1.6 on the relative density line are joined by a
straight line and the intercept of this line with the vertical line at LHS is located and the
actual limit deposit velocity is read as 1.52ms–1.

If the particle diameter, dp �0.006D, the nomographic chart should be used to obtain
Vdep. If dp �0.006D and dp �0.3mm, eq. (6.106) should be used to find Vdep.

(6.106)

The Darcy–Weisbach friction factor, f in eq. (6.106) is defined as a function of the pres-
sure gradient, Hs,l and the superficial liquid velocity, Vs,av and is given by 
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6.8 SETTLING FLOW OF SOLID–LIQUID SUSPENSIONS 

WITH STATIONARY BED

Suspension flow with solid deposits can be employed in some practical applications.
Although the presence of solid bed leads to instabilities with a danger of blockage, this
flow regime can be preferred in noncritical applications for economical reasons. In this
case, the pressure gradient Hs for flows with stationary beds can be modeled in terms of
pressure-gradient ratio, the Durand velocity parameter, Dr, and the delivered volumetric
solid fraction for the conditions where eq. (6.106) is applicable. Dr is a modification of the
Froude number, corrected for the density of the particles.

(6.108)

The Durand parameter is used to define the other parameters effective in pressure drop cor-
relations, such as, the dimensionless velocity, �,
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Figure 6.14 Nomographic chart for limit deposition velocity; (Pugh and Wilson, 1999. Figure 1 in
the original, with permission of Elsevier). 



the characteristic velocity, Vch of a particle defined by eq. (6.104) is given in terms of par-
ticle diameter dp as

(6.104a)

and the drag coefficient for spherical particles, CD in eq. (6.109) is defined by 

(6.110) 

6.8.1 Pressure drop correlations

Pressure losses can be expressed in dimensionless form as the ratio of the dimensionless
solid effects to the amount of solid particles.

(6.111)

Dimensionless pressure drop in settling suspensions are expressed by correlations based on
Durand parameter in the literature. Durand’s correlation is based on experimental data of
sand and gravel slurries covering all flow regimes, with particle size ranging from 0.2 to 25
mm, in pipes changing from 3.8 to 58cm in diameter and solids volume fraction up to 0.60.
The other conditions of the correlations are given in Table 6.9. Although eq. (6.115) is used
for all flow patterns, its constants change depending on the flow pattern and they are
summarized in Table 6.10. In Table 6.10, the flow patterns are also numbered in the second
column, which are used in Table 6.11 to show briefly the transitions from one to another
flow pattern. Eq. (6.117) in Table 6.11 is used to calculate the friction factor at any transi-
tion between two flow patterns.

6.8.2 Limit deposition velocity correlations

The most general form of the dimensionless limit deposit velocity, which is the ratio of the
limit deposition velocity, Vdep to the characteristic velocity, Vch is 

(6.118)

where Ac, the correlation term for the limit deposit velocity, is a function of (dp�D),
Reynolds number, Rem and solid particle volume fraction, �. Reynolds number is defined
in terms of the characteristic velocity as 

(6.119)Re
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Table 6.10

Constants of eq. (6.115) (Turian and Yuan, 1977; Oroskar and Turian, 1980)

Flow Pattern 
pattern numbers Constants

A1 A2 A3 A4 A5

Hom. FSF 0 0.8444 0.5024 1.428 0.1516 �0.3531
Het. FSF 1 0.5513 0.8687 1.200 �0.1677 �0.6938
Two-LF 2 0.9857 1.018 1.046 �0.4213 �1.354
Three-LFa 3 0.4036 0.7389 0.7717 �0.4054 �1.096
aThree-layer flow.

Table 6.9

Pressure drop correlations for flow of settling suspensions in pipelines

References Equations Comments D�a

Durand and 
Condolios (1952), (6.112) K � 81, m � �1.5 10.7–49.3
Durand (1953)

Newitt et al. (1955) (6.113) Hom. FSFb

Het. FSFb

(6.113a) 6.12–26.4

(6.113b)

Two-LFb

Zandi and 
Govatos (1967) (6.114) � � 10, (���d) � 40 7.6–59.9

(6.114a) � � 10, (���d ) � 40

Turian and (6.115) constants A1, A2 ... A5 4.9–26.7
Yuan (1977) given in Table 6.10

where (6.116)

aD�: The absolute average percent deviation, which changes from Hom. FSF to Two-LF as given.
bFSF: Fully suspended flow, Hom. FSF: Homogeneous fully suspended flow, Het. FSF: Heterogeneous fully 
suspended flow, Two-LF: Two-layer flow.
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There are several correlations related to the limit deposit velocity in the literature. Some
correlations for Ac and their application ranges are summarized in Table 6.12. In some cases,
the limit deposit velocity correlation can be described by the Durand coefficient defined in
terms of Vdep. The relation between the Durand coefficient and the dimensionless limit deposit
velocity (eq. (6.112)) is obtained by replacing Vs,av with Vdep in eq. (6.108) and multiplying it
by (dp �dp):

(6.120)

Eq. (6.120) shows that the Durand coefficient and the dimensionless limit deposit velocity
are interconvertible. Turian et al.’s correlation (1987) based on the definition given in eq.
(6.121) is

(6.121)

Various forms of eq. (6.121) are considered and the related values of adjustable constants,
�i, are determined by fitting the 864 limit deposit velocity data using multiple regressions
with the linearized log form of the equation. The regression results are given in Table 6.13
together with the standard errors.
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Table 6.11

Constants of eq. (6.117) for transition between flow patterns

Equation

(6.117)

Constants

Transition RNT
a AR1 AR2 AR3 AR4 Critical References

from pattern velocities

3–0 RNT,30 0.3703 0.3183 �0.8837 �0.7496
Vdep

Oroskar and 
3–1 RNT,31 0.4608 �0.3225 �1.065 �0.5906 Turian (1980)
3–2 RNT,32 31.93 1.083 1.064 �0.0616

2–0 RNT,20 1.167 0.5153 �0.3820 �0.5724
Vsus

Turian and 
2–1 RNT,21 2.411 0.2263 �0.2334 �0.3840 Yuan (1977)
1–3 RNT,13 0.2859 1.075 �0.6700 �0.9375 Vdep

aRNT,ij � 1 at any transition point between two flow patterns. RNT,ij � 1 and RNT,ij � 1 correspond to turbulent and
laminar regimes, respectively.
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6.9 FLOW PATTERN MAPS IN PIPE FLOW

The hydrodynamic characteristics of the flow of the solid–liquid suspensions are influ-
enced by operational conditions, i.e., pipe diameter and inclination, solid–liquid suspen-
sion flow rate, delivered concentration and superficial velocities, the physical properties of
the solid and liquid phases, i.e., particle size and density, density and viscosity of the
liquid, dry friction coefficient and angle of internal friction.
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Table 6.12

Deposition velocity correlations

Ac Comments SD a% References

FL � 0.7�1.3 dp �2.3mm 51.3 Durand and 
FL � 1.3 dp �2.3mm Condolois (1952)

[(8/3)��2 ]1/2 (dp �D)1/n (dp/D)�1/2 � � 22/n + 2 n�(1 � n)(2 � n), 61.9 Kao and Wood
� � (2n � 1)(n � 1)�2n2, 7 � n � 10 (1974)

34/(3CD)1/2 73.2 Newitt et al. 
(1955)

[0.025(DVs,av �p��)0.775]1/2 62.0 Spells (1955)

[AR1�AR2f AR3 CD
AR4 (D�dp)]

1/2 AR1, AR2, AR3, AR4 67.3 Turian and 
(see Table 6.10) Yuan (1977)

FL� � 3.4�0.22 49.8 Wasp et al.
(1977)

58.9 Zandi and 
Govatos (1967)

b1.85�0.1536 (1 � � )0.3564 21.8 Oroskar 
	 (dp�D)�0.378 Rem

0.09 x0.30 and Turian 
(1980)

where 
Vht � Vt(1 � �d)

n

Rem is defined by eq. (6.119)

x vs (Vht �Vdep)

Source: Oroskar and Turian (1980). Reproduced with permission of the American Institute of Chemical
Engineers, Figure 6 in the original.
aSD: Standard deviation.
bx: Fraction of eddies with velocities exceeding Vt.
FL and FL�: Factors used in critical velocity correlations. �d: delivered volume fraction of solid particles. Range
of data evaluated in these correlations: SGp � 1.30–5.25, SG � 0.98–1.35, � � 0.98–38cP, dp � 100–2040 �m,
D � 2.67–31.52 cm, � � 0.01–0.50.
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The effects of the operational conditions on the flow of solid–liquid suspensions are 
displayed in flow pattern maps. These maps may be in terms of superficial velocities of the
two phases, solid–liquid suspension superficial velocity versus delivered concentration,
solid–liquid suspension flow rate versus delivered concentration or in terms of mass flow rates
of the two phases. One form given in Figure 6.15(a), similar to the map presentations in
gas–liquid two-phase flows, employs log–log scale in terms of superficial velocities of the
solid, Vp,av and liquid, Vav phases equivalent to the volumetric flow rates. Figure 6.15(b)
indicates another type of the flow pattern map in which the superficial velocity of the
solid–liquid suspension, Vs,av is plotted against the delivered concentration, �d. The coordi-
nates on the two types of presentation are interrelated and described by eqs. (5.103)–(5.105) as

(6.122)
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Table 6.13

Limit deposition velocity correlations (eq. (6.137)) using regression

Assumption Parameter Estimate SEa D�a RMSa

1. Estimate all �i �1 1.7951 1.0878
�2 0.1087 0.01610
�3 0.2501 0.09870 20.53 0.3416
�4 0.00179 0.00767
�5 0.06623 0.00958

2. Assume �5 � 0 �1 1.8471 1.091
�2 0.1126 0.01652
�3 0.03421 0.1004 21.54 0.3447

�4 �0.03093 0.00621

3. Assume �4 �0 �1 1.8176 1.0665
�2 0.1086 0.01608
�3 0.2525 0.09812 20.57 0.3412

�5 0.06486 0.00754

4. Assume �4 � �5�0 �1 1.3213 1.0564
�2 0.1182 0.01671 21.04 0.3552
�3 0.3293 0.1018

5. Assume �3 � �4 � �5�0 �1 1.1228 1.0223 21.35 0.3559�2 0.07367 0.00954

Source: Turian et al. (1987). Redrawn with permission of Elsevier, Table 4 in the original.
aSE: Standard error of estimate, D�: The absolute average percent deviation, RMS: The root mean square deviation



The flow pattern maps are obtained for any set of operational conditions from the results
of both experiments and theoretical models. The transition between the flow-patterns is
estimated using the flow pattern equations given in Section 6.2.3.

In Figure 6.15(a), the boundary between the stationary and moving beds is experimen-
tally determined by Doron and Barnea (1996). In addition, this boundary is also predicted
by three-LFM and Turian et al.’s correlations (1987). Both experimental and model results
are in good agreement in this figure. The model prediction of the shape of the boundary is
better than the results of the Turian et al.’s (1987) correlation. The transition from two-
layer (flow with moving bed) to fully suspended flow is theoretically presented using both
three LFM and Turian and Yuan (1977) correlation in Figure 6.15(a). The range of exis-
tence of the moving bed flow pattern increases with increasing solids superficial velocity.

The flow pattern map in Figure 6.15(b) is given in terms of suspension superficial
velocity and delivered concentration. The variation of both the Turian et al. (1987) corre-
lation and the three-LFM is insignificant in the range of �d investigated experimentally.
This shows that the transition from flow with a stationary bed to the moving bed is inde-
pendent of the delivered concentration, �d. The region of two-layer flow (flow with a mov-
ing bed) becomes larger with increasing �d indicated by the greater slope of Turian and
Yuan (1977) correlation and three-LFM. With increasing particle concentration, the sus-
pension needs extremely high flow rates to achieve fully suspended flow. As the delivered
concentration around �d � 0.52, the whole pipe is filled by solid particles, hence a sta-
tionary bed is formed which is known as blockage.

Effect of particle density

Transitions from the stationary to moving bed and moving bed to fully suspended flow take
place at higher suspension velocities with an increase in the particle density. The transition

378 6. Flow of Settling Slurries

Figure 6.15 Flow pattern maps in terms of (a) superficial velocities, (b) solid–liquid suspension
velocity-delivered volume fraction. (Doron and Barnea, 1996. Figures 2 and 3 in the original with
permission of Elsevier).



from the stationary to the moving bed is independent of the delivered solids even though the
value of the suspension velocity increases with the density of the particles. On the other
hand, transition from moving bed to fully suspended flow is independent on both the den-
sity, �p, and the solid volume fraction, �d, of the particle.

Effect of particle diameter

The limit deposit velocity is predicted by the correlations to be independent of particle
size. However, the transition to the fully suspended flow is affected by the particle size, as
higher velocities are required to suspend larger particles.

Effect of pipe diameter

The pipe diameter affects the transitions from stationary to moving beds through the total
mass and mechanical energy relations.

REFERENCES

Almedeij, J.H., Algharaib, M.K., 2005. Influence of sand production on pressure drawdown in
horizontal wells: Theoretical evidence. Journal of Petroleum Science and Engineering, 47,
137–145. 

Averbakh, A., Shauly, A., Nir, A., Semiat, R., 1997. Slow viscous flows of highly concentrated
suspensions—Part I: Laser-Doppler velocimetry in rectangular ducts. International Journal
Multiphase Flow, 23(3), 409–424. 

Ayazi Shamlou, P., 1970. Hydraulic transport of particulate solids. Chemical Engineering
Communications, 62, 233–249. 

Bagnold, R.A., 1954. Experiments on the gravity free dispersion of large solid particles under shear.
Proceedings of the Royal Society, A225, 49–64. 

Bain, A.G., Bonnington, S.T., 1970. The Hydraulic Transport of Solids by Pipeline, Pergamon Press,
Oxford. 

Bartosik, A.S., 1996. Modelling the Bagnold stress effects in vertical slurry flow. Journal of
Hydrology and Hydromechanics, 44(1), 49–58. 

Brown, N.P., 1991. Flow regimes of settling slurries in pipes. In: Slurry Handling Design of
Solid–Liquid Systems, Elsevier, London, pp. 41–52. 

Campbell, C.S., Avila-Segura, F., Liu, Z., 2004. Preliminary observations of a particle lift force in
horizontal slurry flow. International Journal of Multiphase Flow, 30, 199–216.

Choi, M., Cho, K., 2001. Effect of the aspect ratio of rectangular channels on the heat transfer 
and hydrodynamics of paraffin slurry flow. International Journal of Heat Mass Transfer,
44, 55–61. 

Condolios, E., Chapus, E.E., 1963. Designing solids-handling pipelines. Chemical Engineering,
131–138. 

Doron, P., Barnea, D., 1996. Flow pattern maps for solid-liquid flow in pipes. International Journal
of Multiphase Flow, 22(2), 273–283. 

Doron, P., Granica, D., Barnea, D., 1987. Slurry flow in horizontal pipes—experimental and
modeling. International Journal of Multiphase Flow, 13(4), 535–547. 

Doron, P., Simkhis, M., Barnea, D., 1997. Flow of solid–liquid mixtures in inclined pipes.
International Journal of Multiphase Flow, 23(2), 313–323. 

References 379



Durand, R., 1953. Basic relationships of the transportation of solids in pipes-experimental research.
In: Proceedings of the Fifth Minneapolis International Hydraulics Convention, Minneapolis,
MN, pp. 89–103. 

Durand, R., Condolios, E., 1952. Communication de R. Durand et E. Condolios, Compte Rendu des
Deuxiemes Journees de L’Hydraulique (Paris, Societe Hydrotechnique de France), pp. 29–55,
June 1952. 

Ercolani, D., Ferrini, F., Arrigoni, V., 1979. Electric and thermic probes for measuring the limit
deposit velocity. In: Proceedings of the Sixth International Conference on the Hydraulic
Transport of Solids in Pipes, Canterbury, England, Paper A3, pp. 27–42. 

Fangary, Y.S., Abdel Ghani, A.S., El Haggar, S.M., Williams, R.A., 1997. The effect of fine particles
on slurry transport processes. Minerals Engineering, 10(4), 427–439. 

Ferre, A.L., Shook, C.A., 1998. Coarse particle wall friction in vertical slurry flows. Particulate
Science and Technology, 16, 125–133. 

Gillies, R.G., Hill, K.B., McKibben, M.J., Shook, C.A., 1999. Solids transport by laminar Newtonian
flows. Powder Technology, 104, 269–277. 

Gillies, R.G., Shook, C.A., 2000. Modelling high concentration settling slurry flows. Canadian
Journal of Chemical Engineering, 78, 709–716. 

Goedde, E., 1978. To the critical velocity of heterogeneous hydraulic transport. In: Proceedings of
the Fifth International Conference on the Hydraulic Transport of Solids in Pipes, Hanover,
Germany, Paper B4, 81–98. 

Graf, W.H., Robinson, M., Yucel, O., 1970. The critical deposit velocity for solid–liquid mixtures.
In: Proceedings of the First International Conference on the Hydraulic Transport of Solids in
Pipes, Warwick, England, Paper H5, 77–87. 

Kao, T.Y., Wood, D.J., 1974. Incipient motion of solids in solid liquid transport system, Transactions
of the Society of Mining Engineers, AIME, 255, 39–44. 

Karabelas, A.J., 1977. Vertical distribution of dilute suspensions in turbulent pipe flow. American
Institute of Chemical Engineers Journal, 23(4), 426–434.

Kaushal, D.R., 1995. Prediction of Particle Distribution in the Flow of Multisized Particulate Slurries
through Closed Ducts and Open Channels, Ph.D. Thesis, Department of Applied Mechanics,
I.I.T. Delhi, India. 

Kaushal, D.R., Sato, K., Toyota, T., Funatsu, K., Tomita, Y., 2005. Effect of particle size on pressure
drop and concentration profile in pipeline flow of highly concentrated slurry. International
Journal of Multiphase Flow, 31, 809–823. 

Kaushal, D.R., Seshadri, V., Singh, S.N., 2002a. Prediction of concentration and particle size distribu-
tion in the flow of multi-sized particulate slurry through rectangular duct. Applied Mathematical
Modelling, 26, 941–952. 

Kaushal, D.R., Tomita, Y., 2002. Solids concentration profiles and pressure drop in pipeline flow of
multisized particulate slurries. International Journal of Multiphase Flow, 28, 1697–1717. 

Kaushal, D.R., Tomita, Y., Dighade, R.R., 2002b. Concentration at the pipe bottom at deposition
velocity for transportation of commercial slurries through pipeline. Powder Technology, 125,
89–101. 

Kazanskij, I., 1979. Critical velocity of depositions for fine slurries—new results. In: Proceedings of
the Sixth International Conference on the Hydraulic Transport of Solids in Pipes, Canterbury,
England, Paper A4, 43–56. 

Kelessidis, V.C., Bandelis, G.E., 2004. Flow patterns and minimum suspension velocity for efficient
cuttings transport in horizontal and deviated wells in coiled-tubing drilling. SPE Drilling and
Completion, December, 213–227. 

Kofanov, V.J., 1964. Heat transfer and hydraulic resistance in a flowing liquid suspension in pipes.
International Chemical Engineering, 4, 426–430. 

380 6. Flow of Settling Slurries



Krieger, I.M., 1972. Rheology of monodisperse lattices. Advances Colloid Interface Science, 3,
111–136. 

Krieger, I.M., Daugherty, T.J., 1959. A mechanism for non-Newtonian flow in suspensions of rigid
spheres. Transactions of the Society of Rheology, 3, 137–152. 

Kumar, U., Mishra, R., Singh, S.N., Seshadri, V., 2003. Effect of particle gradation on flow charac-
teristics of ash disposal pipelines. Powder Technology, 132, 39–51.

Ladd, A.J.C., 1993. Dynamic simulations of sedient spheres. Physics of Fluids A, 5, 299–310.
Ladd, A.J.C., 1994. Dynamic simulations of particular suspensions via a discretized Boltzmann equa-

tion. Journal of Fluid Mechanics, 271, 285–310, 311–339.
Ladd, A.J.C., 1997. Sedimentation of homogeneous suspensions of non-Brownian spheres. Physics of

Fluids, 9, 491–499. 
Lazarus, J.H., Neilson, I.D., 1978. A generalized correlation for friction head losses of settling mix-

tures in horizontal smooth pipelines. In: Proceedings of the Fifth International Conference on
the Hydraulic Transport of Solids in Pipes, Hanover, Germany, Paper B1, 1–32. 

Leighton, D., Acrivos, A., 1987. The shear induced migration of particles in concentrated suspen-
sions. Journal of Fluid Mechanics, 181, 415–439. 

Liu, S., 1999. Particle suspension for dispersion flow. Chemical Engineering Science, 54,
873–891. 

Liu, S., Masliyah, J.H., 1996. Rheology of suspensions. In: Schramm L.L. (Ed.), Suspensions, fun-
damentals and applications in the petroleum industry (eds.), ACS Advances in Chemistry, 251,
107–176. 

Longwell, P.A., 1977. Mechanics of Fluid Flow, McGraw Hill, New York. 
Matous�ek, V., 2002. Pressure drops and flow patterns in sand-mixture pipes. Experimental Thermal

and Fluid Science, 26, 693–702. 
Matous�ek, V., 2004. Erosion of plane bed by sand slurry current in pipe. Journal of Hydrology and

Hydromechanics, 52(3), 156–161. 
Matous�ek, V., 2005. Research developments in pipeline transport of settling slurries. Powder

Technology, 156, 43–51. 
Newitt, D.M., Richardson, J.F., Abbott, M., Turtle, R.B., 1955. Hydraulic conveying of solids in 

horizontal pipes. Transactions of the Institution of Chemical Engineers, 33, 93–110. 
Newitt, D.M., Richardson, J.F., Gliddon, B.J., 1961. Hydraulic conveying of solids in vertical pipes.

Transactions of the Institution of Chemical Engineers, 39, 93–100. 
Nikuradse, J., 1930. Turbulente Strömung in nichtkreisförmigen rohren. Ingenier-Archiv, 1, 306–332. 
Nikuradse, J., 1933. Strömungsgesetze in rauhen rohren. Forschg Arb Ing –Wes No. 361., also 1950

Technical report, NACA Technical Memo 1292. National Advisory Commission for Aeronautics,
Washington, DC.

Oroskar, A.R., Turian, R.M., 1980. The critical velocity in pipeline flow of slurries. AIChE Journal,
26(4), 550–558. 

Parzonka, W., Kenchington, J.M., Charles, M.E., 1981. Hydrotransport of solids in horizontal pipes:
Effects of solids concentration and particle size on the deposit velocity. Canadian Journal of
Chemical Engineering, 59, 291–296. 

Phillips, R.J., Armstrong, R.C., Brown, R.A., Graha, A.L., Abbott, J.R., 1992. A constitutive equa-
tion for concentrated suspensions that accounts for shear-induced particle migration. Physics of
Fluids A, 4, 30–40.

Prandtl, L., 1952. Essentials of Fluid Dynamics, Blackie, London. 
Pugh, F.J., Wilson, K.C., 1999. Role of the interface in stratified slurry flow. Powder Technology,

104, 221–226. 
Ribberink, J.S., 1998. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal

Engineering, 38, 59–82. 

References 381



Richardson, J.F., Zaki, W.N., 1954. Sedimentation and fluidization, part I. Transactions of the
Institution of Chemical Engineers, 32, 35–53. 

Schlichting, H., 1979. Boundary Layer Theory, 7th edn., McGraw-Hill, New York (Chapter 20). 
Shauly, A., Averbakh, A., Nir, A., Semiat, R., 1997. Slow viscous flows of highly concentrated

suspensions–Part II: Particle migration, velocity and concentration profiles in rectangular
ducts. International Journal of Multiphase Flow, 23(4), 613–629. 

Shook, C.A., 1993. Slurry pipeline flow. In: Processing of Solid Liquid Suspensions (ed. P.A. Shamlou),
Butterworth-Heinemann, Oxford, pp. 287–309.

Shook, C.A., Bartosik, A.S., 1994. Particle-wall stresses in vertical slurry flows. Powder Technology,
81, 117–124. 

Shook, C.A., Roco, M.C., 1991. Slurry Flow: Principles and Practice, Butterworth-Heinemann,
Boston, MA. 

Smith, R.A., 1955. Experiments on the flow of sand-water slurries in horizontal pipes. Transactions
of the Institution of Chemical Engineers, 33, 85–92. 

Spells, K.E., 1955. Correlations for use in transport of aqueous suspensions of fine solids through
pipes. Transactions of the Institution of Chemical Engineers, 33, 79–84. 

Stevens, G.S., Charles, M.E., 1972. The pipeline flow of slurries: Transition velocities. In: Proceedings
of the Second International Conference on the Hydraulic Transport of Solids in Pipes, Coventry,
England, Paper E3, 37–62.

Stokes, R.J., Evans, D.F., 1997. Fundamentals of Interfacial Engineering. Wiley VCH, New York
(Chapter 3). 

Sumer, B.M., Kozakiewicz, A., Fredsøe, J., Deigaard, R., 1996. Velocity and concentration profiles
in sheet flow layer of movable bed. Journal of Hydraulic Engineering, 122(10), 549–558. 

Taylor, G., 1954. The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal
Society, A223, 446–468.

Televantos, Y., Shook, C.A., Carleton, A., Street, M., 1979. Flow of slurries of coarse particles at
high solids concentrations. Canadian Journal of Chemical Engineering, 57, 255–262.

Toda, M., Konno, H., Saito, S., 1980. Simulation of limit-deposit velocity in horizontal liquid-solid
flow. In: Proceedings of the Seventh International Conference on the Hydraulic Transport of
Solids in Pipes, Sendai, Japan, Paper J2, 347–358.

Turian, R.M., Hsu, F.L., Ma, T.W., 1987. Estimation of the critical velocity in pipeline flow of slur-
ries. Powder Technology, 51, 35–47.

Turian, R.M., Yuan, T.F., 1977. Flow of slurries in pipelines. AIChE Journal, 23(3), 232–243. 
Vocaldo, J.J., Charles, M.E., 1972. Prediction of pressure gradient for the horizontal turbulent flow

of slurries. In: Proceedings of the Second International Conference on the Hydraulic Transport
of Solids in Pipes, Coventry, England, Paper C1, 1–12.

Wasp, E.J., Kenny, J.P., Gandhi, R.L., 1977. Solid liquid flow—Slurry pipeline transportation. Trans.
Tech. Publ., Rockport, MA, 1977. 

Wilson, K.C., 1976. A unified physically-based analysis of solid–liquid pipeline flow. In:
Proceedings of the Fourth International Conference on the Hydraulic Transport of Solids in
Pipes, Banff, Alberta, Canada, Paper A1, 1–16. 

Wilson, K.C., 1970. Slip points of the beds in solid–liquid pipeline flow. Proceedings ASCE, Journal
of Hydraulics Division, 96, 1–12. 

Wilson, K.C., 1984. Analysis of contact-load distribution and application to deposition limit in
horizontal pipes. Journal of Pipelines, 4, 171–176. 

Wilson, K.C., 1989. Mobile-bed friction at high shear stress. Journal of Hydraulic Engineering,
115(6), 825–830. 

Wilson, K.C., Cliff, R., Sellgren, A., 2002. Operating points for pipelines carrying concentrated
heterogeneous slurries. Powder Technology, 123, 19–24. 

382 6. Flow of Settling Slurries



Wilson, K.C., Pugh, F.J., 1995. Real and virtual interfaces in slurry flows. In: Proceedings of Eighth
International Conference on Transport and Sedimentation of Solid Particles, Prague, A4-1–A4-10. 

Wilson, K.C., Sellgren, A., 2003. Interaction of particles and near-wall lift in slurry pipelines.
Journal of Hydraulic Engineering, 129(1), 73–76. 

Wood, D.J., 1979. Pressure gradient requirements for re-establishment of slurry flow. In:
Proceedings of the Sixth International Conference on the Hydraulic Transport of Solids in Pipes,
Canterbury, England, Paper D4, 217–228. 

Yen, B.C., 1991. Hydraulic resistance in open channels. In: Channel Flow Resistance: Centennial 
of Manning’s Formula (ed. B.C. Yen), Water Resource Publications, Highlands Ranch, CO.,
pp. 1–135. 

Yen, B.C., Asce, F., 2002. Open channel flow resistance. Journal of Hydraulic Engineering, 128(1),
20–39. 

Zandi, I., Govatos, G., 1967. Heterogeneous flow of solids in pipelines. Proceedings ASCE, Journal
of Hydraulics Division, 91, 145–159. 

References 383



This page intentionally left blank



– 7 –

Mixing in Solid–Liquid Systems

Mixing in solid–liquid systems is used for dispersing agglomerates, keeping the solid par-
ticles in suspension, blending various solid particles and colloids in a liquid, blending two
liquids as in the case of paints and foods. Mixers are also used as stirred tank reactors, biore-
actors, fermentors, crystallizers, and in the melting and phase change of solids. The aim in
mixing is to produce a homogeneous mixture efficiently in terms of time and power con-
sumption, if there is no other restriction imposed on the conditions of mixing, such as shear
sensitivity. Recent advances in materials technology brought up the concept of structured
mixtures of polymer blends and nanoparticles in the production of composites for a desired
end use. This necessitates the use of programmed blender operation for flexibility in the
structure of the blended product. Recent advances in micro-technologies necessitated devel-
opment of microscale mixing, generally associated with other microscale operations.

Mixing operation in general involves the wetting and dispersion of solid particles, dis-
charge of these particles into the liquid medium and incorporation into the liquid, and then
mixing for the end result of homogenization, dissolution, or reaction while being sus-
pended in the liquid medium. These topics will be taken up in this chapter, as indispensi-
ble operations in processes involving solid–liquid systems. 

7.1 THE ROLE OF SURFACE TENSION IN WETTING OF SOLIDS

Penetration of the suspending liquid into clusters of colloidal and micrometer size range
of particles, spreading over the surfaces, and wetting of the particles is the critical step in
the dispersion of dry particles within a liquid medium. The particles may remain dispersed
or aggregate after being suspended, depending on the effective surface forces introduced
in Chapter 1. 

7.1.1 Phenomena involving surface and interfacial tensions

A molecule located within a bulk phase will be in equilibrium with respect to the
interactive forces between the neighboring molecules. The number of these interaction
sites (coordination number) will depend on the compaction of the phase, or the distribution
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function, of the molecules. In the two-dimensional space sketched in Figure 7.1(a), the
interactive forces are shown to exist in four directions. This number will increase to six in
three-dimensional space. When this material is cleaved to leave a free surface at the cleav-
age plane, the interactive forces will be left unbalanced. The remaining forces in the three
directions will act to deform the surface into a sphere, the geometrical shape with 
the minimum surface to volume ratio. The force per unit length of surface acting on the
surface layers is called the surface tension, �[Nm�1 � Jm�2]. Note that the same surface
tension is exerted on both of the cleaved surfaces in Figure 7.1(b). The surface tension can
also be interpreted in terms of energy required to create a unit area of free surface. With
this interpretation, the sum of the surface tensions or equivalently surface energies will
give the work of cohesion, Wcoh.

(7.1)

As the surface tension is a positive quantity due to attractive forces within the aggregate of
molecules, cohesion work will be positive, meaning energy must be given to the system to
increase the surface area, as in the formation of drops in liquids or size reduction of solid
particles. 

7.1.1.1 Interfacial energy

Except for solid surfaces in vacuum, all surfaces are actually interfaces between gas, solid,
and liquid phases. Assuming the solids to be compact molecular aggregates, solid–gas,
solid–liquid, and liquid–gas interfaces and the effective forces acting at the interfaces are
shown schematically in Figures 7.2(a)–(c), respectively. Comparison of the forces in the
lower bulk phases shows the forces in the solid phase to be greater than that in liquids due to
compaction of the molecules. In the figure, all the molecules are shown as compact hard
spheres. If the solids were polymers with ample free space in between the polymer chains,
then the expected surface tension would be much lower. Solid surfaces are classified as
“high-energy” and “low-energy” surfaces according to compaction of the molecules making
up the bulk phase. For example, silicon and steel are high-energy surfaces with surface ten-
sions of 1240 and 1560mNm�1, respectively. Polyethylene and polytetrafluoroethylene
(PTFE�Teflon) are low-energy surfaces with surface tensions of 30 and 18mNm�1, respec-
tively. The surface energy is a determining factor in the wetting of surfaces as explained below. 

Wcoh 2� �

(a) (b)

 

Figure 7.1 Interactive forces acting on a molecule: (a) in equilibrium in the bulk phase, (b) at a
free surface under equivalent surface tension.



The magnitude of the solid–liquid interfacial tension, i.e., the interactive force across the
interface, depends on the compaction of the molecules as well as on their shape, polarity,
chemical composition, and molecular configuration. The interactive forces with gases are
the minimum, as the gas phase is effectively void space under normal temperatures and
pressures. For the same reason the interfacial tension with gases is effectively called the
surface tension. Surfactants adsorbed at the interface reduce the interfacial energy, by act-
ing as a bridge, preventing a sharp change in the magnitude of interactive forces across the
phase boundaries, as shown schematically in Figure 7.2(d) for the case of a hydrophilic
solid–hydrocarbon liquid interface. The orientation of the surfactants at the interface
would be reversed in the case of a hydrophobic solid in contact with an aqueous solution. 

7.1.1.2 Contact angle

The spreading of a liquid drop on a solid surface will be determined by a balance of forces
(interfacial tensions) acting at the junction of the three interfaces as shown in Figure 7.3.
In the figure, the subscripts S, L, and V denote the solid, liquid, and vapor phases, respec-
tively, and � is the angle the liquid–vapor interfacial tension vector makes with the surface
of the solid, called the contact angle. �SV, �LV, and �SL are the solid–vapor, liquid–vapor,
and solid–liquid interfacial tensions, respectively. These tensions are in equilibrium for a
stagnant drop and, a force balance at the junction yields,

(7.2)� � � �SV SL LV cos � �
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(a)

(c) (d)

(b)

Figure 7.2 Interactive forces between molecules: (a) at a solid–gas interface, (b) at a solid–liquid
interface, (c) at a liquid–gas interface. (d) Role of surfactants in reducing the interfacial tension.



Suppose the surface area of the drop as shown in Figure 7.3 is A. The liquid drop has to
increase its surface area by an amount dA, to be able to spread on the solid surface.
Extension of the area will change the contact angle (in the limit to zero) and the balance
of forces at the junction point. Keeping in mind the energy interpretation of interfacial ten-
sion, the spontaneous increase in the interfacial area will be possible only if there is free
energy �G available to do so:

(7.3)

If the liquid completely covers the surface of the solid, then the solid–vapor interface
will be replaced by a solid-liquid interface below the liquid film and by the
liquid–vapor interface at the upper surface. �G has to be positive for a process to 
be spontaneous, implying the energies of the newly formed interfaces given within the
parenthesis to be greater than the initial interfacial energy, �SV dA. This leads to 
the important conclusion that decreasing the contact angle, � � 0, such as through
adsorption of surfactants will facilitate wetting of solid surfaces. The ease of wetting of
high and low-energy surfaces will depend on the variation of �SL as well as on the mag-
nitude of �SV. 

7.1.1.3 Young–Laplace equation and capillary forces

To relate the pressure difference across a curved interface with the surface tension,
suppose a spherical drop of radius R is expanded to a new radius, R � dR, increasing its
original volume by an increment, d� � 4�R2dR, and area by an increment,
dA � 8�RdR. This expansion creates a Pd� work that is counteracted by the resistance
to expansion, or the free energy requirement for the creation of a new surface area,
�G � �dA:

(7.4)

The difference in pressure between the interior and exterior of the spherical drop, �P, is then,

(7.5)P P P
Rin out
2

� � ��
�
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�SV

�SL

�LV

�

Figure 7.3 Direction of interfacial tensions at the solid–liquid–vapor interfaces and the 
contact angle.



In addition, for a generalized curved surface defined by two radii of curvature, R1 and R2,
the pressure difference is given by the Young–Laplace equation:

(7.6)

Young–Laplace equation is used to relate the capillary radius R to the hydrostatic pressure
of a liquid climbing up a vertical capillary pipe to a height h (Figure 7.4(a)). Since Pout � Pin

and the pressures are equal at any horizontal plane, the liquid will climb up the walls until
the hydrostatic pressure of the meniscus equals �P�Pin �Pout. 

(7.7)

Another effect created by capillary forces is the capillary bridges formed by liquid remain-
ing in between particles. The narrow channels (crevices) in between the particles are shaped
like capillaries defined by two radii of curvature. As the pressure below the curved meniscus
is lower than the pressure outside, the particles are pushed toward each other, forming a clus-
ter. Cluster formation by capillary forces takes place if the liquid in the crevices is immisci-
ble with the bulk of the suspending fluid, such as in the case of pigments prepared in an
aqueous solution dispersed in an organic binder (Patton, 1979). Thorough spreading of the
binding solution over drugs in powder form and bridging by capillary forces is also impor-
tant in the preparation of dense granules of drugs by wet granulation (Zhang et al., 2002). 

7.1.1.4 Adhesion, wetting, penetration, and spreading

Cohesion work defined by eq. (7.1) involved only interactions between the same kinds of
molecules. When two phases, such as a liquid and a solid come into contact, the adhesion of
the two different kinds of molecules at the interface involves work of adhesion per unit area
basis, defined by,
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Figure 7.4 Effect of capillary forces: (a) Capillary rise; (b) Bridging of particles by capillary forces.



In this equation, E1 and E2 denote the initial and final energy states of the solid–liquid
system in terms of energy per unit area. The two interfacial energy terms in the paren-
thesis denote the free state of the liquid and solid phases when they were exposed to
the vapor or gas phase only, and the last term is the interfacial energy of the solid–liquid
interface. A positive work of adhesion implies a decrease in the energy levels, therefore,
spontaneous adhesion, whereas, a negative work indicates the requirement of the appli-
cation of an external energy for adherence to take place.

Three closely related phenomena are based on the work of adhesion. Spreading is the
coverage of a liquid or a solid surface by another liquid surface. Spreading of a finishing
layer of paint over a base layer, oil on seas, or oil on soup are some of the examples.
Wetting is a consequence of spreading and involves the attachment of the liquid layer onto
the solid substrate without slipping. Penetration is the ability of a liquid to advance in the
intra- and inter-particle pores and crevices of solid particles. Work of wetting and adhesion
are defined by the same equation, eq. (7.8). Work of spreading and penetration are again
expressed as a difference in energy between their final and initial states with eqs. (7.9) and
(7.10), respectively.

(7.9)

(7.10)

Note that there is no liquid–vapor interfacial energy term in eq. (7.10) implying smooth
solid surfaces are involved and there is no entrainment of air bubbles. 

7.1.2 Surface tension related phenomena in particulate systems

The phenomena related with interfacial tensions introduced in Section 7.1.1 are basic prin-
ciples under equilibrium or stagnation conditions. Three complications arise in the case of
particulate systems: (1) Particles in powder form do not have extensive surfaces for the
measurement of contact angles; (2) The particles may be in motion or under dynamic con-
ditions; (3) The surfaces of the particles may be rough, or the particles themselves create
this roughness, as in the case of penetration into dense solid particle clusters. 

7.1.2.1 Contact angles of powders

Sessile drop method of contact angle measurement requires the use of areas large in com-
parison to the dimensions of particulate solids. To determine the contact angle of liquids
with solids that never exist in the form of plates, such as solid drugs in powder form, either
the powders are compressed into pellets, or other methods such as the capillary penetra-
tion of liquids into bulk powders and the inverse chromatography methods are used.

Contact angle measurements on compressed pellets are reported to give good results
(Zhang et al., 2002) provided the profile of the drop is recorded within a small fraction of
a second, the solid is not soluble in the liquid drop, and the solid powders are hydropho-
bic. Furthermore, the authors could estimate the surface energy of the solid surfaces from

W E Epen 1 2 SV SL� � � �� �
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the solid–liquid interfacial tension, �SL. Liquid molecules are bound to the solid molecules
through dispersion forces (induced dipole–induced dipole interactions, eq. (1.13)) or polar
interactions between dipoles or ions. The interfacial energies of both the liquid and the
solid counterparts can be broken down to the polar (p) and dispersion (d) interactions
(Zografi and Tam, 1976).

(7.11)

Employing two liquids with known properties, the solid surface energy could be obtained
from the summation of the dispersive and polar components.

In the penetration method of contact angle determination, a jar with a porous bottom
plate is packed up to a certain height with the solid particles, is hung to the arm of a
balance and immersed into the liquid up to the upper level of the porous plate. The rise in
the liquid level, equivalent to an increase in the weight of the packed bed is recorded as a
function of time. If all the pores of the packed bed could be taken as a single capillary, then
the height of the liquid would be found by replacing the pressure difference term 
in Hagen–Poiseuille equation with the Young–Laplace equation to obtain the expression
known as the Washburn equation:

(7.12)

Since the capillaries of the packed bed are not all of the same dimension and orientation,
it is taken into account by multiplying the average radius of the capillaries R

�
by a factor C,

(7.13)

The height of capillary rise is difficult to observe externally. To follow up the rate of rise
through measurement of weight m, h in eq. (7.12) is replaced by m through h�m � �A,

(7.14)

where K is the capillary constant that depends on the packing conditions. K is determined
by using a completely wetting liquid with cos��1. Then the tube has to be packed again
for the determination of the contact angle and the results plotted as m2 versus time. A linear
rise is observed followed by a plateau when complete wetting is reached. The accuracy of
the method depends on the reproducibility of K every time the tube is packed. By
standardizing the methods of packing, and experimental conditions reasonable repro-
ducibility could be maintained in the contact angle determination of drugs (Teipel and
Mikonsaari, 2004; Heng et al., 2006).

Inverse gas chromatography is used to obtain information on the interfacial energy of
solids in powder form. Contrary to gas chromatography, the solid particulate phase is
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investigated using probe liquids of known properties. The time required for the probe
liquid to pass through the column is taken to be an indication of the interactions at the
interface. To eliminate the effect of flow rate through the column, the quantity of solid used
and the packing conditions, net retention volume �n is used instead of the retention time
and a relative comparison is made between the net retention times of probe liquids used.
To find the dispersive component of the interaction (eq. (7.11)) nonpolar liquids such as
hexane and octane are used whereas, polar liquids such as chloroform are used to find the
polar counterpart of the interaction between the liquids and the solid surfaces. The inter-
action interfacial surface area of the solid and the dispersive component of the surface
energy of the probe liquid should be known to determine the dispersive component of the
surface energy of the solid, �SV

d through the relation of Schultz and Lavielle (1989).

(7.15)

In this equation, a is the interaction surface area, NA the Avogadro number, RG the univer-
sal gas constant, T the absolute temperature, and C a constant. �SV

d is found from the slope
of the line when RGT ln �n is plotted against a(�LV

d )1/2, the energies of the probe liquids used
(For more information on the use of inverse gas chromatography in the analysis of phar-
maceutical powders: Grimsey et al. (2002)). 

7.1.2.2 Effect of dynamic conditions

The property affected the most by dynamic conditions is the contact angle. The contact
angle determination by direct measurement with a goniometer as shown in Figure 7.3 is
called the sessile drop technique and is pertinent under static, equilibrium conditions,
where both of the phases are initially at rest. When, either the liquid or the solid phase is
in motion, equilibrium is set by the balance of free energy for spreading, dynamic energy
in terms of pressure and energy dissipated as friction. Dynamic contact angle �d is always
greater than the static contact angle �s:

(7.16)

The last term in parenthesis is the capillary number Ca (Ca�	V��LV) where 	 is the
viscosity of the liquid and V is the relative velocity between the solid and the liquid phases.
Since the contact angle is dependent on the velocity of the fluid through the capillary,
extent of wetting will not be equal in all the capillaries of a packed bed of particles that
have different radii, length, and orientation. Under a constant pressure gradient, velocities
and wetting in larger pores will be greater and entrained air will be driven to pores where
the velocities are lower.

Dynamic contact angle is measured by the capillary technique using eq. (7.7) or the
Wilhelmy plate technique where a plate of width a and thickness b is immersed and
withdrawn from the solution at a constant rate. The contact angle in advancing the plate
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into the solution involves penetration into a liquid and is greater than the contact angle in
receding (pulling the plate up from the solution). The receding angle is much less than the
advancing angle, generally approaching zero. The advancing contact angle is found from
the ratio of net force acting on the plate during advancing FA to that during receding, FR.

(7.17)

These forces are determined by the balance of surface forces acting around the perimeter
where the liquid clings to the surface of the solid, and the net weight of the immersed
section of the plate:

(7.18)

�imm is the volume of the immersed section of the plate. 

7.1.2.3 Effect of surface roughness

The actual surface area Ai of a solid is equal to the geometrical surface area Ag, in only a
few materials. Generally, the surfaces are rough with protrusions and indentations, so that
i�Ai�Ag � 1, as given in Figure 7.5 (Patton, 1979). In the figure, Ag represents a flat plate
of unit width, Ai, the total surface area of the protrusions and Aa, the actual solid–liquid
interfacial area. The work terms in eqs (7.8)–(7.10) are based on the geometrical area Ag

whereas the interfacial energy terms are based on the total area Ai, so that for a rough sur-
face, the equations are converted to,

(7.19)

(7.20)

(7.21) 

Wetting takes place spontaneously when the surface tension of the solid is greater than the
surface tension of the liquid, �SV � �LV. Comparison of Figures 7.2(a) and (b) shows that
the solid–liquid interfacial tension is always lower than the solid–vapor interface because
of the higher molecular number density in liquids. Summing up, eqs. (7.19)–(7.21) are
always greater in magnitude than their counterparts for smooth surfaces, eqs. (7.8)–(7.10),
denoting that roughness enhances spreading and wetting. 
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Figure 7.5 Roughness on a flat surface.



7.2 DISCHARGE OF SOLIDS INTO LIQUIDS

Many industrial operations involve coarse particles of sizes ranging in the interval of
micrometers to centimeters. The flow rate of particle suspensions in the upper size range
is also high, so that the solids are introduced either through a hopper or by dropping the
solids directly into the liquid. When the density difference between the liquid and the solid
particles is high, then the main concern is to disperse the particles rapidly, so that there will
be no local accumulations. On the other hand, there is a large class of particulate solids,
called “neutrally buoyant solids,” that tend to float rather than settle due to a very small
density difference with the suspending medium. They flow through channels homoge-
neously as a single-phase fluid, when the suspension velocity is high enough to disperse
the particles radially by turbulent convection. When the liquid medium into which they are
introduced is stagnant or flowing at a low velocity, the particles tend to collect near the sur-
face of the liquid. An example from the metallurgical industry is the dropping of solid
particles such as steel and alloying agents such as aluminum into molten liquid (Smith
et al., 2000). Another example comes from the food industry in the feeding and dispersion
of granular foods to be processed, such as fruits, peas, beans, and chopped vegetables
(Faderani et al., 1998, a,b). Further examples to floating solids are microorganisms in
bioreactors, fermentors, polymer globules in polymerization reactions and solids in waste-
water treatment. The discharge and dispersion characteristics of these solids will be taken
up in this section and mixing behavior in Section 7.3. 

7.2.1 Discharge of solid–liquid suspensions from hoppers

Solids are introduced in suspension form to equipment through a standpipe connected
to a hopper. The aim in such an operation is to convey a high ratio of solids for a given
flow rate of liquid without damage to the solid particles. Depending on the flow rate and
volumetric ratio of solids to liquids within the hopper and the standpipe, the suspension
may be in the form of a highly packed bed; solid–liquid fluidized bed; non-settling or
a settling suspension. The state of the suspension is determined by the inter-particle
space filled with the liquid, or volumetric fraction of voids, 
. Faderani et al. (1998, a,b)
observed for the first time the variation of void spaces during flow of suspensions of
imitation foods by scanning an acrylic hopper and standpipe with �-ray tomography.
A sketch of a hopper is given in Figure 7.6 to help presenting their model. Evaluation of
tomographic measurements displayed a zone of high voidage above and below the hop-
per orifice and a gradual transition from a packed bed to a settling suspension in going
down the hopper, and a transition in the reverse direction, back to a packed bed, in going
down the standpipe. In the packed bed region the liquid velocity was higher than the
particle velocity, signifying percolation of water within the packed bed. Transition to
a high voidage region caused the solid particle velocities to increase above the liquid
phase velocities, signifying settling of the particles. Experimental results showed that to
maintain packed-bed flow conditions within the hopper, the mixture discharge velocity
Vmix had to be greater than the terminal velocity of particles in free settling, Vt. However
increasing the mixture velocity, caused an approach to a limiting value that is a function
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of the ratio of volume of liquid to mixture volume, �(�� (1 ��)), � being the volumetric
fraction of solids,

(7.22)

The constants, a and b are found from the limiting values of ��0 for solids only 
(a�Vmix,s �Vt) and ��1 for liquids only (b� ln(Vmix,l�Vmix,s)). Volumetric ratio of liquid in the
mixture � was related to the mixture velocity Vmix only at the orifice plane, so for a given mix-
ture discharge rate, there was a single value of �. However, both Vmix and the ratio of voids to
the total volume, 
 changed along the height of the hopper and the standpipe. Vmix is the veloc-
ity of the suspension with respect to fixed coordinates and does not give much information on
the configuration of solid particles and mechanism of transport of the solid particles. So the
drift-flux model, proposed by Wallis (1969) was adapted to model the flow through the hop-
per. This model gives the relative flux between the two phases, Jls, in terms of volumetric frac-
tions of solids � and relative velocity between the solid and liquid phases, Vls:

(7.23)

where Vl and Vs are liquid and solid velocities, respectively. Vs is also equivalent to V�p in
Chapter 5. 

Relative velocity, Vls, can be expressed by the hindered settling velocity of particles in
a concentrated suspension Vht. Richardson–Zaki correlations (1954) relate Vht to the ter-
minal velocity Vt of the particles and the nth power of the volumetric fraction of solids �,
under different flow regimes represented by the value of the exponent n. (eq. (4.147))
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Figure 7.6 Discharge of solids through a hopper.



Multiplying both sides of eq. (7.24) by �(1 � �) a drift flux between the liquid and parti-
cles is obtained as,

(7.25)

defining the possible regimes in a hopper. For Vl � Vs, eq. (7.25) is positive and defines
the dividing line between the packed and fluidized beds in Figure 7.7, above the nonset-
tling region, Vl �Vs. When Vl � Vs, solids settle in the void spaces of the suspension mov-
ing down the hopper, eq. (7.25) becomes negative, forming the lower boundary of the
settling suspension region in Figure 7.7. The variation of drift flux with porosity in a hop-
per is defined by the operating line, relating the velocities of the phases with the flow rates
and the fraction of voidage. Liquid and solid velocities in terms of volumetric flow rates,
Q are given by eqs. (7.26) and (7.27), respectively.
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Figure 7.7 Variation of normalized drift flux with voidage, 
. (
� 1 ��,UL � Vl,US � Vs)
(Faderani et al., 1998. Reproduced with permission of Elsevier, Figure 15(b) in the original.)



Substitution of eqs. (7.26) and (7.27) into eq. (7.23) gives,

(7.28)

In this equation, Ql and Qs are the flow rates of the liquid and solid components, together
making up the total flow rate Q. This equation can be written in terms of the liquid volu-
metric fraction, �, and becomes the equation of the operating line after rearrangement:

(7.29)

The straight line in Figure 7.7 is the operating line. Its intersection with non-settling sus-
pension (Vl �Vs) line gives �. The intersection with the upper and lower curve gives the
minimum voidage 
mf (at minimum fluidization velocity) and maximum voidage, respec-
tively. Maximum value of the voidage remains below 
 � 0.8. Increase in the volumetric
fraction of liquid, �, increases the slope of the operating line. Particle size and shape is
effective through the terminal velocity. Particle elasticity becomes a factor only in very
concentrated suspensions, where particles directly contact and compress each other. 

7.2.2 Dispersion of solids upon introduction into the liquid

A thorough dispersion of solids in liquids in a very short duration is desirable to assist the
maintenance of other operation conditions in heat and mass transfer, such as dissolution and
melting. Dispersion becomes a problem when the liquid is stagnant, and when the particles
are neutrally buoyant as in the extreme case of dropping aluminum into ladle of molten
metal. Smith et al. (2000) simulated the dispersion of spherical, neutrally buoyant solids into
a stagnant molten liquid utilizing an Eulerian–Eulerian, two-dimensional finite volume
approach. The starting equations are the mass (eqs. (5.68a) and (5.68b)) and momentum (eqs.
(5.77a) and (5.77b)) conservation equations, given generally in Chapter 5. Solid volume frac-
tion � will rise above 0.2, in case of an undispersed cluster within the liquid. The authors
used Ergun equation, to calculate the momentum transfer between the phases for � � 0.2:

(7.30)

modified for the slip velocity in the drag function of the momentum conservation equation,
K(Vl � Vs),

(7.31)K
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With the notation of this book eq. (7.31) can be rewritten as,

(7.32)

Drag relations for single particles corrected for low-density packing were used for � � 0.2:

(7.33)

The drag coefficient CD is given by,

(7.34)

under laminar conditions and by eq. (4.50) under turbulent conditions, or whichever is
greater under given operating conditions. The Reynolds number based on the particle
diameter and relative velocity and is defined by,

(7.35)

Volumetric fraction of solids rising above the maximum compaction value of 0.63 was
prevented by incorporating an extra term for inter-particle forces on contact (Bouillard
et al., 1989),

(7.36)

Simulation results were compared with experimental observation, as given in the right and
left sides of Figure 7.8, respectively as a function of time. There is a good agreement
between the simulation results and experimental observations. The solid lines on the RHS
show the boundaries of the region with a solids volumetric fraction of 0.02, and the dashed
lines, ��0.10. The region with a volumetric fraction of solids � � 0.02 expands with
time as particles disperse into the liquid phase. Dispersion of individual particles, not taken
into account in the model, helps to reduce concentration buildup of the solid particles 
in the inner plume. Even a low drift velocity, such as in horizontal channels modeled in
Figure 7.9, helps to disperse the particles and reduces the local volumetric concentrations.
Particles never reach the bottom of the channel, no matter how high the initial downward
velocity is, because of their low density. 
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7.2 Discharge of Solids into Liquids 399

Figure 7.8 Dispersion of solid particles in stagnant media as a function of time. Figures on the
LHS are the experimental observations and on the right, simulation results. (Smith et al., 2000.
Redrawn with permission of Elsevier, Figures 3 and 4 in the original.)



7.3 MECHANISMS OF MIXING

Agglomerates of particles can be dispersed by shear stresses in laminar flow, turbulent
stresses created by velocity fluctuations, or elongational flow. These in turn depend on the
dynamic shear viscosity 	(�, in the case of non-Newtonian liquids), elongational viscosity
�e, and density � of the suspending liquid. In any case, the deformative forces created in the
liquid phase should be strong enough to overcome the attractive forces between the many
particles making up the aggregates. Complete dispersion of the aggregate into the compo-
nent primary particles results in an increase of surface area proportional with the number of
particles. For the same dispersion duty, elongational stresses are much more effective in dis-
integrating the aggregates than the shear forces. For the same reason the mixers which cre-
ate shear flow only are much less efficient and require more power than the mixers which
create elongational flow for the same mixing duty. Since, most of the commercial mixers
can be designed to create both shear and elongational flows, a quantitative criteria, the flow
number  is used (Yao et al., 2001) for the evaluation of the design of a mixer:

(7.37)

�· and � are the magnitudes of the deformation rate D and vorticity � tensors, respectively.
The flow number varies in the range, 0 �  � 1. �0 denotes purely rotational flow with-
out any mixing. �0.5 signifies simple shear flow, while �1 denotes pure elongational
flow. When  � 0.7, elongational flow also exists along with the shear flow.

In the case of concentrated suspensions with strong attractive forces between the parti-
cles making up the aggregates or in the case of two fluids with a large difference in den-
sity and viscosity, thorough mixing cannot be achieved with a single treatment of shear or
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Figure 7.9 Drift of solids as a function of time with flow upon introduction. V � 0.25 m s�1.
(Smith et al., 2000. Redrawn with permission of Elsevier, Figure 8 in the original.)



elongational flow; multiple passes through high shear rate or elongational flow regions are
required. Multiple passes through high shear regions are maintained in different ways
depending on the mechanism of mixing and the design of the mixer. For example, fluid is
recirculated in agitated mixers: radially outwards and axially inwards with turbine type
mixers and in the axial direction with propellers. Multiple passes are maintained using
many baffles connected in series in static mixers and with the use of successive 90	 turns
or oscillating flow in micromixers.

In mixing solids suspended in liquids, mechanisms such as shear and elongation act
through the agency of the suspending liquid. There are three basic fluid flow mechanisms
through which mixing proceeds: turbulent convection; lamination and recombination of
the layered liquid; and chaotic advection. Various designs of mixers are possible with the
use of these mechanisms, and means of introducing shear or elongational flow with mul-
tiple recurrences through the mixer. 

7.3.1 Mixing through turbulent convection

Mixing is carried out by breaking up the liquid bulk phases into small pieces in the form
turbulent eddies, that intermix to form an isotropic mixture. The break up of large drops
depends on the balance between the kinetic energy and the surface energy of the drop. Large
drops break up into smaller drops as long as their kinetic energy is greater than the surface
energy requirement related with the interfacial area increase in the process. The size of the
drops range between the Kolmogoroff’s length scale of energy dissipating eddies in
isotropic turbulence, lK, and the length scale of the energy carrying eddies, le, lK � dp � le.
The Kolmogoroff length scale is a function of the viscosity �, and the density � of the liq-
uid medium and the power input into a unit mass of agitated liquid, 
, through the equation,

(7.38)

Isotropic turbulence is approached around the periphery of the impeller tips where the
velocity is maximum under fully developed turbulence conditions. Local velocities
decrease predominantly at the surface and the bottom of the stirred liquid during recircu-
lation in the mixer, with a concomitant increase in the eddy size. Reaggregation of the solid
particles may or may not occur depending on the viscosity of the liquid film separating the
particles. 

7.3.2 Mixing through lamination

When a barrier is placed parallel to the streamlines, the liquid flow will separate to go
around the barrier and recombine at the rear. Repeated separations and recombinations will
combine different layers of flow. Change in the direction of consecutive blades will
enhance blending by further subdividing the lamella. If the blades of the barrier are flat
with minimum cross-sectional projected area, only shear forces will exist along the wide
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surfaces. If the blade shapes conform to the hydrodynamics of fluid flow, then the stream-
lines will extend and stretch as they go around the barrier, introducing elongation along
with the shear flow with minimum turbulence losses. Another way to introduce elonga-
tional flow around a barrier is to twist the flow during passage over a barrier through 90	,
similar to the flow in screw type of channels. 

7.3.3 Mixing by chaotic advection

Concept of chaotic advection first introduced by Aref (1984) is formally defined as gener-
ation of a chaotic response in the distribution of a Lagrangian marker by simple Eulerian
velocity field (Stremler, et al., 2004). In effect, it encompasses the two mechanisms of
stretching of a liquid film, followed by folding over on itself, in a way analogous to the
convective motion in turbulence. Advection results in response to a periodic oscillatory
motion of the fluid under an external force or is brought about by the periodic change in
the direction of the bounding surfaces. Its significance resides in the possibility of creat-
ing this motion in laminar flow at Reynolds numbers around or less than one, with a large
contribution of elongational flow. Chaotic advection can be maintained by controlling the
velocity of the bounding surfaces as in the case of smart blenders, by stretching the fluid
over 90	 bends as in the case of passive micromixers, or by oscillating the fluid by the
action of pressure, magnetic, or electrical fields, as in the case of active micromixers.

Even though the liquid motion is laminar, chaos is created among the particles aggre-
gated as clusters. Furthermore, any structural orientation and shape can be given to the
scattered particles within the liquid suspending medium by controlling the stretching of
local liquid sections through a predetermined protocol for the motion of the bounding sur-
faces (Zumbrunnen et al., 2006 and the references therein). 

7.3.4 Quantification of mixing efficiency

Theoretically mixing efficiency is quantified by the increase in the interfacial area between
the two phases that are mixed or equivalently by the inter-material area created in the cases
of blending or dispersion of solids within a liquid. Statistical concepts are invariably used
in taking averages over the mixed volume.

In the case of liquid blending, interfacial boundaries cannot be readily visible. Mixing
efficiency is then evaluated through the observation of color development or color varia-
tion, reaction products, pH, or fluorescence. Mixing a colored substance with an uncolored
one and evaluation of the homogenization of color is one method. Instantaneous neutral-
ization reaction with an indicator that changes color, such as phenolphthalein can also
be used. Mixing is evaluated with images captured through a microscope with a charge-
coupled device (CCD) camera. The intensity of color integrated over a captured image is
proportional to the extent of reaction in the imaged volume (Liu et al., 2000). The color
intensity of an image is the sum of the intensities of the individual pixels:

(7.39)I I
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where the subscript i indicates an individual pixel, with N pixels in an image. Iav� I�N is
the average color intensity of a pixel. To make the intensity measurements independent of
the optical devices used, all the intensities are normalized by the maximum intensity
observed in any pixel. Uniformity in mixing is evaluated by the standard deviation DI from
the maximum intensity:

(7.40)

Standard deviation is similarly normalized by the maximum intensity (Liu et al., 2000).
Similar evaluations can be done for the measurement of other properties used as probes, such
as pH, and ionic concentration.

In multiple-impeller mixers where the height of the liquid, H is much greater than the
diameter of the mixer tank, DT (designed as H�ni DT, where ni is the number of impellers
connected to the same shaft), homogeneity in the axial z-direction also becomes a factor
in determining the mixing efficiency. Montante et al. (2003) suggest the use of a dimen-
sionless concentration profile along the axial direction,

(7.41)

that incorporates the simultaneously occurring process of axial dispersion and sedimenta-
tion during mixing into a single parameter, the modified Péclet number (Pes):

(7.42)

Vs is the sedimentation velocity of the particles and DpM the mean dispersion coefficient of
the particles, represent the effects of sedimentation in the downward direction and lifting
up by convective currents in the upward direction, respectively. Cav in eq. (7.41) is the mass
concentration of solids [kgm�3] in the mixer and C, the mass concentration at any level z.
In an ideal mixer, eq. (7.41) should equal to 1.0, with a constant concentration throughout
the mixer. 

7.4 MECHANICALLY AGITATED MIXERS

The main concern in agitated mixers is to keep the solid particles in suspended form, pre-
venting accumulation in any part of the mixer volume with minimum power requirement. 

7.4.1 General concepts in the design of mixers

Design of an agitated mixer for a given duty proceeds through the steps: (1) Selection of
an impeller type according to the rheological properties of the suspension and process
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requirements; (2) determination of the impeller speed depending on the physical prop-
erties of the particles and the suspension medium; (3) determination of the dimensions
of the mixer according to the volume (or volumetric flow rate in the case of continuous
mixers) of suspension to be mixed and required retention time in the mixer and shape
factors. The distribution of particles within the stirred suspension medium and the power
requirement for a given duty in a mixer are then determined basing on these selected
parameters. 

7.4.1.1 Selection of impellers for a given duty

Impeller in a mixer determines the circulation pattern created within the suspension and
the direction and magnitude of shear gradient around the periphery of the impeller tips.
Impellers can be classified as axial flow, radial flow, mixed flow, and distributed flow.
In axial flow impellers, the fluid is pumped in one direction and sucked from the oppo-
site direction parallel to the axis of the shaft. Hydrofoil impellers, pitched blade with
diagonally folded blades and marine propellers are examples of axial flow impellers. In
radial flow impellers, such as the Rushton turbine, the fluid is pumped radially outwards
and sucked in from both sides in the axial direction. In mixed flow impellers, such as the
pitched blade turbine (PBT) the blades make an angle with the vertical and pump the
fluid in both the radial and the axial directions and sucking from the reverse side in
either direction. Distributed flow impellers, such as the ribbon and helical type of
impellers, are used where the normal to the area of the blades change along the length
of the impeller to distribute the shear plane over an angle of 2� radians and the shear
gradient in all directions to prevent the Weissenberg effect in viscoelastic fluids. They
are also used in mixing high-viscosity pastes. These impellers are shown schematically
in Figure 7.10. 

Since the main duty of impellers in mixing solid–liquid suspensions is lifting up or
drawing down of solid particles, axial flow impellers are generally used in mixing sus-
pensions. Based on numerous experimental studies, it is generally agreed that hydrofoil
type of impellers are the most efficient in terms of less energy expenditure at the same
volumetric throughput, or equivalently, more liquid delivery (pumping) capacity for the
same energy expenditure. The efficiency of hydrofoil impellers are due to their hydrody-
namic profile that starts with a blade angle of 45	 at the hub folding over an arch and end-
ing up with a blade angle of 22	 at the tips. The best substitute for hydrofoil impellers are
pitched blade impellers (PB) with diagonally folded blades. Design of mixers is based on
selection of impellers that require the minimum power for raising the particles off the bot-
tom of the mixer tank and the critical impeller speed to keep the particles in suspension.
The efficiency of impellers in suspending solid particles can be compared by means of a
dimensionless power consumption criterion �s, (Rieger, 1999)
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where Po is Power number, Fr
 is Froude number, Di and DT are impeller and tank
diameters, respectively. Rieger (2000, 2002) revised the Froude number Fr
:

(7.44)

in eq. (7.43) to be used with a range of particle sizes including both fine and large sized
particles with a single correlation,

(7.45)
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Figure 7.10 Types of impellers used in mixing suspensions: (a) turbine, (b) anchor, (c) gate, (d) ribbon.



NJS in eq. (7.44) is the just-suspended stirring rate. The constants Ci and �i are correlated
with the volumetric concentration of solids �, with the use of experimentally determined
constants A and B, and � and � in each case:

(7.46)

(7.47)

Rieger found that when diagonally folded pitched blade turbine type of impellers are used,
number of blades (3, 4, or 6) do not affect the dimensionless power consumption, �s, but
the just-suspended stirring rate NJS decreases and torque increases with an increase in the
number of blades, independent of the size and volumetric concentration of particles.
Energy requirement increases and the just-suspended stirring rate NJS decreases with an
increase in the pitch angle. 

7.4.1.2 Determination of the impeller speed

The intensity of kinetic energy supplied to the mixer varies with the process requirements
as well as the viscosity, or in general, rheology of the suspending medium. However, even
if the suspending medium is Newtonian, the stirred suspension will behave as a non-
Newtonian fluid when the particle size is small and volumetric concentration in the mixer
is high. When the suspension behaves as a Bingham or a power law fluid with a low vis-
cosity index n, nearly stagnant regions may appear at the bottom and top surface of the sus-
pension. When the viscosity of the suspending medium and the volumetric concentration
of the solids are low, resistance to settling is greatly reduced. Then the density difference
becomes a determining factor. If the density of the solid particles is much higher than that
of the liquid, then the particles tend to settle to the bottom of the mixer where the velocity
of the liquid is much lower than the linear tip velocity of the impeller. Off-bottom lifting
then becomes the main concern and the critical speed of the impeller is the off-bottom
speed, NBL. On the other hand, if the particles are self-buoyant, then they tend to collect at
the surface and need to be withdrawn into the bulk of the suspension. The critical speed is
then the just-draw-down speed, NJD in large tanks, with proportionally large diameter
impellers, small clearances with the walls and relatively low speeds, keeping the solid
particles in suspension becomes the critical process. The impeller speed under this just-
suspended condition becomes the critical speed, NJS. The last factor determining the inten-
sity of mixing comes up in bioreactors: Intense agitation damages the microorganisms.
The intensity of agitation should be high enough for thorough dispersion but not too high
to prevent inactivation. 

7.4.1.3 Shape factors and dimensions of the mixer

Geometrical similarity between mixers is maintained by keeping the ratios of certain crit-
ical dimensions identical. These ratios are called shape factors denoted by S. The deter-
minative shape factors of a mixer used for geometrical similarity in power calculations are

� � �i i i� � �

C A Bi i iexp( )� �

406 7. Mixing in Solid-Liquid Systems



the ratios of the impeller diameter Di and the height of the stirred fluid H in the mixer to
the tank diameter DT:

(7.48)

(7.49)

The distance between the horizontal center-line of the impeller, E and the bottom of the
tank is critical in determining the dispersion quality and the power consumption and is
given by the third shape factor, S3:

(7.50)

The ratio of the width of the baffles, used to break the vortex flow, to the tank diameter is
the fourth shape factor,

(7.51)

The generally employed values of these shape factors for Rushton turbines and other
single axial or mixed flow impellers are: S1 � 1/3, S2 � 1, S3 � 1/2 � 1, S4 � 1�10. The
other shape factors which must be kept identical in value for geometrical similarity are:
S5, the clearance (the distance from the wall) of the baffles to the tank diameter; S6, the
distance between the baffle and the bottom of the tank to the tank diameter; S7, radius of
curvature of the tank bottom to the tank diameter; S8, ratio of the length and S9, the width
of the impeller to the impeller diameter. Once, the tank diameter is determined, all the
dimensions of the mixer is set by the accepted values of the shape factors. The general
trend in the design of mixers is to equate the height of the suspension in the mixer, H to
the diameter of the tank, DT. The volume of the mixer tank is determined by taking S2�1,
and making an allowance for free space above the suspension. For deep tanks, one
impeller is used for every incremental increase in height equivalent to one tank diameter,
for example, when the depth of the fluid H is equal to three times the tank diameter DT

(H � 3DT), three impellers connected to the same shaft should be used. 

7.4.2 Dispersion of solids in mixers

Mixing in agitated mixers is mainly based on the turbulent convections described in
Section 7.3.1. Fluid leaving the tips of the rotating impeller undergoes two kinds of
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motion: (1) Small scale convective motion: the turbulent eddies, that move randomly
within the fluid and carry a large amount of kinetic energy due to their velocities; (2) super-
imposed on the convective turbulent eddy motion, recirculation around the mixer volume,
the pattern of which is dictated by the shape of the impeller blades. Decision on the inten-
sity of turbulence that should be created and the related power consumption depends on
the ability of the solid particles and aggregates to be dispersed. Archimedes number
(eq. (4.70)), is used as a criterion for the general homogeneity of the suspension medium.
The particles tend to settle when Ar � 100, and behave as a non-Newtonian fluid at val-
ues much below this limit. The power requirement for the intended mixing is evaluated as
the specific power input, Po�, power per unit volume of fluid to be mixed, or energy
expended per unit time and unit volume of fluid,

(7.52)

Specific power input is a function of the volumetric fraction � of the particles, the hindered
settling velocity of the particles, Vht, and the densities of the particle �p, and the liquid
medium �, in which it is suspended. 

7.4.2.1 Theoretical derivation of the dispersion conditions for settling solids

A theoretical derivation of the minimum stirrer speed in mechanically agitated suspensions
is made by Mersmann et al. (1998), which will be outlined below.

The derivation starts with a force balance on a single particle incorporating gravita-
tional, buoyancy and drag forces, as given in Chapter 4. The net force acting on a
suspended particle in the direction of gravity is converted into an energy form in the scale
of a single particle by multiplying with the diameter, dp of the particle:

(7.53)

This energy that causes the particle to settle must be counteracted by the kinetic energy of
turbulence fluctuations in the scale of the particle,

(7.54)

An expression for the fluctuation velocity is obtained in terms of a single particle velocity
by equating the energies in eqs. (7.53) and (7.54) and incorporating the force balance into
the equation:
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This analysis is extended to the bulk of the suspension by relating the particle velocity Vt

to the suspension velocity Vs through the volumetric fraction of particles (eq. (4.147) for
concentrated suspensions).

The exponent n in eq. (4.147) is a function of the Archimedes number and decreases
from a constant value of 4.65 for Ar � 1 to 2.4 for Ar � 105. The time averaged fluctua-
tion velocity for the volume element incorporating monodispersed particles of diameter dp

is obtained by combining eqs. (7.52), (7.55), and (4.147):

(7.56)

Fluctuation velocity V
 is proportional to the stirrer tip speed Vtip, so the turbulence param-
eters are expressed in terms of V
�Vtip. Volumetric average of the mean fluctuation veloci-
ties depends on the ratio of the impeller diameter Di to the tank diameter DT. The smaller
is the ratio Di/DT, the broader is the distribution of the fluctuating velocities V
. The
median of the fluctuating velocity, V
0.5 is proportional to Di/DT, as,

(7.57)

The magnitude of the average fluctuation velocities is maximum around the impeller dis-
charge that decrease in value as the solid–liquid boundary layers along the walls and the
bottom of the mixer are approached. The relation between the fluctuating velocities and
the Power number supported both by theoretical considerations and experimental obser-
vations is given by eq. (7.58):

(7.58)

This equation can be generalized for all scales of turbulence fluctuations as,

(7.59)

where the constants a and b are related through a curve fitting of the theoretical data in the
range of 0 � b � 3:

(7.60)

as given in Figure 7.11. The fluctuation velocity near the bottom of the mixer bears
significance in relation to lifting of the settled particles off the ground level. The relation
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for the minimum fluctuating velocity based on the results of theoretical derivations of
Mersmann and coworkers is,

(7.61)

which shows a very good agreement with experimental results. Minimum fluctuation
velocity V
min can be used to relate the tip velocity of the impeller, Vtip and the settling
velocity of the solids, Vt by replacing eq. (7.56) into eq. (7.61):

(7.62)

(7.63)

The authors (Mersmann et al., 1998) found a very good correlation between experimental
results and the tip velocity calculated with eq. (7.63). 

Stirring by an impeller serves two functions that both contribute to the dispersion of the
solids: prevention of settling, and lifting the settled particles off from the bottom. These
two functions are expressed in terms of specific power requirement for lifting, Pol:
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Figure 7.11 Variation of exponent n in eq. (7.57) with the Archimedes number (Ws �Vt , Wss �Vht,
�v ��) . (Mersmann et al., 1998. Reproduced with permission of Elsevier, Figure 1 in the original.)



and specific power requirement for dispersion Pod as,

(7.65)

In designing the mixer, the power requirements of these functions are calculated and the
design is based on the function requiring the greater power. 

7.4.2.2 Dispersion of floating solids

When the density of solid particles or the apparent density of highly porous aggregates is
equal or less than the density of the suspending liquid medium, then the particles float on the
surface of the liquid. Poorly wetted particles with highly hydrophobic surfaces also tend to
float on the surface of the liquid. To draw the particles down into the bulk liquid medium,
they should be wetted by the liquid, the stagnancy of the fluid layer should be disrupted by
the turbulent eddies reaching the surface, and the velocity of the recirculating liquid currents
should be able to carry the particles along. These processes depend on the particle size, the
concentration of solids, the surface tension and viscosity of the liquid as well as on the shape
factors of the mixer, primarily, S1 and S3, given by eqs. (7.48) and (7.50), respectively. Besides
these parameters, the extent of axial mixing induced by the impeller and pumping direction
of the impeller are also significant parameters. Özcan-Taşk¹n (2006) investigated the effect
of recirculation currents created by upward pumping and downward pumping axial-flow
impellers on drawdown paths of the buoyant particles. The recirculation paths are given in
Figure 7.12(a) for downward pumping and in Figure 7.12(b) for upward pumping impellers.
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Figure 7.12 Downward path of particles with the recirculation currents created by axial
impellers in fully baffled mixers with Di�DT � 0.33: (a) down-pumping impeller, (b) up-pumping
impeller. (Özcan-Taşk¹n, 2006. Reproduced with permission of Elsevier, Figures 5(a) and 5(c) in
the original.)



Since the particles do not experience frictional resistance on contact with the vessel walls,
upward pumping impellers draw less power for the same duty. Similar conclusions were
arrived at by Kuzmanić and coworkers (Kuzmanić and Z� anetić, 1999; Kuzmanić; and
Ljubi�ić, 2001). They also found the surface tension of the liquid as an effective parameter in
determining the mixing time and minimum draw-down speed NJD of the impeller. Reduction
in the surface tension of the liquid increases spreading, penetration and wetting rates of the
particles and reduces the ability of the surface to support the particles floating on it. 

7.4.3 Power consumption in mixers

Power requirement for the mixing processes such as defined by eqs. (7.64) and (7.65) for
lifting and dispersion of the particles in the mixing vessel is supplied by the impeller. The
diameter and the stirring rate of the impeller determine the power consumption of the
impeller, which should ideally correspond to the power required.

The power consumption of the impeller can be obtained from the definition of power
as the product of the volumetric flow rate Q of the suspension circulated by the impeller
(Q �ND i

3) and the hydrodynamic pressure converted into kinetic energy of the turbulent
eddies (�Ph ��N 2D i

2).

(7.66)

The ratio of the power consumption, Po to the equivalent expression for power gives the
Power number, Po (also called the Newton number, Ne).

(7.67)

Power consumption increases with the fifth power of the impeller diameter Di, and the cube
of the stirring rate N, so the rotation rate of the impeller has to decrease as the impeller
diameter increases for a given power consumption. Power consumption of the impeller is
mainly due to drag forces created by the impact on the faces of the blades normal to the
direction of motion. Therefore, the variation of the Power number with the Reynolds num-
ber follows the same trends as the drag coefficient, CD; i.e., a linear variation in the laminar
regime and a constant value in fully developed turbulence as shown in Figure 7.13:

(7.68)

where, the Reynolds number is defined as,
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�eff being the apparent viscosity of the solid-liquid suspension, including non-Newtonian
suspensions. The linear region in Figure 7.13 depicts the laminar regime in mixers, which
extends up to Re � 10. The power number Po levels off starting from Re � 300, with the
onset of turbulence, reaching a constant value around Re �1000, under fully developed
turbulent regime. In between these two limits, 10 � Re � 300, transition regime exists in
the liquid to be mixed. Eq. (7.68) is expressed as,

(7.70)

for mixing in the laminar regime, such as in the case of blending, use of large diameter
impellers or in mixing highly viscous concentrated suspensions. 

7.4.3.1 Power consumption of impellers in shear thinning suspensions

Suspensions of solid particles exhibit shear thinning behavior with an increase in the shear
rate. In mixers where high rates of shear are employed to keep the particles in suspension,
the viscosity of the suspension will vary locally as fluid currents circulate within the mixed
volume as well as with the level of the average shear rate generated by the impeller motion.
It will then be difficult to assign a value to the Reynolds number given by eq. (7.69), to be
used in the correlation of eq. (7.68) to calculate the power requirement by eq. (7.67). The
classical procedure proposed by Metzner and Otto (1957) for flat bladed turbine impellers,
assumes a linear variation of the shear rate with the impeller tip speed:

(7.71)

The empirical constant Ks is equated to 13, approximated by 4� found by theoretical deriva-
tions assuming Couette flow between the impeller tip and the walls of the mixer for close-
clearance impellers. The effective or apparent viscosity for power law fluids can be expressed as

(7.72)�eff s� �K K N n( ) 1

�� � K Ns

Re Po K� p
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Figure 7.13 Variation of Power number of shear thinning fluids with Reynolds number (Wassmer
and Hungenber 2005. Redrawn with permission of Wiley-VCH, Figure 1 in the original.)



with the use of eq. (7.71). Metzner–Otto correlation is shown to give a good prediction of
the effective shear rate at low stirring rates corresponding to the laminar regime. At high
stirring rates corresponding to the transition regime, power requirement is overestimated
with the use of a constant determined under laminar conditions.

Recently, Wassmer and Hungenberg (2005) extended the Metzner–Otto correlation into
the transition regime by a generalized derivation based on the power consumption of the
impeller. Their model is reported to show minimum deviation from experimental data in
comparison with other models under all flow regimes and employs only one empirical con-
stant to be determined. The authors validated their result with eight different stirrer sys-
tems. The derivation based on basic principles that relate the torque of the impeller to the
variations in shear rate is outlined below.

Power consumption Po of an impeller is equal to the torque M generated times the rev-
olution rate in radians per second:

(7.73)

Collecting the frictional losses into the proportionality constants, torque is related to the
effective force, Feff and effective shear stress, �eff through the equation,

(7.74)

Since impeller performance is evaluated as power per unit volume, and since the fluid vol-
ume to be mixed with the impeller, � (�Q �ND3), is related to its diameter Di through the
shape factors,

(7.75)

Eqs. (7.73)–(7.75) are combined to give a relation between power per unit volume and the
effective shear stress,

(7.76)

where, CP is proportionality constant. Using the basic relation between the effective shear
stress �eff  and the effective shear rate �·eff,

(7.77)

and the definition of the Power number (eq. (7.67)), the effective shear rate is related to the
power number through,
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The coefficient Cs �CP /2� is related to the shape factors of the mixer and the variation of
the power number with the Reynolds number in the laminar regime.

The volume of the stirred fluid in a mixer with a flat bottom,

(7.79)

can be expressed in terms of the impeller diameter Di as

(7.80)

Replacing the first term in eqs. (7.68), for laminar regime, (7.69), and (7.80) into eq. (7.78),
the effective shear rate �·eff is related to the revolution rate of the impeller N, through the
constants of the system,

(7.81)

The coefficient Cs is related to the Metzner–Otto coefficient Ks, the slope of the Power
number versus the Reynolds number plot in the laminar regime, Kp, and the geometric
constant of the mixer, Cgeom:

(7.82)

Wassmer and Hungenberg (2005) suggest the iterative technique in Figure 7.14 to check
the correspondence of the Power number (Power consumption), with the effective shear
rate and effective viscosity, for a system of given rheological properties under the existing
conditions. 

The analysis assumes that the coefficient Cs or equivalently, CP is known, or determined
with a Newtonian fluid, for a given impeller for which the analysis will be conducted. In
addition, the shape factors of the mixer or equivalently the geometrical constant should
also be known. Then the iterative procedure in Figure 7.14 is conducted to determine the
effective rheological constants of the non-Newtonian fluid under given power input and
mixing conditions.

The authors tested their procedure with the experimental data of Zeppenfeld and
Mersmann (1998) and found good agreement between their procedure and experimental
results given as the data points in Figure 7.13. 
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7.4.3.2 Power consumption of close-clearance impellers in Newtonian fluids

Anchor, gate, screw, and ribbon type of impellers constitute the close clearance impellers
where the diameter of the impeller approaches the diameter of the mixing vessel
(Figure 7.10(b)–(d)). These impellers are used in mixing highly viscous suspensions such
as pastes and polymers and suspensions where the solids tend to segregate due to crys-
tallization or solidification and in exothermic or endothermic reactions in jacketed stirred
reactors. Secondary convection currents and circulation patterns created within the mix-
ing vessel dictate the performance of these impellers. The flow patterns created by the
impeller as a function of the Reynolds number or speed of rotation is used as a criterion
in the selection of the type of impeller to be used for a given duty. The circulation pattern
created by helical ribbon type of impellers is given in Figure 7.15. As the area vector nor-
mal to the surfaces of the impeller also rotate along its length, the fluid striking the sur-
faces are pushed in varying directions along the length of the impeller. In addition,
depending on the clearance c (c � (DT � Di)�2) between the blades and the wall of the
vessel, strong axial currents are generated within the mixer. These properties make rib-
bon impellers suitable for use as homogenization agents where heat transfer between the
walls and the fluid is important (Nagata, 1975), and when a narrow size distribution of
solids is required (Yao et al., 2001). On the other hand, gate type mixers create strong
elongational flow as the ribs of the impeller drag the fluid along at moderate to high
Reynolds numbers, so the gate type of impellers are used to disperse aggregates within a
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STEP 1:  Make an initial estimate of the effective viscosity of the shear thinning
 suspension to be stirred  at a given rate, N

STEP 2: Using the estimated effective viscosity, calculate the effective
Reynolds number with  Eq. (7.69) 

STEP 6:  Compare the Effective viscosity assumed in Step 1 with the effective
viscosity found in Step 5, and proceed with the iteration until the two values are
equal. 

STEP 3:  Calculate the Power number with Eq. (7.68) 

STEP 4:  Using the calculated Power number, calculate the effective shear rate
with Eq. (7.78) 

STEP 5:  Effective viscosity of the suspension is calculated using effective
shear rate found in Step 4 

Figure 7.14 Iteration procedure for correlation of rheological properties with the Power number.



fluid. Because of poor recirculation characteristics, they are not efficient as dispersing
agents at low Reynolds numbers. Anchor type of impellers create a single recirculation
loop within each arm of the impeller. The drag and elongational flow are limited to the
single blade and not efficient throughout the mixer volume. However, when the clearance
of the impellers is low, they aid in heat transfer and prevent deposition of solids by
creating high shear rates along the walls. 

Clearance is one of the most effective shape factors in the use of these impellers. As
the clearance decreases, the peripheral and axial velocities increase, enhancing the liq-
uid recirculation in the boundary layer. Pitch is also an important shape factor in helical
ribbon type impellers. Instead of a continuous trend in its effect, the pitch exhibits an
optimum value, presumably depending on the rotation rate of the impeller and the vis-
cosity of the suspension. If, the fluid is pushed by the impeller surface with a force ade-
quate to increase its kinetic energy so that it can reach the next coil within one revolution
period of the impeller, then the axial velocity will increase. If the pitch is large, so that
the fluid cannot reach the upper coil within the rotation period, then the axial velocity
will decrease (Niedzielska and Kuncewicz, 2005). Increasing the rotation rate will
increase the power requirement proportional to the third power of stirring rate. As the
diameter of these impellers are considered from edge-to-edge of the impeller and as
Di/DT � 1, power consumption of these impellers is an important issue, requiring care-
ful consideration.

As the close-clearance impellers are used with concentrated suspensions, or viscous liq-
uids, they generally operate in the laminar regime. The power requirement is calculated
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Figure 7.15 Velocity profiles and stream functions in a mixing vessel with a helical ribbon type of
impeller: Re � 53.6, Di � 0.28m., DT � 0.312m, p � 0.13m. � � 1400kgm�3, 	 � 0.2–1.5Pas.
(Niedzielska and Kuncewicz, 2005. Reproduced with permission of Elsevier, Figure 5 in the original.)



with eq. (7.70), using eq. (7.67) and eq. (7.69). The proportionality constant Kp, depends
on the shape factors of the impeller and the mixing vessel. Some of the correlations for hel-
ical ribbon impellers in the literature are given in Table 7.1 adapted from Niedzielska and
Kuncewicz (2005). There is general agreement between the models on the effect of clear-
ance, denoted by c, or (DT�Di) terms, on the power consumption of the impellers: As the
clearance decreases power consumption increases with a power of the clearance that
ranges between 0.25 and 0.53. 
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Table 7.1

Kp (� Po Re) Correlations for helical ribbon type impellers in Newtonian fluids

Correlations Equation References
Numbers

Blasiński
(7.83) and Rzyski 

(1980)

Delaplace 
(7.84) et al. (2000)

Käppel 
(7.85) (1979)

Nagata 
(7.86) (1975)

Niedzielska and 
(7.87) Kuncewicz 

(2005)

Shekhar 
(7.88) and Jayanti 

(2003, a–b)

Delaplace 
(7.89) et al. (2006)

Nomenclature for the Table: Nr: number of helical blades, p: pitch, h: height of the helical impeller as the dis-
tance in between the attachment points of the blades to the shaft, �B: blade angle, w: width of the blades, c: clear-
ance between the impeller and the wall, Di: diameter of the blades at the points of largest departure from the shaft,
D
_

i: average diameter of the impeller, DT: diameter of the mixing vessel.
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Clearance is also a determining factor in the power consumption of anchor type
impellers. Two of the correlations given in the literature for power consumption of anchors
in Newtonian fluids are,

(7.90)

by Beckner and Smith (1966), and

(7.91)

by Shamlou Ayazi and Edwards (1989). Nr in eq. (7.91) denotes the number of blades. 

7.4.3.3 Power consumption of close-clearance impellers in shear thinning fluids

Effect of shear thinning on the power consumption of close-clearance impellers is also
taken into account by the Ks factor of Metzner and Otto (1957) in eq. (7.72) together with
eqs. (7.69)–(7.71), but the defining function is not necessarily a constant. There are four
groups of correlations proposed for Ks in anchor shaped impellers (Shekhar and Jayanti,
2003). Examples to the types of correlations are given in Table 7.2.
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Table 7.2

Examples to the functions used for Ks in anchor type of impellers

Types of Examples Equation References
Function Numbers

(7.92) Nagata (1975)

(7.93) Sestak et al.,
(1986)

(7.94) Shamlou Ayazi 
and Edwards 
(1989)

(7.95) Beckner and 
Smith (1966)K
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Ks factor for helical ribbon type of impellers is similarly defined by a complex function of
shape factors, power law index, and Kp by Delaplace et al. (2006) through an analytical
model developed based on analogy of flow in an annulus with the inner cylinder rotating
and flow in mixing tanks with helical ribbon type impellers. The authors tested their model
with reported power consumption data of helical ribbon type of impellers in the literature,
covering a very wide range of flow behavior index, n, and found good agreement with
most of the data.

(7.96)

S, in this equation gives the ratio of tank diameter to helical ribbon diameter (DT /Di) as
shown in Figure 7.10(d). Se is the same diameter ratio of the equivalent coaxial cylinders
(DT/De) used to simulate the flow between the tank wall and the impeller, in the region of
maximum shear:

(7.97)

A plot of Ks as given by eq. (7.96), as a function of the flow behavior index, n, gives an
increasing curve up to n � 0.45, which then levels off in the interval, 0.45 � n � 0.77, to
remain constant at higher values of n. The authors proposed the trend in the variation of
Ks with n to be a possible cause for the appearance of different defining functions for Ks

according to the range of flow behavior indices used in the experimental work on which
the model is built. Reported values of the rheological constants for the systems used in
the literature show a wide range of n though, suggesting that this variation may not be the
only cause.

The values of the dimensionless parameters for geometrical similarity of helical rib-
bon impellers are given by Ho and Kwong (1973) are Nr � 2, p�Di � 0.5 � 1, w�Di � 0.1,
c�Di � 0.025. The range of dimensionless parameters in helical ribbon impeller type of
mixers in the comprehensive review of Delaplace et al. (2000) based on 148 impellers
can be taken as an indication of the range of values generally used, which are:
0.725 � Di�DT � 0.988, 0.07 � w�Di � 0.22, 0.32 � p�Di � 2.16, and 0.88 � h�Di � 1.30.

7.4.4 Scale-up in agitated mixers

Scale-up in mixing means creating the same conditions of mixing in an industrial mixer as
observed in a laboratory-size mixer. Scaling down is based on the same principles and is
required to solve a problem encountered in an industrial scale mixer by experiments con-
ducted in a laboratory size mixer under the same hydrodynamic conditions. 
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7.4.4.1 General criteria used in scale-up of mixers

In agitated vessels mixing proceeds through turbulence mechanisms. Similar conditions
of turbulence can be maintained if recirculation currents and convective eddy size and
energy distribution are the same in each case. Geometrical similarity, maintained by iden-
tical values of the shape factors in every case, ensures the similarity of flow patterns. It is
more difficult to generate eddies with the same size and energy distribution. As a first
approximation, similitude in mechanisms generating eddies are searched for. Once geo-
metrical similarity is maintained, then different criteria presumed to be effective in
determining the mixing conditions are tested for validity in scale-up. The criteria gener-
ally used are: (1) Identical quantity of power delivered to the mixer per unit volume of
suspension in both mixers; (2) identical impeller tip speeds in both cases; (3) identical
Froude numbers in both cases.

The first criterion is based on equating the Kolmogoroff length scales of isotropic tur-
bulence given by eq. (7.38). For liquid suspending medium of the same density and vis-
cosity, equating power inputs per unit volume is equivalent to equating the size of the
minimum eddies. The second criterion in effect, sets the upper limit of the maximum shear
rate and therefore both the laminar (� � dV/dr) and the turbulent (� � �V
V
) shear stresses.
As turbulent conditions exist in the mixers if the viscosity is not too high, the impeller
tip speed also sets the maximum fluctuation velocity of the eddies. The third criterion
is based on the ratio of the kinetic energy dispersing the particles (or liquid eddies) to
the potential energy segregating the particles, or equivalency of the Froude numbers
(Fr
�DiN

2�g � �V
V
��gle), le being the length scale of the eddies. The validity of these
criteria has to be determined experimentally with the use of geometrically similar mixers
of different sizes. 

7.4.4.2 Scale-up in mixing of floating solids

Scale-up studies were made by Özcan-Taşk¹n (2006) in two geometrically similar fully
baffled tanks of diameter 0.61 and 2.68m, stirred with PBT (with four 45	 inclined blades)
and a narrow 3-blade hydrofoil impeller, both with Di �DT �0.33. Various liquid (water)
heights of H/DT �1, 5/6, 2/3, 1/2 were used in the experiments, with off-bottom clearance
of impellers E, E/DT �1/8, 1/6, 1/4, 1/3, 1/2, 2/3. Polyethylene particles of density 904kg
m–3 and dimensions 2mm�3mm � 5mm were used at a volumetric concentration of 1%
in the smaller and 0.5% in the larger vessel at H�DT �1. Under these dilute conditions, the
effect of solid concentration was found to be negligible and the amount of solids was not
changed when the height of liquid, H was varied.

The results showed that as the distance of the axial impeller from the surface of the liq-
uid (submergence, CS) increases, the rate of rotation NJD, and the specific power require-
ment for suspension per unit volume of liquid (PJD/�) increases, as given in Figure 7.16(a)
and (b), for the two different size of mixers denoted as T61 and T268 stirred by the hydro-
foil impellers. The variation in the impeller tip speed, NJD D and Froude number (not
divided by the constant g) as a function of dimensionless submergence, CS�DT (denoted as
CS�T in the figures) of the impeller in up-pumping direction are also given in Figure 7.16(c)
and (d). The data for the 0.61 and 2.68m diameter mixers coincide only in the case of
power per unit volume PJD �� data plotted as a function of dimensionless submergence
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CS�DT, showing the suitability of this criterion for scale-up. A scale-up criterion appro-
priate for the same impellers connected in the down-pumping direction could not be found
in the investigation and was attributed to different ways the solids were drawn down
depending on the level of submergence of the impellers. 

7.4.4.3 Scale-up of mixers with multiple impellers

As the power consumption of an impeller is proportional to the fifth power of its diameter
(Po � �N 3Di

5), increase in the volume of suspension to be mixed in a batch mixer or an
increase in the required retention time in a reactor is handled by increasing the height of
the mixing vessel. Using the same criteria for geometrical similarity, S2 �1 or H�DT, an
additional impeller connected to the same shaft is used for every incremental increase in
height equivalent to one tank diameter. Axial impellers are used in these mixers to main-
tain the average concentration of solids constant in every level.
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Figure 7.16 Variation of: (a) just-draw-in speed of the impeller, (b) power required to draw in the
solids per unit volume of suspension, (c) tip speed of the impeller, (d) Froude number as a function
of submergence ratio (CS�T�CS �DT) for hydrofoil impellers oriented in the up-pumping direction.
(Özcan-Taşk¹n, 2006. Reproduced with permission of Elsevier, Figures 4(a), 10, 11, and 4(b) in the
original.)



In a multiple-impeller mixer, concentration distribution of solids in the axial direction is
given by eq. (7.41). If mixing is ideal throughout the vessel, then the concentration of parti-
cles would be equal to the average concentration along the height of the suspension. Due to
unavoidable settling, the concentration of solid particles increases at the lower stages. Magelli
and coworkers (Montante et al., 2003; Pinelli et al., 2004 and the references cited therein) pro-
pose the use of eq. (7.41) in determining the mixing efficiency and therefore, as a criterion for
comparing the performance of impellers in geometrically similar mixers. The revised Péclet
number in eq. (7.42) was expressed empirically by effective dimensionless numbers as,

(7.98)

where 
 is average power input into a unit mass of the agitated liquid, defined as (
� (number
of impeller) � (power of single impeller/mass)). The constants A, �, and � have to be deter-
mined experimentally. The first dimensionless number is the ratio of the impeller tip speed
to the terminal velocity of the particles; the second dimensionless number is the Kolmogoroff
length scale for energy dissipating eddies (eq. (7.38)) scaled to the particle diameter dp; and
the third is the shape factor S2. The authors found ��1.404 and ��0.161 for pitched blade
turbines and ��1.195 and ��0.101 for Rushton turbines, respectively. The dispersion coef-
ficient of the solids DpM was found to be the same as the axial dispersion coefficient of the
liquid that depends on the mixer geometry and scale and has to be determined experimen-
tally. The settling velocity of the solids Vs in the mixer is related to their terminal velocity Vt

under free settling conditions through the empirical relationship (Pinelli and Magelli, 2001),

(7.99)

This equation was found to hold for Rushton turbines as well as pitched blade and hydro-
foil turbines and in Newtonian and pseudoplastic (shear-thinning) liquids. Eq. (7.71) is
plotted in Figure 7.17, as Vs�Vt versus the dimensionless Kolmogoroff isotropic length
scale lK, non-dimensionalised with the particle diameter dp, shown as the solid S-shaped
curve in the figure. The data points shown correspond to experiments conducted in mixing
vessels of 0.13, 0.23, and 0.48m diameter, with Rushton and pitched blade impellers. The
particles were glass or plastic within the size range, 0.3 � dp � 3mm, and density greater
than that of the suspending medium with viscosity in the range of 3 � � � 30mPas. The
stirring rate of the impellers ranged in the interval 12.4 � N � 25s�1. 

The experimental data was found to lie in the range 30% of the S-shaped curve based
on eq. (7.71). The trend of the variation of the dimensionless velocity of large particles, in
the range lK/dp � 0.01 seem to be independent of the Kolmogoroff length scale, suggest-
ing that the pattern of recirculation currents dominate the convective turbulent eddy inter-
actions in the mechanism of mixing. When the particle size is approximately equal to the
isotropic length scale lK of the suspending medium, the particle velocity again becomes
constant at the terminal velocity of the particles. In between these length scales, particle
velocity is strongly affected by the intensity of turbulence. 
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7.5 STATIC MIXERS

If the components readily blend with each other, mere change in direction and elongation
during flow will be sufficient for mixing, as in the case of static mixers. Static mixers are
used in blending highly viscous fluids such as polymers and colloidal fluid-like pastes.
Static mixers are also used where strict hygienic rules should be applied and the
suspension be prevented from possible pollution. They are efficient mixers in terms of
power requirement, space utilization, therefore requiring lower capital and operating costs.
Static mixers operate by laminating and remixing the fluid layers as described in Section
7.3.2. Internal structure of a typical static mixer is sketched in Figure 7.18, in cross-
sectional and longitudinal view. Basically, it consists of sets of cross bars making an angle
of 45	 with the axis of the pipe. The orientation of each consecutive set makes an angle of
90	 with the previous one. Thus, the fluid is forced to change direction in passing through
the grids. This effect can further be enhanced by changing the shape of the cross bars so
the frequency of the change in direction is increased, and elongational flow is introduced
along with the shear flow. Sections of screws, oriented with respect to each other can also
be used instead of the cross bars (Gramann et al., 2007). Length of standard static mixers
equals the diameter of the mixer. Longer static mixers are also employed with lengths
approaching twice the diameter of the pipes. 

As the fluids mixed in static mixers are extremely viscous, the flow regime is generally
laminar. Pressure drop in static mixers can be calculated with two different models of the
mixer, as pipe flow and flow through a porous medium. If the packing is not very compact,
then it can be taken as pipe flow with enhanced frictional losses. The static mixer can also
be viewed as a packed bed, if the cross bars intermesh with each other. Depending on the
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Figure 7.17 Variation of dimensionless particle velocity in the mixer with the dimensionless
Kolmogoroff length scale. (Montante et al., 2003. Reproduced with permission of Elsevier, Figure 6
in the original.)



model chosen, the definition of the Reynolds number will also change. Even though the exact
value of the transition Reynolds number is an unsettled issue (Hirech et al., 2003), there is
general agreement on an early transition to turbulence, in comparison to empty tubes.

When the static mixer is considered as pipe flow with enhanced shear losses (Liu et al.,
2006) then the pressure losses �PSM are scaled with the pressure losses in an empty pipe
�P0 under the same flow conditions:

(7.100)

fD in this equation signifies the Darcy friction factor equivalent to four times the Fanning
friction factor, 4f.

The effect of non-Newtonian behavior in static mixers depends on the type of nonlin-
earity. Viscoelasticity increases the friction factor and decreases the mixing quality
(Langer and Werner, 1996). On the other hand, shear thinning decreases the pressure drop
and increases the mixing quality in a static mixer. A computational study was made by Liu
et al. (2006) of the pressure losses of shear thinning power-law fluids as a function of the
flow behavior index, n in the range of viscosities, 0.001 � �eff � K Pas, where the maxi-
mum corresponds to �·�1s�1. By a procedure similar to that given in Section 2.3.1.3, the
pressure drop in the empty tube,

(7.101)

was calculated with the use of Metzner–Reed Reynolds number given by eq. (2.135).
Results of the computations showed that shear thinning reduces the pressure drop ratio, k
in eq. (7.100) in comparison with Newtonian fluids, which can be correlated with flow
behavior index, n and ReMR as,

(7.102)

A plot of pressure drop ratio k, as a function of Metzner–Reed Reynolds number shows
that k increases with an increase of n in the range 0.2 � n � 1, but for any given value of
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Figure 7.18 Cross-sectional and longitudinal view of a typical static mixer.



n remains constant for ReMR � 10(4n�(3n � 1)). With the use of eqs. (7.100)�(7.102), the
friction factor for a static mixer was found as a function of n and ReMR, decreasing with a
decrease in n and ReMR, according to the relation,

(7.103)

Particle tracking studies and lower frictional losses support the observation that the mixing
efficiency of shear thinning fluids in a static mixer is higher than that of Newtonian fluids. 

7.6 MIXING OF CONCENTRATED SUSPENSIONS

In many industrial processes the solid–liquid mixtures are too concentrated to be handled
with the mixers presented above. In fact, the term kneading is used instead of mixing in
these operations. After the kneading operation, the concentrated suspensions, called
pastes, are either subjected to molding as in the case of casting metals, or extrusion, as in
the case of ceramics, polymers, and foods such as pasta. In this section, these special
equipments used in mixing and shaping pastes will be introduced. 

7.6.1 Kneading

Kneading equipments are similar to agitated mixers. The difference lies in the composition
and rheological properties of the pastes to be mixed. Generally, the ratio of the volume of
the suspending medium to the total volume concentration is only a small fraction and the
number concentration of particles is very high in these pastes. This makes the distribution
and spreading of the liquid over the particle surfaces, the main concern in the kneading
operation. Considerable power consumption is required to overcome frequent jamming of
the contacting particles and for thorough turn over of the particles. In kneading process,
power consumption is the major parameter in the determination of the operating torque
range and the degree of mixing. The major issue then becomes the definition of a rheo-
logical model including a specific equipment factor.

The relation between the power number, Po and the Reynolds number, Re for kneaders
in the case of Newtonian fluids can be expressed by eq. (7.70), using the Power and
Reynolds number definitions in eqs. (7.67) and (7.69), respectively. However, in the case
of non-Newtonian fluids the power consumption cannot be directly calculated due to the
difficulty of accurate determination of the rheological parameters � and �0 at high concen-
trations. Kamiwano and coworkers (2000; Nishi et al., 2006) modifed the Reynolds num-
ber given by eq. (7.71) with an apparent viscosity definition for non-Newtonian fluids.
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The authors described the rheological behavior of the system they studied by Casson
Model (eq. (2.50)). The apparent viscosity �a of Casson model is obtained by dividing both
sides of eq. (2.50) by shear rate �·,

(7.105)

The relation between the average shear rate �·av and rotational speed N is given as,

(7.106)

The term B in eq. (7.106) is a specific equipment constant. Substituting eq. (7.106) into
eq. (7.105) and apparent viscosity �a into the eq. (7.104) gives

(7.107)

The relation between the Power number and modified Reynolds number can be given with
a relation similar to eq. (7.70):

(7.108)

Thus, substituting eqs. (7.67), (7.73) and (7.107) into eq. (7.108) gives a relation for
determination of the rheological parameters �0 and � without the need for rheological
measurements,

(7.109)

In this case, the relation between the torque, M and rotational speed, N in a kneader can be
measured and, � and �0 /B can be calculated by eq. (7.109).

Nagata (1968) proposed an expression for power requirement in kneaders,

(7.110)

where N is the rotational speed of the blade, � the apparent viscosity of the wet particles,
� the ratio of the power consumed in the region excluding clearance between the blade and
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the vessel wall of the kneader. �, R, L, C are the geometric factors of the kneader: L, the
length of the vessel; R, effective radius of the rotating impeller; C, the clearance between
blade and vessel wall; and � is the angle retained clearance. According to eq. (7.110),
power consumption is proportional to (1 � � ) and apparent viscosity �a. (1 � � ) gives the
ratio of the total power consumption to the power consumption in the clearance. The clear-
ance region is included into equation as the region where the velocity gradient is highest
and the effect of the non-Newtonian behavior is observed the most. Apparent viscosity
changes with average shear rate in the kneader mixer, and average shear rate changes with
the kind of blade and rotational speed. Therefore it is difficult to determine the appropri-
ate average shear rates in the kneader mixer (Kamiwano et al., 2000) without experimen-
tal verification with a system of known and reproducible properties. 

7.6.2 Extrusion

Extrusion as a manufacturing process is used for creating long materials (continuous
extrusion) or a large number of short pieces (semi-continuous extrusion) with a fixed
cross-sectional profile. The widely used extruder types for concentrated suspensions and
pastes are the screw extruders (single screw or twin screw) and the ram extruders. The
typical twin-screw extruder shown in Figure 7.19 consists of two screws with mixing pad-
dles. These screws convey the loaded materials through the barrel toward a die, where
final extrusion takes place. 

The screws used in twin modes may be corotating or counter rotating with variable
intermesh of the screws, clearance and pitch. Screw is the major part of an extruder which
conveys the material from feed end to the die end. Rotation in a tightly fitting barrel results
in mixing and compression of the components. The screw outer and root diameters as well
as pitch and flight width are the key parameters in determining the capacity of the extruder.
The barrel in which the screws rotate, must be mechanically strong to withstand the high
operating pressures. The physical properties such as density, surface texture, and shape of
the product are determined by the die. The ratio of length to cross-sectional area of the die
hole determines the final shape of the product. (Senanayake and Clarke, 1999).

In ram extrusion, the material is fed from a hopper and packed into a cylinder in
repeated increments by a piston. The compressed material moves through the cylinder with
a profile matching the cross section of the barrel and the die in sequence. The output rate
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Figure 7.19 Schematic representation of a twin screw extruder.



is proportional to the length and frequency of the ram. The force applied onto the piston
must overcome the friction against the die wall and viscous drag forces during compres-
sion. In the final stage when ram contacts with the material in the die, an extremely high
force is required to overcome the static friction. Incremental motion of the compacted
paste leads to slip at the walls and plug flow. The die must be designed to withstand the
high internal stresses generated. A typical ram extruder is shown in Figure 7.20.

The extrusion flow can be examined under three sections. (1) Plug flow region in the
central part where the paste slips over a highly sheared layer along the extruder wall,
(2) the deformation region near the die where the material is shaped, and (3) the static
(dead) zone where the material is stationary around the die entry (Perrot et al., 2006).

The force applied on the ram must be equivalent to the sum of the frictional force Ff and
the force related with plastic deformation, Fp as,

(7.111)

Friction force can be expressed as,

(7.112)

where �w is the wall shear stress over the barrel surface wall and A is the cross-sectional
area. The force related with plastic deformation (shaping force) varies with the flow of
material and is proportional to the yield stress �0, and the consistency K, of the material.
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Figure 7.20 Schematic representation of a ram extruder and the forces acting on the paste.



Extrusion can be considered as a constant pressure process all along the ram displacement.
The extrusion pressure is given by Benbow’s model which defines the pressure gradient in
two parts: pressure due to the plastic deformation of the paste from the barrel to the die
and the other one being the paste flow in the die portion of the extruder. Benbow’s model
can be expressed as (Lombois-Burger et al., 2006),

(7.113)

where Ad the cross-section area of the die, Ab the cross-section area of the barrel, C the
perimeter of the die, Ve the exit velocity of the extrudate which is calculated under plug
flow conditions, L the length of the die and a, b the constants related with viscosity per
unit length giving the velocity dependence of the flow behavior. The aVe and bVe terms
in eq. (7.113) are related with the viscous contributions of the fluid velocity. The �w

term is smaller than the true yield stress value at the wall because of slippage over 
the wall.

Yılmazer and Kalyon (1989) investigated slip effects induced by plug flow of highly
filled suspensions. The authors expressed the total volumetric flow rate of suspension
including slip effects as:

(7.114)

which is also calculated by solving eq. (2.115). The slip velocity Vslip in eq. (7.114) is
defined as;

(7.115)

where � is the wall slip coefficient (Lawal and Kalyon, 1997). The ratio of the volumetric
flow rate due to slip Qs to the total volumetric flow rate, Q then becomes;

(7.116)

where �·a denotes the apparent shear rate.
Another issue encountered in extrusion is the physical aging that necessitates an increase

in the extrusion pressure of the paste with resting time (Lombois-Burger et al., 2006),

(7.117)

where �t is the resting (aging) time, C1 a constant dependent on the viscosity of the fluid,
and C2 a constant related with the initial extrusion pressure. The authors investigated the
kneading and extrusion behavior of dense-polymer cement pastes taking the Benbow’s
model given in eq. (7.113) as a guide. They proposed a free volume model for the paste
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flow (see Section 1.2 in Chapter 3). The viscosity of the system is given with Doolittle
equation in this model,

(7.118)

where �o is the occupied, �f is the free volume, A a reference pressure, and B an experi-
mental fitting parameter (B�11 in their study). The viscosity of soft glassy systems
depends on the unoccupied free volume �f, which the authors related to the closed-packed
volumetric fraction ( ���m) of the paste with,

(7.119)

In this equation � is the actual volumetric fraction of the solids. By taking the aging time
as a constant value such as 20min they replaced the � term with Pex

20 min and found a rela-
tion which satisfies their experimental data in the form of eq. (7.121):

(7.120)

(7.121)

By evaluating eqs. (7.120) and (7.121) they concluded that the free volume of particles is
a distinctive control parameter of the extrusion pressure. 

7.7 MIXING IN THE MICROSCALE

Microscale mixing involves quantities in the range of pico- to microliter in devices of
dimensions in the order of micrometers and lengths not exceeding a few hundred microm-
eters. Micromixing concept evolved in the last decade as part of micro total analysis sys-
tems related with the “lab-on-a-chip” project, involving various miniaturized analytical
operations. Various unit processes and operations developed within the context of micro-
sized analysis systems include reactors, separation systems such as chromatographs, elec-
trophoresis devices, pumps, valves, mixers, along with the microchannels connecting these
devices. When the reaction rates are fast, the rates in the other devices have to be in the
same order of magnitude if the designed system is intended to work continuously. Analysis
of biomolecules requires high mixing rates at very low throughputs. On the other hand, the
materials to be analyzed include bulky molecules with diffusion rates less than the diffu-
sion rates of ordinary molecules by at least an order of magnitude. The small dimensions
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of the channels and mixing devices cause the magnitude of the Reynolds number to remain
below 100, placing the operation into the range of laminar regime. Turbulent convective
motions employed for mixing do not exist in the laminar regime. Alternative mechanisms
are developed to bring the components or phases into close contact and extend the interfa-
cial area across which mixing of the components takes place through diffusion. Extension
of the interfacial area can be brought about by frequent changing of the flow direction, or
by dividing and remixing streams within a designed network. This type of mixing that
depends solely on the geometry of the channel, and requires only energy to maintain flow
is called passive mixing. In the case of active mixing, an external control of the flow field
is exerted by means of varying pressure gradients, oscillating electro-osmotic flow, or
actual moving parts that regulate the flow. 

7.7.1 Passive mixing

Passive mixers are preferred over the active mixers due to simplicity in their manufactur-
ing processes, ease of operation without excessive frictional heat evolution, and adequacy
for use with shear sensitive biomolecules and microorganisms. Passive mixers can be “in-
plane” or “out-of-plane” with respect to the flow direction.

In-plane mixers divide and recombine fluid streams within a flow network to assist
mixing without significant stretching of the interface. Example for the development of in-
plane mixer designs (He et al., 2001) are given in Figures 7.21(a) and (b). The design in
Figure 7.21(a) is an idealization of mixing in a packed bed. The fluids A and B mix as
they flow down in the longitudinal direction. The dark triangular crosshatched channels
in the lower central region show the actual mixing area. As this area constitutes less than
half of the total flow area, this type of design is not particularly suitable for compact
miniaturized systems. The authors (He et al., 2001) developed the more efficient design
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Figure 7.21 Development of microfabricated mixer designs based on flow and mixing within a
packed column: (a) Two dimensional idealization of the packed column; (b) More effective usage of
the area through channeling; (c) Microfabricated compact form of the mixer. (He et al., 2001.
Redrawn with permission of the American Chemical Society, Figure 5 in the original.)



given in Figure 7.21(b), by removing some of the particles from the design given in the
(a) part to improve the lateral mixing. The final consolidated channel flow mixer, prop-
erly designed for microfabrication is given in the (c) part of the figure. As there is no
stretching involved in the flow, the efficiency of mixing would be low, if flow had
occurred under a pressure gradient. Therefore, liquids are moved through the mixer
exclusively by electro-osmotic flow using a computer-controlled power supply. 

Generalization of this design concept leads to a need for identification and augmentation of
the mixing mechanisms in the absence of convective diffusion: that of creating additional area
in between the two phases or streams to be mixed and diffusion through this interfacial area.
Chaotic advection developed by Aref (1984, 1990, 2002) is one method of increasing the
interfacial area to increase the efficiency in mixing of the component streams. Essentially it is
a mechanism by which certain filaments or layers of the fluid are stretched and then fold over
resulting in a chaotic convection of the components, as given in Figure 7.22(a). Secondary
flows leading to chaotic advection arise when flow fields exist in three dimensions in steady
and unsteady flows. If the flow is two dimensional only, time dependence enters in place of
the third component of the field, and advection is observed in unsteady flows, only. 

One way to create a three dimensional velocity field is to twist the pipes. Twisted pipe
flow design is used in the laminar flow of viscous pastes to enhance mixing, or to enhance
heat and mass transfer, in macro-scale operations. To introduce advection in microchan-
nels Liu et al. (2000) developed a serpentine channel, where flow proceeds in three dimen-
sions through C-shaped connections oriented at an angle of 90 with respect to each other,
as shown schematically in Figure 7.22(b). Rectangular channels obtained by KOH etching,
were 300�m wide and 150�m deep, and so the Reynolds numbers based on the channel
dimensions are in the range of 6 � Re � 70. The arrows in Figure 7.22 show the flow
direction of the fluids, with the lighter shaded regions around the corners denoting the
stretched fluids. Stretching is converted into chaotic motions in these regions. Mixing rate
was shown to increase with an increase in the Reynolds number, achieving 97% of the
maximum intensity (denoting complete, homogeneous mixing) within fractions of a sec-
ond at a Reynolds number of 25 with this design. 

7.7.2 Active mixing

Advection in the fluids to be mixed can also be created by an external applied field. An
active mixer working under an oscillating electric field was developed by Oddy et al.
(2001). In a rectangular channel with dielectric walls, an electrolyte solution will form a
diffuse ion cloud along the walls, an electrical double layer, similar to those shown in
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(a) (b)

Figure 7.22 Mixing by advection: (a) Stretching and folding over of a liquid filament, (b) Serpentine
mixer operating with the principle of advection.



Figure 1.2. An external electric field will cause a shift in the diffuse layer ions, in the direc-
tion of the applied force. This shift, will effectively take place within a distance equivalent
to the Debye length ��1 (denoted as 0 in the inlay of Figure 7.23) that is much smaller
than the dimensions of the channel. As such, it will appear as a slip boundary to the elec-
trically neutral liquid suspension in oscillatory motion under the action of the alternating
electric field. The velocity profiles during a period of oscillation are shown in Figure 7.24.
These profiles were obtained by solving the Navier–Stokes Equation, eq. (A3.5.1), for
flow in the x direction between two plates extending to infinity in the y direction with the
slip boundary condition,

(7.122) V z d
E

i tslip exp( )( , )
| |

� �0

�

	
�
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Figure 7.23 The Debye layer and various dimensions effective in electroosmotic flow. (Oddy et al.,
2001. Redrawn with permission of The American Chemical Society, Figure 1 in the original.)

Figure 7.24 Theoretically predicted velocity profiles during an oscillation period in flow between
two infinite planes (Oddy et al., 2001. Reproduced with permission of the American Chemical
Society, Figure 2 in the original.) 



where, 
 is the permittivity of the liquid medium, � the zeta potential along the wall with
charge E, 	 the viscosity of the liquid suspension medium, and � the period of the oscil-
lations. The solution of eq. (A3.5.1) that is reduced to

(7.123)

under the given conditions, will have both steady and time dependent components. Scaling
z, with the diameter of the channel d, time t with the frequency of the oscillating field �,
and velocity with the slip velocity in eq. (7.122) a dimensionless equation was obtained for
the time dependent velocity distribution, in the form:

(7.124)

� in the equation is the aspect ratio of the channel, d/�, where the Stokes penetration depth
� is the ratio of the kinematic viscosity of the liquid resisting the motion, to the frequency
of the oscillation inducing the motion:

(7.125)

The oscillatory flow provides limited stretching of the liquid layers. The authors
observed the occurrence of a flow instability that was much more effective in mixing, at
frequencies below 100Hz, electric field strengths greater than 100Vmm�1, and channel
dimensions greater than 50�m. The advective motion observed under these conditions
were much more effective in mixing in comparison with the stretching due to stable oscil-
latory flow, but the origins of the instability is yet an unresolved issue. 
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– 8 –

Classification and Separation of

Solid–Liquid Systems

Separation of solids from the liquid medium is generally the last step in processes that
employ slurry systems, where the solid particles separate out by settling in the suspension
medium. Particles need to be placed in a field or a potential energy gradient to be able to
be separated from the liquid phase or to its constituents depending on the differences in
physical property relevant to the field. This field can be gravitational or its analogue cen-
trifugal, electrical, or magnetic. The particles will then be separated according to their
mass, the charge that they carry, or their magnetic susceptibility, respectively, depending
on the field in which they are placed. By far, the most extensively used separation is based
on the differences in the mass of the particles in a gravitational, or centrifugal field in
macroscale industrial operations, the principles of which are given in Chapter 4. The solid
material to be separated is generally of colloidal size range, ranging from submicron sizes
to not more than a few millimeters. Other than the cases of large-scale settling in minerals
processing in one extreme, and separation of large biomolecules in the other extreme, the
terms “macroscale” and “microscale” overlap in terms of the particle size range operated
in many separation systems.

8.1 CLASSIFICATION AND SEPARATION IN A GRAVITATIONAL FIELD

A separation process can be converted to a classification process by manipulating either the
time allowed for separation, or the resistance to the motion of the particles, or both.
Manipulation of the retention time in a cascade type of separator is the simplest way to con-
trol the cut point, or the particle size limit in a certain fraction. Fine-tuning for the separation
can be provided by introducing additional resistance to the motion of the particles through
operative parameters that take place in the general force-balance equation, eq. (4.57). Thus,

1. The particles may be forced to move against a counter-current stream of liquid to
decrease the net velocity of the particles—eq. (4.138).

2. The density of the suspending medium can be increased by addition of extremely fine
particles of a neutral substance to reduce the (�p �� ) term in eq. (4.136).
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3. The viscosity of the medium can be increased by addition of a polymeric substance
or extremely fine particles to increase the resistance of the fluid to the motion of the
particles—eq. (4.143).

4. The particles may be forced to move in a direction opposite to the effective external
force, i.e., the gravitational force, as in the case of fluidized classifiers.

5. The shape of the flow channel can be so designed that the moment of inertia prevents
particles greater than a predetermined size from following the motion of the liquid with-
out colliding with the walls. This is the basis of the operation of centrifugal classifiers.

There are no clear-cut differences in the design of the classifiers, used industrially or inves-
tigated experimentally, and the operation of many classifiers is based on more than one of
the parameters listed above.

8.1.1 Sedimentation as a separation process

In the simplest case, particles separate in a stagnant medium due to differences in density
with the liquid medium. The terminal velocity relations of particles under hindered settling
conditions (eq. (4.154)), coupled with the mass-balance equations for the total particles
(eq. (4.137)) and for particles of a given size range (eq. (4.153)) will determine the rate of
separation as given in Section 4.5 of Chapter 4. If the particles are lighter than the sus-
pending medium, (�p �� ) term will be negative and so will be the direction of the termi-
nal velocity. The particles will collect at the surface of the liquid, to be removed by
skimming or a similar process. If the density of the particles is greater than that of the sus-
pending medium, then (�p �� ) term will be positive and the particles will settle in the
direction of the acting force.

8.1.1.1 Parallel channel classifiers

In batch sedimentation, a polydisperse mixture with N different sizes of particles with equal
densities will create N zones of settling suspensions above the lowest layer, a mixed zone
of early sedimentation. The first layer above the mixed zone will be rich in large-sized par-
ticles. The particle composition for the smaller components will be the same as the feed,
since the particles are not buoyant and the suspension is assumed to be well mixed before
entering the sedimentation tank. Each zone above the first will be devoid of the next larger-
sized particle, until the final top zone will contain only the smallest-sized particles.

The efficiency of a separation /classification process based on hindered settling is
increased by providing parallel channels in the sedimentor to decrease the settling distance
and inclining the settler so that a larger settling area will be provided at each channel. Such
an inclined sedimentor is shown in Figure 8.1(a), where two sets of inclined channels are
coupled to serve as a reflux classifier in fluidized beds (Nguyentranlam and Galvin, 2004).
The sedimentation process was analyzed by Davis and Gecol (1996) for solid suspensions
made up of N different-size classes. The sedimentation profiles on the inclined channel
wall of a single layer in parallel-channel classifiers are shown in Figure 8.1(b), under stable,
steady-state operating conditions. Stability in these separators is maintained by operating
with polydispersed suspensions with particle densities either higher or lower than the



suspending fluid density, but not when some of the components have a density that is
higher and some lower than the density of the suspending fluid.

The thickness, width, and length of each section are denoted by b, w and L, respectively,
and inclination with respect to the vertical direction by �. The feed is given from the bot-
tom section, parallel to the wall at a flow rate Qf. Particles settle in the vertical direction
and are taken from the corner at the bottom as underflow at a volumetric flow rate, Qu, and
the liquid together with very small, unsettled particles, as overflow Qo, from the top of the
inclined plane. The analysis is based on the presence of regions where each size fraction
settles, together with the sediment and clarified-fluid regions. The section given in Figure
8.1(b) portrays the differential settling of four different-size fractions of solid particles. The
volumetric fraction of particles in the first region shown in the figure will be the same as in
the feed. As the largest and densest particles settle, the volumetric fraction of particles in the
upward going stream will decrease, as will the average size of the particles. The suspension
is fed parallel to the walls, whereas, the particles settle in the vertical direction. A clear liq-
uid layer appears below the upper wall of the channel and the boundaries of the layers
become curved. If complete separation of the solids from the liquid is desired, the total flow
rates in and out should be adjusted to increase the retention time, so that only clear liquid will
come out of the overflow pipe. Otherwise, the particle-size distribution in the overflow will
depend on the flow rates in and out of the separator determined by the total mass,

(8.1)Q Q Qf o u� �
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Figure 8.1 Inclined wall classifiers. (a) Two sets of inclined parallel channel separators used as a
reflux classifier in fluidization (Nguyentranlam and Galvin, 2004), (b) Sedimentation of solids on
the inclined-wall (Davis and Gecol, 1996). Redrawn with permission of Elsevier.



total solids,

(8.2)

and component balance equations for particles of size j,

(8.3)

where, Q is the volumetric flow rate, �, the volumetric fraction of solids, the first letter in
the suffix denotes the size fraction of the particle ( j � 1,2, … N ) and the second suffix,
the flow stream, feed, overflow and underflow, respectively. In an inclined sedimentor,
clarification rate of any zone shown on Figure 8.1(b) is equal to the vertical settling veloc-
ity of the largest species Vj, j in that zone ( j ) multiplied by the projection of the interfacial
area on the settling direction.

(8.4)

The settling velocities of the particles Vj, j are found by using eqs. (4.154), (4.155), and
(4.158) in Chapter 4. As the particle size is reduced toward the overflow region, the settling
velocity of the particles and the clarification rate of the region will be reduced proportion-
ately. If the overflow rate Qo from the sedimentor is greater than the clarification rate of any
zone, then particles within that zone will mix in the overflow stream shown as Regions 3
and 4 in Figure 8.1(b). To be consistent with the notation of the figure, let us assume the
overflow rate Qo to be made up of clear liquid, the contents of Region 4 and the unclarified
section of Region 3. Then a particle balance in the mixing zone can be written as,

(8.5) 

denoting that the overflow will contain all the size range of particles in Region 4 and
Region 3 in proportion with the clarification rates of these zones.

As the overflow rate increases, concentration of small, slow-settling particles increases,
since the retention time in the sedimentor becomes insufficient for the particles to settle.
At low overflow rates, all the particles will find time to settle and the classifier functions
as a clarifier. As the volumetric concentration of particles in the feed increases, hindered
settling conditions set in and slow down the settling process. As a result, more particles
with a wider margin of size distribution will be present in the overflow.

8.1.1.2 Sedimentation with simultaneous precipitation

In the section above, the particle sizes were assumed not to change with time or shear rate
in flowing through the layers. The particle size and number concentration varies as a func-
tion of time in crystallization and precipitation processes. In crystallization, the materials
making up the particles are initially soluble in the suspending medium. Particle formation
starts on the molecular level with a decrease in the temperature or the amount of the sol-
vent, the suspending medium. Initially there are extremely large numbers of crystal seeds
in the nanometer scale suspended in the medium. With time, the sizes of the crystals
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increase, but their characteristic geometrical shape does not. Crystallization is generally
carried out with gentle mixing to maintain uniformity in concentration of the solution. As
crystals are generally not spherical in shape, their settling should be handled with the prin-
ciples and equations given in Section 4.4 of Chapter 4.

Precipitation is different from crystallization in that the material making up the particle
is not soluble in the solvent, the suspending medium. The precipitates grow by aggrega-
tion of the primary particles. The primary particles may have a characteristic shape that is
not spherical, as in the case of worm-like particles of Mg3(OH)2[SiO5]2, approximately
1 �m in length and diameter in the order of nanometers, making up apparently spherical
clusters (Kind, 2002) with equivalent diameters of 5�m or more. The sedimentation of
these particles should be handled with the fractal theory with settling rates given in Section
4.4.2 of Chapter 4.

Additional issues arise as a consequence of simultaneous aggregation during settling.
The large number of particles of nanometric dimensions changes the rheology of the sus-
pending medium and causes it to behave nonlinearly, even though the solvent is a
Newtonian fluid. As the particles aggregate, the rheology of the medium changes due to
the decrease in the number concentration of primary particles and increase in the number
of clusters formed.

In the scale of the initial particle sizes, Péclet number becomes the controlling parame-
ter and relates the shear rates with the diameter of the particles (eqs. (3.9) and (3.10)). In
regions where the shear rate is not sufficient for complete dispersion of the primary parti-
cles, the depletion forces created by the primary particles enhance aggregation in regions
where the local shear rate is low. Nonuniform shear rates end up with a nonhomogeneous
particle size distribution, not desirable in nanotechnologies.

8.1.2 Fluidization as a separation process

Fluidized bed classifiers work continuously, and solid particles are introduced into the clas-
sifier by a liquid jet stream. As the liquid velocity is greater than the terminal velocities of
the particles, and no settled bed is involved, and minimum fluidization velocity is not a
parameter in these classifiers. In classification by fluidization, the velocity of the fluid stream
is set equal to the settling velocity of a critical particle size with the aim of separating the
solids in the feed stream to two classes with particle dimensions less and greater than the
critical dimension, called the cut size. Ideally, all the particles with diameters smaller than
the cut size should appear in the overflow and those that are greater, in the discharge stream.
In such a case, the total efficiency of separation, �T, defined as the product of the efficiency
of separation of the overflow �o, and the efficiency of separation in the discharge �d,

(8.6)

would be equal to one (�T � 1), with the stream efficiencies defined as,
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and

(8.8)

In these equations, F denotes the cumulative fraction undersize expressed as a mass fraction,
for particles of constant density. Eqs. (8.7) and (8.8) then denote ratio of the mass of the
undersize and oversize particles, respectively, in the overflow and discharge streams to that
in the feed stream. The classifiers work at conditions far from the ideal, mainly due to cir-
culation currents present in the fluidization column, hindered settling conditions and loss of
the momentum of the particles through frequent collisions. The settling velocity of the par-
ticles approaches their free-stream terminal velocities only in the case of dilute feed streams.

8.1.2.1 Bottom-feed separation vessels

One of the simplest fluidization classifiers is the bottom-feed separation vessel shown in
Figure 8.2. The ordinate and the abscissa show the dimensionless height and radius of the
separator, respectively. The scale at the top can be taken as a relative scale for 
the volumetric concentration of particles, as actual values are not given in the original
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Figure 8.2 Bottom feed-separation vessel (Li et al., 1998. Reproduced with permission of
Elsevier, Figure 4 in the original).



publication (Li et al., 1998). The streamlines on the left portion and the volumetric con-
centration of solids on the right portion of the figure are obtained by modeling the sepa-
rator using Navier–Stokes equations for total mass (eq. (5.89)), momentum (eq. (5.90)),
component-particle mass balances (eq. (5.94)), and kinetic energy-dissipation (k � �)
model of turbulence (eqs. (5.99) and (5.100)). The time-averaged Navier–Stokes equa-
tions were solved by finite volume technique. The feed stream containing the particles is
given as jet flow from the bottom of the separator. The particle-laden stream rises verti-
cally upwards, creating toroidal circulation currents in the lower section of the separator.
The discharge leaves from the pipe at the bottom, modeled as an annulus around the feed
pipe to maintain axial symmetry. The toroidal current in the lower section creates circu-
lation currents near the walls of the upper section. The overflow leaves from the top of
the separator. The superficial velocity at the upper section, calculated by dividing the vol-
umetric outflow rate with the largest cross-sectional area of the sedimentor is adjusted to
the settling velocity of the cut diameter, Vpc. The feed jet is negatively buoyant, as the
particles tend to move opposite to the velocity of the jet stream. The height of the jet
stream is a significant parameter in the efficiency of separation of larger particles from
the overflow stream. The height of the feed jet stream is controlled by the Froude number,
Fr, defined as,

(8.9)

where R is the radius of the feed inlet pipe and the subscript fs stands for the feed stream.
The efficiency of separation in the outlet stream is improved by increasing the feed-pipe
radius, R, to reduce the feed-stream velocity, Vfs. Reduction of the feed-stream velocity
decreases the height of the jet, draws down the upper circulation currents, leaving more
room for the large particles to settle. 

8.1.2.2 Fluidized bed classifiers

A fluidized bed classifier with two inlet streams is shown in Figure 8.3 (Chen et al., 2002).
The design of the separator is similar to a hydrocyclone, with the exception of the inlet pipe,
which does not create circulatory flow, but turbulence for initial dispersion of the particles.
The fluidizing liquid stream enters from the bottom of the separator, below the discharge
stream. The overflow stream leaves from the top. The, volumetric concentration of solids
denoted by c in the figure is equivalent to �, and voidage � is equivalent to (1 ��) in the
nomenclature adopted in this book. The various dimensions (in mm) of the five fluidized
bed liquid–solid classifiers investigated are given in the table below the schematic dia-
gram. Spherical glass beads (�p �2470kgm�3) were dispersed in water. Monodispersed
(dp �0.9mm), bidispersed, dp �0.9mm and dp �0.55mm, and polydispersed particles
within this range, obeying the Rosin–Rammler cumulative distribution
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were used to analyze the parameters effective in the efficiency of separation. The width of
the particle-size distribution was characterized by the particle-size ratios corresponding to
90 and 10% undersize:

(8.11)
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Figure 8.3 Fluidized bed classifier. (Chen et al., 2002. Redrawn with permission of Elsevier,
Figure 1 in the original).



The range of variables investigated in the research is:

The Reynolds number based on the particle diameter Rep, and based on the column diam-
eter Rec are defined with the equations,

(8.12)

(8.13)

Va in these equations is the velocity of the fluidizing stream (Va � 4Qa /� De
2 ). Archimedes

number Ar is defined as,

(8.14)

The experimental results were in good agreement with the model predictions (Chen 
et al., 2002). The two major findings of the work regarding the operation of the classifica-
tion column were:

1. The volumetric concentration of solids in the discharge stream, �d , decreased as the
velocity of the fluidizing stream, Va, increased and it was independent of the varia-
tions in the velocity, Vf, or volumetric flow rate of the feed stream, Qf , volumetric
concentration of solids in the feed stream, �f, the particle-size range d90 �d10, the vol-
umetric flow rate of the discharge stream and height of the column Hc.

2. As the volumetric flow rate Qf increased or the concentration of solids �f decreased
in the feed stream, the particle concentration was found to decrease throughout the
column, but the other parameters were not affected. 

The separation efficiencies in the fluidized classifier calculated with eqs. (8.6)–(8.8) are
reproduced in Figure 8.4. The experimental results were nearer to the no-separation curves
found through the model studies. The total efficiency, �T, of the classifier increased with a
decrease in the velocity of the fluidizing stream and the volumetric concentration of solids
in the feed stream, �f, and an increase in the volumetric flow rate of the feed stream Qf,
the volumetric flow rate of the discharge stream, Qd, the particle-size range d90 �d10, and
height of the column, Hc.
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8.1.3 Classification in hydrocyclones

As in the case of fluidized classifiers, hydrocyclones are also dynamic systems where the
flow patterns of the suspension are controlled by the design and dimensions of the hydro-
cyclones. Hydrocyclones are used with small-sized or low-density solid particles, where
separation under the action of gravity would be too slow to be economically feasible. 
The gravitational field acting on the particles is increased and changed in direction by cen-
trifugal acceleration. Centrifugal motion is created by injecting the suspension tangentially
into a cylindrical section, as shown in Figure 8.5. The cylindrical section of the hydro-
cyclone serves as the classification unit, where the particles line up in the radial direction
within the swirling suspension. As the dominant direction of acceleration is now radially
outwards, a � r� 2, the largest particles are pushed farthest from the axis, toward the wall
of the cyclone. When the swirling suspension reaches the conical section, starting from the
largest, the particles strike the walls, lose their momentum, slide down the walls under the
action of gravity, and leave the cyclone from the bottom as underflow. The remaining par-
ticles that did not have a chance to strike with the walls of the cyclone are carried along
with the fluid stream that leaves the cyclone from the top as overflow. The other functional
parts of the cyclone are the vortex finder tube at the top and apex cone at the bottom that
guide the internal vortex flow going upwards. Hydrocyclones are small, compact units
with a high capacity, requiring low maintenance and operating cost and therefore, are
extensively used. 
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Figure 8.4 Variation of the efficiency of fluidized bed classifier with the ratio of the solids in the
discharge stream to that in the feed stream. (Chen et al., 2002. Redrawn with permission of Elsevier,
Figure 13 in the original).



Yoshida et al. (2004) investigated the effect of the inlet to the hydrocyclone on the separa-
tion efficiency. The inlets to be evaluated are the tangential inlet given in Figure 8.6(a) with
the spiral inlet given in (b) of the same figure. The performance of the cyclone separators
could have been evaluated with eqs. (8.7) and (8.8), but evaluation by partial-separation 
efficiency, ��, based on particle-size distribution functions may be more handy when par-
ticle sizes are determined by light-scattering techniques:

(8.15)

mc and ms in this equation are the masses of the coarse and small particles collected in the
underflow and overflow curves, respectively; fc and fs are their respective particle-size 
distribution functions and �dp denotes particle-size range of the distribution functions
(F � �dp1

dp2 fd(dp)). Classification performance is evaluated by the ratio of the particle diam-
eters corresponding to �� � 75% and �� � 25% partial separation efficiency,

(8.16)

The results are given in Figure 8.7. 
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Figure 8.5 Functional parts of a hydrocyclone.



The steeper the curve around the cut point, the better is the efficiency of separation. The steep-
ness of the curve is greater in the case of spiral inlet. The separation efficiency of the spiral
inlet is attributed to the formation of a smooth stream at the inlet, without the formation tur-
bulence as in the case of tangential inlets. Turbulence effect deters the lining-up effect (clas-
sification of the particles) in the cylindrical section leading to poorer separation efficiency.

Another cause for the decrease in the separation efficiency of hydrocyclones could be
the short circuiting of the feed through the vortex finder without remaining for a sufficient
time in the hydrocyclone for particle classification to take place. In such a case, part of the
feed stream leaks over the outer walls of the vortex finder, and mixes with the outflow
stream. Another source of malfunctioning could be the section just above the apex cone in
Figure 8.5, from where the coarse particles climb up and mix with the outflow stream.
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Figure 8.6 Fluid inlet designs of hydrocyclones. (Yoshida et al., 2004. Reproduced with permis-
sion of Elsevier, Figure 4 in the original).

Figure 8.7 Comparison of the separation efficiency in hydrocyclones with spiral and tangential
entry. (Yoshida et al., 2004. Reproduced with permission of Elsevier, Figure 5 in the original).



To elucidate the parameters effective on the separation efficiency, Monredon et al. (1992)
measured the tangential and axial velocities in five hydrocyclones given in Table 8.1. 

The first hydrocyclone in Table 8.1 is taken as a reference with which the performances
of the other cyclones are compared. The second hydrocyclone is identical to the first
cyclone, except the spigot (underflow tube) diameter is larger. Similarly, the only differ-
ence of the third cyclone is the use of vortex finder with a smaller diameter. The fourth
hydrocyclone differs in the cone angle only, and the fifth in all of the overall dimensions.

The total height of the hydrocyclones is 260mm in each case. Velocity measurements
are taken at the critical points leading to poor separation performance: just below the vor-
tex finder (50mm depth) and near the underflow pipe (200mm depth). The velocities are
measured with the laser-Doppler velocimeter, therefore, only water was present in the
hydrocyclone, with an air core at the center, since laser beams cannot penetrate even dilute
suspensions. In the separation of suspensions, liquid phase carrying the smaller particles
move upwards in place of the air core and leave through the overflow pipe, and a slurry of
larger particle leaves from the underflow pipe.

The results in Figure 8.8(a) and (b) show that tangential velocities show a maximum a
short distance away from the vortex finder pipe walls and decrease sharply as vortex finder
pipe walls are approached. The maximum velocity is affected by the diameter of vortex
finder pipe, only. The increase in the tangential velocity causes the pressure losses (�Phc) in
the hydrocyclone to increase also. The axial velocities measured just below the vortex finder
in Figure 8.8(c) are not affected by any of the parameters investigated. But the axial veloci-
ties at a depth of 200mm in Figure 8.8(d) are severely affected. The negative velocities
observed in the case of the second hydrocyclone indicate that a larger diameter underflow
pipe withdraws a large proportion (21% of the feed stream instead of the 8% observed in
other hydrocyclones) of the feed stream. The entrainment of the already classified coarse par-
ticles by the upward flow is reduced, but a greater fraction of smaller particles that had to be
entrained in the upflow goes through the underflow pipe together with the larger particles. 

The flow in hydrocyclones are generally modeled with the use of Navier–Stokes equa-
tions and vorticity and stream-function tensors. Although a reasonable agreement is
reached with experimental results in each case, there is no general model that can describe
the flow patterns in the hydrocyclones.
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Table 8.1

Dimensions (mm) of the experimental hydrocyclones 

Hydrocyclone number 1 2 3 4 5

Hydrocyclone diameter 75 75 75 75 150
Inlet diameter (mm) 25 25 25 25 64a

Vortex finder diameter (mm) 25 25 22 25 67
Spigot diameter (mm) 12.5 15 12.5 12.5 19
Vortex finder length (mm) 50 50 50 50 135
Cylindrical section length (mm) 75 75 75 75 413
Included cone angle (�) 20 20 20 15 5.5b

aRectangular involute inlet 64 mm high.
bThe included cone angle increases to 13° at a location 127 mm above the spigot opening.
Source: Monredon et al., 1992. Redrawn with permission of Elsevier.



Similar problems exist with the empirical design equations developed by different
authors. The design procedure of hydrocyclones is outlined by Kraipech et al. (2006) and
the reliability of the design equations are validated with different solid–liquid mixtures to
be separated and different types of hydrocyclones. Four fundamental parameters were
identified in the design of hydrocyclones, given with empirical design relations:

1. Pressure drop �P (Table 8.2),
2. Flow recovery to underflow Rf (Rf � Qd �Qf) (Table 8.3),
3. Corrected cut size d50 (Table 8.4),

452 8. Classification and Separation of Solid–Liquid Systems

Figure 8.8 Tangential and axial velocities in a hydrocyclone. (a) Tangential velocity at 50mm
depth, (b) Tangential velocity at 200mm depth, (c) Axial velocity at 50 mm depth, (d) Axial veloc-
ity at 200mm depth. (Monredon et al., 1992. Redrawn with permission of Elsevier, Figures 2 and 3
in the original).
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Table 8.2

Correlations for pressure drop in hydrocyclones

Equations Key Default values Equation References
parameters numbers

a, b a � 2.3, b � 3.6 (8.17) Besendorfer (1996)

KQO – (8.18) Nageswararao (1995)

F3 F3 � 1 (8.19) Flintoff et al. (1987)

Where Eu�371.5 Rek2 en�sf and k2 k2 � 0.116, n � � 2.12 (8.20) Svarovsky (1994)

Source: Reprinted from Kraipech et al. (2006) with permission of Elsevier. 
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Table 8.3

Correlations for flow recovery to underflowing hydrocyclones

Equations Key Default values Equation References
parameters numbers

C1,x,y C1 � 61.3, x � 4.4, (8.21) Moder and 
y � � 0.44 Dahlstrom

(1952)

KVO – (8.22) Nageswararao
(1995)

F4 F4 � 1 (8.23) Flintoff et al
(1987)

a,b a � 400, b � 6.9 (8.24) Abbott (1968)

a,b a � 1.1, b � 3 (8.25) Tarjan (1961)

a,b a � 0.95, b � 4 (8.26) Yoshioka 
and Hotta
(1955)

Source: Reprinted from Kraipech et al. (2006) with permission of Elsevier.
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Table 8.4

Correlations for the cut size in hydrocyclones

Equations Key Default values Equation References
parameters numbers

R R � 1 (8.27) Besendorfer
(1996)

KDO – (8.28) Nageshwararao
(1995)

F1,k F1 � 1,k � 1 (8.29) Flintoff et al.
(1987)

k1 k1 (8.30) Svarovsky 
(1994)

Eu given in eq. (8.20)

Source: Reprinted from Kraipech et al. (2006) with permission of Elsevier. 
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Table 8.5

Correlations for the classification function in hydrocyclones

Equations Key Default Equation References
parameters values numbers

m m � 4 (8.31) Lynch and Rao 
(1968)

m m � 3 (8.32) Plitt (1971)

Source: Reprinted from Kraipech et al. (2006) with permission of Elsevier.
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4. The sharpness of classification m (the slope of the separation efficiency curve in
Figure 8.7), and the classification function, C(d ), used to calculate the particle-size
distribution of the overflow and underflow streams (Table 8.5).

Empirical equations developed for these parameters are summarized in Tables 8.2–8.5,
and the nomenclature identified and units to be used are given in Table 8.6. The default
values of the key parameters are the values suggested by the authors that developed the
relations. 
The input parameters to be used in the design equations of Tables 8.2–8.5 are:

1. Pressure drop �P, or equivalently volumetric flow rate of the feed stream, Qf

(denoted as F in the tables);
2. Hydrocyclone dimensions, i.e., diameter, cone angle, height of the hydrocyclone,

and the geometry of the inlet pipe, the sizes of the vortex finder pipe and apex
cone;

3. Conditions of the flow streams: concentration of the feed slurry, particle-size distri-
bution of the feed slurry, density, and viscosity of the phases.

The input parameters are used in the design equations to calculate:

1. Volumetric flow rate Qf if �P is given or �P if Qf is given.
2. Overflow and underflow (discharge) volumetric flow rates Qo and Qd, using eq. (8.1) and

(8.33)

The selectivity function S(dp ) is calculated from the C(dp ) relations given in Table 8.5 with
eq. (8.34),
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Particle-size distributions in the overflow and underflow (discharge) streams are calculated
by component material balances with the use of eq. (8.34),

(8.35)

(8.36)

The volumetric concentration of solids in the overflow and underflow streams is calculated
by summing up the fraction of particles at each size interval:

(8.37)

(8.38)

The authors could not find a satisfactory agreement with the predictions of the design equa-
tions with the use of default values and the experimental results. Fitting the design equa-
tions to experimental data and selecting the set of relations that gave the best fit to the
experimental values were next examined. Satisfactory predictions were obtained only in the
hydrocyclone where the values of the constants were obtained. Even with the refined con-
stants, changing the dimensions of the cyclone, made the design equation unusable. The
authors concluded that the design relations given in Tables 8.2–8.5 should only be used
when the constants are determined experimentally and then only in the hydrocyclone
where these constants were determined. All of the equations were sensitive to variations in
pressure drop and feed concentration but could not be reliably used in predicting the effect
of other parameters.

8.2 SEPARATION IN A MAGNETIC FIELD

Separation based on magnetic properties is possible in a magnetic field if the particles have
different magnetic susceptibilities. Ferromagnetic materials are relatively easy to separate.
Para- and diamagnetic materials require ingenious methods for separation that are cur-
rently under development. In addition, the strength of a magnetic field is rarely so high that
the effects of other fields such as gravitational, centrifugal, or electrical be neglected in
comparison. So, a particle will be subjected to various forces according to the strength of
the other fields. Separation based on magnetic forces is possible only if the magnetic force
predominates the other forces. In modeling magnetic separators, all of the forces effective
under the given fields are taken into consideration in momentum-balance equations
(Abdelsalam, 1987). The hydrodynamic conditions specific to the design of the separator
are also included into the model formulation.

Two different types of separations based on magnetism are possible: Separation of mag-
netic particles themselves and separation of nonmagnetic particles within a magnetic
medium.
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Table 8.6

Units to be used in the correlations given in Tables 8.2–8.5

Symbols Parameters Design equations presented by

Besendorfer Svarovsky Nageswararao Moder and Flintoff et al. 
(1996) (1994) (1995) Dahlstrom (1987)

(1952)

d, d50, and, d	50 Particle size, cut size, �m m m – �m
and corrected cut size

Dc Hydrocyclone diameter inch m m – cm
Do Vortex finder diameter inch – m Same as Du cm
Di Inlet diameter – – m – cm
Du Apex diameter inch – m Same as Do cm
F Feed flow rate galmin–1 m3 s–1 m3 s–1 gal/min 1 min–1

G Gravitational acceleration – – kgm–2 – –
hfv Free vortex height – – M – cm
Lc Total length of hydrocyclone – – m – –
�P Pressure drop psi Pa Pa – kPa

The characteristic velocity ms–1 – – – –

� Fluid viscosity cp Pas – – Pasec
�sf Solid volume fraction in feed
� � � �sf (1 � �sf )

3 – – – – –
� Cone angle – – degree – –
�f, �, and �P Density of feed slurry, gcm–3 kgm–3 kgm–3 – g cm–3

liquid, and solid

Source: Reprinted from Kraipech et al. (2006) with permission of Elsevier.
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8.2.1 Separation of magnetic particle

Separation of magnetic particles is brought about by the action of a magnetic force in a
nonuniform magnetic field, as given by eq. (4.38). The parameters effective on the mag-
nitude of this force are particle volume, susceptibility of the particle, and the strength of
the magnetic field inside the particle and externally applied field strength. For a good dis-
cussion of magnetic forces acting on the particles in a separator under a magnetic field, the
readers are referred to the article by Smolkin and Smolkin (2006).

As the particle size is effective in determining the magnitude of the magnetic force, one
way of increasing the separation efficiency would be to subject the particles to prefloccu-
lation under a weak magnetic field (�0.03T). This method, termed as magnetic floccula-
tion screening, is used in upgrading magnetite concentrates in the presence of silica. The
larger magnetite flocculates are then separated from silica by screening for further refine-
ment (Garcia-Martinez et al., 2004).

8.2.2 Separation of nonmagnetic particles in a magnetic medium

Nonmagnetic particles are separated in a stationary magnetic fluid situated in the magnetic
field of two magnets placed at the two sides of a chamber called, ferrohydrostatic sepa-
rator. The nonmagnetic particle immersed in the magnetic medium will be subjected to
gravitational and buoyancy forces due to gravitational and magnetic fields. In addition,
drag forces will arise when the particle moves under the action of these three forces. Body
and buoyancy forces under a gravitational field are given by eqs. (4.34) and (4.36).
Buoyancy force FbM in a magnetic field is given by,

(8.39)

where �0 is the magnetic permeability of vacuum [T mA�1], �p is the volume of the par-
ticle, Mf is the saturation magnetization, and 
H0 is the external magnetic field gradient.
The resulting drag force on the particle is given by the Stokes law, eq. (4.48). The parti-
cle trajectories, and separation process in a ferrohydrostatic separator are modelled and
solved using discrete element method by Murariu et al. (2005), and the recent develop-
ments in separation techniques are reviewed by Svoboda and Fujita (2003), which the
interested reader can refer.

8.3 SEPARATIONS IN THE MICROSCALE

Microseparations involve the separation of colloidal particles in submicron size range and
in channels of micrometer dimensions, at least in depth and width. As the Reynolds num-
ber is extremely small in this range of particle and channel sizes, an external force acting
on the particle is required to overcome the viscous forces resisting the motion of the parti-
cles. External forces should also dominate the Brownian motion to reduce random scatter-
ing. As in the case of micromixing, microseparation devices are still in the development
stage. The external forces acting on the particles are given in Chapter 4. In this section,

F HbM p f� �0 0� M �
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some of the microseparation techniques developed to separate and/or fractionate particles
in the submicron size range will be presented.

8.3.1 Field flow fractionation techniques

Field flow fractionation techniques use gravitational field as an external field in separation
and fractionation of particles in a polydisperse population according to their size and
shape. The technique is based on the principles of elution through a column with diameter
much greater than the diameter of particles to be separated ((D/dp) � 100). The particles
are separated by sedimenting across the channel diameter, or width, in the case of rectan-
gular channels. Fractionation according to the shape of the particles is also possible based
on differences in terminal velocity. The technique was successfully used to separate spher-
ical TiO2 particles of 0.31�m average diameter from ellipsoidal particles of 0.45�m
hydrodynamic diameter in the Brownian elution mode (Rasouli et al. (2001). In this
method, the flow is stopped after introduction to the channel to allow the sample to sedi-
ment across the channel thickness. This stop flow, or primary relaxation time, is closely
related with the density, size distribution, and shape of the particles as discussed in Chapter 4.
Prevention of the aggregation of particles is an essential requisite in the proper operation
of the system. Electrolyte concentration of the carrier fluid is critical in suppressing aggre-
gation through repulsive forces between the particles, as discussed in Chapter 1.
Surfactants are also used to maintain steric stabilization as well as to reduce the drag on
the walls. As the use of surfactants is multifunctional in this technique, better results are
obtained with mixtures of surfactants. The final condition for the operation of the system
rests on the attainment of hindered settling conditions. As the shape of the particles are less
determinative than the size of the particles on the settling rate, hindered settling conditions
where interactions between the particles are appreciable should be maintained for differ-
entiation with respect to the shape of the particles. Rasouli et al. (2001) could obtain
bimodal peaks only at TiO2 concentration greater than 1% (w/w).

8.3.2 Separations in flow through microfluidic bifurcations

Separations in flow through bifurcations are basically a separation technique, rather than
classification, in its present state of development. The operation principle is based on the
differences in the moment of inertia of the liquid suspending medium and the particles:
The particles cannot turn around corners as easily as the fluids and therefore, prefer
straight-through channels. The second factor in the separation technique is the preference
of the particles to remain along the inside walls after a bifurcation, instead of changing
streamlines and distribute evenly over the entire cross-sectional area, under the prevailing
very low Reynolds number conditions.

Roberts and Olbricht (2006) investigated the parameters that affect the separation of
particles in bifurcations reproduced in Figure 8.9. The multiple bifurcation in (c) is
obtained by the combination of symmetric (a) and oblique (b) bifurcations. The experi-
mental conditions were selected so that Brownian motions would not interfere with the

460 8. Classification and Separation of Solid–Liquid Systems



particle motions, that the attractive and repulsive surface forces would be negligible in
comparison with the hydrodynamic forces. Nevertheless, surfactants were used in the sus-
pending medium, to eliminate the bubbles, to stabilize the suspension and to reduce the
wall drag, and glycerine was used to adjust the suspension-medium density so that the par-
ticles would be selfbuoyant. The aspect ratio a/b (square or rectangular), flow rate parti-
tioning Q1/QT, and the ratio of the particle diameter to the microchannel diameter dp /D
were investigated as parameters. 

The results showed that the aspect ratio had a negligible effect on the separation.
Diameter ratio dp/D was found to be critical: Good separation efficiencies were obtained
only when the diameter ratio approached one (0.8 in the experiments). By far, flow-rate
partitioning Q1/QT has the largest effect on the separation. When the ratio of the number
of particles going through the collinear N1/NT pipe to the total number of particles is plot-
ted as a function of the flow-rate ratio Q1 /QT, the trend line for the experimental points
intersect the no-separation line, N1/NT � Q1/QT, at Q1/QT � 0.5. At a critical value of
the flow-rate partitioning function, (Q1/QT)*, all the particles go to the first stream and
N1/NT �1. If the particles are separated with the aim of clarifying the liquid, then the ratio
of the clarified liquid flow rate to the total flow rate, (1� (Q1/QT)*) indicates the efficiency
of bifurcation flow in separating the particles from the fluid. Roberts and Olbricht (2006)
found that the overall efficiency of the multiple bifurcation was greater than that of its
counterparts and that a bifurcation pattern could be designed according to the purpose of
the separation. It should be mentioned in passing, that the blood cells are partitioned
according to the regional needs of the body through bifurcations.

8.3.3 Ultrasonic separations

When a standing sound wave is set up in a suspension of particles with radii much smaller
than the wavelength of sound, an acoustic force in the axial direction will act on the particles
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Figure 8.9 Bifurcation patterns: (a) Y-shaped bifurcation with �1 � �2 � 45� (b) Oblique bifur-
cation, �1 � 45�,�2 � 135�, (c) Multiple bifurcation obtained by combining (Roberts and Olbricht,
2006. Reproduced with permission of John Wiley, Figure 1 in the original).



(Kapishnikov et al., 2006), given by eqs. (4.42) and (4.43) in Chapter 4 for a medium of neg-
ligible viscosity. The particles will be forced to move either to the nodes of the standing
wave, if the densities of the particles are greater than the density of water, the suspension
medium (�p � �w), or toward the antinodes if the particles are lighter than water (�p � �w),
in an aqueous medium (Bekker et al., 1997) as given in Figure 8.10(a) and (b), respectively.
Separation by ultrasound acoustic energy then depends on a balance between the frictional
forces and the acoustical forces acting on the particle. This method can only be used if the
viscosity of the medium is low enough to permit the diffusion of the particle (eq. (3.2),
Chapter 3) in a reasonable time toward the node or the antinode during the passage through
the microchannel. In addition, if the particle is extremely small, then the area exposed to the
acoustic force will decrease making separation more difficult. 

Kapishnikov et al. (2006) developed a separation and classification method based on
the tendency of the particles to collect at the nodes or antinodes of a standing wave. If
Figure 8.10(a) or (b) is rotated by 90� and a microchannel of width adjusted to half or
quarter of the wavelength of sound placed in between two transducers, a separation sys-
tem will be obtained. Channels of width equal to one-half of the wavelength of sound in
the medium, with nodes coincident with the walls of the channel, are used as separators,
while a channel width of one-quarter of the wavelength are used to classify heavy and
light particles tending to collect at the nodes and antinodes, respectively.

The separator developed by Kapishnikov et al. (2006) for the separation of particles from
an aqueous medium or blood cells from plasma is shown schematically in Figure 8.11(a).
The outlet is branched to aid in the separation of particles from the liquid. Contrary to the
tendency in the flow of particles in bifurcations, the path of the particles can now be
adjusted to divert their flow to the side channels by the application of the acoustic external
force: If the aim of separation is the clarification of the liquid, it is diverted to the central
channel for ease in connecting the units in series as in Figure 8.11(b). If the unit is used for
separating the solids from the liquid only, the channel width is 160�m, or about half the
wavelength of sound. 

The view of the ultrasonic separator captured with a polarized microscope is shown in
Figure 8.12. The path of the particles is that given for flow in a bifurcation—only this time
the path is adjusted by the width of the channel and the location of the nodes of sound waves. 

By adjusting the width of the channel to quarter of a wavelength, or about 100�m, the unit
can also be used as a classifier with slight modifications in the geometry of the channel as
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Figure 8.10 Principle of operation of ultrasonic separators. (a) Collection of dense particles 
(�p � �w) at the nodes of a standing wave. (b) Collection of light particles  (�p ��w) at the nodes
of a standing wave. (c) Adjustment of the channel width to bring about separation.



given in Figure 8.13. Use is made of the fact that the acoustic force will be greater on the
larger particles as indicated in eq. (4.42). The node is placed near the lower wall of the chan-
nel and the antinode, near the upper wall toward which the lighter particles are diverted. 

The performance of the separation efficiency � was evaluated in terms of the clearance
constant K,

(8.40)

where Nin and Nout are the initial and final number concentrations of particles in the inlet
and outlet channels, respectively, through the relations,

(8.41)
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Figure 8.11 Schematic presentation of the ultrasonic separator. (a) Single stage, (b) Three stages
connected in series (Kapishnikov et al., 2006. Reproduced with permission of IOP publishing,
Figure 4 in the original).



The variation of the clearance factor K is given as a function of the flow rate through the
channel and volumetric concentration of solid particles in Figure 8.14. As the flow rate
increases, the efficiency of separation decreases. The relation between the efficiency of
separation and the volumetric concentration is not linear due to random motion of some of
the particles at low volumetric concentrations, scattering of ultrasonic waves on particles,
and the interference between the particles at high concentrations. 
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Figure 8.13 Ultrasonic classification. (Kapishnikov et al., 2006. Reproduced with permission of
IOP publishing, Figures 5 and 6 in the original).

Figure 8.12 Separation of particles as a function of volumetric concentration of solids (indicated
on the figures) in an ultrasonic separator as viewed in a polarized microscope. The scale indicates
100�m. Particle size R � 5�m. (Kapishnikov et al., 2006. Reproduced with permission of IOP pub-
lishing, Figure 7 in the original).



8.3.4 Separations based on magnetic properties

Magnetic separations in microscale are oriented to microbiological applications at the
present, and used in separating pathogenic microorganisms from water, food, or soil
medium. Blood cells could also be separated with the aid of magnetic fields (Hirota 
et al., 2004; Popa et al., 2006).

Since biological microorganisms and blood cells are not magnetic themselves, use is
made of other magnetic particles or induced magnetism of the medium. In the immuno-
magnetic separation (Rotariu et al., 2002), superparamagnetic carrier microparticles
coated with antibodies specific to the pathogenic microorganisms are used in their isola-
tion from a medium. The microorganisms are bound to these carrier particles through ran-
dom collisions. In the second stage of the process, these particles together with their
attached microorganisms are separated under an external magnetic field.

Blood cells could be separated by magneto-Archimedes levitation technique developed
by Hirota et al. (2004). Levitation technique depends on the difference in densities and
magnetic susceptibilities between the particles and the surrounding medium. The magnetic
susceptibilities of the components of blood determined by the authors are given in Table 8.7.
The differences in the magnetic susceptibilities of the components enable these to be sepa-
rated from each other under a magnetic field. Since the magnetic properties of the medium
are also effective in the separation, the forces acting on the medium is also taken into
account in the force balance equations for each component. 
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Figure 8.14 Variation of the clearance coefficient as a function of the flow rate through the
microchannel and volumetric concentration of solids. (Kapishnikov et al., 2006. Reproduced with
permission of IOP publishing, Figures 5 and 6 in the original). 



The subscript p denotes the particles and m, the medium in this equation. �0 is the mag-
netic permeability of vacuum [T mA�1], � is the magnetic susceptibility and B is the mag-
netic induction related to the magnetic field strength H through the relation,

(8.44)

� and M in this equation are the permeability and the magnetization of the material. At equi-
librium, the total forces acting on the particles are equal to the total forces acting on the
medium. Therefore, each component has a definite, specific levitation position that cannot be
changed. When the particles are diamagnetic and the medium is paramagnetic, a buoyancy
force is exerted on the particles that pushes them upwards. The required field conditions,
B(dB/dz), decrease with the pressure of the medium, (i.e., oxygen gas) at a rate depending on
the component. The order of separation (levitation) of the components can be controlled by
changing the magnetic field conditions and the pressure of the medium.

8.3.5 Separations based on electrical properties

Electrically driven flow of electrolytic solutions in microchannels, electro osmotic flow
(EOF) is controlled by the surface charge of the adsorbed layers on the walls of the
microchannels. Adsorbed ionic species can be simple ions as well as polyelectrolytes and
zwitterionic surfactants. The factors affecting flow are the electrical charge density of the
walls, the applied electrical field and the zeta potential of the microchannel walls. By
changing the charge of the adsorbed layers, the direction of flow can be changed. Flow in
different directions can be obtained even within the same channel, by changing the surface
charge of the adsorbed layers of polyelectrolytes [Barker et al., 2000; Sui and Schlenoff,
2003]. A double layer forms along the walls by preferential adsorption of oppositely
charged ions from the flowing electrolyte solution. The thickness of the double layer, or
equivalently the Debye length of the diffuse ionic cloud along the walls depends on the
ionic strength I

(8.45)

with the notation of Chapter 1) of the flowing electrolyte solution.
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Table 8.7

Measured magnetic susceptibilities and densities of biological materials

Name of sample Density, � (103 kgm–3) Magnetic susceptibility, � (10–6)

Hemoglobin 1.33 �3.38
Fibrinogen 1.57 �6.12
Cholesterol 1.02 �7.61
Albumin 1.28 �5.68
DNA 1.28 �4.99

Source: Hirota et al., 2004. Redrawn with permission of Elsevier, Table 1 in the original.



The velocity profile in fully developed microchannel flow is uniform nearly up to the
electrical double layer, within the order of nanometers, depending on the Debye length of
the diffuse double layer. The average velocity, observed by tracer particles with nano-
particle image velocimeter technique (Sadr et al., 2004) varies linearly with the applied
electrical field and the zeta potential of the microchannel walls. In electro-osmotic flow,
the volumetric flow rate was found to vary directly with the height (or the equivalent
diameter of the channel) instead of with its cube as in the case of pressure driven flow. Of
special technological interest is the phenomenon known as electrokinetic pumping, the
increase of the flow rate in electro-osmotic flow above that of pressure driven flows in
microchannels with dimensions less than about 10 nm.

Separation in EOF is either based on the difference in mobilities of the components or
by preferential adsorption on the charged walls. Separation by electro-osmotic mobility is
similar to chromotographic separation, with the difference in the driving force, electric
field instead of a pressure field. An example for the recent applications is the separation of
DNA. The electro-osmotic mobility �eo, is defined as the bulk electro-osmotic speed divided
by the driving electric field E, (Sadr et al., 2004). Electro-osmotic mobility depends on the
electrical permittivity �e and viscosity � of the fluid, wall mol fraction of cationic go and
anionic f o species and the Faraday constant, F, in the model proposed by Conlisk et al.
(2002):

(8.46)

Separation by preferential adsorption on the surfaces of microchannels by immobilized
protein structures is a recently developed process. To separate blood cells, biomimetic sur-
faces were created with the use of phospholipid polymers [Ito et al., 2005]. Blood cells that
adsorbed on these surfaces were found to retain their original morphology.
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Appendix A

Mathematical Operations

APPENDIX A1: DERIVATIVES, VECTOR, AND TENSOR OPERATIONS

A1.1 Substantial derivative

A change of a property (i.e., density, concentration, solid volume fraction, velocity, etc.)
with respect to time t in the control volume at a fixed location is expressed as the partial
derivative, (�/�t)x,y,z. A balance equation written in terms of changes that occur at a fixed
point in space is in the Eulerian form (Bird et.al., 2002; Fahein, 1983). Volumetric frac-
tion of solids suspended in a liquid medium can be given as an example of a property that
changes with respect to both time and position. The total derivative of the volumetric frac-
tion of solids is then

(A1.1)

The variation in the position of the control volume with respect to time gives the local fluid
velocities in each direction

(A1.2)

Dividing each term by dt and using the above equation yields

(A1.3)

The derivative (D/Dt) in this equation indicates the rate of change of the property for an
observer moving with the fluid which is the Lagrangian approach (Bird et al., 2002). This
derivative is known as convective, substantial, or material derivative. The convective
derivative (eq. (A1.3)) can also be considered in two parts: the first term on the RHS
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indicates the rate of change of the property with time at a fixed point which corresponds
to the Eulerian approach. The last three terms on RHS emphasize the rate of change of the
property with time due to the fluid motion as explained in the equation. Hence, the con-
vective differential derivative of the solid volume fraction in terms of � operator is

(A1.4)

where V is the velocity vector. The convective operator for any property is defined as

(A1.5)

A1.2 Tensors

Tensors are most general form of representation of quantities. Vectors and tensors are sub-
groups of tensor with reduced number of dimensions. They are explained in Table A1.1.
The multiplication signs related to tensors and their results are summarized in Table A1.2. 

A1.3 First-order tensors (vectors)

Vector definitions in terms of:

• vectorial components on the coordinate axes 1–3:
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Table A1.1

Tensors encountered in balance equations

Tensor Name Notation A quantity which Property Example

Zero Scalar s Has only magnitude Magnitude Time, volume,
order mass, energy,

temperature
First order Vector v Associates a scalar Magnitudea Velocity, force,

with each coordinate and direction momentum,
direction acceleration

Second order Tensor T Associates Magnitude and Shear stress,
(a) a vector with each direction shear rate,
coordinate direction or vorticity, etc.
(b) a scalar with each
ordered pair of
directions

aExcept zero vector. It has zero length and arbitrary direction. 



• unit vectors on the coordinate axes 1–3:

(A1.7)

where v1, v2, and v3 are the magnitudes of the projections of v vector on the coordinate axes
1, 2, and 3. Here, �1, �2, and �3 are unit vectors with unit length in the direction of the 1,
2, and 3 axes.

Two vectors v and u are equal when their magnitudes are equal and they point in the
same direction:

(A1.8)

If v and u have the same magnitude and they are in opposite directions, v and u are equal
but reverse vectors:

(A1.9)

Magnitude of a vector, |v|:
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Table A1.2

The operations on tensors

Product Product Calculation Example Results of example
sign of order

Order Notation

Dyadic None Sum of the Scalar and 0 � 1 � sv
orders, � a vector 1 � vector

Two vectors 1 � 1 � vu
2 � tensor

Scalar . �-2 Identical vector 1 � 1 �
2 � 0 � scalar v.v � |v|2 � v2

Two vectors 1 � 1 � 2 � v.u � |v||u| �
0 � scalar vu cos �vu

Second-order 2 � 1 � 2 � T.v
tensor and a vector 1 � vector
Two second-order 2 � 2 � 2 � T.�
tensors 2 � tensor

Vector �, ⊗ �-1 Identical vectors 1 � 1 � 1 � v � v � 0
(cross) 1� vector

Two vectors 1 � 1 � 1 � v � u �
1 � vector (vu sin �vu)nvu

Double dot : �-4 Second-order 2 � 2 � 4  � T:�
(scalar) tensors 0 � scalar



A1.3.1 First-order tensor (vector) operations

Properties of unit vectors summarized in Table A1.3 are useful in vector operations.
Equations given below are examples of operations on vectors. The properties of these vec-
tor operations can be seen in Table A1.4. 

Addition and subtraction of vectors:

(A1.11)
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Table A1.4

Operations on first-order tensors (vectors)

Operations on vectors Property Algebraic rules satisfied

Addition Commutative v � u � u � v
Associative w � (v � u) � (w � v) � u
Identity v � 0 � v
Inverse v � (�v) � 0

Subtraction v � u � v � (�u)
Multiplication by Associative �(�v) � (�� )v
a scalar Identity 1v � v

Distributive �(v � u) � �v � �u
Distributive (� � � )v � �v � �v

Scalar (dot) Commutative v � u � u � v
product of two vectors Not associative w � (v � u) 	 (w � v) � u

Distributive w � (v � u) � w � v � w � u
Distributive (�w) � (v � u) � w � (�v) � �(w � u)

Vector (cross) Not commutative v � u 	 u � v
product of two vectors Not associative w � (v � u) 	 (w � v) � u

Distributive (w � v) � u � w � u � v � u
Associative w.r.t. �(v � u) � �v � u � v � �u
scalar multiplication

Table A1.3

Properties of unit vectors

Product Summary

Scalar (dot) (�1 � �1) � (�2 � �2) � (�3 � �3) � 1 (�i � �j) � �ij
(�1 � �2) � (�2 � �3) � (�3 � �1) � 0

Vector (cross) (�1 � �1) � (�2 � �2) � (�3 � �3) � 0 (�i � �j) � �
k�1

3
�

ijk �k

(�1 � �2) � �3, (�2 � �3) � �1, (�3 � �1) � �2
(�2 � �1) � ��3, (�3 � �2) � � �1 , (�1 � �3) � � �2

�ij : Kronecker delta and �ijk : the alternating unit tensor. 



Multiplication of a vector by a scalar results in a vector:

(A1.13) 

Dyadic product of two vectors:

(A1.14)

Dot product of two vectors results in a scalar:

(A1.15)

Cross product of two vectors results in a vector:

(A1.16)

Some identities in multiple vector product operations are tabulated in Table A1.5. An
example to multiple vector products is
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Table A1.5

Identities of multiple vector products

Multiplication

w � (v � u) � v � (u � w)
w � (v � u) � v � (w � u) � u � (w � v)
(w � v) � (u � z) � (w � u)(v � z) � (w � z)(v � u)
(w � v) � (u � z) � ((w � v) � z)u � ((w � v) � u)z



A1.4 Second-order tensors (tensors)

A vector v is specified by giving a set of components v1, v2, and v3 in Section A1.2. 
A second-order tensor T is similarly specified by giving the nine components T11, T12,
T13, T21, etc. Transpose of a tensor, TT, is the replacement of its columns by its rows 
as follows:
Tensor:

and transpose of a tensor:

Unit tensor: If the components of the tensor are given by the Kronecker delta �ij, the result
is unit tensor which is shown as �

(A1.18)

A tensor can be written as the sum of three “double vectors (dyads)”

(A1.19) 

A1.4.1 Tensor operations

Addition of tensors and dyadic products:

(A1.20)

Dyadic products: The dyad has two directions, one of them is the plane on which the
stress vector acts and the other one is the direction of the vector itself. Dot product of a
normal vector, n, and a tensor, T, is a standard matrix multiplication, and its result is a
vector, tn
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The magnitude of a vector is given as

(A1.22)

(A1.23)

The expansion of eq. (A1.22) yields

(A1.24)

Multiplication of a tensor by a scalar:

(A1.25)

Dot product of two tensors:

(A1.26)

Dot product of a tensor with a vector:

(A1.27)

Cross product of a tensor with a vector:

(A1.28)

Symmetric tensors: If a tensor T is symmetric, T � TT and TT is given as
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For a symmetric tensor, tn is also defined in terms of TT as

(A1.30)

(A1.31)

A1.5 Vector and tensor differential operations

The vector differential operator �, known as “nabla” or “del,” is defined in rectangular
coordinates as

(A1.32)

where xi are the variables associated with 1, 2, and 3 axes. xi are the position coordinates
normally referred as x, y, and z. � cannot stand alone and must operate on scalar, vector,
or tensor function. The various uses of � in its operations on scalars and vectors and their
properties are summarized in Tables A1.6–A1.8. 

Similarly Laplacian operator is
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Table A1.6

Operations on the vector differential equations

� operations Operation Property Algebraic rules satisfied
on

Scalar Dyadic product Not commutative (�s) 	 s�
by a scalar Not associative (�r)s 	 (�rs)

Distributive �(r � s) � �r � �s
Vector Scalar (dot) product Not commutative (� � v) 	 (v � � )

by a vector Not associative (� � sv) 	 (�s � v)
Distributive (� � (v � u)) � (� � v) � (� � u)

Scalar (dot) Commutative (u � v) � (v � u)
product of Associative (� � uv) � (� u � v)
two vectors Distributive (� � (v � u)) � (� � v) � (� � u)
Vector (cross) Not commutative (u � v) 	 (v � u)
product of Associative (� � uv) � (� u � v)
two vectors Distributive (� � (v � u)) � (� � v) � (� � u)
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Delta, �, and Laplacian operators, �2, for cylindrical coordinates are

(A1.34)

(A1.35)

and for spherical coordinates are

(A1.36)
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Table A1.7

Differential equations of a scalar field

Operation Notation Result Algebraic rules satisfied

Dyadic �s (grad s) Gradient
product of � of the scalar (A1.38)
by a scalar s field s

Scalar (dot) (� � �s) Laplacian
(A1.39)product of � of the scalar 

by �s field s, �2(s)

Substantiala (A1.40)
derivative

aDerivative operator: eq. (A1.5). Here, V is the local fluid velocity (or “mass average velocity” in fluid mixtures).
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Table A1.8

Operations on the vector differential equations

Operation Notation Result Algebraic rules satisfied

Scalar (dot) (� � V ) Divergence
product of � of the vector 
by a vector field (div v)

(A1.41)

Vector (cross) (� � V ) Curl of the 
product of � vector field 
by a vector curl V 

(rot V)

(A1.42)

In rectangular coordinatesa

Dyadic �(� � V) Laplacian of 

(A1.43)product of � the vector field
by (� � V) (�2V(�V))

Substantial 

(A1.44)
derivative 
of a vector

aThese are not applicable in curvilinear coordinates. It is preferable to define the operation �2V as 
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APPENDIX A2: INVARIANTS

A dot product of two identical velocity vectors gives a scalar quantity (V � V ��
i

ViVi = Vi
2)

independent of the coordinate system. The dot product has also a physical meaning, since
it is used to define kinetic energy and known as the invariant of the velocity vector.
Whenever a dot product of two identical vectors gives a scalar quantity having a physical
meaning, the quantity is called the invariant of the vector. Although a vector has only one
common invariant, a tensor T has three meaningful invariants (scalar functions) that form a
principal stress tensor (Macosko, 1994), defined by

(A2.1)

However, T will directly be used to define Tij
p in this section.

If the magnitude of the stress tensor T is considered as �, eq. (A2.1) is written as

(A2.2)

Matrix on the RHS of the above equation denotes unit tensor, I. The Gibbs notation for the
unit tensor is I � �

i
IiIi � I1I1 � I2I2 � I3I3. Thus, the stress tensor in terms of unit tensor is

(A2.3)

A dot product of the stress tensor T and its normal vector n gives a vector tn as explained
is Section A1.4 (eq. (A1.21)). tn vector is written as

(A2.4)

Substitution of eq. (A2.3) into the above equation gives

(A2.5)

Equating eqs. (A2.4) and (A2.5) yields

(A2.6)

or

(A2.6a)

To satisfy these equations, (T � �I) and (Tij � �Iij) terms must equal to zero, since the
normal vector is not zero. So
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Both the stress and unit tensors are in matrix form and (T � �I) is written as

(A2.8)

To find the magnitude of the stress tensor, �, eq. (A2.7) is solved by taking determinant of
the matrix given in the above equation as

(A2.9)

Expansion of the determinant gives the characteristic equation of the matrix as

(A2.10)

where I1, I2, and I3 are coefficients, known as first, second, and third invariants of the ten-
sor T, respectively. They are

(A2.11)

In this equation, trT denotes the trace of a second-order tensor that is the sum of the
diagonal components in the matrix.

(A2.12)

(A2.13) 

When a fluid is at rest, the principle stresses are equal (�1 � �2 � �3 � �) and equivalent
to the pressure, p � � �

(A2.14)

Matrix on the RHS of the above equation denotes unit tensor, I. Hence, the stress tensor
for a fluid at rest is
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When a fluid is in motion, the stress tensor T comprises viscous stress terms:

(A2.16)

The function is expanded as a power series and the general stress equation becomes

(A2.17)

where D0 � I and fi are the scalar function of the invariants of 2D. Using the Cayley–Hamilton
theorem, eq. (A2.17) can be written for incompressible ( f0 � �p) viscous fluids (2D � �·) as

(A2.18)

known as Reiner–Rivlin equation. In this equation, �i are scalar functions of the invariant
of �· . �· is the summation of rate of deformation tensor L and its transpose, LT, defined as

(A2.19)

or

(A2.19a)

Shear-rate tensor in terms of velocity gradient is given as

(A2.20)

A2.1 Invariants of simple shear fluids

For a simple steady-state shear flow, rate of deformation tensor is

(A2.21)

and substitution of the above equation into eq. (A2.19a) gives

(A2.22)

The invariants of the shear-rate tensor are obtained from eqs. (A2.11)–(A2.13):
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(A2.23)

(A2.12a)

(A2.13a)

As a result, only the second invariant of shear-rate tensor is present, so the scalar functions
only depend on the second invariant

(A2.18a)

The above equation can also be written as

(A2.18b)

and the elements of tensor T are
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The first N1 and second N2 normal stress differences are defined as:
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Thus, �2 term gives rise to normal stresses in steady shear flow (eqs. (A2.23), (A2.27), and
(A2.28)). As the normal stresses in steady shear flow cannot be related to any function of
the rate of deformation tensor in this group of fluids, �2 term is set equal to zero. So
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where

(A2.30)

A2.2 Common expressions for �1(I2,�· ) power-law model

Power-law model is defined as a function of �1(I2,	· ) as

(A2.31)

Substituting eq. (A2.30) into eq. (A2.26) the component of the tensor T12 � �12 and the
viscosity are described by power-law model:

(A2.32)

(A2.33)

Power law and other models are given in Chapter 2.

APPENDIX A3: NAVIER–STOKES EQUATIONS

See Tables A3.1–A3.3 (Bird et al., 2002). 
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Table A3.1

Equation of continuitya

Cartesian coordinates (x, y, z)

(A3.1)

Cylindrical coordinates (r, �, z)

(A3.2)

Spherical coordinates (r, �, �)

(A3.3)

aWhen the fluid is assumed to have constant mass density , the equation simplifies to (� � v) � 0.
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Table A3.2

The equation of motion in terms of �

Cartesian coordinates (x, y, z)a

(A3.4)

(A3.5)

(A3.6)

Cylindrical coordinates (r, �, z)b

(A3.7)

(A3.8)

(A3.9)

Spherical coordinates (r, �, �)b

(A3.10)

(A3.11)
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Table A3.2 (Continued)

(A3.12)

These equations are written without making the assumption that � is symmetric. This means, when the usual
assumption is made that the stress tensor is symmetric.
a�xy and �yx may be interchanged.
b�r� � ��r � 0.
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Table A3.3

The equation of continuity for species � in terms of molar flux

Cartesian coordinates (x, y, z)

(A3.13)

Cylindrical coordinates (r, �, z)

(A3.14)

Spherical coordinates (r, �, �)

(A3.15)

aTo obtain the corresponding equations in terms of mass flux, J�
*, the following replacements can be done:

Replace mass quantities  �� j� � � D�� �w� r�

by molar quantities c x� J*
� � � cDab �x�

: mass density, c: total molar concentration, �� and x�: mass and mole fractions of species �, respectively; 
j� and J�

* : mass and molar fluxes of species �, respectively; D��: diffusivity of species �; V: mass average velocity;
V*: molar average velocity; r�: mass reaction rate of the species � per unit volume; R�: molar reaction rate of the
species � per unit volume. 
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A3.1. Equations for Newtonian fluids

See Tables A3.4 and A3.5 (Bird et al., 2002). 
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Table A3.4

Newton’s law of viscosity

Cartesian coordinates (x, y, z),

where i � x, y, z (A3.16)a

, where i � x, y, z; j � x, y, z; and i � j (A3.17)

Cylindrical coordinates (r, �, z),

where i � r, z (A3.18)a

(A3.19)a

where i � r, z; j � r, z; and i � j (A3.20)
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Table A3.4 (Continued)

Spherical coordinates (r, �, �),

(A3.23)a

(A3.24)a

(A3.25)a

(A3.26)

(A3.27)

(A3.28)

aWhen  is assumed to be constant, the term containing (� � V) may be omitted. For monatomic gases at low
density, the dilatational viscosity � is zero. 
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Table A3.5

Equation of motion of a Newtonian fluid with constant  and �

Cartesian coordinates (x, y, z)
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Table A3.5 (Continued)

(A3.31)

Cylindrical coordinates (r, �, z)

(A3.32)

(A3.33)

(A3.34)

Spherical coordinates (r, �, �)
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(A3.37)
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Appendix B

Population Balances

This appendix supplements the brief description of the population balance equation given
in Chapter 1. In this appendix the physical background of the population balance equation,
formulation of the models, and solution of the population balance equation are explained
in more detail.

APPENDIX B1: POPULATION BALANCE EQUATION: PHYSICAL

BACKGROUND

Many of the processes with particulate solids involve not only a single particle, but many
particles that can be considered as a population. To describe the aggregation mechanism
of this population, Smoluchowski (1917) developed a population balance equation, which
can be used to predict the evolution of the particle-size distribution in time t. The following
assumptions are made in the development of the model:

1. All particle collisions lead to attachment.
2. Cluster formation takes place under a laminar flow regime.
3. The particles are all of the same size.
4. No breakage of flocs occurs after they are formed.
5. All particles are spherical in shape and remain so after collision.
6. Collisions involve only two particles.

The last assumption of Smoluchowski’s model takes every particle in a suspension as the
reference particle, in turn. The other particles diffuse toward the reference particle and col-
lision occurs. The model assumes the concentration of the particle decreases toward the
site of collision, not to take into account the concentration effects (many-body interactions)
in the collision process. The solution of the diffusion equation in spherical coordinates
results in a population balance equation for the aggregation of particles:

(B1.1)
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where � is the collision efficiency factor and � the collision frequency function [m3s�1]. ni,
nj, and nk are the number concentrations [m�3] of particles of size i, j, and k, respectively.
The first term on the right hand side of eq. (B1.1) is the rate of formation of particles of
size k by collision of particles of size i and j. The second term is the rate of loss of parti-
cles of size k by collision with all other particles. The factor 1/2 is introduced to prevent
replication of the number of collisions.

Aggregation process described mathematically by Smoluchowski’s population balance
equation includes two mechanisms: transport to the collision site and attachment of the
particles after the collision. The transport mechanisms causing particle collisions depend
on the physical properties of the suspending medium, particle size, and number concen-
tration of the particles. The effect of the transport mechanism is introduced into eq. (B1.1)
by the collision frequency function, �. On the other hand, the attachment of the particles
is related with the interaction potential between the particles and is represented by colli-
sion efficiency factor � in eq. (B1.1). The effects of both the collision frequency function
and the collision efficiency on the particle-size distribution of a population should be taken
into account in the development of the models. 

B1.1 Colliding entities

Smoluchowski’s coagulation model is based on the assumption that aggregation proceeds
only between two equal sized spherical particles and the resulting aggregate is also spher-
ical in shape. In real systems, however, particles are different both in size and in shape, so
aggregation may occur as a result of particle–particle, particle–cluster, or cluster–cluster
collisions as given in Figure B1.1. 

In an aggregation process, the success of the attachment and final aggregate structure
depends on the regimes in which aggregation takes place. The aggregation regimes are called
diffusion-limited (DLA) or reaction-limited (RLA) depending on the level of the repulsive
energy barrier between the approaching particles. In the DLA regime, the repulsive energy
barrier between the colliding entities is minimum, so diffusion to the collision site is the only
rate limiting step. Aggregation that takes place in DLA regime is fast and all collision events
end-up by an attachment. In this regime, fast aggregation results in open structured clusters.
However, in the RLA regime the success of the attachment is a function of interaction

Transport of 
the particles

Attachment of 
the particles

(a) (b) (c)

Figure B1.1 Schematic diagram of aggregation process occurring between (a) particle–particle,
(b) particle–cluster, and (c) cluster–cluster. 



energy barrier that the particles have to overcome. Only the particles that have sufficient
energy can attach and form more compact clusters. If the attractive energy between the
particles is not strong enough, fragmentation of the particles may occur under the effect of
applied external forces. The depth of the primary and/or secondary energy minimum in
Figure 1.3 is an indication of the attractive energy. 

B1.2 Suspending medium

In population balance equations the suspending medium is generally taken as a Newtonian
fluid, so all the correlations for Newtonian fluids are used. The hydrodynamic properties
of the fluid affect the collisions of the particles through the transport mechanisms. The
effect of the fluid properties on the particle aggregation is introduced into the population
balance equation by the collision frequency function. 

APPENDIX B2: FORMULATION OF THE MODELS

Populations under different system conditions have different particle-size distributions.
To predict the behavior of the population under the given conditions all the mechanisms
effective on the particle-size distribution should be determined. Population balance equa-
tion given in eq. (B1.1) represents the aggregation mechanism of the particles. Two
important parameters in population balance equation are the collision frequency function
� and the collision efficiency �. The expression or equation with which � is described is
called the collision frequency kernel. According to the system under consideration, appro-
priate kernel for the � functions defining the system conditions should be selected. 

B2.1 Collision frequency function, �

The simplest kernel is the size independent kernel where all collisions have the same chance
of occurrence independent of the particle/aggregate size.

(B2.1)

This forms the reference state for the frequency function � (Hounslow et al., 2001).

B2.1.1 Aggregation under stagnant conditions

Aggregation of the particles in Brownian motion is known as perikinetic coagulation. The
collision frequency function for perikinetic coagulation is defined by Smoluchowski
(1917) and given as

(B2.2)

where kB is the Boltzmann’s constant [1.38 � 10�23JK�1], T the absolute temperature [K],
and � the fluid viscosity [Pas]. di and dj are the diameters of particles i and j, respectively. 
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B2.1.2 Aggregation under gravitational forces

The collision frequency function for particles with different settling velocities (differential
sedimentation) is defined by Camp and Stein (1943) based on the Smoluchowski’s approach

(B2.3)

where g is the acceleration of gravity [ms�2], and �p and � the particle and fluid densi-
ties [kgm�3], respectively. 

B2.1.3 Aggregation under external shear

Laminar regime Orthokinetic coagulation takes place under the effect of laminar shear
applied by the fluid. The collision frequency for orthokinetic coagulation is defined by
Smoluchowski (1917) as

(B2.4)

where dv /dy is the velocity gradient of the fluid. 

Isotropic turbulence The collision frequency function for the collision of the particles
smaller than the length of the smallest eddies is derived by Saffman and Turner (1956) as

(B2.5)

where � is the energy dissipation rate [Jkg�1s�1] and � the kinematic viscosity [m2s�1] of
the fluid. 

B2.1.4 Aggregation under magnetic forces

Magnetic forces increase the interactions between the particles during the transport and
facilitate collisions. The effect of the magnetic forces on the particle collisions are greater
than on the collisions due to the Brownian motion. The collision frequency function in the
presence of an external magnetic force �mag. Is defined by the ratio of collision frequency
function due to the magnetic force to the collision frequency function due to Brownian
motion, �perikinetic, given by (Kumar and Biswas, 2005)
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Here M is the averaged magnetic interaction potential which is averaged over all the pos-
sible orientation of the particles. The magnetic potential has different forms in the case of
randomly distributed 

(B2.7)

and aligned particles in the direction of a strong magnetic field

(B2.8)

The magnetic potentials given by eqs. (B2.7) and (B2.8) are averaged over all possible ori-
entations of the particles to give M in eq. (B2.6). The solution of eq. (B2.6) with the proper
magnetic potential definition gives the collision frequency function under the effect of
magnetic force

(B2.9)

where 	i and 	j are the magnetic susceptibility of the particles i and j [dimensionless], B
the magnetic flux density [T�kgA�1s�2] and �0 the permeability of free space [4�x10�7

TmA�1] and � the viscosity [Pas]. The constant C takes the value (22/3/311/6) for randomly
oriented and (2/38/3) for aligned magnetic particles.

B2.2 Aggregation of clusters

All particles are assumed to remain spherical in shape after the collisions in
Smoluchowski’s coagulation model. Since particles do not remain spherical in shape after
the collisions and grow as fractals, their characteristic length is corrected with a nondigit
number called fractal dimension, df (Section 1.4.2.1). In the case of spherical particles,
the characteristic length is the particle diameter and the fractal dimension is equal to 3
proportional with the particle volume. However, in fractal structures that have different
geometrical shapes, the fractal dimensions are less than 3 inversely proportional with the
extent of void space existing between the particles. For diffusion-limited aggregation the
aggregates formed are highly porous with an open structure, so the fractal dimension is
�1.8. The particles have to collide many times before a reaction-limited aggregation
takes place, so the aggregate is more compact, described with a fractal dimension of 2.1
(Lattuada et al., 2004). The relation between the diameters of the primary particle and the
aggregate consisting of k primary particles is expressed as

(B2.10)

where dagg,k is the diameter of aggregates composed of k primary particles, dp the primary par-
ticle diameter, and df the fractal dimension. Fractal dimension is introduced into the collision
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frequency function to take into account the effect of fractal nature on the net rate of formation
of particles. The generally accepted expression for the collision frequency function in terms
of the fractal dimension is given by Odriozola et al. (1999) and Sandkühler et al. (2003) as

(B2.11)

where dagg,i and dagg,j denote the characteristic dimensions of the aggregates. 

B2.3 Collision efficiency, �

Smoluchowski’s coagulation model depends on the assumption that interaction energy
between the particles has no effect on the particle coagulation. The collision efficiency
factor is taken as unity in this approach; that is, every collision ends up with an attachment.
However, in real systems, the success of the attachment depends primarily on the interac-
tion between the particles and the collision efficiency changes in the range of 0 � � � 1
the limits denoting no aggregation and immediate aggregation. To describe a disperse sys-
tem in a more realistic manner, Fuchs (1934) introduced a new definition, the stability ratio
W, as the inverse of the collision efficiency factor that is a function of interaction energies
between the aggregates given in eqs. (1.54) and (1.55). Runkana et al. (2004) computed
the stability ratio thereby the collision efficiency by considering the DLVO theory where
the total aggregate interaction is equal to the sum of the van der Waals energy of attraction
and electrical double layer repulsion. Lattuada et al. (2004) determined the stability ratio
through independent experiments in which different surface properties affecting the
interactions are examined as parameters. The stability ratio found, is introduced into the
Smoluchowski population balance equation in the collision frequency function as W.

(B2.12)

B2.4 Incorporation of the break-up mechanism into the model equations

In systems where shear is applied on the particles, aggregate break-up should be considered
simultaneously with the coagulation resulting from the applied shear

(B2.13)

where the rate of aggregation is given in eq. (B1.1). The rate of breakage differs from the rate
of aggregation in that breakage depends on the extent of the shear applied on the particles,
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whereas aggregation on the efficiency of the collision. Thus, an increase in fluid strain
causes an increase in the rate of break-up (Kim and Kramer, 2006), expressed as

(B2.14)

where KB is the break-up rate constant, � the elongational strain of the fluid, rk the radius,
and nk the concentration of the aggregates denoted by k. b and s are the exponents defining
the geometrical properties of a particle. a is the break-up concentration exponent and
depends on the break-up distribution function. To describe the aggregate breakage the pop-
ulation balance equation is written in terms of the break-up mechanism. The break-up equa-
tion is expressed similar to that of aggregation given in eq. (B1.1)

(B2.15)

where bk,i is the distribution function of the aggregates k formed from the breakage of
aggregates i. The first term on the right hand side of eq. (B2.15) is the increase in the
number of the size k aggregates by the fracture of larger size aggregates and the second
term is the decrease in the number of size k aggregates due to fracture. The break-up dis-
tribution functions defining the aggregate breakage can be given with a linear, logarithmic
or exponential expression some of which are recently summarized by Han et al. (2003) and
Kim and Kramer (2007). Appropriate break-up distribution functions defining the system
under consideration should be selected. The generally used and simplest distribution func-
tion is the binary breakage in which equal sized aggregates are produced (Spicer and
Pratsinis, 1996).

(B2.16)

where 	i and 	k are the volume of particles i and k. For a binary breakage c = 1 and for a
ternary breakage c = 2. Another frequently used distribution function is the log-normal
breakage distribution which is the asymptotic limit of a repeated breakage. Pandya and
Spielman (1982) showed that particles can be described by a lognormal distribution after
the breakage process, defined as,

(B2.17)

where � is the standard deviation and �m the mean value of the aggregate size distribution.
Similar to the log-normal distribution function Spicer and Pratsinis (1996) assumed a normal
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distribution function for the fragmentation of the particles that break up randomly and
given by

(B2.18)

The overall population balance equation describing both coagulation and break-up
mechanisms is obtained by the summation of eqs. (B1.1) and (B2.15), and is expressed as

(B2.19)

If other mechanisms exist such as restructuring, diffusion or chemical reaction that affect
the particle-size distributions, the related expressions should be included into the popula-
tion balance, eq. (B2.19). 

APPENDIX B3: SOLUTION OF THE POPULATION BALANCE EQUATION

Population balance equation given in eq. (B2.17) is a nonlinear differential equation, dif-
ficult to solve by analytical or numerical methods. Analytical solution necessitates the
assumption of monodispersity as the initial condition and drastic simplifications in the col-
lision kernels �. Numerical solutions give more realistic results than the analytical solu-
tions for the prediction of the behavior of a population.

Population balance model covers a wide range of particle sizes. Thus, to represent all of
the population, infinite numbers of differential equations as eq. (B2.17) should be written
for each particle size. To make the solutions of these equations manageable, they should
be discretized into the size classes. For a real solution the � limit in eq. (B2.17) is replaced
by imax and eq. (B2.17) becomes

(B3.1)

where imax represents the maximum size class in the population. Discretization of the pop-
ulation size classes can be made by applying uniform or nonuniform discretization models. 

dn
i j n n n i j n

b K r

k
i j

k i j
k i

k i
b

dt i

i

� �

�

� �

1

2
( , ) ( , )

( ) (

max

, B

�� ��

�

∑ ∑
=1

ii

i

) ( ( ) ( ) ( )
1

B

max
s

i
a

i k

b
k

s
k

an K r n)
� �

�∑ �

dn

dt
i j n n n i j n

b K r

k
i j

k i j
k i

i

k m
b

m
s

� �

�

� �

�1

2
( , ) ( , )

( ) ( )

1

, B

�� ��

�

∑ ∑
=

(( ) ( ) ( ) ( )
1

Bn K r nm
a

m k

b
k

s
k

a

� �

�

�∑ �

b dk i
i

k c

ci

,
m

2

2
1

1
exp

( )

2
� �

�

�

�

�

� �
�

2�� �

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
i

500 Appendix B. Population Balances



B3.1 Uniform discretization method

In uniform discretization method the smallest particle size is selected as the primary size
and all other particles are taken as integer multiples of this class. Thus, the ratio of upper
and lower bounds of an interval is constant and given by

(B3.2)

A large number of size classes are needed to predict the size distribution of a population
in this type of discretization method. Since each size class is defined by a nonlinear
differential equation, a large number of equations should be used. Although uniform dis-
crete model gives a good prediction for the size distribution of a population, simultaneous
solution of the equations requires long computational times, which make the method com-
putationally nonefficient. 

B3.2 Nonuniform discretization method

To reduce the number of equations used in the uniform discretization methods, nonuniform
discretization methods are developed that require a smaller number of equations. In nonuni-
form discretization methods, the size classes are grouped by using geometrical size inter-
vals where the ratio of upper and lower bounds is fixed. Since the number of size classes is
limited in this model, it is less accurate than the uniform discretization method. However,
the decrease in the number of equations results in a computationally efficient solution.

Different approaches are developed in nonuniform discretization methods where the ratio
q in eq. (B3.2) is defined by various assumptions. The generally used approach is developed
by Batterham et al. (1981), which takes the geometrical size interval q in eq. (B3.2) as 2.
Hounslow et al. (1988) also used a model with a geometrical size interval of 2 that differs
from the Batterham model in the consideration of continuous intervals rather than discrete
intervals. However, the models developed by Batterham et al. (1981) and Hounslow et al.
(1988) do not work well for large size classes since a fixed class size interval causes a broad
distribution of size ranges. To overcome this inaccuracy adjustable size interval methods are
developed (Kim and Kramer, 2007). By using adjustable size intervals both the large num-
ber of size classes, thereby the nonefficient computational solution of the uniform discrete
model, and the inaccurate approaches of geometrical size interval of 2 are corrected.

Population balance equation covers a wide range of particle concentrations leading to
a big difference between the minimum (1 particle initially) and maximum number con-
centrations of the particles. This may cause a stiffness problem during the simultaneous
solution of the discretized population balance equations. In the solution of stiff ordinary
differential equations (ODE), there is a transient region whose behavior is on a different
scale from the solution region. To overcome this stiffness problem several numerical inte-
gration methods for the solution of ODEs are developed. By selecting the appropriate
method the nonlinear ordinary differential population balance equations can be solved
and the size distribution of the population can be predicted. 
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Appendix C

Tables for Use in Plug Flow in an Annulus

See Tables C.1 and C.2.
Table C.1

Calculated values of �0(k, n, T0) where �0 �� for T0 �0

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k�0.1
0.00 0.3442 0.3682 0.3884 0.4052 0.4193 0.4312 0.4412 0.4498 0.4572 0.4637
0.05 0.3701 0.3940 0.4142 0.4309 0.4448 0.4562 0.4656 0.4733 0.4797 0.4851
0.10 0.3978 0.4216 0.4415 0.4579 0.4711 0.4818 0.4903 0.4972 0.5028 0.5075
0.15 0.4273 0.4507 0.4703 0.4860 0.4984 0.5081 0.5158 0.5219 0.5268 0.5308
0.20 0.4584 0.4815 0.5004 0.5152 0.5266 0.5353 0.5421 0.5474 0.5517 0.5552
0.25 0.4912 0.5137 0.5317 0.5454 0.5556 0.5633 0.5692 0.5739 0.5776 0.5806
0.30 0.5254 0.5472 0.5641 0.5765 0.5855 0.5922 0.5973 0.6013 0.6045 0.6070
0.35 0.5611 0.5820 0.5975 0.6085 0.6163 0.6220 0.6263 0.6296 0.6323 0.6345
0.40 0.5980 0.6178 0.6317 0.6412 0.6478 0.6526 0.6562 0.6589 0.6612 0.6629
0.45 0.6361 0.6544 0.6666 0.6746 0.6801 0.6840 0.6869 0.6892 0.6910 0.6924
0.50 0.6752 0.6918 0.7021 0.7087 0.7131 0.7162 0.7186 0.7204 0.7218 0.7229
0.55 0.7152 0.7298 0.7382 0.7434 0.7469 0.7493 0.7511 0.7524 0.7535 0.7544
0.60 0.7559 0.7681 0.7748 0.7787 0.7813 0.7831 0.7844 0.7854 0.7862 0.7868
0.65 0.7970 0.8068 0.8117 0.8145 0.8163 0.8176 0.8185 0.8192 0.8197 0.8202
0.70 0.8384 0.8456 0.8490 0.8508 0.8520 0.8528 0.8534 0.8538 0.8542 0.8544
0.75 0.8798 0.8845 0.8865 0.8875 0.8882 0.8887 0.8890 0.8892 0.8894 0.8896
0.80 0.9209 0.9233 0.9242 0.9247 0.9250 0.9252 0.9253 0.9254 0.9255 0.9256
0.85 0.9611 0.9618 0.9620 0.9622 0.9622 0.9623 0.9623 0.9624 0.9624 0.9624

k�0.2
0.00 0.4687 0.4856 0.4991 0.5100 0.5189 0.5262 0.5324 0.5377 0.5422 0.5461
0.05 0.4943 0.5113 0.5247 0.5355 0.5442 0.5512 0.5569 0.5615 0.5653 0.5684
0.10 0.5213 0.5382 0.5515 0.5620 0.5702 0.5766 0.5816 0.5856 0.5889 0.5916
0.15 0.5496 0.5664 0.5794 0.5894 0.5969 0.6026 0.6070 0.6104 0.6132 0.6155
0.20 0.5792 0.5957 0.6083 0.6175 0.6243 0.6292 0.6330 0.6360 0.6383 0.6402
0.25 0.6100 0.6262 0.6381 0.6464 0.6523 0.6565 0.6597 0.6622 0.6642 0.6658
0.30 0.6421 0.6578 0.6686 0.6759 0.6809 0.6845 0.6872 0.6892 0.6909 0.6922
0.35 0.6752 0.6902 0.6998 0.7060 0.7102 0.7132 0.7153 0.7170 0.7183 0.7194
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0.40 0.7095 0.7233 0.7316 0.7368 0.7401 0.7425 0.7442 0.7455 0.7466 0.7474
0.45 0.7447 0.7571 0.7640 0.7680 0.7707 0.7725 0.7738 0.7748 0.7756 0.7762
0.50 0.7807 0.7914 0.7967 0.7998 0.8018 0.8031 0.8041 0.8048 0.8054 0.8059
0.55 0.8174 0.8259 0.8299 0.8321 0.8335 0.8344 0.8351 0.8356 0.8360 0.8363
0.60 0.8545 0.8607 0.8634 0.8648 0.8657 0.8663 0.8668 0.8671 0.8674 0.8676
0.65 0.8917 0.8956 0.8972 0.8980 0.8985 0.8989 0.8991 0.8993 0.8995 0.8996
0.70 0.9286 0.9305 0.9313 0.9316 0.9319 0.9320 0.9321 0.9322 0.9323 0.9323
0.75 0.9648 0.9654 0.9655 0.9656 0.9657 0.9657 0.9658 0.9658 0.9658 0.9658

k�0.3
0.00 0.5632 0.5749 0.5840 0.5912 0.5970 0.6018 0.6059 0.6093 0.6122 0.6147
0.05 0.5887 0.6004 0.6095 0.6165 0.6223 0.6268 0.6304 0.6333 0.6357 0.6377
0.10 0.6154 0.6271 0.6360 0.6429 0.6481 0.6522 0.6553 0.6578 0.6597 0.6614
0.15 0.6431 0.6547 0.6635 0.6699 0.6745 0.6780 0.6807 0.6827 0.6844 0.6857
0.20 0.6720 0.6834 0.6917 0.6974 0.7015 0.7044 0.7066 0.7084 0.7097 0.7108
0.25 0.7019 0.7130 0.7206 0.7256 0.7290 0.7314 0.7332 0.7346 0.7357 0.7366
0.30 0.7328 0.7434 0.7501 0.7543 0.7570 0.7590 0.7604 0.7615 0.7624 0.7630
0.35 0.7647 0.7745 0.7801 0.7835 0.7856 0.7871 0.7882 0.7891 0.7897 0.7902
0.40 0.7975 0.8061 0.8106 0.8131 0.8147 0.8159 0.8167 0.8173 0.8178 0.8181
0.45 0.8310 0.8381 0.8414 0.8432 0.8444 0.8452 0.8457 0.8461 0.8465 0.8467
0.50 0.8651 0.8703 0.8726 0.8738 0.8745 0.8750 0.8754 0.8757 0.8759 0.8760
0.55 0.8994 0.9028 0.9041 0.9048 0.9052 0.9055 0.9057 0.9058 0.9059 0.9060
0.60 0.9335 0.9352 0.9358 0.9361 0.9363 0.9364 0.9365 0.9366 0.9366 0.9367
0.65 0.9672 0.9676 0.9678 0.9679 0.9679 0.9680 0.9680 0.9680 0.9680 0.9680

k�0.4
0.00 0.6431 0.6509 0.6570 0.6617 0.6655 0.6686 0.6713 0.6735 0.6754 0.6770
0.05 0.6686 0.6764 0.6824 0.6871 0.6908 0.6936 0.6959 0.6978 0.6993 0.7005
0.10 0.6950 0.7029 0.7088 0.7132 0.7165 0.7190 0.7209 0.7224 0.7236 0.7246
0.15 0.7224 0.7302 0.7359 0.7399 0.7427 0.7448 0.7463 0.7476 0.7485 0.7493
0.20 0.7508 0.7584 0.7636 0.7671 0.7694 0.7711 0.7723 0.7733 0.7740 0.7746
0.25 0.7801 0.7874 0.7919 0.7947 0.7966 0.7979 0.7989 0.7996 0.8002 0.8006
0.30 0.8103 0.8170 0.8207 0.8229 0.8243 0.8252 0.8259 0.8265 0.8269 0.8272
0.35 0.8413 0.8470 0.8498 0.8514 0.8524 0.8531 0.8536 0.8539 0.8542 0.8545
0.40 0.8730 0.8774 0.8793 0.8804 0.8810 0.8815 0.8818 0.8820 0.8822 0.8823
0.45 0.9051 0.9080 0.9091 0.9097 0.9101 0.9103 0.9105 0.9106 0.9107 0.9108
0.50 0.9372 0.9387 0.9392 0.9395 0.9396 0.9397 0.9398 0.9399 0.9399 0.9399
0.55 0.9689 0.9693 0.9695 0.9695 0.9696 0.9696 0.9696 0.9696 0.9697 0.9697

k�0.5
0.00 0.7140 0.7191 0.7229 0.7259 0.7283 0.7303 0.7319 0.7333 0.7345 0.7355
0.05 0.7395 0.7445 0.7483 0.7512 0.7535 0.7553 0.7567 0.7578 0.7587 0.7594
0.10 0.7658 0.7708 0.7745 0.7772 0.7792 0.7806 0.7817 0.7826 0.7833 0.7838
0.15 0.7929 0.7979 0.8013 0.8037 0.8053 0.8064 0.8073 0.8079 0.8084 0.8089
0.20 0.8210 0.8257 0.8287 0.8306 0.8318 0.8327 0.8333 0.8338 0.8341 0.8344
0.25 0.8499 0.8542 0.8565 0.8579 0.8588 0.8594 0.8598 0.8601 0.8604 0.8606
0.30 0.8795 0.8830 0.8847 0.8856 0.8862 0.8866 0.8868 0.8870 0.8872 0.8873
0.35 0.9097 0.9121 0.9131 0.9137 0.9140 0.9142 0.9144 0.9145 0.9146 0.9147

Table C.1 (Continued)

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.40 0.9401 0.9414 0.9419 0.9421 0.9422 0.9423 0.9424 0.9425 0.9425 0.9425
0.45 0.9703 0.9707 0.9708 0.9709 0.9709 0.9709 0.9710 0.9710 0.9710 0.9710

k�0.6
0.00 0.7788 0.7818 0.7840 0.7858 0.7872 0.7884 0.7893 0.7902 0.7909 0.7915
0.05 0.8042 0.8072 0.8094 0.8111 0.8124 0.8134 0.8142 0.8148 0.8153 0.8157
0.10 0.8304 0.8333 0.8355 0.8370 0.8380 0.8388 0.8394 0.8398 0.8401 0.8404
0.15 0.8574 0.8602 0.8621 0.8632 0.8640 0.8646 0.8650 0.8653 0.8655 0.8657
0.20 0.8851 0.8877 0.8891 0.8899 0.8904 0.8908 0.8910 0.8912 0.8914 0.8915
0.25 0.9136 0.9156 0.9165 0.9169 0.9172 0.9174 0.9176 0.9177 0.9178 0.9178
0.30 0.9425 0.9436 0.9441 0.9443 0.9444 0.9445 0.9446 0.9446 0.9447 0.9447
0.35 0.9715 0.9718 0.9719 0.9720 0.9720 0.9720 0.9721 0.9721 0.9721 0.9721

k�0.7
0.00 0.8389 0.8404 0.8416 0.8426 0.8433 0.8439 0.8444 0.8449 0.8452 0.8455
0.05 0.8642 0.8658 0.8670 0.8679 0.8685 0.8690 0.8693 0.8696 0.8699 0.8700
0.10 0.8904 0.8919 0.8929 0.8936 0.8941 0.8944 0.8946 0.8948 0.8949 0.8950
0.15 0.9172 0.9186 0.9193 0.9197 0.9200 0.9202 0.9203 0.9204 0.9205 0.9205
0.20 0.9447 0.9456 0.9460 0.9462 0.9463 0.9464 0.9464 0.9465 0.9465 0.9465
0.25 0.9725 0.9728 0.9729 0.9729 0.9730 0.9730 0.9730 0.9730 0.9730 0.9730

k�0.8
0.00 0.8954 0.8960 0.8965 0.8969 0.8972 0.8975 0.8977 0.8979 0.8980 0.8981
0.05 0.9207 0.9214 0.9218 0.9222 0.9224 0.9226 0.9227 0.9228 0.9228 0.9229
0.10 0.9467 0.9473 0.9476 0.9478 0.9479 0.9480 0.9480 0.9481 0.9481 0.9481
0.15 0.9734 0.9736 0.9737 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738

k�0.9
0.00 0.9489 0.9491 0.9492 0.9493 0.9493 0.9494 0.9495 0.9495 0.9495 0.9496
0.05 0.9742 0.9744 0.9744 0.9745 0.9745 0.9745 0.9745 0.9745 0.9746 0.9746

Source: Gücüyener, H.I., Mehmetog�lu, T., 1992. Flow of yield-pseudo-plastic fluids through a concentric
annulus. AIChE Journal, 38, 1139–1143 (with permission of American Institute of Chemical Engineers).

Table C.2

Values of � for various values of k, T0, and n

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k�0.1
0.00 0.3442 0.3682 0.3884 0.4052 0.4193 0.4312 0.4412 0.4498 0.4572 0.4637
0.05 0.3427 0.3656 0.3851 0.4014 0.4153 0.4269 0.4369 0.4455 0.4529 0.4594
0.10 0.3412 0.3630 0.3817 0.3975 0.4110 0.4225 0.4323 0.4408 0.4482 0.4547
0.15 0.3397 0.3604 0.3782 0.3935 0.4065 0.4178 0.4274 0.4358 0.4432 0.4496
0.20 0.3382 0.3577 0.3747 0.3893 0.4019 0.4128 0.4222 0.4305 0.4377 0.4441
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Table C.1 (Continued)

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Continued)



0.25 0.3367 0.3550 0.3710 0.3850 0.3971 0.4076 0.4167 0.4248 0.4319 0.4381
0.30 0.3352 0.3523 0.3673 0.3805 0.3920 0.4021 0.4109 0.4187 0.4256 0.4317
0.35 0.3337 0.3495 0.3635 0.3759 0.3868 0.3964 0.4048 0.4123 0.4189 0.4248
0.40 0.3321 0.3466 0.3596 0.3711 0.3813 0.3904 0.3988 0.4055 0.4118 0.4175
0.45 0.3306 0.3438 0.3556 0.3663 0.3757 0.3841 0.3916 0.3983 0.4043 0.4097
0.50 0.3290 0.3409 0.3516 0.3612 0.3699 0.3776 0.3846 0.3908 0.3964 0.4014
0.55 0.3275 0.3379 0.3474 0.3561 0.3639 0.3709 0.3772 0.3829 0.3880 0.3926
0.60 0.3259 0.3349 0.3432 0.3508 0.3577 0.3639 0.3695 0.3746 0.3792 0.3834
0.65 0.3243 0.3319 0.3389 0.3454 0.3512 0.3566 0.3615 0.3659 0.3699 0.3736
0.70 0.3227 0.3288 0.3345 0.3398 0.3446 0.3491 0.3531 0.3568 0.3602 0.3633
0.75 0.3215 0.3257 0.3301 0.3341 0.3378 0.3413 0.3444 0.3473 0.3499 0.3524
0.80 0.3259 0.3226 0.3255 0.3283 0.3308 0.3332 0.3354 0.3375 0.3392 0.3409
0.85 0.3349 0.3194 0.3209 0.3223 0.3236 0.3248 0.3260 0.3270 0.3280 0.3289

k�0.2
0.00 0.4687 0.4856 0.4991 0.5100 0.5189 0.5262 0.5324 0.5377 0.5422 0.5461
0.05 0.4674 0.4835 0.4965 0.5070 0.5157 0.5230 0.5291 0.5344 0.5389 0.5429
0.10 0.4661 0.4814 0.4938 0.5040 0.5124 0.5195 0.5256 0.5308 0.5353 0.5392
0.15 0.4649 0.4792 0.4910 0.5008 0.5089 0.5158 0.5218 0.5269 0.5313 0.5353
0.20 0.4636 0.4770 0.4882 0.4974 0.5053 0.5119 0.5177 0.5227 0.5270 0.5309
0.25 0.4623 0.4748 0.4852 0.4940 0.5014 0.5078 0.5133 0.5181 0.5224 0.5261
0.30 0.4610 0.4725 0.4822 0.4904 0.4974 0.5034 0.5087 0.5133 0.5174 0.5210
0.35 0.4596 0.4701 0.4790 0.4866 0.4932 0.4988 0.5038 0.5082 0.5120 0.5155
0.40 0.4583 0.4678 0.4758 0.4828 0.4888 0.4940 0.4986 0.5027 0.5063 0.5096
0.45 0.4570 0.4653 0.4725 0.4788 0.4842 0.4890 0.4932 0.4969 0.5002 0.5032
0.50 0.4556 0.4629 0.4692 0.4747 0.4795 0.4837 0.4875 0.4908 0.4938 0.4965
0.55 0.4542 0.4604 0.4657 0.4704 0.4745 0.4782 0.4815 0.4844 0.4870 0.4894
0.60 0.4528 0.4578 0.4622 0.4660 0.4694 0.4725 0.4752 0.4776 0.4798 0.4818
0.65 0.4525 0.4552 0.4586 0.4615 0.4641 0.4665 0.4732 0.4705 0.4723 0.4738
0.70 0.4589 0.4526 0.4549 0.4569 0.4587 0.4603 0.4618 0.4631 0.4643 0.4654
0.75 0.4700 0.4499 0.4511 0.4521 0.4530 0.4539 0.4546 0.4553 0.4560 0.4565

k�0.3
0.00 0.5632 0.5749 0.5840 0.5912 0.5970 0.6018 0.6059 0.6093 0.6122 0.6147
0.05 0.5621 0.5732 0.5819 0.5889 0.5946 0.5993 0.6033 0.6067 0.6096 0.6122
0.10 0.5611 0.5715 0.5798 0.5864 0.5919 0.5966 0.6005 0.6038 0.6068 0.6093
0.15 0.5601 0.5698 0.5775 0.5839 0.5892 0.5936 0.5974 0.6007 0.6036 0.6061
0.20 0.5590 0.5680 0.5752 0.5812 0.5862 0.5905 0.5941 0.5973 0.6001 0.6025
0.25 0.5579 0.5661 0.5728 0.5784 0.5831 0.5871 0.5906 0.5936 0.5963 0.5987
0.30 0.5568 0.5642 0.5704 0.5755 0.5798 0.5836 0.5868 0.5897 0.5922 0.5944
0.35 0.5557 0.5623 0.5678 0.5724 0.5764 0.5798 0.5828 0.5854 0.5878 0.5898
0.40 0.5546 0.5604 0.5652 0.5693 0.5728 0.5759 0.5785 0.5809 0.5830 0.5849
0.45 0.5535 0.5584 0.5625 0.5660 0.5690 0.5717 0.5740 0.5761 0.5779 0.5796
0.50 0.5524 0.5563 0.5597 0.5626 0.5651 0.5673 0.5693 0.5710 0.5726 0.5740
0.55 0.5520 0.5542 0.5568 0.5590 0.5610 0.5627 0.5643 0.5656 0.5668 0.5680
0.60 0.5616 0.5521 0.5539 0.5554 0.5567 0.5579 0.5590 0.5599 0.5608 0.5616
0.65 0.5765 0.5499 0.5508 0.5516 0.5523 0.5529 0.5535 0.5540 0.5544 0.5548
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Table C.2 (Continued)

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Continued)



k�0.4
0.00 0.6431 0.6509 0.6570 0.6617 0.6655 0.6686 0.6713 0.6735 0.6754 0.6770
0.05 0.6423 0.6496 0.6553 0.6599 0.6636 0.6667 0.6692 0.6715 0.6734 0.6750
0.10 0.6414 0.6483 0.6536 0.6580 0.6615 0.6645 0.6670 0.6692 0.6711 0.6727
0.15 0.6406 0.6469 0.6519 0.6559 0.6593 0.6621 0.6646 0.6667 0.6685 0.6701
0.20 0.6397 0.6454 0.6500 0.6538 0.6569 0.6596 0.6619 0.6639 0.6656 0.6672
0.25 0.6389 0.6439 0.6481 0.6515 0.6544 0.6568 0.6590 0.6608 0.6625 0.6639
0.30 0.6380 0.6424 0.6461 0.6491 0.6517 0.6539 0.6559 0.6576 0.6591 0.6604
0.35 0.6371 0.6409 0.6440 0.6466 0.6489 0.6508 0.6525 0.6540 0.6554 0.6565
0.40 0.6362 0.6393 0.6418 0.6440 0.6459 0.6475 0.6490 0.6502 0.6514 0.6524
0.45 0.6359 0.6376 0.6396 0.6413 0.6428 0.6440 0.6452 0.6462 0.6471 0.6479
0.50 0.6488 0.6359 0.6373 0.6385 0.6395 0.6404 0.6412 0.6419 0.6425 0.6431
0.55 0.6624 0.6342 0.6349 0.6355 0.6360 0.6365 0.6369 0.6373 0.6376 0.6379

k�0.5
0.00 0.7140 0.7191 0.7229 0.7259 0.7283 0.7303 0.7319 0.7333 0.7345 0.7355
0.05 0.7134 0.7180 0.7216 0.7245 0.7268 0.7287 0.7303 0.7317 0.7329 0.7340
0.10 0.7127 0.7170 0.7203 0.7230 0.7252 0.7270 0.7286 0.7299 0.7311 0.7321
0.15 0.7121 0.7159 0.7189 0.7214 0.7234 0.7251 0.7266 0.7279 0.7290 0.7300
0.20 0.7114 0.7147 0.7174 0.7196 0.7215 0.7231 0.7244 0.7256 0.7267 0.7276
0.25 0.7107 0.7136 0.7159 0.7178 0.7195 0.7209 0.7221 0.7231 0.7241 0.7249
0.30 0.7100 0.7124 0.7143 0.7159 0.7173 0.7184 0.7195 0.7204 0.7212 0.7219
0.35 0.7095 0.7111 0.7126 0.7139 0.7149 0.7159 0.7167 0.7174 0.7181 0.7187
0.40 0.7247 0.7098 0.7108 0.7117 0.7125 0.7131 0.7137 0.7142 0.7147 0.7151
0.45 0.7314 0.7085 0.7090 0.7095 0.7099 0.7102 0.7105 0.7108 0.7110 0.7112

k�0.6
0.00 0.7788 0.7818 0.7840 0.7858 0.7872 0.7884 0.7893 0.7902 0.7909 0.7915
0.05 0.7783 0.7810 0.7831 0.7847 0.7861 0.7872 0.7882 0.7890 0.7897 0.7903
0.10 0.7778 0.7802 0.7821 0.7836 0.7848 0.7859 0.7868 0.7876 0.7882 0.7888
0.15 0.7773 0.7793 0.7810 0.7823 0.7835 0.7844 0.7852 0.7860 0.7866 0.7871
0.20 0.7768 0.7785 0.7798 0.7810 0.7820 0.7828 0.7835 0.7841 0.7847 0.7852
0.25 0.7767 0.7776 0.7786 0.7795 0.7803 0.7810 0.7816 0.7821 0.7825 0.7829
0.30 0.7865 0.7766 0.7774 0.7780 0.7785 0.7790 0.7794 0.7798 0.7801 0.7804
0.35 0.7882 0.7756 0.7760 0.7763 0.7766 0.7769 0.7771 0.7773 0.7775 0.7776

k�0.7
0.00 0.8389 0.8404 0.8416 0.8426 0.8433 0.8439 0.8444 0.8449 0.8452 0.8455
0.05 0.8385 0.8399 0.8410 0.8418 0.8425 0.8431 0.8436 0.8440 0.8444 0.8447
0.10 0.8382 0.8393 0.8402 0.8410 0.8416 0.8421 0.8425 0.8429 0.8433 0.8436
0.15 0.8380 0.8387 0.8394 0.8400 0.8405 0.8410 0.8413 0.8417 0.8420 0.8422
0.20 0.8412 0.8381 0.8386 0.8390 0.8394 0.8397 0.8400 0.8402 0.8404 0.8406
0.25 0.8428 0.8374 0.8376 0.8379 0.8381 0.8382 0.8384 0.8385 0.8387 0.8388

k�0.8
0.00 0.8954 0.8960 0.8965 0.8969 0.8972 0.8975 0.8977 0.8979 0.8980 0.8981
0.05 0.8954 0.8957 0.8961 0.8964 0.8967 0.8969 0.8971 0.8973 0.8974 0.8976
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Table C.2 (Continued)

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Continued)



0.10 0.8954 0.8953 0.8956 0.8958 0.8961 0.8962 0.8964 0.8965 0.8966 0.8967
0.15 0.8960 0.8949 0.8950 0.8952 0.8953 0.8954 0.8955 0.8956 0.8956 0.8957

k�0.9
0.00 0.9489 0.9491 0.9492 0.9493 0.9493 0.9494 0.9495 0.9495 0.9495 0.9496
0.05 0.9488 0.9489 0.9490 0.9490 0.9491 0.9491 0.9491 0.9492 0.9492 0.9492

Source: Hanks, R.W., 1979. The axial laminar flow of yield-pseudoplastic fluids in a concentric annulus.
Industrial and Engineering Chemistry Process Design and Development, 18, 488–493 (with permission of
American Chemical Society).
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Table C.2 (Continued)

T0 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



509

Adhesion, 389–390
Aggregation

diffusion limited, 27, 41, 497
ferromagnetic particles, 36–39
in biological systems, 59–71
kinetics, 26
light-induced, 39
number, 58
orthokinetic, 26
perikinetic, 26, 495, 496, 498
reaction limited, 26, 29, 41, 494, 497
reversibility, 38

Amplitude sweep
strain, 80, 217
stress, 80, 81

Angle of internal friction, 341
Angle-averaged potential, 3
Anisotropic, 30, 208, 209, 211–212
Annulus

concentric, 142–149
eccentric, 149–151

Archimedes number, 259, 408,
409, 447

Aspect ratio, 30, 153, 208, 209, 211, 264,
265, 461

Averaged
drag force, 311
interfacial force, 311–312
pressure difference, 310–311

Averaging techniques
area, 298–299
ensemble, 299–300
time, 297–298
volume, 298–299

Bagnold dispersive stress, 352,
354–355, 364

Bartosik and Shook model, 364
Bending modulus, 48, 49, 230
Bifurcation, 460–461
Bjerrum length, 200

Blood, 59–64, 225–229
flow, 225–227
rheology, 228–245

Boltzmann distribution, 3, 10
Bridging, 18, 22, 24, 25, 32, 33, 41, 56, 62,

63, 203, 229, 389
Brownian

force, 167–169, 174, 179, 185, 188
motion, 1, 26, 168, 185, 188, 217, 284,

349, 495
particle, 209, 211

Cage structure, 171, 173, 191, 192
Capillary 

force, 388–389
number, 392

Chaotic advection, 402, 433
Charge reversing ion, 13, 14
Circulatory system, 225–239
Clarification rate, 442
Classifiers

bottom feed (vessels), 444–445
fluidized bed, 445–448
parallel channel, 440–442

Clearance, 407, 416–420
Cluster

fractal, 29, 174, 188, 194–196, 274
hydrocluster, 174, 188, 189, 191, 192–193
percolation, 29, 194–195
thermodynamic, 188, 191

Cohesive, 175, 255
Collision 

efficiency, 26, 27, 494, 495, 498
frequency, 26, 494, 495, 496, 497, 498

Contact angle, 387–388
dynamic, 392
static, 392

Contact value theorem, 19
Contours

viscosity, 136, 137, 138
velocity, 154, 155

Index



Coordination number, 201, 204, 385–386
Core repulsion energy, 15
Correlation 

deposition velocity, 371–376, 377
pressure drop, 372–374
Turian, 374, 375, 378

Creep and recovery, 75, 78, 85, 196, 197,
235, 236

Creeping flow, 246–252, 270–276
Critical micelle concentration (CMC), 46, 216
Critical packing parameter, 48
Critical stress, 90, 176, 177, 189, 214, 238
Cut size, 443, 455

Darcy-Weisbach equation, 118, 131, 338, 353
Deborah number, 74, 219–220, 230
Debye interaction, 4

length, 11–13, 17
Deformation history, 217
Depletion, 18, 22, 23, 32, 34, 41, 42, 63, 169, 179,

189, 190, 191, 203, 207, 225, 443
Diameter

equivalent projected area, 263
equivalent surface area, 264
equivalent-volume sphere, 263, 264

Diffusivity
momentum, 351
particle, 167, 206, 351

Dilatant, 88, 188
Dipolar coupling constant, 37
Dipole

induced, 4, 5, 7, 391
moment, 2, 3, 4, 37, 38, 39, 170
permanent, 5

Discharge of suspensions, 394–400
Discrete charges, 33
Dispersion

Brownian diffusion, 172
flow induced, 348–349
in mixers, 407–412

of floating solids, 411–412
of settling solids, 408–411

into stagnant liquids, 397–399
of solid, 397–400, 407–412
shear induced, 347–348

DLVO force, 17, 30, 31–32
Dodge-Metzner correlation, 131
Double layer

repulsion, 34, 50, 203

Drag
coefficient, 256, 258–259, 260, 264–265,

266, 272, 412
form, 252, 256, 354
friction, 252, 256
reduction, 215–217

Durand parameter, 372, 373
Dynamic 

response, 79, 198
yield stress, 206, 207, 214, 234, 238

Efficiency
separation, 449–459, 463
partial separation, 449

Einstein equation, 280
Elastic contact modulus, 222, 223
Elasticity, 48, 71–86
Electroviscous effect, 212
Elongated particle, 209–210
Ensemble averaging of

basic transport equations, 303–305
mathematical requirements, 300–303

Equivalent liquid model, 340, 354
Erythrocytes, 59, 60, 62, 228
Eulerian, see Simulation models
Excluded volume, 23, 63, 168–169, 211
Extensional flow, 216
Extrusion, 428–431

Fahraeus-Lindquist, 228
Ferrofluid, 36–39
Ferromagnetic particle, 36–38
Fibrinogen, 60, 63, 64, 225, 229
Field

electrical, 258, 466, 467
gravitational, 253, 257, 439–457
magnetic, 38, 254, 457–459

Field flow fractionation, 460
Flocculates, 27
Flocculation, 279, 459
Flow number, 400
Force

acoustic, 255, 461–462
Basset history, 295
buoyancy, 253–254, 459
centrifugal, 253, 254
drag, 245, 255–257, 268, 271, 311
electrostatic, 254–255
fluid acceleration, 295
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gravity-gravitational, 65–66, 253, 277,
359, 496

interfacial, 311–312
lift, 312, 356–357
magnetic, 254, 496–497
Saffmann lift, 295
shear, 168, 174, 255, 368
turbulent dispersion, 309, 311
virtual (added) mass, 311

Fractal dimension, 28, 29–32, 34, 42, 66, 497
Fracture, 31, 213, 499
Fragmentation, 26, 29, 31
Friction 

dry-state, 340, 344, 355, 356, 371
model, 340, 363
velocity, see Shear velocity

Friction factor,
as a criterion for transition, 125–127
charts, 132, 133
in flow through annulus, 150
in flow through microchannels, 158–159
in flow through rectangular channels,

156–157
in fully suspended flow, 335
laminar regime, 116–118
turbulent regime, 131–134

Frictional velocity, 128
Fully suspended flow, 330–331, 335–336,

351–352

Gel
clay, 196–199
colloidal, 173
formation, 41, 173, 188, 191, 193, 206, 212
micro, 214, 221, 224
microstructure, 194
network, 84, 193, 230
particle, 193, 194, 223, 224
starch, 77
state, 171, 173, 193
structure, 41–42, 174, 194, 195, 217

Glass
state, 40, 41, 173, 211
transition, 40, 173, 196

Gouy-Chapman equation, 10, 13, 15

Hagen-Poiseuille equation, 111, 118, 391
Hamaker constant, 7, 8, 9, 17, 39, 168
Hanks relation, 120, 125

Hard sphere, 168, 171, 173–179, 183–184,
188–194, 208–209

Hard sphere suspensions 
colloidal glasses, 174–177
shear behavior, 188–193
viscoelastic behavior, 193–200
viscosity, 177–178

Hedström number, 120, 125, 131, 134
Helical flow, 151–153
Hematocrit, 59, 93, 212, 225,

228, 231
Hertz theory, 54
Hopper, 394–397
Huggins coefficient, 178, 210–211
Hydration, 17, 20, 21, 25, 203
Hydraulic performance, 312
Hydrocyclone, 448–457
Hydrodynamic

diameter, 13, 56–57
force, 168, 169, 179, 188
radius, 169
resistance, 65

Hydrophobic, 17, 20, 21–22, 25

Impeller
helical, 418
multiple, 422–424
ribbon, 416

Inclined sedimentor, 440–442
Indifferent ion, 13
Interaction

particle-liquid, 310, 355–357
particle-pipe wall, 354–358

Interactive
energy, 48, 58, 172
force, 27, 167, 169, 179, 386, 387

Interfacial area, 401, 402, 432, 433
Interfacial energy, 386–387
Internal energy, 1, 18, 24, 168
Interparticle contact, 332, 352
Inverse gas chromatography, 391–392
Isoelectric point, 14, 32, 36, 202,

203, 206
Isotropic

length scale, 421, 423, 424
turbulence, 401, 421, 496

Jamming, 174–177
Just-draw-down speed, 406
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Keesom interaction, 3, 5
Kneading, 426–428
Knudsen number, 158
Kolmogoroff length scale, 401, 421,

423–424

Lagrangian, see Simulation models
Laminar sub-layer, 353, 354
Langevin

equation, 167, 179, 184
function, 37

Lennard-Jones potential, 5, 14
Leucocytes, 59, 228
Lindemann criterion, 171
Linear viscoelasticity, 76, 231
Localization, 174, 186, 192, 193,

206, 208
London potential, 4
Lubrication effect, 159, 215

Magnetic 
permeability, 37, 254, 459, 466
susceptibility, 170, 439, 457, 465, 466

Maximum packing, 220–221
Mean free path, 1, 158
Memory function, 173
Micelle, 42, 44–49, 51
Microchannels, 157–160
Microemulsion, 13, 41, 42
Microorganism, 65–66
Microstructure, 24, 167, 175, 178, 179–183,

193–194, 208, 221–225
Migration, 212–213, 347–348
Mixers 

design concepts, 403–407 
dispersion of floating solids, 411–412
dispersion of settling solids, 408–411 
power consumption, 412–420 
scale-up, 420–424
static mixers, 424–426

Mixing 
active, 433–439
concentrated suspension, 426–431
efficiency, 402
passive, 432

Mixing mechanisms 
chaotic advection, 402
lamination, 401
turbulent convection, 401

Modulus
elastic, 81, 174, 175, 196, 224
loss, 76, 80, 198
of elasticity, 48, 49, 75, 76, 80, 81, 193,

196, 207, 217, 224
storage, 76, 80, 198, 217, 235
viscous, 81, 95, 175, 235, 237

Molecular recognition, 63
Monodisperse, 170, 206–207, 279–282
Motion of particles

spherical, 257–263
non-spherical, 263–268
porous aggregates, 268–276
with non-uniform density 

distribution, 276–278

Nernst equation, 13, 14
Neutrally buoyant solid, 394, 397
Newton 

number, 412
regime, 256, 258, 259, 262

Non-ergodic, 174, 193
Non-Newtonian fluids, see rheological 

models
Non-Newtonian fluid flow 

in cylindrical pipes, 95–141
in microchannels, 157–160
in open channels, 160–167
through annulus, 141–153
through fittings, 135–141
through rectangular channels, 153–157
through sudden expansion, 135–141
laminar, 97–121, 153
transition, 125–127
turbulent, 121–135, 154

Normal stress
coefficients, 73, 80
difference

first, 73, 80, 81, 83, 84, 85, 218, 231,
234–236

second, 73, 80

Off-bottom-lifting, 406
Oldroyd number, 110, 153
Onsager equation, 210
Oscillatory, 17, 20–21, 25, 33
Osmotic pressure, 15, 18, 19, 23, 190, 207,

214, 223, 224
Overlap concentration, 191, 210
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Particle diffusivity
rotational, 350–351
translational, 350–351

Particle mobility, see Shield number
Particle string, 218, 231, 235
Paste, 72, 207–208, 221
Péclet

number, 172, 185, 186, 188, 208, 210,
281, 443

time, 172, 181
Penetration, 216, 385, 389–390, 391
Percolation, 29, 174, 193, 194–195

threshold, 225
Permittivity

electrical, 2, 467
relative, 2

Phase shift angle, 76, 77, 79, 80
Physical aging, 430
Plasma, 59, 62, 228, 231
Platelet, 60, 63–64, 208, 216
Poisson 

equation, 9
ratio, 83
-Boltzmann, 10, 11, 15

Polarization coefficient, 4
Polydispersity, 173, 174, 207–208, 225
Polyelectrolytes

coagulation by, 32–36
in separations, 466–471
stabilization by, 55–58

Population balance, 493–500
Potential determining ion, 13
Power 

consumption, 412–420
number, 405, 412, 413, 414, 415, 416

Primary energy minimum, 12, 15
Pseudo-plastic, 88
Pulmonary circulation, 226

Rabinowitsch-Mooney, 112, 113, 156
Radial distribution function, 173, 188, 201, 223
Radius

hydrodynamic, 169
of gyration, 23–24, 42, 58, 169, 189, 191,

192, 193
Red blood cell, 13, 59, 61, 225, 230
Reiner-Rivlin equation, 87
Relaxation time, 198, 217, 460
Restructuring, 15, 29, 31, 41

Reynolds number
critical, 97, 125, 126, 127, 134
modified, 139, 140, 141
Metzner and Reed, 119, 123
transitional, 127

Rheological models
Bingham, 91, 94, 101, 115, 122
Carreau, 89, 95
Casson, 91–92, 94, 101, 115, 153,

237, 427
Cross, 89
Herschel-Bulkley, 91, 92, 94, 100, 143
Ostwald-de Waele (Power law), 88, 94
Quemada, 92, 93–94, 211
Robertson-Stiff, 92–93, 148, 149
Sisko, 88–89, 95

Rod, 208
Roughness

Nikarudse, 354
relative, 353

Rouleaux, 61, 62, 63, 225, 228, 229, 234,
235, 239

Rouse-Schmidt model, 351, 366, 367

Screening-reduced adsorption, 32
Secondary energy minimum, 34, 35, 36, 495
Secondary flow, 140, 192, 193, 433
Seggregation, 207, 291
Separation 

based on electrical properties, 466–471 
based on magnetic properties, 465
field flow fractionation, see field flow

separation
microfluidic bifurcations, 460
of magnetic particles, 459
of non-magnetic particles, 459
ultrasonic, 461–465

Serum, 36, 225, 231, 232, 233, 234, 238
Settling of 

concentrated suspensions, 281
dilute suspensions, 280–281
polydisperse suspensions, 282–285

Settling slurries
flow in horizontal pipes, 360–364
flow in inclined pipes, 365–366
flow in vertical pipes, 364–365
fine particle effect on flow pattern,

369–371 
flow patterns, 330–332, 366–371, 376–385 
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flow with stationary bed, 372–376
frictional losses, 353–358,
fully suspended flow, 330–331, 335–336,

351–352
particle size effect on flow pattern,

366–369
particle support mechanisms, 332
three-layer flow, 331, 332, 342–345,

349–351
two-layer flow, 331, 336–341, 363, 378
velocity effect on flow pattern, 369

Settling velocity
hindered, 280, 281, 283, 346, 347, 352,

395, 408
terminal, 270, 350

Shape factor (particles), 30, 263, 406–407
circulatory, 264
Corey, 264
skin factor, 264
sphericity, 264

Shear
history dependence, 201
layer thickness, 23, 34, 53, 212, 215,

368–369
thickening, 88, 132, 134, 188–192
thinning, 88, 91, 125, 188–192, 413–415

Shear behavior 
of hard-sphere gels, 192–193
of hard-sphere suspensions, 188–192
of soft particle suspensions, 206–207
-effect of aspect ratio, 208
-effect of particle concentration, 212
-effect of polydispersity, 207–208
of viscoelastic suspensions, 217–225

Shield number, 357
Shull correction factor, 54
Simulation models

drift flux, 324–329
Eulerian-Eulerian, 294, 296–297
Eulerian-Fast Eulerian, 294
Eulerian-Lagrangian, 294–296
mixture, 312–325
single fluid, 312–315
super-particle Lagrangian, 294
two-fluid, 294, 305–312

Single fluid model
in laminar flow, 312–314
in turbulent flow, 314
on macro-scale, 315–324 

Slip
apparent, 213
true, 213
velocity, 213

dimensionless, 318, 319, 324
mean, 318

Soft particle suspensions
aspect ratio, 208
flow behavior, 206–212
polydispersity, 207–208

Solvation force, see Hydration
Specific 

energy consumption, 408
power input, 408

Spreading, 387, 389–390
Square channel, 155, 157
Stability ratio, 27, 31, 498
Stabilization of suspensions by 

nano-particles, 58
polymers and polyelectrolytes, 55–58
surfactants, 50–55

Static mixer, 424–426
Steric

force, 18, 22, 23–24, 36, 55, 62, 204
stabilization, 55, 460

Stern layer, 11, 13
Stokes

flow, 127, 246
law, 252, 270, 274, 276
regime, 256, 257, 259, 277, 279,

280, 295
velocity, 259, 282

Stream function, 246, 248, 250
Streamline, 246, 445
Structure factor, 173
Surface

charge density, 9, 51, 60–61, 62
forces, 25, 51–53, 201–206,

211–212
potential, 13, 14
tension, 385–393

Surfactants, 42–55, 215–217
drag reduction by-, 215–217
self-assemblies

in solution, 46–49
on solid surfaces, 49
thermodynamics, 45

stabilization by-, 50–55
use in separations, 460
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Taylor number, 151
Thermal

energy, 1, 37, 168, 171, 179, 185, 188
fluctuation, 168, 209
force, 184, 186
gel, 42, 193

Theta temperature, 24, 34
Thixotropic, 197
Thixotropy, 199, 201
Three-layer flow, 331, 332, 342–345,

349–351
Thrombocytes, 59, 228
Time scale

characteristic, 292, 293
particle, 296

Torque, 265, 268, 276, 277, 345
Transition velocity

limit deposit, 332, 333
suspending, 332, 333

Trouton’s rule, 74
Turbulent diffusion, see Dispersion

mechanisms
Turbulent flow of non-Newtonian fluids

definition of Reynolds number, 122–125
in cylindrical channels, 121–134
in rectangular channels, 153
velocity distribution, 127–130

Turbulent viscosity, 314
Two-layer flow, 331, 336–341,

363, 378
Two fluid model equations

continuity, 307
generalized, 305–307
momentum, 308–312

Ultrasonic separation, 461–465

van der Waals, 5, 6, 8, 62
Velocity

characteristic, 358, 373
dimensionless, 127, 423
relative, 279, 284, 395
shear, 358

Viscoelastic behavior, 77–86, 121, 183–184,
193–199, 217, 235, 236, 237

Viscoelastic suspensions
particle viscoelasticity, 218–221
suspending medium viscoelasticity, 217
viscoelasticity due to microstructure, 221

Viscoelasticity models
Burger, 198
Kelvin-Voigt, 198, 219
Maxwell, 198

Viscosity
apparent, 88, 89, 91, 228, 413, 427, 428
based on Stokesian Dynamics simulations,

184–188
based on suspension microstructure,

179–183
complex, 77, 81, 82, 83, 184
dynamic, 83, 84
elongational, 216
extensional, 74
infinite shear, 191, 206
intrinsic, 177, 178, 209, 210
non-Newtonian fluids, 87–90, 95
of colloidal suspensions, 177
reduced, 212
reduced specific, 177
relative, 177–178, 186, 192, 210, 221,

231, 234
zero shear, 189, 191

Volume exclusion, 179

Wall 
effect, 261–263
factor, 261, 262
slip, 201, 430

Weissenberg 
effect, 73, 218
number, 73, 231

Wetting, 385–393
White blood cell, 59
Work of cohesion, 386

Yield stress, 90–92, 214
Young’s modulus, 53
Young-Laplace equation, 388–389

Zeta potential, 13, 202, 203, 204
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