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Preface

In his prologue to ‘The Go-Between’ L.P. Hartley wrote: ‘The past is a foreign country:
they do things differently there.’ He might have been describing quantum mechanics,
which goes some way to explaining why it is normally only the denizens of that strange
land, the theoreticians, who dare to enter into print about it. So what is a self-confessed
experimentalist doing there?

Of the many factors that have influenced the development of chemistry in the second
half of the 20th century, none has been more important than the inexorable diffusion across
the traditional subject boundaries of concepts, which have their origins in theoretical
physics. Students of chemistry and research scientists alike, not only in chemistry, are
under continual pressure to assimilate and apply these ideas; quantum mechanics forms
a central part of many of them. But the learning is hard, and although there are many
excellent books they tend to be written by authors who are by nature theoreticians and
whose approach to the subject differs from that of the experimentalist in many ways. I
know, because I have been in this position all my working life.

My original motivation, which has not changed with the years, was to interpret myself,
in as exact a way as I was able, the experimental observations that I as a spectroscopist
was making. In the course of my studies I spent a lot of time with most of the classic texts
on the subject which are directed at chemists and some intended for physicists. Those in
the English language that is. However, as excellent as they mostly are, two aspects of them
often failed to satisfy me. Firstly, their authors are very good mathematicians and do not
always make allowances for the lesser experience and ability in those realms of people like
me. This also has the unfortunate side effect of encouraging students at all levels to believe
that their difficulties are attributable to a lack of mathematical expertise when they are, in
fact, more commonly due to a failure to grasp some essential quantum-mechanical concept.
In my experience, once the concept has been grasped, the mathematical expression of it
is much easier to understand. Secondly, expositions of quantum mechanics frequently
lack examples of chemical applications. I am of the view that a real example, even when
it is much simplified and gives a result which does not agree well with experiment, is
always better than no example at all. The texts which do contain examples are usually
those directed at a particular branch of experimental measurement, a particular branch of
spectroscopy for example, and they, naturally, cannot concern themselves with a broader
view of the quantum mechanics which they apply. In this book I have tried to bring
the basic quantum-mechanical theory closer to real chemical examples and to make the
inevitable mathematics involved subordinate to the understanding of the principles.

I owe a great deal to many friends with whom I have worked. My interest in the
interpretation of physical–chemical measurements was first aroused by Stephen Mason
and continued by Edgar Heilbronner. When I arrived at the University of East Anglia



xiv Preface

(UEA) I had the great good fortune of entering into a period of collaborative research
with Andrew Thomson who was as determined as I to learn some quantum mechanics.
Together with some excellent post-doctoral fellows and graduate students, we spent many
a lunch hour chewing literally on our packed lunches and figuratively on the theory
of groups, ligand fields, angular momentum, irreducible tensors etc. This was for me a
learning experience like no other and I am in debt to all who took part in the struggle;
especially to Andrew.

Then, as this book began to grow, I was most grateful to Norman Sheppard when
he expressed an interest in reading several of the early chapters and commenting on
them with his usual, meticulous care. I have also benefited from discussions of particular
problems with many other colleagues here at UEA. Positive and encouraging suggestions
made by reviewers of sample chapters were also much appreciated and I have tried to
take account of them.

In spite of the help I have received, it is too much to hope that no errors and/or
misconceptions remain and I would like to expand a little on that subject. No error in a
book from which a reader is trying to learn something can be trivial; even typographical
errors can seriously mislead a student who is insecure in his/her knowledge of the subject.
Readers will surely detect such errors and I would be most grateful if they would inform
me of them. But misconceptions are an altogether more serious problem and in this
connection I make a special appeal. In attempting to make quantum mechanics more
approachable I have not hesitated to simplify and to draw on classical analogies wherever
possible. In so doing I fear that I may have ventured out on a number of limbs too weak
to support the weight which I have placed upon them. I hope that readers who detect this
type of problem or who feel uneasy about statements which I have made will be good
enough to point their concerns out to me.

A final word of thanks must go to four people. To my parents who, though they
themselves had only elementary educations, did everything they could to further mine.
And to my wife, Charlotte, and daughter, Rebecca, who have given me so much support
and encouragement in my scientific endeavours. I trust that they will feel that this book
was a worthwhile enterprise.

I also wish to thank Ivan Rodwell for provision of the three cartoons in this book.

Roger Grinter

http://www.grinter.org/quantum.html/
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1.0 INTRODUCTION

In this chapter we shall consider the role of theory in science and enquire what is meant
when we speak of a ‘law’ in the physical sciences. We shall ask: what are these laws, how
do they arise and what is their value or purpose within science? There are two reasons
for approaching the subject of the quantum in chemistry in this way. Firstly, these are
questions of interest in their own right to which, in my view, insufficient attention is
paid in the teaching of science. This can result in a degree of confusion, especially in a
subject as inherently complex as quantum theory, where newcomers to the subject are apt
to think that if only they knew more mathematics they could derive results which, in fact,
cannot be and never were derived. This leads to an undesirable focus of attention upon
the mathematical rather than the conceptual aspects of the problem. Thus, the second
reason for discussing scientific laws is an attempt to place the laws of quantum theory
in a perspective in which their origin, value and meaning can be better appreciated by
beginners in the field.

1.1 WHAT IS THE ROLE OF THEORY IN SCIENCE?

It is a matter of historical fact that man has been observing the natural world, and recording
his observations, since ancient times. We may safely conclude that the verbal communi-
cation of observation is even older, as the times and routes of migrating animals, birds
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2 The Role of Theory in the Physical Sciences

and fish are of crucial importance to people who live by hunting, while a knowledge of
the seasons, of rainfall etc. is essential to food gatherers.1 The importance of these and
other natural phenomena made those whose knowledge of them was most extensive the
leaders of their communities and exceptional status was accorded to those who had, or
were believed to have, the ability to predict such events.

Historically, prediction has been attempted either through an appeal to the supernatural
or by means of a reasoned extrapolation of facts already known. These two approaches to
the same problem are not as different as they might appear. If an observed fact, the annual
flooding of a river for example, is believed to be under the direct and immediate control
of the gods, then it is quite rational to consult those gods about such events. Nor does
the involvement of the supernatural necessarily conflict with the making and recording of
observations. It has been suggested that a preoccupation with astrology may well account
for the fact that the Mesopotamians of the first millennium BC excelled in astronomy.2

Thus, the ancient fascination with the prediction of the future led not only to the use of
rite and ritual but also to the recording and ordering of observations, a tendency which
also received support from the widespread belief that there must be a system or order
in the universe. The challenge of finding this system, and of demonstrating that one has
found it by predicting the results of observations yet to be made, is the driving force of
science and necessitates not only the collection of data but also the arrangement of that
data within some conceptual framework that makes it easier to remember, understand
and use.

We can distinguish two broad categories of such conceptual frameworks, or models.
The first comprises models of an essentially descriptive nature in which the phenomenon
in question is likened to objects of our everyday experience. An example of this type
of model would be the description of the fundamental constituents of matter given by
Lucretius, a Roman of the first century BC. In his view, all substances were composed of
indestructible atoms and . . . ‘Things that seem to us to be hard and stiff must be composed
of deeply indented and hooked atoms held firmly by their intertangling branches. . . .

Liquids, on the other hand, must owe their fluid consistency to component atoms that are
hard and round, for poppy seed can be poured as easily as if it were water . . . .’3 The
molecular models used by modern chemists fall into this category; atoms are represented
by coloured spheres and bonds by metal rods.

The second category of model is the mathematical model in which natural phenomena
are represented by a set of symbols, the meanings of which have been defined, and which
obey some particular rules of mathematical manipulation. A differential equation, for
example, may be used to model a chemical reaction by providing a description of the
rates of change with time of the concentrations of the reagents involved in the reaction. It
is this kind of model to which we refer when we speak of the theoretical structure of the
natural sciences. It is the type of model which is most useful to us when we are comparing
numerical experimental data with theoretical predictions, i.e. in quantitative work.

A theoretical structure is essential to all the natural sciences. It provides the framework
into which the pieces of the jigsaw of experimental data are fitted, thus revealing their
inter-relationships and exposing gaps in our knowledge which need to be filled with the
results of new experiments. In filling these gaps theory plays a leading role; it not only
shows where new measurements are required but also tells the experimentalist what to
expect when the experiments in question are performed. This is very important since,
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clearly, the apparatus must be designed so that it is capable of measuring the phenomena
to be studied and the quantities used must be appropriate to the equipment.

For example, suppose we wish to determine the amount of silver in the waste solution
from a photographic processing laboratory by precipitating insoluble silver chloride with
hydrochloric acid and weighing it. Our theory is embodied in the chemical equation:

AgX (in solution) + HCl −−−→ AgCl (precipitated) + HX

The formula AgCl in this equation provides the information whereby the amount of
silver in the precipitated silver chloride can be determined; provided, of course, that we
know the relative atomic masses of silver and chlorine. The whole equation allows us to
calculate how much silver chloride will be formed for a given amount of silver in the
aqueous mixture. This information is required not only to determine the amount of silver,
but also to plan the experiment in such a way that the precipitate to be weighed is of a
mass appropriate for the chemical balance with which we propose to weigh it. To do this
we may need to make a preliminary estimate of the amount of silver in the waste.

When, using a more elaborate example, we say that the length of the O–H bond
in the water molecule is 95.7 × 10−12 m and the HOH bond angle 104.5◦, then these
figures have been obtained using a theory, quantum mechanics in fact, which relates
the measured absorption by water vapour of electromagnetic radiation in the microwave
region (wavelengths of the order of 1–2 cm) to the masses of the nuclei and the molecular
geometry. Theory is not simply a substitute for experiment, it is a vital adjunct to it.

But theory is always a suggestion or hypothesis, the correctness, or otherwise, of which
can only be tested against experimental fact. Therefore, theory must always be subordinate
to experiment. If, after thorough checking for errors, the results of an experiment are
found to differ from those predicted by theoretical calculations, then the theory must be
amended, or perhaps even discarded. Thus, although the theoretical framework of science
is an essential aspect which guides our progress towards a deeper understanding, we must
always recognise that a current theory may one day prove to be inadequate and require
replacement. These points can be illustrated by means of the gas laws.

1.2 THE GAS LAWS OF BOYLE AND GAY-LUSSAC

In 1662 Robert Boyle (1627–1691) published the results of a series of experiments on the
compression of air in the closed, short arm of a J-shaped tube. Boyle observed that as the
pressure, P , measured by the difference of height of the columns of mercury in the two
arms of the tube, increased, the volume, V , of air in the closed end of the tube decreased.
Further, he noted that at constant temperature the volume is inversely proportional to the
pressure, a quantitative result which could be expressed in the simple equation:

P ∝ 1/V or PV = constant (1.2.1)

The words in italics and Equation (1.2.1) are both expressions of what we now know
as Boyle’s law, and in answer to two of the questions posed above we may say that
Boyle’s law arose from of a series of experiments and that it expresses the results of
those experiments in a convenient and precise mathematical form.

The dependence of the volume of a gas upon temperature, t , at constant pressure was
studied by four French scientists, Guillaume Amontons (1663–1705), Jacques Charles
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(1746–1823), Joseph Gay-Lussac (1778–1850) and Henri Regnault (1810–1878). The
result of their labours is known as the law of Gay-Lussac, which was published in 1847 by
Regnault. He refined the earlier experimental methods and expressed the law in the form:

V = V0(1 + t/273) (1.2.2)

Where V0 is the volume of the gas at 0 ◦C. Here again we have a law which has been
discovered by experimental measurements and, if we consider it carefully, we find that it
says that, at constant pressure, the volume of a gas increases by 1/273 of its volume at 0 ◦C
for every degree rise in temperature. Clearly, Equations (1.2.1) and (1.2.2) are of great
practical value. They can, for example, be used to calculate the volumes and pressures of
gases at high temperatures. Such calculations are essential in the design of industrial plant
for chemical processes, many of which take place at very high temperatures and pressures.

1.3 AN ABSOLUTE ZERO OF TEMPERATURE

But Equation (1.2.2) carries a far more fundamental message, as Amontons had realised.
As we decrease the temperature of the gas below 0 ◦C, i.e. when t becomes negative, the
volume of the gas decreases. But this process must have a limit, since there is no such
thing as a negative volume, and it is clear from Equation (1.2.2) that the limit of zero
volume is reached at t = −273 ◦C. Therefore, −273 ◦C must be the lowest temperature
which can be achieved. We are forced to a remarkable conclusion; although we can go
up in temperature indefinitely, there is a clear lower limit. This surprising result has been
substantiated experimentally and a more exact figure for the absolute zero of temperature
is −273.15 ◦C, which is the origin of the scale of absolute temperature where temperature,
T , is measured in degrees Kelvin or K:

T (K) = t (
◦C) + 273.15 (1.3.1)

It is interesting to note here the importance of the accuracy of experimental data in
formulating scientific laws. The mere observation that the volume of a fixed quantity of
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gas decreased when the temperature was lowered might not have led to the concept of an
absolute zero of temperature, much less to a value for it. Changes in physical quantities
are frequently described by an exponential function and in Figure 1.1 it is shown that the
equation:

V = V0 exp(t/273) (1.3.2)

gives a temperature–volume relationship which is very similar to that given by Equa-
tion (1.2.2) in the region of temperature readily accessible to early researchers, i.e. −20
to +100 ◦C. But according to Equation (1.3.2), the volume of the gas never reaches zero,
no matter how low the temperature. So it was vitally important that the accuracy of
Regnault’s experimental measurements showed clearly that the relationship between the
temperature and the volume of a gas was a linear rather than an exponential one.

1.4 THE GAS EQUATION OF VAN DER WAALS

Attempts to study Gay-Lussac’s law down to very low temperatures failed because the
gases all liquefied long before the absolute zero was reached. And, indeed, many gases
were found to show marked deviations from the pressure–volume–temperature (PVT )
behaviour described by Boyle and Gay-Lussac for what became known as ideal gases
which obeyed the combined equation:

PV = nRT (1.4.1)

where R is the ideal gas constant which has a value of 8.31 J K−1 mol−1 and n is the
number of moles of gas in the sample (1 mole of gas contains 6.022 × 1023 molecules).
These deviations of the PVT behaviour of real gases from the ideal could be represented
by more complex gas laws such as that proposed by Johannes Diderik Van der Waals
(1837–1923) in 1873:

(P + a/V 2)(V − b) = nRT (1.4.2)

in which a and b respectively are parameters that allow for the attraction between the
molecules and for the finite volumes of the molecules themselves. They have different
values for different gases which are found by comparing the experimentally determined
PVT behaviour of the gas with the Equation (1.4.2).

But to describe Van der Waals’ equation in detail would deviate too far from the central
theme of this book and we therefore turn to a summary of the answers to the questions
about physical laws posed in Section 1.0.

1.5 PHYSICAL LAWS

A physical law expresses, either in words or in algebraic form, the result which is to be
expected of a particular experiment. Thus, Equation (1.2.2) tells us what volume of gas
we would have at any temperature, t , if its volume at 0 ◦C is V0. From Equation (1.2.1)
we can calculate either pressure or volume, though we must first perform an experiment
to determine the value of the constant for the particular gas. If it is an ideal gas then the
constant is nRT, where n is the number of moles of gas in the sample (Equation (1.4.1)).
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Laws arise, are discovered or deduced as a result of experimental observations. They
are not derived by pure mathematical reasoning though they may be, and indeed very
frequently are, expressed in an algebraic form. It follows from this that since laws are
found as a result of experimentation they must also stand or fall by the results of any
other experiments to which they relate. Thus the ideal gas law (Equation (1.4.1)) failed
the test of application to all gases, especially in the region of low temperatures and/or
high pressures. The law is therefore of limited applicability. But it is not useless and there
are many circumstances in which it can provide valuable results.

A group of one or more laws normally underlies a theoretical model of some aspect
of the real world as it is seen by science. Thus, the three laws of thermodynamics are the
foundation stones, discovered by experiment, which allow us to describe quantitatively
the inter-conversion of the various forms of energy; of heat into mechanical work for
example. Together they form a mathematical model of all such processes. Newton’s three
laws perform the same function for mechanics, the study of motion; in the next chapter
we shall examine them in more detail.

The value of laws to science and technology applies at various levels. At the most
simple, but highly significant in applied science, there is the practical use of a law to
predict a quantity which cannot be readily measured; the gas pressure in a novel chemical
plant which is still at the planning stage, for example. A law also establishes the framework
into which experimental results may be fitted as they become available. This not only
provides the means of interpreting the results but also alerts the experimentalist when a
new result cannot be reconciled with the current structure of the theory. This may mean
that an experimental error has been made or that the law is flawed. At a deeper level,
laws reveal new concepts which were not suspected at the time when the measurements
which gave rise to the law were made. We may safely assume that the concept of an
absolute zero of temperature was not the idea which stimulated the first experiments of
Amontons; but it arose directly from them. Here lies the great importance of laws for the
development of the natural sciences. As the full significance of the quantities related in
a law is appreciated, scientists are led to a deeper understanding of their subject and to
the formulation of new experiments to test the law at the more fundamental level. If the
law fails, such a test it must be regarded as flawed and of limited use, but not necessarily
totally useless. The important point is that experiment is the only test of the validity of
a law. Laws summarise the results of a wealth of experimental data and present them
in a condensed form suitable for application or for further study. But they are always
subordinate to experiment.

1.6 LAWS, POSTULATES, HYPOTHESES, ETC.

The waters of the present discussion are sometimes muddied by the variety of terms
used to describe the same thing. We speak, for example, of the gas laws, Planck’s quan-
tum hypothesis, the Pauli principle and the postulates of quantum mechanics. Each term
highlighted in italics has essentially the same meaning; it is a statement, which we have
here called a law, or a set of such statements, that summarises the results of experimen-
tal measurements. The different words express different aspects of the meaning of that
statement. The terms law and principle emphasise the power and immutability; postulate
and hypothesis the fact that this is a suggestion or a proposal which may later require
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modification. But in this book we shall regard all such expressions, and some others, as
meaning laws.

1.7 THEORY AT THE END OF THE 19TH CENTURY

As the 19th century drew to a close the theoretical basis of the physical sciences appeared
to be very mature and powerful. In particular, the three great structures of Maxwell’s
equations, which describe the behaviour of electromagnetic radiation, thermodynamics
and mechanics, were remarkably successful in interpreting the experimental facts then
known. Three examples show the range and power of these laws.

The laws of mechanics had been formulated by Isaac Newton (1643–1727) to model the
motions of the planets and described these motions with remarkable accuracy. During the
1860s James Clerk Maxwell (1831–1879) and Ludwig Edward Boltzmann (1844–1906)
used Newtonian mechanics to describe the motion of molecules in a gas, developing what
we now call the kinetic theory of gases. The theory is in excellent agreement with the
extensive experimental data encapsulated in the gas laws of Boyle and Gay-Lussac. The
many deviations from the experimentally observed behaviour of real gases are due to the
failure of other assumptions in the theory; that there is no attractive force between the
molecules for example. Newtonian mechanics was thus shown to be applicable to bodies
ranging in mass between 10−25 and 10+25 kg.

In the area of thermodynamics, the frequency of the chirping of the tree cricket, Oecan-
thus, has been found to depend upon the absolute temperature in strict conformity with the
equation first put forward by Svante August Arrehnius (1859–1927).4 The logarithm of
the frequency of chirping is inversely proportional to the absolute temperature, showing
that the tree cricket’s chirping is quite involuntary and is controlled by its body chem-
istry which, in turn, is subject to the laws of thermodynamics. The same is true of the
autonomous functions of the higher mammals; the human heart beat for example, though
the temperature range available to the experimentalist is rather small in this case.

Our final example concerns electricity, magnetism and light. Michael Faraday (1791–
1867) had shown that an electric current flowing in a coil produces a magnet and that
when polarised light passes through a glass plate surrounded by the magnetic coil the
plane of polarisation of the light is rotated. Thus, electricity, magnetism and light are
related. An electric current can be measured by determining the magnetism it produces;
the units of this measurement are called electromagnetic units, emu. An electric current
can also be measured in terms of the flow of charge; the units of this type of measurement
are electrostatic units, esu. In 1857, Gustav Kirchoff (1824–1887) showed experimentally
that the ratio of the emu to the esu was equal to the velocity of light. These relationships
between electricity, magnetism and light and between the emu and the esu were brilliantly
and quantitatively interpreted by Maxwell with his mathematical model of electromagnetic
radiation published in 1873. Maxwell’s model, which is always referred to as Maxwell’s
equations, though they might equally well be called Maxwell’s laws, showed that light
and all wavelengths of electromagnetic radiation could be described in terms of a magnetic
and an electric field that are orientated at right-angles to each other and oscillate with
the frequency of the radiation. This led to the prediction that an oscillating electric spark
would generate electromagnetic radiation, a prediction which was beautifully confirmed by
Heinrich Hertz (1857–1894) in a series of experiments reported in 1886–1888. We shall
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explore Maxwell’s description of electromagnetic radiation and the properties of polarised
light further in Chapter 8.

With successes like these to its credit it seems scarcely surprising that some physicists
apparently thought that there was little more to do in the field of theory other than to dot
some i’s and cross a few t’s. Nevertheless, there were a small number of experiments the
results of which defied interpretation in terms of the theories, i.e. laws, then available. It
was the search for solutions to these problems which led to the revolutionary ideas of Max
Planck (1858–1947) and Albert Einstein (1879–1955), and to quantum mechanics. In the
next chapter we shall follow the history of mechanics to illustrate further the role which
theory plays in science and to see how, early in the 20th century, some of the foundations
of the structure of theoretical physics were found to be by no means as secure as they
had once appeared.
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2.0 INTRODUCTION

In this chapter we shall first follow the historical course of the development of Newtonian
or classical mechanics. We do this not only because classical mechanics is a limiting case
of quantum mechanics, but also because the story of how classical mechanics developed
is an excellent illustration of how a set of laws and the theoretical model which they sus-
tain develops as a result of the interplay between experiment and theory. Having arrived
with classical mechanics at the end of the 19th century, we shall investigate some partic-
ularly important experimental results which the laws of thermodynamics, mechanics and
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electromagnetic radiation that were available at that time were quite unable to interpret,
despite their outstanding successes in many other applications. Finally, we shall see how
Erwin Schrödinger and Werner Heisenberg cut the Gordian knot with the introduction of
a new mechanics–quantum mechanics.

2.1 THE MOTION OF THE PLANETS: TYCHO BRAHE AND KEPLER

Before there can be any theory there must be experimental observations to be interpreted
by the theory. (This proposition is not self-evident; the ancient Greeks developed theo-
retical concepts almost entirely without appeal to experimental evidence.) The collection
of the experimental data which formed the basis for the first theory of mechanics may be
traced back to the astronomical observations made, without a telescope, by the Danish
nobleman Tycho Brahe (1546–1601), whose measurements were the most important and
accurate of early modern times. Tycho, who is usually known by this latinised version of
his Danish name, Tyge, was renowned for his fiery temperament and for most of his life
he wore an artificial silver nose to replace the original appendage which had been sliced
off in a duel at the age of 19. It is interesting to note that he thought it was not possible
to make observations without the guidance of a theoretical system of the world, and he
adopted a modified earth-centred system, now of course, known to be false. But the idea
that measurements should be made in the light of a theory which, it is believed, can
interpret them and fit them into the framework of our existing knowledge, is an important
part of the modern scientific method; a point discussed in Chapter 1.

In 1599, Tycho Brahe moved from Copenhagen to Prague, where he was joined by
German mathematical astronomer Johannes Kepler (1571–1630) in 1600. When he died
in 1601, Tycho bequeathed his collection of data to Kepler who found, after many years
of exacting work, that the observations of the planets could be interpreted in terms of the
following three laws.

Kepler’s Laws of Planetary Motion

1. The orbits of the planets are ellipses with the sun at one focus.

2. The line drawn from the sun to the planet sweeps out equal areas in equal times.

3. The square of the time required for a planet to complete its orbit is proportional to the
cube of its mean distance from the sun, i.e. the length of the semi-major axis of the
ellipse.

These laws are illustrated graphically in Figure 2.1.
In formulating his laws, Kepler brought the science of mechanics from the data-

collection phase to the next important stage through which any developed scientific theory
must pass. This is the stage at which the known experimental data are unified, in that
it is shown that the data can be interpreted in terms of a small number of fundamental
concepts: the laws. Clearly, if the laws are soundly based they have predictive power,
i.e. the results of experiments or observations not yet made can be foretold. This is the
only convincing test of the laws. A set of laws constitutes a theory, and when a theory
fails systematically to predict correctly the result of experiments, then that theory must
be amended or, in extreme cases, abandoned.
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p–q is the major and r–s the minor axis of the ellipse which the path of
the planet traces around the sun. The orbits of the planets of our solar 
system are much more like circles than that shown here which more 
closely resembles that of an asteroid, e.g. Icarus.

If the planet takes equal times to move from a to b and from c to d then
the areas of the two sectors, a–sun–b and c–sun–d, of the ellipse are equal.
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Figure 2.1 Kepler’s laws of planetary motion

The predictive power of Kepler’s laws is illustrated by his tables of astronomical
data, published in 1627, which he calculated by means of his three laws and named the
Rudolphine Tables in honour of his patron, the emperor Rudolph II. The planets Mercury
and Venus, which have orbits of radius less than that of Earth, sometimes pass between
the earth and the sun. At such times the planet in question, viewed from the earth, can be
seen to move across the face of the sun. This is known as a transit of the planet. With the
aid of his tables, Kepler correctly predicted the transits of Mercury (7th November, 1631)
and of Venus (4th December, 1639 and 6th June, 1671) across the sun’s disc. All these
events actually took place as Kepler had said they would; but not before he died in 1630.

The next stage in this brief history of classical mechanics concerns a further phase
through which scientific theories often pass; a phase in which a more fundamental, and
hence more widely applicable, set of laws is sought. Kepler’s laws described the motions
of the planets – but why did they move in that way? An answer to that question might
reveal that the motions of other bodies were governed by similar laws.

2.2 NEWTON, LAGRANGE AND HAMILTON

Isaac Newton (1643–1727) was not the only man of his time to grapple with this problem.
His answer to it, together with accounts of many of his other scientific and mathematical
achievements, appeared in his Philosophiae Naturalis Principia Mathematica in 1687. The
four laws upon which he based his analysis were clearly of a much more fundamental,
and therefore more general, nature than Kepler’s.

Newton’s Laws of Motion

1. A particle moves with a constant (perhaps zero) velocity (and therefore in a straight
line) unless it is acted upon by a force.
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2. A particle acted upon by a force (F ) will move with an acceleration (a) proportional
to that force, the constant of proportionality being the inverse of its mass (m).

a = F/m (2.2.1)

3. When two particles act upon one another, the two forces acting on the particles are
equal and opposite to one another and are directed along the line joining the two
particles.

4. The gravitational force of attraction between two bodies is proportional to the product
of their masses (m1 and m2) and inversely proportional to the square of the distance
(r) between them. The constant of proportionality is the gravitational constant (G).

F = G ×
(m1m2

r2

)
(2.2.2)

The items or postulates 1 to 3 constitute the laws of what we now know as classical
mechanics. During the following two centuries other formulations based on different
postulates were developed, notably by Joseph-Louis Lagrange (1736–1813) and William
Rowan Hamilton (1805–1865). However, these later formulations of classical mechanics
were entirely consistent with Newton’s and with each other; any one version could be
derived mathematically from any other. The Lagrangian and Hamiltonian formulations
found acceptance because they were more elegant in certain applications and the theory
as a whole scored many truly remarkable successes.

2.3 THE POWER OF CLASSICAL MECHANICS

In Section 1.7 attention was drawn to the way in which Maxwell and Boltzmann developed
the kinetic theory of gases by applying Newton’s laws to the motion of the molecules
of a gas, thereby obtaining a deeper understanding of the gas laws of Boyle, Charles
and Gay-Lussac. The gas laws were to the study of gases what Kepler’s laws were
to mechanics; the first attempt to unify a mass of experimental data in a mathematical
formalism. The work of Newton, Maxwell and Boltzmann brought these two strands
of theoretical physics together and classical mechanics was thus shown to be largely
applicable to bodies ranging in mass from 10−25 to 10+25 kg. Other examples of the
ability of theory to interpret very diverse experimental observations have been cited in
Chapter 1. Theoretical physicists at the end of the 19th century were fully justified in
feeling that their science, which we may term classical theoretical physics, was capable
of meeting any challenge the experimentalist might throw down. And yet experimental
measurements already on record, or soon to be made, would be shown to be fundamentally
at variance with the laws of classical physics and would, in due course, trigger a complete
revolution in the subject. What were those measurements?

2.4 THE FAILURE OF CLASSICAL PHYSICS

It goes without saying that so cogent and successful a structure as classical physics did
not fall easily or rapidly. If the laws are thought of as the belt of the structure then
the blows that brought it down fell below that belt, striking at fundamental assumptions
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which were embodied in the laws but never explicitly stated. The fact that the structure
needed to be replaced rather than simply repaired took many years to gain acceptance,
and the replacement was scarcely viable until the late 1920s. The first 30 years of the
20th century was at one and the same time a period of turmoil and of intense excitement
and creativity in the scientific world. It witnessed some of mankind’s most outstanding
intellectual achievements.

There was one major blow which we shall not discuss here. It fell in 1905 when Albert
Einstein (1879–1955) showed that, because of the finite velocity of light, to say that two
events take place simultaneously only has meaning if the events occur at the same place,
and the concepts of space and time cannot therefore be separated as they are in classical
physics. Einstein demonstrated that the velocity of light was a limiting velocity and that,
although Newtonian mechanics was quite adequate for bodies moving with velocities only
a fraction of that of light, it was not applicable to bodies moving at velocities approaching
that limit. Nevertheless, we would not think of using relativistic mechanics to calculate the
orbit of a communications satellite for example. Newtonian mechanics is much easier to
apply and, for such a system, gives answers which are in practice quite indistinguishable
from the relativistic results. This illustrates a very important point; although we know
that classical mechanics is of limited applicability, it is still extremely useful and very
widely used.

From the point of view of the development of quantum mechanics, a more important
event had taken place four years before Einstein proposed his theory of relativity. In 1901
Max Karl Ernst Ludwig Planck (1858–1947) proposed a similarly radical solution to a
problem that had been plaguing theoreticians throughout the 1890s; the energy spectrum
of the black-body radiator.

2.5 THE BLACK-BODY RADIATOR AND PLANCK’S
QUANTUM HYPOTHESIS

Any body at a temperature above the absolute zero emits electromagnetic radiation over
a range of wavelengths. The energy required to produce this radiation, which is known
as thermal radiation, comes from the thermal agitation of the particles of which the body
is composed and, if the temperature of the body is above that of its surroundings, then,
as the radiation is emitted, the body cools down. When the body reaches the temperature
of its surroundings equilibrium is established and the body absorbs and emits radiation
at exactly the same rates. Both the emission and the absorption processes are of interest
to us. In 1879 Josef Stefan (1835–1893) discovered experimentally that the total energy
per second (IT ) emitted from the surface of a body over all frequencies is proportional
to the fourth power of its absolute temperature (T ):

IT ∝ T 4

In 1884 Boltzmann deduced the constant of proportionality from thermodynamic prin-
ciples and wrote the equation in the form:

IT = σeT 4 (2.5.1)

where σ is the Stefan-Boltzmann constant (σ = 5.67 × 10−8 W m−2 K−4) and e is a
dimensionless constant called the emissivity, which lies between 0 and 1, depending upon
the nature of the emitting surface.
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The ability of a body to absorb electromagnetic radiation is defined by its absorptivity,
a, which is the ratio of the total radiant energy falling upon its surface to the total
energy absorbed by the surface. Gustav Kirchhoff showed by a powerful thermodynamic
argument that e was equal to a, and this equality has also been substantiated by experiment.
Thus, good absorbers of radiation are also good emitters, and vice versa. A body which
is both a perfect emitter and a perfect absorber, i.e. one for which e = a = 1.0 is called
a black body and is of particular interest. The best experimental realisation of a black
body surface is a small hole in a cavity furnace with blackened inner walls. Radiation
passing in through the hole has effectively no chance of being reflected back through it,
so a = 1.0 and therefore e = 1.0 also.

The reason for the great interest in the properties of the perfectly emitting and absorbing
black body can be seen by setting e = 1.0 in Equation (2.5.1). The total energy emitted
is found to be dependent on the Stefan-Boltzmann constant and the fourth power of the
absolute temperature but not upon any aspect of the body itself. Clearly, black-body
radiation is a very fundamental phenomenon which demands an interpretation. Accurate
experimental data were provided in 1899 by Otto Richard Lummer (1860–1925) and Ernst
Pringsheim (1859–1917). They used a device not unlike a spectrometer to measure the
way in which the intensity of the emitted radiation, I (λ), depended upon the wavelength
of that radiation, λ, and found curves such as those shown in Figure 2.2. The ordinate of
Figure 2.2 is not I (λ) but ρ(λ), the energy density inside the cavity, which is equal to
4I (λ)/c where c is the velocity of light. More precisely, ρ(λ) is the energy of the radiation
in the wavelength interval λ to λ + dλ in 1 m3 of the cavity. Note how the peak of the
curve moves to shorter wavelengths as the temperature is increased. This phenomenon is
observed when the filament of an electric fire goes from dull red to almost white as the
fire heats up. For a particular temperature, the total energy emitted, IT , is proportional to
the area under the curve and one can see how rapidly this rises with temperature, as is
required by the factor T 4 in Equation (2.5.1).

Even before Lummer and Pringsheim’s accurate data became available, the essential
form of the relationship between energy and wavelength was known and had stimulated
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many attempts to explain it. A particularly important theoretical study of black-body radi-
ation was made around 1900 by John William Strutt, the third Lord Rayleigh (1842–1919)
and James Hopwood Jeans (1877–1946). At the heart of this work lay the concept that
the radiation was emitted (or absorbed) by many ‘oscillators’ which formed, or were
contained within, the structure of the black body. According to electromagnetic theory,
electric charges oscillating with frequency ν emit radiation of the same frequency and
from this the wavelength, λ, of the radiation can be readily calculated since:

νλ = c = velocity of light (2.5.2)

However, although the equation obtained by Rayleigh and Jeans agreed with experi-
ment at long wavelengths it was completely at variance with experiment at short wave-
lengths (Figure 2.2). It was especially disturbing that the equation predicted that the
intensity of the emitted radiation rises to infinity as the wavelength approaches zero. This
impossible result was known as the ultraviolet catastrophe.

2.5.1 Planck’s solution to the black-body radiation problem

Max Planck was a man for whom honour and success in his professional life were accom-
panied by great personal tragedies; he outlived his first wife and all four of their children.
He believed deeply that the only proper occupation for a theoretician was attempting to
solve the most fundamental and challenging problems of the time. At the end of the 19th
century there was no more fundamental a problem than that of black-body radiation and in
1901 Planck had already been working on it for about six years. Though he was by nature
a very conservative man, he found himself forced to the conclusion that only an extremely
radical change in the ideas which he and others had applied to the problem hitherto could
lead to a relationship between ρ(λ) and λ which would agree with experiment in the
short-wavelength region. His revolutionary idea was that:

An oscillator with frequency ν can possess only total energies, En, which satisfy the equation:

En = nhν (n = 0, 1, 2, 3, . . .) (2.5.3)

where h is a universal constant, now known as Planck’s constant and n are the integers.
Planck was proposing that energy came in ‘pieces’ of a certain size determined by the
frequency (ν). Just as the atomic theory requires that matter is not infinitely divisible,
Planck’s suggestion requires that the same is true of energy. When the possible energies of
the oscillators were restricted in this way, Planck obtained a result in excellent agreement
with the experimental data of Lummer and Pringsheim and a value for h of 6.55 ×
10−34 J s. Planck’s equation may be expressed in the form:

ρ(λ) dλ = 8πhc

λ5
· 1

(exp {hc/kλT } − 1)
dλ (2.5.4a)

or on a frequency scale as:

ρ(ν) dν = 8πhν3

c3
· 1

(exp {hν/kT } − 1)
dν (2.5.4b)

where k is Boltzmann’s constant and T the absolute temperature.
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The boldness of Planck’s hypothesis and the departure which it represented from the
views accepted up to that time cannot be exaggerated. The assumption that energy was
infinitely divisible into portions of any size underlay all formulations of classical mechan-
ics and was so fundamental to them that it was never even stated. Now that assumption
had been shown by Planck to be untenable. Planck coined the term quanta (singular
quantum) for his little packets of energy (hν) and systems which can have only certain
values of energy, in this or an analogous manner, are said to be quantised. The number
n in Equation (2.5.3) which gives the number of quanta in the total energy (En) is called
a quantum number.

It is interesting to note that the equation proposed by Planck for the possible total
energies of an oscillator, Equation (2.5.3), had to be modified when the fully developed
quantum theory of the harmonic oscillator became available about 25 years later. It was
then shown that the correct formula for En is:

En = (n + 1
2 )hν (n = 0, 1, 2, . . .) (2.5.5)

and each energy level is seen to be raised by 1
2hν, the zero-point energy (see Chapter 10).

This uniform discrepancy in the energy levels caused no problem in Planck’s work
and in early applications of the developing ‘old quantum theory’ for which only energy
differences were required. However, problems did arise when attempts were made to
explain certain low-temperature phenomena, such as the specific heats of solids, and
these difficulties were only overcome when the fully-fledged quantum theory revealed the
presence of the zero-point energy.

2.5.2 A qualitative interpretation of the form of the black-body
emission curve in the light of Planck’s hypothesis

It is not immediately obvious that a change from a group of classical oscillators having all
possible energies to a situation in which the energies of the oscillators are quantised can
make such a dramatic difference to the predicted graph of ρ(λ) versus λ. Since this is a
question of the energy of the quantum and its dependence upon frequency, in Figure 2.3
the Planck function is plotted on a frequency rather than wavelength basis. Naturally,
since ν is inversely proportional to λ, the plot looks very different in form though the
essential features remain. To interpret this form we first note that in both the classical and
quantum view the number of allowed frequencies in the frequency range between ν and
ν + dν, N(ν) dν, is given by:1

N(ν) dν = 8πV ν2

c3
dν (2.5.6)

where V is the volume of the cavity. The reason for the restriction on the number of
allowed frequencies within the cavity is that each frequency is associated with a standing
wave which must have nodes at the cavity walls. This requirement limits the possible
wavelengths in just the same way as the possible wavelengths of a violin string are
limited. Energy now enters our discussion since the value of ρ(ν) dν is obtained by
multiplying N(ν) dν by, ε, the mean energy of the oscillators. Thus there would appear
to be a strong tendency for the graph of ρ(ν) versus ν to rise steeply with increasing ν.
But there is another factor to be considered; the way in which the available energy is
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Figure 2.3 A qualitative interpretation of the black-body emission spectrum

distributed over the oscillators and, again, classical and quantum theories do not differ in
that both use the Boltzmann distribution. The ratio of the numbers of oscillators (N0 and
N1) in two energy levels (E0 and E1) is determined by the energy difference according
to the equation:

N1

N0
= exp

{
E0 − E1

kT

}
≡ exp

{−�E

kT

}
(2.5.7)

However, the crucial difference between the classical and quantum views is revealed
when we determine the mean energy (ε) of the oscillators. Classically, with a continuum
of energy levels, we find:

ε = kT (2.5.8a)

whilst the quantised energy-levels give:

ε = hν

exp(hν/kT ) − 1
(2.5.8b)

Noting that the exponential function may be expanded (see Appendix 8) as the series:

exp(hν/kT ) = 1 + hν/kT + (hν/kT )2/2! + (hν/kT )3/3! + · · ·
we see that the quantum value of ε tends to the classical value when hν � kT and we
take just the first two terms in the expansion. Thus, at the low-frequency end of the
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graph (Figure 2.3), where there is effectively a continuum of energy levels, the situation
is almost classical and the classical and quantum theory plots are very similar. However,
as we move to higher frequencies the quantised spacing of the energy levels begins to
make itself felt. If we go immediately to the highest frequencies it is obvious that, at that
limit, the spacing between the energy levels (�E = hν) is so large that only the lowest
energy level is occupied. If all oscillators are in their lowest energy state they cannot
emit and ρ(ν) must fall to zero. It follows, therefore, that as we go from low to high
frequencies a point is reached where the increasing energy-level spacing becomes more
important than the increase in the energies of the oscillators themselves; the graph of ρ(ν)
versus ν goes through a maximum and begins its long fall to zero. Eisberg1 has a very
good discussion of the black-body problem.

2.5.3 Quantisation in classical mechanics

A question arises immediately; if energy is quantised, why was this not noticed before
1901? Consider the vibration of a macroscopic oscillator; an idealised system consisting
of two masses, each of 0.1 kg, joined by a mass-less spring which is 10 cm (0.1 m)
long at equilibrium and can be extended or compressed; (Figure 2.4). If the spring obeys
Hooke’s law in both compression and extension then the potential energy, E, produced
by a change of length of �r is given by:

E = 1
2k(�r)2

so for our particular spring:

E = 1
2k(r − 0.10)2 (Joules) (2.5.9)

where k is the force constant measured in N m−1 and r is the length to which the spring
has been extended or compressed. k represents the stiffness of the spring and if we
pull the masses apart to extend the spring and then release them the model vibrates.
In our idealised system there will be no losses of energy and the vibration will con-
tinue indefinitely. As the model vibrates energy is continually exchanged between kinetic
and potential. At the maximum and minimum spring lengths all the energy is poten-
tial; at the point when the spring length is 10 cm all the energy is kinetic. The total
energy, potential plus kinetic, is constant since energy must be conserved. This is a suit-
able model for an oscillating, homonuclear diatomic molecule, e.g. hydrogen (H2) or
oxygen (O2).

k = 15 N m−1

 n = 2.76 s−1

0.1 m

m = 0.1 kg m = 0.1 kg

Figure 2.4 A macroscopic dumb-bell oscillator



The Black-Body Radiator and Planck’s Quantum Hypothesis 19

The potential energy for a particular extension of the spring, and hence the total
energy at any time, can be calculated from Equation (2.5.9). The results obtained using
a force constant of 15 N m−1 are shown in Table 2.1. Since the energy is determined
by (r − 0.10)2, the figures apply to both extension and compression of the spring and
they describe a parabola (Figure 2.5). Oscillations which arise as a result of a parabolic
potential energy curve are simple harmonic oscillations and the frequency of oscillation
(ν) can be calculated by means of the equation:

ν = 1

2π
·
√

2k

m
(s−1 or Hz) (2.5.10)

where m is the mass of each of the two equal masses which, in our case is 100 g = 0.1 kg.
We find that the frequency is 2.757 Hz, i.e. the model performs 2.757 oscillations per
second.

In this hypothetical model there is no limit on the potential energy which we can
give the system; it simply depends upon the initial extension (or compression) which we
choose to impose upon the spring. But note that although the energy may be different,
the frequency of oscillation is always the same since it depends (Equation 2.5.10) only
on m and k. But according to Planck the energy is quantised in units of hν = 6.626 ×
10−34 × 2.757 J = 1.827 × 10−33 J. Comparing this result with the figures in Table 2.1,
we see that the quantum of energy in this example is about 1028 times smaller than the
energy of the oscillator. It is such a small quantity that there is no way in which we could
measure it or detect its presence by observation of the vibrations of our model. As far as
our model is concerned, energy is effectively continuous.

Table 2.1 The energy of the macroscopic model of a diatomic oscillator as a function of the
distance between the masses

(r − 0.1)/m 0.000 0.005 0.010 0.015 0.020 0.025 0.030
E/J × 10−4 0.000 1.88 7.50 16.88 30.00 46.88 67.50
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Figure 2.5 The parabolic potential energy curve of the macroscopic dumb-bell oscillator
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But if we consider a molecule we shall find that two factors contribute to make quan-
tisation a real observable phenomenon in a system of atomic dimensions. We take as
our molecular model the hydrogen molecule (H2). Experiment tells us that the mass of
each atom in the molecule is 1.6738 × 10−27 kg and the frequency of oscillation (ν) is
1.3175 × 1014 Hz. Rearranging Equation (2.5.10) we have:

k = 2π2ν2m (2.5.11)

which, with these data, gives a force constant of 573 N m−1. And the quantum of energy
for the vibrating hydrogen molecule is therefore hν = 8.726 × 10−20 J. This is much
larger than that of the macroscopic model because of the great difference in the vibrational
frequencies of the two systems.

The H–H bond length is 74.17 pm (1 pm = 10−12 m) so, using Equation (2.5.9), a 10 %
extension of the bond develops a potential energy of (573/2) × (7.4)2 = 1.57 × 10−20 J.
This figure is approximately one fifth of the value of hν for the hydrogen molecule cal-
culated above and we must therefore expect that quantisation will play a much more
important role in the vibrational behaviour of the hydrogen molecule than it does in the
macroscopic model we discussed earlier. Thus, we anticipate that the effects of quantisa-
tion will be measurable in atoms and molecules, but not in macroscopic systems.

In summary, we may say that it is the magnitude of Planck’s constant (h) which is the
determining factor. Only when energies are so small or frequencies so high that E ≈ hν

do the effects of quantisation become visible in our experimental measurements. Such
conditions are found when we study the behaviour of atoms and molecules.

2.6 THE PHOTOELECTRIC EFFECT

Planck’s solution of the problem of the energy distribution of black-body radiation was
extremely difficult for scientists to accept; not least Planck himself who realised that,
if it were correct, it would require the recasting of the whole of classical physics. The
thought that energy, like matter, was not infinitely divisible struck at the very foundations
of theoretical physics. What was desperately needed was some confirmation, some other
experiment which could be successfully interpreted in terms of a quantisation of energy.
The world of physics waited until 1905 for such evidence, which Einstein then provided
with brilliant insight, though its true value was not recognised immediately. The experi-
mental observation we shall discuss here is the photoelectric effect, but in his 1905 paper
Einstein’s discussion ranged much more widely.

In 1887 Hertz discovered that when a beam of ultraviolet light falls upon a metal
surface particles capable of conducting electricity are emitted from the metal. In 1900
Philipp Eduard Anton Lenard (1862–1947) proved that the emitted particles were elec-
trons and further experiments revealed the following salient facts about the photoelectric
effect.

• There is a threshold of frequency (ν0). Light having a frequency lower than ν0 does
not eject electrons from the metal surface, no matter what the intensity of the light. But
when the frequency is increased above the threshold electrons appear immediately.

• The electrons ejected by radiation of frequency ν greater than ν0 have kinetic energy
and this kinetic energy increases as the frequency difference, ν − ν0, increases.
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• If the intensity of the light is increased at a constant frequency the kinetic energy of the
ejected electrons remains the same, but they increase in number in direct proportion to
the intensity.

These experimental observations are completely at variance with classical electromag-
netic wave theory. If the energy of light is spread out in a wave a time delay would be
expected, during which the electron accumulates energy from the wave, between the time
at which the light source is switched on and the appearance of the first electrons. The
delay was estimated theoretically to be about one minute whereas a delay of approxi-
mately 10−9 s was measured experimentally. Further, since in classical theory energy is
accumulated from the light wave, any light should be capable of ejecting electrons; the
process of accumulation would just take longer for less energetic light and there would
be no other dependence upon ν. Finally, for a given period of illumination, the kinetic
energy of the ejected electrons is expected to increase with the intensity of the light, not
with its frequency.

Einstein based his 1905 interpretation of the facts of the photoelectric effect on Planck’s
hypothesis, reasoning as follows. According to Planck, the oscillators in a light source
can only have quantised energies given by nhν (n = 0, 1, 2, 3, . . .). Therefore, as the
oscillators change their energies from nhν to (n − 1)hν and emit radiation of frequency
ν and energy hν then, at the moment of emission, this radiation must emerge as a pulse
within a short period. If this pulse of radiation then moves away from the source as a
single entity rather than dispersing as a wave, light may be considered to be a stream of
pulses of energy. (We now call these pulses of energy photons, though Einstein did not
use that expression; see Chapter 8). If the stream of photons, each having energy hν, falls
upon a metal surface one of two things may then occur. If the energy (hν) of the photon
is less than the work function (W ), which is the energy required to eject an electron from
the metal surface, no photoelectron will be observed. If the photon has more energy than
that required to eject the electron then the electron will be ejected and, because energy
must be conserved, the excess of energy will be converted into the kinetic energy (KE ) of
the ejected electron. Einstein therefore proposed the following equations for the energetics
of the photoelectric effect:

hν = W + KE (2.6.1)

hν0 = W (2.6.2)

KE = hν − hν0 = h(ν − ν0) (2.6.3)

These equations are in excellent agreement with the experimental facts as they are
known today. But it is not widely appreciated that, at the time of Einstein’s suggestion,
no quantitative experimental data were available. Only the qualitative results outlined
above were known to him and even these were not universally accepted. Thus, he was
not able to calculate a value of Planck’s constant with his new theory and his paper
actually contains very few numerical results. It is concerned solely with describing a
number of experimental observations and interpreting them in terms of a particle theory
rather than a wave theory of light. The impact of this new hypothesis was not immediate,
but when its significance was recognised it won Einstein the 1921 Nobel Prize for Physics.
The lack of high-quality experimental data on which to test it was an important factor in
the slow appreciation of Einstein’s new concept. Eleven years were to pass before such
data became available.
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2.6.1 Einstein’s theory of the photoelectric effect
confirmed experimentally

The experimental work required to clinch Einstein’s hypothesis, at least as far as the
photoelectric effect is concerned, took many years to complete and turned out to be
extremely difficult. Robert Andrews Millikan (1868–1953), who had earlier achieved
fame for his determination of the charge on the electron, devoted about 11 years to this
problem beginning in 1905. In 1916 he reported the definitive summary of his work on
the photoelectric effect; his data for lithium and sodium are illustrated in Figure 2.6.

The horizontal axis of the figure gives the frequencies of the lines of the mercury
discharge lamp used to excite the photoemission. The vertical axis records the minimum
voltage required to prevent the photoelectrons leaving the metal. This is a measure of the
kinetic energy of the photoelectrons. Negative values of the retarding voltage indicate that
the electrons lacked sufficient energy to leave the metal surface and had to be drawn away
from it. Each point is the result of a series of experiments in which the photocurrent for
a range of more negative voltages is extrapolated back to zero current. The slope of the
graph of retarding potential against frequency, when converted to appropriate units, gives
the value of h/e and, using the value of e which he himself had determined, Millikan found
values of h = 6.584 and 6.569 × 10−34 J s from his lithium and sodium data respectively.
After a very careful consideration of errors Millikan concluded that h = 6.57 × 10−34

with an error of 0.5 %. When he recalculated h using Planck’s original equation for
black-body radiation with the most recent values of the other physical constants involved,
Millikan found exactly the same value for h with an estimated error of 0.3 %. This result
confirmed Einstein’s ideas in the most convincing manner. It is not surprising that this
brilliant and exacting experimental work was also cited by the Nobel Committee when
they awarded the 1923 Nobel Prize for Physics to Millikan, largely, but not exclusively,
for his determination of the charge on the electron.
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Reproduced with permission from R.A. Millikan, Phys. Rev., 7, 355 (1916).
 The American Physical Society.
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Figure 2.6 Millikan’s data for the photoelectric effect in lithium and sodium
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We cannot leave this subject without emphasising again just how radical Einstein’s
photon hypothesis was and how small was the quantity of hard experimental evidence
for it at the time. In the introduction to his paper, which did more than anything else
to confirm it, Millikan himself described Einstein’s proposition as a ‘. . . bold, not to
say reckless, hypothesis.’; words which were quite justified in view of the dominance of
the wave theory of light in 1905. But, in spite of its flimsy experimental base and the
fact that quantitative experimental confirmation was such a long time coming, Einstein’s
photon hypothesis brought about a complete change in our view of light. Throughout the
18th and 19th centuries the wave theory of light had become increasingly dominant and
had extended into the description of newly discovered forms of electromagnetic radiation
such as ultraviolet, infrared and radio waves. Einstein’s interpretation of the photoelectric
effect demanded a complete reappraisal of the way in which light was regarded. He had
extended Planck’s revolutionary hypothesis while introducing an equally radical concept
of his own.

2.7 THE EMISSION SPECTRA OF ATOMS

Of all the experimental data which classical theories appeared to find difficult to interpret,
the greatest quantity of highly accurate data was contained in the photographs of atomic
spectral emission. If a sample of like atoms is heated to a sufficiently high temperature,
4000 ◦C say, the atoms absorb energy from the furnace and re-emit it in the form of
an atomic spectrum (Figure 2.7). The spectrum consists of a number, many hundreds in
some cases, of very sharp lines of precise wavelength (frequency). The lines look like,
and indeed are, a bar code for the atom and Robert Wilhelm Bunsen (1811–1899) and
Gustav Kirchhoff (whose work on the black-body radiator has already been mentioned in
Section 2.5) identified the previously unknown elements caesium (a sky-blue line found
in 1860) and rubidium (a ruby-red line found in 1861) by measuring the spectra of
minerals heated to incandescence by Bunsen’s famous burner. Later, Kirchhoff showed
that measurement of the absorption of light by atoms was similarly characteristic. Atomic
emission and absorption spectra are among the most powerful qualitative and quantitative
analytical tools currently available to us.

The lowest spectrum is that of copper and the one immediately above it is iron.  The remainder are the
spectra of ore samples.  [The spectra are printed as 'positives' so that the emission lines appear white on a
dark background.]

Figure 2.7 Some atomic emission spectra‡

‡ Christian, Analytical Chemistry, 5th edn,  Reprinted with permission of John Wiley & Sons, Inc.
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But in the first decade of the 20th century the sharp lines of the atomic spectrum
constituted a theoretical problem of great difficulty. Throughout this decade experimental
evidence concerning the structure of the atom was accumulating and in 1911 Ernest
Rutherford (1871–1937) proposed a model of the atom in which almost the whole mass
of the atom was concentrated in a very small, positively charged nucleus at the centre while
the negatively charged electrons occupied a much greater region of space surrounding the
nucleus. Since atomic spectra were the result of emission of radiation by atoms, it should
have been possible to draw conclusions about the structure of atoms from their detailed
atomic spectra. But there was a problem. Since the electrons were negatively charged and
the nucleus positively charged electrostatics predicted that the electrons would be drawn
into the nucleus, destroying the atom immediately. A way in which such an event might
be prevented would be if the electrons were to orbit the nucleus, like planets around a sun,
with the force of the electrostatic attraction between electron and nucleus replacing the
gravitational attraction between planet and sun. But even this was no solution. According
to classical electromagnetic theory, a negative charge orbiting a positive charge constitutes
an oscillating dipole which would radiate energy, just like Hertz’s sparks (Section 1.7).
Thus the atom should continuously lose energy until the electron fell into the nucleus and
the radiation emitted would be of continuously varying wavelength (frequency), not the
sharp lines actually observed.

2.7.1 Bohr’s theory of the structure of the hydrogen atom

The above was the dilemma which faced Niels Henrik David Bohr (1885–1962) in 1913.
He attacked it with that mixture of boldness and intuition which had characterised the
work of Einstein and proposed four new laws.

Bohr’s Laws of the Hydrogen Atom Structure

1. The electron in the hydrogen atom orbits the nucleus in a circular path, like a planet
around the sun.

2. Of the infinite number of possible orbits, only those are allowed for which the orbital
angular momentum of the electron is an integral multiple of Planck’s constant divided
by 2π .

3. Contrary to classical electromagnetic theory, electrons in these allowed orbits do not
radiate energy.

4. When an electron changes its orbit a quantum of energy (photon) is emitted or absorbed
in accordance with the equation �E = hν, where �E is the difference in the energy
of the two orbits.

In postulate 2 Bohr was following Planck’s lead. Planck had proposed that the energies
of the oscillators in a black body could have only certain quantised values; Bohr was
suggesting a similar thing for the electron orbits of the hydrogen atom. But instead of
energy he chose to quantise the angular momentum of the electron. It is not easy to
say why Bohr chose to quantise angular momentum rather than energy, but it may be
that it was because the units of Planck’s constant (J s) are the same as those of angular



The Emission Spectra of Atoms 25

Table 2.2 The first eight Balmer lines (2s → np; n = 3, 4, . . . , 10) of hydro-
gen Balmer’s formula: λ(calc.) = 364.7n2/(n2 − 4)

state energy‡

n ω/cm−1 �ω/cm−1 λ(obs.)/nm λ(calc.)/nm

2 82 258.9
3 97 492.3 15 233 656.5 656.5
4 102 823.8 20 565 486.3 486.3
5 105 291.5 23 033 434.2 434.2
6 106 632.2 24 373 410.3 410.3
7 107 440.4 25 182 397.1 397.1
8 107 965.0 25 706 389.0 389.0
9 108 324.7 26 066 383.6 383.6

10 108 582.0 26 323 379.9 379.9
∞ 109 678.8 27 420 364.7 364.7

‡Charlotte E. Moore, Atomic Energy Levels, Vol I, US National Bureau of Standards,
Circular 467, Washington DC, 1949.

momentum. However, following the discussion of Chapter 1, it should be clear that, as
with the gas laws of Boyle and Gay-Lussac, there can be only one test of Bohr’s laws
and that is whether they reproduce the experimental findings.

Table 2.2 lists the wavelengths of a series of emission lines of the hydrogen atom
which, in 1913, had been known for many years. They are called the Balmer lines because
Johann Jakob Balmer (1825–1898), a Swiss school teacher, had shown in 1885 that the
wavelengths of these lines (in nm = 10−9 m) fitted the simple formula:

λ = 364.7n2

(n2 − 4)
(n = 3, 4, 5, . . .) (2.7.1)

Balmer’s equation, which predicts the wavelengths very accurately and was deduced
from the experimental data alone, is illustrated with a graph in Figure 2.8. Thus, the test
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Figure 2.8 A graph of Balmer’s equation for the hydrogen atom spectrum
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of Bohr’s laws is their ability to interpret Equation (2.7.1). The application of the Bohr
model to Balmer’s equation is described in detail in Box 2.1. In the next section the
results derived there are used to test the Bohr theory against experiment.

2.7.2 Comparison of Bohr’s model with experiment

As shown in Box 2.1, the Bohr model leads to Equation (B2.1.13) for the wavelengths
of the atomic spectral lines of the hydrogen atom:

λ = 32ε2
0ch

3

e4me

·
(

n2

n2 − 4

)
(B2.1.13)

On evaluating the factor 32ε2
0ch

3/e4me using the values for the fundamental constants
listed in Appendix 1, we obtain:

32ε2
0ch

3

e4me

= 32 × (8.85419)2 × 2.99792 × (6.62608)3 × 10118

(1.60218)4 × 9.10939 × 10107
= 364.507 × 10−9 m

This is in excellent agreement with Balmer, i.e. with experiment, and confirms the
validity of Bohr’s model for the hydrogen atom spectrum.

2.7.3 Further development of Bohr’s theory

The excellent agreement of Bohr’s theoretical result with the experimental data embodied
in Balmer’s equation was most gratifying and, at the time, it marked a very important step
forward. But law 2, the arbitrary imposition of quantisation upon what was essentially a
classical solution of the problem was to no one’s liking, least of all to Bohr’s. Furthermore,
strenuous efforts by Bohr and others, notably Arnold Johannes Wilhelm Sommerfeld
(1868–1951), to apply a similar, semi-classical approach to atoms with more than one
electron failed to give results in agreement with experiment and it was clear that a fully
acceptable theory of the structure of the atom was yet to be found. The search for a
form of mechanics applicable to atoms and molecules was to last for a further 12 years.
Amazingly, when a viable theory was found, two apparently very different theories were
announced at almost the same time. Karl Werner Heisenberg (1901–1975) described
his matrix mechanics in 1925 and Erwin Schrödinger (1887–1961) his wave mechanics
in 1926. But the two approaches were soon shown to be different formulations of the
same theory (compare the Newtonian, Lagrangian and Hamiltonian forms of classical
mechanics), and we shall deal only with Schrödinger’s version here.

But before we take our final step to quantum mechanics we must note a suggestion made
in his PhD thesis by de Broglie which, though it was not substantiated by experiment until
after the advent of quantum mechanics, showed very clearly that a profound difference
was to be expected between the description of very small particles by classical and by
quantum mechanics. It also had a great influence on Schrödinger who, in his famous
paper of 1926, described de Broglie’s thesis as ‘inspired’.

2.8 de BROGLIE’S PROPOSAL

Louis Victor Pierre Raymond Prince de Broglie (1892–1987) descended from a noble
family who had served many French kings. He studied history before taking up physics
and in his doctoral dissertation (1924) he reasoned as follows:
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According to Einstein’s theory of relativity:

E = mc2 (2.8.1)

but Einstein, following Planck, also suggested that:

E = hν = hc/λ (2.8.2)

therefore, if the momentum (p) of the photon as a particle is mc, then:

p = mc = E/c = h/λ (2.8.3)

and if this result applies to other particles as well as to photons, then all moving particles
should be associated with a wavelength (λ) given by the equation:

λ = h/p = h/mv (2.8.4)

where m and v are the mass and velocity of the particle respectively.
This remarkable suggestion was confirmed for electrons by Clinton Joseph Davisson

(1881–1958) and Lester Halbert Germer (1896–1971) who, in 1927, demonstrated that
a beam of electrons directed at the surface of a nickel crystal were selectively diffracted
at certain angles, just as X-rays are diffracted, by the regularly spaced layers of atoms in
a crystal.

A similar experiment was performed independently by George Paget Thomson (1892–
1975) in 1927. In Thomson’s experiment, electrons were accelerated by potentials of
between 10 and 60 kV as a result of which, if de Broglie is correct, their associated
wavelengths would lie between 12 and 5 pm respectively. This wavelength range is some
20 to 50 times smaller than the spacing between atoms in a metal and Thomson fired a
very narrow beam of his accelerated electrons through extremely thin (10−7 m) foils of
gold and platinum. He placed a photographic plate on the far side of the foil and when
he developed the plate found it to show the circular interference pattern well known
from the corresponding experiments with light beams. Furthermore, measurement of the
interference pattern and a knowledge of the velocity of the electrons and the spacing of
the atoms in the metal foil provided a quantitative proof of de Broglie’s equation. Many
subsequent experiments with heavier particles have confirmed the early results.‡

The deep significance of this result is apparent when we consider a simplified version
of Thomson’s experiment (Figure 2.9) in which a beam of electrons is directed at a screen
containing just two slits with a photographic plate to observe the results. From experiment
we know that an interference pattern is observed on the plate only if there are two (or
more) slits in the screen. With one slit no interference pattern is seen. Also, we can
reduce the intensity of the electron beam to such a level that we may consider the final
pattern on the plate to be the accumulation of the results of many experiments, each with
an individual electron. But how can this be interpreted if the electron is a particle? A
particle can only pass through one of the slits, but the experiment seems to imply that the
presence of a further slit, through which the electron did not pass, has had an influence
on the electron’s trajectory!

We are on very treacherous ground here. Experience has shown that we cannot speak
of the path of a particle in quantum mechanics in the same way as we do in classical
mechanics. We can only speak of those things which we can observe. In this case we can

‡ A nice anecdote is told about the Thomsons. The father (JJT) won the Nobel Prize for Physics in 1906 for showing that the
electron was a particle. The son (GPT) won the same prize in 1937 for showing that the electron was a wave!
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Electron source Electron source Electron source 

Photographic plate Photographic plate Photographic plate 

A single open slit 
produces one band 
on the photo-plate

A single open slit 
produces one band
on the photo-plate

 When both slits are open 
 an interference pattern of 
 many bands is produced

Figure 2.9 An idealised representation of G.P. Thomson’s experiment

see the spot produced on the photographic plate by the electron, but we cannot observe the
‘path’ which it has taken between the electron source and the plate and we must not make
inferences about what that path might, or might not, have been. A much more detailed
discussion of this problem has been given by Feynman2 and we shall return to the subject
of what we can and cannot know in Chapter 3. At the moment we must continue on our
difficult but well-defined path ‘from classical to quantum mechanics’, for we have almost
reached our journey’s end.

2.9 THE SCHRÖDINGER EQUATION

The title of the paper in which Schrödinger announced his new mechanics was ‘Quanti-
zation as an Eigenvalue Problem’ and in the first paragraph he wrote:

‘In this communication I wish to show, first for the simplest case of the non-relativistic and unper-
turbed hydrogen atom, that the usual rules of quantisation can be replaced by another postulate, in
which there occurs no mention of whole numbers. Instead, the introduction of integers arises in the
same natural way as, for example, in a vibrating string for which the number of nodes is integral.
The new conception can be generalised and I believe that it penetrates deeply into the true nature
of the quantum rules.‡

The title chosen for his paper by Schrödinger is very significant, and we shall return
to it later. But let us first examine the opening paragraph quoted above. Schrödinger
immediately makes clear that he is going to deal only with the simple case of the hydrogen
atom. He is not going to include the effects of the theory of relativity in his discussion, nor
will the atom be disturbed (perturbed) by any external forces. The second half of the first
sentence shows that it is the arbitrary imposition of quantisation which is Schrödinger’s

‡ I have taken this quotation, verbatim, from Linus Pauling and E. Bright Wilson’s ‘Introduction to Quantum Mechanics’,
published in 1935.4 Like the book itself, the translation of the original German can scarcely be improved upon.
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target and the second sentence reveals that he has found a theory in which quantisation
arises naturally.

To illustrate the way in which integers can arise naturally in theoretical models of phys-
ical phenomena, Schrödinger refers to the vibration of a stretched string, which can only
vibrate in such a way as to produce the fundamental frequency and the first, second, third,
. . . nth . . . overtone, or harmonic, and for which the string has 0, 1, 2, 3, . . . n . . . nodes
respectively between the fixed points at its ends. Here we must beware. Schrödinger’s
form of the new mechanics has become known as wave mechanics and he is here illustrat-
ing his new results with the well-known properties of waves on stretched strings. But this
does not mean that his equation can be derived from such considerations. The Schrödinger
equation is not derivable from classical mechanics, it is a new postulate as he himself
makes clear in the quotation above. So, what is this new postulate? The question takes
us back to consider the title of Schrödinger’s paper.

2.9.1 Eigenfunctions and eigenvalues

German is a language with a remarkable ability for building compound words such as
Eigenfunktion and Eigenwert.3 It is easy to translate the second parts of the above German
words ‘Funktion’ = ‘function’ and ‘Wert’ = ‘value’ (German nouns always begin with
an upper-case letter), but it is very difficult to find a suitable translation for the qualifying
word ‘Eigen’. The word ‘special’ has occasionally been used, but it does not imply an
aspect of ‘belonging to’ which ‘Eigen’ also has. Thus, an eigenvalue is not only a special
value it also belongs to something, to its own special function and an operator in fact (see
Box 2.2). The situation is best illustrated with an example of an eigenvalue-eigenfunction
equation:

∂2

∂ϑ2
(sin 3ϑ) = ∂

∂ϑ
(3 cos 3ϑ) = −9 sin 3ϑ

This equation is a rather unusual one. The mathematical operator, ∂2/∂ϑ2, operates on
the function sin(3ϑ) (we show it in two steps to make the process clear) to give exactly
the same function back again, but multiplied by a number, −9 in this case.

There are rather few cases where an operator, e.g. +, −, ×, ÷, integrate, differentiate,
when applied to a function gives the function back again multiplied only by a number.
When this unusual situation does occur the function is known as an eigenfunction of the
operator and the number as the associated eigenvalue. It is this mathematical phenomenon
which lies at the heart of Schrödinger’s mechanics. He discovered a way of formulating
an operator for the energy of the electron in the hydrogen atom and then determined the
eigenfunctions and eigenvalues of that operator. The eigenvalues are then the possible
energies of the electron in the hydrogen atom, as could be tested immediately by a
comparison with the experimental spectral data. The eigenfunctions are functions which
describe the possible ways in which the electron may be distributed around the nucleus of
the hydrogen atom, each distribution being associated with a particular energy given by the
associated eigenvalue. These hydrogenic eigenvalues and eigenfunctions will be discussed
in detail in Chapter 5. At the moment we shall find it easier if we first consider the
eigenvalues and eigenfunctions of some even simpler problems (Chapter 3). But simple
though they are, we shall find that these problems have solutions with important chemical
applications.
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BOX 2.1 Bohr’s model of the hydrogen atom in detail

Motion in a circle

Bohr’s model of the hydrogen atom pictures the electron orbiting the nucleus like a
planet around the sun. The theory appeals to the results of the classical mechanics of
motion in a circle so it will be useful if we derive those we require before we start.

Figure B2.1.1(a) shows a mass m moving with a constant speed (v) along a circular
path of radius r centered at O. Though the speed is constant, the velocity, which
is a vector quantity and therefore has direction as well as magnitude, is not. The
magnitude of the velocity of the mass is its speed, which is constant, but its direction
is continuously changing. The velocity vector (v) is always at right angles to the
radial vector (r) and Figure B2.1.1(b) illustrates the situation at two closely spaced
instants in time during which the mass has moved through a very small angle (dß).
The distance moved along the arc, ds, is equal to r · dß if dß is measured in radians.
Also, the speed along the arc is v = ds/dt . In Figure (c) the difference in the two
velocity vectors, dv = v2 − v1, is found by means of vector subtraction. Since the
magnitudes of v2 and v1 are equal to the constant v, for small angles where the arc
of the circle and its chord are not appreciably different in length, dv = v · dß. Thus
we have:

ds = r · dß and dv = v · dß

Eliminating dß gives: dv/ds = v/r .
The acceleration, a, of the mass can now be found because:

a = dv

dt
= ds

dt
· dv

ds
= v · v

r
= v2

r
(B2.1.1)
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Figure B2.1.1 Motion in a circle
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It is clear from figure (c) that for very small angles (dß), the change in velocity
(dv) is at right angles to v and therefore directed along r towards O. Thus, if the
change in velocity is directed towards O so also must be the acceleration.

The angular momentum (l) generated by the counter-clockwise motion illustrated
in (a) is given by the vector product:

l = r × p = r × mv = rmv (B2.1.2)

The last equality follows because r and v are always at right angles to each other
and the vector product of two vectors is the product of their magnitudes multiplied by
the sine of the angle between them. The direction of the vector l is out of the paper
towards the reader.

Angular momentum and energy

For the system described above all energy is kinetic energy which can be readily
expressed in terms of the angular momentum:

E(kinetic energy) = mv2

2
= (mv)2

2m
= (l/r)2

2m
= l2

2mr2
(B2.1.3)

The Bohr model

Consider an electron of mass me and charge −e moving with velocity v in a circular
orbit of radius r around a much heavier nucleus of charge +e (Figure B2.1.2). The
electron follows this path because of the coulombic force of attraction, −e2/4πε0r

2,
pulling it towards the nucleus. ε0 is the vacuum permittivity. The electron does not
fall into the nucleus because of its velocity at right-angles to the line between the two
particles, the radial vector. But, as shown above, the coulombic force does cause an
acceleration of the electron towards the nucleus equal to −v2/r , where the negative

M r

me

+e

−e

Figure B2.1.2 Bohr’s model of the hydrogen atom
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sign indicates that the acceleration, like the force which causes it, is in the direction
of decreasing r . Now, according to Newton, force = mass × acceleration so:

e2

4πεor2
= mev

2

r
or r = e2

4πεomev2
(B2.1.4)

The discussion up to this point has been based entirely upon classical theory and
therefore we find that no restriction is placed upon the radius of the electron’s orbit
(r). For any choice of r a velocity can be found to balance the above equation. Bohr’s
second law introduces quantisation with the postulate that only those orbits for which
the orbital angular momentum is an integer multiple of h/2π are allowed. The angular
momentum is mevr so Bohr’s quantum condition is:

mevr = nh/2π n = 1, 2, 3, . . . ,∞ (B2.1.5)

n = zero is not permitted because it would imply either v = 0, giving rise to an infinite
radius (Equation (B2.2.1)) or r = 0. If the allowed orbits satisfy Equation (B2.1.5)
then the allowed values of the radius can be obtained by using Equation (B2.1.5) to
eliminate v from Equation (B2.1.4) giving:

r = e2

4πεome

× 4π2m2
er

2

n2h2
or mer = εon

2h2

e2π
(B2.1.6)

and using Equation (B2.1.5) again:

v = nh

2πmer
= nh

2π
× e2π

εon2h2
= e2

2εonh
(B2.1.7)

To obtain the total energy, E, of the atom we use:

E = potential energy + kinetic energy

so that:

E = − e2

4πεor
+ mev

2

2

= − e2

4πεo

(
e2πme

εon2h2

)
+ me

2

(
e2

2εonh

)2

(B2.1.8)

= e4me

4ε2
on

2h2

(
−1 + 1

2

)
= −e4me

8ε2
on

2h2

The presence of the quantum number n on the right-hand side of Equation (B2.1.8)
for E shows why n cannot be zero and that we have quantisation of the total energy
of the hydrogen atom. We recognise this by writing the quantum number in brackets:

E(n) = −1

n2
×

(
e4me

8ε2
oh

2

)
(B2.1.9)

We now require to see if we can reproduce Balmer’s Equation (Equation (2.7.1)).
According to Bohr’s fourth postulate, the energy of a spectral line is given by the
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difference between two of the above quantised energy values of the hydrogen atom,
i.e. the energy calculated for two different quantum numbers, n1 and n2 say. Thus:

E(n2) − E(n1) = �E = e4me

8ε2
on

2h2
×

(
1

n2
1

− 1

n2
2

)
= e4me

8ε2
on

2h2
× (n2

2 − n2
1)

n2
1n

2
2

(B2.1.10)
But the frequency of light (ν) and the wavelength (λ) are related by the velocity

(c) in the equation c = νλ, so that:

�E = hν = hc/λ (B2.1.11)

Therefore, the wavelength of a line in the Balmer series is:

λ = 8ε2
0ch

3

e4me

×
(

n2
1n

2
2

n2
2 − n2

1

)
= 8n2

1ε
2
0ch

3

e4me

×
(

n2
2

n2
2 − n2

1

)
(B2.1.12)

A comparison of this equation with Equation 2.7.1 suggests that n1 = 2 and n2 =
n, and if we make these substitutions our expression for λ can now be written:

λ = 32ε2
0ch

3

e4me

×
(

n2

n2 − 4

)
(B2.1.13)

The crucial test of Bohr’s laws is now obtained by evaluating the factor 32ε0
2ch3/

e4me in Equation (B2.2.13). This calculation is carried out in Section 2.7.2. where
excellent agreement with Balmer, and therefore with experiment is found.

BOX 2.2 Operators

We can divide the symbols used in mathematics into two types, the operators and the
operands. The operands are the numbers, or in the case of algebra, the letters which
represent the numbers. The operators are the symbols which tell us what we have
to do with the numbers. Thus, in the expression 2 + 5, the operator, +, tells us that
we are to add the number 5 to the number 2. Similarly, 2 × 5 indicates that 5 is to
be multiplied by 2. The operator

√
tells us to take the square root of the operand.

As examples of more complicated operators we may take those for differentiation
and integration which, as it happens, occur frequently in quantum mechanics. In a
crude analogy we might say that the surgeon is the operator and the patient the
operand.

Pairs of operators are linked by a very important property which is independent
of the operand. This may be illustrated using the operators for multiplication by y,
y×, multiplication by z, z×, and taking the square root,

√
. As the operand we shall

use 4y3.
First we take the operators y× and z× and apply them to the operand in the order

y× z×. We obtain:
y× (z× [4y3]) = y× (4zy3) = 4zy4
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And if we apply the two operators in the reverse order we get the same result, i.e.:

z× (y× [4y3]) = z× (4y4) = 4zy4

But if we choose the operator pair y× and
√

, we find that the order in which we
apply them is important because:

√
(z× [4y3]) =

√
(4zy3) = 2z

1
2 y

3
2

But:

z×
√

[4y3] = z× (2y
3
2 ) = 2zy

3
2

We say that the operator pair y× and z× commute, but the pair y× and
√

do not
commute. The commutation or non-commutation of pairs of operators plays a very
important role in quantum mechanics as we shall see in Chapter 3.

PROBLEMS FOR CHAPTER 2

1. For the special case of a planet with a circular orbit, deduce Kepler’s third law from
Newton’s laws.

2. Calculate the radius of the circular orbit of a geostationary satellite, i.e. a satellite
which remains in exactly the same position above the surface of the earth. Determine
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its altitude and orbital velocity. Assume that the mass of the earth is 5.983 × 1024 kg, its
radius is 6.378 × 106 m and the gravitational constant G = 6.673 × 10−11 m3 kg−1 s−2.

3. Estimate the work functions W(Na) and W(Li) from Figure 2.5.

4. The most powerful tennis players are reputed to serve the ball at a speed of about
200 km/hour. If the mass of the ball is 58 g calculate its wavelength.

5. Confirm the range of wavelengths quoted in Section 2.8 for Thomson’s accelerated
electrons.

6. By expanding the exponential in Equation 2.5.4b, show that ρ(ν) ∝ ν2 when hν � kT .
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3.0 INTRODUCTION

Consider the hydrogen molecule, H–H. The hydrogen atoms each have a mass of 1.674 ×
10−27 kg and their nuclei are separated by a bond of length ∼74 × 10−12 m. In actual
fact, this is the equilibrium bond length of the molecule, for this minute entity is in
constant vibration with a frequency of ∼132 × 1012 oscillations per second. Just pause for
a moment and try to picture the molecule. In the time it takes to blink, for example, it will
have completed 132 million, million vibrations. Is it permissible to describe such a motion
as a ‘vibration’ when we cannot really even imagine such frequencies? Masses as small as
10−27 kg and distances as short as 10−12 m are indescribably remote from the phenomena
which we experience directly with our own senses. Quantum mechanics, which has now
stood the test of more than 75 years of rigorous application, is the mathematical model
which has been constructed to describe atomic and molecular systems and to interpret the
results of the experiments which we perform upon them. But it should come as no surprise
when the picture of this world of atoms and molecules, drawn by quantum-mechanical
methods, sometimes seems very strange to us.

The early pioneers of the subject soon discovered that, in order to keep on course in
interpreting of the results of quantum mechanics, we must be very careful to focus our
attention upon the quantities which can be measured in a particular experimental system
and refrain from speculation about those things which cannot. (Recall the interference
of photons discussed in Section 2.8.) Thus, to return to the example of the hydrogen
molecule, the equilibrium bond length of the molecule can be both measured and cal-
culated to high degrees of accuracy. But there is no way in which the paths of the two
electrons which form that bond can be followed or described. We can only give a figure
for the probability of finding an electron (we cannot say which one!) at any particular
point in space.

Thus, in this chapter we are concerned not only to illustrate the way in which quantum
mechanics is applied, but also to make clear just what information can be obtained from
quantum-mechanical calculations or by experiment. We shall find that, though the infor-
mation which we can obtain is restricted when compared with that available in classical
mechanics, this is not so surprising when we consider the fundamental limitations which
must apply to measurements on atomic and molecular systems.

3.1 OBSERVABLES, OPERATORS, EIGENFUNCTIONS
AND EIGENVALUES

Any phenomenon we can observe, and particularly one which we can measure and assign
a numerical value to, e.g. energy or angular momentum, is known as an observable. It
is the primary objective of quantum mechanics to provide a theory by means of which
the values of such observables can be calculated. Just as classical mechanics provides an
equation for determining the kinetic energy of a moving mass (k.e. = 1

2mv2), so quantum
mechanics provides us with an equation by means of which the kinetic energy of a moving
electron can be determined.

In Section 2.9 we saw that, when proposing his new wave mechanics, Erwin Schrö-
dinger suggested that the mathematical concept of eigenfunctions and eigenvalues would
be found to lie at the heart of any theory in which quantisation arose naturally, rather
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than being arbitrarily imposed. All subsequent work has demonstrated that Schrödinger’s
intuition was indeed correct and in the application of quantum mechanics today we
formulate Schrödinger’s method in terms of four entities: an observable, the particu-
lar quantum-mechanical operator associated with that observable and the eigenfunctions
and eigenvalues of that operator. The operator, eigenfunction and eigenvalue are related
in the equation:

Operator operating on Eigenfunction = Eigenvalue × Eigenfunction (3.1.1)

The usual mathematical formulation of the relationship is:

R̂�n = rn�n (3.1.2)

and a specific example is: ∂2(sin ax)/∂x2 = −a2 sin ax. The operator, R̂ (designated as
such with the caret mark or circumflex; ∂2/∂x2 in the example), operates upon the eigen-
function, �n (sin ax), which is a function of the co-ordinate system in which we place the
atom or molecule we are studying, e.g. the Cartesian co-ordinates x, y and z. The result is
the eigenfunction multiplied by the eigenvalue, rn (−a2). We shall see below that the fact
that the eigenfunction is describing a real atomic or molecular system places important
limitations upon the form which it may take. The observable appears in Equations (3.1.1)
and (3.1.2) as the eigenvalue, rn, which is simply a number that is the value of the observ-
able in the units we have chosen for the calculation, e.g. an energy in J. The subscript,
‘n’, indicates that there are generally many eigenfunctions of R̂ and an equal number of
corresponding eigenvalues, each characterised by a different value of n. We shall find that
n is a quantum number, or more often a set of quantum numbers, e.g. those describing
the electronic state of an atom.

3.2 THE SCHRÖDINGER METHOD

Schrödinger’s method consists of three basic steps:

1. Determine the operator associated with the observable to be calculated.

2. Find the eigenvalues and eigenfunctions of the operator.

3. Ensure that the eigenfunctions are physically acceptable, in which case the correspond-
ing eigenvalues will be the possible, quantised values of the observable.

It is the process of choosing the appropriate operator where a postulate is made which
can only be tested against experiment. In formulating classical mechanics Newton made
the three postulates described in Section 2.2. To interpret the motion of the planets he
added a fourth postulate, gravitational attraction, and then demonstrated that these postu-
lates were appropriate by showing that the data for the motion of the planets around the
sun could be accurately reproduced by a mathematical model of planetary motion based
upon them. In just the same way, Schrödinger postulated the form of the operator that
would have as its eigenvalues the possible energies of the electron in a hydrogen atom
and tested his postulate by calculating the hydrogen atom spectrum. At the same time
he showed the way in which the operators required for all the other quantum-mechanical
problems of interest in chemistry can be obtained (Section 3.13). In order to illustrate
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Schrödinger’s method we shall consider two problems which, though they are idealised
and simple, also have interesting chemical applications. The problems concern the quan-
tum mechanics of an electron confined to move within a one-dimensional box or around
a ring.

3.3 AN ELECTRON ON A RING

Following Schrödinger’s method, our first task is to determine the form of the energy oper-
ator. This operator is called the Hamiltonian, after William Rowan Hamilton (1805–1865)
who developed a formulation of classical mechanics in which the relationship of the latter
to quantum mechanics can be most clearly recognised. We shall write it as Ĥ.

3.3.1 The Hamiltonian operator for the electron on a ring

Consider an electron of mass me which is confined to move at velocity ve in a circular
path of radius r (Figure 3.1). There is no positive charge at the centre of the circle, as
there is in the Bohr model of the atom, so the electron has only kinetic energy. If the
electron obeyed the laws of classical mechanics its energy would be:

E = 1
2mev

2
e = (mever)

2/2mer
2 (3.3.1)

We write the expression for the classical kinetic energy in the above, more complicated,
way because Schrödinger’s recipe for finding a quantum-mechanical operator depends
upon first writing down the classical mechanical expression for the observable in question,
in this case the kinetic energy, and then transforming it to the required operator by means
of a set of rules. In this case we note that the quantity (mever)

2 is the square of the angular
momentum of the electron (see Chapter 4) and Schrödinger’s postulate for obtaining the
operator corresponding to angular momentum squared, l̂2, is:

l2 = (mever)
2 ⇒ l̂2 = −(h/2π)2∂2/∂φ2 (3.3.2)

That is, we form the operator by replacing the classical expression for the square of the
angular momentum by −h̄2{h̄ ≡ h/2π} times the second derivative of the wave-function
with respect to φ, the angle defining the position of the electron as it travels around the
ring. Rules for forming other operators will be given as the need arises. Thus, we require

m

e

r

f

Figure 3.1 An electron on a ring
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the eigenvalues (En) and eigenfunctions (�n) which solve the equation:

Ĥ�n ≡ − h̄2

2mer2
· ∂2�n

∂φ
= En�n (3.3.3)

As above, the subscript n will be used to characterise the eigenfunctions and the
associated eigenvalues, of which there are usually a large number. It must be emphasised
that the form of the operator is a postulate. Although Schrödinger’s method makes use
of a formula from classical mechanics as a stepping stone in obtaining the operator, the
relationship between the classical expression and the quantum operator is postulated : the
operator is not derived from classical mechanics. The proof of the validity of the postulate
lies in the results which it gives and which we now determine.

3.3.2 Solution of the Schrödinger equation

In the second of Schrödinger’s three steps, we now seek a function which, if it is to be
an eigenfunction, must be such that when differentiated twice with respect to the variable
φ it returns to its original form. Two functions with just this property spring readily to
mind; sin(aφ) and cos(aφ), where a is a number (Box 3.1):

∂2(sin aφ)/∂φ2 = a∂(cos aφ)/∂φ = −a2 sin aφ

∂2(cos aφ)/∂φ2 = −a∂(sin aφ)/∂φ = −a2 cos aφ

Either of these functions is an eigenfunction of the operator with an eigenvalue of
a2h̄2/2mer

2 because:

− 1

2mer2
h̄2 · ∂2 sin(aφ)

∂2φ
= a2h̄2

2mer2
· sin(aφ) (3.3.4)

with a very similar result for the cosine function.
Therefore, the energy of our system is a2h̄2/2mer

2. However, a moment’s consideration
shows that we are not yet home and dry. Though h and me are fixed, natural constants and
the radius (r) would be fixed for any particular problem, no restriction has been placed
upon the constant a. Consequently, any desired energy can be obtained with a suitable
choice of the value of a; i.e. there is as yet no quantisation. We must now proceed to
Schrödinger’s third step and examine the eigenfunctions sin(aφ) and cos(aφ) to see if
they are physically acceptable.

3.3.3 The acceptable eigenfunctions

The meaning of the eigenvalues of Schrödinger’s equations was clear from the start and
never appears to have presented the pioneers of quantum mechanics with any difficulties.
The interpretation of the eigenfunctions, on the other hand, raised many philosophical
problems about which argument and discussion still continue more than 75 years after
Schrödinger’s first publication of his new mechanics. However, we shall adopt the inter-
pretation first suggested by Max Born (1882–1970) in 1926. This is the view taken in
all chemical applications of quantum mechanics. Born proposed that the square of the
eigenfunction, evaluated at any point in space, gives the probability of finding the particle
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described by that eigenfunction at that particular point. In interpreting the eigenfunction
in this way Born took a very fundamental step. He abandoned the classical certainty of a
precise position for the particle and introduced in its place the concept of the probability
of finding a particle at any particular point in space. The significance of this departure
from the certainty of classical mechanics cannot be exaggerated.

Thus, if a particular value of the angle φ is chosen and the eigenfunctions sin(aφ)
and cos(aφ) of the particle on a ring at that point evaluated, then the square of the result
gives the probability of finding the electron at that point in its endless journey around the
ring. For a concrete example, if a value a = 4.8 is chosen, the functions sin(4.8φ) and
[sin(4.8φ)]2 plotted against φ for values of φ from 0 to ca. 3π are shown in Figure 3.2.
We note that the eigenfunction itself has regions of both positive and negative sign, i.e.
it has the property of phase. But the probability function, the squared eigenfunction, is
always positive as it must be if it represents probability. Using Figure 3.2 we can readily
find the value of the eigenfunction for any value of φ and hence determine the probability
that the electron can be found at that particular position around the ring. But the linear
φ-axis of Figure 3.2 conceals, or rather does not make obvious, a fundamental deficiency
in the eigenfunction sin(4.8φ). Figure 3.3 in which the function is plotted on a dotted
circle (positive values outside the circle, negative values inside) shows that when the
angle φ has reached the value of 2π and the electron begins a new circuit of the ring
another, different value of the eigenfunction is obtained for the same position on the ring.
To be specific; sin(4.8φ) = 0.0 for φ = 0 but for φ = 2π , sin(4.8φ) = −0.951. On the
Born model this would imply that the probability of finding the electron at the same place
on the ring is proportional‡ to two different numbers, 0.0 and (−0.951)2 = 0.904. This
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Figure 3.2 Linear plot of sin(4.8φ) and [sin(4.8φ)]2

‡ We use the word ‘proportional’ because the wave function still has to be multiplied by a factor which we shall explain and
determine in Section 3.5.
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Figure 3.3 Circular plot of sin(4.8φ), φ = 0 − ca.2.5π
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Figure 3.4 Circular plot of sin(4.8φ), no limit on φ

cannot be so. Hence, though the eigenfunction is perfectly acceptable mathematically, it
is physically quite unacceptable. To be physically acceptable, an eigenfunction must have
only one value (i.e. it must be single-valued ) at any point. Another way of looking at the
result is shown in Figure 3.4. If we plot the eigenfunction against φ with no upper limit
on φ, we discover that after five cycles around the ring the value of the eigenfunction
begins to repeat itself and a rather pretty pattern results. A detailed examination reveals
that at any value of φ there are five values of the eigenfunction which are such that their
sum is equal to zero. Thus the phases of the eigenfunction cancel each other giving a
total of zero and hence zero probability. In the language of waves, we would say that the
function has been reduced to zero by destructive interference.

The only physically reasonable eigenfunctions are ones for which the value at φ = 0 is
equal to the value at φ = 2π, 4π, . . . (Figure 3.5). What does this mean for our eigenfunc-
tions and eigenvalues? How does this requirement restrict the value of a? We require that:

sin(aφ) = sin(a[φ + 2π]) = sin(aφ + 2aπ) = sin(aφ) · cos(2aπ) + cos(aφ) · sin(2aπ)
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Figure 3.5 Circular plot of sin(5φ)

Clearly, the equality will be achieved if cos(2aπ) = 1.0 and sin(2aπ) = 0.0, which
is only true when a = 0, 1, 2, 3, . . . Therefore, if the eigenfunctions are to be physically
reasonable a must be zero or an integer and the corresponding eigenfunctions are given by:

�sin a = sin(aφ) and �cos a = cos(aφ) (3.3.5)

and the energies by:
Ea = a2h̄2/2mer

2 (3.3.6)

for both eigenfunctions.
Thus, quantisation has arisen in the most natural way, as a result of the requirement that

our eigenfunctions should be physically reasonable on Born’s model. Figure 3.5 shows
the function � = sin(5φ) in the circular form in which a whole number of cycles of
the function fit exactly into the circular path. It is now natural to interpret our integer
a as the number n, which we introduced in Equations (3.1.2) and (3.3.3) to allow for
the fact that there may be many eigenfunctions and eigenvalues of the same operator. In
this example the acceptability of the eigenfunction was determined by the requirement
that it be single-valued. Since the probability must be smoothly continuous and finite, in
order to be physically acceptable, the Born model also places the general requirements
on eigenfunctions that they too must be continuous and finite everywhere.

It is interesting to note that the energy levels occur in pairs of equal energy (Figure 3.5),
one level corresponding to the sine eigenfunction and the other to the cosine eigenfunction.
In quantum-mechanical parlance, such levels are said to be degenerate. In Section 3.7.2
we shall discover the fundamental origin of this degeneracy. For a = 0 there is only
one eigenfunction, the cosine function (since sin(0) = 0), and therefore only one lowest
energy level of zero energy.

3.4 HÜCKEL’S (4N + 2) RULE: AROMATICITY

It was stated above that, although the quantum-mechanical problems to be discussed in
this chapter were simple ones, they nevertheless throw valuable light upon chemical
problems. The quantum-mechanical description of the electron confined to move on a ring
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provides a basis for Hückel’s (4N + 2) rule for the aromatic hydrocarbons. Recall that
the aromatic hydrocarbons, e.g. benzene, naphthalene, anthracene, phenanthrene etc., have
6, 10, 14, . . . = (4N + 2) conjugated carbon atoms, where N = 1, 2, 3, . . . (Figure 3.7).
It is generally accepted that the particular stability of these molecules depends upon the
presence of a π-electron system, and that each carbon atom contributes one electron to
this system, i.e. the number of π-electrons in an aromatic hydrocarbon is equal to the
number of carbon atoms (4N + 2). (The Hückel theory of π-electron systems is discussed
in detail in Chapter 12.) In many of these molecules, especially the smaller ones, all the
carbon atoms lie on the periphery of the carbon-atom skeleton and we can approximate
the sequence of carbon atoms to a ring around which the delocalised π-electrons may
circulate while the remainder of the bonding electrons are localised in the C–C and
C–H bonds. In this model, the energy-level scheme for the π-electrons is that shown in
Figure 3.6 and if we fill the levels with electrons, two per level (the Pauli principle),
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Figure 3.6 The energy levels for an electron on a ring
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Figure 3.7 The structures of some of the smaller aromatic hydrocarbons
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starting from the lowest (the aufbau principle), then it is easy to see that to produce a
stable configuration in which all levels up to a particular energy are completely filled
requires (4N + 2) electrons.

This concept goes a long way towards explaining the particular stability of the aromatic
hydrocarbons. In 1949 the idea was taken further by John R. Platt (1918–) who used the
electron-on-a-ring model to account for and classify the electronic spectra of the aromatic
hydrocarbons (see Problem 6). His classification is widely used by spectroscopists and
photochemists.

3.5 NORMALISATION AND ORTHOGONALITY (BOX 3.2)

We have not yet completed the task of ensuring that our eigenfunctions are physically
reasonable. If the square of an eigenfunction, evaluated for any value of φ, gives the prob-
ability of finding the electron at that position on the ring, then the sum of all such values
around the ring must be 1.0 (≡ certainty) since, by definition, the electron is somewhere
on the ring. Since the probability distribution is a continuous function of the co-ordinates,
the sum becomes an integral over the complete range of all of them, in brief, over all
space. The process of ensuring that an eigenfunction gives rise to a total probability of
one is known as the normalisation of the eigenfunction. It is an additional requirement to
ensure that the chosen mathematical functions are also acceptable physically. The final,
normalised forms of our two types of eigenfunction with the quantum number now written
as n are (see Box 3.2):

�s,n = (1/
√

π) · sin(nφ) and �c,n = (1/
√

π) · cos(nφ) (n = 1, 2, 3, . . .) (3.5.1)

When n = 0, cos 0 = 1 and for this function the normalising constant is 1/
√

(2π).
The eigenfunctions of a quantum-mechanical operator have another interesting prop-

erty, orthogonality, which is closely related to normalisation. The orthogonality of the
above eigenfunctions is also demonstrated in Box 3.2.

3.6 AN ELECTRON IN A LINEAR BOX

In this section we examine the energy-levels of an electron confined within a one-
dimensional box; an idealised situation which also casts significant light on chemical
problems.

3.6.1 The Hamiltonian operator for an electron in a linear box

Suppose that we have an electron confined by infinite potential barriers within a one-
dimensional linear box of length L. We shall again assume that there is no electrostatic
potential present so that the only energy is kinetic energy. To construct the appropriate
operator we follow Schrödinger’s method and first write down the classical expression
for the kinetic energy in terms of the momentum, p:

E = 1
2mev

2 = (mev)2/2me = p2/2me
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The postulate for the conversion of the classical expression for the square of the linear
momentum to the appropriate operator is:

p2
q = (mevq)

2 ⇒ p̂2
q = −h̄2 · ∂2

∂q2
(3.6.1)

where q = x, y or z, the co-ordinate along the box. Thus, the expression for the Hamil-
tonian operator is:

Ĥ = −(h̄2/2me)∂
2/∂x2 (3.6.2)

Recalling the discussion of the problem of an electron on a ring, we can guess that the
functions:

�s,b = sin(bx) and �c,b = cos(bx) (3.6.3)

should be investigated since both are eigenfunctions of the operator −(h̄2/2me)∂
2/∂x2

with eigenvalues of b2h̄2/2me.

3.6.2 The acceptable eigenfunctions

But are these functions physically acceptable? We again consider the behaviour of the
eigenfunctions and in particular their behaviour at x = 0 and x = L, the two ends of the
box. Since the electron is, by definition, confined within the box, the probability of finding
the electron must fall smoothly to zero at x = 0 and L. Cos(bx) = 1.0 at x = 0 and is
therefore unacceptable on physical grounds. The sine function, however, goes smoothly
to zero as x goes to 0, and the function must be such that this is also true at x = L. Since
sin(nπ) = 0 when n is an integer we can satisfy the foregoing requirement if we choose
b so that bL = nπ or b = nπ/L. Thus, our only physically acceptable eigenfunctions of
the energy operator are:

�s,n = N sin(nπx/L) (n = 1, 2, 3, . . .) (3.6.4)

where N is a normalising constant. The corresponding eigenvalues of the energy are:

En =
(

n2π2

L2

)
·
(

h̄2

2me

)
= n2h2

8meL
2

(n = 1, 2, 3, . . .) (3.6.5)

Note that n cannot be zero since sin(0) = 0 and there is therefore no eigenfunction.
Thus, the system never has an energy of zero, i.e. it always has some energy and the
presence of this zero-point energy is an important point to which we shall return in
Section 3.11.

In the eigenfunction, the letter b which previously had no particular significance has
now been replaced by the quantum number n (multiplied by π/L). To find the normalising
constant (N ) we simply require that the probability of finding the electron at any point
along the box, summed up, i.e. integrated, over the complete length of the box, is one,
i.e. that:

L∫
0

{N sin(nπx/L)}2 dx = 1.0

This leads to a value of N of
√

(2/L) (Box 3.3), so our complete set of physically
acceptable eigenfunctions is:

�s,n = √
(2/L) · sin(nπx/L) (n = 1, 2, 3, . . .) (3.6.6)
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Figure 3.8 Energy levels and eigenfunctions for an electron in a linear box

These functions are illustrated for n = 1 to 4 in Figure 3.8. The π-electron spectra of
linear conjugated polyenes can be interpreted rather well in the light of these results
(Box 3.4).

3.6.3 Boundary conditions

In selecting a physically acceptable eigenfunction from the various possible mathematical
solutions of the Schrödinger equation for an electron in a linear box, we made use of
the fact that the eigenfunction must behave in an appropriate manner at the ends (bound-
aries) of the box. This led not only to the complete rejection of many eigenfunctions
but also to the selection of particular members of the set of sine functions, i.e. those for
which b = nπ/L, where n is an integer. It was at this point that quantisation entered
the problem. Quantisation is intimately associated with the behaviour of eigenfunctions
at the boundaries of the system and we say that boundary conditions are imposed upon
the eigenfunctions to determine those which are physically acceptable. In the case of the
electron on a ring there was no obvious physical boundary; but the fact that the eigenfunc-
tions were required to have the same value at φ = 0 and 2π was the boundary condition.
Boundary conditions of this type known as periodic boundary conditions.

3.7 THE LINEAR AND ANGULAR MOMENTA OF ELECTRONS
CONFINED WITHIN A ONE-DIMENSIONAL BOX OR ON A RING

In determining the energy levels in the two idealised models described above, we have
used the linear or angular momentum of the electron as an intermediate step in the
construction the required energy operator, the Hamiltonian. In this section we return to
consider the momenta themselves, and their corresponding eigenvalues and eigenfunc-
tions. We take the linear system first.
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3.7.1 The linear momentum of an electron in a box

In Section 3.6.1 we used the operator for the square of the linear momentum of the
electron in a linear box, −h̄2 · ∂2/∂x2, in order to form the Hamiltonian operator so that
the operator for linear momentum appears to be readily available as the square root of
−h̄2 · ∂2/∂x2. But this presents two problems. Firstly, what is the square root of ∂2/∂x2?
This is not difficult; ∂2/∂x2 means differentiate the function twice with respect to x, i.e.
(∂/∂x) · (∂/∂x), so a single differentiation would represent the square root. The −h̄2 poses
a greater problem in that we have to find the square root of a negative quantity! But we
do not allow such problems to deter us; we simply follow the lead of the mathematicians
who confronted this problem many years ago and solved it by inventing a new number,
i, the square root of −1; i.e. i2 = −1 (Appendix 8). Having done this we can express
the square root of any negative number, e.g. (±2i)2 = −4, (±5.3i)2 = −28.09. Such
numbers are called imaginary numbers and with their aid we can write the operator for
linear momentum as:

p̂ = −ih̄ · ∂

∂x
(3.7.1)

Of the two possible signs for the square root we choose the negative one for reasons
which will become clear below.

If we apply this operator to our energy eigenfunctions �s,n we see immediately that
they are not eigenfunctions of the linear momentum operator because differentiation of
sine gives cosine. What we need is a function which does not change when differentiated
once. The exponential function, enx or exp(nx) is such a function (Box 3.1) and:

−ih̄ · ∂

∂x
{exp(nx)} = −ih̄ · n{exp(nx)} (3.7.2)

We now have a mathematical eigenfunction, but there is a serious problem here; the
calculated value of our linear momentum, −inh̄, contains a factor i and is therefore an
imaginary quantity. This is quite unacceptable for a quantity which we can measure in
the laboratory and which must therefore be real! But this can be overcome if we write
+in in place of n as the argument of the exponential function because then:

− ih̄ · ∂

∂x
{exp(+inx)} = −ih̄ · in{exp(+inx)} = nh̄{exp(+inx)} (3.7.3)

since i2 = −1.
Thus, the function exp(+inx) is an eigenfunction of the linear momentum operator

with an eigenvalue of +nh̄, and by choosing the negative sign for the operator we have
the result that the sign of the momentum is the same as that of the argument of the
exponential function. We interpret this function as describing the motion of an electron in
the positive x-direction with a positive value of px . Similarly, the function exp(−inx) is an
eigenfunction of the linear momentum operator with an eigenvalue of −nh̄ and describes
an electron moving in the negative x-direction. Further, we should note that these two
exponential functions are also eigenfunctions of the energy operator each having the same
eigenvalue, i.e. n2h̄2/2me.

But neither of the exponential functions is physically acceptable for a box of finite
length L: both fail to satisfy the requirement that they must go smoothly to zero at x = 0
because exp(0) = 1.0. Therefore, since the eigenfunctions of the linear momentum oper-
ator are not acceptable eigenfunctions for a box of finite length, no linear momentum can
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be measured for a particle confined within such a box. But if the box is infinitely long then
there are, in effect, no boundaries and the two exponential functions are both physically
acceptable. But then no restrictions are placed upon the mathematical eigenfunctions and
there is therefore no quantisation. In such a case the eigenvalues of linear momentum
corresponding to the two types of eigenfunction are:

eigenfunction eigenvalue

�+b = N exp(+ibx) p+b = +bh̄

�−b = N exp(−ibx) p−b = −bh̄

where b can have any value. The normalisation of the eigenfunction of an electron in
an infinitely long box presents some difficulties and we shall not enter into that subject
here (see Section 12.3 where periodic boundary conditions are used). The translational
energy which results from this linear momentum is, of course, also unquantised. It is the
form of these functions that is responsible for the name wave mechanics which is usually
given to quantum mechanics in the Schrödinger form. The exponential functions describe
electrons moving along x in a positive or negative direction and the energy calculated is
the kinetic energy associated with that movement or momentum. The sine functions have
no associated momentum since they are not eigenfunctions of the momentum operator.
Inasmuch as they can be formed as the sum and difference of the two exponential functions
(Appendix 8) they are standing waves which describe electrons moving in both directions
along x with mutually cancelling momenta. But the energy is not zero because it is
proportional to the square of the momentum.

3.7.2 The angular momentum of an electron on a ring

For an introduction to angular momentum see Chapter 4.
Since the electron is moving around the ring it has orbital angular momentum. To

obtain the operator for angular momentum (l̂) we follow the procedure of the last section
and find:

l̂ = −ih̄ · ∂/∂φ (3.7.4)

Where we again choose the negative square root for the same reason as in the linear
case.

Here also we find that exponential functions are what we require and, in particular,
the function exp(+inφ) is an eigenfunction of the angular momentum operator with an
eigenvalue of +nh̄, while the function exp(−inφ) is also an eigenfunction of l̂ with an
eigenvalue of −nh̄. This looks encouraging, we expect to find equal and opposite values
of the angular momentum since the electron can circle the ring in a clockwise (negative
a.m.) or counter-clockwise (positive a.m.) direction.

But are the functions physically reasonable, are they single-valued? Is the value at
φ = 0, for example, equal to that at φ = 2π? And are they normalised? To answer the
first question we note the standard results (Appendix 8):

exp(+inφ) = cos(nφ) + i sin(nφ) and exp(−inφ) = cos(nφ) − i sin(nφ)

We know from our deliberations above that the sine and cosine functions are both
single-valued if n is an integer or zero. Therefore, our exponential eigenfunctions of
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the angular momentum operator will also be single-valued if n = 0, 1, 2, 3, . . . When
n = 0 the two eigenfunctions are one and the same and they have an eigenvalue of zero.
For all other values of n the system has paired equal and opposite values of the angular
momentum. Each value is an integral multiple of Planck’s constant divided by 2π . Unlike
the energy eigenvalues which are determined by n2, the angular momentum eigenvalues
are determined by n and are evenly spaced (Figure 3.9).

To normalise the functions we must make allowance for the fact that they contain
both a real term, cos(nφ) and an imaginary term i sin(nφ). An expression which contains
both real and imaginary parts is said to be complex. Born allowed for this possibility in
defining the meaning of a quantum-mechanical eigenfunction and proposed that in the case
of complex eigenfunctions the probability was given, not by the square of the function,
but by the product of the function and its complex conjugate. The complex conjugate of
any complex function is obtained simply by changing +i to −i and −i to +i everywhere
(Appendix 8). Thus exp(+inφ) is the complex conjugate of exp(−inφ), and vice versa.
Therefore, the probability, P(φ) of finding the electron at a particular angle, φ, around
the ring is given by:

P(φ) = exp(+inφ) · exp(−inφ) = exp(0) = 1.0

This result tells us two important facts. Firstly, the distribution of the electron does not
depend upon the value of φ, it is the same at all points around the ring. But it also shows
that the function requires normalisation (see Box 3.2) so that the sum of the probabilities
all around the ring add up to 1.0. We find the normalising constant by integrating the
expression above from 0 to 2π . We find:

2π∫
0

exp(+inφ) · exp(−inφ) dφ =
2π∫

0

exp(0) dφ =
2π∫

0

1 dφ = [φ]2π
0 = 2π

±4

±2

±3

±1

Angular Momentum
in units of h/2p

(1/√2π)exp(+inf)   (1/√2p)exp(−inf)

0

n = 4

n = 3

n = 2

n = 1

n = 0

Figure 3.9 The angular momentum eigenvalues of an electron on a ring
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which shows that each eigenfunction must be multiplied by
√

(1/2π). Therefore, our final
normalised wave functions are:

�+n =
√

1

2π
· exp(+inφ) and �−n =

√
1

2π
· exp(−inφ) (3.7.5)

3.8 THE EIGENFUNCTIONS OF DIFFERENT OPERATORS

We have determined the eigenvalues and eigenfunctions of the operators for the energy
and angular momentum of an electron confined to move on a circle of radius r . In so doing
we have noted that, although the functions �s,n = √

(1/π) · sin(nφ) and �c,n = √
(1/π) ·

cos(nφ), with n an integer, are eigenfunctions of the energy operator, or Hamiltonian, Ĥ:

Ĥ = −h̄2

2mer2
· ∂2/∂2φ

they are not eigenfunctions of the angular momentum operator:

l̂ = −ih̄ · ∂/∂φ

The reason for this is quite clear, the sine and cosine functions return to their original
form only when differentiated twice with respect to the angle φ. Whereas an eigenfunction
of l̂ must be a function such as the exponential, the first derivative of which is the
exponential function itself (Box 3.1). If we differentiate the exponential functions twice
with respect to φ we find that they are also eigenfunctions of the energy operator with
the same eigenvalues as the sine and cosine functions; e.g.:

−
(

1

2mer2

)
· h̄2 ·

√
1

2π
· ∂2

∂φ2
{exp(inφ)} =

(
n2h̄2

2mer2

)
·
√

1

2π
· {exp(inφ)}

The results are summarised in Table 3.1.
From these results we can draw the important conclusion that it is possible for a system

obeying the laws of quantum mechanics to be in a state that is described by a function

Table 3.1 The energy and angular momentum of an electron
on a ring

Observable Energy Angular momentum

Operator Ĥ l̂

Function Eigenvalue Eigenvalue

1√
π

· sin(nφ) n2h̄2/2mer
2 not an eigenfunction

1√
π

· cos(nφ) n2h̄2/2mer
2 not an eigenfunction

1√
2π

· exp(+inφ) n2h̄2/2mer
2 +nh̄

1√
2π

· exp(−inφ) n2h̄2/2mer
2 −nh̄
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which is an eigenfunction of one operator, but is not an eigenfunction of some other
operator. The system may also be described by a function which is an eigenfunction of
more than one operator. Since the eigenvalues of operators are the observables which we
can measure experimentally, these results place important restrictions on what we can
know about a system. This question will be taken up again in Section 3.10.

3.9 EIGENFUNCTIONS, EIGENVALUES AND EXPERIMENTAL
MEASUREMENTS

We have seen that the eigenfunctions and eigenvalues which solve Schrödinger’s equation
for a particular system are, respectively, wave functions describing the distributions of
the electron(s) involved in the problem and the values of the quantised observables of
the electrons such as energy and momentum. There is a direct correspondence between
the mathematical process of solving Schrödinger’s equation to obtain the value of an
observable by calculation and the measurement of that observable in an experiment. But
we have also seen that it is possible for a quantum-mechanical system to be described
by a function which is an eigenfunction of one operator but not of another. For example,
the function �c,n = (1/

√
π) · cos(nφ) is an eigenfunction of the energy operator for an

electron on a ring, but it is not an eigenfunction of the corresponding angular momentum
operator. We might ask, therefore, what would be the result of attempting to measure the
angular momentum of the electron on a ring when it is in the state described by the above
cosine function? Quantum mechanics gives a clear answer to this question.

Suppose first that we measure an observable (r) in a system which is in a state described
by an eigenfunction (�a) of the operator (R̂) that corresponds to this observable. We
call such a state an eigenstate of R̂. Then the result of the (idealised and error-free)
measurement will be the eigenvalue (ra) corresponding to that eigenfunction and operator,
i.e. the solution of the Schrödinger equation:

R̂�a = ra�a (3.9.1)

And, with the qualifications to be described below, we shall get the same answer, ra ,
every time we repeat the measurement.

If we now attempt to measure the same observable in a system which is not in a
state described by an eigenfunction of the operator R̂ corresponding to the observable
r , then the result of the measurement will still be one of the possible eigenvalues of R̂,
but we cannot say which. If we repeat the measurement we shall, in general, obtain a
different result; another eigenvalue of R̂. If the measurement is repeated many times, the
value measured each time will always be one of the eigenvalues of R̂, and there may
be repetition of some values, but we cannot say what value any particular measurement
will give. However, as the number of measurements increases, the average result of the
measurements will tend to a value (r) known as the mean value, which can be calculated
using the formula:

r =
∫

all space

�∗
a R̂�a dv

/ ∫
all space

�∗
a�a dv (3.9.2)

The division by
∫

�a
∗�a dv allows for the use of un-normalised wave functions and

the ∗ indicates that we have to take the complex conjugate of �a if it is a complex
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function (see Appendix 8). The integration over ‘all space’ means integration over the
full range of co-ordinates available to the system, e.g. from −∞ to +∞ in x, y and z.
Equation (3.9.2) is an important complement to Equation (3.9.1). It provides us with the
means of calculating a value for an observable even when the �a’s are not eigenfunctions
of the operator R̂. r is then the average of a large number of measurements. It is the
result which we would expect to get as the mean of a large number of measurements and
is accordingly called the expectation value of r . Here probability again enters into the
predictions of quantum mechanics; in such circumstances we cannot predict the result of
an individual measurement; the best we can do is to give the value to which the mean of
a large number of measurements will tend.

Before proceeding to an example, we note that in quantum mechanics the idea of
repeating an experimental measurement is not a simple concept. It is one of the foundation
stones of the philosophy of quantum mechanics that, in general, a system is affected by
any measurement made upon it; its state, and the wave function which describes it, may
not be the same after the measurement as they were before it. Therefore, after each
measurement the system must be allowed to return to its original state before the next
measurement can be made. This is a point which we shall discuss in detail in the next
section. Since, in chemistry, a sample subjected to a measurement usually consists of a
very large number (≈1023) of identical molecules or atoms, we may consider in such
cases that the result obtained is the mean value defined as above but that it is obtained as
the result of the same measurement made simultaneously upon many identical systems.

By way of an example, in Box 3.5 we use Equation (3.9.2) to determine the expectation
value for the angular momentum of an electron on a ring when it is in the cosine function
state. The result of zero may at first appear unlikely, but it is quite easy to understand.
According to Appendix 8:

cos(nφ) = 1
2 · {exp(+inφ) + exp(−inφ)} (3.9.3)

Thus, the cosine function is composed of equal parts of the two exponential functions
which are the eigenfunctions of the angular momentum operator. Since the two eigenfunc-
tions have equal and opposite angular momenta (Table 3.1) the combination of the two
gives an expectation value of zero. Thus, an experimental measurement of the angular
momentum when the electron is in the cosine function state may give a value of +nh̄

or of −nh̄. But if many measurements are made the two values will occur with equal
probability and the mean result will tend to the value of zero. Alternatively, as noted
above, if the sample is a typical ‘chemical’ one and contains a very large number of
atoms or molecules then the result of one measurement on the sample as a whole, i.e.
simultaneously on many individual atoms (molecules), may be regarded as the average
of many sequential measurements on an individual atom (molecule).

Equation (3.9.2) is of particular value in problems where we have difficulty in solving
Schrödinger’s equation and obtaining its eigenfunctions. Because of the complexity of
many chemical systems, it is normally impossible to solve Equation (3.9.1) directly. Under
such circumstances it is useful if we can postulate an approximate wave function for the
system and use that to determine an approximation to the observable quantities by means
of Equation (3.9.2). This type of calculation plays an essential role in the theory of the
chemical bond as we shall see in Chapter 6.
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3.10 MORE ABOUT MEASUREMENT: THE HEISENBERG
UNCERTAINTY PRINCIPLE

In Section 3.9 we noted that it is a fundamental quantum-mechanical principle that no
measurement can be made upon a system without affecting that system. This should not
really surprise us. Suppose that we wish to measure the time at which a locomotive passes
a particular point on a railway line, thereby fixing its position at that particular time. We
might stretch a cotton thread attached to a timing mechanism across the track. There
would be no concern that the collision of the locomotive with the thread would slow the
train to any degree which could be measured. This being so, a second device of the same
type placed a known distance down the track would enable us to fix the position of the
locomotive for a second time and measure its average velocity between those two points
on the line and, if we know its mass, its mean linear momentum.

But what if the moving object to be timed was a fly? If the mechanism was sufficiently
delicate we might be able to determine the time at which the fly struck the first timing
device, but we certainly could not maintain that the fly’s further progress would be
unaffected by its contact with the thread. Thus, a measurement of its mean velocity or
momentum would be invalidated since it would not be independent of the measurement
itself. In the case of the fly, the problem could be overcome by using beams of light and
photocells in place of the mechanical timing devices.

But what if the object to be studied was an electron? Electrons are not indifferent to
photons; as we saw in Section 2.6, electrons can be ejected from metals by photons. Thus,
we could not be sure if the impact of the ‘measuring’ photon had changed the position of
the electron, its velocity, or both. There are no means by which events at the atomic and
molecular level can be observed in such a way that those events are not influenced by the
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act of observation itself. Just as in sociology, where merely to ask a particular question
has an influence upon the respondent’s attitude to that subject, there is no uninfluential
observation in quantum mechanics.

To observe a system is to interact with it and change it.

In fact, the problem of the accuracy of measurement is even more subtle than the
above discussion suggests. In 1927 Heisenberg showed that, in systems obeying the laws
of quantum mechanics, there are pairs of related properties which cannot be measured
exactly at the same time (Box 3.6). This situation is fundamental to quantum-mechanical
systems and Heisenberg expressed the result in the form of his uncertainty principle, an
example of which is:

�px · �x ≥ h/4π (3.10.1)

�px is the uncertainty in the result of a measurement of the linear momentum of a
particle along x and �x is the uncertainty in the measurement of the x co-ordinate,
and their product has to be greater than Planck’s constant divided by 4π . Other pairs of
observables linked by an uncertainty relationship are given in Box 3.6. It is important
to note that this uncertainty of measurement has nothing to do with the quality and
precision of the equipment available for the measurement, nor with the ability of the
experimentalist. The limitation on the measurement is fundamental and Equation (3.10.1)
assumes that perfect experimental devices are used by perfect experimentalists. Thus, to
return to the problem of the fly, the problem of getting the fly to hit the timing device is
quite irrelevant to the argument here.

The magnitude of Planck’s constant and its presence in Equation (3.10.1) explains why
the consequences of the uncertainty principle were never noticed in classical mechanics.
Since the product of the two uncertainties is about one order of magnitude less than
Planck’s constant it is so small that the individual uncertainties in the values of position
and momentum are much too small to be observed in an experiment with macroscopic
bodies. If we divide both sides of Equation (3.10.1) by, m, the mass of the particle
concerned, we obtain:

�vx · �x ≥ h/4πm (3.10.2)



The Commutation of Operators 57

which shows clearly how the product of the two uncertainties becomes smaller as the mass
of the particle increases, i.e. as we go from systems which require a quantum-mechanical
description to those to which classical mechanics applies. Note that the quantity on the
right-hand side of the inequality (3.10.1) is not always given as h/4π , it is quite common
to find h/2π for example. These differences are a consequence of the different ways in
which the uncertainties �px and �x can be defined, but this in no way invalidates the
fundamental uncertainty principle which Heisenberg first enunciated. The particular value
of h/4π applies to the case where the uncertainties are assumed to follow the Gaussian
distribution law.

3.11 THE COMMUTATION OF OPERATORS (BOXES 2.2 AND 3.6)

In Section 3.10 we recognised that there are important limitations on what we can know
about a system which obeys the laws of quantum mechanics. In particular we saw that the
accuracy with which the two properties, momentum in the x direction and x co-ordinate,
could be simultaneously measured, was restricted by the Heisenberg uncertainty principle.
We discussed the matter from an essentially experimental point of view; now we look at
the problem from the theoretical standpoint.

According to Section 3.9, every observable quantity has an associated operator by
means of which either the exact value of the observable or a mean value can be calculated
using Equations (3.9.1) or (3.9.2) respectively. How would the problem of calculating two
properties be formulated? It seems natural to suggest that, in direct correspondence with
experimental measurement, we first calculate the one and then the other. Thus, if we have
a system in the state �a for which we wish to know the simultaneous values of two
properties P and Q we could perform the calculation:

P̂ Q̂�a = P̂ qa�a = qaP̂�a = qapa�a or Q̂P̂�a = Q̂pa�a = paQ̂�a = paqa�a

And since pa and qa are simply numbers we obtain the same result, regardless of
the order of application of P̂ and Q̂. But these two calculations assume that �a is
an eigenfunction of both P̂ and Q̂ which is by no means always the case. This can be
illustrated using the momentum and position operators and the eigenfunction for a electron
in an infinitely long box from Section 3.7.1: �+b = N exp(+ibx).

The operator for linear momentum along x is −ih̄∂/∂x and the operator for the x

co-ordinate is x itself and we investigate the effect of applying these two operators
consecutively to the above eigenfunction. We have either:

x̂(−ih̄)
∂

∂x
�+b = −ih̄Nx

∂

∂x
exp(+ibx) = −ih̄Nxib exp(+ibx) = h̄bx�+b

or

−ih̄
∂

∂x
x̂�+b = −ih̄N

∂

∂x
x exp(+ibx) = −ih̄N{exp(+ibx) + xib exp(+ibx)}

= −ih̄�+b + h̄bx�+b

The results are not the same, in fact:

(x̂ p̂x − p̂x x̂) �+b = ih̄�+b (3.11.1)
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When the two results for the consecutive operation of two operators are not equal
we say that the operators do not commute and the root of the problem lies in the fact
that it is not possible to find a function which is simultaneously an eigenfunction of
both operators. As a consequence, it is not possible to know, simultaneously, both the
observables associated with the operators. Thus, Heisenberg’s uncertainty principle is a
manifestation of the fact that the operators corresponding to the two observables involved
do not commute.

We can see some of the effects of Heisenberg’s uncertainty principle in relation to
position and momentum along the x co-ordinate using, once more, our pair of exponential
wave functions for the electron in a linear box. The probability, P(x ′), of finding an
electron at a point having the co-ordinate x ′ is proportional to the product of the wave
function and its complex conjugate evaluated at that point, i.e.:

P(x ′) = N2 exp(−ibx ′) · exp(+ibx ′) = N2 exp(0) = N2

where N is the normalising constant. The important point here is that the probability is the
same at every point along the box, since it does not depend upon x. Thus, for an infinitely
long box the uncertainty in our knowledge of the position of the electron is infinite since it
can be anywhere in the box. But it is only for a box of infinite length that the momentum
has the exact values of ±bh/2π . Thus, for the infinitely long box the linear momentum
of the electron is known exactly but the uncertainty in its position is infinite. For any box
of finite length the uncertainty in our knowledge of the position of the electron is finite,
since then it must lie between 0 and L. Therefore, there must also be a finite uncertainty
in our knowledge of the momentum of the electron. Further, since there is no potential
energy term in the problem, the energy is all kinetic energy and therefore proportional to
the square of the momentum so that the energy of the electron must also be uncertain.
There could be no uncertainty if the energy was zero, so the fact that there is a zero-point
energy (Section 3.6.2) is in accord with the Heisenberg uncertainty principle.

3.12 COMBINATIONS OF EIGENFUNCTIONS
AND THE SUPERPOSITION OF STATES

In Section 3.9 we saw that a function which was not an eigenfunction of the angular
momentum operator for the electron on a ring could be written as a sum of two eigen-
functions of that operator (Equation (3.9.3)). This is an important result which may be
generalised further. Any function which obeys the boundary conditions (Section 3.6.3) of
a problem can be expressed as a sum of the eigenfunctions of that problem. The value
of this result lies in the way in which it allows us to address the following problem. We
know that an atom (or molecule) may exist in an electronic eigenstate of the Hamiltonian
operator. In this state it has a precisely measurable energy. We also know that if light of
an appropriate frequency strikes the atom it may absorb a photon and make a transition
to an eigenstate of higher energy and that this process takes a finite time. Estimates of the
time required are discussed in Chapter 8, but we may say here that it is of the order of
10−18 s. But what is the appropriate description of the atom during the time in which it
has left the initial eigenstate, ψi , but has not yet arrived in the final eigenstate, ψf ? Since
both ψi and ψf are eigenfunctions of the same Hamiltonian operator, any other state of
the atom, which is not an eigenstate, may be described as a sum, suitably normalised,
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of these two states plus contributions from all the other eigenstates of the Hamiltonian
operator for the atom. The technical term for such a description is a superposition of
states. In this particular problem it is reasonable to assume that the contributions from
the other eigenstates are vanishingly small so that at any moment during the transition
the atom is in the state χ , where χ can be approximated as a superposition of just two
states, i.e.:

χ = ciψi + cf ψf (3.12.1)

And, assuming that the functions ψi and ψf are orthogonal and normalised, χ will be
normalised if:

c2
i + c2

f = 1.0 (3.12.2)

Before the photon strikes the atom, ci = 1.0 and cf = 0.0. When the process of absorb-
ing the photon is complete, ci = 0.0 and cf = 1.0. At any point in time during the
absorption process, ci is decreasing and cf increasing, subject always to the normalisa-
tion condition (Equation (3.12.2)). Thus the system undergoing a spectroscopic transition
does not enter some form of limbo about which we know nothing; we have a description
of the system throughout the process. This description of the absorption or emission of a
photon is examined in more detail in Section 8.6.

3.13 OPERATORS AND THEIR FORMULATION

It has been emphasised above that the form of the operator for any particular observable
is a postulate which has been tested against its success in calculations of measurable
quantities using that operator. Since classical mechanics is a limiting case of quantum
mechanics, we might expect that relationships between operators thus derived would
reflect the relationships between the corresponding classical quantities. This is indeed the
case and use can be made of that fact in the construction of operators. As far as the usual
chemical applications of quantum mechanics are concerned, the operators for position
(co-ordinate), potential energy, kinetic energy, linear momentum and angular momentum,
play by far the most important roles. The relationships between these operators mirror
the relationships of the corresponding classical quantities as the following will show.

3.13.1 Position or co-ordinate, x̂

The operator for the position of a particle, x or r say, is simply x̂ or r̂ . Where the
caret mark (∧) is used to distinguish the operator from the observable. Therefore, the
expectation value (x) of the x co-ordinate of a particle described by the normalised wave
function ψ is:

x =
∫

all space

ψx̂ψ dx dy dz ≡ 〈ψ |x̂|ψ〉

using the notation introduced by Dirac.

3.13.2 Potential energy, V̂

Since potential energy is invariably expressed in terms of the position of a particle in
some field of force, e.g. the distance of the electron from the nucleus in the hydrogen
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atom or the angle between a nuclear magnet and an applied magnetic field, the essential
operator in potential energy is the position operator. Therefore, using the result above, the
classical expression for the potential energy (V ) of two charges of +e and −e separated
by a distance r is replaced by the operator V̂ in the following way:

V = −e2/r ⇒ V̂ = −e2/r̂

3.13.3 Linear momentum, p̂x

We have already seen that linear momentum in the x direction is replaced in the operator
formalism by differentiation with respect to x multiplied by −ih/2π , i.e.:

px = mvx ⇒ p̂x = −ih̄ · ∂ψ

∂x

3.13.4 Kinetic energy, Ŵ

We deduce the form of the kinetic energy operator by expressing kinetic energy as the
square of the momentum divided by mass and using the last result, i.e.:

W = 1
2mv2

x = (mvx)
2

2m
⇒ Ŵ = − h̄2

2m
· ∂2ψ

∂x2

3.13.5 Angular momentum, L̂

The angular momentum (see also Chapter 4) of a particle of mass m rotating about a
centre is the vector product of the distance of the particle from the centre (r) and its linear
momentum (p). If the rotation takes place in the xy-plane (z = 0, pz = 0), then resolving
the vectors r and p into their Cartesian components, we have our angular momentum
operator as:

L = r × p = xpy − ypx ⇒ L̂ = −ih̄

{
x̂ · ∂ψ

∂y
− ŷ · ∂ψ

∂x

}

3.14 SUMMARY

In this chapter we have studied the application of quantum mechanics to simple problems
and have been particularly concerned to examine the exact details of the description of
the world of atoms and molecules which the method provides. This differs from the
description of the macroscopic world given by classical mechanics in a number of very
important ways and, on the face of it, we appear to have less information available to us
when we use quantum mechanics than we have when we use classical mechanics. With
this in mind, it is essential that we focus our attention upon things which can be measured
and do not attempt to grapple with problems for which quantum mechanics provides no
answers. It is no more meaningful, for example, to attempt to calculate the path of an
electron than it is to discuss its colour.
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Thus, we can:

• Determine precise values of physical observables where the system concerned is in an
eigenstate of the appropriate operator.

• Determine a mean value of an observable where the system is not in an eigenstate of
the appropriate operator.

• Describe a system when it is not in an eigenstate in terms of appropriate superpositions
of the set of eigenstates of the relevant operator.

With these theoretical methods, some of which are illustrated in a discussion of the
properties of polarised light in Box 3.7, we can interpret almost all the experiments which
are of interest to chemistry. Where such theoretical methods fail to give us a quantitatively
accurate answer, as they frequently do, it is because of the difficulties which we have in
solving the Schrödinger eigenvalue-eigenfunction Equation (3.9.1), or in evaluating the
integral in Equation (3.9.2) in order to determine an expectation value, and not because of
a failure of the basic theory. Fortunately, as we shall see in Chapters 6 and 7, approximate
solutions are frequently quite sufficient for our purpose.

3.15 BIBLIOGRAPHY AND FURTHER READING

It is not easy to recommend books on quantum mechanics, there is a very wide choice
and many of the classic texts are now very old, though their comprehensive treatment of
the subject remains as relevant as it ever was.

There are two useful and comparatively recent introductory texts by Green:

1. N.J.B. Green, Quantum Mechanics 1, Oxford University Press, 1997.
2. N.J.B. Green, Quantum Mechanics 2, Oxford University Press, 1998.

And an additional volume in the same series.

3. P.A. Cox, Introduction to Quantum Theory and Atomic Structure, Oxford University Press,
1995.

Much more advanced but with many excellent, fully-worked applications is:
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5. P.A.M. Dirac, Quantum Mechanics, 4th edn, Oxford University Press, 1967.

Now also available from Dover Publications.
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particularly aimed at chemists and they provide an invaluable source of reference about most of
the quantum-mechanical problems and methods of interest to chemists.

6. L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, New York,
1935.
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BOX 3.1 The sine, cosine and exponential functions

We make frequent use of the sine, cosine and exponential functions, and their deriva-
tives, in this chapter. The particular results which we require can be readily derived
if we recall that each of these functions can be expressed as a power series:

sin(ax) = ax − (ax)3/3! + (ax)5/5! − (ax)7/7! + · · ·
cos(ax) = 1 − (ax)2/2! + (ax)4/4! − (ax)6/6! + · · ·
exp(ax) ≡ eax = 1 + ax + (ax)2/2! + (ax)3/3! + (ax)4/4! + · · ·

exp(−ax) ≡ e−ax = 1 − ax + (ax)2/2! − (ax)3/3! + (ax)4/4! + · · ·
n! = n(n − 1)(n − 2)(n − 3) · · · 1 is called factorial n; e.g. 5! = 5 × 4 × 3 × 2 × 1 =
120.

Differentiating sin(ax) term-by-term with respect to x we have:

d[sin(ax)]/dx = a − 3a · (ax)2/3! + 5a · (ax)4/5! − 7a · (ax)6/7! + · · ·
= a[1 − (ax)2/2! + (ax)4/4! − (ax)6/6! + · · ·] = a · cos(ax)

Similarly

d[cos(ax)]/dx = −a · sin(ax)

d[exp(ax)]/dx = a · exp(ax)

and

d[exp(−ax)]/dx = −a · exp(−ax)
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BOX 3.2 The Normalisation and orthogonality of eigenfunctions

Normalisation
The square of an eigenfunction (ψ) evaluated at any point in space gives the prob-
ability that the particle described by that eigenfunction will be found at that point.
Since the probability of finding the particle somewhere within the whole of the region
of space in which it is allowed to move must be one (certainty), it follows that the
sum of the values of ψ2 evaluated at every point in space must be one for a physi-
cally acceptable eigenfunction. This requirement is represented mathematically by an
integration over all space: ∫

all space

ψ2 dv = 1.0

We can illustrate the normalisation process using the eigenfunctions which we
have found for the electron confined to a ring. For the cosine functions for example:

ψc,a = N · cos(aφ)

Where a = 0, 1, 2, . . . and N is the normalising constant which we have to find.
In this particular problem the ‘whole of space’, as far as the electron is concerned, is
a complete circuit of the ring, i.e. all values of φ from 0 to 2π .

For the special case where a = 0, cos(aφ) = 1.0 and we have:

2π∫
0

ψ2
c,a dφ = N2

2π∫
0

1 dφ = N2[φ]2π
0 = 2πN2

Therefore, for a normalised eigenfunction we must have N = ±1/
√

2π . We always
take the positive sign, but the choice of sign can have no effect upon the calculation
of any property which we can measure.

When a is not zero we have:
2π∫

0

ψ2
c,a dφ = N2

2π∫
0

{cos(aφ)}2 dφ = N2

2

2π∫
0

{1 + cos(2aφ)} dφ

= N2

2

[
φ + sin(2aφ)

2a

]2π

0

= N2

2
· 2π = N2π

Thus, for these functions N = ±1/
√

π and the correctly normalised eigenfunctions
are written:

ψc,a =
(

1√
π

)
· cos(aφ)

The sine functions can be normalised in the same way and the normalising constant
is found to be

√
(1/π) for these also.

Orthogonality
The eigenfunctions which solve Schrödinger’s equation also have the property of
orthogonality, i.e. when the product of two different eigenfunctions is integrated
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‘over all space’ the result is zero. Thus, for two cosine eigenfunctions:

1

π

2π∫
0

cos(aφ) · cos(bφ) dφ = 0 if a = b

This is a very important property which expresses the fact that any one eigenfunc-
tion cannot be written in terms of the other eigenfunctions of the same Schrödinger
operator. This is exactly the same as saying that a coordinate on the x-axis of a
graph cannot be expressed in terms of a co-ordinate, or co-ordinates, on the y-axis
of the same graph. This is because the two axes are orthogonal, which is another
way of saying that they are at right angles to each other. We can demonstrate the
orthogonality of two cosine functions simply by carrying out the required integration:

1

π

2π∫
0

cos(aφ) · cos(bφ) dφ = 1

π

2π∫
0

{cos([a + b]φ) + cos([a − b]φ)} dφ

= 1

π

[
sin{(a + b)φ}

(a + b)
+ sin{(a − b)φ}

(a − b)

]2π

0

= 0

Both terms are zero at φ = 0 and 2π because a and b are integers.

BOX 3.3 Normalisation and orthogonality of the eigenfunctions for an electron
in a linear box

Normalisation (See also Box 3.2)

The normalisation integral is:

L∫
0

{N sin(nπx/L)}2 dx = 1.0

but sin2 θ = 1
2 (1 − cos 2θ) and the integral can therefore be written as:

N2

2

L∫
0

{1 − cos(2nπx/L)} dx = N2

2

[
x − L

2nπ
· sin(2nπx/L)

]L

0

= N2

2
(L − 0 − 0 − 0)

since sin(2nπ) = sin(0) = 0.
Therefore, N2L/2 = 1 or N2 = L/2 and N = ±√

(2/L).
We may take either sign for the square root since the phase of the wave function

has no effect upon any quantity which we can measure.
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Orthogonality (See also Box 3.2)

The wave functions corresponding to two different values of the quantum number, n,
are orthogonal, i.e. the integral of their product over the length of the box is zero.
We can prove this by integrating the product of two wave functions having quantum
numbers n and m with normalising constants N and M respectively:

2 NM

L

L∫
0

sin(nπx/L) · sin(mπx/L) dx

= NM

L

L∫
0

{
cos

(
[n − m]

πx

L

)
− cos

(
[n + m]

πx

L

)}
dx

= NM

L

[
sin([n − m]πx/L)

[n − m]π/L
− sin([n + m]πx/L)

[n + m]π/L

]L

0

= 0 because n and m are integers.

BOX 3.4 Electronic spectra of conjugated polyenes

According to the theory of the chemical bonding in conjugated polyenes (Chapter 6),
the π-electrons of these molecules occupy orbitals which are delocalised over the
whole of the carbon-atom chain. These electrons should therefore behave rather like
electrons in a linear box and, in particular, the electron-in-a-box model should provide
approximate values for their energy levels. There is no doubt that the absorption band
of longest wavelength, which moves into the visible spectral region as the length of
the chain increases, is due to an electronic transition from the highest occupied to
the lowest unoccupied π-electron energy level and the energy of this band has been
correlated with the gap between these energy levels in many quantum-mechanical
treatments of polyene spectra. (See, for example, S.F. Mason, Quarterly Reviews of
the Chemical Society, 15, 287, 1961.) Theory and experiment may be related in the
following manner.

Consider a cyanine, a linear polyene, which has the general formula shown in
Figure B3.4.1. There are 2k + 2 bonds in the conjugated system between the two
nitrogen atoms, but it is well known that methyl groups extend the conjugated system.
We therefore allow for this (hyperconjugative) effect by adding one bond for each of
the two H3C–N–CH3 groups giving a total of 2k + 4 bonds in the conjugated system.
The length, L, of the conjugated system can now be written as (2k + 4)l, where l

is the mean bond length. Each carbon atom contributes one π-electron and the two
nitrogen atoms contribute three between them (1 from N+, 2 from N:), so that we
have a total of 2k + 4π-electrons.

The energy levels of an electron in a box are given by the formula:

En = n2h2

8meL2
(n = 1, 2, 3, . . .)
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Figure B3.4.1 The resonance structures of cyanine dyes

Since the electrons occupy the energy levels in pairs, the quantum number (nhol)
of the highest occupied level is (2k + 4)/2 = k + 2 and the quantum number of the
lowest unoccupied level, nlul, is k + 2 + 1 = k + 3. Thus, using the above formula the
energy difference (�E) between the lowest unoccupied and highest occupied levels is:

�E = Elul − Ehol = {(k + 3)2 − (k + 2)2}h2

8me(2k + 4)2l2
= (2k + 5)h2

8me(2k + 4)2l2

and we therefore expect that a graph of �E against (2k + 5)/(2k + 4)2 will be a
straight line of gradient h2/8mel

2. To calculate the gradient we require an estimate
of the mean bond length (l). Because of the resonance between the two cyanine
tautomers, there is no bond alternation as in the polyenes and all the C–C bonds
are equal in length. There are very few hydrocarbons for which this is the case,
but benzene is one such which suggests that we set l = 1.39 × 10−10 m, so that the
theoretical gradient is:

h2

8mel2
= (6.626 × 10−34)2

8 × 9.109 × 10−31 × (1.39 × 10−10)2
= 312 × 10−20 J

For comparison with experiment we use the data for the cyanines taken from
Mason’s review and given in Table B3.4.1. The data are plotted in Figure B3.4.2.

The experimental slope of 313 × 10−20 J is in remarkable agreement with the
simple model of the electron in a box. But it must be noted that for other polyenes,
where all C–C bonds are either formal double bonds, C=C, or formal single bonds,
C–C, the resulting alternation of bond length and the consequent alternation of the
electric field of the σ -electrons, in which the π-electrons move, makes the simple
theory less applicable. These additional effects are discussed by Mason. Nevertheless,
this example shows that even the most simple quantum-mechanical model is capable

Table B3.4.1 The electronic spectra of the cyanines

k (2k + 5)/(2k + 4)2 λmax/nm �E/J · 10−20

1 0.1944 312.5 63.55
2 0.1406 416.0 47.74
3 0.1100 519.0 38.26
4 0.0903 625.0 31.78
5 0.0765 734.5 27.04
6 0.0664 848.0 23.42
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Figure B3.4.2 �E versus chain-length parameter for cyanine dyes

of giving a quantitative interpretation of real chemical data and thereby enhancing
our understanding of the fundamental properties of conjugated molecules.

BOX 3.5 Calculation of the expectation value of the angular momentum
of an electron on a ring

We consider the electron in the state having the wave function:

ψa = 1√
π

cos(aφ)

which is not an eigenfunction of the angular momentum operator, −ih̄∂/∂φ. The
expectation value of the angular momentum, l, for this eigenfunction is calculated as
follows:

l =
2π∫

0

1√
π

cos(aφ)

(
− ih̄∂

∂φ

)
1√
π

cos(aφ) dφ

= − ih̄

π

2π∫
0

cos(aφ)
∂

∂φ
cos(aφ) dφ
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= iah̄

π

2π∫
0

cos(aφ) sin(aφ) dφ

= iah̄

2π

2π∫
0

sin(2aφ) dφ = −iah̄

2π
· 1

2a
[cos(2aφ)]2π

0 = 0.

Bearing in mind (Appendix 8) the fact that:

cos(ax) = 1
2 {exp(+iax) + exp(−iax)}

we see that the cosine function is a sum of the two angular momentum eigenfunctions,
exp(+iax) and exp(−iax). Thus, if we measured the angular momentum of the system
we would expect to find values of +ah̄ and −ah̄ in equal numbers which would lead
to a mean value of zero as the number of measurements increased.

BOX 3.6 Heisenberg uncertainty relationships

The best known of these, and the most important as far as chemistry is concerned,
are those involving momentum and position along the same coordinate:

�px · �x ≥ h/4π �py · �y ≥ h/4π �pz · �z ≥ h/4π

and those involving two components of angular momentum, i.e.:

�lx · �ly ≥ h/4π �ly · �lz ≥ h/4π �lz · �lx ≥ h/4π

In these relationships it is assumed that there is a Gaussian distribution of the
uncertainties, i.e. �p is the root-mean-square of the δp of the individual measurements:

�p =
√∑

i

(δpi)2

As we have seen in this chapter, the uncertainty relationships are intimately related
to the non-commutation of the operators involved. In the case of the angular momen-
tum operators, this is expressed in the following useful equalities derived in Box 4.1:

[l̂x , l̂y] = ih̄l̂z; [l̂y , l̂z] = ih̄l̂x ; [l̂z, l̂x] = ih̄l̂y

where [a, b] ≡ a · b − b · a.
There is also an uncertainty relationship which connects energy and time:

�E · �t ≥ h/4π

It is very valuable and we use it in Chapter 8. However, it must be clearly under-
stood that, since time is not an observable, the relationship has an origin and signifi-
cance quite different from the others quoted here. The distinction is discussed in more
advanced texts, e.g. J.J. Sakurai, Modern Quantum Mechanics, Benjamin/Cummings,
Menlo Park, 1985.

There is a very good discussion of the Heisenberg uncertainty principle in M.
Born, Atomic Physics, Blackie & Son, 3rd Edn, London 1944, Appendix XXII.
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BOX 3.7 Polarised light and quantum mechanics

We can use well-known results from classical optics to illustrate several of those
aspects of quantum mechanics which appear puzzling when we first encounter them.
The experiments and their interpretation have been discussed by Dirac in ‘The Princi-
ples of Quantum Mechanics’. The first edition of this famous book appeared in 1930
and was one of the most important contributions to the mathematical and philosophical
foundations of quantum mechanics. The experiments in questions are the following.
(See Chapter 8 for further information about polarised light.)

A beam of light propagating in the z direction and polarised in the xz plane is
directed onto a polariser. The latter is an optical device which transmits incident light
if the light is polarised along a particular direction which we here call t − t ′, but
which absorbs all the incident light if it is polarised along a − a′, the direction at
right angles to t − t ′ (Figure B3.7.1). We assume the polariser to be perfect.

Both a − a′ and t − t ′ are perpendicular to the direction of propagation of the
light. When the incident light is polarised at some intermediate angle, β, to t − t ′,
experiment shows that if I0 is the intensity of the incident polarised light and It the
intensity of the transmitted light then:

It = I0 cos2 β and Ia = I0 sin2 β

where Ia = I0 − It , the intensity of the light lost by absorption. The transmitted light
is also polarised but along t − t ′ and not along its original direction of polarisation
at an angle of β to t − t ′.

Using a technique known as photon counting, the experiments described above
can be carried out with a beam of light of such a low intensity that the photons
passing through the polariser can be individually recorded. For light polarised along
t − t ′ every photon is transmitted while for light polarised along a − a′ every photon
is absorbed and this presents us with little conceptual difficulty. But what of the
experiments with light polarised at an angle of β to t − t ′? If we now consider the
fate of each individual photon we are unable to say definitely whether it will be
transmitted or absorbed by the polariser. We can only say that there is a probability
of cos2 β that it will be transmitted and a probability of sin2 β that it will be absorbed

t′

t

a′

b

Figure B3.7.1 Plane of polarisation of incident light with respect to directions of transmission,
t − t ′, and absorption, a − a′
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since this will give us the known experimental result if a large number of photons
are subjected to the polarisation test. We find that we can only make statements about
probabilities in respect of the results of a measurement on a single particle which
obeys the laws of quantum mechanics. Thus, the first aspect of quantum mechanics
illustrated by the above example is the statistical nature of our knowledge concerning
the behaviour of individual particles and the results of individual measurements.

The second important point which emerges above is that the making of the mea-
surement has a profound influence upon the particle subjected to that measurement.
The experimental result is that all the photons which pass through the polariser are
polarised along t − t ′ whereas those which are absorbed must be polarised along
a − a′. But all the incident photons were polarised at an angle of β to t − t ′ so
that the polarisation of every photon subjected to measurement has been changed.
Therefore, if we make a further measurement on the photons which pass through the
polariser the objects of the second measurement are not exactly the same as the objects
of the first measurement, their observable property of polarisation has been changed.
The photons have been ‘forced’ into eigenstates of the operator by the measurement
process. In general, there is no such thing as an experimental measurement which has
no effect upon the system measured, though there would be no apparent effect if each
incident photon was polarised along t − t ′.

The concept of polarisation as an observable property leads us to ask what the
corresponding operator, eigenvalues and eigenfunctions are. There are two eigenstates
of polarisation in the above experiment. If a photon is in eigenstate ψt then it is
transmitted by the polariser, if it is in the eigenstate ψa then it is absorbed. If we call
the ‘polarisation analysing’ operator Â then:

Â ψt = 1 × ψt and Â ψa = 0 × ψa

and for a beam of light polarised along t − t ′ every measurement gives the same
result: photon transmitted. For light polarised along a − a′ we always get the result:
photon absorbed and annihilated.

If we now consider the case of photons polarised at an angle of β to t − t ′
then, according to quantum mechanical principles, this state of polarisation may be
described as a linear combination of the possible eigenstates of polarisation, i.e.:

ψβ = Ctψt + Caψa

where the coefficients Ct and Ca give the contributions of each of the two eigenstates
to the state ψβ . The coefficients must be normalised so that:

Ct
2 + Ca

2 = 1.0 (B3.7.1)

because the wave function ψβ describes a single photon and the total probability of it
being either absorbed or transmitted must be 1.0. Furthermore, and again according to
quantum-mechanical principles, the outcome of the determination of the polarisation
of a photon in the state ψβ must be such that the probability that the photon is
polarised along t − t ′ and is transmitted is Ct

2 and the probability that the photon is
polarised along a − a′ and is absorbed is Ca

2. But we know these probabilities from
experiment to be cos2 β and sin2 β respectively, so that:

Ct = ± cos β and Ca = ± sin β
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and the fact that sin2 β + cos2 β = 1.0 is exactly what is required to satisfy the nor-
malisation condition Equation (B3.7.1). This last point illustrates how the concepts
of the superposition of states and expectation value allow us to extract useful infor-
mation from measurements on systems which are not, at the time immediately before
the measurement, in eigenstates of the operator corresponding to the observable prop-
erty which we are measuring. It also shows that eigenfunctions (eigenstates) and
eigenvalues are fundamental but not immutable things; they are determined by the
measurements which we choose to make. If we rotated the polariser by o then a new
pair of eigenstates would be appropriate for a discussion of the experiment above.

PROBLEMS FOR CHAPTER 3

1. Confirm the entries in columns three and four of the following table.

Operator, P̂ Function, � Is � an eigenfunction
of P̂ ?

If ‘yes’, what is
the eigenvalue?

∂2

∂θ2
sin θ yes −1

∂

∂θ
sin2 θ no −

(
∂

∂x
+ α

)
exp(−ax) yes −a + α

(
x∂

∂x
+ α

)
x2 yes 2 + α

(
x∂

∂x
+ y∂

∂y

)
xy yes 2

xy

(
∂

∂x
+ ∂

∂y

)
xy no −

2. Show that the functions exp(+inx) and exp(−inx) are eigenfunctions of the energy
operator for an electron in a linear box, each having the same eigenvalue of n2h̄2/2me.

3. A deeper understanding of the following problem should be possible after Chapters 4
and 5 have been studied. But no knowledge of the material covered there is required
to complete the present exercise.

The following, normalised functions are functions of the polar coordinate, θ , only,
apart from ψs which is simply a constant:

ψs = √
(1/2) ψd = √

(5/8)(3 cos2 θ − 1)

ψp = √
(3/2) cos θ ψf = √

(7/8)(5 cos3 θ − 3 cos θ)
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Show that these functions are eigenfunctions of the angular momentum operator L̂2
θ :

L̂2
θ = cot θ · ∂/∂θ + ∂2/∂θ2

The eigenvalues of L̂2
θ give the square of the orbital angular momentum in units

of −(h/2π)2. Show that the eigenvalues are −l(l + 1), where l = 0, 1, 2 and 3 for
s, p, d and f respectively.

4. The functions �a = Na

√
x(L − x) and �b = Nbx(L − x), where Na and Nb are nor-

malising constants, are not eigenfunctions for the electron in a one-dimensional box
of length L, but they do satisfy the boundary conditions of that system.
a) Show that Na = 2

√
3/L2, Nb = √

(30/L5) and that the functions are not ortho-
gonal.

b) Using the position operator (Section 3.13.1) and the expression for an expectation
value (Equation (3.9.2)) calculate the expectation value of x, x, for both wave
functions, �a and �b. Sketch graphs of the two functions [set L = 1.0] to explain
the difference in the two values of x.

c) Show that (〈�b|x|�b〉)2 = 〈�b|x2|�b〉. This is equivalent to saying that the square
of the mean of a set of numbers is not equal to the mean of the squares of those
numbers.

5. Calculate the expectation value for the energy, Eb, using the function �b from question
4, the kinetic energy operator (Equation (3.6.2)) and the expression for an expectation
value (Equation (3.9.2)). Write down the lowest exact energy eigenvalue, E1, for the
electron-in-a-box problem (Equation (3.6.5)) and show that Eb = 1.0132E1. The fact
that the expectation energy calculated with the approximate wave function is greater
than the exact lowest energy is an example of the variation theorem (Appendix 2).

Note: Be careful to distinguish between h and h̄ = h/2π ; Equation (3.6.5) uses the
former and Equation (3.6.2) the latter.

6. Use Equation (3.3.6) to draw quantitative energy-level schemes for the π-electrons of
benzene (C6H6), naphthalene (C10H8) and anthracene(C14H10). Estimate the radius of
the ring by assuming that its circumference is the number of peripheral C–C bonds ×
139 pm. Place the available electrons in the lower energy levels of your energy-level
schemes and calculate the energy required for a transition from the highest occupied
to the lowest unoccupied level for each molecule. Compare your results with the
experimental data for the para-band which is found in the electronic spectra of these
molecules at 9.55, 6.87 and 5.24 × 10−19 J for benzene, naphthalene and anthracene
respectively.

The agreement of theory and experiment is good, considering the simplicity of the
model. Among the most important aspects of the problem which we have neglected are
the effects of the bonds across the ring in naphthalene and anthracene and the strong
configuration interaction (see Chapter 11) between the four possible excited states of
the same energy.
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4.0 INTRODUCTION

In the application of the quantum theory to chemistry, angular momentum is arguably
as important as energy. It plays a vital part in spectroscopy and in the theory of atomic
structure. It has even been suggested that angular momentum plays a more important
role than energy in determining the outcome of intermolecular collisions.1 Before con-
sidering the quantum theory of angular momentum we shall describe the phenomenon in
classical terms.

4.1 ANGULAR MOMENTUM IN CLASSICAL MECHANICS

Consider a mass (m) moving with velocity (v) in a circular path (radius r) (Figure 4.1).
At any moment in time the velocity of the body is directed at right angles to a line joining
the body to the centre of the circle. By definition, the linear momentum (p) of the body
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r

O

q

m

Figure 4.1 Angular momentum generated by an orbiting mass, m

is the product of the mass and the velocity:

p = mv (4.1.1)

and the angular momentum (a) is the vector product of p and r,:

a = r × p = rp sin θ = rmv (4.1.2)

where θ is the angle between r and p. The quantities in bold type, r, v, p and a are all
vector quantities, i.e. they have both magnitude and direction. The vector a is located
at the centre of the circle about which the mass m rotates and, because it is the vector
product of r and p, its direction is at right angles to the plane containing r and p. In
order to define a positive and negative direction for a we first define a right-handed co-
ordinate system (Figure 4.2), which is one where a rotation from +x to +y advances a
right-handed screw along the positive direction of the z-axis. Then, if v is directed from
+x towards +y the resulting angular momentum is positive, whereas if the direction of
motion is from +y to +x a is negative. Thus, by rotating a wheel on an axle we can
generate either positive or negative angular momentum, depending upon the direction
of rotation. The angular momentum so generated is represented by a vector which lies
along the axle. If the rotating wheel is viewed from +z, clockwise (Figure 4.3(a)) and

X

In a right-handed co-ordinate system, a rotation
from +X to +Y advances a right-handed screw
in the positive Z-direction

Y

Z

Figure 4.2 Definition of a right-handed co-ordinate system
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(a) (b)

Z Z

a

p = m p = m

a

Figure 4.3 Angular momenta produced by clockwise and counter-clockwise rotations

counter-clockwise (Figure 4.3(b)) rotations produce negative (a directed away from the
observer) and positive (a directed towards the observer) angular momentum respectively.

4.2 THE CONSERVATION OF ANGULAR MOMENTUM

Like energy, angular momentum is a conserved quantity and, being a vector quantity, both
the magnitude and direction of a are maintained if they are not influenced by external
factors. The constancy of direction is exploited in the gyroscope which, prior to satellite
technology, was widely used in navigational equipment. It is the property which keeps
a spinning top upright and is surprisingly strong. Take a cycle wheel, hold the spindle,
one end in each hand, and start the wheel rotating gently. Now move the wheel vertically
up and down or horizontally from side to side. You should feel no resistance to these
movements since you are not attempting to change the direction of the angular momentum
vector. Now try to tip the wheel by raising one hand and lowering the other; the resistance
to this movement arises because the direction of the angular momentum is conserved. If
you do this while seated on a swivelling office chair you will find that the angular
momentum is conserved by a rotation of the chair.

The conservation of angular momentum makes the spinning bullets from a gun with a
rifled barrel much more stable in flight than those from a smooth-bored weapon, greatly
increasing the range of accuracy and hence lethality. The introduction, by the Union,
of the Springfield rifled-bore musket into the American Civil War (1861–1865) caused
the Confederacy dreadful losses before they adopted new tactics and obtained similar
weapons themselves. This effect on projectiles was known to the ancient Greeks who,
around 500 BC, used wooden javelins with a length of string wound around the centre
in athletic competitions. When the javelin was thrown the athlete would hold on to the
string, causing the javelin to rotate thereby increasing the length of his throw.

4.3 ANGULAR MOMENTUM AS A VECTOR QUANTITY

Since it is a vector quantity, angular momentum has a component in any direction in
space which we choose to specify. It is useful to be able to specify the components along
the x, y and z axes of a Cartesian co-ordinate system and this can be easily done. If we
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know the angles α, β and γ between the angular momentum vector (a) and the x, y, and
z axes respectively, then the required equations are:

ax = a cos α, ay = a cos β, az = a cos γ (4.3.1)

The classical angular momentum which has been described above is also called orbital
angular momentum since it arises as a result of a mass executing an orbit around a
fixed point.

4.4 ORBITAL ANGULAR MOMENTUM IN QUANTUM MECHANICS

Orbital angular momentum is also found in quantum mechanics (Box 4.1) but the quantum
and classical orbital angular momenta differ in two aspects related to quantisation. Firstly,
in quantum mechanics the total angular momentum is quantised with possible magnitudes
given by the equation:

a = √
d(d + 1) · h

2π
≡ √

d(d + 1) · h̄ (4.4.1)

where h is Planck’s constant and d is a quantum number which can take all positive
integer values, including zero, i.e. d = 0, 1, 2, 3, . . . A molecule rotating freely in space
has angular momentum of this type. Note that the quantity h/2π occurs so frequently and
is so important that it has its own symbol (h̄) which is spoken ‘h-cross’.

Secondly, though the x, y and z components of a classical angular momentum vector
can always be specified as in Equation (4.3.1), quantum mechanics places very important
restrictions on the components of angular momentum which can be specified. The first of
these restrictions is that the component in only one direction in space may be specified.
Thus, if the z component is given, no x or y components may be specified. Furthermore,
the components in the direction which can be specified, and there is no restriction in
our choice of this one direction, are quantised. Whichever the direction chosen, z in
Equation (4.4.2), the allowed quantised components are given by the equation:

az = mdh/2π ≡ mdh̄ (4.4.2)

where md is a quantum number which can take all integer values from −d to +d:

md = −d, −(d − 1), −(d − 2), . . . − 1, 0, +1, . . . + (d − 1), +d (4.4.3)

giving 2d + 1 values for md . The results expressed in Equations (4.4.1), (4.4.2) and (4.4.3)
are deduced from the angular momentum commutation relationships in Box 4.1.

Thus, for d = 0, md = 0

d = 1, md = −1, 0, +1

d = 2, md = −2, −1, 0, +1, +2 etc.

In Equation (4.4.2), the z axis has been selected as the one for which the components
of angular momentum are specified. This is purely a matter of choice but it is a convention
which has been universally adopted. The symbol, md , for the quantum number above was
chosen because of the close relationship between this quantum number and the magnetic
properties of atoms. The origins of this relationship will be described in Chapter 12.
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q = 35.3°

q = 65.9°

q = 90.0°

q = 114.1°

q = 144.7°

Z

md = +2

md = +1

md = 0

md = −1

md = −2

Figure 4.4 The five z-components of an angular momentum characterised by an angular momen-
tum quantum number of 2

Thus, in quantum mechanics, orbital angular momentum is described by two quantum
numbers, d which gives the value of the quantised total angular momentum through
Equation (4.4.1) and md which gives the allowed components of the angular momentum in
the z direction through Equation (4.4.2) and is restricted in its values by Equation (4.4.3).
This form of quantisation is known as space quantisation because the spatial orientation of
the angular momentum with respect to the z-axis is restricted by the quantisation of its z

component. Note that the maximum component, az is d h̄ and is therefore always smaller
than the total angular momentum,

√
[d(d + 1)]h̄. This means that the quantised component

(az) never lies exactly along the total angular momentum vector (a) (Figure 4.4). This is
a further consequence of the uncertainty principle. If az were aligned along a we would
know not only the values of a and az, but also those of ax and ay , because they would
both be zero. Thus, we would know everything that there is to know about the angular
momentum of the system and in quantum mechanics that is not permitted, as we have
seen in Section 3.10. Figure 4.4 illustrates this point.

4.4.1 The vector model

We have a situation in which the length of a vector and its projection on the z axis are
defined, but nothing more about its orientation can be said. Since there is no reason to
treat the x and y axes differently, we must assume that the projection of the vector in
the xy-plane points in all possible directions with equal probability. This concept forms
the basis of the vector model of angular momentum in which the vector d is envisaged
as precessing about the z axis so that it describes a cone about that axis in which the
half-angle at the apex of the cone (θ ) is given by Equation (4.4.4):

cos θ = md√
d(d + 1)

(4.4.4)

We should not leave this aspect of angular momentum without taking advantage of
the opportunity it provides of illustrating the way in which classical mechanics may
be regarded as a limiting case of quantum mechanics. The fact that there is always a
finite angle (θ ) between the total quantum-mechanical angular momentum vector and its
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maximum z component is a non-classical result. Since the maximum value of md is d ,
cos(θ [min]) is given by:

cos(θ [min]) = md[max]√
d(d + 1)

= d√
d(d + 1)

=
√

d

d + 1
(4.4.5)

Thus, as d becomes very large cos(θ [min]) tends to 1, θ [min] tends to zero and the
maximum possible z component of the angular momentum approaches the value of the
total angular momentum, which is what it would be in classical mechanics.

4.5 SPIN ANGULAR MOMENTUM

As we have seen in Section 2.7, in his model of the hydrogen atom Bohr quantised
electronic orbital angular momentum thirteen years before the birth of quantum mechanics.
In 1925, further studies of the spectra of atoms and the effect of magnetic fields upon them
led Samuel Abraham Goudsmit (1902–1978) and George Eugene Uhlenbeck (1900–1988)
to postulate that, in addition to its orbital angular momentum, an electron also possesses
another type of angular momentum which they called spin angular momentum. Like the
orbital angular momentum, the spin angular momentum also plays a role in the magnetic
properties of atoms, though the relationship between the angular momentum and the
magnetism is not exactly the same in both cases (see Section 12.2).

Wolfgang Pauli (1900–1958), who had used the concept of electron spin to formulate
his exclusion principle in 1925, introduced spin into the new quantum mechanics two
years later; but in a phenomenological manner. In 1928 Dirac placed the concept on a
much firmer footing when he found that the electron-spin quantum number arose natu-
rally when the quantum mechanics of the hydrogen atom was made compatible with the
theory of relativity. Detailed study then revealed that the spin angular momentum obeyed
Equations (4.4.1), (4.4.2) and (4.4.3) exactly as orbital angular momentum did, but with
one important difference. For spin the quantum number d could take positive half-integer
as well as integer values. Thus, in addition to the d and md values given above, for spin
we can also have:

d = 1
2 ; md = − 1

2 ,+ 1
2

d = 3
2 ; md = − 3

2 ,− 1
2 , + 1

2 , + 3
2

d = 5
2 ; md = − 5

2 ,− 3
2 , − 1

2 , + 1
2 , + 3

2 , + 5
2 etc.

4.6 TOTAL ANGULAR MOMENTUM

The total angular momentum of an atom or molecule is usually composed of both spin
and orbital parts and both of these contributions may arise from several sources. For
example, the spin angular momentum may be electron spin, but the spins of the nuclei
are also important in many branches of atomic and molecular spectroscopy. Orbital angular
momentum may be due to orbital motion of electrons. It may also arise as a result of
the rotation in space of the molecule as a whole. These various angular momenta are not
independent; they interact with each other by mechanisms of which we shall give some
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examples in the chapters on atomic structure and spectroscopy. It is important therefore
that we have a way of adding angular momenta together.

4.6.1 The addition and conservation of angular momentum
in quantum mechanics

In classical mechanics the addition of two angular momenta is quite straightforward. The
tails of the two vectors are brought to the same point and the addition parallelogram
constructed to give their sum. In Figure 4.5a, a + b = c. Thus, for any pair of vectors a
and b, each of fixed magnitude (length) and direction (orientation), there can be one, and
only one, resultant (c). Angular momentum is conserved and c must be the vector sum
of a and b. Figure 4.5b shows an alternative form of the addition diagram.

The addition of angular momentum in quantum mechanics is not as simple because all
contributions to the total angular momentum are themselves quantised and the addition
process, also known as coupling, must ensure that the sum itself and also its components
are quantised. It can be shown (Box 4.2)2 that if two angular momenta characterised by
the angular momentum quantum numbers d1 and d2 are added to form a total angular
momentum characterised by the quantum number d , then d can take all the values given
by the Equation (4.6.1); also known as the Clebsch–Gordan series:

d = d1 + d2, d1 + d2 − 1, d1 + d2 − 2, . . . |d1 − d2| (4.6.1)

e.g. d1 = 3, d2 = 1 : d = 4, 3, 2. d1 = 2, d2 = 3
2 : d = 7

2 , 5
2 , 3

2 , 1
2 .

(Note how the series terminates at the modulus of the difference between d1 and d2.)
Although d1 and d2 are defined as completely as is possible in quantum mechanics,

according to Equation (4.6.1) 2d< + 1, where d< is the smaller of d1 and d2, resultants
of the addition of d1 and d2 are permissible, rather than the single resultant which we
would have in classical mechanics, (Figure 4.5). It is tempting to attempt to draw two
vectors having lengths characterised by their values of d1 and d2 and orientations with
respect to the z axis determined by their values of md1 and md2 and to add these in the
classical manner, comparable to Figure 4.5, to obtain a vector characterised by d and md

given by the rules for the addition of quantum-mechanical angular momentum quoted
above. This is not possible because the plane containing the z axis and d1 cannot be
assumed to be coincident with that containing the z axis and d2. The rules apply to the
quantum numbers and the angular momentum vectors constructed using them cannot be
added as in classical mechanics. But the z components of d1 and d2 both lie along the
z axis and can be directly added and each component of the combined vector, |d,md〉,
is a sum of the components of the combining vectors, |d1, md1〉 and |d2,md2〉, which
includes all those which satisfy the requirement that md = md1 + md2. For example, one
can show using the raising and lowering operators (Section 4.7.1 and Box 4.1) that in the

a c a
c

b

b

(a) (b)

Figure 4.5 The addition of angular momenta in classical mechanics
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case of the second of the above examples the resultant vector | 5
2 ,+ 1

2 〉 with d = 5
2 and

md = + 1
2 , is:

| 5
2 , + 1

2 〉 = 3
√

(3/70)|2, −1〉| 3
2 , + 3

2 〉 + √
(6/70)|2, 0〉| 3

2 ,+ 1
2 〉

− 5/
√

(70)|2,+1〉| 3
2 ,− 1

2 〉 − 2
√

(3/70)|2,+2〉| 3
2 ,− 3

2 〉
The numerical coefficients in the above sum are known as Clebsch–Gordan coefficients

and formulae for calculating them from d , md, d1, md1, d2 and md2 can be found in many
sources.2 – 5 They are also extensively tabulated.6

In spite of the obvious difficulty of illustrating the quantum-mechanical addition of
vectors, one frequently encounters diagrams of that type and they are very helpful in
understanding complex coupling processes such as are found in molecular electronic
spectroscopy. The basic situation is illustrated in Figure 4.6. In Figure 4.6(a) the two
vectors, d1 and d2, are not coupled. Each precesses about the z axis, independently with
constant z components (m1 and m2) but not in phase. d1, d2, m1 and m2 are good quan-
tum numbers and the corresponding angular momenta and z components are separately
observable. In Figure 4.6(b) d1 and d2, are coupled to form d, about which they precess
together and in phase. They no longer have constant z components; d1, d2, m1 and m2 are
not good quantum numbers and the corresponding angular momenta and components are
not observable. d precesses about z with a constant z component, m, the quantum numbers
d and m are good quantum numbers and the corresponding angular momentum and its
z component are experimental observables. This point is illustrated with an example in
Section 4.6.2.

One other consequence of the fact that, in quantum mechanics, there can be more
than one result for the sum of two vector quantities should be mentioned here. We
shall investigate it further in Chapter 8 when we consider the question of the con-
servation of angular momentum in connection with spectroscopic selection rules. At
this point we need only say that if, before a particular event, a system consists of
two angular momenta characterised by the angular momentum quantum numbers d1

and d2 and if, after the event, the system has an angular momentum characterised
by d then if d satisfies any of the 2d< + 1 Equations (4.6.1), angular momentum has
been conserved.

m1

m2
d2 d2

d1
d1

d

m

Z Z

(a) (b)

Figure 4.6 The addition (coupling) of two angular momenta
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4.6.2 The laws of quantum-mechanical angular momentum

Once we have a formula for the addition of two angular momenta we can add any number
of contributions by repeated applications of the formula. (But note how rapidly the number
of possible values for the total angular momentum rises!)

And although there may be many contributions to the total angular momentum of a
molecule, we can make three general statements about angular momentum which each
individual contribution to the total and the total itself must obey. They are:

1. The square of the angular momentum, a2, is given in terms of the quantum number d

in the form of Equation (4.4.1):

a2 = [d(d + 1)]h̄2

where d can take any positive integer or half-integer value, including zero.

2. The components of the angular momentum, az, in any specified direction (convention-
ally the z-axis) are given by Equation (4.4.2):

az = mdh̄

where the quantum number md can take all 2d + 1 values from −d to +d in unit
steps, Equation (4.4.3).

3. If the angular momentum is purely orbital angular momentum the quantum number d ,
and hence md , can take only integer values. When spin is involved half-integer values
are also possible.

These three statements might be termed the laws of quantum-mechanical angular
momentum and two important points about them should be made. Firstly, it is rare
to observe the angular momentum directly, usually it is the transitions between states
of angular momentum which give rise to observable experimental data. Secondly, in
cases where two or more angular momenta are combined, or coupled (Section 4.6.1),
the observable experimental data are related to changes in the total angular momentum
and must be interpreted in terms of the corresponding total quantum numbers. But the
individual quantum numbers for the contributing angular momenta play an important role
in describing the system theoretically and it is in that sense that we can say that the
individual contributions to the total angular momentum obey the above laws, even when
they are not experimentally observable.

It might be helpful to make this point clear with an example. In a heavy atom,
the orbital angular momentum of an electron (quantum number l) may couple with
the spin angular momentum of the same electron (quantum number s) to give a total
angular momentum characterised by the quantum number j . (See Section 5.8 for more
details on this phenomenon which is called spin-orbit coupling.) Experimental obser-
vations are interpretable in terms of j which is said to be a good quantum number.
The orbital and spin angular momenta corresponding to the quantum numbers l and s

only feature in the theoretical description of the atom, they are not observed directly
in the experimental measurements and, consequently, l and s are not good quantum
numbers.
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4.7 ANGULAR MOMENTUM OPERATORS AND EIGENFUNCTIONS

In Chapter 3 we discussed the basic application of Schrödinger’s theory of observables,
operators, eigenfunctions and eigenvalues using explicit mathematical functions for the
operators for energy and angular momentum in our examples. We consider these ideas
again here because, for angular momentum, the concept takes an extremely simple form
in which, for many applications, we do not need to give full mathematical expressions for
either the operators or the eigenfunctions. This is very fortunate, not only on account of
the resulting simplicity but also because the operators for spin angular momentum cannot
be obtained from the corresponding classical expressions because there is no classical
analogue of quantum-mechanical spin.

In Box 4.1 eigenfunction-eigenvalue equations for the first two laws of Section 4.6
(Equations (B4.1.22a) and (B4.1.22b)) are derived. We repeat those equations here with
d̂ as the operator for total angular momentum and d̂z that for its z component:

d̂|d, md〉 = √
d(d + 1) · h̄|d,md〉 (4.7.1)

and
d̂z|d,md〉 = md · h̄|d, md〉 (4.7.2)

Here we are adopting a notation, first suggested by Dirac, in which we specify the eigen-
function |d,md〉, solely by giving the quantum numbers which define it and determine
its eigenvalues. Angular momentum eigenfunctions are characterised by two quantum
numbers. The first (d) gives the total angular momentum, in units of h/2π , according
to Equation (4.7.1). The second (md) gives the z component of that angular momen-
tum, also in units of h/2π , according to Equation (4.7.2). The corresponding eigenfunc-
tion is exactly identified, as far as its angular momentum properties are concerned,
if the values of these two quantum numbers are given, and that is frequently suf-
ficient for our purposes. The symbol |d,md〉 is therefore all that we need to write
Equations (4.7.1) and (4.7.2), which satisfy the requirement that the operator operating
on the eigenfunction is equal to the eigenfunction multiplied by a number, the eigenvalue.
The eigenvalues of the angular momentum operators are the observable, quantised val-
ues of the total angular momentum and its z component given in units of h/2π by the
quantum numbers.

4.7.1 The raising and lowering, shift or ladder operators

Since we cannot know the values of the x and y components of the angular momentum if
we already know the z component, we cannot write eigenfunction-eigenvalue equations
like Equation (4.7.2) for d̂x and d̂y . However, there are two operators derived from d̂x and
d̂y which we use in Box 4.1. Although they are not eigenfunction-eigenvalue equations,
they are of great value to us. The operators are the raising and lowering operators, d̂+
and d̂− defined by the equations:

d̂+ = d̂x + id̂y (4.7.3)

and
d̂− = d̂x − id̂y (4.7.4)
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In these two equations, i = √
( − 1); for more information about i see Appendix 8. The

two operators have very important properties which are deduced in Box 4.1 (Equations
(4.1.31a) and (4.1.31b)) and repeated here as Equations (4.7.5) and (4.7.6):

d̂+|d,md〉 = √
[d(d + 1) − md(md + 1)] · h̄|d,md + 1〉 (4.7.5)

d̂−|d,md〉 = √
[d(d + 1) − md(md − 1)] · h̄|d,md − 1〉 (4.7.6)

The application of either operator does not change the value of the total angular
momentum (the quantum number d remains the same) but each changes the value of
the z component of the angular momentum by one unit of h/2π . d̂+ raises the value of
dz, i.e. (md → md + 1), and d̂− lowers it (md → md − 1). For example:

d̂+|2, 1〉 = √
[(2 × 3) − (1 × 2)] · h̄|2, 2〉 = 2h̄|2, 2〉

d̂−|2, 1〉 = √
[(2 × 3) − (1 × 0)] · h̄|2, 0〉 = √

6h̄|2, 0〉
These are not eigenfunction-eigenvalue equations because the functions on the left-

and right-hand sides of Equations (4.7.5) and (4.7.6) are not the same. Rather, these two
operators take us up (d̂+) and down (d̂−) a set of md values, one step at a time. They are
therefore known as the raising and lowering, ladder or shift operators. Note that if we
try to raise an md value which is already at its maximum, i.e. md = d , we get a result of
zero. The same is true if we try to lower a value of md which is already at its minimum
value, i.e. md = −d .

4.8 NOTATION

The quantum numbers d and md in the above laws represent any form of angular momen-
tum. It has become customary to denote the various types of angular momentum with
a particular choice of symbols for d as the quantum number and this practice is so
widespread and consistent that it should be stated here.

The orbital angular momentum of an electron in an atom: l and ml .

The spin angular momentum of an electron: s and ms .

The combined spin and orbital angular momentum of an
electron in an atom:

j and mj .

Where the angular momentum results from more than
one electron this is indicated by using the upper case
letters:

L, ML, S, MS , J , MJ .

The spin angular momentum of an atomic nucleus: I and MI .

The orbital angular momentum of a rotating diatomic
molecule:

J and MJ .

The orbital angular momentum of a molecule rotating in
space:

R and MR .

(In the last three cases the upper case letter is always used, even for one nucleus or
one molecule.)
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4.9 SOME EXAMPLES

A single electron has s = 1
2 and therefore ms = − 1

2 and + 1
2 . Thus, a single electron can

be found in two different spin states. When two electrons occupy the same orbital (spatial
region) in an atom or molecule one has ms = − 1

2 and the other ms = + 1
2 . They are said

to be spin-paired or, simply, paired.
The s, p, d , . . . atomic orbitals of atoms (see Chapter 5) have orbital angular momen-

tum quantum numbers, l = 0, 1, 2, . . . respectively. Associated with these there are ml

values of 0 for s, −1, 0, +1 for p and −2, −1, 0, +1, +2 for d , etc. Thus, there is just
one s orbital, but there are three p orbitals, five d orbitals, seven f orbitals, . . . . The
element boron consists of two isotopes, 19.6 % of 10B and 80.4 % of 11B. The nuclear spin
quantum numbers of the two isotopes are 3 and 3

2 respectively and we therefore have:

10BI = 3 MI = −3,−2, −1, 0, +1, +2,+3
11BI = 3

2 MI = − 3
2 , − 1

2 ,+ 1
2 ,+ 3

2

The rigidity and simplicity of the rules of quantum-mechanical angular momentum
make more complex systems quite easy to handle, in principle, though frequently tedious
in practice. Suppose that we have one electron in a p orbital. Then, s = 1

2 and the possible
ms values are − 1

2 and + 1
2 , while l = 1 and the possible ml values are −1, 0 and +1.

Recall that the ms and ml values give the components of the angular momenta along the
z axis. Therefore, adding the z components of the orbital and spin vectors we have six
possibilities for the z component of the combined momenta, mj :

ml ms mj

−1 + (− 1
2 ) = − 3

2

−1 + (+ 1
2 ) = − 1

2

m ms mj

0 + (− 1
2 ) = − 1

2

0 + (+ 1
2 ) = + 1

2

ml ms mj

+1 + (− 1
2 ) = + 1

2

+1 + (+ 1
2 ) = + 3

2

The result of adding the z components of orbital and spin angular momenta are six
mj values which represent the z components of the combined angular momenta. And we
know from the above laws, which angular momentum always obeys, that the values of
these components must go from −mj to +mj in unit steps. Therefore, if there is an mj

value of − 3
2 it must be associated with further mj values of − 1

2 ,+ 1
2 and + 3

2 . Furthermore,
we also know that the maximum mj value will be the same as the j value for the total
angular momentum, so we have discovered that our single p electron can have a state of
angular momentum characterised by the quantum numbers:

j = 3
2 and mj = − 3

2 , − 1
2 , + 1

2 , + 3
2

We remove these four values from our list above (it does not matter which of the two
+ 1

2 and − 1
2 values we choose; this is merely a book-keeping exercise) and there remain

just two mj values, − 1
2 and + 1

2 . Clearly, there is a second angular momentum state for
our p electron which is characterised by the quantum numbers:

j = 1
2 and mj = − 1

2 , + 1
2

These results for the possible values of j should be compared with those obtained by
adding the spin and orbital angular momenta according to the rule given in Section 4.6.1.
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We can apply a similar method to determine the spin states of a two-electron system.
We first tabulate all the possible combinations of ms1 and ms2 and their total M:

ms1 ms2 M

+ 1
2 + 1

2 +1

ms1 ms2 M

+ 1
2 − 1

2 0

− 1
2

1
2 0

ms1 ms2 M

− 1
2 − 1

2 −1

Clearly, the value M = +1 must be associated with two other components, M = 0
and M = −1. Thus, there is a state with a total spin of S = 1 which, because it has three
components |1,+1〉, |1, 0〉 and |1,−1〉, is called a triplet. A singlet, |0, 0〉, with S = 0
and M = 0 remains.

To find the eigenfunctions we first use the lowering operator (Ŝ−) on the combined
spin function |1,+1〉:

Ŝ−|1,+1〉 = √
1(1 + 1) − 1(1 − 1)|1,+1〉 = √

2|1, 0〉
We now apply the lowering operators (ŝ−(1) and ŝ−(2)) to the spin functions of the

individual electrons:

{ŝ−(1) + ŝ−(2)}| + 1
2 (1), + 1

2 (2)〉 = ŝ−(1)| + 1
2 (1), + 1

2 (2)〉 + ŝ−(2)| + 1
2 (1), + 1

2 (2)〉
= | − 1

2 (1), + 1
2 (2)〉 + | + 1

2 (1), − 1
2 (2)〉

Equating the two results:

|1, 0〉 =
√

1
2 {| − 1

2 (1), + 1
2 (2)〉 + | + 1

2 (1), − 1
2 (2)〉}

Further lowering operations on both sides of the above equation give:

|1,−1〉 = | − 1
2 (1), − 1

2 (2)〉
The singlet state, |0, 0〉, must have M = 0 and be orthogonal to the state |1, 0〉. These

two conditions determine its eigenfunction to be:

|0, 0〉 =
√

1
2 {| − 1

2 (1), + 1
2 (2)〉 − | + 1

2 (1), − 1
2 (2)〉}

As a final example we consider the spin properties of the hydrogen atom which have
some interesting applications. The nucleus of the hydrogen atom, the proton, has a spin
of I = 1

2 and MI = − 1
2 and + 1

2 . The single electron has s = 1
2 and ms = − 1

2 and + 1
2 .

Therefore, there are four possible spin states of the hydrogen atom:

MI ms M

− 1
2 + (− 1

2 ) = −1

+ 1
2 + (− 1

2 ) = 0

MI ms M

− 1
2 + 1

2 = 0

+ 1
2 + 1

2 = +1

As always, we note that we have values of MI + ms which run from −1 to +1 in
unit steps and we pick out these as the three components of a state characterised by
a total angular momentum quantum number of 1. A spin state of zero total angular
momentum remains. Now, because the spins of the nucleus and the electron are each
associated with a magnetic moment (see Chapter 5), the two particles behave as if they
were minute bar magnets and the energy of the atom depends upon the relative orientation
of the two magnets. The energy of the state in which the two spins are aligned parallel,
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e.g. MI = + 1
2 ,ms = + 1

2 is greater than that in which the two spins are aligned anti-
parallel, e.g. MI = − 1

2 , ms = + 1
2 , and the energy difference is 0.9412 × 10−30 J. Some

further discussion of the nature of this interaction can be found in Section 9.6. Using
the Bohr-Einstein equation, E = hν, (Section 2.7.1) this energy difference corresponds
to electromagnetic radiation of frequency 1420.4 MHz or wavelength 0.2111 m. Thus,
if the higher energy state should change into the lower energy state, i.e. if the relative
orientations of the two spinning particles were to change from parallel to anti-parallel,
then electromagnetic radiation of the above frequency/wavelength would be emitted.

In 1942, Hendrik Van de Hulst (1918–) suggested that, although this event would
occur only very infrequently (approximately once every 11 million years in any one
hydrogen atom), since there are vast amounts of hydrogen distributed as atoms throughout
space, one might expect to detect this radiation if a sufficiently sensitive receiver was
available. Following World War II, the technological advances achieved in pursuit of
military objectives made the rapid development of radio astronomy possible and the
‘song of hydrogen’ was detected and used to map the galaxy.

Later, in the 1960s, when it was proposed that we might listen for radio transmissions
from intelligent beings in outer space the question naturally arose as to what frequency
of signal the listening device should be tuned to receive. It was persuasively argued that,
since hydrogen is the most abundant element in the universe, the emission/absorption of
hydrogen atoms would be known to all intelligent life and that this was therefore the
frequency which should be used. The search has now occupied more than 10 000 hours
of radio-telescope time with the star systems Epsilon Eridani and Tau Ceti (11 and 12
light years distant respectively) as the main targets. All results to date have apparently
been negative.

In 1994 the 0.2111 m emission of hydrogen atoms was used to discover a new galaxy,
Dwingeloo 1, which is about 107 light years from earth and lies in the plane of our own
galaxy, the Milky Way. Star systems which lie within the Milky Way are very difficult
for us to see because we have to look through the plane of the galaxy and the scattering
of light by dust particles within the plane obscures the image. But the scattering of light
is inversely proportional to the fourth power of the wavelength (Rayleigh’s Law) so that
the scattering of the long-wavelength hydrogen emission is scarcely affected by the dust.
By searching for the 0.2111 m waves from within the galactic plane, astronomers in the
Netherlands were able to detect the emission from Dwingeloo 1 and pin-point its position.
When this had been done it was possible to confirm the discovery by means of a rather
poor image obtained with an optical telescope. The search for 0.2111 m emission from
other galaxies within the Milky Way continues.
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BOX 4.1 Angular momentum operators and commutation rules

The orbital angular momentum (L) of a single particle about an origin is the vector
product of the distance from the origin (r) and the linear momentum (p):

L = r × p (B4.1.1)

In Cartesian co-ordinates the components of L are:

Lx = ypz − zpy (B4.1.2a)

Ly = zpx − xpz (B4.1.2b)

Lz = xpy − ypx (B4.1.2c)

Note how the successive components can be obtained by a cyclic permutation of
x → y → z → x . . .

If we replace the p’s by the corresponding quantum-mechanical operators we
obtain the operators for angular momentum in units of h/2π ≡ h̄:

L̂x = −ih̄ {y∂/∂z − z∂/∂y} (B4.1.3a)

L̂y = −ih̄ {z∂/∂x − x∂/∂z} (B4.1.3b)

L̂z = −ih̄ {x∂/∂y − y∂/∂x} (B4.1.3c)

These three operators do not commute with each other, for example:

L̂xL̂y� = −h̄2 {y∂/∂z − z∂/∂y}{z∂/∂x − x∂/∂z}�
= −h̄2 {y∂/∂z[z∂/∂x] − y∂/∂z[x∂/∂z] − z∂/∂y[z∂/∂x] + z∂/∂y[x∂/∂z]}�

The terms in square brackets must be differentiated as products so that we have:

= −h̄2 {y∂/∂x + yz∂2/∂z∂x − yx∂2/∂z2 − z2∂2/∂y∂x + zx∂2/∂y∂z}�
Similarly:

L̂yL̂x� = −h̄2 {z∂/∂x − x∂/∂z}{y∂/∂z − z∂/∂y}�
= −h̄2 {z∂/∂x[y∂/∂z] − z∂/∂x[z∂/∂y] − x∂/∂z[y∂/∂z] + x∂/∂z[z∂/∂y]}�
= −h̄2 {zy∂2/∂x∂z − z2∂2/∂x∂y − xy∂2/∂z2 + x∂/∂y − xz∂2/∂z∂y}�

The co-ordinates x, y and z commute with each other and so do the operators
for partial differentiation with respect to those co-ordinates. Therefore, yz∂2/∂z∂x =
zy∂2/∂x∂z etc. and:

{L̂xL̂y − L̂yL̂x}� = −h̄2 {y∂/∂x − x∂/∂y}� = −ih̄ · ih̄ {x∂/∂y − y∂/∂x}�
= ih̄ L̂z�
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Thus: {L̂xL̂y − L̂yL̂x}� ≡ [L̂x, L̂y]� = ih̄ L̂z� (B4.1.4a)

and similarly: {L̂yL̂z − L̂zL̂y}� ≡ [L̂y, L̂z]� = ih̄ L̂x� (B4.1.4b)

and: {L̂zL̂x − L̂xL̂z}� ≡ [L̂z, L̂x]� = ih̄ L̂y� (B4.1.4c)

These are the commutation relationships between the operators for the Carte-
sian components of angular momentum. The symbol [a, b] = ab − ba, is called the
commutator of a and b.

But L̂2 = L̂2
x + L̂2

y + L̂2
z commutes with each of its components, e.g. [dropping

the explicit inclusion of the operand, �, to simplify the notation]:

L̂2L̂z − L̂zL̂
2 = L̂2

xL̂z + L̂2
yL̂z + L̂3

z − L̂zL̂
2
x − L̂zL̂

2
y − L̂3

z

= L̂xL̂xL̂z − L̂xL̂zL̂x + L̂xL̂zL̂x − L̂zL̂xL̂x + L̂yL̂yL̂z

− L̂yL̂zL̂y + L̂yL̂zL̂y − L̂zL̂yL̂y

= L̂x(−ih̄L̂y) + (−ih̄L̂y)L̂x + L̂y(ih̄L̂x) + (+ih̄L̂x)L̂y = 0

In the second line above we have subtracted and then added L̂xL̂zL̂x and L̂yL̂zL̂y .
In summary:

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 (B4.1.5)

[L̂ also commutes with each of its components but it is simpler to work with L̂2].
From Equations (B4.1.5) we know (Section 3.11) that there is a set of functions

which are simultaneously eigenfunctions of both L̂z and L̂2. If we use the correspond-
ing quantum numbers, M and L, to characterise these functions writing them in the
form |L, M〉, we have the following two eigenvalue-eigenfunction equations, where
KL and KM are the eigenvalues for the square of the total angular momentum, in
units of h̄2, and its z component, in units of h̄, respectively:

L̂2|L, M〉 = KL|L, M〉 (B4.1.6)

and L̂z|L, M〉 = KM |L,M〉 (B4.1.7)

Starting from these equations we can now deduce the most important properties
of the angular momentum eigenvalues:

L̂2|L,M〉 = {L̂2
x + L̂2

y + L̂2
z}|L,M〉 = KL|L,M〉 (B4.1.8)

and L̂zL̂z|L,M〉 = L̂zKM |L,M〉 = (KM)2|L, M〉 (B4.1.9)

Subtracting Equation (B4.1.9) from Equation (B4.1.8) we obtain:

{L̂2
x + L̂2

y}|L,M〉 = {L̂2 − L̂2
z}|L,M〉 = {KL − (KM)2}|L, M〉 (B4.1.10)

Thus, the functions |L, M〉 are also eigenfunctions of L̂2
x + L̂2

y and the eigenvalues
of the sum of the squares of two angular momentum components must be positive so
that:

KL ≥ (KM)2 (B4.1.11)
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We now define two new operators, the raising and lowering, ladder or step
operators:

L̂+ = L̂x + iL̂y (B4.1.12a)

and L̂− = L̂x − iL̂y (B4.1.12b)

Using the commutation rules B4.1.4 one can readily show that:

L̂z(L̂x + iL̂y) = (L̂x + iL̂y)(L̂z + h̄) (B4.1.13a)

and L̂z(L̂x − iL̂y) = (L̂x − iL̂y)(L̂z − h̄) (B4.1.13b)

If the first of these two sequences of operations is applied to the functions |L, M〉
we have:

L̂z(L̂x + iL̂y)|L, M〉 = (L̂x + iL̂y)(L̂z + h̄)|L, M〉 = (L̂x + iL̂y)(KM + h̄)|L, M〉
= (KM + h̄)(L̂x + iL̂y)|L, M〉 = (KM + h̄)L̂+|L, M〉

(B4.1.14a)
Thus, (L̂x + iL̂y)|L, M〉 is found to be an eigenfunction of L̂z with an eigenvalue

of (KM + h̄). Since L̂2 commutes with L̂x and L̂y it also commutes with L̂+ and the
eigenfunction (L̂x + iL̂y)|L, M〉 remains an eigenfunction of L̂2 with eigenvalue KL.
Similarly, we find that (L̂x − iL̂y)|L, M〉 is an eigenfunction of L̂z with an eigenvalue
of (KM − h̄) while remaining an eigenfunction of L̂2 with eigenvalue KL:

L̂z(L̂x − iL̂y)|L, M〉 = (KM + h̄)(L̂x − iL̂y)|L, M〉 = (KM − h̄)L̂−|L,M〉
(B4.1.14b)

Therefore, we have a series of eigenfunctions of L̂2 and L̂z, all with the eigenvalue
of KL for L̂2 but with the following sequence of eigenvalues of L̂z:

. . . (KM − 3h̄), (KM − 2h̄), (KM − h̄), KM, (KM + h̄), (KM + 2h̄), (KM + 3h̄) . . .

The series must terminate at both ends because KL ≥ (KM)2. Thus, if we denote
the highest value by KM

′′ and the lowest by KM
′ the full sequence is:

KM
′ . . . (KM − 2h̄), (KM − h̄), KM, (KM + h̄), (KM + 2h̄) . . . KM

′′ (B4.1.15)
Therefore, if the corresponding eigenfunctions are |L,M ′′〉 and |L, M ′〉 we must

have:

L̂+|L,M ′′〉 = 0 (B4.1.16a)

and L̂−|L,M ′〉 = 0 (B4.1.16b)

Applying L̂− to Equation (B4.1.16a) we have:

L̂−L̂+|L, M ′′〉 = (L̂x − iL̂y)(L̂x + iL̂y)|L, M ′′〉
= {L̂2

x + L̂2
y + i(L̂xL̂y − L̂yL̂x)}|L, M ′′〉 = {L̂2

x + L̂2
y − h̄L̂z}|L, M ′′〉

= {L̂2 − L̂2
z − h̄L̂z}|L, M ′′〉 = {KL − (KM

′′)2 − h̄ KM
′′}|L, M ′′〉 = 0

Thus, KL = (KM
′′)2 + h̄KM

′′ (B4.1.17a)
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By operating with L̂+ on Equation (B4.1.16b) we can also show that:

KL = (KM
′)2 − h̄ KM

′ (B4.1.17b)

In order to satisfy Equations (B4.1.17a) and (B4.1.17b) and to be consistent
with the assumption that KM

′ < KM
′′ we must have KM

′′ = −KM
′. Furthermore,

the sequence (Equation (B4.1.15)) requires that KM
′′ be greater than KM

′ by an inte-
gral number of units of h̄. Thus, KM

′′ must be of the form nh̄ where n is an integer,
including 0, or a half-integer. Thus far we have attached no particular significance to
L. Therefore, since KM

′′ depends only on L we may set n = L and we have:

KM
′′ = Lh̄ (B4.1.18)

Using Equation (B4.1.17a) KL = (Lh̄)2 + h̄Lh̄

or KL = L(L + 1)h̄2 (B4.1.19)

Now, the possible values of KM are:

− Lh̄, −(L − 1)h̄ . . . (L − 1)h̄, Lh̄ (B4.1.20)

And M , to which we have attached no particular significance yet, can be used to
characterise this sequence of KM values:

KM = Mh̄, L ≥ M ≥ −L (B4.1.21)

If L is an integer M is an integer, if L is half-integral so too is M .
Equations (B4.1.6) and (B4.1.7) may now be written:

L̂2|L, M〉 = L(L+1)h̄2|L,M〉 (B4.1.22a)

and L̂z|L, M〉 = Mh̄|L,M〉 (B4.1.22b)

These results have been derived solely from the commutation relationships and
they therefore apply to any properties for which the corresponding operators have the
same commutation rules. It is fortunate that they also apply to the property which we
call ‘spin’. Since spin is a non-classical quantity, there was no reason to assume that
the rules deduced here, based on the classical mechanics of orbital angular momentum,
would apply. However, it can be shown using a method which does not depend on
classical mechanics that the commutation rules deduced above also apply to spin.
Treatments of this type are based on the theory of infinitesimal rotations and can
be found in any of the references 2–5 cited in the bibliography of Chapter 4. The
mathematics used is not as daunting as the words ‘infinitesimal rotations’ may make
it appear.

The primary task of this Box, the deduction of the commutation rules for orbital
angular momentum and from them Equations (B4.1.22a) and (B4.1.22b), has now
been accomplished. But in the process we have also ‘discovered’ the raising and
lowering operators, L̂+ and L̂−, which we find extremely useful throughout this book.
We are now in a position to examine their properties a little more closely. We found
that, in units of h̄, when L̂+ is applied to |L, M〉 we obtain an eigenfunction of L̂z with
an eigenvalue of (M + 1) which is still an eigenfunction of L̂2 with the same value
of the quantum number L. Similarly, we found that L̂−|L, M〉 is an eigenfunction of
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L̂2, with the same value of L, and of L̂z with an eigenvalue of (M − 1). Equations
(B4.1.23a) and (B4.1.23b) summarise these statements:

L̂+|L,M〉 = C+|L, M + 1〉 (B4.1.23a)

L̂−|L,M〉 = C−|L, M − 1〉 (B4.1.23b)

C+ and C− are numbers which may result from the operation by L̂+ and L̂− on
|L, M〉. The statements immediately above would not be invalidated if the resulting
eigenfunctions were multiplied by such constants and we need to determine their
values. The complex conjugate (Appendix 8) of Equation (B4.1.23a) is:

{L̂+|L, M〉}∗ = {C+|L, M + 1〉}∗ (B4.1.24)

But {L̂+}∗ = L̂−, |L,M〉∗ = 〈L, M| and |L,M + 1〉∗ = 〈L, M + 1|, and Equation
(B4.1.24) can be written:

〈L, M|L̂− = C+∗〈L, M + 1| (B4.1.25)

If we now multiply the right- and left-hand sides of Equation (B4.1.23a), on the
left, by the same sides of Equation (B4.1.25) we obtain Equation (B4.1.26):

〈L, M|L̂−L̂+|L,M〉 = C+C+∗〈L, M + 1|L,M + 1〉 = C+C+∗ (B4.1.26)

The right-hand side reduces to C+C+∗ because 〈α|β〉 means integrate the product
αβ over all space and therefore 〈L, M + 1|L, M + 1〉 = 1 if the eigenfunctions are
normalised, which we certainly require them to be. The operator product L̂−L̂+ can
be evaluated using Equations (B4.1.4) and (B4.1.12) and we find, in units of h̄, that:

L̂−L̂+ = L̂2 − L̂2
z − L̂z (B4.1.27)

Therefore:

〈L, M|L̂−L̂+|L, M〉 = 〈L, M|L̂2 − L̂2
z − L̂z|L, M〉

= 〈L, M|L(L + 1) − M2 − M|L,M〉=L(L + 1) − M(M + 1)

(B4.1.28)
since 〈L, M|L,M〉 = 1 for normalised eigenfunctions. Finally, comparing Equa-
tions (B4.1.26) and (B4.1.28) we have:

C+C+∗ = L(L + 1) − M(M + 1)

Therefore, since there is no reason to assume that C+ is anything other than real:

C+∗ = C+ = {L(L + 1) − M(M + 1)} 1
2 (B4.1.29)

An analogous development starting from Equation (B4.1.23b) gives:

C−∗ = C− = {L(L + 1) − M(M − 1)} 1
2 (B4.1.30)

and the complete forms of Equations (B4.1.23a) and (B4.1.23b) are:

L̂+|L, M〉 = {L(L + 1) − M(M + 1)} 1
2 |L, M + 1〉 (B4.1.31a)

L̂−|L, M〉 = {L(L + 1) − M(M − 1)} 1
2 |L, M − 1〉 (B4.1.31b)
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Readers may have wondered why the positive sign was chosen for the square root
in Equation (B4.1.29). There is definitely an element of choice here and, since the
raising and lowering operators link all the 2L + 1 eigenfunctions of the manifold of M

values having the same value of L, it is important. This choice of phase does not affect
the calculation of any measurable physical property, but it does affect intermediate
algebraic results which can be very important when these results have been tabulated
for general use, as many have been. The positive sign was first chosen by Condon
and Shortley1 and is now effectively universal.

In the light of the above a reader might well ask, ‘If we can find out so much about
angular momentum simply by studying the commutation properties of the associated
operators can we not approach other quantum-mechanical problems in the same way?’
The short answer to that question is ‘yes’, the procedure is sometimes called second
quantisation. The best-known example of it is the deduction of the energy levels of
the harmonic oscillator.2 In that problem the raising operator is known as the creation
operator because each application generates an additional vibrational quantum. The
lowering operator, each application of which removes a vibrational quantum, is called
the annihilation operator. These concepts have very wide applicability and form the
basis of the description of photons in the theory of quantum electrodynamics; see
Section 8.9 and reference 2. Some less well-known applications have been described
by Newmarch and Golding.3

1. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press,
1935.

2. N. Zettili, Quantum Mechanics Concepts and Applications, Wiley, Chichester, 2001.
3. J.D. Newmarch and R.M. Golding, American J. Phys., 46, 658–660 1978.

BOX 4.2 The Clebsch–Gordan series

The mathematical proof of the Clebsch–Gordan formula for the addition of angu-
lar momenta in quantum mechanics is really only a rigorous argument along the
following, more descriptive, lines.

Suppose that the two angular momenta to be added are characterised by total
angular momentum quantum numbers d1 and d2. We wish to show that the quantum
numbers of the resulting vectors, d , are given by the Clebsch–Gordan series:

d = d1 + d2, d1 + d2 − 1, d1 + d2 − 2, . . . |d1 − d2|
The z-components of the resulting vectors, characterised by their md values, must

simply be sums of the z-components of d1 and d2 and there are (2d1 + 1) × (2d2 + 1)

such sums. We first arrange the possible sums in a rectangular array.

d1 d1 − 1 d1 − 2 d1 − 3 · · · −d1 + 1 −d1
d2 d1 + d2 d1 + d2 − 1 d1 + d2 − 2 d1 + d2 − 3 · · · d2 − d1 + 1 d2 − d1

d2 − 1 d1 + d2 − 1 d1 + d2 − 2 d1 + d2 − 3 d1 + d2 − 4 · · · d2 − d1 d2 − d1 − 1
d2 − 2 d1 + d2 − 2 d1 + d2 − 3 d1 + d2 − 4 d1 + d2 − 5 · · · d2 − d1 − 1 d2 − d1 − 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
−d2 + 1 d1 − d2 + 1 d1 − d2 d1 − d2 − 1 d1 − d2 − 2 · · · −d2 − d1 + 2 −d2 − d1 + 1

−d2 d1 − d2 d1 − d2 − 1 d1 − d2 − 2 d1 − d2 − 3 · · · −d2 − d1 + 1 −d2 − d1
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We now go through a procedure which is repeated several times in the examples
in Section 4.9. At the top left corner of the array we find the maximum possible
md value of d1 + d2 which means that there must be a value of d equal to d1 + d2

with 2(d1 + d2) + 1 z-components running in unit steps from d1 + d2 to −(d1 + d2).
We can find this sequence of md values along the top row and down the far right
column of our array and we tick them off. The maximum md value remaining in
the array is now d1 + d2 − 1, again in the top left corner, and we can tick off the
other 2(d1 + d2 − 1)md values which we find in the second row of the array and the
column second from the right.

This process can be repeated until we have one of two possible scenarios. If d1 =
d2 the last element remaining in the array is the bottom left corner, d1 − d2, which
clearly corresponds to a vector with d = 0 and md = 0. If d1 > d2 and d1 − d2 = n

the number of colums exceeds the number of rows by 2d1 + 1 − (2d2 + 1) = 2(d1 −
d2) = 2n. Then the final situation is that 2n + 1 elements remain at the left-hand
end of the last row of the array, d1 − d2 being the first of these and d1 − d2 − 2n =
−(d1 − d2) the last. These are the md values of a vector with d = d1 − d2.

PROBLEMS FOR CHAPTER 4

1. Read Box 4.2 and, following the general description of the addition of two angular
momenta, work through the specific example d1 = 2 and d2 = 3

2 .

2. Use Equation (4.1.2) to derive an equation for the angular momentum of a rotating
diatomic 16O molecule in terms of the mass of the 16O atom (26.56019 × 10−27 kg),
the bond length (1.20752 × 10−10 m) and the frequency, ν, of the rotation. The angular

momentum (L) must be quantised according to the equation L = (h/2π)(J [J + 1])
1
2 .

Find the rotational frequency for J = 1.

3. Use Equations (4.7.5) and (4.7.6) to determine the effects of the raising and lowering
operators on the seven f-orbital functions, |3,md〉, md = −3 to +3.

4. The three equivalent protons of a methyl group couple to give eight (2 × 2 × 2) nuclear
spin functions. Use an extension of the method described in Section 4.9 to show that
the coupled spins form a state having S = 3

2 and two states having S = 1
2 . Why do

you think that these states are sometimes described as ‘a quartet and two doublets’?
Repeat the exercise using successive applications of Equation (4.6.1).

5. In problem 4 the spin states, |S, MS〉, of three equivalent coupled protons have been
determined. A more detailed description of the system requires the exact combinations
of the eight nuclear spin functions which form a particular spin state. The raising and
lowering operators may also be used to solve this problem.
a) Starting with the eigenfunction | 3

2 ,+ 3
2 〉, apply the lowering operator, Ŝ−, succes-

sively to obtain the other three eigenfunctions with S = 3
2 , e.g.:

Ŝ−| 3
2 , + 3

2 〉 = √
3 | 3

2 , + 1
2 〉 (1)
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The multiplying factors which arise when each eigenfunction is generated from the
one above are important.
The only way in which the eigenfunction | 3

2 ,+ 3
2 〉 can be generated from three

nuclear spins with s = 1
2 is for all three z-components to be parallel, i.e.:

| 3
2 , + 3

2 〉 = | + 1
2 (1), + 1

2 (2), + 1
2 (3)〉

where only the ms values of the individual protons have been indicated. To operate
on the eigenfunction formulated as it is on the right of the above equation we write
Ŝ− in terms of the individual spin operators, ŝ−(a), a = 1, 2, 3, as:

Ŝ− = ŝ−(1) + ŝ−(2) + ŝ−(3)

Each individual spin operator operates only on a particular spin so that we have:

{ŝ−(1) + ŝ−(2) + ŝ−(3)}| + 1
2 (1), + 1

2 (2), + 1
2 (3)〉 = ŝ−(1)| + 1

2 (1), + 1
2 (2), + 1

2 (3)〉
+ ŝ−(2)| + 1

2 (1), + 1
2 (2), + 1

2 (3)〉 + ŝ−(3)| + 1
2 (1), + 1

2 (2), + 1
2 (3)〉

= | − 1
2 (1), + 1

2 (2), + 1
2 (3)〉 + | + 1

2 (1), − 1
2 (2), + 1

2 (3)〉
+ | + 1

2 (1), + 1
2 (2), − 1

2 (3)〉 (2)

Comparing the right-hand sides of equations 1 and 2 we see that:

| 3
2 , + 1

2 〉 = {1/
√

3}{| − 1
2 (1), + 1

2 (2), + 1
2 (3)〉

+ | + 1
2 (1), − 1

2 (2), + 1
2 (3)〉 + | + 1

2 (1), + 1
2 (2), − 1

2 (3)〉}
b) Continue the process to determine the eigenfunctions | 3

2 ,− 1
2 〉 and | 3

2 , − 3
2 〉 in terms

of the individual spin functions. Alternatively, start with | 3
2 , − 3

2 〉 and use Ŝ+.

c) To find the two doublets we require two expressions for | 1
2 , + 1

2 〉 which are nor-
malised and orthogonal to each other and to | 3

2 , + 1
2 〉. Try:

{1/
√

6}{2| − 1
2 (1), + 1

2 (2), + 1
2 (3)〉 − | + 1

2 (1), − 1
2 (2), + 1

2 (3)〉
− | + 1

2 (1), + 1
2 (2), − 1

2 (3)〉}
and

{1/
√

2}{| + 1
2 (1), − 1

2 (2), + 1
2 (3)〉 − | + 1

2 (1), + 1
2 (2), − 1

2 (3)〉}
Show that these two functions have the required properties of normalisation and
orthogonality and find the corresponding two functions | 1

2 ,− 1
2 〉 by applying the

lowering operators to the two | 1
2 , + 1

2 〉 functions.



Chapter 5

The Structure and Spectroscopy
of the Atom

5.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1 The eigenvalues of the hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 The wave functions of the hydrogen atom . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 The radial function, Rn,l(r) . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 The angular functions, �l,m(θ) and �m(φ) . . . . . . . . . . . . . . . . 99

5.3 Polar diagrams of the angular functions . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 The s-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 The p-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.3 The d-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 The complete orbital wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Other one-electron atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Electron spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7 Atoms and ions with more than one electron . . . . . . . . . . . . . . . . . . . . 105

5.7.1 The self-consistent field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7.2 Electron correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7.3 The periodic table of the elements . . . . . . . . . . . . . . . . . . . . . . 107

5.8 The electronic states of the atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8.1 The five quantum numbers of a single electron . . . . . . . . . . . . . 108
5.8.2 Quantum numbers for the many-electron atom . . . . . . . . . . . . . . 108
5.8.3 The assignment of term symbols . . . . . . . . . . . . . . . . . . . . . . . 108
5.8.4 Term energies and Hund’s rules . . . . . . . . . . . . . . . . . . . . . . . 110

5.9 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.9.1 Russell–Saunders or LS coupling . . . . . . . . . . . . . . . . . . . . . . 111
5.9.2 jj coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.9.3 Intermediate coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.9.4 Inter-electronic spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . 115

5.10 Selection rules in atomic spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.10.1 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10.1.1 Electric quadrupole transitions . . . . . . . . . . . . . . . . . 116
5.10.1.2 Magnetic dipole transitions . . . . . . . . . . . . . . . . . . . . 116

5.10.2 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

The Quantum in Chemistry R. Grinter
 2005 John Wiley & Sons, Ltd



96 The Structure and Spectroscopy of the Atom

5.11 The Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.11.1 The normal Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.11.2 The anomalous Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . 120

5.12 Bibliography and further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Problems for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.0 INTRODUCTION

In 1926, the structure of the hydrogen atom, and an interpretation of the wavelengths of
the visible spectral lines of the atom, was probably the most immediate problem facing the
new quantum mechanics. In his paper of 1926, in which he inaugurated that formulation
of quantum mechanics which we now call wave mechanics, Schrödinger proposed the
correct form of the Hamiltonian operator for the problem, derived the required eigenvalues
and eigenfunctions and showed that the former corresponded to the energy levels of the
Bohr model of the hydrogen atom and were therefore in agreement with the experimental
data. These results play a central role in our understanding of the structure of all atoms.
The solution of the Schrödinger equation for the hydrogen atom is a straightforward but
time-consuming task and we shall not enter into it here. Full details can be found in
many texts.1,2 We shall be much more concerned, in this chapter and in others, with the
following aspects of the problem and their implications for our understanding of atomic
structure, atomic spectroscopy, the periodic table and the nature of the chemical bond.

• What are the eigenvalues and how are they determined by the quantum numbers?

• What are the forms of the corresponding eigenfunctions and what do they tell us about
the distribution of the electron in space around the nucleus of the atom?

• How are the eigenvalues and eigenfunctions of the hydrogen atom, a one-electron atom,
modified by inter-electronic repulsion in atoms which have more than one electron?

• What are the magnetic properties of electrons and how do they manifest themselves in
the structures and spectra of atoms?

5.1 THE EIGENVALUES OF THE HYDROGEN ATOM

If we assume that the nucleus has an infinite mass (see Section 5.5 for further details),
then the eigenvalues of the hydrogen atom are given by a simple formula which depends
upon just one quantum number (n) which is known as the principal quantum number. It
can take any positive integer value from 1 to ∞:

En = −mee
4/8h2ε0

2n2 in J or − mee
4/8ch3ε0

2n2 in cm−1 (5.1.1)

me is the mass of the electron, e its charge, c the velocity of light (in cm s−1), h Planck’s
constant and ε0 the permittivity of a vacuum. Note that the energy is a negative quantity.
This derives from the fact that our energy zero is defined to be the state in which the proton
and electron are infinitely far apart and motionless so that they have neither potential nor
kinetic energy. As the two particles approach each other, the energy of the forming atom
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decreases because of the negative coulombic energy of the opposite charges; so much is
quite obvious. What is not so obvious is the fact that the two particles can only be kept
apart if they are in motion and this motion gives rise to a kinetic energy which must
be positive and increases as the average distance between the electron and the nucleus
decreases. However, it is a fundamental consequence of the laws of classical and quantum
mechanics that the kinetic (T ) and potential (V ) energies are always in exactly the same
ratio which, for a system where the potential energy results from electrostatic attraction,
is V = −2 × T . Therefore, for any eigenvalue, n, of the hydrogen atom the total energy
may be expressed as:

En = Tn + Vn = Tn − 2Tn = −Tn = Vn/2

This relationship between T and V is known as the virial theorem. Because of it, we
can be sure that the negative potential energy of the forming hydrogen atom will always
exceed the positive kinetic energy.

The expression for the energy, Equation (5.1.1), was first deduced by Schrödinger and
it provided an exact, quantitative interpretation of the Balmer formula. Naturally, all the
other lines in the hydrogen atom spectrum can also be fitted to this formula (Box 5.1).
As n increases n2 increases very rapidly so that values of En become closer and closer
together as they converge upon the value of zero. We see the experimental evidence for
this in the positions of the lines in the spectra of the hydrogen atom, Figure B5.1.1 and
Figure 2.8. Consider the Lyman series (Box 5.1). The energy required to raise the electron
from the energy level, n = 1, to successively higher levels, n = 2, 3, 4, . . . increases, but
by a smaller amount, for each increase in the higher quantum number. Finally, when
n = ∞ the electron leaves the atom which is then said to have been ionised. For the
Lyman series this ionisation limit is found at 109 677.6 cm−1 which corresponds to a
wavelength of 91.2 nm. Since the Balmer series starts from the level n = 2 its ionisation
limit is correspondingly smaller at 27 419.4 cm−1 or 364.7 nm.

5.2 THE WAVE FUNCTIONS OF THE HYDROGEN ATOM

The wavefunctions of the hydrogen atom are not easy to describe in a Cartesian co-
ordinate system of three, mutually perpendicular axes. The polar co-ordinate system with
the nucleus at the origin is much more suitable. The polar system is described and the
two systems compared in Appendix 7.

Though at first sight the Schrödinger equation for the hydrogen atom looks more
formidable in polar than in Cartesian co-ordinates, the apparent complexity conceals the
fact that a most important simplification is possible. The Schrödinger equation in the three
variables (r , θ and φ) can be separated into three equations in each of which only one of
the variables occurs. This makes the solution of the equation and, more importantly from
our point of view, the interpretation of the results much simpler. Because the equation
can be separated, the total wavefunction can be written as a product of three functions,
each containing only one co-ordinate variable, i.e.:

�n,l,m(r, θ, φ) = Rn,l(r) · �l,m(θ) · �m(φ) (5.2.1)

Where the subscripts, n, l and m, indicate the quantum numbers upon which that
particular part of the wave function is found to depend. Each of the functions R(r), �(θ)



98 The Structure and Spectroscopy of the Atom

and �(φ) can be written in a very general form and these expressions, especially those
for R(r) and �(θ), are rather complicated. However, since we are interested only in a
comparatively small number of them, we shall write those out explicitly (Appendix 5)
and refer readers who require the general formulae to more advanced texts.1,2

A complete wave function may be thought of as an exact description of a region
mapped out in space which can be occupied by one electron, or by two electrons with
opposite spins. The probability of finding an electron at any point in that space is found
by evaluating the wavefunction at that point and multiplying the result by its complex
conjugate, i.e. �∗�. If the product �∗� is integrated [summed up] over all the space
then the result is one because the wavefunctions are normalised (Section 3.5). Since we
now know that we cannot think of the motion of an electron in just the same way as we
think of the motion of a planet around the sun, the expression ‘orbit’ is not appropriate.
To make the difference clear, while at the same time reflecting the historical origins of
the concept, the term orbital has been coined and is now universally used to describe the
function �.

5.2.1 The radial function, Rn,l(r)

The function Rn,l(r) is known as the radial function because it contains only r , the radial
co-ordinate of the polar co-ordinate system. Equation (5.2.1) shows that it is the only
part of the wave function in which the principal quantum number, n, occurs. When we
study the radial functions (Appendix 5) we see that, apart from a normalising factor, they
consist of an exponential function, exp(−Zr/na0) ≡ exp(−ρ/2), and a polynomial in
r . Because its argument is negative, the exponential factor ensures that the value of the
wave function always goes to zero at large distances from the nucleus. This means that
the square of the wave function, and therefore the probability of finding the electron, falls
to zero as we move further from the centre of the atom. For the hydrogen atom Z = 1,
but if the value of Z is larger, as it is for example in the helium (He+) ion, then the
exponential part of the radial function falls off much faster than when Z = 1 reflecting
the way in which a larger nuclear charge holds the electron closer to the nucleus. The
polynomial factor causes the radial function to change sign as the value of r changes
as shown in Figure 5.1. Those values of r for which any particular radial function is
zero are known as the radial nodes and we must note that such a node has the form of
a sphere, enveloping the whole atom and with the nucleus at its centre. Not all radial
functions have nodes. Of those listed in Appendix 5, R2,0(r) has one node at ρ = 2.0
(r = 2.0a0; a0 = Bohr radius), R3,1(r) has one node at ρ = 4.0 (r = 6.0a0) and R3,0(r)

has two nodes at ρ = 1.268 (r = 1.90a0) and 4.732 (r = 7.10a0). The number of nodes
in an eigenfunction is intimately connected with the corresponding eigenvalue and we
shall consider the subject of nodes again when we have described the angular functions
�l,m(θ) and �m(φ).

Apart from plots of R(r) itself, two other representations of the radial function are
frequently used to illustrate the way in which the probability of finding an electron,
i.e. the electron density, behaves as the distance from the nucleus increases. Since this
probability is proportional to the square of the wave function, graphs of R2(r) against r are
frequently used for this purpose. Another form of diagram is obtained in the following
manner. Since the surface area of a sphere of radius r is 4πr2, the volume element
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enclosed between two spheres of radii r and r + δr is 4πr2δr . Therefore, the proportion
of the hydrogen-atom electron which lies between two such spheres, i.e. at distance r

from the nucleus, is 4πr2 · R2(r)δr . So a graph of 4πr2 · R2(r) against r is a measure
of the probability of finding an electron at a distance r from the nucleus (Figure 5.2) but
it can easily be misleading. Because the function r2 increases so rapidly with increasing
r , the function 4πr2 · R2(r) has one or more maxima which must be interpreted with
care. For example, if we were able to stand at the hydrogen nucleus and experience the
electron density of the 1s orbital there in the way in which we experience a fog we would
find that the fog was very dense at the nucleus. As we walked away from the nucleus the
thickness of the fog would decrease exponentially and we would not see any increase in
the region of r = a0 where the graph of 4πr2 · R2(r) against r shows a maximum. The
maximum is a consequence of the factor r2. Of course, where there are radial nodes the
electron density must fall to zero at these values of r and increase again at greater r .

5.2.2 The angular functions, �l,m(θ) and �m(φ)

We might well have expected that an electron circulating around a nucleus would have
some orbital angular momentum associated with it, and this is indeed the case. Further, we
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Table 5.1 The possible quantum number combinations for the lower values of n

n l m n l m

1 0 0 2 0 0
1 −1 0 +1

3 0 0 4 0 0
1 −1 0 +1 1 −1 0 +1
2 −2 −1 0 +1 +2 2 −2 −1 0 +1 +2

3 −3 −2 −1 0 +1 +2 +3

know from Chapter 4 that we can always characterise two aspects of angular momentum,
the square of its total value and its z-component. The quantum numbers l and m do
just that and therefore the quantum number for the square of total angular momentum,
l, and the quantum number for its z-component, m, are related by the expression; m =
0, ±1, ±2, . . . ,±l.‡ But the detailed solution of Schrödinger’s equation for the hydrogen
atom reveals that the value of l is itself restricted to integer values lying between 0
and (n − 1). In summary, the three spatial quantum numbers can take the following,
interrelated values:

n, the principal quantum number = 1, 2, 3, . . . , ∞
l, the orbital angular momentum quantum number = 0, 1, 2, . . . , (n − 1)

m, the quantum number for the z-component of the orbital a. m. = 0,±1, ±2, . . . , ±l

The possible quantum number combinations for the lower values of n, which are the
only ones of interest to us, are as shown in Table 5.1.

We find it easier to remember the quantum numbers and their significance if we use
a letter instead of a number for l, and for reasons which stretch back into the history of
atomic spectroscopy we use the letters s (sharp), p (principal), d (diffuse) and f (fundamen-
tal) for l = 0, 1, 2 and 3 respectively. Therefore, there are one s-orbital, three p-orbitals,
five d-orbitals and seven f-orbitals.

The functions �l,m(θ) · �m(φ) occur in many problems which, like the atom, have
spherical symmetry. They are known as the spherical harmonics (Appendix 5) and they
are frequently written as a single function, Yl,m(θ, φ). The forms of these angular functions
are very important, especially so since the distribution of electrons in space around an
atomic nucleus is a major factor which affects the strength of chemical bonds and the
geometry of molecules. Illustrations of the angular functions are therefore very important
in the study of chemical bonding.

5.3 POLAR DIAGRAMS OF THE ANGULAR FUNCTIONS

The most useful illustrations of the angular parts of the wavefunctions of the hydrogen
atom are obtained by plotting them in polar co-ordinates as described in detail below.

‡ Our notation here is not quite consistent. If we were to follow the convention on angular momentum quantum numbers
established in Chapter 4, then if l is the quantum number characterising total angular momentum, ml would be the form of the
quantum number for the z-component of that angular momentum. The subscript is omitted to conform with the usual notation
for the atomic quantum numbers since no confusion can result from this and complexity in the notation is also reduced.
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Since the quantum numbers m and l are related by −l ≤ m ≤ +l, we must be careful to
combine only those functions �l,m(θ) and �m(φ) for which this condition is satisfied.

5.3.1 The s-functions

We start with the s-functions of which there is only one; �0,0(θ) · �0(φ) = 1
2

√
(1/π).

Clearly, this function has no dependence upon either of the two angular co-ordinates. It is
a function which is exactly the same in all directions around the atom, i.e. it is spherically
symmetrical. We can represent it by drawing a spherical boundary surface centred at the
nucleus and of a radius such that a given proportion of the electron is enclosed within it,
95 % say. All s-orbitals are represented by a sphere, but the radius will depend upon the
radial function with which the s-type angular function is combined in any particular case.
At the risk of stating the obvious, it is emphasised that, after the last radial node, the
electron density falls off exponentially with r so the boundary surface is chosen arbitrarily
and has no physical reality.

5.3.2 The p-functions

The p-functions, �1,m(θ) · �m(φ) ≡ Y1,m(θ, φ), are of three forms depending upon the
value of m, i.e. m = −1, 0 or +1. For purposes of illustration it is best to avoid using
the complex functions which contain exp(±miφ) and to use the alternative functions of
cos(mφ) and sin(mφ). The difference between the two sets of functions is that the complex
functions are eigenfunctions of l̂z, the operator for the z-component of the orbital angular
momentum, whereas the sine and cosine functions are not (see Chapters 3 and 4). But,
if we are not specifically interested in the orbital angular momentum of the electron we
loose nothing by this. The simplest p-function is:

Y1,0 = �1,0(θ) · �0(φ) = √
(3/4π) · cos(θ)

and to plot it we proceed as follows (Figure 5.3).
We draw the z-axis with the nucleus, N, at z = 0 and a radial co-ordinate from the

nucleus in a direction which makes an angle θ with that axis. Recalling that θ is the angle
between the z-axis and the radial co-ordinate (r), we mark off a length Np equal to cos(θ)

on the radial co-ordinate. We repeat this process for a number of values of θ and we note
that, because of the way θ is defined, all angles in which p has a positive z co-ordinate
are in the range 0 ≤ θ ≤ π/2 and cos(θ) is therefore positive. All values of θ for which
p has a negative z co-ordinate (e.g. p’ in Figure 5.3) lie in the range π/2 ≤ θ ≤ π and

p

p′

+− N
Z

q

q′

Figure 5.3 Plotting the angular function for a pz-orbital
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cos(θ) is therefore negative. When we have marked out sufficient points, on both sides
of the z-axis, we find that p and p’ describe two perfect circles which touch at N . This is
a polar graph of cos(θ). Since the function Y1,0 has no dependence upon the angle φ, an
identical result would be obtained for any plane which contains the z-axis. Therefore, in
three dimensions this representation of Y1,0 consists of two spheres in contact and could
be obtained by rotating the two circles of Figure 5.3 about the z-axis, i.e. through all
possible values of φ.

The angular wavefunction has a value of zero at θ = 90◦, i.e. in the xy-plane, where
it changes phase. This is an angular node in the wave function and all p-functions have
one such planar angular node as we shall see when we consider the other two functions:

Y1,c =
√

3

2
· sin(θ) · 1√

π
· cos(φ) and Y1,s =

√
3

2
· sin(θ) · 1√

π
· sin(φ)

To plot these functions is slightly more complicated. First we fix a value for θ and a
convenient choice is 90◦ since sin(90◦

) = 1. This choice of θ means that we are varying
φ in the xy-plane and we plot it in exactly the same way as we plotted θ above. It is
clear that for Y1,c we must obtain the two circles in contact since we are again plotting a
cosine function. That the result for the sine function should also be the same, but rotated
through 90◦, may not be immediately obvious, but it can be readily demonstrated by a
few minutes of plotting.

In Figure 5.4, the point px traces out cos(φ) and the function Y1,c and py traces out
sin(φ) and the function Y1,s . As with the function Y1,0, the signs of the two lobes of
the function are determined by the sign of sin(φ) or cos(φ) in the appropriate quadrant.
Remember that φ is always the angle between the x-axis and the radius vector, N − p(p′).
To obtain the complete angular functions we must now consider the result of varying θ

over its range of 0 to π . The function in question is sin(θ) which for any constant φ gives
two circles in contact in the plane defined by the z-axis and the radius vector N − p(p′).
The diameter of each circle is N − p(p′). Thus, if we fix a value of φ at say, zero, we
obtain the polar plot of Y1,c as two circles in contact in the xz-plane. The two functions

+−

f

f′

+

−

Y

X

px

For px: N-px = sinq cosf For py: N-py = sinq sinf′

py

N

Figure 5.4 Plotting the angular functions for px- and py-orbitals
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Y1,c and Y1,s turn out to be exactly like Y1,0 consisting of two spheres in contact but
aligned along the x- and y-axes respectively.

Accordingly, these three angular functions are known as the px , py and pz functions.
It is important to note that a sum of the squares of the x-, y- and z-functions has no
dependence upon θ or φ and is therefore spherically symmetrical. Consequently, if each p-
function is occupied by one or by two electrons the total electron distribution is spherically
symmetrical. This is clearly the case for the single s-function and it is also true of the
five d-functions, the seven f-functions and so on.

A further point should be made with regard to the forms of the squared functions. If
we make a polar plot of Y 2

1,0, Y
2

1,c or Y 2
1,s we obtain results similar to those obtained

above but with an important difference; the two spheres become two pear-shaped lobes.
But the directional properties of the functions remain quite unchanged and either form of
plotting is suitable for a discussion of the spatial characteristics of p-functions.

5.3.3 The d-functions

Polar diagrams of the five d-functions can be obtained in the manner described above.
They are shown in Figure 5.5. Again, for purposes of illustration the real sine and cosine
functions have been chosen. Reflecting their orientation with respect to the Cartesian axes,
the d-functions are named, dxy , dxz and dyz for the three functions which are directed
between the axes indicated, and dx2−y2 for the function with its lobes lying along the x
and y axes. The function dz

2 ≡ Y2,0, is clearly different and the reason for this can be a
source of difficulty. In actual fact, it is not as different from its companions as it appears
since it can be written as a combination of two functions, dz2−x2 and dz2−y2 , which have
exactly the same form as the other four d-orbitals, i.e. four lobes with their axes at right
angles and lying in a plane. We have to write the dz

2 function in the form given because

Y

Z
X

dxy

−

− −

+

+

+

+ −

Z

Y

dyz

− +

+ −

Z

X

dxz

− +

+ −

Y

X

dx2 − y2

dz2

−

−

+ +

Figure 5.5 d-orbital angular functions
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if we used the functions dz2−x2 and dz2−y2 we would have six d-functions which were not
mutually orthogonal and therefore not independent of each other. To use such a set of
functions would be like trying to plot a graph on a normal piece of graph paper on which
three, rather than two, axes had been drawn.

The phases of the d-functions show that they each have two angular nodes which, for
all except the dz

2, consist of two mutually perpendicular planes. The angular nodes of the
dz

2 function take the form of two cones with their apexes at the nucleus.
The seven f-functions are important in the chemistry of the lanthanides and actinides,

but it would take us too far from the main theme of this chapter to discuss them here.
Details may be found in reference3.

5.4 THE COMPLETE ORBITAL WAVE FUNCTIONS

A complete wave function, �n,l,m(r, θ, φ), which forms a solution of Schrödinger’s
equation for the hydrogen atom, is therefore a product of the three functions Rn,l(r) ·
�l,m(θ) · �m(φ) in which we must recognise that the three quantum numbers, n, l and m

are not entirely independent of each other.
The number of nodes in the complete wave function is the sum of the radial and

angular nodes and rises with increasing orbital energy. The total number of nodes is
n − 1 (Table 5.2). But the actual form of the angular functions does not change as the
quantum number n increases, they simply reach out further from the nucleus, because of
the increasing extension of the radial function, and are intersected by an increasing number
of radial nodes. The occupation of the energy levels and the form of the associated wave
functions provides the key to understanding the chemical bond and molecular geometry.
These subjects are discussed in much more detail in Chapter 6.

5.5 OTHER ONE-ELECTRON ATOMS

Though hydrogen and its isotopes, 2H and 3H, are the only elements which have one
electron in the neutral state, many positive ions which have just one electron are known
and their spectra are frequently observed in high-energy discharges where electrons are

Table 5.2 The nodes of the hydrogen atom wave functions

Number of nodes Number of nodes
Orbital Orbital

n l radial angular total n l radial angular total

1s 0 0 0 4s 3 0 3
4p 2 1 3

2s 1 0 1 4d 1 2 3
2p 0 1 1 4f 0 3 3

3s 2 0 2 5s 4 0 4
3p 1 1 2 5p 3 1 4
3d 0 2 2 5d 2 2 4

5f 1 3 4
5g 0 4 4
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Table 5.3 Values of the Rydberg constant (R) for hydrogen and some
one-electron ions

Atom/ion Z R(cm−1) Atom/ion Z R(cm−1)

H 1 109 677.59 2H 1 109 707.42
3H 1 109 717.35 He+ 2 109 722.26
Li++ 3 109 728.72 Be+++ 4 109 730.62

stripped away from atoms to form multiply charged ions. The energy levels and wave
functions of these one-electron ions are given by the formulae for the hydrogen atom
with the appropriate modification of the value of the nuclear charge, Z. Table 5.3 gives
the values of the Rydberg constant, R (see Box 5.1), determined from the spectra of H,
He+, Li++ and Be+++. The small change in the value of R as we go from H to Be+++
is due to the change in the mass of the nucleus which enters the formula for the energy
levels when it is written in the strictly correct form:

En = −Z2µe4/8h2ε0
2n2 in J or − Z2µe4/8ch3ε0

2n2 in cm−1

where µ = me · mN/(me + mN) is the reduced mass of the electron, me, and the nucleus,
mN . For further discussion of the reduced mass see Chapter 10 and Box 10.1.

This variation of R with nuclear mass is not simply an arcane theoretical point. In 1932,
the observation of a very weak line on the higher-energy side of each of the Balmer lines
was important proof of the existence of a hydrogen isotope with an atomic mass of 2.

5.6 ELECTRON SPIN

Thus far, this account of the structure of the atom has been focused on the energy of
the electron and its distribution in the space surrounding the atomic nucleus. The angular
momenta involved are orbital angular momenta. But immediately prior to Schrödinger’s
publication of the new wave mechanics, Goudsmit and Uhlenbeck had proposed that the
nuances of atomic spectral data, especially the Zeeman effect (see Section 5.11), could
best be interpreted on the assumption that the electron had an intrinsic ‘spin’ angular
momentum with s = 1

2 and ms = ± 1
2 . At almost exactly the same time, Pauli proposed his

exclusion rule (Section 5.7.2) according to which electrons with opposed ms values were
paired in the spatial orbitals described in the earlier part of this chapter. Thus, although
he did not examine the electron spin functions, Schrödinger was undoubtedly well aware
that spin was a property which would have to form a part of any comprehensive theory
of atomic structure. We also know that, in 1928, the whole concept of electron spin was
placed on a much firmer footing by Dirac’s relativistic treatment of the hydrogen atom.
But we need only note that the property of spin adds two more quantum numbers, s and
ms , to those required to fully specify an electron in an atom. The further consequences
of electron spin will be taken up in Section 5.8 onwards.

5.7 ATOMS AND IONS WITH MORE THAN ONE ELECTRON

The Hamiltonian operator for a many-electron atom contains many terms. Each kinetic-
energy term and the electron-nucleus attraction term involves only one electron. These
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one-electron terms present little difficulty to the would-be calculator of atomic structure.
But the terms describing the mutual repulsion of the electrons each involve two electrons
and though they are simple to write down they are very difficult to deal with computation-
ally. The problem is this. In the helium atom for example, how can we know the energy
of electron 1 when we do not know how electron 2 is distributed around the atom? We
need to know the distribution of electron 2 in order to calculate the energy of the 1–2
inter-electronic repulsion. There is no closed algebraic solution of this three-body problem
(2 electrons + 1 nucleus), neither in classical nor in quantum mechanics. However, there
is a way forward if we are prepared to carry out a long cyclic calculation. The procedure
is as follows, where we take the lithium (Li) atom as an example.

5.7.1 The self-consistent field

We have to determine a wave function for each of the three lithium electrons. Because
every atom is spherically symmetrical, we know that the angular functions will be the same
as those of the hydrogen atom orbitals and that we shall therefore have wavefunctions
which we may describe as 1s and 2s, the first containing two electrons and the second
one. The problem is to determine the appropriate radial functions which are strongly
influenced by the presence of the inter-electronic repulsion. We start by guessing wave
functions for electrons 2 and 3 basing our guess upon whatever information we have from
experiment or theory. Having done this we solve the Schrödinger equation for electron
1 moving in the averaged electrostatic field of the nucleus and electrons 2 and 3. Next
we solve the Schrödinger equation for electron 2 using the guessed wave function for
electron 3 and the calculated wave function for electron 1. We now solve the equation for
electron 3 using the wave functions calculated for electrons 1 and 2. The resulting three
wavefunctions and total electronic energy are not the final answer since they are based
upon the original guesses. But they do provide better approximations to the true answers
and if we repeat the cycle of calculations we can make a further improvement in our
wave functions and energy. If the cyclic calculation is continued the changes in the wave
functions and energy become smaller with every cycle until, within the limits of accuracy
required for that particular calculation, there is no further change in them. When this point
is reached the electronic wave functions are said to be consistent with the electrostatic
field from which they were calculated and which the electrons themselves produce. The
process is known as a self-consistent field (SCF) calculation. Nowadays, computers make
this task rather easy, but the first calculations of the type were done the hard way by the
Hartrees, father and son, in the 1930s.‡ Notable contributions to the subject were also
made by Vladimir A. Fock (1898–1974) and wave functions calculated by this method
are often called Hartree–Fock functions.

5.7.2 Electron correlation

However, even an SCF calculation does not provide an exact radial wavefunction. Because
the electrons repel each other their motions are correlated, i.e. they keep out of each other’s

‡ The father (WH) was a retired school teacher with time to spare. His son, the physicist and mathematician Douglas
Rayner Hartree (1897–1958), set him to work on the long, demanding SCF calculations with which the family name is
now synonymous.
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way, and this effect is not fully allowed for in the Hartree-Fock method which assumes
that the electrons produce a static, spherical field and fails to allow for the dynamic effects
of the inter-electronic repulsion which is known as electron correlation. This subject will
be discussed further in Section 6.8.

5.7.3 The periodic table of the elements

Today, SCF wave functions are readily available. The angular functions are exactly the
same as those of the hydrogen atom, but the radial functions are not. Nor can they
be expressed as algebraic functions of r but are given as tables of values. Apart from
the increase of energy which the inter-electronic repulsion engenders, it also has the
consequence that the electrons can no longer be considered as individual, independent
entities since their motions depend upon those of their fellows, and vice versa. Therefore,
the wave function and energy of any one electron must depend upon the distributions and
hence the wave functions of all the other electrons in the atom, and one cannot truly speak
of the wave function of a single electron; the wave function for an atom is a function of
the co-ordinates of all the electrons.

Nevertheless, chemists have found it possible, and extremely useful, to think in terms
of individual electrons occupying individual orbitals in many-electron atoms and in terms
of building up the atom (the aufbau principle) by filling the orbitals in order of increasing
energy with two spin-paired electrons (the Pauli principle or exclusion rule). Thus we
ascribe many of the particular properties of the transition metals and their ions to electrons
occupying 3d (Ti-Zn), 4d (Zr-Cd) and 5d (Hf-Hg) orbitals and the electron which is so
readily lost by the alkali metal atoms is a 2s (lithium), 3s (sodium), 4s (potassium) . . .

electron. The empty or partially filled orbitals play a similarly useful role. We envisage
that the 3s electron lost by sodium enters the singly occupied 3p orbital of chlorine when
the sodium and chlorine atoms combine to form sodium chloride.

In every case these are electrons or orbitals in the outer reaches of the particular atom,
i.e. they are valence orbitals or valence electrons and have the highest, or nearly the
highest, energy and value of n. Thus, a quantum-mechanical view of the periodic table
is an arrangement of the elements in which those having the same electronic structure
in their outermost, normally incomplete, shell are placed in columns. The fact that the
structure of the incomplete outer shell of an element controls its reactivity, the number
of chemical bonds which it forms (valency) and the geometry of the molecules of which
it forms a part (see Chapter 6) explains the very similar chemical properties which were
the first stimulus to the construction of the table.

5.8 THE ELECTRONIC STATES OF THE ATOM

Though individual orbitals are very useful for a qualitative or semi-quantitative description
of the way in which a many-electron atom forms chemical bonds to other atoms, a more
exact description is required if we wish to account quantitatively for the energetics of
bond formation or atomic spectroscopy. For these purposes we require a description in
which all the electrons in the atom are included; i.e. the electronic state of a many-
electron atom must be characterised by means of quantum numbers that describe the total
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angular momentum of the atom. The exact form in which these quantum numbers are
given depends upon the atom in question for reasons which we shall discover below. We
start out by describing a hydrogen-like or one-electron atom.

5.8.1 The five quantum numbers of a single electron

These are the:

principal quantum number n

orbital angular momentum quantum number l

quantum number for the z-component of orbital angular momentum ml

spin angular momentum quantum number s

quantum number for the z-component of the spin angular momentum ms

It is clear that, with the exception of the first, all these quantum numbers characterise an
aspect of the angular momentum of the electron. (The subscript l has been re-introduced
in ml in order to distinguish it from ms).

5.8.2 Quantum numbers for the many-electron atom

As noted above, the proper description of a many-electron atom must be a description
which includes all the electrons. Since the spherical symmetry of the atom is maintained
as more electrons are added, the angular momentum quantum numbers remain valid and
are central to this description. In analogy with those which refer to individual electrons,
we introduce four new quantum numbers, L, ML, S and MS , which describe the orbital
and spin angular momenta of all the electrons, collectively. Extending the notation, lower
case letters for one electron, upper case letters for two or more electrons, we say that
atoms with values of L = 0, 1, 2, 3, . . . are in S, P, D,F, . . . states.

The value of S (total spin quantum number) is important because it characterises the
multiplicity of the spin state, i.e. the number of MS values, which is 2S + 1 (Section 4.4),
and the multiplicity is normally added to the symbol for the state as a left superscript, e.g.
for S = 1

2 and L = 2 we have a 2D state (spoken doublet D), for S = 2 and L = 1 we
have a 5P state (quintet P). The values of MS and ML are not usually specified. Symbols
such as 2D and 5P used to describe the states of atoms are known as term symbols and
in the next section a method of finding the possible L and S values for a particular
arrangement of electrons in orbitals, i.e. a configuration, is described.‡

5.8.3 The assignment of term symbols

Given a particular atomic configuration, i.e. an assignment of electrons to hydrogen-like
atomic orbitals, the determination of the possible states or terms of the atom is quite

‡ It is most unfortunate that in this notation, which is almost 100 years old and therefore quite impossible to change, the
symbol S stands for two completely different angular momentum properties. Fortunately, the possibilities of error due to a
confusion between the two quantities represented by S are very few.
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straightforward. Firstly we recognise that if every one of the n2 orbitals corresponding to
a particular principal quantum number, n, is doubly occupied, all components of spin and
orbital angular momenta cancel to give a total angular momentum of zero. Therefore, all
such closed shells can be ignored in the determination of term symbols. The treatment
of the partially filled shells is best carried out by constructing a table as illustrated in
the following example in which the configuration p2 is analysed. We concentrate our
attention upon the possible z-components of orbital and spin angular momenta, since
these can be simply added because they are all aligned along z, and for the p2 problem
the maximum ML = ml1 + ml2 value is 1 + 1 = 2. Similarly, the maximum value of
MS is 1

2 + 1
2 = 1. Since we know (Section 4.4) that the z-components, MX, of angular

momentum, X, always take all values between +X and −X in unit steps, our ML values
must run from +2 to −2. Similarly, our MS values must be +1, 0 and −1, and we
arrange these data as shown in Table 5.4. The symbol in brackets gives the ml and ms

of electron 1 and electron 2, i.e. (ml1ms1; ml2ms2), which add to give the ML and MS

values at the side and head of the table. There is no entry in the position ML = +2
and MS = +1 because this could only be achieved if both electrons occupied the same
p orbital (ml = +1) and had the same spin (ms = + 1

2 ) which is forbidden by the Pauli
principle. The bracketed symbols are the possible microstates of the system and we can
readily check that we have found the correct number of them: 15. A p electron can have
six combinations of the quantum numbers ml and ms . Therefore, we have a choice of six
possibilities for our first electron. Since no two electrons can have the same combination
of the five quantum numbers, we have only five possibilities for the second electron
making 6 × 5 = 30 possibilities in total. But electrons are indistinguishable so that, for
example, (+1 + 1

2 ; 0 − 1
2 ) ≡ (0 − 1

2 ; +1 + 1
2 ) and there are therefore 6 × 5

2 = 15 possible
microstates of the system.

To find the terms of p2 we first focus our attention upon the entry in the table which
has the highest ML value and, if there are more than one of these, upon that which has
both the highest ML and the highest MS value. In Table 5.4 the entry with the highest ML

value is (+1 + 1
2 ; +1 − 1

2 ). The fact that there is a microstate with an ML value of +2
tells us immediately that it must be accompanied four other microstates with ML values
of +1, 0, −1 and −2 and that the five together form a state with L = 2, i.e. a D state.
The same reasoning tells us that since MS = 0 there are no other spin components of this
state which has S = 0 and 2S + 1 = 1, i.e. we have found a 1D term. We therefore tick
off one micro state in each box having MS = 0 and ML = +2 . . . − 2. We do not need

Table 5.4 The microstates of the electron configuration p2

MS

+1 0 −1

+2 (+1 + 1
2 ; +1 − 1

2 )

+1 (+1 + 1
2 ; 0 + 1

2 ) (+1 + 1
2 ; 0 − 1

2 ) (+1 − 1
2 ; 0 + 1

2 ) (+1 − 1
2 ; 0 − 1

2 )

ML 0 (+1 + 1
2 ; −1 + 1

2 ) (+1 + 1
2 ; −1 − 1

2 ) (+1 − 1
2 ; −1 + 1

2 ) (+1 − 1
2 ; −1 − 1

2 )

(0 + 1
2 ; 0 − 1

2 )

−1 (−1 + 1
2 ; 0 + 1

2 ) (−1 + 1
2 ; 0 − 1

2 ) (−1 − 1
2 ; 0 + 1

2 ) (−1 − 1
2 ; 0 − 1

2 )

−2 (−1 + 1
2 ; −1 − 1

2 )
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to identify which of the microstates, in a group with more than one, belongs to 1D, the
ticking process is merely one of ‘keeping account’.

We now identify the microstate among those remaining which has the highest ML and
MS values; it is (+1 + 1

2 ; 0 + 1
2 ). Since it has ML = +1 and MS = +1 this microstate

must be one of the nine which form a 3P term and we tick off microstates in Table 5.4
accordingly. A single microstate with MS = 0 and ML = 0 remains and this must be the
single component of a 1S term. So our result is that the configuration p2 gives rise to three
terms; 1D (5 components), 3P (9 components) and 1S (1 component) = 15 components
in total = number of microstates in Table 5.4.

It should be admitted here that the above method of determining the terms of a particular
configuration is more valuable as an illustration of the meaning of a term symbol and of
the subtle way in which the spin and orbital angular momenta of two electrons combine
than it is as a practical research tool. A configuration with several f electrons, such as we
find in the rare earths, is effectively impossible to analyse with this method (e.g. f4 has
1001 microstates!) and some extremely sophisticated mathematical techniques have been
developed to deal with this type of problem. Each term in a configuration has a different
energy because of the different contributions from inter-electronic repulsion in each one.
But the (2S + 1)(2L + 1) components within each term have almost exactly the same
energy. In fact they would be degenerate were it not for an effect known as spin-orbit
coupling which splits each term into a number of levels of different energy, as shown in
Section 5.9.

5.8.4 Term energies and Hund’s rules

As we have seen, a single electron configuration can give rise to several terms and, in
general, all of these have different energies because of the different contributions from
the inter-electronic repulsion in each one. Table 5.5 gives the energies of some examples
of the configuration np2. (The energy of the 3P0 state has been arbitrarily set to zero.) The
energies of the 3P states are not all equal because of spin-orbit coupling (see Section 5.9),
so a weighted mean energy is given in the fourth column of the table.

The electron spin plays an important role in determining the inter-electronic repulsion
and it does so in a rather subtle way, the details of which depend upon the connection
between the electron spin and spatial wave functions and the Pauli principle. This is
explored in detail in Chapter 11. Here it will be sufficient to recognise that, in order to
conform with the Pauli principle, different electron spin functions must be combined with
different electron spatial functions. Thus, since the inter-electronic repulsion is directly
determined by the spatial distribution of the electrons, the energies of the various terms
are different. This fact was noted in 1927 by Friederich Hund (1896–), largely as a result

Table 5.5 The energies (in eV) of the terms arising from the configuration np2

3P0
3P1

3P2
3P(mean) 1D2

1S0

Ge 4p2 0.0 0.0691 0.1748 0.1201 0.8834 2.0293
Sn 5p2 0.0 0.2098 0.4250 0.3060 1.0679 2.1279
Pb 6p2 0.0 0.9695 1.3205 1.0568 2.6605 3.0955



Spin-Orbit Coupling 111

of experimental studies of atomic spectra. On the basis of his observations Hund proposed
two rules for equivalent electrons:

1. The terms of highest multiplicity lie lowest in energy.

2. If two terms have the same multiplicity the lowest is that with the greatest value of L.

The data in Table 5.5 illustrate Hund’s rules. The 3P states are the lowest and one of
them, 3P0, is the ground state. Also, 1D is lower than 1S.

5.9 SPIN-ORBIT COUPLING

The origin of spin-orbit coupling is easy to understand. To an electron orbiting an atomic
nucleus the nucleus appears to be an orbiting positive charge. This orbiting charge gen-
erates an electric current which, in turn, produces a magnetic field at the electron. This
magnetic field interacts with the magnetic field due to the spin of the electron and the
energy of interaction is known as the spin-orbit coupling energy. Theory shows that the
effect is proportional to Z4, where Z is the nuclear charge, and it therefore increases
very steeply with increase in atomic number. The coupling of the spin and orbital angu-
lar momenta of an electron, which results from this interaction, mixes those quantities
together so that, especially for heavy atoms, it is possible to speak of L and S only as
approximate quantum numbers; the only exact angular momentum quantum number being
J , which is a combination of the two. There are two ways of determining J , one of which
is appropriate for light atoms and one for heavy.

5.9.1 Russell–Saunders or LS coupling

For light atoms the values of J can be obtained by adding together the values of L

and S for the total orbital and spin angular momenta of the electrons determined as in
Section 5.8.3. We add the angular momenta using the formula (Section 4.6):

J = L + S, L + S − 1, L + S − 2, . . . , |L − S|
The values of J are written as a right subscript on the term symbol, e.g. for p2:

1D (S = 0, L = 2) ===⇒ 1D2

3P (S = 1, L = 1) ===⇒ 3P2,
3P1 and 3P0

1S (S = 0, L = 0) ===⇒ 1S0

Each state having a particular value of J has 2J + 1 components with MJ values run-
ning from +J to −J and in the absence of a magnetic field, vide infra, all are degenerate.
Thus, as a result of spin-orbit coupling, a 3P term which was nine-fold degenerate, is split
into a five-fold degenerate 3P2, a three-fold degenerate 3P1 and a singly degenerate 3P0

term. The five-fold degeneracy of the 1D term is not removed and the 1S0 term has only
one component.

When we formulate spin-orbit coupling in this way we call it LS coupling because we
combine values of L and S to give J . It is also known as Russell-Saunders coupling after
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two astronomers who first used it to interpret the atomic spectra of stars in 1925, before
the advent of quantum mechanics as we know it.

Thus, in order to obtain a model of the electronic structure of a light, many-electron
atom, we build up our description in three stages.

1. We first think of a many-electron atom as being composed of a number of electrons
each moving in an orbital characterised by quantum numbers n, l, ml, s and ms . We
recognise that the radial parts of these orbitals will depend upon the charge on the
nucleus and that the electrons with low values of n will therefore be very close to
the nucleus while electrons in orbitals with higher values of n will reach out much
further into the space surrounding the atom. Those with the highest value of n are the
valence electrons which are the most important in the formation of chemical bonds
and in atomic spectroscopy.

2. Next we take account of the fact that, although the individual n values are unchanged,
the detailed forms of the radial functions will be changed by the inter-electronic repul-
sion. Furthermore, because the electronic motions are correlated and because we cannot
distinguish between individual electrons in a many-electron system, the individual val-
ues of l and s are no longer meaningful and must be replaced by L and S which
describe the orbital and spin angular momenta of the electrons as a whole.

3. Finally, we recognise that the effect of spin-orbit coupling requires that we combine
L and S to give a total angular momentum quantum number J .

It should be noted that the three steps above are associated with three physical effects
of diminishing energy. In step 1 we have the kinetic and potential energies of the electrons
moving in the field of the charged nucleus. In the second step, we add the smaller energy
due to the inter-electronic repulsion. In step 3 we add the spin-orbit coupling energy
which, for atoms with atomic numbers less than 20, is even smaller. When carried out
with proper mathematical precision, this process of examining the largest contribution to
the energy first and then adding in the effects of further, smaller energy terms in order of
decreasing energy is called perturbation theory (Appendix 4). It has been known since the
time of Lord Rayleigh (1842–1919) and has extensive uses in both classical and quantum
mechanics. It is important that the energy contributions are taken in order of decreasing
magnitude and in the case of very heavy atoms the spin orbit coupling, which goes as
Z4, exceeds the inter-electronic repulsion and must therefore be considered first.

5.9.2 jj coupling

Since we require to consider spin-orbit coupling before inter-electronic repulsion for atoms
in the later rows of the periodic table, in step 2 we first combine the values of l and s,
adding the angular momentum quantum numbers as described in Section 4.6, to make a
j value for each individual electron, i.e. in the case of p2:

for each p electron l = 1 and s = 1
2 ===⇒ jp = 3

2 and 1
2

Now, in step 3, we must add the j values together to give J for the whole atom. Where
we have two inequivalent electrons, e.g. p1d1, then we simply combine all the possi-
ble mj values for the d-electron with all those for the p-electron, in pairs. But in the
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Table 5.6 The MJ values of the microstates of np2 in jj coupling

p 3
2

p 1
2

3
2

1
2 − 1

2 − 3
2

1
2 − 1

2
3
2 − 2 1 0 2 1

p′
3
2

1
2 − − 0 −1 1 0

− 1
2 − − − −2 0 −1

− 3
2 − − − − −1 −2

p′
1
2

1
2 − − − − − 0

− 1
2 − − − − − −

case of two equivalent electrons, e.g. p2 for which we determined the term symbols in
Section 5.8.3, we experience again the problem that we had in constructing Table 5.4,
i.e. we must be aware of the Pauli principle. For the configuration np2 we have possi-
ble j values of 1 + 1

2 = 3
2 and 1 − 1

2 = 1
2 and 4 + 2 = 6 possible mj values. A square,

6 × 6 array of all possible combinations of two mj values (Table 5.6), would give 36
microstates. But there can only be 6 × 5

2 = 15 states for two p-electrons and the fol-
lowing states must be rejected: all six states on the diagonal of the array, because if
two electrons in the same shell have the same j value and the same mj value then
they are identical and must be occupying the same atomic wave function with the same
spin. This is contrary to Pauli’s principle. Further, since electrons are indistinguishable,
an off-diagonal array element of the form [j mj (1); j ′ m′

j (2)] cannot be distinguished
from its ‘mirror-image’ across the diagonal [j ′ m′

j (1); j mj (2)]. These two microstates
together {[j mj(1); j ′ m′

j (2)] − [j ′ m′
j (1); j mj(2)]}/√2 describe a state of the system so

that 15 of the 30 off-diagonal microstates must be neglected in the state-counting process.
We arbitrarily choose the 15 microstates below the diagonal leaving 36 − 6 − 15 = 15
microstates (Table 5.6). Following our usual method, we now start with the largest MJ

value, remove the remaining 2J MJ values associated with it and repeat the process until
all MJ values have been accounted for. The p′

3
2

p 3
2

triangle gives J = 2 and 0, the p′
3
2

p 1
2

rectangle gives J = 2 and 1 and the p′
1
2

p 1
2

triangle gives J = 0. The total number of states

calculated from these J values is 5 + 1 + 5 + 3 + 1 = 15 confirming the correctness of
our working.

5.9.3 Intermediate coupling

We have noted above that LS or Russell-Saunders coupling applies very well to light
atoms and jj coupling to heavy atoms. But what about atoms of intermediate mass, or Z
value; there is no sudden change from LS to jj coupling? This is a problem typical of
the physical sciences and especially so of quantum mechanics. We have solutions for the
extremes of our problem but not for the intermediate region for which, in fact, no simple
solution is possible. The root of our difficulty lies in the application of the steps of the
perturbation theory outlined in Section 5.9.1. It is important to take the larger terms before
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the smaller ones and for light atoms this means taking inter-electronic repulsion before
spin-orbit coupling. For heavy atoms the order must be reversed. For the intermediate
case the only correct approach is to take inter-electronic repulsion and spin-orbit coupling
together at the same time, since they are of comparable magnitudes. This cannot be done
in as simple a manner as in the examples described above, even for two electrons. A
more complicated calculation is required (see Box 5.2). But with the help of the digital
computer the calculation of the terms or electronic energy states of atoms presents little
difficulty today.

For systems with a small number of electrons such as np2 a correlation diagram show-
ing the transition from LS, through the intermediate region, to jj coupling is useful in the
assignment of atomic spectra. Figure 5.6, calculated with data from Condon and Shortley,4

shows the np2 correlation diagram. χ is proportional to the ratio of the spin-orbit cou-
pling to inter-electronic repulsion so that the zero on the left-hand end of the abscissa
represents pure LS coupling while the zero on the right represents pure jj. The assign-
ment of the np2 electronic states of germanium (n = 4), tin (n = 5) and lead (n = 6) is
also included and the move from LS to jj coupling with increase of nuclear charge is
very clear. The energy scales at the two ends of the diagram are not equal, they have
been modified so that the total spread of the states is the same; 15 energy units. The
details of this modification4 need not concern us here. However, we should not leave
this subject without remarking upon the value of the correlation diagram in chemistry.
Because, as chemists, we are often interested in groups of similar species, e.g. the aro-
matic hydrocarbons or the atoms in a particular row or column of the periodic table,
we wish to understand how the properties of a particular group of atoms or molecules
vary as their fundamental physical properties vary across the group. This information
can sometimes be displayed in diagrammatic form, the most well-known example of this
being the periodic table itself. But there are many other important examples in physics
and chemistry.
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5.9.4 Inter-electronic spin-orbit coupling

The orbital magnetic moment of an electron can also interact with the spin magnetic
moment of another electron, and vice versa. However, the energies concerned are very
small compared with those due to the intra-electronic effects which we have described
above and they are usually neglected.

5.10 SELECTION RULES IN ATOMIC SPECTROSCOPY4,5,6

In many places in this chapter reference has been made to the information which atomic
spectroscopy provides about atomic structure. But we must not think that every energy
state of the atom can be reached from every other state by the emission or absorption of
radiation. The process is subject to restrictions, known as selection rules, which result from
the requirements that energy and angular momentum must be conserved. It is precisely
because these restrictions exist that so much detailed information has been obtained. The
conservation of energy is embodied in the Bohr-Einstein selection rule:

�E = hν

The change in energy of the atom must be exactly equal to the energy of the photon
absorbed or emitted.

5.10.1 Angular momentum

The photon of electric dipole radiation has an angular momentum characterised by the
angular momentum quantum number 1, but with only two z-components, +1 and −1,
parallel and antiparallel to the direction of propagation. (This subject is discussed in more
detail in Section 8.4 and the treatment here will therefore be brief.) Thus, since angular
momentum is conserved, in one-electron atoms atomic transitions between atomic orbitals
with angular momentum quantum numbers l and l′ must be such that l′ = l + 1, l or l − 1,
and the z-component of the angular momentum must also be conserved. The electron spin
does not interact with the oscillating electric field of the radiation so it is not changed.
(Note however, that the spin does interact with the radiation’s magnetic field and this
interaction is very important in magnetic resonance spectroscopy and in magnetic dipole
transitions, Section 5.10.1.2.)

In summary, the selection rules for dipolar radiation in one-electron atoms are:

1. �s = 0
2. �l = 0, ±1, but �l = 0 is forbidden by parity (see Section 5.10.2)
3. �ml = ±1

There is no restriction on the change in the value of the principal quantum number,
�n, which accounts for series of lines such as the Balmer series.

When we consider many-electron atoms the position becomes more complicated and,
in general, the interaction of spin and orbital angular momenta must be considered. In the
limit of pure LS coupling we have for electric dipole radiation:

1. �S = 0
2. �L = 0, ±1, but L = L′ = 0 is forbidden
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3. �ML = ±1
4. �J = 0, ±1, but J = J ′ = 0 is forbidden

As we move away from LS coupling, into the intermediate region and towards jj
coupling the quantum numbers S and L become increasingly poorly defined and the
selection rules progressively less definitive. Selection rules expressed in terms of changes
of state quantum numbers are the results of application of angular-momentum theory to the
coupling between atom and radiation.4,5 They apply only to idealised situations, e.g. pure
LS coupling. If exact information on a particular transition is required the detailed wave
functions for the states in question must be determined and the transition moment integral
evaluated. This subject is discussed in much more detail in Box 5.2. Sections 8.7 and 11.7
and Appendix 9 also contain relevant information.

5.10.1.1 Electric quadrupole transitions

In some atoms and ions, e.g. O2+, very weak transitions which are forbidden by the selec-
tion rules described above, but not induced by spin-orbit coupling, have been observed.
These transitions satisfy selection rules in which the photon involved appears to carry
two units of angular and they are ascribed to quadrupolar photons.4,5 However, photons
in a beam of light have not, to this author’s knowledge, been shown to carry two quanta
of angular momentum; in contrast to the case of a beam of circularly polarised light, the
photons of which have been shown by Beth7 to carry h/2π units of angular momentum
each. It would appear that a definitive analysis of the conservation of angular momentum
in quadrupolar transitions is not yet available.

5.10.1.2 Magnetic dipole transitions

The magnetic fields arising from the orbital and spin angular momentum of the electron
can also interact with the magnetic field of an impinging photon. The transitions which
result are known as magnetic dipole transitions. They are of the order of 10−7 times
weaker than electric dipole transitions.

5.10.2 Parity

In order to understand the concept of parity it is best if we first consider a wavefunction of
an atom, �(x, y, z), and perform upon it the operation of multiplying the three Cartesian
co-ordinates by −1. We call this operation the parity operation and it can be represented
by the equation:

̂�(x, y, z) ===⇒ �(−x,−y, −z),

where ̂ is the parity operator.
If we perform this operation on the hydrogen 1s orbital (Appendix 5) then:

̂�1s = ̂
1√
π

(
Z

a0

) 3
2 · exp(−ρ/2) = 1√

π

(
Z

a0

) 3
2 · exp(−ρ/2),
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and the function is unchanged because ρ is proportional to the positive square root of
(x2 + y2 + z2). Consequently, �1s does not change sign when the signs of the Cartesian
co-ordinates are changed and is therefore said to be even. All s orbitals are even. But if
we apply the parity operator to the 2pz wave function then:

̂�2pz = ̂
1

2
√

2π

(
Z

a0

) 5
2 · z exp(−ρ/2) = −1

2
√

2π

(
Z

a0

) 5
2 · z exp(−ρ/2),

and we find that the function changes its sign (because ̂z = −z). It is odd as are all
p functions. But note that the wave function is still an eigenfunction of the Hamiltonian
operator with the same energy eigenvalue as before.

All atomic wave functions can be classified into two groups. Those which are unchanged
under the parity operation, the s, d, g, . . . functions, are said to be even and they are
sometimes denoted by g (from the German ‘gerade’ = even). Functions which change sign
under the parity operation, the p, f, h, . . . functions, are said to be odd and denoted by u
(from the German ‘ungerade’). The rules for combining parities are just the same as those
for multiplying the numbers +1 and −1. Thus, if two functions of the same parity, even
or odd, are combined the result is a function of even parity, whereas if two functions of
different parities are combined the resulting function is of odd parity.

Electric quadrupole and magnetic dipole photons, Sections 5.10.1.1 and 5.10.1.2, are
of even parity. But the great majority of experimental observations in atomic spectroscopy
involve dipolar photons which are of odd (u) parity. This means that the initial and final
states of a transition must be of opposite parity so that, (parity of initial state) × u = (parity
of final state), and parity is conserved. Alternatively we may argue (Appendix 9) that,
since the dipolar photon is of u symmetry, the product of the parities of the initial and
final states must also be u so that the transition dipole moment integral (Appendix 9) as a
whole is g. By both arguments the parity selection rule is found to be; u → g and g → u
transitions allowed, u → u and g → g forbidden. This is known as the Laporte rule.

5.11 THE ZEEMAN EFFECT

Apart from interacting with each other, the magnetic fields due to the spin and orbital
motion of an electron can also interact with an externally applied magnetic field. The
effect of the interaction is to lift degeneracy and split spectral lines, as was first observed
by Pieter Zeeman (1865–1943) in 1896. The quantum numbers which determine the
angular momenta of the electron, l, ml , s and ms determine the associated magnetic
moments according to the following relationships. If we choose, as we invariably do, the
z-axis as that along which the angular momentum is quantised, the orbital motion of an
electron gives rise to a magnetic moment in the z-direction. The relationship between
the quantum number for the z-component of the orbital angular momentum (ml) and the
magnetic moment (µz) is derived from the classical equations for the magnetic field due
to a circulating electron of charge −e and mass me in Section 12.2.4; it is:

µl
z = −eh̄

2me

ml ≡ −µBml where µB = −eh̄

2me

µB is the Bohr magneton and the negative sign shows that the magnetic moment is
antiparallel to the orbital angular momentum.



118 The Structure and Spectroscopy of the Atom

Such a simple analysis is not possible for the magnetic moment due to the spin angular
momentum. But using the relativistic Dirac equation it is found that:

µS
z = −geµBmS = −2.0023µBmS ≈ −2 µBmS

ge is known as the electron g-factor and the approximation, ge = 2, is quite adequate for
all but the most exacting experiments or calculations.

If we now impose an external magnetic field (B) upon the electron there will be an
energy change (�E) given (Box 12.2) by:

�E = −(µl
z + µS

z ) · B = (ml + 2mS)µBBz ≡ gµBBz (5.11.1)

where Bz is the component of the field in the z-direction. In this expression a useful exper-
imental parameter, g, has been introduced. The g-value deduced from the experimentally
observed splitting of spectral lines provides an immediate number for comparison with
theoretical estimates of ml + 2ms . Where the true atomic electronic states are complex
mixtures of the simple microstates as, due to effects like spin-orbit coupling they normally
are, the value of g will not be the simple integer or half-integer which Equation (5.11.1)
might lead us to expect. Since µB = 9.273 × 10−24 J T−1 the energy change, or Zeeman
splitting, is very small. Converting to wave numbers, we find that µB = 0.467 cm−1 T−1

so that a field of the order of two Tesla is required to produce a splitting of 1 cm−1. This
explains why Faraday searched, without success, for the effect of a magnetic field upon
spectral lines some 30 years before Zeeman found it.

5.11.1 The normal Zeeman effect

In 1896 when Zeeman first observed his eponymous effect there was no concept of
electron spin. But orbital angular momentum and the associated magnetic effects were
readily understandable with classical electrodynamics and early studies of the Zeeman
effect therefore gave a mixed picture. Some results were easy to interpret and these cases
became known as examples of the normal Zeeman effect. The remaining results were
only understood when electron spin and its magnetic effects were postulated by Goudsmit
and Uhlenbeck in 1925; prior to that they were said to be examples of the anomalous
Zeeman effect. There is also an important relationship between the Zeeman effect and the
polarisation of light which is best explained diagrammatically (Figure 5.7). The properties
of polarised light are discussed in detail in Section 8.2 and that discussion will not be pre-
empted here. In discussing Figure 5.7 we shall simply make a number of bald statements
which will be elucidated in Chapter 8.

A 1S0 to 1P1 transition in the absence of a magnetic field is illustrated in Figure
5.7(a). An example would be the Xe6s2 to Xe6s16p1 transition of barium which is found
at λ = 553.70 nm and is responsible for the bright green colour of the flame test for
barium. The spectrum appears as a single line since, although there are three upper states
(MJ = +1, 0, −1), they are all of equal energy. In Figure 5.7(b) our atom sample has
been placed at the centre of a solenoid so that it is subject to a magnetic field (B), which
is parallel to the light beam. The magnetic field lifts the degeneracy of the 1P1 state
as required by Equation (5.11.1) so that it is now possible, in principle, to observe three
transitions from the ground to the excited state. Furthermore, the upper state energy levels
have angular momentum characterised by the quantum numbers J = 1 and MJ = 0, ±1.
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Figure 5.7 The normal Zeeman effect in the 1S0 to 1P1 transition of barium

Therefore, in order to conserve angular momentum, the photon must provide the angular
momentum required for transitions from ground state to the MJ levels of the excited state,
since the lower state has no angular momentum. Circularly polarised light has exactly
the properties we require; an angular momentum of 1 and for right circularly polarised
(rcp) photons a z-component of −1 and for lcp photons +1. Thus, if we use circularly
polarised light in the Zeeman experiment we shall be able to see the transitions to the
±1 states but the transition to MJ = 0 will not be observed since the z-component of the
angular momentum cannot be conserved.

But if we bore a hole in our solenoid and illuminate the atom sample with a light beam
perpendicular to the direction of the magnetic field (Figure 5.7(c)), a new polarisation
possibility emerges. The oscillating electric and magnetic fields, which are the fundamental
carriers of the polarisation property, can only oscillate in the plane perpendicular to the
direction of propagation of the light. With the experimental arrangement of Figure 5.7(c)
the light can be polarised in the direction of the field and if we use plane polarised light
transitions to all three excited sates can be seen. The transition to MJ = 0 is energised by
light polarised parallel to B and is denoted by π (Greek p for parallel). The transitions to
MJ = ±1 are energised by light polarised perpendicular to B and are denoted by σ (Greek
s for German senkrecht = perpendicular). The total probability of the transitions in each
of the three figures is the same. If we set it to four arbitrary units in Figure 5.7(a), then
we have two for each of the transitions in Figure 5.7(b) and one for each σ and 2 for π in
Figure 5.7(c). Very important practical use of the Zeeman effect is made in quantitative
analytical atomic spectroscopy where the ability to move an absorption line by applying a
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magnetic field enables the background of the line to be measured and subtracted. Finally,
we note that the experimentally observed separation between the outer lines gives a value
of g of 1.02 which is 2 % larger than the theoretical value of 1.0. This probably arises
because of mixing, brought about by spin-orbit coupling, with states having S �= 0, which
brings us to the anomalous Zeeman effect.

5.11.2 The anomalous Zeeman effect

When Goudsmit and Uhlenbeck proposed that electrons had an intrinsic spin angular
momentum characterised by the angular momentum quantum number of 1

2 but with a
g-value of 2.0, twice as large as the g-value for orbital angular momentum, the puzzling
splitting patterns observed in many spectra were rapidly elucidated and a formula express-
ing the g-value in terms of the quantum numbers L, S and J was derived by Alfred Landé
(1888–1975), see Section 12.2:

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(5.11.2)

This formula gives the g-values of 0.500, 1.167 and 1.333 for 3D1, 3D2 and 3D3 respec-
tively. These figures may be compared with the experimental data for corresponding states
of calcium which are 0.501, 1.162 and 1.329. The sodium D-lines provide a good illus-
tration of the anomalous Zeeman effect (Figure 5.8). The values of MJ × g in Figure 5.8
are simply the product of the MJ value of the state and the its g-value as determined by
Equation (5.11.2) and they are directly related to the spacing of the spectral lines; e.g.
for 2P 3

2
S = 1

2L = 1, J = 3
2 giving g = 4

3 whence MJ × g = ±2 and ± 2
3 .

2P3/2

2P1/2

2S1/2
2S1/2

+2/3

−2/3

−6/3

+6/3

+1

−1

+1/3
−1/3

+1

−1

MJ·g

MJ·g

(a) (b)

Figure 5.8 The anomalous Zeeman effect on the sodium D lines



Boxes for Chapter 5 121

5.12 BIBLIOGRAPHY AND FURTHER READING

1. L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, New York,
1935, and Dover.

2. H. Eyring, J. Walter and G.E. Kimball, Quantum Chemistry, Wiley, New York, 1944.
3. Shapes and polar plots of f-orbitals. H.G. Friedman, Jr., G.R. Choppin and D.G. Feuerbacher,

J. Chem. Education, 41, 354–358, 1964. C. Becker, J. Chem. Education, 41, 358–360, 1964.
4. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press,

1935.
5. R.D. Cowan, The Theory of Atomic Structure and Spectra, California University Press, Berkeley,

1981.
6. J.C. Slater, Quantum Theory of Atomic Structure, Vols. I and II, McGraw-Hill, New York, 1960.
7. R.A. Beth, Phys. Rev., 48, 471 (1935); 50, 115 (1936).

BOX 5.1 The spectral series of the hydrogen atom

In 1890 Johannes Robert Rydberg (1854–1919) wrote the Balmer formula for the lines
in the emission spectrum of the hydrogen atom in the form which is most common
today:

ν̃ = R

{
1

r2
− 1

s2

}

Here, ν̃ is the value in wave numbers (cm−1) of the spectral line, R the Rydberg
constant (109 677.578 cm−1) and r and s the principal quantum numbers of the lower
and upper states connected by the transition respectively. Using this formula the five
best-known series of hydrogen lines may be characterised as in the following table.

Series r s first line last line

ν̃

(cm−1)
λ

(nm)
ν̃

(cm−1)
λ

(nm)

Lyman (1906) 1 2, 3, . . .∞ 82 258.2 121.6 109 677.6 91.2
Balmer (1885) 2 3, 4, . . .∞ 15 232.9 656.5 27 419.4 364.7
Paschen (1908) 3 4, 5, . . .∞ 5 331.6 1 875.6 12 186.4 820.1
Brackett (1922) 4 5, 6, . . .∞ 2 467.8 4 052.2 6 854.9 1 458.8
Pfund (1924) 5 6, 7, . . .∞ 1 340.5 7 459.9 4 387.1 2 279.4

The last line in each series corresponds to a transition in which the upper state has
the principal quantum number of infinity in each case (Figure B5.1.1). In this state the
electron has the highest energy it can have and still be bound to the nucleus. At higher
energies the electron leaves the atom, i.e. ionisation takes place. Therefore, all series
have a common upper level for their transition of highest energy; the ionisation limit.
But the energy required to reach it diminishes since each series starts from a higher
level. Schrödinger’s result for the eigenvalues of the hydrogen atom (Equation (5.1.1))
shows that, in cm−1:

R = me4

8ch3ε2
0
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Figure B5.1.1 The Lyman and Balmer series of the hydrogen atom

BOX 5.2 Inter-electronic repulsion, spin-orbit coupling (SOC) and their effect
upon transition probability and selection rules

The purpose of this Box is to provide a fairly detailed example of the way in which
the relative magnitudes of inter-electronic repulsion and SOC affects not only state
energies, as illustrated in Figure 5.6, but also wavefunctions and hence transition
probabilities. This will also offer an opportunity to illustrate how transition proba-
bilities are calculated from atomic wavefunctions. The example will be based on the
configuration p2 and a transition to that configuration from s1p1. We begin with a
discussion of p2.

The energies of the p2 configuration

We have found the terms of p2 in the LS and jj limits in Section 5.9, but the methods
used there do not reveal the combinations of microstates, i.e. the wavefunctions, which
are associated with each term. These can be obtained for the limiting cases by use of
the raising and lowering operators in the way illustrated for d2 in Appendix 10, but for
the intermediate case which concerns us here we require to diagonalise (Appendix 3)
simultaneously the matrices of the operators for SOC, ζ l̂ · ŝ, and inter-electronic repul-
sion, e2/r12.

The basis states or microstates may be written in the form (ml1ms1, ml2ms2) with
the ms values represented by a superscript plus or minus sign, e.g. (+1+, 0−), it
being always understood that the microstate is actually a Slater determinant (Appendix
6), i.e.:

(+1+, 0−) = (1/
√

2){|+1+(1)0−(2)〉 − |0−(1) + 1+(2)〉}
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[If the two electrons are not both p-electrons it would usually be necessary to
include the quantum number l in the notation.] For p2 there are 15 microstates and in
the matrices which follow we shall consider 10 of them, those having MJ values of
+2, +1 and 0. The matrix elements for MJ = −2 and −1 are, of course, very similar
to those for MJ = +2 and +1. We shall not go into the details of the calculation of
the electron-repulsion matrix elements. Full treatments of this subject can be found in
numerous sources.1 – 3 The required integrals can be expressed as a sum of products of
angular and radial parts the first of which can be obtained in closed form and tabulated
for any combination of spherical harmonics (Appendix 5), i.e. for all atoms. The radial
integration, on the other hand, depends upon the radial functions which differ from
atom to atom and they must be determined individually, either theoretically or by
comparison with experiment, for each atom. However, the results can be expressed
in terms of a small number of integrals, F0 and F2 in the present case, where:

Fk(nala, nblb) = e2
∫ ∞

0

∫ ∞

0
(rk

</rk+1
> )R1

2(nala)R2
2(nblb)r2

1 r2
2 dr1 dr2

R(nl ) is the radial part of an atomic wavefunction function, r< is the smaller and r>

the larger of r1 and r2, and the electron repulsion is obtained as a sum of two terms,
A0F0 + A2F2, where A0 and A2 are the results of the angular integrations.

The inter-electronic repulsion matrix for the microstates of p2 having MJ = +2
and +1 is:

(+1+, +1−) (+1+, 0+) (+1−, 0+) (+1+, 0−) (+1+,−1+)

(+1+,+1−) F0 + F2/25 0 0 0 0

(+1+, 0+) 0 F0 − F2/5 0 0 0

(+1−, 0+) 0 0 F0 − 2F2/25 −3F2/25 0

(+1+, 0−) 0 0 −3F2/25 F0 − 2F2/25 0

(+1+,−1+) 0 0 0 0 F0 − F2/5

The eigenvalues of this part of the matrix are F0 − F2/5 (3×) and F0 + F2/25
(2×).

The inter-electronic repulsion matrix for the microstates of p2 having MJ = 0 is:

(+1+,−1−) (+1−, 0−) (+1−, −1+) (0+, 0−) (−1+, 0+)

(+1+,−1−) F0 + F2/25 0 −6F2/25 +3F2/25 0

(+1−, 0−) 0 F0 − F2/5 0 0 0

(+1−,−1+) −6F2/25 0 F0 + F2/25 −3F2/25 0

(0+, 0−) +3F2/25 0 −3F2/25 F0 + 4F2/25 0

(−1+, 0+) 0 0 0 0 F0 − F2/5

The eigenvalues of this part of the matrix are F0 − F2/5 (3×), F0 + F2/25 (1×)

and F0 + 2F2/5 (1×).
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The remaining five states of the electron-repulsion matrix give eigenvalues of
F0 + F2/25 (2×) and F0 − F2/5 (3×) so that in total we have: F0 − F2/5 (9×), F0 +
F2/25 (5×) and F0 + 2F2/5 (1×). Since F0 appears on each diagonal element and
nowhere else it simply sets the absolute energy scale and can usually be set to zero.
Thus, these are the states 3P, 1D and 1S which, with F0 = 0 and F2 = 25 arbitrary
units, correspond in energy and degeneracy to the extreme left of Figure 5.6. The
corresponding wavefunctions can be obtained as combinations of microstates by diag-
onalising the blocked out matrices. The energy matrix for p2 in the absence of SOC
is seen to be a function only of F2 which can be treated as a parameter and its value
obtained by comparison of calculated and experimental energy levels.

The matrix elements of the SOC are more readily obtained than those of electron
repulsion. We express the operator in the form of a sum over (in this case two)
electrons:

ζ
∑

i

l̂i · ŝi = ζ
∑

i

{
1

2
(l̂i+ŝi− + l̂i−ŝi+) + l̂izŝiz

}

It is useful to draw up the following table:

|+1+〉 |0+〉 |−1+〉 |+1−〉 |0−〉 |−1−〉
l̂+ŝ− 0

√
2|+1−〉 √

2|0+〉 0 0 0

l̂−ŝ+ 0 0 0
√

2|0+〉 √
2|−1+〉 0

l̂zŝz
1
2 |+1+〉 0 − 1

2 |−1+〉 − 1
2 |+1−〉 0 1

2 |−1−〉
l̂ · ŝ 1

2 |+1+〉 √ 1
2 |+1−〉 √ 1

2 |0−〉 − 1
2 |−1+〉 √ 1

2 |0+〉 − 1
2 |+1−〉 √ 1

2 |−1+〉 1
2 |−1−〉

From which, for example:

ζ
∑

i
l̂i · ŝi |+1+0+〉 = ζ

1

2
|+1+0+〉 + ζ

√1

2
|+1+ + 1−〉

giving rise to an on-diagonal matrix element of 1
2ζ and an off-diagonal element of√ 1

2ζ with 〈+1+ + 1−|. The SOC matrix for the microstates of p2 having MJ = +2
and +1 is:

(+1+,+1−) (+1+, 0+) (+1−, 0+) (+1+, 0−) (+1+, −1+)

(+1+, +1−) 0 ζ/
√

2 0 0 0
(+1+, 0+) ζ/

√
2 ζ/2 0 0 0

(+1−, 0+) 0 0 −ζ/2 0 0
(+1+, 0−) 0 0 0 ζ/2 ζ/

√
2

(+1+, −1+) 0 0 0 ζ/
√

2 0

The eigenvalues of this part of the matrix are +ζ (2×) and − 1
2ζ (3×).
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The SOC matrix for the microstates of p2 having MJ = 0 is:

(+1+, −1−) (+1−, 0−) (+1−,−1+) (0+, 0−) (−1+, 0+)

(+1+, −1−) ζ 0 0 0 0
(+1−, 0−) 0 −ζ/2 ζ/

√
2 ζ/

√
2 0

(+1−, −1+) 0 ζ/
√

2 −ζ 0 −ζ/
√

2
(0+, 0−) 0 ζ/

√
2 0 0 −ζ/

√
2

(−1+, 0+) 0 0 −ζ/
√

2 −ζ/
√

2 −ζ/2

The eigenvalues of this part of the matrix are +ζ (2 ×), − 1
2ζ (2 ×) and −2ζ (1 ×).

When the results for MJ = −1 and −2 are included the 15 eigenvalues of the spin-
orbit matrix are found to be −2ζ (1 ×), − 1

2ζ (8 ×) and +ζ (6 ×) which corresponds
to the extreme right of Figure 5.6 with ζ = 5 arbitrary units.

Inspection of the matrices of ζ l̂ · ŝ and e2/r12 shows that they are blocked out,
though not in exactly the same way for both operators. The inter-electronic repulsion
connects, i.e. has an off-diagonal matrix element between, microstates which have the
same value of ML and the same value of MS whereas the SOC links microstates with
the same value of MJ (= ML + MS). However, not all pairs of states which satisfy
these requirements are connected by an operator.

In cases of intermediate coupling, where the SOC and inter-electronic repulsion
are of comparable magnitudes, we must sum the two matrices and diagonalise the
result.

A similar analysis of the energetics of the s1p1 configuration might be made, but
this is not necessary for our present purposes and it suffices to say that the following
terms are possible; 1P and 3P in the absence of SOC and 1P1, 3P2, 3P1 and 3P0 when
it is present.

Atomic transition probabilities

First, some preliminary observations. Apart from the Bohr-Einstein condition, the
selection rules of atomic spectroscopy are couched in terms of the quantum numbers
which describe particular aspects of the angular momentum of the atom. We shall
assume that the Bohr-Einstein condition is satisfied and concentrate on the condi-
tions on the quantum numbers. Very general derivations of the selection rules which
rely on advanced angular momentum theory can be found in the specialist texts on
atomic spectroscopy.1 – 3 Here we shall confine our attention to specific examples
which illustrate the general results.

The intensity of an electronic transition from an initial orbital, φi, to a final orbital,
φf, in a one-electron atom is proportional to the square modulus of the transition
moment integral (Appendix 9 and Section 8.7), i.e. I ∝ |〈φf|er|φi〉|2 where e is the
electronic charge and r the vector distance between the electron and the nucleus. For
a many-electron atom I ∝ |〈ψf|�kerk|ψi〉|2 where the sum over k runs over all the
electrons and ψf and ψi represent electronic states. The transition moment operator
is a one-electron operator which means that for a non-zero TM integral the states
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represented by ψi and ψf can only differ by one orbital because, for example, of the
n terms in the following sum:

〈ψf|�kerk|ψi〉 = 〈φa(1)φb(2)φc(3) . . . φn(n)|�kerk|φa(1)φb(2)φx(3) . . . φn(n)〉
only:

〈φc(3)|er3|φx(3)〉 · 〈φa(1)|φa(2)〉 · 〈φb(2)|φb(2)〉 . . . 〈φn(n)|φn(n)〉
may have a value, all the others being zero because of the orthogonality of the atomic
orbitals φc and φx .

Two approaches are open to us when we seek to evaluate a TM integral such as
〈φc(3)|er3|φx(3)〉, one emphasises angular momentum and the other geometrical fac-
tors. Atomic orbitals can be formulated in a manner such that they are eigenfunctions
of the angular momentum operators l̂ and l̂z. In order to exploit this property we
write the operator er in a form appropriate for left- or right-circularly polarised light
(Section 8.6), using the common notation m− and m+ respectively:

lcp ∼ m− = (e/
√

2)(x − iy) = (e/
√

2)(r sin θ cos φ − ir sin θ sin φ)

= (er sin θ/
√

2) exp(−iφ)

rcp ∼ m+ = (e/
√

2)(x + iy) = (e/
√

2)(r sin θ cos φ + ir sin θ sin φ)

= (er sin θ/
√

2) exp(+iφ)

Since the radial part of an atomic orbital is different for every orbital and every
atom, only angular integration is appropriate at this point. Radial integration can
only be carried out when the radial functions of the orbitals concerned are specified.
We find that the only non-zero matrix elements between s and p orbitals in this
formulation are:

〈p−|m−|s〉 = er/
√

3 and 〈p+|m+|s〉 = er/
√

3

This form of TM integral is useful when we wish to interpret spectra measured in
magnetic fields, as in the Zeeman effect and magnetic circular dichroism, where the
levels are split according to their ml values (Section 5.11 and Figures 5.7 and 5.8).

If we express the p-orbitals as px , py and pz and write er as:

mx = er sin θ cos φ, my = er sin θ sin φ and mz = er cos θ,

we find that the only non-zero TM integrals are:

〈px |mx |s〉 = 〈py |my|s〉 = 〈pz|mz|s〉 = er/
√

3

This formulation is appropriate for spectra in which the atom is in a non-spherical
environment, e.g. when subjected to an electric field.

We can now return to the question of transitions between states of the configura-
tions s1p1 and p2. Since the microstates (+1+, +1−) and (+1+, 0+) appear at the top
and to the left of Table 5.4, they must form components of the states 1D and 3P of p2

respectively. Also, the matrix of inter-electronic repulsion shows that in the absence
of SOC there is no mixing between these states, nor do they interact with any others.
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Thus when ζ = 0, the following wave functions are true descriptions of components
of the 1D and 3P states of p2:

1D (p2) = (1/
√

2){|+1+(1) + 1−(2)〉 − |+1−(1) + 1+(2)〉}
3P (p2) = (1/

√
2){|+1+(1)0+(2)〉 − |0+(1) + 1+(2)〉}

Note that the above wave functions are obtained by the expansion of the Slater
determinants (Appendix 6) represented by the microstates (+1+,+1−) and (+1+, 0+).
Similar considerations show that for the configuration s1p1 we can write:

1P (s1p1) = (1/2){|s+(1) + 1−(2)〉 − |+1−(1)s+(2)〉
− |s−(1) + 1+(2)〉 + |+1+(1)s−(2)〉}

3P (s1p1) = (1/2){|s+(1) + 1−(2)〉 − |+1−(1)s+(2)〉
+ |s−(1) + 1+(2)〉 − |+1+(1)s−(2)〉}

We now calculate some transition moment integrals between the above states, using
the notation M = m1 + m2 = er1 + er2.

〈1D(p2)|M|1P(s1p1)〉 = ( 1
2

√
2){〈〈+1+(1) + 1−(2)| − 〈+1−(1) + 1+(2)||M|

|s+(1) + 1−(2)〉 − |+1−(1)s+(2)〉 − |s−(1) + 1+(2)〉 + |+1+(1)s−(2)〉〉}
= ( 1

2

√
2){〈+1+(1) + 1−(2)|M|s+(1) + 1−(2)〉

+ 〈+1+(1) + 1−(2)|M|+1+(1)s−(2)〉 + 〈+1−(1) + 1+(2)|M| + 1−(1)s+(2)〉
+ 〈+1−(1) + 1+(2)|M|s−(1) + 1+(2)〉}

The above reduction from eight integrals to four is possible because those terms
in which the ms value of the electron is different on either side of the operator, e.g.
〈+1+(1) + 1−(2)|M|+1−(1)s+(2)〉, are zero because of the integration over the spin
co-ordinates. As an example of a non-zero contribution to the transition moment we
can evaluate:

〈+1+(1) + 1−(2)|M|s+(1)+1−(2)〉 = 〈+1+(1) + 1−(2)|m1 + m2|s+(1) + 1−(2)〉
= 〈+1+(1) + 1−(2)|m1|s+(1) + 1−(2)〉 + 〈+1+(1) + 1−(2)|m2|s+(1) + 1−(2)〉
= 〈+1+(1)|m1|s+(1)〉〈+1−(2)|+1−(2)〉 + 〈+1+(1)|s+(1)〉〈+1−(2)|m2|+1−(2)〉
= 〈+1+(1)|m1|s+(1)〉

because of the orthonormality of the atomic orbital wave functions. All four integrals
give the same contribution so that 〈1D(p2)|M|1P(s1p1)〉 = √

2〈+1−|m|s−〉. Note
that this is a transition in which �S = 0, �L = 0 and �ML = +1; although we have
a two-electron atom we find that the selection rules for one-electron atoms apply
because electron repulsion does not mix states with different S, L or ML values.

[The reader may wish to confirm, simply by changing a few signs in the above
equations, that:

〈1D(p2)|M|3P(s1p1)〉 = 0, as expected since �S = 1]
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But, as the above SOC matrix shows, SOC mixes states which have different S, L

or ML values. We can illustrate the effect of this by considering the two states in the
top left-hand corner of the electron-repulsion and SOC matrices which now interact
with each other but with no other states. Adding the two matrices we have the matrix
on the left:

(+1+, +1−) (+1+, 0+) (+1+,+1−) (+1+, 0+)

(+1+, +1−) F0 + F2/25 ζ/
√

2 ===⇒ 0 ζ/
√

2
(+1+, 0+) ζ/

√
2 F0 − F2/5 + ζ/2 ζ/

√
2 ζ/2 − 4F2/5

Since only the difference between the two diagonal matrix elements is important here,
we may subtract F0 + F2/25 from each diagonal element and obtain the right-hand
matrix above.

If we now suppose that ζ/2 = 4F2/5, which corresponds closely to the position
of lead in Figure 5.6, the diagonal elements are equal and there is an equal mixing
of (+1+, +1−) and (+1+, 0+). We can now no longer speak of pure 1D(p2) and
3P(p2) states; the eigenstates of the atom are equal mixtures of the two. Therefore,
transitions from 1P(s1p1) to the states first described as 1D(p2) or 3P(p2) will be
equally allowed because of their component of 1D(p2). We see that the apparent
failure of the selection rules is better described as a failure in the correct designation
of the states involved. The selection rules on one-electron matrix elements are always
rigorously obeyed, in the absence of perturbations, and the problem lies with our
knowledge of the exact wavefunctions of the states involved in the transition. It
should also be pointed out that the large SOC will also cause the 1P(s1p1) state to
mix with the 3P(s1p1) which may further complicate matters. Of course, it might
be argued that in this case of a high degree of mixing the situation would be clear;
but if we move across Figure 5.6 to the position of tin, for example, we find that
F2 = 2.847 eV, ζ = 0.260 eV and χ = 5ζ/F2 = 0.46. The energy matrix is then:

(+1+,+1−) (+1+, 0+)

(+1+, +1−) 0 0.260
(+1+, 0+) 0.260 −2.148

for which the mixed wave functions 1D′(p2) or 3P ′(p2) are:
1D′(p2) = 0.993 1D(p2) + 0.119 3P(p2)

and
3P ′(p2) = 0.119 1D(p2) − 0.993 3P(p2)

For the tin atom, therefore, it seems quite reasonable to describe the states as
1D(p2) and 3P(p2), though we have to recognise that the selection rules will not be
strictly obeyed because of the mixing induced by SOC. For germanium, for which
F2 = 3.152 eV, ζ = 0.109 eV and χ = 0.17 the mixing is negligible and the limiting
LS selection rules should hold.
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It is worth noting that, although it is the SOC which causes the mixing of states
of different multiplicity, the degree of mixing depends upon the energy-separation
between the mixing states and therefore upon the inter-electronic repulsion. In ger-
manium, though the mixing of states is very small, the SOC makes a measurable
impact on the state energies through the diagonal matrix element with (+1+, 0+).
Where only diagonal elements of SOC are significant in the comparison of theory
and experiment we speak of first-order SOC.
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PROBLEMS FOR CHAPTER 5

1. Predict the frequencies and wavelengths of a further series in the electronic spectrum
of the hydrogen atom.

2. Calculate the wavelength of the first ‘Balmer’ line in the spectra of the deuterium atom
and the Be3+ cation.

3. Show that the number of states, Nstates, in a configuration lp, where l is the orbital
angular momentum quantum number and p is the number of electrons, is:

Nstates = 2l!/{p! × (2l − p)!}
Hence, confirm the fact that there are 1001 states of f 4 · [n! = n(n − 1)(n − 2) . . . 1]

4. Draw up a table analogous to Table 5.4 for the configuration sd and determine the
states of the system.

5. Draw up a table analogous to Table 5.6 for the configuration sd with jj coupling and
determine the states of the system.

6. The normalised radial wave functions for the hydrogen atom are given in Appendix 5.
Show, using the functions for n = 3, that although they are different all those having
the same value of n give the same result for the integral:

−
∫ ∞

0
R3l(r)

Ze2

4πε0r
R3l(r)r

2 dr = − Z2e2n2

324πε0a0
.

This result tells us that the potential energy of the electron is the same in all three
types of d orbital, despite the differences in their radial functions. Because of the virial
theorem, this means that the kinetic and total energies will also be the same. Determine
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the kinetic and total energy of a hydrogen 3d electron and compare your answer with
Equation (5.1.1).

7. Use the information on s ↔ p transition probabilities in Box 5.2 to confirm the relative
intensities of the spectral lines of barium quoted in Section 5.11.1 and illustrated in
Figure 5.7.
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6.0 INTRODUCTION

There can be no doubt that the most important contribution of quantum mechanics to the
science of chemistry is the way in which it has enabled us to understand the nature of the
chemical bond, especially the covalent bond. The long and complex story of the theory
of valency and the chemical bond before the advent of quantum mechanics has been well
told by Palmer1 and by Russell2 and will not be repeated here. We set the objectives of
this chapter by drawing from the first few pages of a book by one of the pioneers in the
application of quantum mechanics to chemistry, Charles Alfred Coulson (1910–1974). In
his best-selling undergraduate text, ‘Valence’,3 Coulson discussed the major experimental
phenomena which any valid theory of chemical bonding must explain. He raised, in
particular, the following questions:

• Why do molecules form at all? Why is it that two hydrogen atoms form the very stable
diatomic molecule H2 while two helium atoms do not form He2?

• Why is there saturation of valency, i.e. if H2 is stable, why not H3 or H4 and so on?
Similarly, why do we have CH4 but not CH5 or CH6?

• What are the reasons for the shapes of molecules? Why, for example, is the carbon
dioxide molecule (CO2) linear but sulfur dioxide (SO2) bent, with an O–S–O bond
angle of 119◦?

Further, the theory must link the interpretations of the above experimental facts together,
viewing them as aspects of a comprehensive theory of chemical structure as a whole which
(and here I add to Coulson’s requirements) should embrace not only covalent compounds
but also ionic solids and metals.

In 1919, Max Born (1882–1970) and Fritz Haber (1868–1934) independently pub-
lished the energetic cycle, now known as the Born–Haber cycle, by means of which the
energy of an ionic lattice can be expressed in terms of the properties of the elements
forming the lattice and the coulombic forces between the ions involved. With that work
the essential features of the ionic bond were quantitatively understood, though it must be
said that the excellent agreement of theory and experiment is a little fortuitous due to the
selfcompensating nature of the ionic model, i.e. the mutual cancellation of errors.4

But the energetic basis of the covalent bond remained a complete mystery and its
explanation was one of the first objectives of the new quantum mechanics. It is amazing
to note that, without the aid of a computer or even an electronic calculator, Heitler and
London produced a calculation of the binding energy of the hydrogen molecule in 1927,
just one year after the publication of Schrödinger’s wave equation! Though the calculation
was not quantitatively very accurate, ways in which it might be improved were obvious
and it was clear that quantum mechanics was on the right track as far as chemical bonding
was concerned. By 1933, a calculation of the binding energy of H2 correct to better than
0.6 % was reported; a formidable achievement when we consider the complexity of the
problem, which will soon become apparent. This work is described now, giving a roughly
chronological account of the significant steps in the application of quantum mechanics
to the chemical bond in the hydrogen molecule; this exemplifies almost all the essential
aspects of the theory. What it lacks, the interpretation of molecular geometry, i.e. bond
angles, is described in Section 6.17.
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6.1 THE BINDING ENERGY OF THE HYDROGEN MOLECULE

Before embarking upon a discussion of the calculation of the bond energy of H–H, we
should be clear just what is to be calculated and how the result is to be compared with
experiment. We first recall (Section 5.1) that the zero of energy is, by definition, that state
in which all particles, two electrons and two protons in this case, are infinitely separated
and at rest so that they have neither kinetic nor potential energy. If we now allow two
hydrogen atoms to form at rest, the energy of each atom lies 13.605 eV below the zero of
energy and we say that the electronic energy of the hydrogen atom is −13.605 eV. The
energy of two H atoms is 2 × −13.605 = −27.210 eV (−43.596 × 10−19 J) (Figure 6.1;
note the two breaks in the scale).

If the two hydrogen atoms approach sufficiently close to each other to form a bond
then there is a further decrease in energy and there will be a particular value of the H–H
internuclear distance for which the energy is a minimum, i.e. is the most negative. This
distance is known as the equilibrium internuclear distance, Re, and is found experimentally
to be 74.1 pm. The corresponding experimental energy is 4.747 eV (7.6056 × 10−19 J)
below the energy of the two, non-interacting hydrogen atoms. This is the energy which we
shall seek to calculate by determining the difference between the electronic energy of two
independent hydrogen atoms and that of the hydrogen (H–H) molecule with a bond length
of Re. The symbol for this energy difference is De. Since we know the electronic energy
of the hydrogen atom very accurately, from both experiment and theory, the problem is
simply that of calculating the electronic energy of the molecule.

We emphasise the electronic energy because the molecule also has other forms of
energy that are not of interest to us in the present context. It may, for example, be moving
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Figure 6.1 Energy levels for 2H+ + 2e, 2H and H2
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through space and rotating giving rise to kinetic energy contributions to its energy which
we do not require in our current calculation. The molecule will also be vibrating and
we cannot ignore this zero-point vibrational energy (see Chapter 10 for more details)
since it impinges upon the comparison of theory with experiment. Experimentally, the
energy required to dissociate the hydrogen molecule into two hydrogen atoms is found
to be 4.476 eV. This is the energy D0; the energy required to dissociate a real hydro-
gen molecule which has zero-point energy, as opposed to the theoretical value of De

which is the dissociation energy of an hydrogen molecule which has no zero-point energy
(Figure 6.1). Thus, the energy which we seek to calculate (De) is given by the equation:

De = D0 + zero-point energy (6.1.1)

The zero-point energy of H–H is known from experiment to be 0.271 eV so that,
experimentally:

De = 4.476 + 0.271 = 4.747 eV (6.1.2)

In the following we shall compare theoretical and experimental values of De.

6.2 THE HAMILTONIAN OPERATOR
FOR THE HYDROGEN MOLECULE

Following Schrödinger’s method as in earlier chapters, our first step must be to write
down an expression for the energy of the hydrogen molecule in classical terms. Having
done that we then apply the rules for converting the classical expressions to the appropri-
ate operators. A hydrogen molecule in which the nuclei have been labelled A and B and
the electrons 1 and 2 is represented in Figure 6.2. The fact that we have so labelled the
electrons and nuclei should not be taken to mean that we can actually distinguish between
two electrons or two nuclei. Nothing could be further from the truth; it is fundamental
to quantum mechanics that all particles of the same species are totally indistinguishable.
The labels are used only to ensure that we consider all the possible terms in the Hamil-
tonian; the attraction between every nucleus and every electron, for example. With the
aid of Figure 6.2 we can identify the following energy terms, their classical-mechanical
expressions and the corresponding operators:

1. The kinetic energy of the nuclei:

(MVA)2

2M
+ (MVB)2

2M
⇒ −h2(∇2

A + ∇2
B)

8π2M
(6.2.1)

2. The kinetic energy of the electrons:

(mv1)
2

2m
+ (mv2)

2

2m
⇒ −h2(∇2

1 + ∇2
2 )

8π2m
(6.2.2)

3. The potential energy due to nucleus-electron attraction:

−e2

4πε0

[
1

rA1
+ 1

rB1
+ 1

rA2
+ 1

rB2

]
⇒ −e2

4πε0

[
1

rA1
+ 1

rB1
+ 1

rA2
+ 1

rB2

]
(6.2.3)

4. The potential energy due to internuclear repulsion:

e2

4πε0
· 1

RAB
⇒ e2

4πε0
· 1

RAB
(6.2.4)
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Figure 6.2 The Hamiltonian for the hydrogen molecule

5. The potential energy due to interelectronic repulsion:

e2

4πε0
· 1

r12
⇒ e2

4πε0
· 1

r12
(6.2.5)

In these expressions e is the magnitude of the charge on the protons and the electrons,
m and M are the masses of the electron and proton respectively and ε0 is the vacuum
permittivity. The symbol ∇2, which is spoken ‘del squared’, is defined by:

∇2 ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 (6.2.6)

Our total Hamiltonian operator is therefore the sum of ten terms and we immediately
recognise that it is unlikely that a solution of Schrödinger’s eigenvalue-eigenfunction
equation can be found, even for this, the most simple of molecules. Therefore, if the
theory is to be applicable, some way, or ways, of simplifying the problem must be found.
Such methods have been found and the story of the theory of the chemical bond since
1926 is one of finding approximate methods that enable us to draw out the essence of
the quantum-mechanical description, even when we are very far from finding an exact
solution of Schrödinger’s equation. The fact we are unable to solve Schrödinger’s equation
‘head-on’ so to speak is by no means a disaster as two eminent theoretical physicists,
Eugen P. Wigner and Frederick Seitz, recognised in 1955. Their opening lines in a review5

of the theory of the cohesion (bonding) in metals read as follows:

‘If one had a great calculating machine, one might apply it to the problem of solving the Schrödinger
equation for each metal and obtain thereby the interesting physical quantities, such as the cohesive
energy, the lattice constant and similar parameters. It is not clear, however, that a great deal would
be gained by this. Presumably the results would agree with the experimentally determined quantities
and nothing vastly new would be learned from the calculation. It would be preferable instead to
have a vivid picture of the behaviour of the wave functions, a simple description of the essence of
the factors which determine cohesion and an understanding of the origins of variation in properties
from metal to metal.’

If we replace the words metal, cohesive energy and lattice constant by molecule,
binding energy and bond length respectively, then this statement applies equally well to
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the quantum-mechanical study of molecules. We now have ‘great calculating machines’
which give us much assistance in the application of quantum mechanics, but we are still
unable to solve Schrödinger’s equation in most cases of chemical interest. Wigner and
Seitz’s criteria remain as valid today as they were in 1955, and we shall bear them very
much in mind in this chapter. And so to our first simplifying approximation.

6.3 THE BORN–OPPENHEIMER APPROXIMATION

Max Born and J. Robert Oppenheimer (1904–1967) were among the first to consider the
problem of applying Schrödinger’s new equation to molecules. They recognised that the
mass of the proton is 1836 times that of the electron and that the nuclei therefore move very
much more slowly than the electrons. Because of this it should not be necessary to treat
both types of particle in exactly the same manner as the terms in our Hamiltonian operator
above require (compare Equation (6.2.1) with Equation (6.2.2) and Equation (6.2.4) with
Equation (6.2.5)). In 1927 they showed with a rigorous mathematical analysis that only
a very small error is introduced into the calculation of the electronic energy for any
particular internuclear distance (bond length) if the nuclei are held stationary at the bond
length in question. This removes the two nuclear kinetic energy terms (Equation (6.2.1))
from the Hamiltonian and the internuclear repulsion becomes a simple constant which
can be added in at the end. The calculation can then be repeated for a number of bond
lengths and a graph of bond length against energy plotted in order to find the minimum
in the curve and the associated equilibrium bond length (Re).

The type of graph we expect to obtain by this process is shown in Figure 6.3. On the
right of the figure, where R is large, the curve of energy against R is horizontal. This is
the region of two non-bonded hydrogen atoms where a change of the internuclear distance
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makes no difference to the electronic energy, which is simply that of the two hydrogen
atoms. The energy at this point is −27.210 eV, as explained in Section 6.1.

If a stable molecule is to be formed, there must be a decrease in energy as we move
towards smaller values of R and this process will continue until the mutual repulsion of
the nuclei and of the electrons begins to make itself felt and the energy begins to rise
again; normally quite steeply. The energy difference between the minimum at Re and the
horizontal curve at large R is De and the whole curve can be constructed by calculating
the electronic energy of two hydrogen atoms at a series of values of R. The fact that we
are able to proceed in this way, i.e. the fact that the Born–Oppenheimer approximation is
such an excellent one, has a significance which extends far beyond our present task and
touches every aspect of chemistry. One of the most significant advances in chemistry in
the 20th century was the way in which we now think of molecules as three-dimensional
spatial entities. The concept of molecular shape and structure is now fundamental to our
understanding of the way in which molecules interact and react chemically, and these
properties are also recognised to be vital to advances in subjects such as materials science
and molecular biology. But if the Born–Oppenheimer approximation could not be made
and the nuclei and electrons in a molecule had to be treated even-handedly, then the
motions of the two sorts of particles would be inextricably entwined. And there would
then be no way in which we could draw the complex structural formulae upon which
we so much rely and which are nothing more than representations of the equilibrium
positions of the nuclei of the molecule. If the Born–Oppenheimer approximation was not
possible, then there would also be no such thing as structural chemistry as we know it!

Vitally important though it is, the Born–Oppenheimer approximation still leaves us
with a lot of work to do. The Hamiltonian still contains seven terms:

Ĥ = −h2(∇2
1 + ∇2

2 )

8π2m
− e2

4πε0

[
1

rA1
+ 1

rB1
+ 1

rA2
+ 1

rB2
− 1

r12
− 1

RAB

]
(6.3.1)

and a direct solution of the Schrödinger equation is still impossible.
At this juncture we recall the discussion, in Section 4.9, of the problem of calculating

an observable quantity for a system which is not in an eigenstate of the appropriate
operator. According to Equation (3.9.2), a mean or expectation value of the energy which
we require can be found for a normalised trial wave function (�) using the equation:

E =
∫∫

�∗Ĥ� dv1 dv2 (6.3.2)

Note that, since we now have two electrons to consider, we have to integrate over the
three spatial coordinates of both; a total of six integrations. This is not a trivial calculation!
But, although we have the Hamiltonian operator, we have no wave function. How can
we proceed?

6.4 HEITLER AND LONDON: THE VALENCE BOND (VB) MODEL

In the first successful calculation of the energy of a covalent bond, Walter Heitler
(1904–1981) and Fritz London (1900–1954) proposed that an approximate wave function
could be obtained from our knowledge of the wave functions of the hydrogen atom in
the following manner. We first suppose that our two hydrogen atoms are far apart with
electron 1 in φA, the normalised 1s atomic orbital around nucleus A, and electron 2 in φB,
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the 1s orbital around nucleus B. The wave function, ψ , for this system of two separated
hydrogen atoms will be:

ψ = φA(1) · φB(2) (6.4.1)

Note that the two 1s functions are combined as a product because each is a probability
function and the probability of two events taking place is the product of the probabilities
of each of the individual events taking place.

Now imagine that the two atoms move close enough together to form a bond. Then we
might assume, to a first approximation, that the above wave function remains valid. This
is what Heitler and London suggested; but with one important addition. When the two
atoms form a bond the electrons occupy a common region of space and can no longer
be thought of as confined to one particular nucleus. Furthermore, it is fundamental to the
quantum theory that electrons are indistinguishable. Thus, the alternative wave function:

ψ = φB(1) · φA(2) (6.4.2)

is equally suitable, and for a correct description of the molecule both are required:

�vb = N{φA(1) · φB(2) + φB(1) · φA(2)} (6.4.3)

We should also note that when the two hydrogen atoms are brought together so that
the electrons occupy a common region of space, then the Pauli principle requires that the
spins of the electrons must be paired and the above wave function represents the interac-
tion of two hydrogen atoms with opposite electron spins. The inter-relationship between
the spin and the spatial distribution of electrons raises many extremely important ques-
tions but, fortunately, we need only the spatial parts of the wave functions for our present

Table 6.1 A summary of some of the calculations on the hydrogen molecule

Type of wave function De
a

Re
b

/eV /J · 10−19 /pm

Simple valence bond (Z = 1) 3.14 5.03 86.9
Simple molecular orbital (Z = 1) 2.68 4.29 85.0
VB with Z = 1.166 3.78 6.06 74.3
MO with Z = 1.197 3.49 5.59 73.2
VB + polarisation (Z = 1.17, γ = 0.123) 4.02 6.44 74.0
χ(covalent) + λχ(ionic) (λ ≈ 0.25) 4.05 6.49 74.9
Best calculation without explicit inclusion of

electron correlation
4.27 6.84 74.0c

James and Coolidge; 13-term function 4.72 7.56 74.0
Kolos and Roothaan; 50-term function 4.7467 7.6047 74.1d

Experimental values 4.7468 7.6048 74.1
±0.0007 ±0.001

aDissociation energy per molecule
bEquilibrium bond length
cCalculated for this value of R only.
d In 1968, Kolos and Wolniewicz reported a calculation using a 100-term function.
Generally, but not always because of the heavy calculations involved, each successive, improved calculation
incorporates the improvements made in earlier work. An extensive review of the early calculations on the
hydrogen molecule may be found in the paper by A.D. McLean, A. Weiss and M. Yoshimine, Rev. Mod. Phys.,
32, 211 (1960).
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purposes so, for the moment, we postpone the additional complication of spin. One aspect
of the space-spin problem is explored in Box 6.4 and the subject is discussed more thor-
oughly in Section 11.5. The factor N has been introduced to normalise the wave function
Equation (6.4.3) (Box 6.1). Inserting the wave function �vb into Equation (6.3.2) enabled
Heitler and London to calculate the expectation value of the energy, E, and by varying R,
to find an energy minimum and a value for the equilibrium bond length of the hydrogen
molecule. The calculated energy of 3.14 eV and bond length of 86.9 pm do not compare
very well with the experimental values of 4.74 eV and 74.1 pm (Table 6.1). However, the
result represented an enormous advance on the previous position and, moreover, it was
immediately clear how the wave function could be refined, thereby improving the result.
But before we consider the possible improvements we should introduce another form of
wave function, a concept which was suggested by Friederich Hund (1896–) and Robert
Sanderson Mulliken (1896–1986) among others.

6.5 HUND AND MULLIKEN: THE MOLECULAR ORBITAL
(MO) MODEL

Hund and Mulliken approached the problem of finding a suitable wave function for H–H
in a rather different way. The solutions of Schrödinger’s equation for the hydrogen atom,
the atomic orbitals, may be regarded as regions of space which can be occupied by one
or two, but not more, electrons. Hund and Mulliken suggested that one might envisage
similar regions of space surrounding not one but two (or more) nuclei. These they called
molecular orbitals and for the hydrogen molecule they suggested the following form:

ψmo = N′{φA + φB} (6.5.1)

There are important points to be made about this wave function. The factor N′ is again
a normalising constant (Box 6.1). The atomic orbital functions are the normalised 1s func-
tions of nuclei A and B as before; but note that there is, as yet, no mention of the electrons.
It is for this reason that we have a sum of the two functions rather than a product. At this
stage we are concerned merely to establish a form for the molecular orbital which we
shall later populate with two spin-paired electrons. As with the Heitler–London function,
the Hund–Mulliken function (Equation (6.5.1)) is an approximation. The justification for
its form is solely that we know that the functions φA and φB are the exact atomic orbitals
an electron occupies when it is in the region of a single hydrogen nucleus, remote from
all other atoms. Hund and Mulliken’s function simply assumes that this remains the case
when two such atoms approach to within bonding distance. The calculation will show just
how valid this assumption is. We must now introduce the electrons into our molecular
orbital. Both can be accommodated in the one orbital if they have opposite spins and
we write:

�mo = ψmo(1) · ψmo(2) (6.5.2)

The calculation with the Hund and Mulliken function gives a binding energy of 2.68 eV
and a bond length of 85.0 pm (Table 6.1). This result is markedly inferior to that of Heitler
and London, but the molecular orbital method of obtaining a wave function has proved to
be one of the most fruitful concepts in the application of quantum mechanics to chemical
problems, as we shall see.
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6.6 IMPROVING THE WAVE FUNCTIONS

The results of the early calculations were very encouraging, but it was clear that improve-
ments were required and directions which these should take were rapidly recognised. The
first improvements suggested for both were the same and they are important not only
because they give better numerical results for the calculation of the H–H binding energy,
but also for the physical insight which they bring to the problem. But before we embark
upon a brief description of that work we need to address an important problem: what is
the criterion by which we shall judge the improvement, or lack of it?

The object of the calculation is to determine the energy of the hydrogen molecule which
lies markedly lower than the simple calculations predict, i.e. the calculated value of De is
smaller than the experimental value. It seems natural, therefore, to suggest that the lower
our calculated energy the better the wave function. But is there not a danger that we
might choose a wave function that predicts an energy lower than the experimental value,
and what would such a result imply? Fortunately, this dilemma will not trouble us. A
theorem known as the variation theorem, which is proved and applied to another problem
in Appendix 2, shows that no legitimate wave function for any quantum-mechanical
problem can give an energy which is less than the true lowest energy eigenvalue of the
system which it describes. Therefore, we can modify our MO and VB wave functions in
any reasonable way, confident that the closer we get to the experimental energy the better
is our calculation and the wave function used.

6.6.1 The value of Z

In the isolated hydrogen atom the electron moves under the electrostatic attraction of a
single nucleus, but in the molecule it moves in the field of two nuclei. Though it may not
feel twice the attractive force which it does in the atom, on account of the screening effect
of the other electron and the fact that the two nuclei are not coincident, it is, nevertheless,
to be expected that an electron will be drawn in more closely to the two nuclei than it is
in the atom. How can this be allowed for in the wave function?

The algebraic expression for the normalised 1s atomic orbital (AO) of the hydrogen
atom is (Appendix 5):

φ = 1√
π

(
Z

a0

) 3
2 · exp

(−Zr

a0

)
(6.6.1)

Here, a0 is the Bohr radius, r is the distance between the electron and the proton and Z
represents the charge on the nucleus in units of the charge on the proton. In the isolated
hydrogen atom Z = 1. It was suggested by S.C. Wang that the increase in the attraction
to the nuclei felt by electrons in the hydrogen molecule as opposed to the hydrogen atom
implied an increase in the value of Z, which would have the effect of drawing the AOs φA

and φB a little closer around their respective nuclei. In 1928 detailed calculations showed
that increasing Z did indeed produce improved values of De and Re (Table 6.1) and the
best values of Z were found to be 1.166 and 1.197 for the VB and MO wave functions
respectively.

6.6.2 Polarisation

In 1931, N. Rosen noted that the presence of another nucleus at the side of each 1s AO
would be expected to distort that AO from the pure spherical shape it would have in
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Figure 6.4 Polarisation of the hydrogen 1s AO by addition of 2pz

an isolated atom. He proposed that this effect could be allowed for by building a VB
or MO wave function from a composite atomic wave function centred on each nucleus.
The major contributor to the function would be the 1s AO as before, but there would be
a small addition of a 2p AO pointing in the direction of the other nucleus. Neglecting
normalising factors and choosing the z-direction as the internuclear axis, the polarised
atomic function, φ′, would be of the form:

φ′ = [φ1s + γφ2pz ] (6.6.2)

γ is simply a number which, in accordance with the variation theorem, is to be varied
until the lowest energy (greatest binding energy) is found. Because orbitals have a phase,
the positive combination of a 1s and a 2pz orbital produces a function which has a larger
electron probability in the positive z-direction than in the negative. Thus, the electron
density is no longer spherically symmetrical with respect to the nucleus but is polarised
in the positive z-direction which is just what we require. The distortion is illustrated in
Figure 6.4 for γ = 0.15. The other H atom can be polarised in the negative z-direction
by forming the negative combination of 1s and 2pz. Rosen carried out a calculation based
on the VB wave function plus polarisation and found the improved values of D0 and Re

shown in Table 6.1. The best value of γ was 0.123 (1.5 % of φ2pz ) for Z = 1.17.

6.7 UNIFICATION: IONIC STRUCTURES
AND CONFIGURATION INTERACTION

The improvements in the wave function suggested by Wang and Rosen have a very clear
physical basis in the mutual electrostatic attraction of positive and negative charges. They
show us that, even in the realms of quantum mechanics, simple electrostatic reasoning can
still be applied with very beneficial results. In fact, as Hellmann and Feynman indepen-
dently proved, we require Schrödinger’s equation to determine the electron distribution
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in a quantum-mechanical system but once we have that distribution we can calculate the
potential energy using classical electrostatics.

However, in spite of the great success of the theory thus far, we are still some way from
the level of agreement between theory and experiment which we require to prove that
quantum mechanics is the theory which interprets the chemical bond quantitatively. And
more importantly, we have two models, the MO and the VB. The two different methods
cannot be simultaneously correct unless they can be shown to be different formulations
of the same theory. In 1933 S. Weinbaum brought the MO and VB approaches together
in the following manner which, again, has a strong basis in simple physical-chemical
reasoning.

We first write out the simple VB function of Heitler and London (Equation (6.4.3)),
neglecting the normalising constants:

�vb = φA(1) · φB(2) + φB(1) · φA(2) (6.7.1)

The simple, un-normalised MO wave function (Equation (6.14)) is:

�mo = [φA + φB](1) · [[φA + φB](2)

≡ [φA(1) + φB(1)] · [φA(2) + φB(2)] (6.7.2)

It can be multiplied out in exactly the same way as the product of two brackets in
algebra giving four terms:

�mo = φA(1) · φA(2) + φB(1) · φB(2) + φA(1) · φB(2) + φB(1) · φA(2) (6.7.3)

We note that the last two terms of this function are exactly the same as those of the
VB function with the electrons in different AOs, while the first two terms have either
both electrons in the AO φA or both in φB. The physical meaning of the various terms
is clear. Those contributors to the wave function in which both AOs are occupied with
one electron each distribute the two electrons over the molecule as one would expect in
a covalent bond. The other two terms place both electrons in the region of one nucleus
so that the molecule is negatively charged at one end and positively charged at the other.
This is an ionic structure, H+–H−, and we see that the MO wave function consists of
ionic and covalent structures in equal proportions (Equation (6.7.4)):

�mo = χ(covalent) + χ(ionic) (6.7.4)

whereas the VB wave function has only covalent structures. From our knowledge of
chemistry, we do not expect ionic bonding to play a very important role in the structure
of H–H, though it may well do so in the case of a molecule such as H–F, where there
is a large difference in the electronegativities of the two atoms involved. It therefore
seems likely that the MO theory over-emphasises the importance of ionic contributions
to the bonding and it might well improve the wave function if a way could be found
of reducing the importance of these ionic terms. In the same vein, although we expect
the contributions of the ionic terms to the bonding to be small, it would improve the
VB function if we could add a small proportion of ionic structures to the purely covalent
description which we currently have. Weinbaum did this by writing the VB wave function
as a sum of covalent and ionic terms in the form:

�vb = χ(covalent) + λχ(ionic) (6.7.5)
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and varying λ to find the maximum De. The value of λ found was in the region of 0.25,
the exact figure being determined by the values of the other variable parameters involved,
i.e. Z and γ . It should be noted that this is a very heavy calculation indeed, in that the
effects of screening and polarisation have also to be considered since the values obtained
from earlier calculations cannot be taken over unchanged into a different wave function.
We saw this earlier when two different values of Z were found for the MO and VB wave
functions (Section 6.6.1).

At this point it is natural to ask what change might be made to the MO wave function
to improve it by reducing the contribution of the ionic terms. The answer lies in the
out-of-phase combination of the hydrogen 1s atomic orbitals which, as we shall see in
Section 6.9, represents a higher energy state of the hydrogen molecule. We place the two
electrons in this higher-energy MO with the two spin-paired electrons exactly as we did
in Equation (6.7.2) and write the simple, un-normalised MO wave function, �∗

mo, as:

�∗
mo = [φA − φB](1) · [[φA − φB](2)

≡ [φA(1) − φB(1)] · [φA(2) − φB(2)] (6.7.6)

It can be multiplied out in the same way as before giving:

�∗
mo = φA(1) · φA(2) + φB(1) · φB(2) − φA(1) · φB(2) − φB(1) · φA(2) (6.7.7)

We see immediately that the covalent terms now carry a negative sign so that in a
combined MO wave function, �, of the form:

� = �mo − µ�∗
mo (6.7.8)

The value of µ can be used to decrease the contribution of the ionic terms just as λ was
used in the VB wave function (Equation (6.7.5)) to increase it. The procedure whereby a
wave function is improved by the addition of another arrangement of electrons in orbitals,
i.e. another configuration, is known as configuration interaction. The VB wave function
with the addition of ionic terms and the MO wave function with configuration interaction
can be made identical with suitably chosen values of λ and µ. With Weinbaum’s work
unification was complete and the two approaches to the problem had converged, as they
must do if they are describing the same truth. But the calculated value of De was still
only 85 % of the experimental value and this was not good enough to prove that quantum
mechanics provides a quantitative description of the covalent bond. Something more was
required and it was provided by H.M. James and A.S. Coolidge who recognised the
problem of electron correlation.

6.8 ELECTRON CORRELATION

In refining the wave functions used to describe the hydrogen molecule, Rosen realised
that the presence of nucleus A would polarise (distort) the spherically symmetrical 1s
electron distribution around nucleus B and vice versa (Figure 6.4). This is essentially a
static distortion, but there is another, dynamic distortion process that is caused by the
mutual repulsion of the two electrons, which therefore move in such a way as to reduce
this repulsion. They avoid each other. This effect upon their motion is known as electron
correlation. James and Coolidge showed that this effect must be explicitly allowed for, not
just in the Hamiltonian operator as in Equation (6.3.1), but also in the wave function itself.
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In a formidable calculation, without the aid of a computer and using a wave function that
was the sum of 13 terms, they obtained De = 4.72 eV and Re = 74.0 pm. This value of
De is 99.4 % of the experimental value and this impressive result left little room for doubt
concerning the applicability of quantum mechanics to the problem of the chemical bond.

In 1960 Kolos and Roothaan repeated the James and Coolidge calculation with a
50-term function and obtained a result that agrees with experiment to within experimen-
tal accuracy (Table 6.1). In fact, the result is better than it should have been because
the Born–Oppenheimer approximation, though good, is not that good. The exceptional
agreement of theory and experiment is attributed to a fortunate cancellation of the small
errors due to the Born–Oppenheimer approximation in this particular problem. In very
recent years calculations which do not invoke the Born–Oppenheimer approximation at
all have been carried out. The results completely confirm the positive conclusions above
and today we do not doubt that quantum mechanics provides a quantitative theoretical
model of the chemical bond in all its forms.

But as Wigner and Seitz so clearly recognised, a wave function composed of 50 terms is
not a very visual thing and we need a more pictorial description of the bond. In Figure 6.5
we attempt to provide this picture. The horizontal axis of the figure runs through the two
hydrogen nuclei which are shown as two dots at ±0.70 a0. The vertical axis gives the
number of electrons that can be found within a disc of infinite radius and 1 a0 thick at right-
angles to the internuclear axis. The continuous lines are the graphs for the AOs φA and
φB centred on the two protons as they would be if there were no interaction between the
two hydrogen atoms. The area under each graph is equivalent to one electron. The dotted
line is the graph corresponding to the most simple MO wave function (Equation (6.1.14))
but multiplied by two so that the area beneath it is equivalent to two electrons and is
therefore directly comparable with the sum of the areas under the two AO plots. We see
that the electron density in the bonding MO is greater in the internuclear region than the
sum of the two AO densities. This is a direct result of the fact that the electron density is
given by the square of the wave function so that (φA + φB)2 is greater than (φA)2 + (φB)2

because of the presence of the cross-term, 2φAφB, in the former. The increased electron
density in the internuclear region draws the nuclei together and is the primary cause of the
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Figure 6.5 Electron distribution in the bonding molecular orbital of the hydrogen molecule
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H–H bond. Here again we see that, once quantum mechanics has been used to determine
electron distribution, we can understand the forces acting between the various particles
forming a molecule using classical electrostatics. Recall at this point that the data we
have plotted are drawn from the most simple MO wave function, which gives a rather
poor binding energy. Allowing for the polarisation of the basic 1s AOs and a reduction
in importance of the ionic terms, as described above, increases the difference between the
MO electron density and the sum of the two AO densities in the internuclear region and
outside it.

6.9 BONDING AND ANTIBONDING MOs

In the above interpretation of the origin of the covalent hydrogen bond we noted that,
as a result of the cross-term +2φAφB, which arises for the MO wave function (Equa-
tion (6.5.1)), there was a build-up of electronic charge between the two protons. But if
we had chosen to form a molecular orbital by taking the AO combination φA − φB, we
would have found a negative cross-term, −2φAφB, and a consequent dimunition of charge
in the internuclear region. Let us call these two possibilities ψ+ and ψ− i.e.:

ψ+ = N+{φA + φB} (6.5.1a)

ψ− = N−{φA − φB} (6.9.1)

But why should we even consider the possibility of combining the two AOs with
opposite signs, i.e. of taking the out-of-phase combination? There is more than one answer
to this question, but one of the most important is that such an MO is known from
experiment to exist. When the hydrogen molecule is irradiated with light of a wavelength
in the region of 110 nm (9 × 108 cm−1) it absorbs that light and is excited to a higher
energy state that has been shown by spectroscopic studies to be a state in which the MO
ψ+ contains one electron and the MO ψ− one electron.

A graph of the MO ψ− of the same form as Figure 6.5 is shown in Figure 6.6. We now
have a situation in which the electron density in the internuclear region is much reduced
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Figure 6.6 Electron distribution in the antibonding MO of the hydrogen molecule
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(because of the negative cross-term) compared with the sum of the two AO densities.
Indeed, since the AOs are combined with opposite phases, the electron density must be
exactly zero mid-way between the nuclei. MOs of this type are called antibonding MOs
since electrons occupying them cause the atoms to separate rather than to form a bond.
This means that molecules with electrons in antibonding orbitals are unstable and reactive
and they frequently decompose or enter into chemical reactions. The absorption of light is
the most common cause of electrons entering antibonding MOs and the chemical reactions
which then ensue are called photochemical reactions. The most important photochemical
reaction is the process of photosynthesis which takes place in green plants. Another
important, but less beneficial, one is the primary reaction in the sequence which generates
photochemical smog:

NO2(gas) + hν −−−→ NO(gas) + O(gas)

6.10 WHY IS THERE NO HE–HE BOND?

When we recognise that antibonding as well as bonding MOs exist, an explanation of the
fact that there is no helium (He–He) molecule is very clear. Consider the energy level
scheme (Figure 6.7(b)), which is qualitatively the same as that for H–H (Figure 6.7(a)),
apart from the fact that we now have four electrons to be placed in the available MOs.
Both bonding and antibonding MOs are now full and bonding and antibonding forces are
quite evenly balanced. In fact, more sophisticated calculations show that the antibonding
exceeds the bonding and no stable helium molecule can be formed.

6.11 ATOMIC ORBITAL OVERLAP

In the last section, the sign and magnitude of the cross-term generated when a MO wave
function is squared was seen to be a very important criterion in the description of a
covalent bond. A large positive term places a large electron density between the nuclei
drawing them towards it to form a bond, while a large negative term removes electron
density from between the nuclei which then have nothing to pull them together. Rather,
the mutual repulsion of their positive charges, lacking the screening of an intermediate
electron cloud, drives the nuclei apart.

The nature of the cross-term is such that it only has a value in those regions of space
where both φA and φB each have a significant value, i.e. in the region where the two
AOs overlap. For this reason we call φAφB an orbital overlap and it plays a central role
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Anti-bonding s∗ molecular
 orbital

Non-interacting H 
1s atomic orbitals

Bonding s molecular orbital
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↑↓ Anti-bonding s∗ molecular
orbital

Non-interacting He
1s atomic orbitals

Bonding s molecular orbital
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Figure 6.7 Molecular orbital energy-level schemes for H2 and He2
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in qualitative discussions of bonding in both diatomic and polyatomic molecules. Apart
from its sign, the overlap is characterised by its symmetry with respect to rotation about
the internuclear axis in the following way.

6.11.1 σ (sigma) overlap

σ overlap is cylindrically symmetrical with respect to rotation about the internuclear axis
(Figure 6.8(a)). That is, if we view the bond from one end along the internuclear axis then
a rotation of the molecule causes no apparent change in what we see. Both the positive and
the negative φAφB overlap in the hydrogen molecule are of this type and we distinguish
them by using a ∗ to indicate the antibonding overlap. We also add information about the
atomic orbitals involved in the overlap and speak of σ (1s) and σ (1s)∗ overlap or σ (1s)
bonds and σ (1s)∗ antibonds.

Cylindrically symmetrical overlap can also arise when p-AOs overlap with s-AOs
or with other p-AOs, as illustrated in Figure 6.8(a). Typical descriptions of this type
of overlap are σ (1s-2p) or σ (2p)∗. Generally, since it is strongly directed along the
internuclear axis, σ overlap produces the strongest bonds and the strongest antibonds.
That is, the decrease in energy when a σ bond is formed is larger than when other
types of bonds are formed and the increase in energy when a σ ∗ antibond is formed is
correspondingly greater.

6.11.2 π (pi) overlap

When two AOs overlap in such a way that rotation about the internuclear axis produces
a change of sign every 180◦ then the overlap is termed π overlap (Figure 6.8(b)). A

s  overlap 
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Figure 6.8 σ−, π − δ− and non-bonding AO overlap
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Figure 6.8 (continued )

good example is the overlap of two 2p-AOs which are orientated at right-angles to the
internuclear axis, as in the carbon-carbon π bond in ethene. The ∗ to denote antibonding
is also used and in ethene we have π(2p) bonding and π(2p)∗ antibonding interactions.
π(2p-3d) is a rather special case of overlap between p and d AOs which is important in
organometallic chemistry and in the phosonitrilic compounds.

6.11.3 δ (delta) overlap

If two ndxy or ndx
2−y

2 AOs with their nuclei on the z axis are brought together, face-to-
face so to speak, then they overlap in such a way that rotation about the internuclear axis
produces a change of sign every 90◦. Such overlap is termed δ overlap (Figure 6.8(c))
and we can have bonding δ(3d) and antibonding δ(3d)∗ interactions. This form of overlap
plays an important role in some metal-metal bonds, usually with n > 3.

6.11.4 Non-bonding overlap

Apart from the examples of bonding and antibonding overlap we have described above,
it is also possible for AOs to overlap in such a way that there is no interaction between
them. An example of this non-bonding overlap can be seen in Figure 6.8(d) where the
overlap of a 2s AO of atom A with a 2p AO of atom B is illustrated. The 2p AO is
orientated at right-angles to the internuclear axis and there are equal and opposite regions
of overlap between the two AOs. The bonding and antibonding interactions between them
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Table 6.2 Atomic 1s, 2s and 2p orbital overlap and bonding

The overlapping
atomic orbitals

Type of bonda Bonding or
antibonding

1s + 1s σ Bonding
1s − 1s σ ∗ Antibonding
2s + 2s σ Bonding
2s − 2s σ ∗ Antibonding
2s + 2pz σ Bonding
2s − 2pz σ ∗ Antibonding
2pz + 2pz σ Bonding
2pz − 2pz σ ∗ Antibonding
2px + 2px π Bonding
2px − 2px π∗ Antibonding
2py + 2py π Bonding
2py − 2py π∗ Antibonding
2s + 2px non-bondingb

2s + 2py non-bondingb

2px + 2py non-bondingb

2px + 2pz non-bondingb

2py + 2pz Non-bondingb

aThe internuclear axis is the z-axis.
bNon-bonding overlap does not depend upon the sign of the orbital
combination. In-phase (+) and out-of-phase (−) combinations are
both non-bonding.

cancel exactly and the total interaction between the two AOs is zero. It is important to
recognise that not all the AOs of an atom can necessarily take part in the formation of
chemical bonds or antibonds, even when their spatial distributions overlap. The possible
overlaps and bonding between 1s, 2s and 2p AOs are summarised in Table 6.2.

6.12 THE HOMONUCLEAR DIATOMIC MOLECULES
FROM LITHIUM TO FLUORINE

It is much easier to construct simple, qualitative energy-level schemes for molecules with
the MO model than with the VB. In constructing such schemes to describe the bonding in
the above molecules we must take account not only of the relative magnitudes and signs
of the overlap, but also of the relative energies of the 1s, 2s and 2p atomic orbitals of
the elements in question. The 1s always lies well below the 2s in energy and the 2s and
2p have equal energies in the case of hydrogen and move further apart as we go towards
fluorine. The situation is further complicated by the fact that, as we have seen above, 2s
and 2p AOs can interact if the latter are orientated along the internuclear axis. The most
important effect of these changes in the relative energies of the 2s and 2p AOs and the
2s-2p σ interaction is that the order of E(π1) and E(σ3) changes (Figure 6.9) and we
require two energy-level diagrams, one for the molecules lithium to nitrogen and another
for oxygen and fluorine. Coulson3 and Murrell, Kettle and Tedder6 have good discussions
of these points.

But once we have constructed suitable energy level schemes, it is very easy to determine
the electronic configurations of the molecules in question. We simply fill the MOs with the
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Figure 6.9 Molecular orbital energy-level schemes for homonuclear diatomic molecules of the
first row of the periodic table

available electrons starting with the lowest (aufbau or building-up principle) and placing
two, but not more than two, electrons (Pauli principle) in each MO. This is illustrated
for nitrogen in Figure 6.9(a) and for oxygen in Figure 6.9(b). The concept of bonding
and antibonding overlap allows us to draw conclusions about the strength of the bond
joining the two atoms. In the case of nitrogen, for example, the 1s-1s σ bonding is very
small because the two 1s AOs are very close to their respective nuclei and their overlap
is almost zero. Thus, no bonding (or antibonding) results from these four core electrons.
The σ (2s) bonding of MO σ1, is effectively cancelled by the σ (2s)∗ antibonding of MO
σ2, so no bond results from the four electrons which we place in these two MOs. The
2px-2px and 2py-2py bonding interactions produce two bonding π MOs of equal energy
(π1 degenerate) and they can accommodate four electrons. Each doubly-occupied bonding
MO constitutes one bond so we have two bonds. Finally, the last two electrons can be
placed in the bonding σ MO formed by the 2pz-2pz overlap, σ3. They provide one more
bond for the molecule with the result that we have a very strong N≡N triple bond, in
agreement with the usual description of the molecule. σ2 contains a little 2pz and σ3 a
little 2s, but the s/p mixing is small because of the large E2s/E2p energy gap.

For the oxygen molecule we proceed in the same way until we come to the point where
only two electrons remain to be placed in MOs. The MOs next in energy are a pair of
degenerate π∗ MOs (π2) and, following Hund’s rule, we must place one electron in each
of these MOs and the spins of the two electrons must be the same. The result of this
parallel orientation of two electron spins is that theory predicts that the oxygen molecule
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is paramagnetic (Section 12.2) and this is very unusual for a simple, stable molecule. But
the oxygen molecule is indeed paramagnetic and the simple and clear way in which this
result is obtained in the MO description is a very strong point in favour of the applicability
that theory. A count of bonding electron pairs minus antibonding electron pairs (the two
electrons in the two π∗ MOs each contribute half a bond) shows that the oxygen molecule
has an excess of two bonds over antibonds in agreement with the usual formulation of
the molecule as O=O.

6.13 HETERONUCLEAR DIATOMIC MOLECULES

When we seek to apply the MO theory to heteronuclear diatomic molecules we have
to consider a problem which did not arise in the homonuclear case. There, there was
never any question of the proportions of AOs involved in an MO since, by symmetry,
each atom had to contribute equally. This is not the case if the atoms are not the same
as, for example, in the hydroxyl radical, OH, which is observed spectroscopically when
hydrogen burns in oxygen. It is also formed by the photolysis of water at high altitudes
and is important in the chemistry of troposphere, i.e. the atmosphere below 10 km. The
1s AO of the hydrogen atom is able to form a bonding overlap with both the 2s and the
2pz AOs of the oxygen atom (z is the internuclear axis) and we may formulate MO wave
functions such as:

ψ = C1φH1s + C2φO2s + C3φO2pz (6.13.1)

But we do not know the relative magnitudes of the three coefficients, C1, C2 and C3,
i.e. we do not know to what degree the two atoms contribute their AOs to the MO. The
method by which the values of C1, C2 and C3 could be found was known even before the
advent of quantum mechanics since similar types of problem occur in classical mechanics.
But apart from a few small molecules and the special case of the conjugated hydrocarbons
(see Section 12.1), it was scarcely possible to solve the necessary equations before the
advent of the digital computer in the 1950s.

Nowadays, numerous computer programs for solving the problem at different levels of
approximation are available. The method employed is to use the variation method to find
the best values of the Cis by setting up the secular equations in the manner described in
detail in Appendix 2. In this particular case the measureable property, P , of Appendix 2
is the energy, E, and the associated operator is the Hamiltonian, Ĥ.

An energy-level diagram for O–H calculated with such a program for the experimen-
tally observed O–H bond length of 97.0 pm is shown in Figure 6.10. The positive lobe
of the oxygen 2pz orbital is directed towards the hydrogen atom. On the right of the
diagram the 1s AO of hydrogen is shown at an energy of −13.60 eV. On the left of the
diagram the 2s and 2p AOs of the oxygen atom are plotted at −32.30 eV and −14.80 eV
respectively. The oxygen 1s AO is not involved in the bonding and does not feature in
the diagram. In the centre of the figure the calculated energy levels of O–H are shown at
−33.39 eV, −15.85 eV, −14.80 eV (doubly degenerate) and +6.62 eV. The dots indi-
cate the filling of the available MOs with electrons. On the far right of the figure the
coefficients of the AOs, i.e. C1, C2 and C3, for each σ MO are shown. They tell us how
each AO contributes to each MO and the signs also show the bonding or antibonding
nature of the MO. Immediately beneath each coefficient its square is entered because it
is the square of the wave function which gives the electron density and the second row
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Figure 6.10 A molecular orbital energy-level scheme for the OH radical

of figures therefore reveals how the electrons are distributed in that particular MO; if it
contains any.

Let us first consider the MO of lowest energy; σ1, E = −33.39 eV. The major con-
tributor with a coefficient of +0.889 is the oxygen 2s AO and hydrogen 1s also plays a
part with a coefficient of +0.212. The contribution of oxygen 2pz is too small to concern
us. Note that the orbital is bonding, because the two AO contributors overlap in phase,
and of σ type. We place two of our seven electrons in this MO.

The MO next in energy (σ2, E = −15.85 eV) involves the same three AOs but the
oxygen 2pz now plays by far the most important role. Note that the oxygen 2s-hydrogen
1s overlap is antibonding while the oxygen 2pz-hydrogen 1s overlap is bonding. The last
is by far the greater and dominates so that the MO is bonding in total. But it is important
to observe that, where many AOs are involved, both bonding and antibonding interactions
can be found within the same MO.

The next two MOs, the degenerate pair of π symmetry at E = −14.80 eV, are non-
bonding MOs. The π-type oxygen 2px and oxygen 2py AOs have zero overlap with the
σ -type hydrogen 1s AO and there is no interaction between them. Consequently these
two oxygen 2p AOs are found in the molecule with an unchanged energy of −14.80 eV.
Their AO coefficients are each 1.0. Since seven electrons are available to fill the MOs of
O–H (the oxygen 1s electrons being omitted from the diagram), the last three electrons
must be placed in these two orbitals, of which one will be only half-full. The unpaired
electron makes the O–H radical paramagnetic and very reactive.

The highest MO (σ3) is very high in energy (E = +6.62 eV) and strongly antibonding
in all its overlaps. If electrons find their way into this MO, by absorbing light for example,
the molecule becomes even more reactive.
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In order to indicate, in a simple manner, the way in which the various AOs contribute
to the MOs lines connecting AOs and MOs are frequently drawn, as in Figure 6.10.
Occasionally lines of differing thickness or dotted lines are used to indicate greater or
smaller AO contributions.

6.14 CHARGE DISTRIBUTION

A further piece of interesting information can be obtained from the results of an MO
calculation. From the atomic orbital coefficients for each occupied MO and the calcu-
lated overlap integrals the distribution of the electrons throughout the molecule may be
calculated. In the present example of the O–H radical it is found that the seven valence
electrons are distributed such that 6.48 of them are on the oxygen atom and 0.52 on the
hydrogen.‡ Thus, the hydrogen carries a partial positive charge of approximately +e/2
and the oxygen a partial negative charge of −e/2, where e is the charge on the proton.
This type of analysis of the distribution of the electrons within the molecule is usually
termed Mulliken population analysis, after R.S. Mulliken who first introduced the idea.

6.15 HYBRIDISATION AND RESONANCE

The fact that a description of the electronic structure of a molecule is usually easier in
terms of the MO rather than the VB model stems from the fact that in the former we
leave all consideration of the electrons and their spins until the final step–the filling of the
MOs with electrons. In the VB model, on the other hand, we form our trial wave function
from atoms complete with their electrons, which have to be unpaired in their atomic
orbitals so that they can pair with unpaired electrons on the other reacting atom(s). In
Sections 6.15 and 6.16 we introduce the concepts of hybridisation and resonance, which
arose from this requirement for complete atoms with unpaired electrons and form an
important part of the VB model.

6.15.1 Hybridisation: Pauling 1931

Linus Carl Pauling (1901–1994) was the greatest chemist of the 20th century. During a
long career he made momentous contributions to chemistry and was also active in world
affairs. He was awarded the Nobel Prize for Chemistry in 1954 and the Nobel Peace Prize
in 1963. The concept of hybridisation, which he put forward in 1931, is more important
in the VB theory than in the MO, as we shall see in Section 6.15.2. But we can readily
appreciate the need for such an idea, even within the MO theory. The construction of
MOs for H–H is very simple since we must always have equal contributions from the
two hydrogen atoms and there are only two hydrogen 1s AOs to be considered. When
we seek to form MOs for molecules which have 2s and 2p valence AOs many new
problems present themselves, even when just two identical atoms are to be combined, as
we have seen in Section 6.12. If the atoms to be combined are different, and especially

‡ This statement means that each electron spends 6.48/7 or ≈93 % of its time in the vicinity of the oxygen atom and 0.52/7
or ≈7 % of its time in the vicinty of the hydrogen atom.
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if there are more than two, the problem of choosing suitable combinations of AOs can
be very complicated indeed. Consider the three MOs of O–H. Two AOs of oxygen, the
2s and the 2pz, are always involved, albeit sometimes in a rather unequal measure. But
they both play a very significant role in the MO of highest energy with very nearly
equal contributions from each. This observation leads to a potential simplification in the
construction of MOs. Rather than consider the oxygen 2s and oxygen 2pz AOs separately,
we first make combinations of them of the forms:

φ+ =
√

1
2 (φ2s + φ2pz) (6.15.1a)

and

φ− =
√

1
2 (φ2s − φ2pz) (6.15.1b)

These orbitals are called hybrid atomic orbitals and a contour diagram of φ+ is shown
in Figure 6.11. φ− has exactly the same form but the larger lobe is directed along −z.
Each hybrid orbital is much enhanced in one direction and is therefore particularly suited
to bonding interaction with the AOs of a second atom lying in that direction. In this view,
the lowest σ MO (�σ ) will be the combination of φ+ with hydrogen 1s, i.e.:

�σ =
√

1
2 (φ+ + φ1s) = 1

2 (φ2s + φ2pz) +
√

1
2φ1s (6.15.2a)

There will also be a strong antibonding interaction between φ+ and H1s corresponding
to the wave function �σ

∗:

�σ
∗ =

√
1
2 (φ+ − φ1s) = 1

2 (φ2s + φ2pz) −
√

1
2φ1s (6.15.2b)
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The other hybrid (φ−) points away from the hydrogen atom and will therefore play
little part in the bonding to that atom, i.e. it will be a non-bonding orbital. Thus, we
have simplified our thoughts about the bonding in O–H by reducing the problem to
one of the interaction of a single hybrid orbital (φ+) rather than two atomic orbitals,
φ2s and φ2px . An energy level scheme for O–H constructed with hybrid oxygen AOs is
shown in Figure 6.12. This scheme is purely qualitative and no attempt has been made
to obtain numerical values for the energy levels, for reasons which will be made clear in
Section 6.15.5.

The correspondence between the calculated MO scheme in Figure 6.10 and the one
constructed with hybrid AOs is not particularly good in this case, since the assumption
that the 2s and 2pz AOs of the oxygen atom contribute equally to the two hybrids is
a very poor one for the two lower MOs. Close inspection of the AO coefficients in
Figure 6.10, or their squares, shows that the oxygen atom contribution to the bonding
MO (σ1) is entirely oxygen 2s while the contribution to the non-bonding MO (σ2) is
almost exclusively oxygen 2p. This illustrates a weakness of the hybrid orbital approach
to chemical bonding, but it has the great advantage that we can construct an energy-
level scheme, quite literally, ‘on the back of an envelope’. Furthermore, the use of hybrid
AOs leads to very specific predictions concerning molecular geometry, as we shall see
in more detail in Section 6.15.3. For the moment we note that the formation of a hybrid
AO usually leads to an AO that points strongly in a particular direction in space and
is therefore very well suited to overlap with the AOs of a second atom which lies in
that direction, while the overlap with the AOs of an atom in any other position is much
diminished.

Oxygen hybrid − H1s
antibonding MO

Oxygen hybrid
non-bonding MO

Oxygen hybrid − H1s
bonding MO

½(O2s + O2p) − √½H1s

½(O2s + O2p) + √½H1s

√½(O2s − O2p)

Orbital phases:  positive negative

Figure 6.12 Molecular orbital energy-level scheme for the σMOs of O–H using sp hybrid oxygen
orbitals
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6.15.2 Hybridisation and the valence bond theory

Recall the essential difference between the ways in which the simplest trial wave function
for the hydrogen molecule was constructed using the MO and the VB theories. In the MO
theory, the form of a molecular orbital was first determined (as the sum of two hydrogen
1s AOs) and the two electrons were then placed in that MO with their spins paired. In the
VB theory, however, the two hydrogen atoms, complete with their electrons, were brought
together in such a way that their spins paired. The hydrogen molecule is exceptional in
that a fair approximation to the molecular wave function can be obtained, by either the
MO or the VB method, using only two AOs. In almost all other molecules more than two
AOs are involved in the bonding of two or more atoms. It is quite easy to extend the MO
theory to embrace a large number of AOs, but this is not true of the VB theory where
we need to find a single electron in an AO on one combining atom which can be paired
with another unpaired electron occupying an AO on another combining atom. (We require
a singly occupied AO because we must pair electrons to form bonds.) Furthermore, we
normally require a hybrid orbital on at least one of the combining atoms because we need
to direct the orbital very specifically towards the other atom if we are to form a strong
bond. But in atoms the electrons, following the aufbau (building-up) and Pauli principles,
occupy the orbitals in pairs with opposed spins. Thus, the first step in a VB description
of the chemical bonding in a polyatomic molecule is the formulation of a set of singly
occupied hybrid AOs for the atoms involved. The classic and most important example of
this is the description of the bonding between carbon and hydrogen and between carbon
and carbon in the hydrocarbons.

6.15.3 Hybridisation of carbon AOs

In Section 6.15.1 we noted briefly that the formation of hybrid AOs has many implications
for molecular geometry and it is useful, therefore, to review very briefly the major features
of the geometry of the hydrocarbons, which any theory should reflect, before we proceed
to discuss the AO hybridisation in these compounds.

Type 1: The carbon atom is bonded to four other atoms arranged at the corners of a
tetrahedron with the carbon atom at the centre. The bond angles at the carbon
atom are very close to the tetrahedral angle of 109.5◦. Examples are methane
and the higher saturated hydrocarbons.

Type 2: The carbon atom is bonded to three other atoms and all four atoms lie in a plane
with bond angles at the carbon atom of approximately 120◦. Examples are ethene
and the aromatic hydrocarbons.

Type 3: The carbon atom is bonded to two other atoms and the bond angle at the carbon
atom is 180◦. Ethyne is the best example of this type of bonding.

The carbon atom in its state of lowest electronic energy has the configuration
(1s)2(2s)2(2p)2 where, in accordance with Hund’s rule, the two 2p electrons occupy
different 2p AOs with parallel spins. The carbon atom has only two unpaired electrons
and we might therefore expect that it would form just two bonds. Furthermore, since any
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two p AOs are orientated at right-angles to each other we might expect that these two
bonds would enclose an angle at the carbon atom of approximately 90◦. These predictions
are totally at variance with the major features of hydrocarbon structure outlined above.
If we are to form four bonds we must, in a VB description, first generate four unpaired
electrons. There is one obvious way of doing this and that is to promote one of the 2s
electrons to the vacant 2p AO. This promotion requires energy. But if it leads to more and
stronger bonds then the energy of the molecule finally formed will be that much lower,
i.e. the molecule will be more stable, and the investment of energy will have been worth
while. The experimental observation of compounds of Type 1, and theoretical calculations
prove that the overall energetics of the process are favourable.

But the promotion of a 2s electron to a 2p AO is not of itself sufficient to explain the
tetrahedral geometry of Type 1 compounds. In fact, in the case of methane for example,
the carbon atom configuration (1s)2(2s)1(2px)1(2py)1(2pz)1 might be expected to produce
three identical C–H bonds directed along the x, y and z axes and one different bond with
no particular directional characteristics. But, experiment shows that methane has four
identical C–H bonds with H–C–H angles of 109.5◦. Clearly, something more is required.

Since the geometry of methane is tetrahedral, it is clear that the strongest C–H bonds
are formed from hybrids with enhanced electron densities along four tetrahedral directions.
Figure 6.13 shows a cube in which the three cartesian axes pass through the centre point
of the faces and we place a carbon atom at the centre of the cube, which is also the origin
of the coordinate system. If we now place four hydrogen atoms at alternate corners of
the cube we have a model of the methane molecule. The hydrogen atom 1 (H1) at +x,
+y, +z, for example, is identically placed with respect to the three carbon 2p orbitals
and a combination of all three 2p AOs in equal proportions (2px + 2py + 2pz) must, by
symmetry, produce a hybrid orbital directed along the line C–H1. A hybrid AO directed
towards H2 can be formed by the combination −2px − 2py + 2pz. And similarly for
H3 and H4. Since the 2s AO is spherically symmetrical it has no influence upon the
directional properties of the hybrid AOs, but we must use it since we need four hybrid
AOs in total and these can only be constructed from an equal number of unhybridised
AOs. We therefore have to fulfil the following requirements for our hybrid AOs:

• The four hybrid AOs must ‘consume’ all the four 2s and 2p AOs of the carbon atom;
no more and no less.
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Figure 6.13 The methane molecule with the four hydrogen atoms (1 − 4) arranged at the corners
of a cube centred at the carbon atom.
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• The resulting hybrid AOs must point to the corners of a tetrahedron, i.e. they must
contain the 2p AOs with the appropriate signs as indicated for H1 and H2 above.

• Apart from their direction in space, all the hybrid AOs must be exactly the same, i.e.
they must each contain the same proportions of 2s and 2p AOs.

• Each hybrid AO must be normalised to one.

The above requirements are satisfied by the hybrids:

ψ1 = 1
2 {φ2s + φ2px + φ2py + φ2pz} (6.15.3a)

ψ2 = 1
2 {φ2s − φ2px − φ2py + φ2pz} (6.15.3b)

ψ3 = 1
2 {φ2s − φ2px + φ2py − φ2pz} (6.15.3c)

ψ4 = 1
2 {φ2s + φ2px − φ2py − φ2pz} (6.15.3d)

Hybrid AOs of this form are usually known as sp3 hybrids since they are composed of
one quarter s and three quarters p AOs. The proof that they are orthogonal and normalised
is given in Box 6.2 and a contour plot is shown in Figure 6.14(a). The hybrid AOs are
clearly highly directional and in a VB calculation of the methane molecule one electron
would be placed in each hybrid AO and combined with the singly occupied 1s AO of
the hydrogen atom to which it is directed. The interaction with hydrogens at the other
corners of the tetrahedron would be neglected as a first approximation.

The bonding in hydrocarbons of Type 2 geometry can be interpreted in terms of hybridi-
sation in a similar way. Consider the ethene molecule (Figure 6.15). All six atoms lie in
the xy-plane so the carbon 2pz AO plays a role different from that of the 2px and 2py.
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The carbon 2s, 2px and 2py are combined to form hybrid AOs according to the following
equations:

ψ1 = (1/
√

6){√2φ2s − φ2px + √
3φ2py} (6.15.4a)

ψ2 = (1/
√

6){√2φ2s − φ2px − √
3φ2py} (6.15.4b)

ψ3 = (1/
√

3){φ2s + √
2φ2px} (6.15.4c)

Hybrids of this form are called sp2 hybrids because they are composed of one third s
and two thirds p AOs. They are directed towards the corners of an equilateral triangle and
are therefore ideally suited for overlap and electron pairing with atoms lying in a plane
and subtending bond angles of 120◦. They are also orthogonal and normalised. The 2pz

AO of the carbon atom is not involved in the hybrids and therefore remains available for
bonding with 2pz AOs on adjacent carbon atoms. Whereas the overlap of the sp2 hybrid
AOs gives rise to σ bonding, the overlap of the 2pz AOs on adjacent carbon atoms results
in π bonding and the C–C bond in ethene is a double bond with σ and π contributions.
The most important example of this type of bonding is found in the aromatic hydrocarbons
of which benzene is the simplest representative. In π bonding the electrons are not tightly
confined in the internuclear region as they are in σ bonding. The nature of π bonding
is such that the electrons involved in it lie above and below the plane of the molecule
and are able to move over all the carbon atoms forming the molecule. These delocalised
electrons are responsible for the many properties of the aromatic hydrocarbons which
distinguish them from the sp3-bonded, saturated hydrocarbons. For example, almost all
organic dyes are based upon aromatic hydrocarbons and the fact that they absorb light in
the visible region of the spectrum, rather than at higher energy in the ultra-violet, is due
to the presence of π-electron MOs.

Ethyne (Figure 6.16) is a typical example of hydrocarbons of Type 3 in which the
geometry at the carbon atom is linear. The simple sp hybrid AOs:

ψ1 =
√

1
2 {φ2s − φ2px} (6.15.5a)

and

ψ2 =
√

1
2 {φ2s + φ2px} (6.15.5b)

produce bonds to the hydrogen and carbon atoms with an H–C–C bond angle of 180◦.
The remaining, unhybridised 2py and 2pz AOs on the carbon atoms form two π bonds
giving a total of three bonds in accord with our usual formulation of the C≡C triple bond
in ethyne. Since they are formed from 2p AOs at 90◦, the two π bonds are also at right
angles to each other. As in the case of Type 2 compounds, this π bonding provides a way
in which the electrons involved can be delocalised over the whole carbon-atom system if
the triple bonded carbons are linked to others as in the polyethynes. Some values of C–H
and C–C overlap integrals calculated with Slater-type AOs (Box 6.3) and hybrid AOs are
given in Tables 6.3 and 6.4.

C C HH

Figure 6.16 Ethyne
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Table 6.3 Carbon–hydrogen atomic orbital over-
lap for Slater-type carbon 2p and 2s and AOsa with
Z′ = 3.25 and a hydrogen 1s AO with Z′ = 1.2

r(C–H) = 109.0 pm r(C–H) = 109.0 pm
〈H1s|C2s〉 = 0.5851 〈H1s|Csp3〉 = 0.7696
〈H1s|C2pz〉 = 0.5509 〈H1s|Csp2〉 = 0.7876

〈H1s|Csp〉 = 0.8033

aBox 6.3 Note how the overlap of the hydrogen 1s with
the carbon hybrid AOs exceeds the overlap with unhy-
bridised carbon AOs.

Table 6.4 Carbon–carbon atomic orbital over-
lap for Slater-type AOsa with Z′ = 3.25

Bond C–C C=C C≡C

r/pm 154.3 135.3 120.8b

〈2s|2s〉 0.3391 0.4301 0.5070
〈2p|2p〉σ 0.3288 0.3266 0.2931c

〈2s|2p〉 0.3640 0.4285 0.4704
〈2p|2p〉π 0.1909 0.2642 0.3334d

〈sp3|sp3〉 0.6466 0.7236 0.7539
〈sp2|sp2〉 0.6754 0.7651 0.8078
〈sp|sp〉 0.6979 0.8069 0.8704

aBox 6.3.
bThe bond lengths correspond to typical single, double
and triple carbon–carbon bonds.
cThe 〈2p|2p〉σ overlap decreases as the bond length
decreases due to the overlap of positive and negative
portions of the 2p AOs.
dThe 〈2p|2p〉π overlap increases as the bond length
decreases.

6.15.4 The choice of hybrid orbitals

The reader may regard the preceding discussion of hybridisation in hydrocarbons as a
rationalisation of the experimentally observed geometries, rather than a description of a
procedure by means of which the experimental energies and geometries may be calculated.
However, to take methane as our example, the choice of tetrahedral hybrids is simply a
rational first step, given that a set of singly occupied orbitals on the carbon atom is an
important simplification in the application of the VB theory to methane. If we choose to
use the 2s and three 2p AOs of carbon as our starting point, we would obtain exactly the
same result in the end, and it would be possible to express the molecular wave function
obtained in exactly the same form as that determined from an initial assumption of sp3

hybrids, but the calculation would be considerably more complicated. The final results,
ground state energy and wave function, are not determined by the starting point.

An interesting and detailed analysis of this problem, from a view-point which appears to
have been taken by few other authors, has been given by J. W. Linnett.7,8 Linnett explored
the consequences of the Pauli exlusion principle on the valence electron distribution in
atoms. An outline of his approach is given in Box 6.4. The fact that electrons of the same
spin cannot occupy the same region of space because of the Pauli principle, together with
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their mutual electrostatic repulsion, means that electrons of different spins tend to keep
together while those of the same spin keep apart. Thus, for neon, the electron distribution
of highest probability, as far as spin correlation effects are concerned, is an outer shell
consisting of four electron pairs at the corners of a regular tetrahedron.

This would also be true of the C4− ion, if it existed. Thus, when C4− binds to four
protons the strongest bonds will be formed if the protons are arranged at the corners of a
regular tetrahedron. The formation of electron-pair bonds reinforces the pairing tendency
of electrons having opposed spins. In this view, the choice of four tetrahedral sp3 hybrids
for carbon would be a natural choice, even if we did not know the geometry of methane.
These ideas do not appear to have been widely explored and this may be because a theory
of molecular geometry, apparently based purely upon electron repulsion, which leads to
essentially the same conclusions in a manner which is easier to apply, has found wider
acceptance. This approach to molecular geometry is described in detail in Section 6.17,
but it should be noted here that the concepts outlined immediately above provide the
theoretical foundation of the simpler method (Box 6.4).

6.15.5 The properties of hybrid-orbital bonds

The fact that the obvious choice of hybrid orbitals reflects so precisely the salient features
of the molecular geometry of hydrocarbons and emphasises the two-electron nature of each
identical C–H bond are the strong points of the VB theory and go a long way to explain
why concepts derived from it, resonance (see Section 6.16) for example, are so prevalent
in organic chemistry. Indeed, these points are so appealing to the chemist seeking a
quantum-mechanically based understanding of molecular structure that the hybrid orbitals
themselves can easily be elevated to a significance above their true status. This problem is
especially clear when we consider energies; and we again take methane as our example.

Because all four C–H bonds are known experimentally to be identical, and this fact
is echoed in the VB description of the molecule using four sp3 hybrids, it is tempting to
conclude that there is a four-fold degeneracy in the electronic energy levels of methane.
But if we measure the energies of the methane valence electrons using photo-electron
spectroscopy, we find a set of three degenerate energy levels at about −13 eV and a
single energy level at about −23 eV. Calculations show that the triply degenerate levels
arise from the bonding of the four hydrogen 1s AOs to the carbon 2p AOs and the single
level from the bonding between the hydrogen 1s orbitals and the carbon 2s AO. That
this should be so is immediately confirmed by a study of Figure 6.13, which shows that,
because of the high cubic symmetry, each of the three carbon 2p AOs has exactly the same
bonding interaction with the appropriate phase combination of the four hydrogen 1s AOs
while that of the carbon 2s AO is clearly different. (Figures 6.13(b) and 6.13(c) show the
orbital phases for bonding overlap between the four hydrogen 1s AOs and the carbon 2s
and carbon 2pz AOs respectively. For clarity the AOs are not shown overlapping.) The
price that we pay for the simple description of bonds and their orientation provided by
hybridisation is the loss of information on energy which use of the unhybridised carbon
2s and 2p AOs makes obvious. Hybrid orbitals, unlike atomic and molecular orbitals,
are not eigenfunctions of an energy operator and it is important to grasp this fact. But
quantum-mechanical wave functions do not have to be eigenfunctions of some operator
in order to be of value to us.
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Figure 6.17 Resonance structures of benzene (a) and the carbonate anion (b)

6.16 RESONANCE AND THE VALENCE BOND THEORY

The VB theory is also the origin of and provides the theoretical justification for the con-
cept of resonance which is very widely used in chemistry; in spite of being declared
incompatible with dialectical materialism in Stalinist Russia. Consider the familiar struc-
tural formulae for benzene (Figure 6.17(a)). The three lines that have different positions in
the two structures represent the different possible pairings of the electrons in the carbon
2pz AOs. Both of these pairing schemes are required to describe the bonding in ben-
zene in a VB calculation where the electrons, with specified spin functions, are assigned
to AOs in the first step of the calculation. The two structures are known as resonance
forms of benzene and we must be careful to recognise that they have no independent
existence. Each contributes equally to our VB description (wave function) of the bonding
in benzene. Both are essential, be it in a representation of the bonding on paper or in
the mathematical formulation of the VB wave function. (The formulation of benzene as
a ring inside a regular hexagon is more akin to an MO representation of the electronic
structure.) Resonance structures occur extremely frequently in discussions of molecular
electronic structure. In the case of the carbonate anion (Figure 6.17(b)), for example, three
structures are required to express the fact that all C–O bonds are exactly the same. This
cannot be shown with one classical valence (electron pairing) structure.

6.17 MOLECULAR GEOMETRY

Any self-respecting theory of molecular electronic structure must have the ability to
predict molecular geometry. If calculations of sufficient accuracy can be performed, then
it is only necessary to repeat the calculation of the total electronic energy of the molecule
for a variety of geometries and to determine the geometry which gives the lowest (most
negative) energy. This will be the equilibrium experimental geometry of the molecule.
But there are aspects of this apparently straightforward approach which are unsatisfactory
if we seek a widely applicable solution to the problem.

The most important difficulty arises from the required accuracy of the calculation. The
change in the total energy of a molecule which results from a small change of bond angle
will normally be less than 0.1 % of the total energy. Clearly, a very accurate and therefore
tedious calculation is required to achieve this level of accuracy for a small molecule, and
it may well be impossible for a large molecule. The practising chemist needs a theory
that can be applied more easily, and here we again recall the maxim of Wigner and Seitz
(Section 6.2). What we require is a pictorial view of a molecule from which we can draw
conclusions about its geometry and particularly its bond angles. The VB theory with its
emphasis upon the overlapping and interaction of two singly occupied AOs, one from
each of the atoms forming the bond, is better suited to this purpose than is the MO theory.
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Table 6.5 Bond angles in simple hydrides

Molecule
XH3

H–X–H angle
(degrees)

X–H
(pm)

Molecule
XH2

H–X–H angle
(degrees)

X–H
(pm)

X X
N 107.8 101.7 O 104.5 95.7
P 93.6 141.9 S 92.1 133.6
As 91.8 151.9 Se 91 146
Sb 91.3 170.7 Te 90 170.7

Consider the water molecule (H2O). Neglecting the 1s electrons, the electron configuration
of the oxygen atom is: (2s)2(2px)2(2py)1(2pz)1. Four of the six valence electrons occupy
the oxygen 2s and one of the oxygen 2p AOs (we have arbitrarily chosen the 2px) with
their spins paired and the remaining two electrons occupy the other two oxygen 2p AOs
with parallel spins and are available to form bonds. Since the two singly-occupied oxygen
AOs have their maximum electron densities directed along the y- and z-axes, the greatest
overlap and hence the strongest bond should be formed when the two hydrogen atoms
lie on those axes and form an H–O–H bond angle of 90◦. In fact, the experimentally
determined bond angle of the water molecule is 104.5◦. If the principal quantum number
2 is replaced by 3, then the argument just given also applies to the H–S–H bond angle
in hydrogen sulfide, the experimental value of which is 92.1◦. It should also apply to the
hydrides of Group 15 (5A) elements. Table 6.5 gives some examples. These results are
remarkable for such simple considerations.

6.17.1 The valence-shell electron-pair repulsion (VSEPR) model

An even simpler theory which, in its application, makes minimal appeal to the concept
of atomic orbitals was first suggested by N.V. Sidgwick and H.M. Powell in 1940 and
elaborated by R.J. Gillespie and R.S. Nyholm in 1957. It is known as the Sidgwick-Powell-
Gillespie-Nyholm or as the Valence Shell Electron-Pair Repulsion (VSEPR) model. The
valence shell electrons are those in the outermost shell of the atom and they are the only
electrons that play a significant role in the formation of chemical bonds. Sidgwick and
Powell, recognising that the valence shell of a chemically-bonded atom contained bond
pairs and lone pairs of electrons, suggested that the orientation in space of the electron
pairs, and hence of the bonds around a central atom, would be that which minimises the
inter-electronic repulsion between them. The concept which the VSEPR theory embodies,
and which was new in 1940, is the idea that lone pairs, i.e. electrons in the valence shell
but not involved in bonding, also have a very important part to play in the determination
of molecular geometry.

Sidgwick and Powell assumed that the bond pairs and lone pairs were of equal impor-
tance, but among many refinements of the theory Gillespie and Nyholm proposed that the
electrostatic repulsion between electron pairs diminishes in the sequence: lone pair-lone
pair > bond pair-lone pair > bond pair-bond pair. The following interpretation of the
situation is commonly given. Since a bond pair is drawn away from the central atom
towards the atom to which it is bonded, the region of electron density associated with
such a pair lies further away from the central atom than does the corresponding region
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of a lone pair and consequently the repulsion exerted by it is less. However, recent the-
oretical work has thrown doubt upon this explanation and it appears that the effect is
more subtle. But the order given above certainly appears to apply and it provides a useful
guide to molecular geometry. We must hope that further work will clarify the basis of
this valuable idea which is very easy to use.

We can illustrate the VSEPR approach to molecular geometry by again considering
the shape of water. We focus our attention upon the region of space around the central
oxygen atom. The valence shell of oxygen, i.e. the shell with principal quantum number
equal to 2, contributes six electrons to this region and each hydrogen contributes its single
valence electron. Therefore, there are eight electrons, i.e. four pairs, of valence electrons
surrounding the oxygen atom. If the four pairs of electrons were all exactly the same, their
mutual repulsion would be at a minimum if they were located in four regions directed
towards the corners of an imaginary tetrahedron centred on the oxygen atom. The H–O–H
bond angle would then be 109.5◦. But the electron pairs are not all identical; we have
two bond pairs and two lone pairs and the unequal repulsion between these pairs will
result in an increase of the angle between the two lone pairs, which we cannot measure,
and a decrease in the H–O–H angle in accord with observation. Since the sulfur atom
also has six valence electrons (n = 3) exactly the same reasoning can be applied to the
hydrogen sulfide molecule so that both water and hydrogen sulfide are predicted to be
bent with H–X–H angles less than the tetrahedral angle (Table 6.5). In ammonia (NH3),
with three bond pairs and one lone pair, we predict that the lone pair-bond pair repulsions
will reduce the H–N–H bond angle below the tetrahedral angle, as indeed we observe
(H–N–H in ammonia = 107.8◦).

A number of effects may contribute to the larger decrease of the H–X–H angle from
109.5◦ when X is a second-row element. If we compare water and hydrogen sulfide, the
two bonding electron pairs are further apart in hydrogen sulfide than in water because of
the greater size of the sulfur atom and because the smaller electronegativity of the sulfur
atom allows the electrons to move away towards the hydrogen atoms; note the longer
S–H bond length in Table 6.5. This permits a reduction in the H–S–H angle relative to
the H–O–H angle. If we refine our argument by introducing the concept of the sort of
orbitals which the electron pairs might occupy then, since our starting point is a tetrahedral
arrangement, we naturally think of sp3 hybrid orbitals. In this light we might then argue
that the tendency to hybridisation of the s and p orbitals is less in sulfur than in oxygen
so that the S–H bonds are formed with sulfur 3p AOs giving H–S–H angles of 90◦. This
is equivalent to saying that the promotional energy required to hybridise the 3s and 3p
AOs of sulfur cannot be recovered in the formation of two S–H bonds.

Finally, we should repeat the warning above. Although these explanations of the trends
in bond angle appear plausible we are dealing with very subtle effects and our views may
require modification in the light of further research on this subject. Linnett’s ideas, which
focus more attention on electron spin (Section 6.15.4 and Box 6.4), may play an important
role in a full understanding of the VSEPR model.

6.17.2 The VSEPR model and multiple bonds

The VSEPR theory treats multiple bonds in much the same way as it does single bonds
regarding the two or three electron pairs of a double or triple bond as a single super-pair.
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As an example we may compare the geometries of carbon dioxide and sulfur dioxide. In
the case of carbon dioxide (CO2), the carbon atom contributes four valence electrons and
we must assume that the oxygen atoms each contribute two since oxygen is invariably
divalent. (Speaking of the bonding in the usual way, we would say that the carbon atom
forms one σ bond and one π bond with each oxygen atom.) Thus, the valence electron
region surrounding the carbon atom contains eight electrons, which we group into two
super-pairs. Their mutual repulsion is minimised by an O–C–O angle of 180◦ and carbon
dioxide is predicted to be linear. In the case of sulfur dioxide (SO2), we have ten electrons,
which we group into two super-pairs (SPs) plus a lone pair. The arrangement of lowest
energy for three groups of electron pairs is basically one in which they are disposed at

Table 6.6 VSEPR predictions of molecular shapes and examples

Electron
pairs

Basic
shape

BPs LPs Example

2 linear 2 0 two BP’s at 180◦; linear BeF2

3 trigonal 3 0 three BP’s at 120◦; trigonal BF3
3 ” 2 1 two BP’s at <120◦; bent SnCl2

a

4 tetrahedral 4 0 four BP’s at 109.5◦; tetrahedral CH4
4 3 1 three BP’s at <109.5◦; trigonal bipyramidal NH3
4 ” 2 2 two BP’s at <109.5◦; bent OH2

5 trigonal 5 0 trigonal bypyramid of BP’s PCl5
5 bipyramidal 4 1 LP in equatorial position SF4
5 3 2 two equatorial LP’s; “T”-shaped ClF3
5 2 3 three equatorial LP’s; linear XeF2

6 octahedral 6 0 six BP’s at 90◦; octahedral SF6
6 5 1 square pyramid IF5
6 ” 4 2 two axial LP’s; planar XeF4
6 ” 3 3 implies a central atom with 9 electrons
6 ” 2 4 implies a central atom with 10 electrons

Linear Trigonal Tetrahedral
ABA = 180◦ ABA = 120◦ ABA = 109.5◦

A AB A

A

B A

A

A

A

A

B

Trigonal-bipyramidal Octahedral
ABA = 90◦; EBE = 120◦ ABA = 90◦

A

A

B

A

E

E A

A

A

A

A

A

B

aIn the vapor phase, not in the solid state.
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Table 6.7 VSEPR interpretation of molecular shapes

Molecule Valence electrons Charge Total electrons Number of pairs Molecular shape
ABn A nB BPs SPs LPs

CH4 4 4 0 8 4 0 0 tetrahedral
[NO2]+ 5 4 +1 8 0 2 0 linear
[ICl2]+ 7 2 +1 8 2 0 2 benta

[NO2]− 5 4 −1 10 0 2 1 bentb

[ICl2]− 7 2 −1 10 2 0 3 linearc

O3 6 4 0 10 0 2 1 bentb

PCl5 5 5 0 10 5 0 0 trigonal bipyramidal
[NO3]− 5 6 −1 12 0 3 0 trigonal
[CO3]2− 4 6 −2 12 0 3 0 trigonal
XeF4 8 4 0 12 4 0 2 square planard

[ClO4]− 7 8 −1 16 0 4 0 tetrahedral
[SO4]2− 6 8 −2 16 0 4 0 tetrahedral
[PO4]3− 5 8 −3 16 0 4 0 tetrahedral

aA tetrahedral disposition of four electron pairs with two lone pairs.
bA trigonal disposition of three electron pairs with one lone pair.
cThe three lone pairs occupy the axial positions of the trigonal bipyramidal array of five electron pairs.
dThe two lone pairs occupy the axial positions of the octahedral array of six electron pairs.

120◦ to each other. The observed O–S–O angle of 119.5◦ suggests that the bond pair-bond
pair and lone pair-bond pair repulsions are very similar in this molecule. This might be
rationalised by observing that the repulsion due to the bond pairs has increased because
they are now superpairs of four electrons each. Be that as it may, there is a very positive
prediction of a linear carbon dioxide molecule and an angled sulfur dioxide, and this is
the major feature that we have to explain. Tables 6.6 and 6.7 summarise the application
of the VSEPR model.

6.18 COMPUTATIONAL DEVELOPMENTS

The advent of digital computers and their ever-increasing power has had an enormous
impact on the calculation of molecular properties by quantum-mechanical methods. At
first, apart from special problems such as H2, calculations on molecules of chemical
interest could only be carried out if all the electron-repulsion integrals and many others
were treated as parameters which were not calculated but determined by comparison of
theory and experiment and inserted into the calculation at the outset. Notable advances
were made with these semi-empirical MO methods and they are only now decreasing in
importance as the ab-initio MO methods, in which all integrals are calculated from scratch,
are becoming increasingly feasible. The corresponding developments in VB theory did
not take place since it proved to be much more difficult to implement the VB theory
computationally, largely on account of the requirement that the electron spins, correctly
paired, be introduced at the start of the calculation rather than at the end; compare the
two treatments of the hydrogen molecule (Sections 6.4 to 6.7). But notable advances in
the VB theory and coding it were made in the last two decades of the 20th century and
ab-initio VB calculations for chemically interesting molecules are now reported on a
regular basis. Concurrently with the rise of ab-initio VB calculations a new kid appeared
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on the block, density functional theory (DFT), which takes a very different approach to
the problem of calculating the physical properties of molecules, but appears to hold out
great promise in terms of quality of results and computational efficiency.

The bibliography, to which I add some comments here, contains a few leading ref-
erences to this extensive and still rapidly advancing field of chemical research. Levine9

has a long chapter which provides an excellent introduction to MO methods, both semi-
empirical and ab-initio, and to DFT. The book by Hinchliffe10 is a compact introduction
to ab-initio MO methods. Two volumes in the Elsevier series, Theoretical and Compu-
tational Chemistry, comprise advanced treatments of modern DFT11 and VB12 work by
multiple authors. Gerratt, a pioneer of the modern VB methodology, and some colleagues
have written a chemistry-orientated review13 of that theory.

This is also an appropriate place to note an exciting and very recent experimental
advance14 because the new technique has provided, for the first time, an image of a
molecular orbital which can be directly compared with theoretical results. Molecular
orbitals are essentially a mathematical construct (Section 6.5), but the fact that so many
experimental measurements can be quantitatively interpreted by MO methods has given us
reason to believe that they represent much more than that. Now, experiments using laser
pulses on the femto-second (10−15 s) time scale have provided an image of the highest
occupied MO (HOMO) of nitrogen (N2) (σ3 in Figure 6.9) which compares remarkably
well, quantitatively, with a similar image produced by an ab-initio MO calculation. It
should be emphasised that the image is of the MO itself, not of the square or electron
density, and we see the expected pattern of phases. The authors believe that it will be
possible to obtain such images on a time scale which will allow us to follow the change
in electron distribution during a chemical reaction – an insight into the very essence of
chemistry.
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The following three books illustrate well the application of the quantum-mechanical theory of
chemical bonding to a very wide range of real chemical problems, in ways which emphasise the
pictorial rather than the mathematical aspects of the theory.
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BOX 6.1 Normalisation of the valence bond (VB) and molecular orbital (MO)
wave functions for the hydrogen molecule

The VB wave function to be normalised is:

� = N[φA(1)φB(2) + φB(1)φA(2)]

If the wave function is normalised then the value of the normalising constant N
must be such that:∫∫

�2 dv1 dv2 = N2
∫∫

[φA(1)φB(2) + φB(1)φA(2)]2 dv1 dv2 = 1.0

⇒ N2
∫∫

{[φA(1)φB(2)]2 + [φB(1)φA(2)]2 + 2[φA(1)φB(2)]

· [φB(1)φA(2)]} dv1 dv2 = 1.0

⇒ N2

{∫
φ2

A(1) dv1

∫
φ2

B(2) dv2 +
∫

φ2
B(1) dv1

∫
φ2

A(2) dv2

+ 2
∫

φA(1)φB(1) dv1

∫
φB(2)φA(2) dv2

}
= 1.0

But, by definition, φA and φB are normalised 1s atomic orbitals of the hydrogen
atom, i.e.: ∫

φ2
A(1) dv1 =

∫
φ2

B(1) dv1 = 1.0

Therefore, the first two terms of the expression above are each equal to 1.0 and
we have:

N2{2 + 2
∫

φA(1)φB(1) dv1

∫
φB(2)φA(2) dv2} = 1.0

Since all electrons are identical, the two integrals in the above equation are equal
and they can only have a value in the region of space where the atomic wave functions,
φA and φB , both have non-zero values. If we draw boundary surfaces for the two AO’s
separated by the H–H bond length (Figure B6.1.1) then we see that this condition is
only fulfilled where the two AOs overlap. For this reason, integrals of this kind are
called overlap integrals.

The overlap integral is usually denoted by S:

S =
∫∫∫

φA(1)φB(1) dv1
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fA fB

Figure B6.1.1 The overlap of two 1s atomic orbitals

Table B6.1.1 The values of S ≡ 〈1s|1s〉 as a function of the orbital exponent (Z) and
the inter-nuclear distance (R) in atomic units

R (a0)

Z 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.9 0.921 0.882 0.838 0.791 0.742 0.692 0.641
1.0 0.905 0.858 0.807 0.753 0.697 0.641 0.586
1.1 0.887 0.833 0.775 0.714 0.652 0.592 0.533
1.2 0.868 0.807 0.742 0.675 0.608 0.544 0.483
1.3 0.848 0.780 0.708 0.636 0.565 0.498 0.435

where the triple integral sign reminds us that this is an integration over all three spatial
co-ordinates of electron 1. Some values of the integral are given in Table B6.1.1. We
therefore have:

N2(2 + 2S2) = 1.0 ⇒ N = {2(1 + S2)}− 1
2

The MO wave function to be normalised is:

� = N′{(φA + φB)(1)}
If we call the normalisation constant N′, then for a normalised MO we must have:∫

�2 dv1 = N′2
∫

{(φA + φB)(1)}2 dv1 = 1.0

⇒ N′2
∫

{φ2
A(1) + φ2

B(1) + 2φA(1)φB(1)} dv1 = 1.0

⇒ N′2{2 + 2S} = 1.0

Therefore:

N′ = {2(1 + S)}− 1
2
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BOX 6.2 Proof that the four sp3 hybrid AOs of Equation (6.15.3) are normalised
and orthogonal

NORMALISATION

�1 = 1
2 {φ2s + φ2px + φ2py + φ2pz}

∴
∫

�2
1 dv = 1

4

∫
{φ2s + φ2px + φ2py + φ2pz}2 dv

(For the sake of simplicity we omit the electron in these equations.)
When the above wave function is squared we find terms of two types:

a) squared functions such as φ2
2s and φ2

2px

b) cross-terms such as φ2s · φ2px and φ2px · φ2py

Since AOs of the same atom, i.e. φ2s, φ2px, φ2py and φ2pz , are orthogonal and nor-
malised, the four squared terms each give 1.0 and the 12 cross-terms each contribute
zero: ∫

φ2
2s dv = 1.0 and

∫
φ2s · φ2px = 0.0

Therefore ∫
�2

1 dv = 1
4 · 4 = 1.0

QED.

ORTHOGONALITY
∫

�1�2 dv = 1
4

∫
{[φ2s + φ2px + φ2py + φ2pz ] · [φ2s − φ2px − φ2py + φ2pz]} dv

As before, all the cross-terms give zero. For the four squared terms we have:

1
4

∫
{φ2

2s − φ2
2px

− φ2
2py

+ φ2
2pz

} dv = 1
4 {1 − 1 − 1 + 1} = 0

QED.

BOX 6.3 Slater-Type Orbitals (STOs)

The vast majority of the calculations of molecular wave functions, VB and MO,
proceed from a basis set of atomic orbitals. As we have seen (Section 5.7), the
radial functions of accurate self-consistent-field orbitals for an atom with more than
one electron cannot be expressed in analytical form and would therefore be totally
impracticable in general use. Furthermore, since the electron cloud surrounding each
atom must undergo considerable changes when bonds are formed, approximate atomic
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orbital functions may provide as suitable a starting point as more accurate ones. One
of the earliest proposals for the construction of suitable analytical atomic radial func-
tions for calculations on molecules was made by Slater in 1930 (J.C. Slater, Phys.
Rev., 36, 57 (1930)) and these functions have been extensively used, both in their
original forms and with some modifications. The original forms have been adopted
for the calculation of atomic orbital overlap in this chapter.

Slater first made a radical simplification of the radial function by proposing a
functional form which had no nodes as opposed to the n − 1 radial nodes found in
the exact wave functions (see Chapter 5, Section 2.1 and Box 5.3). He proposed the
normalised functions:

�nlm =
{

(2Z′/n)2n+1

(2n)!

}1/2

rn−1 exp(−Z′r/n) Ylm(θ, φ)

where Z′ is an effective nuclear charge for a single electron in a central field resulting
from the nuclear charge and the repulsion of the remaining electrons in the atom. The
other symbols have the meanings explained in Chapter 5.

From an analysis of atomic spectral data, Slater obtained a set of rules for calcu-
lating the screening, S, of the electrons which is then subtracted from the true nuclear
charge, Z, to give Z′ (in units of +e). S is calculated according to the following
rules:

1. The electrons are divided into groups. Each electron in a group has the same
shielding constant which differs from that of the electrons in other groups. The
groups are 1s; 2s + 2p; 3s + 3p; 3d; 4s + 4p; 4d; 4f; 5s + 5p; etc.

2. The screening constant, S, is then given as a sum of the individual contributions,
s, which are calculated as follows:
(a) For any electron outside the shell† under consideration s = 0.0.

(b) For each other electron in the group considered s = 0.35, except for the 1s
where s = 0.30.

(c) If the group considered is an s + p group then s = 0.85 for each electron in
the next inner shell† and s = 1.00 for all electrons further in.

(d) If the group is a d or f group then s = 1.00 for every electron inside it.

The following examples illustrate the calculation of Z′ for the occupied orbitals
of the iron atom, (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)6 (4s)2.

First form the required electron groups: [1s]2; [2s + 2p]8; [3s + 3p]8; [3d]6; [4s]2.

Z′ (1s) = 26 − (1 × 0.30) = 25.70

Z′ (2s) = 26 − (7 × 0.35) − (2 × 0.85) = 21.85 = Z′ (2p)

Z′ (3s) = 26 − (7 × 0.35) − (8 × 0.85) − (2 × 1.00) = 14.75 = Z′ (3p)

†A shell is the set of atomic orbitals having the same principal quantum number, n.
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Z′ (3d) = 26 − (5 × 0.35) − (18 × 1.00) = 6.25

Z′ (4s) = 26 − (1 × 0.35) − (14 × 0.85) − (10 × 1.00) = 3.75

Because the functions have no radial nodes, STOs provide a very poor description
of the inner regions of the atom. However, they are a much better representation of
the outer atomic regions, and since these are the regions of most significance for
chemical binding STOs have been widely used in theoretical chemistry, though their
use is now in decline. The Slater rules also require that the higher principal quantum
numbers, n, of 4, 5 and 6 be replaced by 3.7‡, 4.0 and 4.2‡ respectively and the
quality of the STOs deteriorates significantly as n rises. One way of improving on
STOs is to use a combination of two of them, each with a different value of Z′, to
represent one atomic orbital. Orbitals of this type are known as double-zeta functions.

‡The normalisation factor in the STO formula given above does not apply for non-integral values of n.

BOX 6.4 Electron spin correlation: An example following J.W. Linnett1

Our purpose here is to demonstrate in more detail the way in which the Pauli principle,
by allowing only wave functions which are antisymmetric with respect to electron
exchange, exerts an important influence upon the energies of states having different
multiplicities and also upon the orientation of electron distributions in space. Suppose
that we have an atom with a closed 1s electron shell, which we ignore, and one
electron in each of the 2s and 2pz orbitals, i.e. configuration 1s22s12p1

z. In Section 4.9
it is shown that if the two electrons have opposed spins the resulting state is a singlet
state and if their spins are parallel we have a triplet state and that the spin wave
functions of the states with Sz = 0 are:

�spin(singlet) = (1/
√

2){α(1)β(2) − β(1)α(2)}
and

�spin(triplet) = (1/
√

2){α(1)β(2) + β(1)α(2)}.
When the electrons are exchanged the sign of the singlet function changes while

that of the triplet remains the same so that the singlet spin function is antisymmetric
with respect to electron exchange while the triplet is symmetric. But the Pauli prin-
ciple requires that the total electronic wave function be antisymmetric with respect
to electron exchange, so to fulfil that requirement the symmetric spin function must
be combined with an antisymmetric space function, and vice versa. This is how spin
functions determine space functions and hence electron repulsion energies and the
subject is explored in more detail in Section 11.5.

The appropriate space functions are of very similar form and we choose the sym-
metric function for the singlet and the antisymmetric function for the triplet:

�space(singlet) = (1/
√

2){2s(1)2pz(2) + 2pz(1)2s(2)}
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and

�space(triplet) = (1/
√

2){2s(1)2pz(2) − 2pz(1)2s(2)}
We must now give the individual 2s and 2pz functions a more specific form.

The 2s is purely a function of r since it is spherically symmetrical and the 2pz is a
function of r multiplied by an angular part of cos θ (Appendix 5). Therefore, we write
2s = fs(r) and 2pz = fp(r) · cos θ and assume that the functions are normalised. It
is not necessary to make the functions more exact, they already contain the essential
elements as we shall see. Since we are concerned with electron repulsion, we only
need to study the space functions which can now be written:

�space(singlet) = (1/
√

2){fs(r1) · fp(r2) · cos θ2 + fp(r1) · cos θ1 · fs(r2)}
and

�space(triplet) = (1/
√

2){fs(r1) · fp(r2) · cos θ2 − fp(r1) · cos θ1 · fs(r2)}
When the two electrons are at the same radius, r′ say, the expressions above

become:

�space(singlet) = (1/
√

2)fs(r
′) · fp(r′){cos θ2 + cos θ1}

and

�space(triplet) = (1/
√

2)fs(r
′) · fp(r

′){cos θ2 − cos θ1}
The electron probability is proportional to the square of the wave function which

is at a maximum for the singlet function when θ1 = θ2 = 0 or when θ1 = θ2 = π .
Conversely, the maximum of the triplet function occurs when θ1 = 0 and θ2 = π

or vice versa. Thus, if the electrons in the 2s and 2pz orbitals have a high probability
of being at the same distance from the nucleus then, for the singlet state, the spin
correlation places the electrons on the same side of the nucleus whereas, for the triplet
state, the most likely position for the electrons is on opposite sides of the nucleus. The
hydrogen atom radial electron density functions illustrated in Figure 5.3 show a very
marked overlap of the 2s and 2p functions so that we may expect spin correlation
to play an important role in the determination of molecular geometry. Furthermore,
it is clear that the interelectronic repulsion of the electrons is lower in the triplet
state than in the singlet. This illustrates the underlying reason for Hund’s rule and
invites us to enquire further into the theoretical foundations of the VSEPR method
(Section 6.17.1).

In Section 11.5 we show that the electron-repulsion energy of the singlet and triplet
states defined above are given by:

Etriplet = J2s,2p − K2s,2p and Esinglet = J2s,2p + K2s,2p

where J2s,2p = 〈2s(1)2p(2)|1/r12|2s(1)2p(2)〉
and K2s,2p = 〈2s(1)2p(2)|1/r12|2p(1)2s(2)〉.

The electron repulsion J2s,2p is called the Coulombic repulsion and represents the
classical repulsion of two electrons, one in the 2s orbital and the other in the 2p.
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The repulsion K2s,2p is called the exchange repulsion and makes a contribution to
the interelectronic repulsion which has no classical counterpart. Though K2s,2p itself
is a positive quantity, the fact that it appears with a negative sign in the expression
for Etriplet should alert us to its non-classical nature. It represents the repulsion of
the two electrons in the overlap regions, i.e. electron density 2s(1)2p(1) repelling
density 2s(2)2p(2). Such a term can only arise in quantum mechanics where electron
probability is given by the square of a function, not by the function itself. The presence
of such a term in the expression for repulsion energy immediately confronts us with
a very fundamental question. Are we justified in talking about electron-pair repulsion
in molecules in purely classical terms?

Calculations by J. Lennard-Jones and J.A. Pople2 throw some light upon that
question. They used Slater-type orbitals (Box 6.3) to calculate the values of J2s,2p

and K2s,2p, in atomic units, for the beryllium atom and found the values shown in
Table B6.4.1. Z′ is the effective nuclear charge.

The data in the first row of the table show that the non-classical term is about
22 % of the classical term which provides some justification for our neglect of it when
we apply the VSEPR theory. The values in the second row are also relevant to this
discussion, but they first require further explanation. From the 2s and 2p orbitals we
can form normalised hybrid orbitals (called equivalent orbitals by Lennard-Jones and
Pople) of the forms:

h+ = (1/
√

2){2s + 2pz} h− = (1/
√

2){2s − 2pz}
and if we calculate J and K with these hybrids we obtain the results in the second
row of the table. We first note that the total electron repulsion energy, J − K , is
constant, independent of the change to hybrid orbitals, which is quite generally true
as Lennard-Jones and Pople2 prove. The formulation of the electron distribution in
terms of hybrids reduces the non-classical term from 22 % to 2.4 % of the classical.
Clearly, in this case, a classical view of electron repulsion is more justified when
hybrids rather than the 2s and 2p orbitals themselves are used. The same is true in
other situations, e.g. four sp3 hybrids as opposed to a 2s and three 2p orbitals, though
the difference is less marked. The reason for the decrease in the magnitude of K

when hybrid orbitals are used is the reduction of the overlap electron densities due
to the localised and directional character of the hybrids. It is fortunate, therefore,
that the localised groups of bonding or lone-pair electrons which we envisage when
we apply the VSEPR method are just those electron distributions in space which we
also associate with hybrid orbitals. Though it is not essential to invoke hybridisation
when applying the VSEPR theory, it does appear that hybrid orbitals make a classical
approach to electron repulsion more acceptable from a strictly quantum-mechanical
point of view.

Table B6.4.1 Electron repulsion integrals for Be: 1s22s12p1

Ja,b/EH Ka,b/EH (Ja,b − Ka,b)/EH

a = 2s, b = 2p 0.1816 Z′ 0.0401 Z′ 0.1415 Z′
a = h+, b = h− 0.1450 Z′ 0.0035 Z′ 0.1415 Z′
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PROBLEMS FOR CHAPTER 6

1. Use the following data to draw an energy-level diagram, similar to Figure 6.1, for the
7Li2 molecule. Calculate De.

Li −−−→ Li+ + e IE = 5.39 eV ≈ 43,473 cm−1

Li2 −−−→ Li + Li D0 = 1.03 eV ≈ 8,307 cm−1

Zero-point energy = 1
2hν = 0.022 eV ≈ 175.7 cm−1

2. P. Morse proposed that, for a diatomic molecule, the variation of the energy (E) with
internuclear distance (r) could be written:

E = De[1 − exp{β(Re − r)}]2

For Li2 Re, the equilibrium internuclear distance = 267.3 pm and β is a constant related
to the vibrational frequency (ν) of the molecule and the reduced mass (µ):

µ = m1m2

(m1 + m2)
= 3.509 a.m.u. β = 4.0617 × 10−4 · ν ·

(
µ

De

) 1
2

(The last expression gives β in cm−1 when µ is entered in a.m.u., ν in s−1 and De

in cm−1.)
Plot the Morse curve for Li2 for r = 5–160 nm using the data above. (This is

a problem where a spread sheet with a graph-plotting facility, e.g. EXCEL, is very
useful.)

3. The function φ is a normalised 1s atomic orbital.

φ = 1√
π

(
Z

a0

)3/2

· exp(−Zr/a0) a0 = Bohr radius = 52.92 pm

Illustrate the extension of the orbital into the space surrounding the atom by plotting
the function φ versus r for Z = 0.5, 1.0, 1.5. (Here, again, a spread sheet can be very
useful.)

4. Show that the sp2 hybrid orbitals (Equation (6.15.4)) are normalised, orthogonal and
orientated at 120◦ to each other. (Vector algebra, regarding a normalised p-orbital as a
unit vector along the appropriate axis, or trigonometry can be used for the orientation
problem.)

5. This problem is essentially a repeat of Heitler and London’s first VB calculation of the
binding energy of the hydrogen molecule. We work in atomic units which are much
easier to use in calculations. The energies which we determine can be easily converted
to SI energy units, if that is required.
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In a.u. the Hamiltonian (Ĥ) of Equation (6.3.1) becomes:

Ĥ = − 1
2∇2

1 − 1
2∇2

2 − 1

r A1
− 1

rB1
− 1

rA2
− 1

rB2
+ 1

r12
+ 1

RAB

You will find it useful to note that a pair of terms such as − 1
2∇2

1 − 1

r A1
or − 1

2∇2
1 −

1

r B1
constitute the Hamiltonian operator for a hydrogen atom. Therefore, if we denote

such a pair by Ĥ1s and a hydrogen 1s orbital by φA then:

Ĥ1sφA(1) = E1sφA(1)

The VB wave function (Equation (6.4.3)) is:

� = N{φA(1) · φB(2) + φB(1) · φA(2)}
where the normalising constant (N) is determined in Box 6.1.

Show that the expectation value of the energy (E) is given by:

E = 〈ψ |Ĥ|ψ〉
〈ψ |ψ〉 = J ′ + K ′

1 + S2

Where:

J ′ = 2E1s + 2Q + J + 1/RAB, K ′ = 2S2E1s + 2SQ′ + K + S2/RAB

Q = 〈φA(1)| − 1/rB1|φA(1)〉, Q′ = 〈φA(1)| − 1/rB1|φB(1)〉, S = 〈φA(1)|φB(1)〉
J = 〈φA(1) · φB(2)|1/r12|φA(1) · φB(2)〉 and

K = 〈φA(1) · φB(2)|1/r12|φB(1) · φA(2)〉
Show that if we set 2E1s = 0.0 then the difference in energy (�E) between the
molecule and two hydrogen atoms is:

�E = 2Q + 2SQ′ + J + K

1 + S2 + 1

RAB

Show that the trial wave function, ψ ′ = φA(1) · φB(2), is normalised and gives an
expectation value for the energy of:

E
′ = 〈ψ ′|Ĥ|ψ ′〉

〈ψ ′|ψ ′〉 = J ′

Using the data in the following table, plot graphs of E and E
′

against internuclear
distance, RAB. The result shows that the binding energy obtained without allowing for
electron ‘exchange’ is about one-sixth of that obtained with the full wave function. But
the wave function ψ ′ is quite unacceptable since it contradicts the fundamental theo-
retical requirement that both terms, φA(1) · φB(2) and φA(2) · φB(1), must be included
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because electrons are indistinguishable.

RAB/a0 S Q/EH Q′/EH J/EH K/EH

0.25 0.98973 −0.96735 −0.97350 0.61986 0.60974
0.75 0.91521 −0.81270 −0.82664 0.58259 0.50684
1.25 0.79386 −0.65225 −0.64464 0.52313 0.36479
1.50 0.72517 −0.58369 −0.55783 0.49034 0.29684
1.65 0.68322 −0.54682 −0.50893 0.47061 0.25940
1.75 0.65527 −0.52398 −0.47788 0.45760 0.23612
2.00 0.58645 −0.47253 −0.40601 0.42597 0.18416
2.50 0.45831 −0.39057 −0.28730 0.36839 0.10662
3.00 0.34851 −0.33003 −0.19915 0.31980 0.05851
3.50 0.25919 −0.28454 −0.13589 0.27994 0.03076
4.00 0.18926 −0.24958 −0.09158 0.24755 0.01560
4.50 0.13609 −0.22207 −0.06110 0.22119 0.00760
5.00 0.09658 −0.19995 −0.04043 0.19957 0.00318

Find the expectation energy, E
′′
, for the wave function ψ ′′, which represents an

unstable state of H2:

ψ ′′ = N′′{φA(1) · φB(2) − φA(2) · φB(1)}
Plot E

′′
against R and compare the curve with your results for ψ and ψ ′.

6. Consider the molecule shown in the figure:

H

H H

1

32 g

b b

Hydrogen atoms 2 and 3 of the H3 molecule are equally bonded to atom 1 but the
bond between H1 and H2 is not necessarily of the same strength and this is reflected
in the values of the interaction elements of the energy (Hamiltonian) matrix:

〈φ1|Ĥ|φ2〉 = 〈φ1|Ĥ|φ3〉 = β, but 〈φ2|Ĥ|φ3〉 = γ

where φn is a hydrogen 1s AO on atom n. Note that β and γ are negative quantities
because they represent bonding interactions which reduce the energy of the molecule
vis-à-vis the isolated atoms. If we arbitrarily fix the zero of the energy scale by setting
the on-diagonal elements of the matrix to α we have:

Ĥ φ1 φ2 φ3

φ1 α β β

φ2 β α γ

φ3 β γ α

Find the eigenvalues of this matrix (Appendix 3). (If you form rows and columns
of φ1, (φ2 + φ3)/

√
2 and (φ2 − φ3)/

√
2 you will find that the matrix blocks out into a

1 × 1 and a 2 × 2 matrix.)
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Two extreme forms of the molecule may be envisaged; one (the linear molecule)
in which γ ≈ 0 and the other in which γ = β (the equilateral triangle). Determine the
eigenvalues for these two species.

Use a spread sheet to plot a correlation diagram relating the molecular orbital
energies over the whole range of relative values of β and γ . (It is convenient to set
α = 0.0, β = −10.0 and γ = 0.0 to −10.0 in steps of 1.0.)

If the energies of the molecular orbitals of an H3 species were measured and found
to be −4.2 eV, +0.8 eV and +3.4 eV:
(a) Where on the correlation diagram should the molecule be placed?
(b) What would the relative values of β and γ be?
(c) What would the absolute values of β and γ be?

[Answers: (a) γ = −3; (b) γ/β = 0.3; (c) β = −2.67, γ = −0.8]





Chapter 7

Bonding, Spectroscopy and
Magnetism in Transition-Metal
Complexes

7.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.1 Historical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2 The crystal field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3 The electronic energy levels of transition-metal complexes . . . . . . . . . . . . 187

7.3.1 The weak-field scheme for d2 (example of 3F in an octahedral field) . 189
7.3.2 The weak-field scheme for d2 (inclusion of 3P) . . . . . . . . . . . . . . . 190
7.3.3 The d2 energy levels for weak, strong and intermediate

octahedral fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.4 The strong-field scheme for d2 in an octahedral field . . . . . . . . . . . 193
7.3.5 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4 The electronic spectroscopy of transition-metal complexes . . . . . . . . . . . . 196
7.5 Pairing energies; low-spin and high-spin complexes . . . . . . . . . . . . . . . . . 197
7.6 The magnetism of transition-metal complexes . . . . . . . . . . . . . . . . . . . . . 197
7.7 Covalency and the ligand field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.8 Bibliography and further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Problems for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.0 INTRODUCTION

The colours and magnetic properties of the complex compounds of the transition-metal
ions presented a great challenge to the theory of the chemical bond and, although the
problem is now well understood in principle, quantitative interpretation of the many subtle
effects continues to engage the theoretician, not least on account of their significance
in biology and technological applications. One thinks, for example, of transition-metal
catalysts, the biological functions of metallo-proteins, magnetic storage devices and up-
converters. Historically, the interpretation of these phenomena has been by means of ligand
field (LF) theory, but density functional theory and Xα scattered-wave methods are now
seeing increasing application. The words ‘ligand field theory’ convey to the practitioners
a range of methods, varying widely in their sophistication, of applying effectively the
same theory. The essentials of the theory are its origins in crystal field (CF) theory,
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182 Transition-Metal Complexes

extensive and sometimes advanced use of group theory and the treatment of the interaction
between metal ion and ligand as covalent as well as electrostatic. A brief outline of the
developments which have led to the present state of the art will make these points clearer;
but first a comment on the use of group theory and matrix diagonalisation.

The theory of the transition-metal ions relies heavily upon group theory and many
excellent descriptions of the subject which incorporate the required group theory are
available.1 It therefore appears superfluous to include group theory here and little or no
appeal to it will be made in the following chapter. The use of group-theoretical symbols
to identify electronic states should present no problems; the reader who has no knowledge
of the subject may regard these symbols simply as labels.

In what follows we shall also make frequent appeal to the concept of determining
energies by setting up and diagonalising the Hamiltonian matrix for a problem. Readers
unfamiliar with this idea should read Appendix 3 before going beyond Section 7.1.

7.1 HISTORICAL DEVELOPMENT

In 1929, J. Becquerel proposed that the central metal ion in a transition-metal complex
was subject to an electrostatic field originating from the surrounding ligands. In the same
year, Hans Albrecht Bethe (1906–) used symmetry and group theory to place Becquerel’s
idea on the firm theoretical foundation we now call CF theory. Just three years later, in
1932, John Hasbrouck Van Vleck (1899–1980) demonstrated the power of the new theory
when he interpreted the paramagnetism of the first-row transition-metal complexes and
the rare earths with good quantitative accuracy. Van Vleck and his co-workers made many
other seminal contributions to the development of the theory and its applications over the
following decade.

A valence bond approach to the problem was introduced in the 1940s by Linus Pauling,
but it proved less successful than the CF theory in the interpretation of electronic spectra
and we shall not pursue it further here. It is described in detail in Pauling’s masterpiece,
The Nature of the Chemical Bond.2

With the growth of the molecular orbital (MO) theory in the second half of the 20th
century, the time appeared ripe to tackle the most obvious shortcoming of the CF theory.
The interaction between ligand and central metal ion is clearly more than a purely elec-
trostatic one; there is also a significant element of covalency which should be amenable
to a MO treatment. The range of theories which grew from this seed carry the collective
name of ligand field theory.

7.2 THE CRYSTAL FIELD THEORY

Many of the complexes of the transition metal ions are very symmetrical. Bethe showed
how the symmetry could be elegantly exploited by means of group theory to determine the
way in which a purely electrostatic field from the surrounding ligands could remove the
five-fold degeneracy of the partially occupied metal d orbitals. As noted above, there are
many excellent accounts of this subject.1 As an illustration of the quantitative effect of a
crystal field on five d orbitals we shall calculate the matrix elements of an octahedral field.

An electron with charge −e and polar coordinates r, θ and φ and a point charge −q
at rq, θq and φq is shown in Figure 7.1. The atomic nucleus is at 0,0,0 and the distance
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d
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Figure 7.1 An electron in the field of a negative electrostatic charge

between the point charge and the electron is d. We wish to calculate the energy of each of
the five d-electron distributions in the electrostatic field of an array of six such charges,
−q, located at the vertices of a regular octahedron. We shall arrange our results in the form
of a matrix, i.e. we shall calculate the matrix elements of the crystal-field Hamiltonian,
Ĥcf. For the single charge in Figure 7.1 we require:

〈ψn′l′m′ |qe/d|ψnlm〉 = qe〈ψn′l′m′ |1/d|ψnlm〉
for all possible combinations of two d-orbitals. The brackets, 〈| and |〉, imply integra-
tion over the electronic coordinates r, θ and φ. We use m rather than ml to reduce the
complexity of the notation where there is no possibility of confusion.

Our first step is to express the inverse distance (1/d) in terms of the spherical harmonics
(Appendix 5). Ykα(θ, φ) describes the position of the electron, for which the co-ordinates
θ and φ can vary over their whole ranges, and Ykα

∗(θq, φq) that of the charge which is
stationary at the point rq, θq, φq. The result is:3

1

d
=

∞∑

k=0

4π

2k + 1
· rk

rk+1
q

·
α=+k∑

α=−k

Ykα(θ, φ) · Y∗
kα(θq, φq) (7.2.1)

where we have assumed that the charge is further from the nucleus than the electron at all
points of the latter’s distribution, i.e. rq is always greater than r. This is not essential but
it simplifies the present problem while retaining the essentials of the method. Inserting
the expression for 1/d , our matrix element becomes:
〈
ψn′l′m′

∣∣∣
qe

d

∣∣∣ψnlm

〉
= qe

∞∑

k=0

4π

2k + 1
· 1

rk+1
q

·
α=+k∑

α=−k

〈
ψn′l′m′ |rkYkα(θ, φ) · Y∗

kα(θq, φq)|ψnlm

〉

(7.2.3)

Because the brackets, 〈| and |〉, imply integration over the electronic coordinates r, θ

and φ, we can take Ykα
∗(θq, φq) outside the integration and write:

〈
ψn′l′m′

∣∣∣
qe

d

∣∣∣ψnlm

〉
= qe

∞∑

k=0

4π

2k + 1
· 1

rk+1
q

·
α=+k∑

α=−k

Y∗
kα(θq, φq)

〈
ψn′l′m′ |rkYkα(θ, φ)|ψnlm

〉

= qe

∞∑

k=0

·
α=+k∑

α=−k

Akα

〈
ψn′l′m′ |rkYkα(θ, φ)|ψnlm

〉
(7.2.4)
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where

Akα ≡ 4π

2k + 1
· 1

rk+1
q

· Y∗
kα(θq, φq) (7.2.5)

But each wave function, ψnlm, can be written (Section 5.4) as a product of a spherical
harmonic (Ylm(θ, φ)) and a radial part (Rnl(r)) and we can separate the radial and angular
integrations. We then have, simplifying the notation by dropping the (θ , φ) from Ylm(θ, φ):

〈
ψn′l′m′ |rkYkα|ψnlm

〉 = 〈
Rn′l′ |rk|Rnl

〉〈
Yl′m′ |Ykα|Ylm

〉 ≡ rk · �kα (7.2.6)

where rk is the expectation value of the kth power of the distance of the electron from
the nucleus and �kα stands for the angular integral. We now examine the angular integral
in detail in order to make use of symmetry and the properties of the spherical harmonics
to reduce the sums over α and k.

For d orbitals l′ = l = 2 and, as we know from Chapter 3 (Equation (3.6.1)), the com-
bination (coupling) of Y2m(θ, φ) with Y2m′(θ, φ) gives the functions Yl′′m′′(θ, φ), where
(2 − 2) ≤ l′′ ≤ (2 + 2), i.e. l′′ can only take the integer values 0 to 4. The angular integral
then reduces to a sum of terms of the form 〈Yl′′m′′ |Ykα〉 and since the spherical harmonics
are a set of orthogonal functions, it will be non-zero only for values of k of 0, 1, 2, 3
and 4.

A further property, the parity, of the integral 〈Y2m′ |Ykα|Y2m〉 can now be used to
limit the possible values of k even further. For an integral to be non-zero the integrand,
Y2m′ · Ykα · Y2m in our case, must be even. The parity of a spherical harmonic Ylm is odd
or even depending on whether its lobes change sign or retain their sign on inversion in
the origin of coordinates so that the function is odd when l is odd and even when l is
even or zero. The d orbitals (l = 2) are even (see Figure 5.6). It follows therefore, since
odd × odd = even × even = even while odd × even = odd, that when k is odd, �kα is
zero and values of k = 1 or 3 result in an integral of zero. These values of k can therefore
be neglected.

Thus our d-electron matrix element can be expressed as a sum of fifteen terms:
〈
ψn′2m′

∣∣∣
qe

d

∣∣∣ ψn2m

〉
= qe

{
A00r0�00 +

α=+2∑

α=−2

A2αr2�2α +
α=+4∑

α=−4

A4αr4�4α

}
(7.2.7)

This expression can be used to calculate the d-electron matrix elements for any arrange-
ment of charges surrounding a metal ion. Each of the surrounding charges will give a
contribution of the above form to each matrix element. The contribution from each charge
will be characterised by the different values of the Akα corresponding to the particular
values of rq, θq and φq for that charge. The values of the �kα will be unchanged.

But where the disposition of the surrounding charges is highly symmetrical the number
of terms in the summation can be reduced further by placing restrictions on the possible
values of α, as will now be demonstrated for the case of an octahedral field. An octahedral
complex with identical charges of −q at the ends of the three Cartesian axes is shown in
Figure 7.2. The relationship between the polar and Cartesian coordinate systems is shown
in Appendix 7.

Since the six charges are identical and the electron density of a d-electron wave function
(in its complex form) is cylindrically symmetrical with respect to rotation about the Z
axis, the contribution to a matrix element of the charge at +X (polar coordinates rq, π/2,
0) will be equal to that of the charge at +Y (rq, π/2, π/2). Thus, the values of the Akα



The Crystal Field Theory 185
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−Y
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Figure 7.2 An atom surrounded by an octahedral array of negative electrostatic charges

at these two positions must be equal. Since the only difference between the two positions
is in the value of φq, we need examine only that part of the expression for Akα which is
�(φq) = exp(−iαφq) = cos αφq + i sin αφq. We have:

at + X Akα ∝ �(0) = cos 0 + i sin 0

and at + Y Akα ∝ �(απ/2) = cos απ/2 + i sin απ/2

The two values of Akα can only be equal when απ /2 is equal to zero or an integer
multiple of 2π . Therefore, α = 0, ±4, ±8 . . . , and since the upper limit of |α| is 4 we
have now restricted the possible values of α to just three, 0 and ±4, giving:

〈
ψn′2m′

∣∣qe

d

∣∣ψn2m

〉
= qe

{
A00r0�00 + A20r2�20 + A40r4�40 + A4−4r4�4−4 + A44r4�44

}

Furthermore, simple evaluation shows that A44 = A4−4 for each of the four possible
values of φq(0, ±π/2, π) so that:

〈
ψn′2m′

∣∣qe

d

∣∣ψn2m

〉
= qe

{
A00r0�00 + A20r2�20 + A40r4�40 + A44r4(�4−4 + �44)

}

We are now in a position to calculate and tabulate (Table 7.1) the values of Akα and
�kα , which we need to evaluate the required matrix elements. The values of Akα can be
readily obtained by substituting appropriate values of θq and φq into Equation (7.2.5). It
is convenient to sum the columns of Akα values in the table because, for any particular
matrix element, the angular integral, �kα , is independent of the position of the charge.

In evaluating and tabulating the angular integrals, 〈Y2m′ |Ykα|Y2m〉, it is useful to recall
that the integration over φ is zero unless m + α − m′ = 0 (see Box 7.1) and, therefore,
that we have only diagonal matrix elements, except where α = ±4. By writing out the
spherical harmonics in their full algebraic forms (Appendix 5) and a rather tedious, but
straight-forward, integration (Box 7.1) we obtain Table 7.2.

It now remains to combine the results of Tables 7.1 and 7.2 to obtain the required
matrix elements. We find the following, where � ≡ 6qer−1

q and 	 ≡ qer4r−5
q .
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Table 7.1 Values of Akα for an octahedral complex

θq φq A00 A20 A40 A44

+X π/2 0 2
√

π · rq
−1 −√

(π/5) · rq
−3 (

√
π/4) · rq

−5 √
(35π/288) · rq

−5

+Y π/2 π/2 2
√

π · rq
−1 −√

(π/5) · rq
−3 (

√
π/4) · rq

−5 √
(35π/288) · rq

−5

+Z 0 0 2
√

π · rq
−1 2

√
(π/5) · rq

−3 2
√

(π/3) · rq
−5 0

−X π/2 0 2
√

π · rq
−1 −√

(π/5) · rq
−3 (

√
π/4) · rq

−5 √
(35π/288) · rq

−5

−Y π/2 −π/2 2
√

π · rq
−1 −√

(π/5) · rq
−3 (

√
π/4) · rq

−5 √
(35π/288) · rq

−5

−Z π 0 2
√

π · rq
−1 2

√
(π/5) · rq

−3 2(
√

π/3) · rq
−5 0

Sum 12
√

π · rq
−1 0 7(

√
π/3) · rq

−5 √
(35π/18) · rq

−5

Table 7.2 Values of the non-zero angular integrals for an octahe-
dral complex

k = 0 k = 2 k = 4

〈Y20|Yk0|Y20〉 1/2
√

π
√

(5/π)/7 3/7
√

π

〈Y2±1|Yk0|Y2±1〉 1/2
√

π
√

(5/π)/14 −2/7
√

π

〈Y2±2|Yk0|Y2±2〉 1/2
√

π −√
(5/π)/7 1/14

√
π

〈Y2±2|Yk±4|Y2±2〉 0 0
√

(5/14π)

The Hamiltonian matrix for the five d orbitals in an octahedral crystal field.

Ĥcf |ψ20〉 |ψ2−1〉 |ψ2+1〉 |ψ2−2〉 |ψ2+2〉
〈ψ20| � + 	 0 0 0 0
〈ψ2−1| 0 � − 2	/3 0 0 0
〈ψ2+1| 0 0 � − 2	/3 0 0
〈ψ2−2| 0 0 0 � + 	/6 5	/6
〈ψ2+2| 0 0 0 5	/6 � + 	/6

On examining the above matrix we see that the term � occurs in every diagonal
element. It represents a uniform increase in energy which all five d orbitals experience as
a result of the surrounding six negative charges. If we set this common term aside for a
moment, we find that the diagonal elements have the values 	(ψ20), −2	/3 (ψ2±1) and
	/6 (ψ2±2). The off-diagonal matrix element which connects the orbitals with m = ±2
is 5	/6 and when we diagonalise the 2 × 2 matrix we find eigenvalues of 	 and −2	/3.

The following significant results of the foregoing calculation may now be noted:

• The effect of the octahedral field is to raise the energy of all the d orbitals to a new
centre of energetic gravity at �.

• More importantly, it splits the orbital energies into two groups, one twofold degenerate
and one threefold. For the doubly degenerate (group theoretical symbol; eg), E =
� + 	 and for the triply degenerate (group theoretical symbol; t2g) E = � − 2	/3.
The energy-level splitting of 5	/3 is usually given the symbol 
 and, since it is such
common practice, we shall express energies in terms of 
 rather than 	 here. The new,
raised centre of gravity is not changed by the splitting.
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• Since there is an off-diagonal matrix element between ψ2−2 and ψ2+2 these two func-
tions are mixed in equal proportions by the crystal field to give the orbitals which
we call ψxy and ψx2−y2 . These are the one-electron eigenfunctions of the Hamiltonian
operator when it includes the octahedral crystal field.

• There is no off-diagonal matrix element connecting the two functions ψ2−1 and ψ2+1

so these functions are not mixed by an octahedral field. However, we generally find
it convenient to think of them in terms of the two mixed eigenfunctions ψxz and ψyz

which have the same energy as ψ2−1 and ψ2+1.

• The eg orbital set with energy � + 3
/5 is:

ψz2 = ψ20 and ψx2−y2 = (1/
√

2) · (ψ2−2 + ψ2+2)

• The t2g orbital set with energy � − 2
/5 is:

ψxy = (i/
√

2) · (ψ2−2 − ψ2+2), ψxz = (1/
√

2) · (ψ2−1 − ψ2+1) and

ψyz = (i/
√

2) · (ψ2−1 + ψ2+1)

• If we imagine the d orbitals in their real form (Figure 5.6) then it is easy to see,
qualitatively, why those for which the lobes point directly towards the point charges,
ψz2 and ψx2−y2 , are raised more in energy that those where the lobes point between
the charges, ψxy, ψxz and ψyz. It is far from obvious why the energies of the ψz2 and
ψx2−y2 , are raised equally, but our quantitative calculation shows that this is indeed
the case.

• In principle, an attempt might be made to evaluate the matrix elements exactly. But this
is very difficult on account of our poor knowledge of the electron distribution which
is required to evaluate the terms in r4. Furthermore, the point charge model is a very
approximate one and it is unlikely that the quantitative results obtained would justify
the effort of calculating them. The CF model is therefore used in a qualitative manner
as examples of its applications below will show.

Similar calculations can be carried out for any number and disposition of charges
around a central metal ion. The results of such calculations for equal charges placed at
the vertices of a cube, an octahedron and a tetrahedron are illustrated in Figure 7.3. Note
that the increase in the centre of gravity is directly proportional to the number of charges
so that � cube : � octahedron : � tetrahedron = 4 : 3 : 2. The splittings of the levels are
not simply related to the number of charges; 
 cube : 
 octahedron : 
 tetrahedron, are
in the ratio 8 : 9 : 4. The displacement of the triply degenerate levels (t) from the centre
of gravity is always 2
/5 and that of the doubly degenerate levels (e) is always 3
/5, so
the centre of gravity is maintained. Note however, that in the cube and the tetrahedron
E(t) > E(e) whereas in the octahedron E(t) < E(e).

7.3 THE ELECTRONIC ENERGY LEVELS
OF TRANSITION-METAL COMPLEXES

The CF theory, as we have described it above, is a one-electron theory which immediately
provides a qualitative interpretation of the fact that most transition-metal complexes are
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Figure 7.3 d-Electron energy levels fields in cubic, octahedral and tetrahedral symmetry

coloured, i.e. they absorb radiation in the visible region which lies at the low-energy
end of the electronic spectral range. For example, an aqueous solution of the Ti3+ ion
(configuration: Ar 3d1) is red and we ascribe the colour to the absorption of green light by
a transition of the single d-electron from the t2g levels to the eg in the octahedral complex
[Ti(H2O)6]3+. This idea can be extended to ions with more electrons but, as we have seen
in Chapter 5, we cannot describe the electronic spectra of atoms without considering the
effects of inter-electronic repulsion and spin-orbit coupling, and this is equally true of
ions. Furthermore, we have here the additional complication of the crystal field. That is,
the Hamiltonian operator for the problem is of the form:

Ĥ = Ĥ0 + Ĥer + ĤSO + Ĥcf

in which Ĥ0 represents the kinetic energy of the electrons on the central ion and their
attraction to the nucleus of the ion, Ĥer is the inter-electronic repulsion, ĤSO the spin-orbit
coupling and Ĥcf the crystal field. As in the case of the free atom where there was no
Ĥcf, we have to decide the order in which we apply terms 2, 3 and 4 to correct Ĥ0. It
turns out that, of the several possibilities, only three are important in practice.

In the rare earth coupling scheme, where ĤSO is large, we diagonalise the matrices of
Ĥer and ĤSO before using Ĥcf. Thus, in this case we determine the energy levels of the
free ion as exactly as possible, before considering the perturbation of those levels by the
crystal field. Problems of this type are few in chemistry and we shall not consider them
further here since the other two possibilities are much more important.

In the weak-field coupling scheme, Ĥcf is applied as a perturbation to the terms of the
free-ion which result from Ĥ0 + Ĥer and the spin-orbit coupling, ĤSO, is added last.

In the strong-field coupling scheme the one-electron orbitals of the central ion are
first combined under the influence of Ĥcf, and then Ĥer and ĤSO are introduced, in that
order. Thus, in the two schemes which are of most interest to chemistry, the effect of
spin-orbit coupling is introduced last. This is reflected in our treatment here in that in
Sections 7.3.1 to 7.3.4 we first study the effects of Ĥcf, and Ĥer leaving the introduction
of ĤSO until Section 7.3.5.
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7.3.1 The weak-field scheme for d2 (example of 3F in an octahedral field)

In the weak-field approach we first determine the terms of the free ion using the methods
in Chapter 5. We then calculate the effect of the crystal field upon these terms and we are
usually most interested in the term of highest multiplicity because, according to Hund,
this will be the ground term with the lowest energy. In the case of the 3F arising from
d2 we can work with the MS = 1 component of the triplet for which the required wave
functions are (Appendix 10):

|3, 3〉 = | + 2+, +1+〉 ≡ (1/
√

2) · {|ψ2,+2(1) · ψ2,+1(2) − ψ2,+1(1) · ψ2,+2(2)〉}
|3, 2〉 = | + 2+, 0+〉
|3, 1〉 = √

(2/5) · | + 1+, 0+〉 + √
(3/5) · | + 2+, −1+〉

|3, 0〉 = (2/
√

5) · | + 1+,−1+〉 + (1/
√

5) · | + 2+,−2+〉
|3,−1〉 = √

(2/5) · |0+, −1+〉 + √
(3/5) · | + 1+, −2+〉

|3,−2〉 = |0+, −2+〉
|3,−3〉 = | − 1+, −2+〉

Note that all kets on the right-hand sides of the above equations are two-electron Slater
determinants (Appendix 6) characterised by the m values of the occupied d-orbitals. A
superscript + sign indicates that the electron has ms = + 1

2 . Each determinant can be
expanded as a difference of two orbital products as has been illustrated above for the
case of | + 2+, +1+〉. The subscripts on ψ are the l and m values which characterise that
orbital.

The calculation of the matrix elements of Ĥcf is illustrated with the example of the
element, 〈3, 3|Ĥcf|3, 3〉 in Box 7.2.

The complete matrix is found to be:

Ĥcf |3,+3〉 |3,−1〉 |3, −3〉 |3,+1〉 |3,+2〉 |3,−2〉 |3, 0〉
〈3, +3| −3
/10 −√

15
/10 0 0 0 0 0
〈3, −1| −√

15
/10 −
/10 0 0 0 0 0
〈3, −3| 0 0 −3
/10 −√

15
/10 0 0 0
〈3, +1| 0 0 −√

15
/10 −
/10 0 0 0
〈3, +2| 0 0 0 0 7
/10 
/2 0
〈3, −2| 0 0 0 0 
/2 7
/10 0
〈3, 0| 0 0 0 0 0 0 −3
/5

The eigenvalues of this matrix are:

−3
/5, threefold degenerate: group theoretical designation, 3T1.
+
/5, threefold degenerate: group theoretical designation, 3T2.
+6
/5, singly degenerate: group theoretical designation, 3A2.

It is useful to note here that the presence of three off-diagonal elements in the above
matrix means that the three pairs of 3F basis states |3,+3〉 and |3,−1〉, |3, +2〉 and
|3, −2〉, |3,+1〉 and |3, −3〉 are mixed by the field in proportions which depend upon the
value of 
. One basis state, the |3, 0〉 which is a component of the 3T1, is not mixed
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by the field and we shall find this useful when we take account, as we do now, of the
presence of another state of 3T1 symmetry formed by the d orbitals, the 3P.

7.3.2 The weak-field scheme for d2 (inclusion of 3P)

The electron configuration d2 gives rise to two sets of triplet states, 3P and 3F, and in
accordance with Hund’s rules, E(3P) is greater than E(3F). However, the energy gap
between the two is not, in general, so large that we can ignore the 3P levels; especially
in the interpretation of spectra. Therefore, we must now examine the effect of the octa-
hedral crystal field on the 3P state. Using the same notation as above, the three |L, ML〉
components of the state having MS = 1.0 may be written:

|1, 1〉 = √
(2/5) · |2+, −1+〉 − √

(3/5) · |1+, 0+〉
|1, 0〉 = (2/

√
5) · |2+, −2+〉 − (1/

√
5) · |1+,−1+〉

|1,−1〉 = √
(2/5) · |1+, −2+〉 − √

(3/5) · |0+,−1+〉.
The 3 × 3 matrix of Ĥcf in this basis can be constructed in exactly the same manner as
that used above for 3F. However, we find only three equal diagonal elements of �, which
we neglect, and no elements containing 
 appear. This should come as no surprise. A
P state has the same electron distribution as a p orbital and if we think of the three real
p orbitals (Chapter 5) it is clear that each one points in an identical manner to two of
the six charges forming the octahedral field. The triple degeneracy of p orbitals or a P
state is not lifted by an octahedral field, as the symmetry designation 3T1 confirms. But
there are matrix elements of Ĥcf between components of the 3P and 3F states and so our
7 × 7 matrix for the latter should be extended to 10 × 10 in order to include the former.
Fortunately, this is unnecessary. If we require only the energies of the mixed 3P and 3F
states, we can make use of the facts that the field does not mix the |3, 0〉 component of
the 3F with any other component of that state and the |1,0(3P)〉 interacts solely with the
|3, 0〉 component of the 3F state. Therefore, we need to evaluate only the matrix element
〈3,0(3F)|Ĥcf|1,0 (3P)〉.

Using the well-tried methods we find:

Ĥcf |3, 0(3F)〉 |1, 0(3P)〉
〈3, 0(3F)| −3
/5 +2
/5
〈1, 0(3P)| +2
/5 0 + �

where � is the combination of electron repulsion integrals which are responsible for the
difference in energy of the 3P and 3F states (see Box 7.3). It is interesting to determine the
eigenvalues of this matrix at the weak-field extreme, 
 = 0, and the strong-field extreme,

 
 �. When 
 = 0 the eigenvalues are 0 and �, i.e. the separation of the two states is,
as we would expect, the same as it would be in the free gaseous ion. When 
 
 � we can
neglect � and find that the eigenvalues are −4
/5 and +
/5. We can confirm that these
are the expected strong-field eigenvalues by noting that, in an octahedral crystal field, the
energies of the five d orbitals split into two groups, eg at � + 3
/5 and t2g at � − 2
/5.
Neglecting the common contribution to the energy, �, we see that the lowest possible
energy of our d2 system in a strong crystal field occurs when both electrons occupy a
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Figure 7.4 Correlation diagram of d2 in an octahedral field
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Figure 7.5 An Orgel or Tanabe-Sugano diagram for d2

different t2g orbital with parallel spins, giving E{(t2g)
1(t′2g)

1} = −4
/5. If we have one
electron in a t2g and one in an eg the energy is E{(t2g)

1(eg)
1} = −2
/5 + 3
/5 = +
/5.

We should also note that E{(eg)
1(e′

g)
1} = +6
/5. We now have the theoretical analysis

required to determine the triplet energy levels of a d2 ion in an octahedral crystal field
of any magnitude and for any value of the 3P −3 F splitting. The results are illustrated in
Figures 7.4 and 7.5 which show, in different ways, how the energies depend on � and 
.

7.3.3 The d2 energy levels for weak, strong and intermediate
octahedral fields

First, we summarise our expressions for the energies.
In the intermediate region, the energies of the 3F states which do not mix with 3P are:

E(3A2 : 3F) = +6
/5 and E(3T2 : 3F) = +
/5
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The energies of the interacting 3P and 3F states, obtained by diagonalising the interac-
tion matrix above, are:

E(3T1 : 3P) = + 1
2 (� − 3
/5) + { 1

4 ([3
/5] − �)2 + 3�
/5 + (2
/5)2} 1
2

E(3T1 : 3F) = + 1
2 (� − 3
/5) − { 1

4 ([3
/5] − �)2 + 3�
/5 + (2
/5)2} 1
2

So that in the strong- and weak-field limits we have:

Weak-field limit Strong-field limit

� �= 0, 
 = 0 � = 0,
 �= 0

E(3P) = � E{(eg)
1(eg

′)1} = +6
/5
E{(eg)

1(t2g)
1} = +
/5

E(3F) = 0 E{(t2g)
1(t2g

′)1} = −4
/5

In Figure 7.4 the energies of the four d2 states, calculated using the expressions above,
are plotted against 
/� in the left-hand half of the diagram and against �/
 in the right-
hand half. The far left is the weak-field limit where 
 = 0, while the far right corresponds
to the strong-field limit where � = 0, and the figure represents all possible relative values

of the two parameters. The energies have been divided by 0.1�{1.0 + χ2} 1
2 on the left and

by 0.2
{1.0 + (1/χ)2} 1
2 on the right, where χ = 2
/�. The factors 0.1� and 0.2
 are

chosen to make the total span of energy levels at both extremes of the diagram the same.
The factors in parentheses ensure that levels meet at 
 = �. Low5 has measured the
electronic spectrum of V3+ ions (configuration: Ar 3d2) in an aluminium oxide host and
finds prominent bands at 17 400, 25 200 and 34 500 cm−1. This is a d2 ion octahedrally
coordinated by oxide ions and represents experimental data which may be interpreted
using Figure 7.4.

We proceed as follows. The energies of the three bands observed by Low are in the
approximate ratios 1 : 1.5 : 2 and we therefore seek a position on the horizontal axis of
Figure 7.4 where the energy gaps between the lowest level and the three above it are
in these ratios. We find it on the strong-field side of the diagram where �/
 ≈ 0.55.
This assigns the spectrum and gives us the ratio of 
 to �. By noting that the energy
gap between the 3A2 and 3T2 states is 
, we find their approximate absolute values to
be 
 ≈ 17 100 and � ≈ 9400 cm−1. The word approximate is used for three reasons.
Firstly, since we have three energy differences and two unknowns, the problem is over-
determined and slightly different values of the parameters would be obtained by using
the data in a different way. Secondly, the observed bands are broadened by vibrational
effects and the position of the pure electronic transition cannot be determined to better
than ±500 cm−1. Thirdly, and most importantly, this simple CF model does not justify
more exact analysis; the agreement of theory with experiment is already quite remarkable
and the major aim of assigning the spectrum has been achieved.

A second diagrammatic way of analysing the spectrum of a d2 ion in an octahedral
environment is shown in Figure 7.5. Diagrams of this type were first derived by Tanabe
and Sugano and by Orgel in 1954/5. Figure 7.5 is a reproduction of part of the Tanabe
and Sugano diagram for d2. The effect upon the triplet state energies of increasing 
 at a
constant value of � (9500 cm−1 in this figure) is shown in wave number units. The energy
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of the 3T1(
3F) ground state is subtracted from each of the four energy levels. It therefore

appears in the diagram as a horizontal line of zero energy so that the energy gaps to the
other three states are quantitatively represented by their vertical heights above this ground
state line. A good approximation to the experimental data, and therefore an assignment
of the spectrum, is obtained where 
 ≈ 18 300 cm−1. The difference in the value of 


found from the two diagrams should not be thought significant. Since both are based on
exactly the same theoretical analysis, the same values of the two parameters, 
 and �,
could be deduced from either; but any attempt to bring the results closer together would
be quite unjustified by the simple model and the uncertainties inherent in the assignment
of precise energies to broad experimental bands.

Tanabe and Sugano reported diagrams of the above type for d2 to d8 ions and repro-
ductions of them can be found in numerous books. Both axes are usually graduated in
units of Racah’s B parameter, a measure of the electron repulsion in the ion. For the d2

case, for example, B = �/15. In this way a single diagram can be made valid for all ions
having the same number of d electrons, in contrast to Figure 7.5 which applies only to a
d2 ion with � = 9500 cm−1.

A few remarks concerning the relative merits of Figures 7.4 and 7.5 are in order. At
first glance, the energy-level plots of Figure 7.5 appear to be straight lines, and the fact
that the energies of 3A2 and 3T2 depend only on 
 suggests that they should indeed be
linear. The energies of the two 3T1 states depend on � as well as 
 and are therefore
expected to be curves. However, because we have made 3T1(F) a base line its curvature
has been superimposed upon the plots of the other three energies. But the curvature is
slight. More important is the fact that Figure 7.5 shows energies as a function of 
 but
with a fixed, pre-selected value of � and therefore applies for that value of � only.
This objection does not apply to Tanabe-Sugano diagrams in general, nor to Figure 7.4 in
which all possible relative values of 
 and � are shown in the one figure. The drawback
is that only relative values are represented and the diagram conceals the linear dependence
of some states on 
.

7.3.4 The strong-field scheme for d2 in an octahedral field

The power and ready availability of digital computers have made it easy to calculate the
energy levels of a d2 ion in an octahedral field for any combination of parameters, even
when the singlet states are included. It was not always so. Furthermore, when under-
standing as well as a quantitative analysis is sought, a thoughtful, algebraic approach to a
problem has much to recommend it and so we now approach the problem from the strong-
field end. In the strong-field approximation to the d2 problem we first diagonalise Ĥcf

and obtain the real d orbitals with energies � + 3
/5 and � − 2
/5, as in Section 7.2.
If we then focus our attention on the states of highest multiplicity, i.e. states in which
the two d electrons occupy different orbitals with their spins parallel, we see that we can
form the following configurations:

(t2g)
1(t2g

′)1 E = −2
/5 − 2
/5 = −4
/5 ≡ E(3T1 : t2g
2)

(t2g)
1(eg)

1 E = −2
/5 + 3
/5 = +
/5 ≡ E(3T1 : t2geg) and E(3T2)

(eg)
1(eg

′)1 E = 3
/5 + 3
/5 = +6
/5 ≡ E(3A2)



194 Transition-Metal Complexes

The uniform rise in energy of 2� has been neglected and the two states of T1 symmetry
are distinguished by the electron configurations from which they originate. Note that two
distinct states, 3T1 and 3T2, arise from the configuration (t2g)

1(eg)
1. These states also differ

in energy when electron repulsion is included due to the different spatial distributions of
the z2 and x2 − y2 d-orbital wave functions (see Box 7.3).

We now have to introduce the perturbation of the inter-electronic repulsion represented
by Ĥer. This will change the energies of the electronic states and we can calculate this
change by expressing each configuration as a Slater determinant in which the real d
orbitals are expressed in terms of the ψl,m. The calculation is quite straightforward but
tedious and we will not do it here. It is well described by Ballhausen.1 We find that the
electron repulsion raises the energy of each state as shown in the matrix below. Since
we are only interested in energy differences, a constant term (Racah’s A) which arises in
each diagonal has been omitted. Interelectronic repulsion may also cause states to mix,
a phenomenon known as configuration interaction. However, group theoretical principles
tell us that states of different symmetries cannot be mixed by an operator like Ĥer, which
has the full symmetry of the system, and we therefore expect that there will be mixing
only between the two states of T1 symmetry. The complete energy matrix, including the
crystal field but with 2� + A omitted from each diagonal element, is:

Ĥer E(3T1 : t2g
2) E(3T1 : t2geg) E(3T2) E(3A2)

E(3T1 : t2g
2) −4
/5 − �/3 −2�/5 0 0

E(3T1 : t2geg) −2�/5 +
/5 + 4�/15 0 0
E(3T2) 0 0 +
/5 − 8�/15 0
E(3A2) 0 0 0 +6
/5 − 8�/15

The eigenvalues of the 2 × 2 3T1 matrix are −3
/10 − �/30 ± 1
2 {
2 + �2 + 6�
/

5} 1
2 . We can check this result by noting that at zero electron repulsion (� = 0) the 3T1

eigenvalues are −4
/5 and +
/5, while at zero field (
 = 0) their energy separation
is �. These are the correct limiting results. The square root in the above energies makes
their use in assigning spectra and determining the values of the parameters � and 
 a
little difficult. But in the strong field regime where 
 
 � terms in the energy which
involve (�/
)2 or higher powers may be neglected and we can approximate the square
root as follows:

{
2 + �2 + 6�
/5} 1
2 = 
{1 + (�/
)2 + 6�/5
} 1

2

≈ 
{1 + 6�/5
} 1
2 ≈ 
{1 + 1

2 · 6�/5
} = 
 + 3�/5

With this approximation E(3T1 : t2g
2) = −4
/5 + �/5 and the energy differences, in

ascending order, which might be compared with experimental data, are:

E(3T2) − E(3T1 : t2g
2) = 
 − �/5

E(3T1 : t2geg) − E(3T1 : t2g
2) = 
 + 3�/5

E(3A2) − E(3T1 : t2g
2) = 2
 − �/5.

Alexander and Gray6 have reported bands at 22 700 cm−1 and 27 200 cm−1 in the spec-
trum of the complex, 3d2 ion [V(CN)6]3−. If we assign the first of these bands to the
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E(3T1 : t2g
2) → E(3T2) transition and the second to the E(3T1 : t2g

2) → E(3T1 : t2geg)

we readily find 
 ≈ 23 800 cm−1 and � ≈ 5600 cm−1. The large value of 
/� shows
that we really are in the strong-field regime and justifies the above neglect of (�/
)2 and
higher powers. With these values of 
 and � we predict that the E(3T1 : t2g

2) → E(3A2)

band should lie at about 46 500 cm−1 where it is hidden under much stronger bands due
to other electronic transitions.

7.3.5 Spin-orbit coupling

The final influence upon energy levels is that of spin-orbit coupling which, for the tran-
sition metals of the first series, is much smaller than the crystal field or the electron
repulsion. It becomes increasingly important as we descend the periodic table and espe-
cially when we encounter the rare earths. As an illustration we consider the effect of
increasing spin-orbit coupling on the configuration d2 in a strong crystal field (Figure 7.6).
On the left the four triplet energy levels are plotted. The matrix of all 45 possible d2 states
has been diagonalised with � = 5610, 
 = 23 800 and the spin-orbit coupling constant,
ζd, = 0 − 2000 cm−1. These values of the parameters were chosen so as to reproduce the
spectrum of [V(CN)6]3− discussed above at low values of ζd. The energy of 3T1(

3F) when
ζd, = 0 has been set to zero and, in order to include all 13 distinct levels in one diagram,
19 000, 20 000 and 37 000 cm−1 have been subtracted from the energies of the 3T2, 3T1

and 3A2 states respectively. All 3T levels behave qualitatively as if they were 3P, that is
they give rise to states having J (= L + S) values of 2, 1 and 0 for non-zero ζd, and the
5-fold degeneracy of the first is lifted further by the crystal field. The development of the
levels as ζd is increased from zero to 2000 cm−1 is shown with the J values, and degen-
eracies (2J + 1) on the right. Note that at low values of ζd the five-fold degeneracy of
the states with J = 2 is scarcely lifted and in this range the levels in each group obey an
approximate Landé interval rule, i.e. E(J = 2) − E(J = 1) ≈ 2{E(J = 1) − E(J = 0)}.

In order to assess the effect of spin-orbit coupling on electronic spectra we first note
that the ranges of the experimentally determined values of ζnd are 50–850, 200–1900
and 300–5000 cm−1 for n = 3, 4 and 5 respectively4 whilst experimental band widths
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Figure 7.6 The effect of spin-orbit coupling on the strong-field triplet states of d2
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typically lie between 1000 and 4000 cm−1. Thus, the splittings in Figure 7.6 attain the
order of magnitude of typical bandwidths only on the right-hand side of the diagram
where ζd = 2000 cm−1. Such values of ζd are not found until the end of the second
transition metal series and in the third. The result is that it is rare to see evidence of
spin-orbit coupling in the form of band splittings in electronic spectra. By mixing states
of different multiplicity, spin-orbit coupling also causes breakdown of the strict 
S = 0
selection rule (see Section 5.11) but this effect also requires that ζd have a substantial
value and spectral bands made allowed in this manner are rarely observed with light
transition metals. However, Alexander and Gray6 observed two such bands, 3T1g → 1T2g

at 14 600 cm−1 and 3T1g → 1T1g at 19 200 cm−1, in their spectrum of K3V(CN)6. For
V3+ζd ≈ 860 cm−1.

Thus far in our account of the theory of the electronic structure and bonding in
transition-metal complexes we have given a fairly detailed analysis of d2 systems. In
a non-specialised volume such as this, space does not permit a similar treatment of d3 to
d10 for which we must refer the reader to the bibliography.1,4 We have been drawn into
a consideration of electronic spectra because spectral data provide the most direct way of
determining � and 
, the essential parameters of the CF model. No account of the theory
of the transition-metal ions would be complete without some reference to their electronic
spectroscopy. But this is a vast and complicated subject which is well treated in a number
of specialist volumes4,7 and here we can only draw attention to a few significant points.

7.4 THE ELECTRONIC SPECTROSCOPY
OF TRANSITION-METAL COMPLEXES

Thus far we have compared the positions of calculated and observed electronic transitions
without asking whether or not those transitions were sufficiently intense to be seen. Since
we have been concerned exclusively with d electrons, the states involved must all be of
even parity and the transitions, all d → d, between states of the same parity. Spectroscopic
selection rules are discussed in detail in Sections 5.11, 8.4 and 8.5, so it suffices here to
say that transitions between states of the same parity are strictly forbidden; the Laporte
rule. The fact that these d → d bands, though rather weak, are indeed observed is due to
the loss of parity which can arise in either a static or a dynamic manner. If the ligand
environment is not strictly octahedral, e.g. because of a slight static distortion, then the
centre of symmetry of the complex as a whole may be lost and with it the definitive
even parity of the d orbitals and states. A d → d transition may then become weakly
allowed, frequently because the lowered symmetry allows p and d orbitals to mix. This
is particularly true of tetrahedral complexes. The tetrahedron has no centre of symmetry
and the d → d transitions of tetrahedral complexes are invariably more intense than those
of their octahedral counterparts. The loss of symmetry need not be permanent and static;
vibrations can have the same effect of making a transition partially allowed.

The CF model is concerned solely with the energies of the d-electron states but the
intense colours of many transition-metal complexes, e.g. the purple colour of [MnO4]− and
the blood red of [Fe(CNS)6]3−, arise not from d → d transitions, which as we have seen
above are normally very weak, but from charge-transfer transitions in which electrons
are transferred from the ligands to the metal (LMCT). [Fe(2,2′-bipyridine)3]2+ shows a
strong absorption at 522 nm due to the reverse process, a metal-to-ligand charge transfer
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(MLCT). Transitions of this type are further evidence of covalency and require a molecular
orbital treatment for their quantitative understanding.

Apart from in Section 7.3.5, we have referred only to transitions between states of
the same multiplicity, triplet states in the case of d2. d → d transitions which involve a
change of multiplicity, triplet to singlet in the case of d2, are doubly forbidden and are
very weak indeed. But as spin-orbit coupling grows in the 4d and 5d series of metals,
and especially in the rare earths, nominally spin-forbidden transitions gain in intensity
because of the loss of a clearly defined multiplicity for each state. The multiplicity of
the ground state of a transition-metal complex is not only important for the electronic
spectroscopy of the compound, there are other interesting consequences, some of which
we explore in the next two sections.

7.5 PAIRING ENERGIES; LOW-SPIN AND HIGH-SPIN COMPLEXES

Consider the aufbau principle as applied to a d4 complex in a strong octahedral field.
Following Hund’s rules, the first three electrons will be placed in the triply degenerate
t2g orbitals with their spins parallel. In placing the fourth electron we have a choice
between double occupation of a t2g orbital, giving a triplet state, or the use of an empty
eg orbital giving a quintet. The actual orbital occupation will be that of lower energy
which depends upon the relative magnitudes of the interelectronic repulsion in a doubly
occupied t2g orbital and the energy gap, 
, between the t2g and eg orbitals. Calculation
shows that:

eg −↑−
t2g −↑− −↑− −↑− −↑↓− −↑− −↑−
Energy 5E = 6A − 21B + 
 Energy 3T1 = 6A − 15B + 5C

In these equations the electron repulsion energy is written in terms of Racah parameters,
A, B and C4 (Box 7.3) and we do not require to delve into the exact form of these integrals
to see that when 
 = 6B + 5C the energies of the two states are equal. Similar equalities
arise in the d5, d6 and d7 cases so that a large crystal-field splitting causes electron spins
to pair whilst small values of 
 lead to the maximum number of unpaired spins. The
corresponding complexes are referred to as low-spin and high-spin respectively. Though
the consequences of the two possibilities for electron pairing can be detected in the spectra
of the complex and in many of its other physical and chemical properties, the effect is
most marked in its magnetic behaviour which is largely determined by the number of
unpaired electrons.

7.6 THE MAGNETISM OF TRANSITION-METAL COMPLEXES

The following formula for the magnetic moment (µ) of a molecule in Bohr magnetons is
discussed in Section 12.2:

µtotal = −[{L(L + 1)} + 4{S(S + 1)}] 1
2 µB

It is appropriate for situations in which the multiplet splittings that result from spin-
orbit coupling are small compared with kT and should therefore be applicable to the
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transition-metal ions from Ti3+ to Cu2+ for which the spin-orbit coupling constant, ζd, is
small. L and S are the total orbital and spin angular momenta respectively. In Table 7.3
the above formula is used to calculate the magnetic moments of the free transition-metal
ions of the first transition series and the results are compared with the measured moments
for the octahedrally co-ordinated ions in their high-spin states. The µS (spin-only) values
were calculated by setting L = 0. The configurations marked † are those for which there
can be an orbital contribution to the magnetic moment (see below) n = number of d
electrons, n′ = number unpaired.

Comparison of the theoretical and experimental data in Table 7.3 reveals that, in many
cases, the experimental magnetic moment is quite close to the spin-only value, i.e. the
electronic orbital angular momentum appears to contribute very little to the total magnetic
moment of a 3dn transition-metal ion. This has the important, and particularly useful, con-
sequence that µexp . gives a very direct indication of the number of unpaired electrons. The
reason for the small contribution from the orbital motion of the electrons is that this has
been quenched by the interaction of the metal d-electrons with the ligands. In our model
this interaction is purely electrostatic, but the fact that the quenching is in many cases so
complete strongly suggests that there is covalent bonding between ligand and metal. The
latter provides an even better quenching mechanism since it prevents the electrons from
circulating the metal nucleus by locking them into localised chemical bonds.

Though the lack of an orbital contribution to the magnetic moment is readily qual-
itatively understandable, it is of interest to enquire whether we can place the concept
of quenching on a firmer theoretical basis in order to understand why, in some cases at
least, significant orbital contributions to the magnetic moment remain. In pursuit of this
objective we first recall the matrix of the five d orbitals in an octahedral crystal field

Table 7.3 Calculated magnetic moments, in Bohr magnetons, of the ground
states of some free transition-metal ions and the experimental magnetic moments
for the octahedrally co-ordinated ions in their high-spin configurations

Ion S L n n′ µS µtotal µexp

Ti3+ 1
2 2 1 1 1.73 3.00 1.7 − 1.8†

V4+ 1
2 2 1 1 1.73 3.00 1.7 − 1.8†

V3+ 1 3 2 2 2.83 4.47 2.6 − 2.8†

Cr3+ 3
2 3 3 3 3.87 5.20 3.7 − 3.9

Cr2+ 2 2 4 4 4.90 5.48 4.7 − 4.9
Mn3+ 2 2 4 4 4.90 5.48 4.9 − 5.0

Mn2+ 5
2 0 5 5 5.92 5.92 5.6 − 6.1

Fe3+ 5
2 0 5 5 5.92 5.92 5.7 − 6.0

Fe2+ 2 2 6 4 4.90 5.48 5.1 − 5.5†

Co3+ 2 2 6 4 4.90 5.48 ca. 5.4†

Co2+ 3
2 3 7 3 3.87 5.20 4.1 − 5.2†

Ni2+ 1 3 8 2 2.83 4.47 2.8 − 3.5

Cu2+ 1
2 2 9 1 1.73 3.00 1.7 − 2.2

†The configurations marked † are those for which there can be an orbital contribution to
the magnetic moment, see text. n = number of d electrons, n′ = number unpaired.
H.L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory.  1969, John
Wiley & Sons Ltd; reprinted with permission.
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(Section 7.2) and the remarks following it. The two d orbitals, having m values of +2
and −2, were found to have exactly the same diagonal matrix element (� + 	/6) and
to be connected, and hence mixed, by an off-diagonal matrix element of 5	/6. Since
the diagonal elements are equal, the resulting mixed wave functions, dxy and dx2−y2 , will
each contain equal parts of m = +2 and m = −2 and will therefore have no z-component
of orbital angular momentum. Since there are no other off-diagonal matrix elements,
the remaining three d orbitals will retain their z-components of angular momentum of
±1h/2π and 0. In an octahedral field, the description of these orbitals as dxz, dyz and
dz2 rather than as d+1, d−1 and d0 is a matter of choice, not of necessity. Therefore,
when a magnetic field is applied along the z-direction the d−1 will be slightly lower in
energy than the d+1, because of the field produced by the orbiting electron, and if the
configuration is such that it is possible to place more electrons in d−1 than in d+1 an
orbital contribution to the total magnetic moment of the material may result. But note
that this potential orbital moment can still be quenched by forces not considered in our
simple electrostatic interaction matrix. Identifying the two groups of degenerate d orbitals
in the octahedral field by their group-theoretical symbols, the configurations which can
manifest an orbital contribution to the magnetic moment are, for high spin, i.e. minimum
possible electron pairing: (t2g)1, (t2g)2, (t2g)4(eg)2 and (t2g)5(eg)2. These configurations are
marked † in Table 7.3. In the low spin configurations with maximum spin pairing the
configurations (t2g)4 and (t2g)5 may contribute orbital moments. When we compare the
high-spin predictions with the above table we see that the ions with six and seven d elec-
trons are indeed those where the highest experimental moments match µtotal most closely.
The minimal orbital contributions to the ions with one or two d electrons are thought to
be due to deviations of the complexes from exact octahedral geometry. This may be a
result of forces in the crystal lattice (all the measurements in Table 7.3 were made on
solids) or they may be due to a Jahn-Teller effect, the origin of which space does not
allow us to pursue further here. In either case, a small distortion links the d+1 and d−1

orbitals with a small off-diagonal matrix element and causes them to mix forming dxz and
dyz, whereby the z-component of their orbital angular momentum is lost.

As a last word on the complex subject of orbital contributions to magnetic moment
we might note that, if spin-orbit coupling is significant, in configurations having less than
five electrons the spin and orbital angular momenta are antiparallel in the state of lowest
energy so the orbital contribution has to be subtracted from the spin contribution. The
reverse is the case where the number of d electrons is greater than five.

7.7 COVALENCY AND THE LIGAND FIELD THEORY

As early as 1935, Van Vleck recognised that any widely applicable theory of transition-
metal complexes would have to include the effects of covalent interaction between metal
and ligand, even though compelling experimental evidence for it was unavailable at that
time. In the 1950s, however, firstly electron paramagnetic resonance (EPR) and then
nuclear magnetic resonance (NMR) measurements left no room for doubt and provided
quantitative evidence. The essential nature of the evidence is easy to explain. In the case
of EPR spectroscopy,8 we measure the absorption of radiation (in the microwave region)
by one or more unpaired electrons in a magnetic field where the energies of electrons
having ms = + 1

2 and ms = − 1
2 are different. Apart from the magnetic field imposed by
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the spectrometer, the electron sees other fields, in particular the fields due to the magnetic
nuclei (Chapter 10), which it visits as it makes its peregrinations through the molecule.
These fields cause splittings, known as fine structure, in the spectra and the magnitude of
a particular splitting is proportional to the product of the nuclear magnetic moment and
the probability that the unpaired electron will be found at that particular nucleus.‡ In this
way the interaction of unpaired electrons from the Mn2+ ion with F− ions in MnF2 was
observed and measured; to mention just one of many similar experiments. Clearly, such a
hyperfine interaction is only possible if there is mixing of metal and ligand atomic orbitals
to form molecular orbitals, i.e. covalency. The NMR evidence is similarly direct and will
not be discussed here. Thus, covalency cannot be denied, but the great success of the
simple CF theory also leads us to expect that there will be important similarities between
the results of an MO theory of transition-metal complexes and those of the crystal field,
and indeed there are.

We can illustrate this point by applying the MO theory, in linear combination of
atomic orbitals (LCAO) form, to a simple, hypothetical, octahedral complex, MH6, in
which the d-orbitals of the central metal ion form covalent bonds with the 1s orbitals of
six surrounding hydrogen atoms placed equally distant from the metal atom at ±x, ±y
and ±z (Figure 7.7).

Our calculation will use a very simple MO theory, quite like the Hückel procedure
(Section 12.1) but, because the interactions between the metal 3d orbitals and the sur-
rounding hydrogen 1s orbitals, φi, are not all equal, we shall find it necessary to use the
〈3d | 1s〉 overlap to estimate the bonding between them. We take the d orbitals in their real
forms and we note immediately that those for which the lobes lie between the Cartesian
axes, i.e. dxz, dyz and dxy have zero overlap, and hence zero interaction with the hydrogen
atoms. This is because each hydrogen 1s orbital has an equal and opposite overlap with
the lobes of the above d-orbitals which lie on either side of it (Figure 7.8). By contrast, the
dx2−y2 and dz2 orbitals, which are directed along the Cartesian axes, overlap strongly with
their neighbouring hydrogen 1s orbitals. We can already see here the basis of a distinction

+Z

+X
+Y

−Y
−X

−Z H6

H5

H4 H3

H2H1

Figure 7.7 Octahedral MH6 molecule

‡ The phrase ‘at the nucleus’ may appear a little strange, but we are talking here not of the dipole-dipole but the Fermi-contact
interaction for which the electron has to have a finite probability of actually being at the nucleus of the atom in question.
Carrington and McLachlan8 give a nice treatment of the theory involved. See also Section 4.9.
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Figure 7.8 Atomic orbital overlap in MH6

between these two sets of d orbitals which is central to the success of the CF theory. The
overlaps which we require may be expressed in terms of an arbitrary parameter, σ , as
follows:

〈dz2 |φ1〉 = 〈dz2 |φ2〉 = 〈dz2 |φ3〉 = 〈dz2 |φ4〉 = −σ

〈dz2 |φ5〉 = 〈dz2 |φ6〉 = 2σ

〈dx2−y2 |φ1〉 = −〈dx2−y2 |φ2〉 = 〈dx2−y2 |φ3〉 = −〈dx2−y2 |φ4〉 = √
3σ

And we assume that the interactions, which we express in the form of a Hamiltonian
energy matrix (Appendix 3), are proportional to these overlaps:

Ĥ dx2−y2 dz2 φ1 φ2 φ3 φ4 φ5 φ6

dx2−y2 Ed 0
√

3β −√
3β

√
3β −√

3β 0 0
dz2 0 Ed −β −β −β −β 2β 2β

φ1
√

3β
√

3β Es 0 0 0 0 0
φ2 −√

3β −β 0 Es 0 0 0 0
φ3

√
3β −β 0 0 Es 0 0 0

φ4 −√
3β −β 0 0 0 Es 0 0

φ5 0 2β 0 0 0 0 Es 0
φ6 0 2β 0 0 0 0 0 Es

In this matrix, Ed and Es are the energies of the metal d orbitals and hydrogen 1s
orbitals respectively. The off-diagonal elements are the interaction energies expressed in
terms of a parameter β, proportional to σ , which, for our present purposes, we do not need
to quantify further. When the matrix is diagonalised (Box 7.4) we find four eigenvalues of
Es. The eigenfunctions that correspond to these eigenvalues are combinations of hydrogen
1s orbitals which do not have the correct symmetry, eg or t2g, to combine with any of the
metal d orbitals. We also find two eigenvalues of:

Eb = Ed + Es − √
(Ed − Es)2 + 48β2

2
and two of:

Ea = Ed + Es + √
(Ed − Es)2 + 48β2

2
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These energies are those of the bonding, Eb, and antibonding, Ea, molecular orbitals
formed by interaction of the metal dx2−y2 and dz2 orbitals with combinations of the hydro-
gen 1s orbitals of the hydrogen atom ligands which have the same symmetry. Since the
d orbitals are both of eg symmetry the molecular orbitals must also be of eg symmetry.
The symmetry is confirmed by the fact that we have a degenerate pair of bonding and a
degenerate pair of anti-bonding orbitals. As we have seen above, the hydrogen atoms of
our MH6 molecule offer no orbitals suitable for combination with metal d orbitals of t2g

symmetry, so the dxz, dyz and dxy orbitals of the metal take no part in the bonding and
remain triply degenerate with energy Ed, which lies between the bonding and antibonding
eg molecular orbitals. However, where the ligands have valence p orbitals interaction with
the dxz, dyz and dxy orbitals of the metal is possible and triply degenerate bonding and
antibonding molecular orbitals result. Thus the MO model reproduces all the essential
feature of the CF. Our results for the MH6 complex are illustrated in Figure 7.9.

Thus far, the energy-level scheme above reflects the CF scheme quite well but a
problem arises when we ask which energy levels are occupied and which unoccupied.
Six hydrogen atoms provide six electrons, four of which would fill the lowest pair of eg

levels leaving two for the three t1u and the a1g levels. Therefore, at least seven d electrons
from the metal are required before any enter the t2g and eg levels, the occupation of which
is central to the CF model. Our simple MO model of MH6 appears to be at odds with
the CF description. But we should recall that in the majority of simple transition-metal
complexes the ligands each donate two electrons to the structure. These two electrons are
usually a lone pair, as we see very clearly in the coordination complexes of water and
ammonia. If we assume that the hydrogen 1s orbitals we have used are, in effect, lone
pair orbitals containing two electrons, all the essentials, including the symmetry, of the
energy-level scheme (Figure 7.9) remain unchanged, but we now have 12 ligand electrons
at our disposal; just enough to fill the six lowest levels, i.e. eg, t1u and a1g. Any metal
d electrons must then occupy the t2g and eg levels, in excellent correspondence with the
CF model.

The pairs of bonding and antibonding wave functions for the energy levels of eg

symmetry bear closer scrutiny. They arise from two identical 2 × 2 matrices (see Box 7.4)
and therefore have the same form in both cases. Taking, as our example, the combination

 6 hydrogen 1s atomic orbitals

 5 metal d orbitals

 2 bonding molecular orbitals

 3 uncombined metal d orbitals

 4 uncombined hydrogen 1s orbitals

 Energy

 6 H  MH6  M

 eg

 eg  2 antibonding molecular orbitals

 t 2g

 t1u + a1g

Figure 7.9 Molecular orbital energy-level scheme for MH6
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of ligand orbitals, �eg(z2), which bonds to the dz2 metal orbital, we can write the bonding
and antibonding molecular orbitals in the forms:

�bonding = ρdz2 + τ�eg(z2) and �antibonding = τdz2 − ρ�eg(z2)

where ρ2 + τ 2 = 1.0 if orbital overlap between the d orbitals and the hydrogen 1s orbitals
is neglected in the normalisation. At one extreme where τ = 1.0 and ρ = 0.0 we have
the CF theory. The lower-energy MO, �bonding, is composed solely of ligand orbitals,
�eg(z2), and the higher-energy MO, �antibonding, is a pure dz2 orbital of the metal. The
three uncombined metal d orbitals of t2g symmetry lie immediately below the latter.
When τ ≈ ρ ≈ 1/

√
2 (τ and ρ will only be exactly equal to 1/

√
2 when Ed = Es)

we have Pauling’s covalent valence bond description2 with metal d-orbitals and ligand
orbitals contributing approximately equally to the two molecular orbitals. In principle, a
high-quality MO calculation will determine just where within this range of possibilities a
particular complex lies. But even today MO or DFT calculations with such a large number
of electrons present considerable problems. Comprehensive packages by means of which
these theories can be applied to transition metal complexes are available but their modi
operandi require careful study if they are to be used with confidence and the limitations
on their results understood.

In an important semi-empirical development, Roald Hoffman proposed his ‘extended
Hückel theory’. Matrix elements analogous to Es, Ed and β above are represented by
parameters the values of which are obtained by fitting the results of trial calculations to
experiment. The inter-orbital bonding interactions are determined with reference to the
corresponding overlaps as we have done for β above, but in a more sophisticated manner.
Electron repulsion is not considered explicitly. Though purists have sometimes been rather
scathing about the theory, it has found widespread application and acceptance in the semi-
quantitative interpretation of some of the vast quantity of data which organo-metallic
chemists in particular have generated in the last 50 years.
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BOX 7.1 Calculation of an angular integral

Example of the evaluation of an angular integral; 〈Y2−2|Y4−4|Y2+2〉 ≡ I.
Since 〈Y| requires that we take the complex conjugate of Y we have:

〈Y2−2| = |Y2+2〉 = �2+2(θ) · �+2(φ) =
√

15

4
sin2 θ · 1√

2π
exp(2iφ)

and

Y4−4 = �4−4(θ) · �−4(φ) = 3
√

35

16
sin4 θ · 1√

2π
exp(−4iφ)

Therefore the integral I is:

I = 45
√

35

256
· 1

2π
· 1√

2π

∫ π

0
sin8 θ · sin θ dθ

∫ 2π

0
exp(0) dφ

The integration over φ gives a multiplicative factor of 2π .
It is perhaps worth noting here that, had the argument of the exponential been

anything other than zero, inφ say, then the result of the integration would be zero
because sin(nφ) is zero at 0 and 2π while cos(nφ) = 1 at both limits and the two val-
ues cancel. Hence the requirement that the m values of the three spherical harmonics,
allowing for a change of sign of the first, sum to zero.

Now, setting − sin2 θ = cos2 θ − 1 and using the substitution x = cos θ, dx =
− sin θ dθ , we have:

I = 45
√

35

256
· 1√

2π

∫ π

0
sin8 θ · sin θ dθ = −45

√
35

256
· 1√

2π

∫ −1

1
(x2 − 1)4 dx

Expansion of the bracket and integration of the resulting polynomial in x gives:

I = 45
√

35

256
· 1√

2π
· 2

[
1

9
− 4

7
+ 6

5
− 4

3
+ 1

]
= 45

√
35

256
· 1√

2π
· 256

315
=

√
5

14π

BOX 7.2 Calculation of the matrix elements of Ĥcf for the 3F state of d2 in an
octahedral field

The calculation of the matrix elements of Ĥcf will be illustrated with the example of
the element, 〈3, 3|Ĥcf|3, 3〉.

Expanding each Slater determinant, and noting that we must evaluate Ĥcf for each
electron and sum their contributions, we have:

〈3, 3|Ĥcf|3, 3〉
= ( 1

2 ) · {〈ψ+2(1), ψ+1(2) − ψ+1(1), ψ+2(2)|Ĥcf(1)|ψ+2(1), ψ+1(2)

− ψ+1(1), ψ+2(2)〉}
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+ ( 1
2 ) · {〈ψ+2(1), ψ+1(2) − ψ+1(1), ψ+2(2)|Ĥcf(2)|ψ+2(1), ψ+1(2)

− ψ+1(1), ψ+2(2)〉}
where the l subscript, which is always 2 for d orbitals, has been omitted to simplify
the notation.

But, in quantum mechanics all electrons are indistinguishable, so each of the above
two terms must give the same result and we may therefore write:

〈3, 3|Ĥcf|3, 3〉
= 〈ψ+2(1), ψ+1(2) − ψ+1(1), ψ+2(2)|Ĥcf(1)|

ψ+2(1), ψ+1(2) − ψ+1(1), ψ+2(2)〉
Each of the four combinations of bra with ket gives rise to a product of two

integrals, one over each electron:

〈ψ+2(1), ψ+1(2)|Ĥcf(1)|ψ+2(1), ψ+1(2)〉
= 〈ψ+2(1)|Ĥcf(1)|ψ+2(1)〉 · 〈ψ+1(2)|ψ+1(2)〉

The first of these integrals expresses the interaction of an electron in a d+2 AO with
the crystal field and its value has been shown in Section 7.2 to be 	/6 (neglecting �

as before). The second is 1.0 because the d orbitals are normalised. Thus, neglecting
the rise in the d-orbital centre of gravity, we have:

〈ψ+2(1), ψ+1(2)|Ĥcf(1)|ψ+2(1), ψ+1(2)〉 = +	/6

Similarly:

〈ψ+1(1), ψ+2(2)|Ĥcf(1)|ψ+1(1), ψ+2(2)〉 = 〈ψ+1(1)|Ĥcf(1)|ψ+1(1)〉
· 〈ψ+2(2)|ψ+2(2)〉 = −2	/3

but:

〈ψ+2(1), ψ+1(2)|Ĥcf(1)|ψ+1(1), ψ+2(2)〉 and

〈ψ+1(1), ψ+2(2)|Ĥcf(1)|ψ+2(1), ψ+1(2)〉
are both zero because 〈ψ+1(2)|ψ+2(2)〉 = 〈ψ+2(2)|ψ+1(2)〉 = 0.

As it happens, 〈ψ+2(1)|Ĥcf(1)|ψ+1(1)〉 is also zero.
In total therefore:

〈3, 3|Ĥcf|3, 3〉 = {	/6 − 2	/3} = −	/2.

BOX 7.3 Calculation of the inter-electronic repulsion for some states of d2

The general two-electron repulsion integral takes the form:
∫∫

�∗
a (1)�∗

b (2) e2/r12�c(1)�d(2) dτ1 dτ2 ≡ 〈a(1)b(2)| e2/r12|c(1)d(2)〉
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There are two special forms of the integral.
The Coulomb integral, J (a,b), in which a = c and b = d, represents the mutual

repulsion of an electron having the distribution �a
∗�a and an electron with the dis-

tribution �b
∗�b.

The exchange integral, K(a,b), in which a = d and b = c, represents the mutual
repulsion of the two overlap distributions �a

∗�b.
But integrals which belong to neither of these special cases are frequently encoun-

tered and all non-zero two-electron repulsion integrals between d-orbital distributions
are listed in the two tables below.

The angular parts of the integrals are the same whatever the principal quantum
number, n. But the radial functions, Ri, and hence the radial parts of the integrals
vary with n and from metal ion to metal ion, depending upon its environment etc.
This dependence upon radial function is contained within the radial integrals, F0, F2

and F4 which, for d-orbital functions, are defined as follows:

F0 =
∫∫

Ra(1)Rb(2)
1

r>
Rc(1)Rd(2)r2

1r2
2 dr1 dr2

F2 = 1

49

∫∫
Ra(1)Rb(2)

r2
<

r3
>

Rc(1)Rd(2)r2
1r2

2 dr1 dr2

F4 = 1

441

∫∫
Ra(1)Rb(2)

r4
<

r5
>

Rc(1)Rd(2)r2
1r2

2 dr1 dr2

in which r> is the greater and r< the lesser of r1 and r2.
The F0, F2 and F4 given in Tables B7.3.1 and B7.3.2 include the factors of 1/49

and 1/441 in F2 and F4 respectively.
In ligand field theory, the Fk are usually treated as adjustable parameters and they

are frequently taken in the convenient combinations first suggested by Racah who
defined:

A = F0 − 49F4, B = F2 − 5F4 and C = 35F4

Electron repulsion in the T1 and T2 states of the configuration (t2g)1(eg)1

A (t2g)1(eg)1 configuration of T2 symmetry is (xy)1(z2)1 which when written as an
expanded Slater determinant is:

(1/
√

2){xy(1) z2(2) − z2(1)xy(2)}
The mutual repulsion of the two electrons is:

1
2 〈xy(1)z2(2) − z2(1) xy(2)| e2/r12|xy(1) z2(2) − z2(1) xy(2)〉

= 1
2 {〈xy(1) z2(2)| e2/r12|xy(1) z2(2)〉 + 〈z2(1) xy(2)| e2/r12|z2(1) xy(2)〉
− 〈xy(1) z2(2)| e2/r12|z2(1) xy(2)〉 − 〈z2(1)xy(2)| e2/r12|xy(1) z2(2)〉}

= 1
2 {J (xy, z2) + J (xy, z2) − K(xy, z2) − K(xy, z2)} = J (xy, z2) − K(xy, z2)
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Which, using Table B7.3.1:

= F0 − 4F2 + 6F4 − (4F2 + 15F4) = F0 − 8F2 − 9F4

Or in terms of Racah parameters:

= A − 8B = A − 8�/15

where � is the energy difference between the 3P and 3F states of d2 as defined in
Section 7.3.2 and calculated below.

Similarly, a (t2g)1(eg)1 configuration of T1 symmetry is (xy)1(x2 − y2)1 which
when written as an expanded Slater determinant is:

(1/
√

2){xy(1)x2 − y2(2) − x2 − y2(1)xy(2)}
For which the mutual repulsion is:

J (xy, x2 − y2) − K(xy, x2 − y2) = F0 + 4F2 − 34F4 − (35F4) = F0 + 4F2 − 69F4

Or in terms of Racah parameters: = A + 4B = A + 4�/15

Determination of �

To calculate � we express the 3P and 3F states of d2 as in Section 7.3.1 and Appen-
dix 10:

3F = | + 2+(1), +1+(2)〉 = (
√ 1

2 ){(2, 1) − (1, 2)}
3P = √

( 2
5 )| + 2+(1), −1+(2)〉 − √

( 3
5 )| + 1+(1), 0+(2)〉

= √
( 2

10 ){(2, −1) − (−1, 2)} − √
( 3

10 ){(1, 0) − (0, 1)}
Since all components of a term have the same energy, even when inter-electronic

repulsion is included, we can take any component to calculate the electron repulsion.
In each case we take the component of the term which has the maximum MS and ML

values since these have the simplest wave functions. Each of the three microstates is
a 2 × 2 Slater determinant which has been expanded above with a simplification of
the notation which assumes that the electrons in the state symbols are always in the
order 1, 2. Now, for 3F we have:

1
2 〈(2, 1) − (1, 2)| e2/r12|(2, 1) − (1, 2)〉

= 1
2 〈(2, 1)| e2/r12|(2, 1)〉 + 〈(1, 2)| e2/r12|(1, 2)〉
− 〈(2, 1)| e2/r12|(1, 2)〉 − 〈(1, 2)| e2/r12|(2, 1)〉

Inspection of the above four integrals shows that the first two are both Coulomb
integrals representing the repulsion of an electron in a d+2 orbital with one in a
d+1. The second pair are exchange integrals representing the mutual repulsion of two
electron-density distributions which are described by the product of d+2 and d+1.
Therefore:

1
2 〈(2, 1) − (1, 2)| e2/r12|(2, 1) − (1, 2)〉

= 〈(2, 1)| e2/r12|(2, 1)〉 − 〈(2, 1)| e2/r12|(1, 2)〉 = J (1, 2) − K(1, 2)
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We can now look up the electron repulsion integrals in Table B7.3.2, which is
the same as Table B7.3.1 but based upon the complex rather that the real d orbitals.
We find:

〈(2, 1)| e2/r12|(2, 1)〉 = F0 − 2F2 − 4F4

and:
〈(2, 1)| e2/r12|(1, 2)〉 = +6F2 + 5F4

so that the electron repulsion in the 3F state is: F0 − 8F2 − 9F4.
For the 3P state we find three contributions to the energy:

( 1
5 ){2〈(2, −1)| e2/r12|(2, −1)〉 − 2〈(2, −1)| e2/r12|(−1, 2)〉}

= 2
5J (2, −1) − 2

5K(2, −1)

= ( 2
5 ){F0 − 2F2 − 4F4 − 35F4} = ( 2

5 ){F0 − 2F2 − 39F4}
( 3

10 ){2〈(1, 0)| e2/r12|(1, 0)〉 − 2〈(1, 0)| e2/r12|(0, 1)〉} = 3
5J (1, 0) − 3

5K(1, 0)

= ( 3
5 ){F0 + 2F2 − 24F4 − F2 − 30F4} = ( 3

5 ){F0 + F2 − 54F4}
and a cross-term composed of integrals which are of neither J nor K type:

−
(

2
√

6

10

)
{2〈(2, −1)| e2/r12|(1, 0)〉 − 2〈(2, −1)| e2/r12|(0, 1)〉}

= −
(

2
√

6

5

)
{−√

6F2 + 5
√

6F4 − 2
√

6F2 + 10
√

6F4} = −( 12
5 ){−3F2 + 15F4}

The total electron repulsion in the 3P state is therefore, F0 + 7F2 − 84F4, so that:

� = E(3P) − E(3F) = F0 + 7F2 − 84F4 − (F0 − 8F2 − 9F4) = 15F2 − 75F4

Note that in using Tables B7.3.1 and B7.3.2 the integral 〈a(1), b(2)|e2/r12

|c(1), d(2)〉:
(a) Will always be zero if the spin function of orbitals a and c (electron 1) and of b

and d (electron 2) are not the same. But the spins of the two electrons need not
be the same.

(b) Expresses the mutual repulsion of two electron densities 〈a(1)|c(1)〉 and
〈b(2)|d(2)〉, and electrons are identical.

Therefore:

〈a(1), b(2)| e2/r12|c(1), d(2)〉 = 〈c(1), b(2)| e2/r12|a(1), d(2)〉
= 〈a(1), d(2)| e2/r12|c(1), b(2)〉 = 〈c(2), d(1)| e2/r12|a(2), b(1)〉 etc.

LITERATURE

The monographs by Ballhausen1 and Griffith4, noted in the bibliography of Chapter 7,
are important sources for readers who wish to take this subject further.
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Table B7.3.1 Two-electron repulsion integrals between d orbitals in their real forms

a b c d F0 F2 F4 Integral type

z2 z2 z2 z2 1 +4 +36 J

xz xz xz xz 1 +4 +36 J

yz yz yz yz 1 +4 +36 J

xy xy xy xy 1 +4 +36 J

x2 –y2 x2 –y2 x2 –y2 x2 –y2 1 +4 +36 J

x2 –y2 xz x2 –y2 xz 1 −2 −4 J

x2 –y2 yz x2 –y2 yz 1 −2 −4 J

xy xz xy xz 1 −2 −4 J

xy yz xy yz 1 −2 −4 J

xz yz xz yz 1 −2 −4 J

z2 xz z2 xz 1 +2 −24 J

z2 yz z2 yz 1 +2 −24 J

z2 xy z2 xy 1 −4 +6 J

z2 x2 –y2 z2 x2 –y2 1 −4 +6 J

x2 –y2 xy x2 –y2 xy 1 +4 −34 J

xy yz yz xy 0 +3 +20 K

xy xz xz xy 0 +3 +20 K

xz yz yz xz 0 +3 +20 K

x2 –y2 xz xz x2 –y2 0 +3 +20 K

x2 –y2 yz yz x2 –y2 0 +3 +20 K

z2 x2 –y2 x2 –y2 z2 0 +4 +15 K

z2 xy xy z2 0 +4 +15 K

z2 xz xz z2 0 +1 +30 K

z2 yz yz z2 0 +1 +30 K

x2 –y2 xy xy x2 –y2 0 0 +35 K

xz z2 xz x2 –y2 0 −2
√

3 +10
√

3 Other

yz z2 yz x2 –y2 0 +2
√

3 −10
√

3 Other

xz xz z2 x2 –y2 0 +√
3 −5

√
3 Other

yz yz z2 x2 –y2 0 −√
3 +5

√
3 Other

z2 xy xz yz 0 +√
3 −5

√
3 Other

z2 xy yz xz 0 +√
3 −5

√
3 Other

z2 xz xy yz 0 +2
√

3 −10
√

3 Other

x2 –y2 xy xz yz 0 +3 −15 Other

x2 –y2 xy yz xz 0 −3 +15 Other
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Table B7.3.2 Two-electron repulsion integrals between d orbitals in their complex
forms

ma mb mc md F0 F2 F4 Integral type

+2 +2 +2 +2 1 +4 +1 J

+2 +1 +2 +1 1 −2 −4 J

+2 +1 +1 +2 0 +6 +5 K

+2 0 +2 0 1 −4 +6 J

+2 0 +1 +1 0 +√
6 −5

√
6 Other

+2 0 0 +2 0 +4 +15 K

+2 −1 +2 −1 1 −2 −4 J

+2 −1 +1 0 0 −√
6 +5

√
6 Other

+2 −1 0 +1 0 +2
√

6 −10
√

6 Other

+2 −1 −1 +2 0 0 +35 K

+2 −2 +2 −2 1 +4 +1 J

+2 −2 +1 −1 0 −6 −5 Other

+2 −2 0 0 0 +4 +15 Other

+2 −2 −1 +1 0 0 −35 Other

+2 −2 −2 +2 0 0 +70 K

+1 +2 +1 +2 1 −2 −4 J

+1 +1 +1 +1 1 +1 +16 J

+1 +1 0 +2 0 +√
6 −5

√
6 Other

+1 0 +1 0 1 +2 −24 J

+1 0 0 +1 0 +1 +30 K

+1 0 −1 +2 0 +2
√

6 −10
√

6 Other

+1 −1 +1 −1 1 +1 +16 J

+1 −1 0 0 0 −1 −30 Other

+1 −1 −1 +1 0 +6 +40 K

+1 −1 −2 +2 0 0 −35 Other

0 +2 0 +2 1 −4 +6 J

0 +1 0 +1 1 +2 −24 J

0 +1 −1 +2 0 −√
6 +5

√
6 Other

0 0 0 0 1 +4 +36 J

0 0 −1 +1 0 −1 −30 Other

0 0 −2 +2 0 +4 +15 Other

−1 +2 −1 +2 1 −2 −4 J

−1 +1 −1 +1 1 +1 +16 J

−1 +1 −2 +2 0 −6 −5 Other

−2 +2 −2 +2 1 +4 +1 J

Integrals not listed explicitly may be obtained by replacing mi by −mi across a row or by
interchanging ma with md and mb with mc. Also see notes in last paragraph of text in box.
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BOX 7.4 Diagonalising the MH6 matrix

The easiest way to obtain the eigenvalues of the Hamiltonian matrix for MH6 is by
means of a little group theory.

The molecule belongs to the symmetry point group Oh and it is not difficult to
show that the symmetry of the molecule is reflected in the following combinations of
the hydrogen 1s atomic orbitals. The hydrogen atoms are numbered as in Figure 7.7
and the orbital combinations have been normalised with neglect of ligand orbital
overlap, i.e. 〈φi|φj〉 = δij.

�a1g = (1/
√

6){φ1 + φ2 + φ3 + φ4 + φ5 + φ6}
�eg(x2−y2) = ( 1

2 ){φ1 − φ2 + φ3 − φ4}
�eg(z2) = (1/

√
12){−φ1 − φ2 − φ3 − φ4 + 2φ5 + 2φ6}

�t1ux = (1/
√

2){φ1 − φ3} �t1uy = (1/
√

2){φ2 − φ4} �t1uz = (1/
√

2){φ5 − φ6}
The combinations of hydrogen 1s orbitals have been designated by the symmetry

species to which they belong, a1g, eg, t1u, and the metal d (x2 –y2, z2) or p (x, y, z)
orbitals which have the same symmetry and with which they will therefore interact.
Since we are not considering metal p orbitals here, the t1u combinations of hydrogen
1s atomic orbitals will play no part in the bonding of MH6. If we now reform our
Hamiltonian matrix, replacing the rows and columns which were formerly headed
by the individual hydrogen 1s orbitals by rows and columns representing the above
combinations of the hydrogen 1s orbitals, we find the following matrix. To do this
we first re-calculate the columns. The column headed �a1g, for example, is simply
the sum of the six columns headed φ1 to φ6 divided by

√
6. Having completed the

operation for the columns, we repeat it for the rows and obtain:

Ĥ dx2−y2 �eg(x2−y2) dz
2 �eg(z2) �a1g �t1ux �t1uy �t1uz

dx2−y2 Ed 2
√

3β 0 0 0 0 0 0
�eg(x2−y2) 2

√
3β Es 0 0 0 0 0 0

dz
2 0 0 Ed 2

√
3β 0 0 0 0

�eg(z2) 0 0 2
√

3β Es 0 0 0 0
�a1g 0 0 0 0 Es 0 0 0
�t1ux 0 0 0 0 0 Es 0 0
�t1uy 0 0 0 0 0 0 Es 0
�t1uz 0 0 0 0 0 0 0 Es

The use of symmetrised sets of ligand orbitals as basis functions results in a matrix
which is blocked out; compare the matrix based on the unsymmetrised ligand orbitals
in Section 7.7. The new matrix is actually six separate matrices four of which are
simply 1 × 1 matrices with eigenvalues of Es. The other two are identical 2 × 2
matrices:

Ĥ dz
2 �eg(z2) Ĥ dx2−y2 �eg(x2−y2)

dz
2 Ed 2

√
3β dx2−y2 Ed 2

√
3β

�eg(z2) 2
√

3β Es �eg(x2−y2) 2
√

3β Es
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and their eigenvalues, λ, can be found by solving the characteristic equation (Ap-
pendix 3):

(Ed − λ)(Es − λ) − 12β2 = 0

the roots of which are:

λ = Ed + Es ± √
(Ed − Es)2 + 48β2

2
Each identical matrix gives two values of λ one of which corresponds to ligand-

metal bonding (the negative sign before the square root) and one to antibonding.
In Section 7.7 these pairs of degenerate levels are designated Eb and Ea

respectively.

PROBLEMS FOR CHAPTER 7

1. Show that A44 = A4−4 for φq = 0, ±π /2 and π . (Akα is defined by Equation
(7.2.5)).

2. Follow the method in Section 7.3.1 and Box 7.2 to calculate the off-diagonal matrix
element 〈3, +2|Ĥcf|3, −2〉 for the 3F state of d2 in an octahedral crystal field.

3. Follow the method in Section 7.3.2 and Box 7.3 to calculate the inter-electronic repul-
sion in the |1, 0〉 component of the 3P state of d2 in an octahedral crystal field.

|1, 0〉 = (2/
√

5)|2+, −2+〉 − (1/
√

5)|1+, −1+〉
4. Consider two d2 configurations of an octahedral transition metal complex, a) in which

the electrons occupy the dxy and dxz orbitals with paired spins and b) in which the
electrons occupy the dxy orbital only.

Use the information in Box 7.2 to calculate the electron-repulsion energy of these
two configurations. You should find:

Electron repulsion for configuration a = F0 + F2 + 16F4.
Electron repulsion for configuration b = F0 + 4F2 + 36F4.

Note: The wave function for configuration a is best obtained by recognising that it
must be the product of a spin function and a space function of the form described in
Section 11.5.

5. Use the operator ζ l̂ · ŝ = 1
2ζ(l̂+ ŝ− + l̂−ŝ+) + ζ l̂zŝz to draw up the 10 × 10 matrix for

the spin orbit coupling in the configuration d1. Show that the matrix has six eigenvalues
of +ζ and 4 of −3ζ/2, as one would expect for the states 2D5/2 and 2D3/2.

6. Imagine a tetrahedral, transition-metal complex ion, [MH4]4−, in which the four H−
ions are arranged around the central metal atom as shown in the figure:
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Z

Y

X

2

4

3

1

With the aid of this figure you should be able to convince yourself that the overlaps
of each of the four H− 1s AOs with the dxy, dxz and dyz AOs of the metal are equal in
magnitude but depend for their sign upon the sign of the nearest lobe of the d-orbital.
Equally, it should be clear that the overlap of the dx

2−y
2 AO with each of the H− 1s

AOs is zero. You can see that this is also the case for the dz
2 AO when you recall that

dz
2 = (1/

√
3)(dz

2−x
2 + dz

2−y
2).

Assuming that there is zero overlap of the H− 1s AOs with each other, draw up an
energy matrix for the MH4 complex like the one for MH6 in Section 7.7. Diagonalise
the matrix by reforming the columns and rows using the following combinations of
the H− 1s AOs:

�xy = 1
2 (s1 − s2 − s3 + s4) �xz = 1

2 (s1 + s2 − s3 − s4)

�yz = 1
2 (s1 − s2 + s3 − s4) �s = 1

2 (s1 + s2 + s3 + s4)

You should find two sets of triply degenerate levels, one pair of doubly degenerate
levels and one singly degenerate level.

Assuming that:

a) the initial energy of the five d-orbitals is −50 × 103 cm−1

b) the initial energy of the 1s orbitals of the four H− ions is −110 × 103 cm−1

c) where the overlap is positive (negative), the interaction energy of an interacting
d-orbital with an H− 1s orbital is −(+)15 × 103 cm−1.

show that we expect the d-d transition of a d1 complex with this structure to be found
in the region of 12.5 × 103 cm−1.
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8.0 THE INTERACTION OF RADIATION WITH MATTER

Spectroscopy may be defined as the study of the interaction of electromagnetic radia-
tion with matter. Its application to chemistry, essentially in the second half of the 20th
century, has been primarily responsible for the detailed knowledge of the structure of
molecules which we now have. Chemistry, as we know it today, is inextricably entwined
with the methods of molecular spectroscopy and totally dependent upon them. It is the
purpose of this chapter to outline the principles of atomic and molecular spectroscopy
from a quantum mechanical point of view. This will help us to understand, in general
terms, how electromagnetic radiation interacts with matter and how information about the
structure of molecules can be obtained by studying that interaction. The specific branches
of spectroscopy which are of particular importance to chemistry–electronic, infrared and
nuclear magnetic resonance–will be discussed in the following chapters. Our first task is
to set down a suitable description of electromagnetic radiation.

8.1 ELECTROMAGNETIC RADIATION

There were few developments in the science of optics during the 18th century and, for
the most part, Newton’s corpuscular view of light held sway.1 In the present context, it
is interesting to note that the generalisation of Newtonian mechanics by Lagrange and
Laplace, which was also believed to be applicable to particles of light, was at least par-
tially responsible for the general confidence in the corpuscular description of light at the
end of that century. Nevertheless, in 1801 Thomas Young (1773–1829) revived the wave
theory of Christian Huygens (1629–1695) because he had come to believe that colours
might be associated with vibrations of light as notes are associated with sound vibra-
tions. Later in the century, two French amateur scientists, Armand Fizeau (1819–1896)
and Jean Foucault (1819–1868), independently improved the accuracy with which the
velocity of light could be measured and Foucault showed that light travels more slowly in
water than in air. This result is in agreement with the prediction of the wave theory but in
contradiction to the corpuscular theory of light. In the years 1864 to 1873, which imme-
diately followed Foucault’s researches, James Clerk Maxwell (1831–1879) developed a
mathematical theory of light in the form of four differential equations which describe light
as oscillating electric and magnetic fields. The new theory of electromagnetic radiation
was a triumph. Not only did it show how electricity, magnetism and light are connected,
a fact first demonstrated experimentally by Michael Faraday (1791–1867) in 1846, but it
made the relationships quantitative. In Maxwell’s time, electricity was measured in one
of two units. It could be measured either in terms of charge in electrostatic units (e.s.u.)
or in terms of its magnetic effect in electromagnetic units (e.m.u). Maxwell derived the
simple relationship between these two units in which electricity might be measured; he
found that:

value in e.s.u. = velocity of light × value in e.m.u. (8.1.1)

in agreement with the experimental discovery of this result by Kirchhoff in 1857.
But Maxwell’s description of visible light as electromagnetic radiation went much

further. Though knowledge of the visible spectrum is clearly as old as man himself,
only the spectral regions immediately adjacent to visible light were known in Maxwell’s
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day. The near infrared, which adjoins the visible on the long-wavelength side, was dis-
covered by Sir William Herschel (1738–1822) in 1800 and the ultraviolet, on the other
side of the visible, was found by Johann Wilhelm Ritter (1776–1810) in 1801. But
Maxwell’s equations predicted that there was an infinite spectrum of electromagnetic
radiation, just waiting to be discovered, outside the then-known range. This prediction
was brilliantly confirmed for long wavelengths by Heinrich Rudolf Hertz (1857–1894)
and in modern spectroscopy we make use of a spectral range of frequency (or wave-
length) which covers approximately 12 powers of ten (Table 8.1). Maxwell’s equations
passed through the great upheavals which overtook theoretical physics at the beginning of
the 20th century quite unchanged. They provide us with a description of electromagnetic
radiation which is very valuable when we wish to consider how that radiation interacts
with matter, the process which is the basis of spectroscopy. We therefore now examine
this description.

8.1.1 The electric field

Imagine (Figure 8.1(a)) an electric field represented by a vector E0 which is rotating in
the yz-plane with an angular velocity of ω radians per second. For this velocity the time,
t ′, required by the vector E0 to execute one complete revolution is:

t ′ = 2π/ω (8.1.2)

Table 8.1 The regions of the electromagnetic spectrum

Branch of spectroscopy Nominal boundarya λ/m ν/cm−1 ν/m−1 ν/s−1

X-ray
10−11 109 1011 3 × 1019

Auger
10−9 107 109 3 × 1017

Vacuum ultraviolet 10−7 105 107 3 × 1015

- - - - - - - - - - - - - - - - - - 2 × 10−7

Ultraviolet
- - - - - - - - - - - - - - - - - - 3.8 × 10−7

Visible
- - - - - - - - - - - - - - - - - - 7.8 × 10−7

Near infrared 10−6 104 106 3 × 1014

- - - - - - - - - - - - - - - - - - 3 × 10−6

Infrared 10−5 103 105 3 × 1013

- - - - - - - - - - - - - - - - - - 3 × 10−5

Far infrared 10−4 102 104 3 × 1012

- - - - - - - - - - - - - - - - - - 3 × 10−4

Microwave
- - - - - - - - - - - 10−3 10 103 3 × 1011

Electron paramagnetic resonance
- - - - - - - - - - - 10−2 1 102 3 × 1010

Nuclear magnetic resonance
- - - - - - - - - - - 10 10−3 10−1 3 × 107

aSet for the range 10−8 to 3 × 10−4 m in Report No. 6 of the Joint Committee on Nomenclature in Applied
Spectroscopy, Analytical Chemistry, 24, 1349 (1952).
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Figure 8.1 Graphs of E0 versus θ (a) and t (b)

The inverse of this time is the frequency of revolution, ν, in s−1, therefore:

ν = ω/2π (8.1.3)

If the tail of the vector is fixed, then its head describes a circle in the yz-plane and the
angle, θ , between the z-axis and the vector is given by Equation (8.1.4):

θ = ωt (8.1.4)

and the component of E0 in the y-direction, Ey, is:

Ey = E0 sin(θ) = E0 sin(ωt) (8.1.5)

Thus, the electric field in the y-direction, Ey, varies with time as a sine function and
oscillates as illustrated in Figure 8.1(a).

In Maxwell’s description, this oscillating electric field propagates through space in a
direction, usually chosen to be z, at 90◦ to the oscillation direction, with the velocity of
light, c. Therefore, a particular field vector, Ey(0) generated at time t = 0, moves away
from the light source at velocity c. In the time, t ′ = 1/ν, required by the rotating vector E0

to complete one cycle, the propagating Ey vector will have moved along the z-direction
to a position z = ct ′ = c/ν and after n cycles when θ = 2nπ , Ey will have reached
z = nc/ν. Therefore, eliminating n, θ = 2πzν/c. Thus, the wave reproduces itself every
interval of c/ν along the z-direction (Figure 8.1(b)) and this repeat distance is known as
the wavelength, λ, so that:

λ = c/ν or c = λν (8.1.6)

and
Ey = E0 sin(2πzν/c) = E0 sin(ωz/c) (8.1.7)
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The dependence of Ey upon time (Equation (8.1.5)) and distance (Equation (8.1.7))
may be combined to give:

Ey = E0 sin[ω(t − z/c)] (8.1.8)

where the two parts of the argument of the sine function are combined with the negative
sign because (Figure 8.1(b)) if we move along the wave in the positive z-direction we
are going backwards in time. If this idea presents a problem, consider the light arriving
on the earth today from a distant star. The light which we now see is a record of events
that took place on the star at the time that the light left it, many years ago. But if we
could journey towards the star, i.e. in the negative z-direction, we would see ever more
recent light until, upon arriving at the star’s surface, we would see events as they are
currently happening. The reverse is true if we move away from the star in the direction
of propagation of the light.

8.1.2 The magnetic field

Apart from the oscillating electric field discussed above, Maxwell’s description of light
also includes a magnetic field, H, which oscillates in phase with the electric field but
is always directed at 90◦ to it, i.e. along x in Figure 8.1. Thus, the full description is
one of an electric and magnetic field oscillating in phase and orientated at right angles
to each other and to the propagation direction. These oscillating fields, which propagate
through space (vacuum) with a speed of 2.997925 × 108 ms−1, constitute what we call
light in the region where we can detect it with our eyes and, in general, electromagnetic
(e-m) radiation. It is characterised particularly by its wavelength and frequency, which
are related by Equation (8.1.6). In much of the following we use the word ‘light’ rather
than ‘electromagnetic radiation’ on account of its brevity, but the latter is always implied.

8.2 POLARISED LIGHT

The electric and magnetic fields of a light beam oscillate in directions perpendicular to the
direction of propagation of the light. Thus, if we choose z as the direction of propagation,
E and H must lie in the xy-plane. (Clearly, we could choose any direction for the direction
of propagation, but unless it is stated otherwise we will always choose z.) The vectors
E and H are frequently said to vibrate, rather than oscillate, in the xy-plane. Light from
the usual sources, e.g. the sun, incandescent metals, electrical discharges has electric and
magnetic vectors vibrating in every direction in the xy-plane (Figure 8.2(a)). But by using
optical devices known as polarisers, it is possible to obtain light which vibrates in only one
direction (Figure 8.2(b)). Such light is said to be linearly or plane polarised in the direction
in which the E vector vibrates. Polarised light is very important in spectroscopy because
the direction of polarisation of the light can have a decisive effect upon whether or not
the light is absorbed by a particular sample. In this connection it is useful to distinguish
two kinds of polarised light; linearly and circularly polarised. In what follows we shall
mention only the E vector; but the H vector is always present following exactly the same
pattern of behaviour as the E vector, but always at right-angles to it. Both E and H are
important, but usually in different forms of spectroscopy.
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Figure 8.2 Unpolarised light (a) and linearly (plane) polarised light (b)

8.2.1 Linearly polarised light

The electric vector of a polarised light beam propagating along z may be resolved onto
any two mutually perpendicular directions in the xy-plane. It is of particular interest in
connection with the relationship between linearly and circularly polarised light to resolve
the E vector onto two such axes each of which lies at 45◦ to E (Figure 8.3). We then
find that the two components of the E vector, Ex and Ey say, form two beams of linearly
polarised light with mutually perpendicular planes of polarisation which vibrate in phase
and have equal amplitude; i.e. Ex = Ey = E/

√
2. Thus, a beam of linearly polarised light

can always be described in terms of two beams of linearly polarised light with mutually
perpendicular planes of polarisation, equal E0 values and vibrating in phase.

45°

EEy = E/√2

Ex = E/√2

Figure 8.3 Resolution of plane polarised light into x and y components
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8.2.2 Circularly polarised light

Light propagating through some crystalline materials, e.g. gypsum, mica and quartz, trav-
els at different velocities depending upon the direction in which it is polarised. By passing
plane polarised light through a plate of such a material, known as a quarter-wave plate, it
is possible to create a situation whereby two perpendicular and equal E vectors vibrate 90◦

out of phase so that one is at a maximum when the other is a minimum, and vice-versa,
though only at one specific wavelength. The resultant is an E vector which describes
a circle and if we also think of the propagation of the light wave along z, then the E
vector describes a spiral, like a staircase, and returns to the same orientation every time
the wave advances by a wavelength (Figure 8.4). Left- and right-handed spirals can be
formed by suitable choices of phase (Figure 8.5). Light having these properties is known
as circularly polarised light, LCP and RCP for the left- and right-handed versions respec-
tively. To ensure that there is no confusion, we must define more exactly what we mean
by right- and left-handed spirals. The convention is that if the head of the E vector
moves clockwise when viewed by an observer looking at the light source then the light is
RCP. Counter-clockwise rotation is LCP. The physical significance of these two forms of
polarised light lies in the angular momentum properties of the photons with which they
are associated. This will be made clear in Section 8.4.5 below.
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 z direction
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p

l/2
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Figure 8.4 Circularly polarised light – propagation

right-handed

left-handed

q = 0 p/4 p/2 3p/4

ER = (E/√2)(Ex cos 2pnt − Ey sin 2pnt)

EL = (E/√2)(Ex cos 2pnt + Ey sin 2pnt)

Figure 8.5 Circularly polarised light – sense of rotation
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8.3 THE ELECTROMAGNETIC SPECTRUM

There is, in principle, no limit to the wavelength and frequency of e-m radiation. However,
as far as chemical spectroscopy is concerned, the range of interest runs from λ = 10−11 m
(ν = 3 × 1019 s−1) to λ = 10 m (ν = 3 × 107 s−1). This is an extremely large range and
it is divided into a number of smaller regions (Table 8.1). There is, of course, no sharp
division between any two ranges, but the experimental techniques used for spectroscopy
in the different regions and the type of information obtained differ widely. It is therefore
convenient to discuss spectroscopy in the different regions of the e-m spectrum under
different headings, e.g. ultraviolet and visible spectroscopy, infrared spectroscopy etc., as
we shall presently see.

8.3.1 Three forms of electromagnetic radiation

The e-m radiation generated by the rotating electric field vector, E0, as described in
Sections 8.1 and 8.2 is called electric dipole radiation because it has exactly the same
form as the radiation emitted by an oscillating dipole composed of two equal and opposite
charges, q+ and q−, separated by a distance l (Figure 8.6(a)) and each varying with time
according to the equation:

q− = −q+ = q0 cos ωt

However, though this is the most common form of e-m radiation it is not the only one.
Two other types of e-m radiation will make occasional appearances in this book. Two
identical electric dipoles arranged co-linearly end to end (Figure 8.6(b)) with the central
charge and those at the ends varying in time according to the equation:

2q− = −q+ = q0 cos ωt

emit electric quadrupole radiation. Finally, an oscillating electric current flowing in a
loop (Figure 8.6(c)) constitutes an oscillating magnetic dipole and emits magnetic dipole
radiation.

Electric
Quadrupole

Electric
Dipole

+q

−q

−q

−q

+2q

Magnetic
Dipole

(a) (b)

(c)

~

Figure 8.6 Three forms of electromagnetic radiation
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8.4 PHOTONS AND THEIR PROPERTIES

Before we embark upon the study of the interaction of radiation with matter in particular
regions of the spectrum we must recall (Section 2.6) that, at the end of the 19th century,
the wave theory of light was found to be difficult to reconcile with the results obtained
from a study of the photoelectric effect; the ejection of electrons from a metal surface
when that surface is irradiated with visible or ultraviolet light. This was just one of the
problems prevalent at that time which, in 1905, led Einstein to propose that processes
where light is absorbed or emitted by a substance might be better understood in terms of
light quanta or photons of energy (hν). Einstein did not himself coin the name ‘photon’; he
used the term light-energy quantum throughout his 1905 paper. The word photon for the
corpuscle of light was proposed by Gilbert Newton Lewis (1875–1946) in 1926 and the
suggestion appears to have received immediate acceptance. Einstein’s corpuscular concept
of light was successfully applied by Bohr in his 1913 interpretation of the hydrogen atom
spectrum. In 1916 it was fully substantiated, with respect to the photoelectric effect, by
Millikan’s comprehensive experimental studies (Section 2.6), and since that time this view
of the energetics of the interaction of light with matter has never been challenged. It is
therefore appropriate that we now consider some properties of the photon.

Photons are the quanta of the electromagnetic field. Like other particles, they have
energy, angular momentum and parity; properties which must be conserved when photons
interact with other quantum-mechanical entities such as atoms and molecules. Our interest
in these conservation requirements arises because they form the basis of the spectroscopic
selection rules. In particular, when a photon is absorbed (emitted) by an atom or molecule
the energy, angular momentum and parity of the system, photon + atom or molecule, must
be the same before and after the absorption (emission). This bald statement requires further
elucidation in the case of the conservation of angular momentum. In quantum mechanics,
when two angular momenta, j1 and j2, are added together 2j< + 1 values of the resultant
sum, J, are possible, where j< is the smaller of j1 and j2 (Section 4.6.1). These values
form the Clebsch–Gordan series (Equation (4.6.1)):

J = j1 + j2, j1 + j2 − 1, j1 + j2 − 2 . . . |j1 − j2|
Values of J, j1 and j2 which satisfy any of the above 2j< + 1 equations are said to

satisfy a triangular condition which is written �(j1, j2, J) and is not equal to zero only if
J is one of the Clebsch–Gordan series formed from j1 and j2. Thus, if ji, jf and jp are the
angular momenta of the initial state, final state and photon respectively, then these three
angular momenta must satisfy the triangular condition �(ji, jp, jf) if angular momentum
is to be conserved in the absorption/emission process. The fact that 2j< + 1 different
outcomes can all satisfy the condition for the conservation of angular momentum seems,
at first sight, a little surprising. However, this is necessary in order to take account of
both absorption and emission processes as we shall see when we consider electric dipole
transitions below.

8.4.1 Velocity

The velocity of the photon is the velocity of light, which is equal to the product of the
wavelength (λ in m) and the frequency (ν in s−1):

c = λ × ν = 2.997925 × 108 m s−1 (8.4.1)
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The above figure is the velocity of light in a vacuum. In any other medium the velocity
is less by a factor of 1/n, where n is the refractive index of the medium. Furthermore,
in any medium other than a vacuum the velocity of light depends upon its wavelength.
The dependence of velocity or refractive index upon wavelength is responsible for the
fact that light is dispersed into a spectrum when it passes through a transparent prism.
As a simple illustration of Equation (8.4.1), we take one of a pair of lines known as
the sodium D lines; two closely spaced atomic spectral lines which are responsible for
the strong yellow colour of the sodium flame or street lamp and which derive from the
transitions 2P 3

2
⇔ 2S 1

2
and 2P 1

2
⇔ 2S 1

2
of the sodium atom (Chapter 5). The first of these

lines has λ = 5.892 × 10−7 m and ν = 5.088 × 1014 s−1. It is clear that these data satisfy
Equation (8.4.1).

8.4.2 Energy

The energy of a photon depends upon its frequency according to the equation proposed
by Einstein in 1905:

E = hν (8.4.2)

h is Planck’s constant, for which we shall use the truncated value of 6.626 × 10−34 J s
in this section. Thus, for the above D-line photon we find:

E = 6.626 × 5.088 × 10−20 = 3.371 × 10−19 J (8.4.3)

8.4.3 Mass

A relationship also deduced by Einstein, but in connection with the special theory of
relativity, may be used to determine the mass of a photon:

E = mc2 or m = E/c2 (8.4.4)

For our particular example we find:

m = 3.371 × 10−19/(2.998 × 108)2 = 3.751 × 10−36 kg

Note that, because the mass of the photon depends upon its energy, its mass also
depends upon its wavelength or frequency. If we also recall that the mass of a particle
moving with a velocity, v, comparable with that of light is related to its mass when at
rest, m0, by yet another equation due to Einstein:

m0 = m
√

1 − (v/c)2 (8.4.5)

then we see that, because the photon moves with the velocity of light, v/c = 1 and the
rest mass of the photon is zero.

8.4.4 Linear momentum

The linear momentum, p, of a particle of mass m moving with velocity v is given by
p = mv and since for the photon v = c, in a vacuum our D-line photon has a linear
momentum of:

p = mc = 3.751 × 2.998 × 10−28 = 1.125 × 10−27 kg m s−1 (8.4.6)
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Compton’s interpretation of the scattering of X-rays by electrons (see Box 8.1) provides
one of the most convincing pieces of evidence for the photon as a discrete particle which
has mass and, hence, linear momentum.

8.4.5 Angular momentum

Experiment shows that the electric dipole photon has a spin angular momentum charac-
terised by a spin quantum number of 1, i.e. a total spin angular momentum of

√
2h/2π

(Chapter 4). But, unlike a particle with a finite rest mass, which would have z-components
of +1, 0 and −1 in units of h/2π (Chapter 4), the photon has only two components of
±h/2π directed parallel (+) and antiparallel (−) to its direction of propagation. These
two components of angular momentum are related to the property of light which is known
as polarisation. As we have seen in Section 8.2.2, two types of circularly polarised light
exist. LCP light has a z component of angular momentum of +h/2π and RCP light
has a z component of angular momentum of −h/2π . The photons in a beam of linearly
polarised light are not in states which are eigenfunctions of the operator for the z compo-
nent of angular momentum. The expectation value for a measurement of the z component
of their angular momentum is zero, since a large number of measurements would record
equal numbers of photons having angular momenta of +h/2π and −h/2π . In SI units
the angular momentum of a photon is:

l = √
2h/2π = √

2 × 6.626 × 10−34/2π = 1.491 × 10−34 J s (8.4.7)

The value of l has been determined experimentally in a very ingenious way by Beth.2

Note that l is independent of the wavelength or frequency of the photon and is therefore
the same for all photons.

8.4.6 Parity

Like atomic wave functions (Section 5.10.2), an odd (u) or even (g) character may be
assigned to photons and, as with atoms, the parity of the photon depends upon its state. Parity
and angular momentum together lie at the heart of the stringent conditions which determine
the way in which photons interact with matter. These conditions are called selection rules.

8.5 SELECTION RULES

Three combinations of photonic angular momentum and parity play a particular role in
the selection rules of chemical spectroscopy. Each corresponds to a particular form of
e-m radiation.

The photons of electric dipole radiation are of odd (u) parity and carry one unit of
angular momentum. For an allowed electric dipole transition, therefore, the parities of the
initial and final states must differ, i.e. u → g or g → u, and the triangular condition �(ji,
1, jf) must be obeyed. Since the total angular momentum quantum number, j, is always
positive, one might naively think that the absorption of a photon must be accompanied
by an increase in the angular momentum of the absorbing species, and emission by a
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decrease. But the fact that angular momentum is conserved if the resulting jf satisfies
any of the 2j< + 1 Clebsch–Gordan relationships removes this apparent restriction. For
example, if an atom in a P state (j = 1) absorbs a photon, states having increased (j = 2
[D]), unchanged (j = 1 [P]) or decreased (j = 0 [S]) angular momentum may result. And
in all three cases angular momentum is conserved. However, in the case of the P → P
transition there is no change of parity, so it would not be electric-dipole allowed. Electric
dipole transitions are responsible for the vast majority of the absorption (emission) bands
observed in the electronic spectra of atoms and molecules and in all infrared absorption and
emission processes. They are much stronger (by a factor ≈ 104) than all other transitions
which are forbidden by these selection rules.

The photons of electric quadrupole radiation carry two units of angular momentum
and are of even (g) parity. The extra angular momentum is usually called orbital angular
momentum, but the use of the terms ‘spin’ and ‘orbital’ in the case of photons is to a
large extent a matter of convenience because in most cases the two cannot be separated.
For an electric quadrupole transition, therefore, the triangular condition �(ji, 2, jf) must
be obeyed and the parities of the initial and final states must be the same. The very weak
d → d (g → g) and f → f (u → u) transitions of gas-phase metal atoms and ions with
open d or f shells are of this type.

The photons of magnetic dipole radiation carry one unit of angular momentum and
are of even (g) parity. For an allowed magnetic dipole transition, therefore, the triangular
condition �(ji, 1, jf) must be obeyed and the parities of the initial and final states must
be the same. These transitions are weak and rarely seen in electronic spectroscopy and
never in the infrared; but their significance is great because they are the transitions which
are observed in electron and nuclear magnetic resonance spectroscopies.

The selection rules that derive directly from the requirements of conservation, espe-
cially conservation of energy, angular momentum and parity, impose many restrictions
upon the process of absorption or emission of a photon by a molecule. The fact that the
selection rules are so restrictive should not, in general, be regarded as a disadvantage.
This selectivity is the basic cause of the highly characteristic spectrum of each chemical
compound which is, in turn, the reason for the value of spectroscopy as a means of iden-
tifying atoms and molecules. We shall return to the subject of selection rules with some
examples in Section 8.7.3.

We might note here that, since energy and mass are related by Equation (8.4.4), the
conservation of these two quantities should be considered together. But this fact plays no
discernable role in the spectroscopy of interest to chemists and we confine our attention
here to conservation of energy which forms the basis of the most fundamental of all the
selection rules: the Bohr–Einstein condition.

8.5.1 The Bohr–Einstein condition

Strange as it may seem to us today, Einstein’s concept of the light particle or photon
received little attention in the years immediately following its publication in 1905. But in
1913 the idea played a central role in Bohr’s pre-quantum-mechanical theory of the hydro-
gen atom (Sections 2.7.1 and 2.7.2). Having quantised the orbital angular momentum, and
hence the energy, of his planetary electron, Bohr postulated that when an electron changed
orbit it emitted or absorbed the energy difference between the energy of the initial, Ei,
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and the final, Ef, states according to the equation:

�E = |Ef − Ei| = hν. (8.5.1)

Thus, if the energy of the photon is hν, as Einstein had proposed, Equation (8.5.1)
is the equation of energy conservation and determines the region of the e-m spectrum
in which each type of atomic and molecular process is observed spectroscopically. To
appreciate the conservation of other quantities, especially the most important of them
angular momentum, we must examine the interaction of e-m radiation and matter in more
detail, and we do this in Section 8.6.

In addition to the fundamental concepts associated with conservation of mass, energy
and angular momentum noted above, at least one other general view of the selection
rules can be discerned. If we again consider e-m radiation as a wave rather than as a
stream of photons, we may enquire as to how the radiation actually interacts with a
molecule. What is the mechanism by means of which an e-m radiation wave can change
the electron distribution in a molecule or induce a higher energy mode of vibration in it?
The ‘hands’ with which the e-m radiation ‘grasps’ the molecule are the oscillating electric
and magnetic fields. The electric field, for example, can interact with a permanent dipole
moment, if one exists in a molecule; the magnetic field can interact with the magnetic
moment of an electron, or of a nucleus if that nucleus has a magnetic moment. These are
the concepts with which we shall seek to understand the nature of spectroscopic selection
rules which apply in the individual spectral regions. In the next section of this chapter we
set the scene by giving a semi-classical description of the interaction of e-m radiation with
matter. In Section 8.9 attention will be drawn to a purely quantum-mechanical theory of
the interaction, quantum electrodynamics.

8.6 THE QUANTUM MECHANICS OF TRANSITION PROBABILITY

This section will be one of the more mathematical parts of the book and readers who
would prefer to leave it aside at present may do so if they note carefully the following
points, which will also serve as a guide for those who propose to work through the
material.

1. We first set up a wave function that describes a system which is changing in time; i.e.
one which is making a transition from an initial state having a wave function �i and
an energy Ei to a final state with wave function �f and energy Ef.

2. We recognise that such a wave function has time-dependent and time-independent parts
and we focus our attention upon the former.

3. We discover that the combination of the time-dependent part of the wave function
and the time-dependency of the radiation (sin ωt), acting over a finite period of time,
T , results in a non-zero interaction only when the Bohr–Einstein condition of energy
conservation is satisfied. It must be emphasised that the Bohr–Einstein condition is
not introduced into the analysis; it arises quite naturally.

4. This time-dependent part of the problem is common to all branches of spectroscopy
and the Bohr–Einstein condition therefore represents a very fundamental and widely
applicable selection rule.
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5. The time-independent part of the problem, however, varies with the type of spec-
troscopy involved and does not take the same form in all branches of the subject.

We now attempt to answer the questions: How does an electromagnetic wave interact
with an atom or molecule and cause it to change its energy state by absorbing energy
from the radiation? What is the mechanism of this process and how does it give rise to
selection rules?

With problems such as the above in mind, Erwin Schrödinger formulated two
quantum-mechanical equations; the time-independent and the time-dependent Schrödinger
equations. We have already discussed and used the first of these equations in Chapters 2
and 3. It takes the form:

Ĥφa = Eaφa (8.6.1)

in which φa is an eigenfunction of the energy operator, Ĥ, with eigenvalue Ea. Ĥ and
φa are functions of the spatial co-ordinates x, y and z only.

The time-dependent equation takes the form:

Ĥ� = ih

2π
· ∂�

∂t
(8.6.2)

Ĥ is the same as in Equation (8.6.1), i is
√

(−1), h is Planck’s constant and the
simplest form of � is a product of the φa from Equation (8.6.1) and a time-dependent
exponential term:

� = φa exp(−i2πEat/h) (8.6.3)

We see that it is a function of the three spatial co-ordinates (from φa) and of the time,
t . It is convenient to simplify the above expression for � by noting that:

E = hν = hω/2π or ω = 2πE/h (8.6.4)

where ω is an angular frequency measured in radians per second.
Using Equation (8.6.4), � can be written:

� = φa exp(−iωat) (8.6.5)

In this simple form � is an eigenfunction of the time-dependent Schrödinger equation
with the eigenvalue Ea. But the most general form of � is a linear combination of
functions of the form:

� = c1φ1 exp(−iω1t) + c2φ2 exp(−iω2t) + c3φ3 exp(−iω3t) + · · ·
i.e.:

� = 
acaφa exp(−iωat) (8.6.6)

where ca are coefficients which tell us how much of each function φa exp(−iωat) there
is in �. The energy of a system described by such a general wave function as � is not
constant. It changes with time (Box 8.2), which is just what we require for a description
of a spectroscopic transition.

In absorption spectroscopy we are normally particularly interested in a transition
between just two states, an initial state, �i, and a final state, �f, which have energies of
Ei and Ef with Ei < Ef. Then the wave function which describes all stages of the process
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whereby the system absorbs energy and goes from �i to �f during the time interval t = 0
to t = T is:

� = ciφi exp(−iωit) + cfφf exp(−iωft) (8.6.7)

and

at t = 0: � = �i = φi exp(−iωit) with precise energy Ei and ci = 1, cf = 0

at t = T : � = �f = φf exp(−iωft) with precise energy Ef and ci = 0, cf = 1

We see that the coefficients, c, are also functions of time and we shall use the change
in the value of cf

∗cf to track the progress of the transition from �i to �f. It is clear that
for this process to take place there must be some property of the electromagnetic radiation
which links the two states �i and �f. Let us represent that property by an operator, V̂ ,
which we write is a product of two parts, one a function of the spatial co-ordinates only
and the other a function of the time:

V̂ = V̂ (x,y,z) × V̂ (t) (8.6.8)

It will also be convenient to define the symbol Vf i as:

Vf i ≡ 〈φf|V̂ (x,y,z)|φi〉 · 〈exp(−iωft)|V̂ (t)| exp(−iωit)〉 (8.6.9)

which will have a finite value for an allowed transition.
We say that the effect of the electromagnetic radiation is to perturb the system; the

operator V̂ represents that perturbation. This is expressed in quantum mechanics (see
Appendix 4) by writing a new Hamiltonian operator, Ĥ , for the system as a sum of the
original Hamiltonian, Ĥ0, and the perturbation:

Ĥ = Ĥ0 + V̂ (8.6.10)

The Schrödinger equation which describes the system under the influence of the per-
turbation is therefore:

(Ĥ0 + V̂ )� = ih

2π
· ∂�

∂t
(8.6.11)

If � describes our simple two-state system (Equation (8.6.7)) then substitution into
Equation (8.6.11) gives:

ciĤoφi exp(−iωit) + cfĤoφf exp(−iωft) + ciV̂ φi exp(−iωit) + cfV̂ φf exp(−iωft)

= ih

2π

{
∂ci

∂t
· φi exp(−iωit) + ci

∂φi

∂t
· exp(−iωit)

+ ∂cf

∂t
· φf exp(−iωft) + cf

∂φf

∂t
· exp(−iωft)

}
(8.6.12)

Note that in forming ∂�/∂t on the right-hand side of the above equation the functions
to be differentiated have been treated as products because the coefficients, c, are also
functions of time as we saw above.

Because of Equations (8.6.2) and (8.6.3), the first two terms on the left of Equation
(8.6.12) cancel the second and the fourth on the right and the equation reduces to:

ciV̂ φi exp(−iωit)+cfV̂ φf exp(−iωft)= ih

2π

{
∂ci

∂t
· φi exp(−iωit)+ ∂cf

∂t
· φf exp(−iωft)

}

(8.6.13)
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If we multiply each term of Equation (8.6.13), on the left, by 〈φf exp(−iωft)| and
integrate over all spatial co-ordinates and time we have:

ci〈φf exp(−iωft)|V̂ |φi exp(−iωit)〉 + cf〈φf exp(−iωft)|V̂ |φf exp(−iωft)〉

= ih

2π

{
∂ci

∂t
〈φf exp(−iωft)|φi exp(−iωit)〉 + ∂cf

∂t
〈φf exp(−iωft)|φf exp(−iωft)〉

}

(8.6.14)

In this bra-ket notation, which we have used before in Chapter 3, the <> means
integration over all the co-ordinates in the operator, i.e. x, y, z and t . Note that the
exponential term on the left-hand side of each bracket is required by quantum mechanics
to be the complex conjugate (−i → +i; Appendix 8) of φf exp(−iωft). However, this
is not written explicitly, rather it is implied by the bra (〈|). The first integration on the
right-hand side of Equation (8.6.14) gives zero because the functions φi exp(−iωit) and
φf exp(−iωft) are orthogonal to each other. The integration of the second term gives one
because φf exp(−iωft) is normalised. Simplifying the notation using Equation (8.6.9) and
rearranging we obtain Equation (8.6.14) in the compact form:

∂cf

∂t
= 2π

ih
· {ciVf i + cfVff} (8.6.14a)

At the onset of the perturbation ci = 1 and cf = 0 so that:

∂cf

∂t
= 2π

ih
Vf i (8.6.15)

This equation is an expression for the change of cf with time. By monitoring its value
we can follow the change in the system with time under the influence of the perturbation.
Suppose that the perturbation lasts for a time T . The value of cf at the end of that time,
cf

T , can be found by evaluating the integral:

cT
f =

T∫

0

∂cf = 2π

ih

T∫

0

Vf i∂t (8.6.16)

If we recall that the definition of Vf i (Equation (8.6.9)) involves integration over the
spatial co-ordinates x, y and z, then Equation (8.6.16) requires integration over all spatial
and time variables and it is convenient to separate the integrations over space and time.
This is why we have written Vf i as a product of a space-dependent and a time-dependent
part in Equation (8.6.9), which we repeat here for convenience:

Vf i ≡ 〈φf|V̂ (x,y,z)|φi〉 · 〈exp(−iωft)|V̂ (t)| exp(−iωit)〉 (8.6.9)

The first term, the time-independent term, is quite specific to the type of spectroscopy
and is not the same, for example, for infrared and NMR spectroscopy. We therefore leave
the time-independent term aside for the moment and consider it again in Section 8.7.
The time-dependent term, on the other hand, is exactly the same in all cases and it will
therefore be considered here in the general discussion. Combining the two exponential
functions (remember that the bra implies the complex conjugate of the function written
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inside it) the integral can be written:

T∫

0

exp[i(ωf − ωi)t]V̂ (t) dt ≡
T∫

0

exp[i�ωt]V̂ (t) dt (8.6.17)

where �ω = ωf − ωi.
Since exp(i�ωt) = cos(�ωt) + i sin(�ωt) (Box 3.1 and Appendix 8), we see that

the exponential function is a function which oscillates in time and the integral of such
a function will normally contain a large number of equal and opposite contributions
which will sum to zero (Figure 8.7(a)). We therefore require that V̂ (t) should also be an
oscillating function which, if suitably chosen, cancels the oscillations of the exponential
term giving a non-zero value for the integral. The electric field of a beam of light seems a
good choice because it has the required oscillatory character and the presence of the field
will change the potential energy of the charged particles of which atoms and molecules
are formed. We therefore investigate the function:

V̂ (t) = E0 sin ωt = E0{exp(iωt) − exp(−iωt)}/2i (8.6.18)

because it is of the form which we have used earlier to describe the waves of electro-
magnetic radiation. Substituting Equation (8.6.18) into Equation (8.6.17) our integral over
time becomes:

E0

T∫

0

exp[i�ωt] · sin ωt dt = E0

2i

T∫

0

exp[i�ωt] · {exp(iωt) − exp(−iωt)} dt

= E0

2i




T∫

0

exp{i(�ω + ω)t} dt −
T∫

0

exp{i(�ω − ω)t} dt



 (8.6.19)

since Ef > Ei, ωf > ωi and �ω > 0. Therefore, the argument of the first exponential
term is always large giving a rapidly oscillating function which integrates to a very small
quantity (Figure 8.7(a)). But the argument of the second exponential can be small and

∆w + w >> 0 

∆w − w ≈ 0 

∆w − w = 0 (c)

(b)

(a)

t = Tt = 0

Figure 8.7 The integral in Equation (8.6.19)
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is, in fact, zero when ω = �ω. Therefore, the second term in the integral is slowly
varying in the frequency range ω ≈ �ω and it can contribute to a significant value of
the integral (Figure 8.7(b)). The maximum contribution will be obtained when ω = �ω

since the exponential function is then exp(0) = 1 which shows no fluctuation with time,
(Figure 8.7(c)). Thus the maximum interaction of the molecule with the radiation arises
when:

ω = �ω = ωf − ωi

or (using Equation (8.6.4)) in terms of frequency and energy, when:

2πν = (2π/h) · (Ef − Ei) or Ef − Ei = hν

We have obtained the Bohr–Einstein or energy conservation rule without any mention
of energy conservation. This result may be taken as confirmation, if such is needed, of
Einstein’s proposal that the energy of an electromagnetic wave could be expressed in
terms of photons of energy hν. Note that the argument would have been made in exactly
the same way, and with exactly the same result, had we been considering stimulated
emission for which Ef < Ei, ωf < ωi and �ω < 0. Then it would have been the first term
of Equation (8.6.19) which was the important one.

Now we can complete our analysis by carrying out the integration, which is quite
simple. Neglecting the first term on the right in Equation (8.6.19) we have:

−E0

2i

T∫

0

exp{i(�ω − ω)t} dt = −E0

2i
·
[

exp{i(�ω − ω)t}
i(�ω − ω)

]T

0

= E0[exp{i(�ω − ω)T } − 1]

2(�ω − ω)

We have evaluated the integral in Equation (8.6.16) to obtain cf
T , the value at t = T of

the wave function coefficient cf defined in Equation (8.6.7). Since in quantum mechanics,
probability is determined by the product of the wave function with its complex conjugate,
the time-dependent part of the transition probability, W(t), is proportional to the product
of this result and its complex conjugate:

W(t) = E0[exp{i(�ω − ω)T } − 1]

2(�ω − ω)
· E0[exp{−i(�ω − ω)T } − 1]

2(�ω − ω)

= E2
0[exp{0} + 1 − exp{i(�ω − ω)T } − exp{−i(�ω − ω)T }]

4(�ω − ω)2

= E2
0[2 − 2 cos{(�ω − ω)T }]

4(�ω − ω)2
= E2

0[sin2{ 1
2 (�ω − ω)T }]

(�ω − ω)2

This important function is sometimes written in the form:

W(t) = E2
0 sin2{ 1

2 (�ω − ω)T }
4{ 1

2 (�ω − ω)}2
(8.6.20)

W(t) is plotted against (�ω − ω) from −3π/T to +3π/T with E0 = 1 and T = 2
in Figure 8.8. It is interesting to note that this function was first obtained theoretically
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Figure 8.8 Graph of the function of Equation (8.6.20)

in the early 1930s, but no experimental conformation of its peculiar form was available
until 1972 when it was observed directly in a molecular beam experiment.3

When the Function (8.6.20) is multiplied by the squared, time-independent, part of the
interaction |〈φf|V̂ (x,y,z)|φi〉|2 and the factor (2π/ih) · (−2π/ih) from Equation (8.6.16),
we have as our final expression for the transition probability between the two states �i

and �f:

W(x,y,z, t) = E2
0 · 4π2

h2
|〈φf|V̂ (x,y,z)|φi〉|2 · sin2{ 1

2 (�ω − ω)T }
4{ 1

2 (�ω − ω)}2
(8.6.21)

The time-independent function is the origin of all spectroscopic selection rules, apart
from the Born–Einstein condition, and consequently it is responsible for much of the detail
in the spectroscopic information we obtain from molecules. In the next section we examine
its particular form for three major branches of chemical spectroscopy – electronic, infrared
and nuclear magnetic resonance.

8.7 THE NATURE OF THE TIME-INDEPENDENT
INTERACTION 〈φf|V̂(x, y, z)|φi〉‡

To proceed further with our investigation of the interaction of radiation with matter, we
must consider the explicit form which the time-independent part of the interaction, char-
acterised by the operator V̂ (x,y,z), takes in the case of the individual spectroscopies.
Though all branches of spectroscopy have made important contributions to chemical
knowledge, electronic (ultraviolet-visible, UV–VIS), infrared (IR) and nuclear magnetic
resonance (NMR) spectroscopy have played by far the greatest role in this context. Fur-
thermore, these three branches of the subject are used much more extensively every day
in every chemical research laboratory and accordingly we here confine our attention to
these three only.

‡ Comment on notation: In this section we need to distinguish between wave functions which relate to different aspects of a
molecular energy state; in particular we wish to distinguish between electronic and vibrational wave functions. To make this
possible we now write i and f as superscripts leaving the subscript position vacant for later use.
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In the case of UV–VIS and IR spectroscopy it is the electric field, E, of the elec-
tromagnetic radiation which interacts with a changing electric dipole moment, M, in the
molecule and through this interaction causes the electronic or vibrational state (or both) of
the molecule to change from an initial state φi to a final state φf. In NMR spectroscopy
a magnetic nucleus with magnetic moment, µ, changes its orientation with respect to the
applied, static magnetic field, B0, because of its interaction with the magnetic field, B1, of
the electromagnetic radiation. The form of these two types of interaction is very similar:

UV–VIS and IR: electric dipole interaction energy = E · M †

⇒ 〈φf|E · M̂ |φi〉 = E · 〈φf|M̂ |φi〉 (8.7.1)

NMR: magnetic dipole interaction energy = B1 · µ
⇒ 〈φf|B1 · µ̂|φi〉 = B1 · 〈φf|µ̂|φi〉 (8.7.2)

These are simply the classical equations for the dipole-field interaction energy. The
‘dot’ · indicates the scalar product of two vectors which is defined by the equation:

A · B = AxBx + AyBy + AzBz

so that:
E · 〈φf|M̂ |φi〉 = Ex〈φf|M̂x|φi〉 + Ey〈φf|M̂y|φi〉 + Ez〈φf|M̂z|φi〉

We see that in order for there to be an interaction between the electric (magnetic) field
of the radiation there must be a matrix element of the electric (magnetic) dipole moment
operator in the same direction. It is this which gives spectroscopy with polarised light the
ability to provide information about directions within a molecule.

To calculate the intensity of a spectral line, we must evaluate the above matrix elements
of M̂ and µ̂ for the spectroscopies in question. In the case of UV–VIS and IR spectroscopy
we require the electric dipole moment, 〈φf|M̂ |φi〉, associated with the transition and in
the case of NMR spectroscopy the corresponding magnetic moment. We first consider the
UV–VIS and IR case.

8.7.1 The transition dipole moment

In Appendix 9 we show that the transition dipole moment, Mi,f, for a transition from an
initial state, φi

total, to a final state, φf
total, is given by the equation:

Mi,f = 〈φf
total|M̂ |φi

total〉 = 〈ψ f
elecψ

f
vib|M̂ |ψ i

elecψ
i
vib〉 (8.7.3)

Mi,f is the transitory dipole moment generated when the molecule changes its state
and, in a wave-based view of the interaction of radiation and matter, it is the ‘handle’ by
means of which the oscillating electric field of the radiation is able to couple with the
molecule.

In deriving Equation (8.7.3) the Born–Oppenheimer approximation (Section 6.3) has
been used to express the total wave function as a product of an electronic and a vibrational
function:

φtotal(x,X) = ψelec(x,X) · ψvib(X) (8.7.4)

† Note that this expression for the interaction assumes that the wavelength of the radiation is much greater than the dimensions
of the atom or molecule. For everyday chemical spectroscopy this assumption is very well justified.
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where the presence of both electronic (x) and nuclear (X) co-ordinates following ψelec

reminds us of the fact that the electronic wave function depends upon the positions of
the nuclei as well as upon those of the electrons. For a discussion which includes the
rotation of the molecule see Section 10.5. [In Equation (8.7.3) the (X) and (x,X) have
been dropped to simplify the notation.]

Equation (8.7.3) may be written in the form:

Mi,f = 〈ψ f
vib| 〈ψ f

elec|M̂ | ψ i
elec〉| ψ i

vib〉 = 〈ψ f
vib|MX(efei)| ψ i

vib〉 (8.7.5)

in which MX(efei) is the result of evaluating the integral 〈ψ f
elec|M̂ | ψ i

elec〉 over the elec-
tronic co-ordinates for a particular nuclear configuration represented by X. The presence
of the symbols X, ef and ei in MX(efei) again reminds us that the result of the integra-
tion depends upon the two electronic wave functions involved, ψ f

elec and ψ i
elec, and the

particular nuclear co-ordinates chosen, X.
But we must allow for the dependence of Mi,f upon the nuclear configuration and

therefore to proceed further we express MX(efei) as a sum of two terms:

MX(efei) = M0(e
fei) +

3N−6∑

k=1

QkM ′
k(e

fei) (8.7.6)

The first term is the value of MX(efei) at the equilibrium nuclear configuration. In the
second term, M ′

k(e
fei) ≡ ∂M0(efei)/∂Qk, the derivative of MX(efei) with respect to Qk at

the equilibrium configuration. Qk is the kth normal co-ordinate. The motion of the atoms
of a molecule along a normal co-ordinate is a vibration which is an eigenfunction of the
vibrational Hamiltonian of the molecule (see Section 10.7.1).

Thus, QkM ′
k(efei) is the change in the value of MX(efei) when the nuclear configuration

differs from its equilibrium value by a displacement along the normal co-ordinate Qk.
The actual value of that displacement, 〈ψ f

vib|Qk| ψ i
vib〉, will enter the calculation when

the integration over the vibrational wave function is performed. The basic assumption
of this expansion is that the first term is very much larger than the second which, in
turn, is very much larger than any further terms, e.g. QjQkM′

jM
′
k (efei) or Qk

2M ′′
k(efei).

In Section 8.7.2 we shall find that this assumption is well justified. Equation (8.7.5) can
now be rewritten in the form:

Mi,f = 〈ψ f
vib| M0(e

fei)| ψ i
vib〉 +

〈

ψ f
vib

∣∣∣∣∣

3N−6∑

k=1

QkM ′
k(e

fei)

∣∣∣∣∣
ψ i

vib

〉

= 〈ψ f
vib|ψ i

vib〉 · M0(e
fei) +

3N−6∑

k=1

〈ψ f
vib| Qk| ψ i

vib〉 · M ′
k(e

fei) (8.7.7)

We can take M0(efei) and M′
k(efei) outside the integration over the vibrational functions

implied by 〈〉 because they are both constants; though they do, of course, have units.
Equation (8.7.7) is a very general expression which applies to any molecule, and we can
recognise in it the following three important special cases.

Case 1: ψ f
elec = ψ i

elec but ψ f
vib �= ψ i

vib
In this case there is a change of vibrational state but no change of electronic state, i.e. we
have an infrared transition. The first term on the right in Equation (8.7.7) is zero because
the two different vibrational wave functions belong to the same electronic state and are
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therefore orthogonal. Thus, the transition dipole moment is given by the second term.
The vibrational states, ψ f

vib and ψ i
vib, can be written as products of normal vibrational

modes (Section 10.7) but because ψ f
vib �= ψ i

vib the two products will not be identical. Let
us examine the possibility that a particular vibrational mode, Qj say, can lose or gain
quanta to go from ψ i(Q′′

j ) in ψ i
vib to ψ f(Q′

j) in ψ f
vib while the numbers of quanta in all

other vibrational modes remain unchanged. The second term in Equation (8.7.7) is then:

Mi,f =
3N−6∑

k=1

〈ψ f
vib|Qk| ψ i

vib〉M ′
k(e

iei)

=
3N−6∑

k=1

〈ψ f(Q1)ψ
f(Q2) . . . ψ f(Q′

j) . . . ψ f(Q3N−6)|Qk|

ψ i(Q1)ψ
i(Q2) . . . ψ i(Q′′

j ) . . . ψ i(Q3N−6)〉M ′
k(e

iei)

= 〈ψ f(Q1)|ψ i(Q1)〉 . . . 〈ψ f(Q′
j)|Qj|ψ i(Q′′

j )〉 . . . 〈ψ f(Q3N−6)|ψ i(Q3N−6)〉M ′
j (e

iei)

= 〈ψ f(Q′
j)|Qj|ψ i(Q′′

j )〉M ′
j (e

iei) (8.7.8)

The sum over k reduces to a single term in the penultimate line of Equation (8.7.8)
since it is only when k = j that we do not have the integral 〈ψ f(Q′

j)|ψ i(Q′′
j)〉 which is

zero because we have assumed that the same mode, Qj, has different quantum numbers in
ψ f(Q′

j) and ψ i(Q′′
j). The simplification in the last line is a consequence of the fact that all

the normal vibrational modes of the same electronic state are orthogonal and normalised:

〈ψ(Qm)|ψ(Qn)〉 = δmn (8.7.9)

The result, Equation (8.7.8), shows that if an infrared transition in the normal mode
Qj is to be allowed there must be a change of dipole moment associated with that vibra-
tion, i.e. M′

j(e
iei) �= 0. The infrared selection rule is embodied in the multiplying factor

〈ψ f(Q′
j)|Qj|ψ i(Q′′

j)〉, which is evaluated and discussed in Section 10.5. It will be suffi-
cient here if we say that it is zero unless the vibrational quantum numbers of the wave
functions ψ f(Q′

j) and ψ i(Q′′
j) differ by ±1.

Case 2: ψ f
elec �= ψ i

elec and M0(efei) �= 0; ψ f
vib �= ψ i

vib or ψ f
vib = ψ i

vib
This is the case of an allowed electronic transition [M0(efei) �= 0], which may be accom-
panied by a simultaneous change of vibrational state, ψ f

vib �= ψ i
vib, or by no change,

ψ f
vib = ψ i

vib. Both terms in Equation (8.7.7) contribute to the transition dipole moment
but, for the reasons given above, the second term is neglected in comparison with the
first term which is very much larger. Thus, the transition dipole moment is given by:

Mi,f = 〈ψ f
vib| ψ i

vib〉M0(e
fei) (8.7.10)

We see that the transition dipole moment for the vibronic (vibronic = product of vibra-
tional and electronic states) transition as a whole is determined by the electronic transition
dipole moment calculated at the equilibrium internuclear distance multiplied by the over-
lap of the vibrational wave functions of the initial and final states. The two vibrational
functions are not orthogonal because ψ f

elec �= ψ i
elec. This result was first derived quantum-

mechanically by Edward Uhler Condon (1902–1974), but James Franck (1882–1964) had
obtained it earlier using classical theory. Accordingly, it is known as the Franck–Condon
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principle. With its aid even qualitative analysis of the form of the vibrational structure of
an electronic absorption band can give us valuable information about the relative shapes
of the ground and excited state potential energy curves. This is illustrated in Box 8.3.
The concept is also helpful in describing the vibrational structure of forbidden electronic
transitions which are allowed because of molecular vibrations, as we shall see when we
consider Case 3.

Case 3: ψ f
elec �= ψ i

elec and M0(efei) = 0; ψ f
vib �= ψ i

vib or ψ f
vib = ψ i

vib
This is the case of a forbidden electronic transition [M0(efei) = 0], which may be weakly
observed because of the presence of the second term in Equation (8.7.7) which deter-
mines whether transitions having M0(efei) = 0 occur as a result of molecular vibra-
tions. The vibrational states may be expanded in terms of the normal co-ordinates as
in Equation (8.7.8) giving:

Mi,f =
3N−6∑

k=1

〈ψ f
vib|Qk|ψ i

vib〉 · M ′
k(e

fei)

=
3N−6∑

k=1

〈ψ f(Q1)|ψ i(Q1)〉 . . . 〈ψ f(Qk)|Qk|ψ i(Qk)〉 . . . 〈ψ f(Q3N−6)|ψ i(Q3N−6)〉M ′
k(e

fei)

(8.7.11)

since the two sets of normal modes belong to two different electronic states
〈ψ f(Qn)|ψ i(Qn)〉 �= 1. But such integrals are also unlikely to be zero, unless the
two electronic potential energy curves are very different. Nevertheless, the vibrational
contribution to the intensity of the forbidden electronic spectral band can be evaluated,
though this is not normally done using Equation (8.7.11). The value of M′

k is required
and the usual method employs perturbation theory (Appendix 4) to calculate the degree
to which the vibrations, by changing the shape of the molecule, mix ψ f

elec and ψ i
elec with

other electronic states. In most cases of practical interest ψ i
elec is the ground state, which

does not mix significantly with other states since they are so much higher in energy.
The mixing is therefore confined to the mixing of ψ f

elec with nearby excited states. The
result of the mixing is that the transition is no longer purely ψ i

elec → ψ f
elec because there

are some states among those newly mixed into ψ f
elec to which transitions from ψ i

elec are
allowed. In this way the ‘forbidden’ transition acquires some intensity, which it is said
to have ‘borrowed’ or ‘stolen’ from one or more allowed transitions.

If the potential energy curves of the two electronic states are quite similar in form and
differ only in energy, which may well be the case for the excitation of one electron in a
large molecule, then the vibrational eigenfunctions of the two states will be similar also.
Then, to a good approximation, 〈ψ f(Qn)|ψ i(Qn)〉 = 1 and the major contributions to the
transition dipole moment from each allowing vibration will be of the form:

〈ψ f(Qk)|Qk|ψ i(Qk)〉M ′
k(e

fei)

In Section 10.5 it is shown that the integral 〈ψ f(Qk)|Qk|ψ i(Qk)〉 is zero unless the
vibrational quantum numbers associated with ψ f(Qk) and ψ i(Qk) differ by ±1. Therefore,
where the electronic energy surfaces of the ground and excited electronic states are similar,
we anticipate that the vibrational fine structure of a forbidden electronic transition will
correspond predominantly to changes of ±1 in the vibrational quantum numbers of the
allowing vibrations. The allowing vibrations are effective because they change the shape
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of the molecule; lowering its symmetry. It is common to find that the first peak due to
an allowing vibration is followed by a series of peaks in which the allowing vibration
and an increasing number of quanta of a totally symmetric vibration are simultaneously
excited. Such a series of bands is known as a progression.

Three further remarks should be made before we leave the long and complicated subject
of transition dipole moments.

1. Equation (8.6.12) shows that the intensity of a transition between two states is pro-
portional to the square of the transition dipole moment between them or, in the event
that the transition dipole moment is a complex quantity, the product of the transition
dipole moment and its complex conjugate.

2. A similar analysis can be made with respect to transitions stimulated by the magnetic
field of the light, and we shall use this when we come to consider an NMR transition.

3. In the case of the 1s → 2p transition of the hydrogen atom for example, though the
quantum mechanical expression is quite clear, it is difficult not to ask how the process
of interaction between the light wave and the spherically symmetrical atom ‘gets
started’. Where is the dipole which provides the first means of interaction for the e-m
wave? In answer we may note that, since the nucleus and the electron are particles,
the atom is only spherically symmetrical when the positions of the nucleus and the
electron are averaged over some finite period of time; at any instant in time the atom
is a dipole. A further examination of the consequences of the time-dependency of the
hydrogen-atom wave functions can be found in Box 8.2.

An alternative, ‘more classical’ view of the problem is the following. When light
passes through a transparent medium it does interact with the medium even though it
is not absorbed; we know, for example, that its velocity is changed. However, when
the frequency of the light fulfils the Born–Einstein condition, the previously limited
response of the electrons is much magnified and a condition of resonance is established
whereby electrons can absorb the light energy and change their energy states. In terms
of the old analogy, a column of soldiers marching over a bridge will certainly cause
the bridge to shake but will do nothing more if they are not all in step. However, if
they are in step and the frequency of their step matches a natural vibrational frequency
of the bridge, the bridge may oscillate much more violently than is safe. It was a
phenomenon of this type, caused by normal pedestrians rather than soldiers, which
necessitated structural modifications to the Millennium Bridge over the River Thames
in London. It appears that there was a remarkable two-way process in which the
oscillations of the bridge caused by the crossing pedestrians induced in those same
people a synchronised stepping frequency which increased the oscillation of the bridge
still further.

8.7.2 The relative intensities of UV–VIS, IR and NMR transitions

Armed with the above results we can proceed to examine the simplest example of an
electronic transition: the 1s → 2p transition of the hydrogen atom. If we select as our
final state the φ2pz then the transition moment which we require is:

M = e〈φ2pz|r|φ1s〉 = e〈φ2pz|x|φ1s〉 + e〈φ2pz|y|φ1s〉 + e〈φ2pz|z|φ1s〉 (8.7.12)
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and evaluation of the three integrals shows that only the last gives a value that is not
zero. If we choose φ2px or φ2py as our 2p orbital then the matrix elements containing the
operators x and y respectively become the non-zero quantities in Equation (8.7.12). All
three contributions to M are equal since the three axes are equivalent. We shall evaluate
the last term, Mz, by taking expressions for the two hydrogen wave functions (in atomic
units, Appendix 1) from Appendix 5 and replacing z by r cos θ in order to have all our
quantities in polar co-ordinates. Recalling (Appendix 7) that the volume element in polar
co-ordinates is r2 sin θ dr dθ dφ, we have:

MZ = e
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∫ π
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· 24

( 3
2 )5

= −0.744936 au

Thus, M 2
z = 0.5549 and M 2 = 3 × M 2

z = 1.6648 atomic units. Converting from atomic
to SI units we find that a dipole moment of 0.744936 au = 6.3158 × 10−30 C m so that the
square of the 1s → 2p transition dipole moment of hydrogen is 39.889 × 10−60 C2 m2,
which agrees exactly with the experimental value. This is a very satisfying result in that
it confirms that the quantum mechanical method of calculating transition probabilities is
correct. But we should not be lulled into a false sense of security. Uniquely in the case of
one-electron atoms, we have extremely accurate algebraic wave functions at our disposal
for calculations of this type. As soon as we move to multi-electron atoms, and a fortiori
to molecules, the interelectronic repulsion drastically reduces the quality of the available
wave functions (see Chapter 5) and agreement with experiment deteriorates rapidly. For
a small molecule such as ethene agreement to within a factor of two or three is often as
much as we can hope for.

However, our purpose here is not to obtain accurate theoretical intensities but rather
to have some insight into their relative values in the UV–VIS, IR and NMR spectral
regions. Therefore, we do not consider possible reasons for discrepancies further but go
on to consider a typical IR transition, the fundamental v = 0 to v = 1 transition of the
hydrogen chloride (HCl) molecule.

We have to evaluate the Expression (8.7.8), which is a product of 〈ψ f
vib|r|ψ i

vib〉 (r is the
only normal co-ordinate of a diatomic molecule) and the rate of change of the molecular
dipole moment with bond length, M′(e′e), at the equilibrium bond length, re. Using data
from Box 10.2 we find:

〈ψ f
vib|r|ψ i

vib〉 = (h/8π2µν)
1
2 = 7.59 pm.

If we assume that the charge distribution does not change with bond length for small
amplitude vibrations about re, then the change in dipole moment with bond length depends
only upon the change of bond length, and the rate of change of dipole moment with
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bond length may be obtained by dividing the former (3.67 × 10−30 C m) by the latter
(127.5 pm):

M ′ ≡ ∂M0/∂R = 3.67 × 10−30/127.5 × 10−12 = 2.88 × 10−20 C

whence:

M = 7.59 × 2.88 × 10−32 = 2.19 × 10−31 C m ⇒ M 2 = 4.78 × 10−62 C2 m2

The best experimental estimate of M is 2.18 × 10−31 C m giving a much closer agree-
ment between experiment and our theoretical value than we have any right to expect!

Note that the value of the square of the transition dipole moment, and hence the
intensity, for a typical strong electronic transition is some four orders of magnitude
greater than that of a strong infrared transition. This justifies the assumption underly-
ing Equation (8.7.10) and raises the question as to why it should be so. The essential
reason is that in an electronic spectral transition the transition dipole moment involves
the electrons directly, and they each carry a large charge. In infrared spectroscopy the
transition dipole moment depends upon a change of dipole moment, which depends upon
the differences in the distribution of electronic and nuclear charge in the molecule. The
difference in the intensities of UV–VIS and IR bands has an important experimental
consequence. Infrared absorption spectra can frequently be measured on samples of pure
substance whereas UV–VIS experiments almost always require dilution of the sample in
a suitable solvent or inert matrix.

For the NMR case we shall again take a simple example and consider the magnetic
resonance of a proton, which can take up two orientations to an applied, static magnetic
field. If we assume the conventional experimental set-up with the static magnetic field, B0,
orientated along the z-direction and the oscillating radio frequency field, B1x, along the
x-direction, then the orientation of lower energy has mI = + 1

2 and the higher energy ori-
entation has mI = − 1

2 so that for absorption of radiation we must evaluate (see Chapter 9
for the relation µ̂x = γ h̄Îx):

B1x〈φf|µ̂x|φi〉 ⇒ B1x〈mI = − 1
2 |µ̂x|mI = + 1

2 〉
= B1x〈− 1

2 |γ h̄Îx| + 1
2 〉 = B1xγ h̄〈− 1

2 |Îx| + 1
2 〉 = B1xγ

1
2 h̄ (8.7.13)

On inserting the value of the magnetogyric ratio of the proton (γ = 26.572 × 107 rad
T−1 s−1) we find that the interaction is B1x × 14.106 × 10−27 rad T−1 J.

At this point comparison with IR and UV–VIS experiments becomes rather tenuous
because, from the experimental point of view, the intensity of an NMR signal is governed
much more by the populations of the upper and lower levels connected by the transition
than by any other factor. In Section 9.6 it is shown that in a sample of protons in a field
of four Tesla at 300 K, if there are 106 spins in the lower energy state then there will
be only 28 less in the upper state! Therefore, application of radiation at the resonance
frequency soon equalises the populations in the two states and no signal is observed since
the number of upward (absorbing) transitions is equalled by the number of downward
(emitting).

Furthermore, there is another important difference between the techniques of IR and
UV–VIS spectroscopies on the one hand and NMR on the other. As far as the most basic
experiments are concerned, and those are the only ones which we can consider here, in the
IR and UV–VIS regions the phenomenon measured is the intensity of a light beam before
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it enters a sample and after it emerges from the sample; i.e. the quantity of light absorbed
is measured, usually as the absorbance, A. In the basic NMR experiment however, the
magnetisation induced in the sample by the B1 field is measured.

Therefore, it is not possible to make a comparison with experiment which stands on the
same footing as the above examples taken from infrared and electronic spectroscopy. But
it is possible to obtain a purely theoretical measure of the relative sensitivity of the three
spectroscopies by comparing the magnitudes of the transition dipole matrix elements and
the magnetic and electric fields of the radiation with which they couple.

With regard to the latter, we have written the perturbing field, V̂ (t), in Equation (8.6.18)
as:

V̂ (t) = E0 sin ωt (8.6.18)

If V̂ (t) represents the electric field, E(t) in V m−1, of the radiation then we have:

E (t) = E0 sin ωt

and the magnetic field of the same light beam, B(t) in T (Tesla), is given by:

B(t) = (E0/c) sin ωt = B0 sin ωt,

where c is the velocity of light.
Using these results and the previously determined transition dipole matrix elements, we

can draw up Table 8.2, which shows the relative theoretical intensities for a light beam
having an electric field amplitude, E0, of 1.0 V m−1 and the corresponding magnetic field
value of 3.33 × 10−9 T. [For a 100 W filament tungsten lamp inside a spherical envelope
of 60 mm diameter (i.e. a domestic 100 W lamp) the value of E0 at the envelope is
approximately 2 × 10−3 V m−1.] The intensity, I , or absorbance, A, is proportional to
the square of the interaction energy given in units of J2 in the last row of Table 8.2 (the
units of I and A are not themselves J2; see Section 8.10.2). In so far as the energy of
interaction can be regarded as a measure of the relative absorbance, we see from these
data that the primary cause of the low sensitivity of NMR spectroscopy lies not in the
value of the transition dipole matrix element which, for protons at least, is markedly
larger than the corresponding quantities in our IR and UV–VIS examples. The problem
lies with the low value of B(t) compared with E(t) and is exacerbated by the population
problem which plays effectively no role in UV–VIS or IR spectroscopy and has not been
included in our deliberations above.

Table 8.2 Theoretical relative intensities/absorbances of electronic, infrared and proton NMR
transitions (Calculated for a transition dipole moment in one Cartesian direction only)

Electronic Infrared Proton NMR

H atom 1s → 2π HCl v = 0 → v = 1 mI = + 1
2 → mI = − 1

2

〈φf|µ|φi〉 = 〈φf|m|φi〉 = 〈φf|µ|φi〉 =
63.2 × 10−31 C m 21.9 × 10−32 C m 14.1 × 10−27 J T−1

E(t) = 1.0 V m−1 E(t) = 1.0 V m−1 B(t) = 3.33 × 10−9 T

I or A ∝ 3.99 × 10−58 J2 I or A ∝ 4.78 × 10−62 J2 I or A ∝ 2.20 × 10−69 J2
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8.7.3 The particle and wave views of spectroscopic transitions

The particle and wave descriptions of electromagnetic radiation play a role wherever
the subject is discussed. In spectroscopy too, we tend to take the corpuscular or wave
approach depending upon which seems to be most helpful in the interpretation of a
particular observation. In the case of UV–VIS radiation the choice of description seems
obvious. It is a photon which is detected by a spot on a photographic plate or by an electron
ejected from a metal surface. The waves appear to be essential to the interpretation of
interference phenomena. At the long-wavelength end of the spectrum we speak almost
exclusively of waves and it is difficult to envisage a discussion of radio aerials in terms
of photons. But the angular momentum changes in NMR and EPR spectroscopy seem
to demand a photonic interpretation. In this section these points are illustrated with a
discussion of some selected examples of spectroscopic transitions showing how they are
used to obtain further information about the emitting/absorbing species. We assume that
energy is conserved in all cases and it will not be discussed further.

As an example, drawn from atomic electronic spectroscopy, of an electric dipole tran-
sition, we take the transitions from the 2S 1

2
to 2P 1

2
and 2P 3

2
states of sodium. These

are the transitions which give rise to the famous D-lines. An energy level diagram is
shown in Figure 8.9 in which the different MJ levels are spaced out as they would be
if the atom were placed in a strong magnetic field, the Zeeman effect (Section 5.10).

2P3/2

2P1/2

2S1/2

588.99 nm

589.59 nm

MJ

+3/2

−3/2

+1/2

−1/2

−1/2

+1/2

+1/2

−1/2

RCP LCP

∆ MJ = −1 ∆ MJ = +1

16 973.379 cm−1

16 956.183 cm−1

0.0

D-lines split by a magnetic field

Figure 8.9 The transitions 2S 1
2

to 2P 1
2

and 2P 3
2

of sodium; the D lines
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Note that the diagram is not drawn to scale; the spacing between the MJ levels is very
small (<0.1 cm−1) compared with the separation between 2P 1

2
and 2P 3

2
(∼17 cm−1) and

the excitation energy 2S 1
2

to 2P 1
2

(∼16 956 cm−1). The levels between which transitions

are allowed are connected with arrows. The total angular momentum of the system is
conserved for all six allowed transitions since 1 + 1

2 ⇒ 1/2 (2P 1
2

) or 3/2 (2P 3
2

). In order

that the z-component of the angular momentum be also conserved the three transitions
on the left of the diagram can only take place when an RCP photon is absorbed while
the three on the right require an LCP photon. To excite these transitions we require light
propagating parallel to the magnetic field. The four transitions in which MJ is unchanged
require a photon which has no z-component of angular momentum, i.e. a photon linearly
polarised in the xy-plane. These excitations require light propagating at right-angles to
the field. Parity is conserved. The parity of the S state is +1 and that of the photon
−1. Therefore the parity of their combination is (+1) × (−1) = −1, which is the correct
parity for a P state.

As an example of the conservation of angular momentum in an electric quadrupole
transition we take a line observed at ∼436.3 nm in the emission spectra of certain cosmic
nebulae. This and other similar lines puzzled spectroscopists for many years but it is
now known to be due to the 1S0 → 1D2 emission of O2+ atoms. Since this is an S → D
transition, it would appear that a photon having two units of angular momentum must be
involved so that the triangular condition is �(ji, 2, jf) (Section 8.4). However, when we
express the states in terms of the atomic orbitals involved we find that the transition is
due to an electron jumping from one 2p orbital to another. But �(1, 2, 1) is also quite
acceptable as far as the conservation of angular momentum is concerned and we note
further that since the parity of the product of two 2p orbitals is g the photon must also be
g, which rules out an electric dipole photon but not an electric quadrupole photon. More
detailed study reveals that at the orbital level the transition is p+1 → p−1 or p−1 → p+1 so
that the emission does not change the total angular momentum of the atom but changes
its z-component by ±2h̄, which only a photon carrying at least two units of angular
momentum can do.

The value of the wave-based concept of the direction of linear polarisation can be
illustrated with an example drawn from the electronic spectroscopy of molecules; e.g.
ethene (C2H4). The ethene molecule shows a band in the region of 160 nm that is due
to a transition from the π bonding to π∗ antibonding orbital (Section 7.1). The Hückel
orbitals (Section 12.1) are:

π = √
( 1

2 ){φ1 + φ2} and π∗ = √
( 1

2 ){φ1 − φ2} (8.7.14)

where the φ1 and φ2 are the 2pz atomic orbitals of the two carbon atoms. Therefore,
neglecting the vibrational factor, the transition dipole moment is M0(efei) (Equation
(8.7.10)), and is given by:

M(π→π∗) = 〈π∗|er|π〉 = 1
2 〈(φ1 − φ2)|er|(φ1 + φ2)〉 = 1

2 〈φ1|er|φ1〉 − 1
2 〈φ2|er|φ2〉

(8.7.15)

since the orbital overlap contributions cancel. The electron density 〈φ1|φ1〉 is centred at
carbon nucleus 1 and 〈φ2|φ2〉 at nucleus 2 so the only contribution to Mπ→π∗ is obtained
from the component of r which lies along the C=C bond. Therefore the transition dipole
moment lies along the C=C bond. This being the case, it is easy to see that if we had a
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sample of ethene in which all the molecules were orientated in the same direction then
only light polarised, i.e. with its electric field vibrating, in that direction would be capable
of interacting with the molecules and hence of being absorbed. The orientated sample
would be completely transparent to light polarised at right angles to the C=C bond.

The last example leads us into a consideration of the selection rules in infrared spec-
troscopy which have much in common with it. Consider the C=O stretching vibrations of
carbon dioxide. There are two such vibrations; the symmetric stretching where both C=O
bonds grow longer and shorter at the same time and the asymmetric stretching where one
grows longer as the other grows shorter, and vice versa. The corresponding transitions
occur at ∼1330 cm−1 and ∼2349 cm−1 respectively but only the latter is observed in
the infrared. The reason is, of course, that the change of the two C=O bond dipoles
as the bonds change in length cancel each other exactly in the case of the symmetric
stretching, so that there is no change of dipole moment for the molecule as a whole and
hence no means for it to couple with the oscillating electric field of the light, no matter in
what direction it is polarised. In the case of the asymmetric stretching there is a change
in dipole moment and infrared radiation can be absorbed, provided that it is polarised
along the O=C=O axis of the molecule. This link between the direction of polarisation
and molecular geometry is extremely valuable in the study of orientated molecules, e.g.
crystals and stretched polymers, by IR and UV–VIS methods.

When the sensitivity of Fourier-transform infrared spectroscopy made it possible to
measure monolayers of molecules adsorbed on metal surfaces, extension of the above ideas
led to the metal-surface selection rule from which the orientations of molecules adsorbed on
the metal surface could be determined. When a molecule absorbed on a metal surface vibrates
the valence electrons in the metal are sufficiently free (Section 12.2) to follow the oscillating
dipole, and they do so in such a way as to produce an image of the dipole (Figure 8.10). Thus
a vibration producing an oscillating dipole parallel to the metal surface generates an image
dipole in the metal surface which cancels it out (Figure 8.10(a)) so that there is no interaction
with radiation. If the molecule generates a changing dipole perpendicular to the surface then
the image dipole reinforces the molecular dipole (Figure 8.10(b)) and absorption of infrared
radiation is possible. Thus, when a particular vibration of a surface-absorbed species is

a b

Metal

Figure 8.10 The infrared surface selection rule
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identified, usually by its wave number, then the oscillating dipole moment generated must
be perpendicular to the surface and this enables conclusions to be drawn concerning the
orientation of the adsorbed molecule on the surface.

Conservation of linear momentum plays no role in the interpretation of infrared spectra,
though angular momentum can be important in some specialised cases (Section 10.8.2).
But parity conservation is very significant. The v = 0 level of the harmonic oscillator
is even while the v = 1 level is odd and the parity of the higher levels is determined
similarly by the odd/even character of v. Thus, the overall parity, photon plus molecule,
is conserved for transitions between adjacent levels.

Since magnetism is so intimately related to angular momentum in quantum mechanics
(Section 12.2) we may say that NMR is all about angular momentum. In the fundamental
NMR transition of a proton we have with a RCP photon:

H(I = 1
2 , mI = + 1

2 ) + Photon (l = 1, ml = −1) → H∗(I = 1
2 ,mI = − 1

2 ).

Note that although the z-component of the angular momentum is conserved this does
not, at first sight, appear to be the case for the total angular momentum for which we have
1
2 + 1 → 1

2 . But we must remember that the law for the addition of angular momentum
in quantum mechanics (Section 3.6.1) is:

J1 + J2 = J1 + J2, J1 + J2 − 1, J1 + J2 − 2, . . . |J1 − J2|,
so that final total angular momentum quantum numbers of 3

2 (1 + 1
2 ) or 1

2 (1 − 1
2 ) are in

accord with the requirement for the conservation of angular momentum.

8.8 SPECTROSCOPIC TIME SCALES

There is a further aspect of the fundamentals of spectroscopic transitions that is of impor-
tance in applications of spectroscopy to systems which are changing with time. As fast as
they are, the processes whereby an atom or molecule changes its energy state as a con-
sequence of absorbing (or emitting) radiation are not instantaneous. It follows, therefore,
that if a molecule changes its structure appreciably during the time in which a photon is
absorbed we have to ask how the spectrum is affected by this other process. To be precise,
let us consider the equilibrium between the keto (I) and enol (II) forms of 2,4-pentane
dione (acetyl acetone):

C

CC

H

MeMe

O O

H

C

CC

H

MeMe

O O

H

I II

If the proton NMR, IR and UV–VIS spectra of each of the two species involved in the
above equilibrium are measured all show clear differences on account of the considerable
change in the structure. But under suitable conditions, e.g. in acid aqueous solution,
there is a rapid exchange and, intuitively, we envisage two extreme possibilities. If the
exchange is very slow compared with the time taken for the particular spectroscopic
process which we are using then we expect to see the spectrum of a mixture of I and II
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in proportions reflecting the particular position of the equilibrium. We could measure the
equilibrium constant in this way. On the other hand, if the exchange is very much faster
than the spectroscopic transition then we expect the spectrum to appear like the spectrum
of one substance of a structure intermediate between I and II; i.e. the C=O stretching
frequencies in the IR would lie somewhere between that expected for a free >C=O
group and the lower frequency of the hydrogen-bonded species, C–O· · ·H· · ·O–C. Where
the rate of exchange and the spectroscopic transition are of comparable magnitude the
situation is more complicated. In favourable circumstances, where the rate of exchange
can be controlled (e.g. by changing the temperature, pH etc.), the spectra of an exchanging
system can be measured at the two extremes and in the complex intermediate region. NMR
experiments of this type have been widely reported.

Our purpose here is to attempt to answer the important question, ‘How fast is a spec-
troscopic transition’? or to be more explicit, ‘How long, for example, does it take for an
electron to absorb a photon and jump from the 1s to the 2p atomic orbital of a hydro-
gen atom’? There appears to be no precise way of answering this question, but a useful
estimate of the required figures may be made using the time-energy uncertainty principle
(Section 4.10) in the following manner. When a molecule or atom is making a transition
from an initial to a final energy state having energies Ei and Ef, respectively, then its
energy is uncertain to the extent Ef − Ei = �E = hν. Now, according to Heisenberg:

�E × �t ≥ h/2π ⇒ hν × �t ≥ h/2π ⇒ �t ≈ 0.16/ν

where �t represents the lower limit of the time taken to complete the spectroscopic
transition. It is convenient to express the �t in terms of the frequency of the transition,
ν. The times for electronic, vibrational and NMR transitions are listed in Table 8.3 for
the specific examples we have used throughout this chapter to provide representative
numerical data for the three branches of spectroscopy.

For an IR transition, where we have a simple classical concept of a vibrating molecule,
we might also argue as follows. It seems intuitively reasonable to assume that we could not
observe that the HCl molecule had changed its vibrational state unless we studied it over
a period of at least one complete vibration, i.e. for 1/ν ≈ 1.1 × 10−14 s. This is approxi-
mately six times longer than our earlier estimate of �t . We get the same result if we make
an estimate of the NMR time scale in terms of the Larmor frequency (Equation (9.4.1)),
which is 85.15 × 106 Hz for protons in a magnetic field of 2 T. In the case of the UV–VIS
region, we might take the time required for an electron to complete a cycle of the lowest
Bohr orbit which is 1.52 × 10−16 s; again a somewhat longer time than the value of �tmin

deduced from the uncertainty principle. But we know that quantum mechanics tells us we
cannot view electrons orbiting a nucleus in the same way as we regard planets circling
the sun. This should be a warning to us that we are treading on very insecure ground and

Table 8.3 Estimates of the minimum time taken, �tmin, to complete a spectroscopic transition in
the UV–VIS, IR and NMR regions of the spectrum

UV–VIS IR Proton NMR

H atom 1s → 2p HCl v = 0 → v = 1 mI = + 1
2 → mI = − 1

2

λ = 121.6 nm ν = 298974 m−1 B = 2 Tesla

ν = 24.67 × 1014 Hz ν = 89.63 × 1012 Hz ν = 85.15 × 106 Hz

�tmin ≈ 6.4 × 10−17 s �tmin ≈ 1.8 × 10−15 s �tmin ≈ 1.9 × 10−9 s
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are pushing the limits of our classical view of the world too far into those regions where
we know that classical mechanics must be replaced by quantum mechanics.

Be that as it may, these crude theoretical estimates of spectroscopic time scales sug-
gest clearly that as the processes which we wish to study become faster we must move
to higher spectral energies if we wish to use spectroscopy as our tool. This finding is
borne out in the laboratory where NMR spectroscopy is frequently used to study the
comparatively slow isomerisation processes in which atoms move, whereas the very fast
processes which involve solely electron transfer must be studied in the UV–VIS spectral
region. An example of the former is the study of the 2,4-pentane dione keto ↔ enol
equilibrium mentioned previously. The latter might be illustrated by the investigations
of the photo-synthetic processes involved when the chlorophyll of green plants absorbs
sunlight where events on the femto-second (10−15 s) time scale are being studied. Very
recently a study of the photoelectron ionisation of neon in which the authors claim to be
able to distinguish events separated in time by 10−16 s has been reported.4 Central to these
experiments is the generation of pulses of light in the extreme ultraviolet (λ ≈ 1 × 10−8

m) lasting only 250 × 10−18 s.

8.9 QUANTUM ELECTRODYNAMICS5

It was clear in the discussion of spectroscopic time scales that we have been describing
a theory which is a mixture of classical and quantum mechanical concepts. Throughout
our discussion of the interaction of radiation with matter (Section 8.6) we have treated
the atoms and molecules as having quantised energy levels, but in our calculations of
intensities we described the electromagnetic radiation in terms of electric and magnetic
fields, i.e. a classical viewpoint. A consistent theory must quantise both the energy levels
of the atoms and molecules and the fields. The first step in this direction was made
by Einstein in 1905 when he suggested that the interactions between electromagnetic
radiation and matter known at that time might be better explained in terms of light quanta
than in terms of oscillating electric and magnetic fields. The light quanta, which we now
call photons, are the quanta of the electromagnetic field. A systematic attack upon the
problem of a complete quantum description of the interaction of radiation with matter
was begun by Dirac quite early in the history of quantum mechanics.

By the 1970s a sophisticated and detailed theory was available. The modern form of
this theory is known as quantum electrodynamics (QED) and it has proved capable of
providing extremely accurate values of crucial quantities in the theory of spectroscopy.
Indeed, though spectroscopic measurements are among the most accurate in the whole of
science, the theories used to analyse them are in many cases equal to the challenge of
interpreting these elegant data quantitatively. QED is especially important in the interpre-
tation of experiments involving the adsorption and/or emission of several photons within
a very short time interval which are of growing importance in chemistry. However, this
is not the place to pursue this topic further.

8.10 SPECTROSCOPIC UNITS AND NOTATION

The most frequently used spectroscopic units and notation are the subjects of the penul-
timate section of this chapter. Spectroscopists have been somewhat reluctant to adopt SI
units in their entirety and non-SI usage is frequently found, even in modern publications
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(this book included!). Naturally, it also occurs in earlier work and it seems appropriate
here to summarise the more commonly used units and notation. It is helpful to divide
this section into two parts and to discuss the quantities appearing on the two axes of a
spectrum under different headings.

8.10.1 The energy/frequency/wavelength axis

This is normally the horizontal axis of the spectrum and the quantities which may be
shown on it are listed in Table 8.4. They relate directly to the position of the absorption
or emission band in the electromagnetic spectrum, which implies an energy difference
given by the Bohr–Einstein condition, �E = hν. In SI units this energy would be given
in Joules, but spectroscopists have traditionally used other units, some not even strictly
energy units, in which to report �E. The electron volt (eV), which is the kinetic energy
acquired by an electron when it is accelerated in an electric field of one volt, is a true
energy unit and is widely used in electronic and photoelectron spectroscopy (Chapter 11).
The wave number, ν, is not an energy unit but it is directly proportional to energy
(E = hcν). Infrared and Raman spectra are almost always discussed in terms of wave
numbers. In NMR spectroscopy, the spin-spin coupling energy is always expressed as a
frequency, i.e. in Hz, but for both technical and data-transferability reasons, the position
of a resonance is invariably reported in terms of its position with respect to the resonance
of a standard. (For more information see Chapter 9.)

The relative number of molecules, Na and Nb, in two energy levels separated by an
energy difference of �Eab (= Ea − Eb) is determined by Boltzmann’s law as:

Na/Nb = exp(−�Eab/kT ) (8.10.1)

This relationship plays an extremely important role in spectroscopies, notably NMR,
where �Eab is very small so that Na ≈ Nb. The units of k are energy T−1 and an absolute
temperature of 1 K can be seen as equivalent to an energy of kE, where E is the energy
unit in which k is measured. This provides a way of relating energy to the absolute scale
of temperature, which is very useful for discussing spectroscopic phenomena that depend
upon temperature, such as the population of energy levels.

Where the energies of single molecules are to be related to practical chemical quantities,
the energy per mole in kJ mol−1 is the appropriate SI unit.

Table 8.4 Some quantities which may be found on the energy/frequency/wavelength axis of a
spectrum; symbols and units

Quantity Symbol Definition SI unit Other units or symbols

Wavelength λ m nm, Å (Ångstrom) = 10−10 m
Frequency ν ν = c/λ Hz s−1; cycles per second
Angular frequency ω ω = 2πν s−1 rad s−1 a

Wave number in vacuum ν ν = ν/co = 1/nλ c m−1 cm−1 = 10−2 m−1 b

Wave number in a medium σ σ = 1/λ m−1 cm−1 = 10−2 m−1 b

Chemical shift δ see Chapter 9 parts per million (ppm)

a rad s−1 = radians per second (the radian is dimensionless).
b The kilokayser (kK) has been proposed as the unit for 1000 cm−1, but this suggestion has not been widely
adopted.
c n = refractive index.



Spectroscopic units and notation 249

Table 8.5 Energy-conversion factors

Wave
number
ν(cm−1)

Frequency
ν(MHz)

Energy
E(J × 10−18)

Energy
E(eV)

Molar
energy

Em(kJ mol−1)

Temperature
T (K)

ν: 1 cm−1 ≈ 1 2.997925
× 104

1.986447
× 10−5

4.556335
× 10−6

11.96266
× 10−3

1.438769

ν: 1 MHz ≈ 3.33564
× 10−5

1 6.626076
× 10−10

4.135669
× 10−9

3.990313
× 10−7

4.79922
× 10−5

E: 1atto J ≈ 50341.1 1.509189
× 109

1 6.241506 602.2137 7.24292
× 104

E: 1 eV ≈ 8065.54 2.417988
× 108

0.1602177 1 2625.500 3.15773
× 105

Em: 1 kJ mol−1 ≈ 83.5935 2.506069
× 106

1.660540
× 10−3

1.036427
× 10−2

1 120.272

T : 1 K ≈ 0.695039 2.08367
× 104

1.380658
× 10−5

8.61738
× 10−5

8.31451
× 10−3

1

Table 8.5 gives the conversion factors between the various ‘energy’ units mentioned
above. The inverted commas around the word energy serve as a final reminder that some
of these units are not energy units and, for example, 1 eV may be thought of as equivalent
to, but not equal to, 8065.54 cm−1.

8.10.2 The intensity/absorbance axis

The second axis of the spectrum is the one which records just how much radiation has
been absorbed or emitted. This axis is especially important when a spectroscopic mea-
surement is being used in quantitative analysis. Such procedures are almost always based
upon relative, rather than absolute, measurements since only in this way is the required
accuracy obtainable. If the problem is to determine the concentration of copper in a sam-
ple of wine,‡ then the spectroscopic instrument used, an atomic absorption spectrometer
in this example, would first be calibrated using standard copper solutions and the cop-
per concentration in the unknown sample determined by comparison with the calibration
graph. The measurement of the quantity of light absorbed or emitted is recorded as a
change in the output signal of the detector and absolute measurement of the intensity of
the radiation is not required.

In UV–VIS and IR spectroscopy the most common measure of the quantity of radiation
absorbed is the absorbance, Aλ, which is defined by the equation:

Aλ = log10(Io/Itr)λ (8.10.2)

where Io is the intensity of the radiation falling upon the sample and Itr is the inten-
sity of the transmitted radiation at a particular wavelength, λ. The value of Aλ in
Equation (8.10.2) is calculated directly by modern spectrometers and the determination
of the absorbance is a particularly important aspect of quantitative analysis in the ultra-
violet, visible and infrared regions of the spectrum. Aλ is related to the concentration of
light-absorbing substance, C, by the Beer–Lambert–Bouguer law (Box 8.4):

Aλ = EλCL (8.10.3)

‡ There is Cu2+ in wine because a fungal infection of the vines is treated by spraying them with an aqueous suspension of
lime and copper sulfate known as Bordeaux mixture.
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where L is the path length of the radiation through the sample and Eλ is the molar
decadic absorption coefficient, which has a characteristic value for every compound at
every wavelength, λ, and is directly related to the probability that a photon of that wave-
length striking the molecule will be absorbed. The word ‘decadic’ arises because A is
defined in terms of logarithms to base 10 rather than to base e in Equation (8.10.2).

8.11 THE EINSTEIN COEFFICIENTS

Finally, mention should be made of three parameters characterising transition probabilities
deduced by Einstein in 1917 using purely thermodynamic reasoning. They are the Einstein
coefficients of induced emission (Bm→n), absorption (Bn→m) and spontaneous emission
(Am→n). Einstein’s argument and the relationships between these parameters are described
in Box 8.5.
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BOX 8.1 The Compton effect

In 1923 Arthur Holly Compton (1892–1962) observed that when X-rays are scat-
tered by electrons the wavelength of the scattered rays is slightly longer than that
of the incident rays; i.e. the radiation has lost energy. This observation could not be
explained by a wave theory of light and Compton suggested the following interpreta-
tion, which provides one of the most convincing pieces of evidence for the photon as
a discrete particle that has mass and, therefore, linear momentum. Consider a photon
with frequency νi moving in the x-direction. It strikes a stationary electron of mass
mo and is scattered at an angle of φ to its original path and its frequency is reduced
to νf. The collision causes the electron to move off with velocity v and momentum
mv at an angle of ψ to the x-axis, Figure B8.1.1.

photon hni X

photon hnf

electron m

f

y

Figure B8.1.1 Collision of a photon with a stationary electron.
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Compton analysed the problem using the requirements that energy and linear
momentum be conserved. He expressed the energy of the electron in terms of Ein-
stein’s equation E = mc2, and obtained the momentum of the photon by combining
the two equations for its energy, i.e. E = hν = mc2 ⇒ p = mc = hν/c. The rest mass
of the electron, mo, is related to its mass when in motion, m, by Equation (8.4.5):

mo = m{1 − (v/c)2} 1
2 or m2(c2 − v2) = mo

2c2 (B8.1.1)

Therefore, before the impact:

Photon: E = hνi p = hνi/c

Electron: E = moc
2 p = 0

and after the impact:

Photon: E = hνf p = hνf/c

Electron: E = mc2 p = mv

The conservation of momentum requires that along x:

hνi/c = (hνf/c) cos φ + mv cos ψ ⇒ mvc cos ψ = hνi − hνf cos φ (B8.1.2)

and perpendicular to x:

(hνf/c) sin φ = mv sin ψ ⇒ mvc sin ψ = hνf sin φ (B8.1.3)

The conservation of energy requires that:

hνi + moc
2 = hνf + mc2 ⇒ mc2 = h(νi − νf) + moc

2 (B8.1.4)

Squaring both sides of Equations (B8.1.2) and (B8.1.3) and adding gives:

mv2c2 = h2νi + h2νf − 2h2νiνf cos φ = h2(νi + νf − 2νiνf cos φ) (B8.1.5)

Squaring both sides of Equation (B8.1.4) gives:

m2c4 = h2(νi − νf)
2 + mo

2c4 + 2h(νi − νf)moc
2

= h2(νi + νf − 2νiνf) + mo
2c4 + 2h(νi − νf)moc

2 (B8.1.6)

Subtracting Equation (B8.1.6) from Equation (B8.1.5) we have:

mc2(v2 − c2) = −2h2νiνf(cos φ − 1) − mo
2c4 − 2h(νi − νf)moc

2

and using Equation (B8.1.1):

hνiνf(1 − cos φ) = (νi − νf)moc
2

Since λν = c, this result may be written:

1 − cos φ = moc
2(νi − νf)/hνiνf = {moc

2/h}{(1/νf) − (1/νi)} = {moc/h}{λf − λi}
This equation is in exact agreement with Compton’s observations. The manner

of its derivation shows that the photon may be considered to be a particle with
momentum hν/c. The factor h/moc, which has the units of length, is known as the
Compton wavelength and has the numerical value 2.42 × 10−12 m.
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BOX 8.2 The transition dipole moment in the hydrogen atom

Readers will have noted that Equation (8.7.8) requires that there is a change of
dipole moment associated with the vibration if the transition moment of an infrared
transition is to be non-zero, whereas no such condition attaches to the expression
(Equation (8.7.10)) for an electronic transition dipole moment. And if, as an example,
we consider the strongly allowed 1s → 2p transition of the hydrogen atom, it is diffi-
cult to envisage how the dipole, which is to interact with the electric field of the light,
arises. Whereas a classical viewpoint is quite satisfactory for vibrational spectroscopy,
and also for NMR where we have a precessing magnet which can interact with an
oscillating magnetic field (Chapter 9), the case of an electronic transition demands
a quantum-mechanical analysis. We can, however, make the whole process more
plausible by considering the time-dependent initial, 1s, and final, 2p, wave functions.

According to Equation (8.6.3), the two time-dependent wave functions have the
forms:

�1s = φ1s exp(−i2πE1st/h) and �2p = φ2p exp(−i2πE2pt/h)

Each of the states � is an eigenstate of the atomic Hamiltonian operator and we may
also form a state which is a superposition of the two:

�sum = �1s + �2p = φ1s exp(−i2πE1st/h) + φ2p exp(−i2πE2pt/h)

Compare Equation (8.6.6). The above expression for �sum may be written:

�sum = exp(−i2πE1st/h){φ1s + φ2p exp(−i2π[E2p − E1s]t/h)}
Note that �sum is not an energy eigenstate. At t = 0, the probability of finding the
hydrogen electron at any point in space is given by the product:

�∗
sum�sum = {φ1s + φ2p}2

We now examine how �sum changes with time.
When a time t = h/2(E2p − E1s) has elapsed the wave function can be written:

�sum = exp(−i2πE1st/h){φ1s + φ2p exp(−iπ)} = exp(−i2πE1st/h){φ1s − φ2p}
because exp(−iπ) = −1 (see Box 4.3). We might also have substituted the first t in
the above equation, but this is unnecessary since that part of the expression reduces
to 1 when we carry out our next step.

The probability of finding the hydrogen electron at any point in space is now:

�∗
sum�sum = exp(+i2πE1st/h) · exp(−i2πE1st/h){φ1s − φ2p}2 = {φ1s − φ2p}2

After a further period of time equal to h/2(E2p − E1s), �sum will have returned
to its value at t = 0 and the oscillation between φ1s + φ2p and φ1s − φ2p continues
indefinitely.

Because of the differing phases of the two lobes of the 2p function, the centre
of the electronic charge distribution moves from one side of the nucleus to the other
(Figure B8.2.1), thus creating an incipient oscillating dipole which is always ready
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1s

1s + 2p 1s − 2p

2p

Figure B8.2.1 The time-dependence of the 1s/2p electron distribution.

and able to interact with light of the correct frequency, should such light fall on the
atom. Indeed, the frequency of the oscillation is (E2p − E1s)/h which is exactly the
frequency of the 1s → 2p transition, but we must be careful not to draw unwarranted
conclusions from this fact. We are in danger of straying into the quantum-mechanical
world armed only with classical-mechanical concepts.

BOX 8.3 The Franck–Condon principle

The data in Table 8.4 show that the time required for an vibrational transition is of the
order of 100 times that required for an electronic transition. Already in 1925, James
Franck (1882–1964) had reasoned that because the masses of nuclei were so much
greater than that of electrons the former would move much more slowly and that they
might be considered to be essentially stationary during the period required for an elec-
tronic transition. The same concept underlies the Born–Oppenheimer approximation
(Section 6.3). If we think in terms of the potential-energy curves for the ground and
excited states of a diatomic molecule (Figure B8.3.1), then an electronic transition
between these states with no motion of the nuclei during that time implies a transition
with no change of internuclear distance, i.e. a vertical transition.

In 1929 Edward Uhler Condon (1902–1974) analysed the problem with the new
quantum mechanics. He derived Equation (8.7.10), following essentially the method
described in Section 8.7.1, Case 2, and came to the same conclusion as Franck. But by
introducing the concept of the overlap of the vibrational functions of the ground and
excited electronic states, Condon made it possible, in favourable cases, to calculate the
relative intensities of vibrational fine structure and provided a method of determining
the change of shape which takes place when a molecule is electronically excited. This
sort of information is of great value in the study of molecules in their electronically
excited states.

And even when a quantitative calculation is not possible, we can draw conclu-
sions about the ground and excited state potential energy curves from the appearance
of the vibrational structure. Figure 10.6 shows that, as we move to higher quan-
tum numbers, the lobes of harmonic vibrational functions become disproportionately
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Figure B8.3.1 The Franck–Condon principle with re(ground state) ≈ re(excited state)

larger at the turning points of the vibration and this is more marked in the case
of anharmonic vibrations. Thus, the maximum overlap occurs where the upper state
potential energy curve lies vertically above the equilibrium internuclear configuration
of the ground state because, at room temperature, almost all molecules will be in
their vibrational ground state. When the equilibrium bond length of the upper state is
similar to that of the lower state we have the situation depicted in Figure B8.3.1. The
vibronic transition, which has the maximum overlap, is the 0 → 0 transition and so
the first band is the most intense and as we go to higher energies the intensity falls off
with increasing v′, the vibrational quantum number of the upper state. The resulting
spectrum is shown diagrammatically to the left of the potential energy curves. The
1
+(re = 149.10 pm) → 1�(re = 154.66 pm) transition of PN, which is found in the
region of 40 000 cm−1, is of this type. The relative intensities of the first four 0 → v′
vibronic bands fall in the sequence 20, 3, 2, 0.

When, as is usually the case, the upper electronic state is more weakly bound than
the ground state, the equilibrium bond length of the upper state increases and the
particular vibronic transition which has the maximum overlap with the v′′ = 0 level
of the ground state changes moves to higher values of v′. Now the vibronic band of
maximum intensity has bands of decreasing intensity towards both higher and lower
values of v′, i.e. toward both higher and lower energies (Figure B8.3.2). The 1
+(re =
112.81 pm) → 1�(re = 123.51 pm) band of CO, found at about 65 000 cm−1, falls
into this category.
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Figure B8.3.2 The Franck–Condon principle with re(ground state) < re(excited state)
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Figure B8.3.3 The Franck–Condon principle when a vertical transition enters the continuum
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It is quite common for the upper state potential energy curve to be so far displaced
to longer bond length and/or so shallow that maximum vibrational overlap occurs at
an energy above the dissociation energy of the molecule, so that absorption of the
corresponding photon results in decomposition of the molecule into its constituent
atoms. When this is the case the spacing of the vibronic bands decreases until it
is unresolvable and the intensity of the spectrum reaches a maximum somewhere
in the continuum (Figure B8.3.3). The famous Schumann-Runge bands of oxygen,
3
−

g (re = 120.74 pm) → 3
u
−(re = 160 pm), provide an example of this behaviour.

The 0 → 0 band is found at 49 802 cm−1 and the convergence limit at 56 850 cm−1

at which energy the oxygen molecule dissociates into one ground-state atom O(3P)
and one excited atom O(1D). It is little wonder that excitation processes such as this
lead to extensive photochemistry!

Herzberg1 should be consulted for further details and examples of the Franck–
Condon principle.

REFERENCE

1. G. Herzberg, Spectra of Diatomic Molecules, D. Van Nostrand Inc., New York, 1950.

BOX 8.4 The Beer–Lambert–Bouguer Lawa

In this box we interpret theoretically the laws of light absorption discovered experi-
mentally by Beer, Lambert and Bouguer during the 19th century.

Suppose (Figure B8.4.1(a)) that a beam of light traverses a path of L m in a
solution of an absorbing solute, concentration C mol dm−3, in a transparent solvent
contained in a transparent cell or cuvette. Let the intensity of the light of frequency
ν be I0(ν) on entering the solution and I(ν) on leaving it. We do not need to specify
the units of the intensity since we shall find that our result depends upon an intensity
ratio.

As the light makes its way through the solution each succeeding layer of the
solution is subject to a diminished intensity of light since some of the light has
already been absorbed by the preceding layers. Therefore, in order to calculate the
total intensity loss, we consider (Figure B8.4.1(b)) an infinitely thin layer of thickness
dl and 1 m2 cross section at right angles to the direction of propagation of the light.
Let the cross-sectional area of the absorbing molecules be a m2 per molecule, the
intensity of the light entering the thin layer of the solution i, the amount of light

1

1

I0(n) I(n)
C

L

(a) (b)

dli

Figure B8.4.1 The passage of a light beam through an absorbing solution.
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absorbed in the layer di and the probability that a photon falling upon a molecule
is absorbed w. Then the number of molecules per m3 is 103 · CNA where NA is the
Avogadro constant. Therefore, the cross-sectional area of the molecules in the layer is
103 · aCNAdl. Since the probability of each photon being absorbed is w, the fraction
of light absorbed in the layer is 103 · waCNAdl:

−di = 103 · waCNAidl or −di = E
′
Cidl where E

′ = 103 · waNA

The di has a negative sign because i gets smaller as l increases.
Integrating over the intensity from I0 to I and path length from 0 to L we have:

−
I∫

I0

di

i
= E′C

L∫

0

dl ⇒ loge

[
I0

I

]
= E′CL

or, converting to logarithms to base 10:

log10

[
I0

I

]
= 0.4343E′CL ≡ ECL

The quantity log10(I0/I) is called the absorbance, A; it has no dimensions or units. E
is the molar decadic absorption coefficient, its units are m2 mol−1, i.e. cross-sectional
area per mole, which explains why E is sometimes spoken of as a cross section in
some branches of science and technology, though rarely in chemistry.b If we set
the cross-sectional area of a molecule to ≈10−19 m2 then for w = 1.0 we have the
maximum possible value of E of ≈ 2.5 × 107. The minimum value is, of course, zero.
The quantity T, known as the percentage transmission, is also used as a measure of
the light absorption:

T =
[

I

I0

]
· 100 %

The equation:
A = ECL

or betterc:
Aλ = EλCL

shows that A is proportional to path length (the Bouguer–Lambert law) and also to
concentration (the Beer law). All quantitative applications of spectroscopy are based
upon Beer’s law and its practical significance cannot be overestimated.

Notes:

a Terminology of the type used here (absorbance, absorbance coefficient, path length)
is universal in UV–VIS spectroscopy, very much less common in IR spectroscopy
and never used in NMR spectroscopy.

b In older literature the absorption coefficient is almost always called the extinction
coefficient and has units of cm2 mol−1. The absorbance is frequently called the
optical density.
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c It must be remembered that A and E are functions of the wavelength or frequency
of the light. This is the basic fact responsible for what we know as a spectrum.

BOX 8.5 The Einstein coefficients

Although no quantum mechanics is involved, any account of the absorption and
emission of radiation would be incomplete without a mention of the coefficients
which Einstein introduced, on the basis of thermodynamic arguments, in 1917.

There are three distinct ways in which an atom or molecule can undergo a transition
between two quantised energy states, m and n, having energies Em and En. All three
are of interest to the chemical spectroscopist. If we assume that Em > En, then the
transition from n to m will be accompanied by the absorption of a photon of frequency
νmn given by the Bohr–Einstein relationship:

νmn = (Em − En)/h (B8.5.1)

Similarly, the transition from m to n will result in the emission of a photon of
frequency νmn. Einstein proposed that the probability of the transition from n to m,
Pn→m, is proportional to ρ(νmn), the energy density of the radiation at the frequency
νmn, and given by the equation:

Pn→m = Bn→m ρ(νmn) (B8.5.2)

The constant of proportionality, Bn→m, is called the Einstein coefficient of absorp-
tion. For the transition from the higher to the lower energy state Einstein postulated
that there were two processes to be considered. Firstly, the system could simply emit
a photon spontaneously and drop to the lower state for no external reason. Secondly,
the transition from m to n could be induced by a photon in just the same way as the
transition from n to m is induced. The total probability of the transition from m to n
is therefore the sum of two processes and:

Pm→n = Am→n + Bm→n ρ(νmn) (B8.5.3)

where Am→n is Einstein’s coefficient of spontaneous emission and Bm→n is Einstein’s
coefficient of induced emission. The process of spontaneous emission is exactly the
same as the spontaneous emission of a γ -ray by a radioactive nucleus. If we now
consider a large number of systems at equilibrium with radiation at a temperature, T ,
then the energy density of the radiation is given according to Planck (Section 2.5) by
the equation:

ρ(νmn) = 8πh(νmn)
3/(c3[exp{hν/kT } − 1]) (B8.5.4)

where k is the Boltzmann constant. If the number of systems in state m is Nm and
the number in state n is Nn, then the number of systems making the transition from
state n to state m in unit time is:

NnBn→m ρ(νmn) (B8.5.5)
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and the number moving in the reverse direction is:

Nm{Am→n + Bm→n ρ(νmn)} (B8.5.6)

At equilibrium these two numbers must be equal and we have:

Nn/Nm = {Am→n + Bm→n ρ(νmn)}/Bn→m ρ(νmn) (B8.5.7)

But according to Boltzmann the ratio Nn/Nm is given by the equation:

Nn/Nm = exp{(Em − En)/kT } = exp{hνmn/kT } (B8.5.8)

Equating the two expressions for Nn/Nm we find the following expression for
ρ(νmn):

ρ(νmn) = Am→n/(Bn→m exp{hνmn/kT } − Bm→n) (B8.5.9)

If this is to be identical with Equation (B8.5.4), the three Einstein coefficients must
be related as follows:

Bn→m = Bm→n (B8.5.10)

and

Am→n = 8πh(νmn/c)3Bm→n (B8.5.11)

We find that the coefficients of induced emission and absorption are equal while
the coefficient of spontaneous emission differs from them by a factor of 8πh(νmn/c)3.

PROBLEMS FOR CHAPTER 8

1. Combine two plane-polarised waves, E o
a and E o

b 90◦ out of phase and with E o
a =

2 × E o
b . What path is traced by the head of the combined E-vector?

2. Calculate 〈ψ2pz|Mx|ψ1s〉 and 〈ψ2px|Mx|ψ1s〉 where ψ1s and ψ2px are hydrogen-atom
orbitals (Appendix 5)

3. Using the data for 1H–35Cl in Box 10.2 and the vibrational wave functions in Box 10.3,
show that:

〈� f
vib|r|� i

vib〉 =
√

h

8π2µυ
= 7.59 pm

Hint: If f(x) is a function of even powers of x only then:
+∞∫

−∞
f(x) dx = 2 ×

+∞∫

0

f(x) dx

You will also find the following integral useful, it holds for a > 0 and all integer
values of n > −1. {n! = n × (n − 1) × (n − 2) . . . × 1; 0! = 1}

+∞∫

0

xne−ax dx = n!

an+1
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4. Show that the wave function (Equation (8.6.5)):

� = φa exp(−iωt)

is an eigenfunction of Schrödinger’s time-dependent equation (Equation (8.6.2)), but
that the wave function (Equation (8.6.6)):

� = 
acaφa exp(−iωat)

is not.

5. The energies, Em, and wave functions, �m, of the Hückel π-electron molecular orbitals
of linear conjugated polyenes may be written in closed algebraic form:

Em = α + 2 cos

(
m

N + 1

)
β �m =

√
2

N + 1

∑

r

sin

(
rmπ

N + 1

)
φr

where N is the number of conjugated carbon atoms and r = 1, 2, . . . N numbers the
atoms. The definitions of α and β are given in Section 12.1 but this knowledge is not
required for this problem.

The highest occupied MO has m = 1
2 N and the lowest unoccupied MO has m =

1
2 N + 1. The π → π∗ transition from the lower to the higher of these two MOs is
responsible for the strong, long-wavelength absorption band which characterises these
compounds and increases markedly in intensity as the chain gets longer. Show that the
intensities predicted using the above MOs also increase in the series N = 4 → 6 → 8.
A suggested method for this calculation is the following:
(a) Consider a polyene to be a zig-zag chain of atoms with a uniform bond length of

140 pm and all C–C–C angles 120◦. Define an x axis as the line passing through
the centre points of all the bonds with x = 0 in the centre of the molecule.

(b) Calculate the transition density at each carbon atom assuming, in accord with the
Hückel theory, that there is no overlap between the AOs on different carbon atoms.
Multiply the transition density by the x co-ordinate of that atom.

(c) Sum the results for each atom to obtain the x component (in e pm) of the transition
dipole moment for molecules having N = 4, 6 and 8.

(Taking account of symmetry will considerably reduce your work!)
The results for N = 4 are tabulated below as a guide.

r = 1 2 3 4

Transition density = +0.362 e −0.138 e +0.138 e −0.362 e

x co-ordinate = −181.8 pm −60.6 pm +60.6 pm +181.8 pm
Transition dipole moment = −65.81 e pm +8.36 e pm +8.36 e pm −65.81 e pm
Sum = −114.9 e pm The intensity is proportional to (sum)2 = 13,202 e2 pm2
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9.0 INTRODUCTION

In Chapter 4 we saw that electrons and many nuclei have an intrinsic angular momentum
which we call spin angular momentum. This angular momentum is invariably associated
with a magnetic moment as Wolfgang Pauli, originator of the Pauli exclusion principle,
proposed in 1924. Pauli’s suggestion was confirmed in 1939 when the deflection of
atomic beams by magnetic fields was detected. Nuclear magnetic resonance in bulk matter
was first reported in 1946. The presence of the magnetic moments associated with the
spin of electrons and nuclei causes these particles to interact with each other and with
applied magnetic fields and these interactions are very important in several branches of
spectroscopy. In nuclear magnetic resonance and electron spin or paramagnetic resonance
spectroscopies the interactions of the nuclei and the electrons with applied magnetic fields
are studied. The quantum mechanics which underlies the two forms of spectroscopy is
very similar, though they are often discussed in very different language. Some important
formulae are collected together in Table 9.1 and described in more detail below.

The Quantum in Chemistry R. Grinter
 2005 John Wiley & Sons, Ltd
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Table 9.1 The Magnetic Properties of the Electron and the Proton

Electron Proton

Spin angular momentum
in units of h/2π h̄ ≡ h/2π = 1.054592 × 10−34 Js
characterised by the
quantum numbers s and ms I and mI

The magnetic moment in Bohr magnetons, µB nuclear magnetons, µN
µ = −ge

√
[s(s + 1)] µ = +gH

√
[I (I + 1)]

where µB = eh/4πme µN = eh/4πM

= 9.274 × 10−24 J T−1 = 5.051 × 10−27 J T−1

and the g factors are ge = 2.002319 gH = 5.585691

In J T−1 µ = −geµB
√

[s(s + 1)] µ = +gHµN
√

[I (I + 1)]

Alternatively µ = +γe(h/2π)
√

[s(s + 1)] µ = +γH(h/2π)
√

[I (I + 1)]

where γ is the
magnetogyric ratio γe = −geµB/(h/2π) γH = gHµN/(h/2π)

= −1.760 × 1011 rad T−1 s−1 = +26.752 × 107 rad T−1 s−1

Similarly µz = +γehms/2π µz = +γHhmI/2π

Since E = −µ·B = −µzBz for a magnetic field aligned along the z axis:

E = +geµBmsB E = −gHµNmIB

and
�E(+ 1

2 ↔ − 1
2 ) = geµBB gHµNB

The data for the proton also serve as an example for all nuclei. But it must be noted that the values of the
nuclear g’s and γ ’s are different for every nucleus, i.e. for every isotope.

9.1 THE MAGNETIC PROPERTIES OF ATOMIC NUCLEI

The spin and magnetic properties of all stable nuclei are now well documented. There
are three useful rules which can be used to predict the spin angular momenta of nuclei.

1. Nuclei with an odd mass number have a half-integral spin quantum number, for
example: 1H, I = 1

2 ; 23Na, I = 3
2 ; 27Al, I = 5

2 .

2. Nuclei with an even mass number and an even charge number have zero spin, for
example: 12C, 16O, 32S.

3. Nuclei with an even mass number and an odd charge number have an integral spin
quantum number, for example: 2H, I = 1; 10B, I = 3; 14N, I = 1.

The spin angular momentum, P , of a nucleus is determined by the quantum number
I according to Equation (9.1.1):

P = √
[I (I + 1)]h/2π (9.1.1)

and its magnetic moment, µ, is given by the equation:

µ = gNµN

√
[I (I + 1)] = 2πgNµNP/h (9.1.2)
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µN = eh/4πM is the nuclear magneton which has the value 5.05095 × 10−27 J T−1 and
relates the spin angular momentum to the magnetic field produced. (e is the elementary
charge, h Planck’s constant and M the mass of the proton.) gN is the nuclear g factor,
a quantity which, at the present state of our knowledge, can only be determined by
experiment and may be either positive or negative. A negative value indicates that the
magnetic moment and the angular momentum vectors point in opposite directions. It is
convenient to express µ in terms of a quantity γN, the magnetogyric ratio, rather than
gN, where:

γN = gNµN2π/h (9.1.3)

and therefore:
µ = γNP (9.1.4)

The magnetogyric ratio is a factor which converts the angular momentum in units of
h/2π into magnetic moment in units of J T−1, hence its name. Thus, the nuclear magnetic
moment is related to the nuclear spin quantum number, I , by the equation:

µ = gNµN

√
[I (I + 1)] = γN

√
[I (I + 1)]h/2π (9.1.5)

As we know from Chapter 4, for a spin quantum number I there are 2I + 1 possible
orientations of the spin angular momentum in space, each characterised by a differ-
ent value of the quantum number mI , which takes all integer or half-integer values
from −I to +I . Consequently, 2I + 1 orientations of the nuclear magnet are also pos-
sible and the component of the magnetic moment in the z direction, in analogy to
Equations (9.1.4) and (9.1.5), is (Box 12.2):

µz = γNPz = γNmIh/2π (9.1.6)

In general, this will be of no obvious consequence, but in the presence of a magnetic
field each orientation will have a different energy, as illustrated in Figure 9.1 for I = 3

2 ,
e.g. the 23Na nucleus. The energy, E, of a magnet, µ, placed in a magnetic field of
strength B is (Box 12.2):

E = −µB cos θ (9.1.7)
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Figure 9.1 The energy levels of the four MI components of an I = 3
2 nucleus in a magnetic field
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where θ is the angle between the axis of the magnet µ and the direction of B (Figure 9.1).
If we orientate the field along the z-direction then Equation (9.1.7) can be written:

E = −µzB = −γNBmIh/2π (9.1.8)

Thus, if a molecule containing atoms which have nuclear magnetic moments is placed
in a magnetic field each of the 2I + 1 sub-levels will have a different energy and, if the
molecule is irradiated with e-m radiation of a suitable frequency, transitions between these
energy levels may be induced. Such transitions are known as nuclear magnetic resonance
(NMR) and the process forms the basis of NMR spectroscopy.

9.2 THE FREQUENCY REGION OF NMR SPECTROSCOPY

The conservation of energy, as expressed in the Bohr–Einstein condition (Section 8.5.1)
determines the region of the e-m spectrum in which NMR spectra will be observed. The
condition requires that the energy difference between the two states shall be equal to the
energy, hν, of the photon which is absorbed when it stimulates the transition. Table 9.2
shows the energy gap between the two mI levels, mI = + 1

2 and mI = − 1
2 , for three

nuclei having I = 1
2 and three magnetic fields. We see that the energy separation, even

at high magnetic fields, is very small. The corresponding wavelengths and frequencies
are those which we associate with television and radio transmission. Although we may
say that NMR is observed in the region of the e-m spectrum between 10 and 1000 MHz,
this is a very wide range of frequencies and within it each nucleus is confined to quite
a narrow band, well separated from the resonances of other nuclei. Though a modern
NMR instrument can be readily adjusted to measure the spectra of a number of different
nuclei, e.g. 1H, 13C, 19F, 31P, . . . , in chemical applications only the range of resonance
frequencies of one particular nuclear species is covered in any one experiment.

9.3 THE NMR SELECTION RULE

The fact that the energy difference between the two energy levels having mI = − 1
2 and

+ 1
2 satisfies the Bohr–Einstein condition is not in itself sufficient to ensure that transitions

between the two levels can be observed when the sample is irradiated with e-m radiation
of the above frequencies. There must be a mechanism whereby the photon or e-m wave
can interact with the nucleus and cause it to change its energy by absorbing the photon.
The mechanism is the interaction between the oscillating magnetic field of the radiation

Table 9.2 The energy gap between the nuclear spin levels with mI = + 1
2 and mI = − 1

2 for
three frequently-studied nuclei at three values of the applied magnetic field (The corresponding
frequencies and wavelengths are also given)

B(T) �E(J)
×1027

1H
ν(MHz)

λ(m) �E(J)
×1027

13C
ν(MHz)

λ(m) �E(J)
×1027

31P
ν(MHz)

λ(m)

1 28.21 42.58 0.704 7.10 10.71 2.800 11.43 17.25 1.737
4 112.9 170.3 0.176 28.38 42.83 0.700 45.73 69.02 0.434
8 225.7 340.6 0.088 56.76 85.67 0.350 91.46 138.0 0.217
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and the magnetic moment of the nucleus. To understand how this happens first recall
(Chapter 4) that, even when mI = I , the magnetic moment of the nucleus does not lie
exactly along the z-direction.

Now, suppose that we place a bar magnet, in the form of a rod and mounted at its centre
on a frictionless bearing, in a magnetic field. If we displace the magnet from alignment
with the field there is a torque which tries to return the magnet to the aligned orientation.
If we release the magnet it will realign itself with the field, but it will overshoot the
position of minimum energy and then oscillate about it. Since the bearing is frictionless,
this oscillation will continue indefinitely (Figure 9.2(a)). Suppose further that the magnet
is spinning about its axis so that there is angular momentum directed along that axis.
The torque which seeks to realign the magnet with the magnetic field is now opposed by
the requirement that the angular momentum and its direction in space be conserved. The
result of these two conflicting demands is that the magnet precesses about the direction of
the field like a gyroscope or top in the gravitational field of the earth. That is, the magnet
rotates about the field in such a way that its north and south poles describe circles around
the direction of the field as illustrated in Figure 9.2(b). This is exactly the same as the
motion of a top when the axis of the top slowly circles around the vertical line drawn
through the point at which the top is in contact with the ground. This motion of nuclei
in a magnetic field is known as Larmor precession and its frequency, f , the Larmor
frequency, is given by:

f = γNB/2π (9.3.1)

in which the magnetogyric ratio is again involved.
The precession of µ about the z-axis (Figure 9.3) produces a rotating magnetic field in

the xy-plane and this provides the ‘handle’ by means of which the e-m radiation is able
to disturb the precessional motion of the nucleus. If the precessing nucleus is irradiated
with circularly polarised radiation then, if the frequency of the radiation is very different
from the Larmor frequency, there will be no effect. But if the frequency of the radiation
is equal to the Larmor frequency then the rotating magnetic moment and the rotating
magnetic field of the radiation will remain in phase with each other and the effect is to tip

NN

SS

Field direction

magnet oscillates

NN

SS

Field direction

magnet precesses

(a) (b)

magnet
spinning

magnet not 
spinning

Figure 9.2 The dynamic behaviour of a bar magnet mounted on a frictionless bearing and placed
in a magnetic field
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Figure 9.3 Larmor precession

the nucleus over from the mI = + 1
2 into the mI = − 1

2 orientation. But energy also has
to be conserved and we therefore have two criteria which the frequency of the radiation
must satisfy:

1. The frequency of the radiation must be equal to the Larmor frequency, i.e. it must
satisfy Equation (9.3.1), so that ν = f = γNB/2π .

2. The frequency of the radiation must satisfy the Bohr–Einstein condition:

hν = �E ⇒ ν = −γNBh(− 1
2 − 1

2 )/2hπ = γNB/2π (9.3.2)

Thus, the energy required for the transition between the two levels mI = + 1
2 and − 1

2
does indeed imply radiation of the same frequency as the Larmor precession and the two
requirements are satisfied by the same radiation. The same analysis applies for nuclei
with values of mI other than ± 1

2 and, clearly, the criterion that the radiation shall have
the required energy and the Larmor frequency is always met by a transition between any
pair of levels whose mI values differ by ±1, but not for any other transition. The NMR
selection rule is therefore:

�mI = ±1 (9.3.3)

Note that the selection rule is exactly the same for the absorption of a photon and an
increase in energy as for the emission of a photon and a decrease in energy. The fact that
both processes are equally probable is very important in NMR spectroscopy and we shall
return to it later.

Naturally, quantum mechanics also provides a more precise description of the process
whereby interaction with an electromagnetic wave changes the energy of a nucleus in a
magnetic field. Recall (Section 8.6) that the link between the initial and final states of
a spectroscopic transition brought about by e-m radiation can be written as the product
of a time-dependent and a time-independent part. Evaluation of the time-dependent part
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results in the Bohr–Einstein or energy conservation condition, which is the same in all
branches of spectroscopy. The time-independent part, in the case of NMR, takes the form
(see Box 9.1 for further justification):

(γB1x)
2|〈	final|Îx|	initial〉|2 (9.3.4)

where B1x is the magnetic field of the applied radiation that oscillates in the x-direction
and Îx is the operator for the x-component of the nuclear spin. Note that in NMR it is the
oscillating magnetic field of the radiation which interacts with the nucleus; in almost all
other spectroscopies it is the electric field. But this makes no difference in the evaluation
of the time-dependent part of the interaction since the electric and magnetic fields of the
radiation oscillate in phase and are described by exactly the same cosine or sine functions.
Since there are only two spin states for a nucleus having I = 1

2 , the operation of Îx on
one of them must give the other; in fact, in units of h/2π (Box 9.1):

Îx|+ 1
2 〉 = 1

2 (Î+ + Î−)|+ 1
2 〉 = 1

2 |− 1
2 〉 (9.3.5a)

and
Îx|− 1

2 〉 = 1
2 (Î+ + Î−)|− 1

2 〉 = 1
2 | + 1

2 〉 (9.3.5b)

(Note that these are not eigenfunction-eigenvalue equations; the function, | ± 1
2 〉, on

either side of the equality sign is not the same.) Therefore, the interaction of an e-m
wave with its magnetic field vibrating in the x-direction converts states from mI = − 1

2
to mI = + 1

2 , and vice versa, with equal facility; i.e. both processes are equally probable.
Though the case does not arise here we might also note that Îx links any two spin states
whose mI values differ by ±1, e.g. + 1

2 is linked to − 1
2 and + 3

2 ; +1 is linked to 0 and +2.

9.4 THE CHEMICAL SHIFT

Examination of the equations above shows that the frequency at which a nucleus resonates
depends only upon its magnetogyric ratio and the magnetic field in which it is placed. If
this were the whole story NMR spectroscopy would be of little interest to chemists. But in
January 1950 the editor of the Physical Review received two letters requesting publication
of exciting and surprising new observations. W.C. Dickinson wrote: ‘Most unexpectedly,
it has been found that for 19F the value of the applied magnetic field for nuclear magnetic
resonance at a fixed radio frequency depends on the chemical compound containing the
fluorine nucleus.’ W.G. Proctor and F.C. Yu reported that: ‘In the course of measurements
on 14N we made the surprising observation that its frequency of resonance, in liquid
samples, depended strongly upon the chemical compound in which it was contained.’
These observations, so clearly unexpected, were the trigger for an explosive growth of
NMR spectroscopy which has completely changed the way in which much of chemistry
is practised and shows no sign of diminishing after more than 50 years.

Following the introduction of the Fourier-transform method and the development of
NMR into arguably the most important spectroscopic technique for chemical applications,
new imaging techniques have made it a vital adjunct to medicine. Pictures of the living
human brain and other vital organs are now routinely obtained in all major hospitals
where the technique is known as NMR tomography. Those who believe that the only
research worth pursuing is research with an obvious application just around the corner



268 Nuclear Magnetic Resonance Spectroscopy

should study the history of NMR carefully. The advances in imaging, in particular, arose
from experiments in which magnetic nuclei were made to dance a jig to an intricate
sequence of pulses of radiation. Who could have dreamed that this esoteric pursuit of
knowledge would lead, within about 20 years, to detailed pictures of the living, working
human brain?

Returning to chemistry, the cause of the variation in resonance frequency or field
with chemical composition was soon clear to those who observed it. The nuclei we meet
in chemistry are always surrounded by clouds of electrons and these electrons have an
important effect upon the magnetic field experienced by the nuclei. When an atom is placed
in a magnetic field the motion of its electrons will be slightly changed and, according
to Lenz’s law, the change will be such as to oppose the applied field. Therefore, all
other things being equal, which is usually but not quite always the case, the nucleus will
experience a field slightly less than the applied field and will resonate at a slightly lower
frequency than that given by Equation (9.3.2). This difference in resonance frequency,
which depends upon the electron density in the immediate neighbourhood of the nucleus,
is called the chemical shift. It has been found that the resonance frequency of a nucleus
is highly characteristic of its chemical environment and can therefore be used to identify
molecules and particular groupings of atoms within molecules. The NMR spectrum of a
solution of 4-bromo-2,6-dimethylphenol, in which the different resonance frequencies of
the three types of 1H in the molecule can be readily seen, is shown in Figure 9.4. The
peaks can even be assigned to the particular 1H types, since their heights are directly
proportional to the number of protons in any particular chemical environment. The two
horizontal scales in Figure 9.4 require further explanation and we now turn to the subject
of the chemical shift scale.

9.4.1 The delta (δ) scale

The most obvious chemical shift scale might appear to be one in which the resonance
frequency of a particular nucleus in a molecule is related to the frequency of that nucleus
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Figure 9.4 The NMR spectrum of 4-bromo-2,6-dimethylphenol
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Table 9.3 Some 1H resonance frequencies (ν) at a
field of 2 T and the corresponding shifts (δ) from
tetramethyl silane (TMS)

Hydrogen nucleus ν at 2 T(MHz) δ

Bare proton, H+ 85.153942 +31.44
Hydrogen atom 85.152428 +13.16
H2SO4 85.152295 +11.60
CHCl3 85.151926 +7.27
H2 molecule 85.151677 +4.34
Water vapour 85.151370 +0.74
TMS 85.151307 0.00
CH4 85.150949 −4.21
HI 85.150191 −13.11

in the total absence of all its electrons, i.e. the bare nucleus. Figure 9.5 and Table 9.3
present some 1H resonance data in such a form for a magnetic field of 2 T.

However, it is very difficult to measure the exact magnetic field to which a molecule
is exposed. This is especially so when it is dissolved in a solvent, contained in a sample
tube and surrounded by a thermostat to maintain constant temperature. But this would
be necessary if the chemical shifts of the nuclei were to be measured as absolute values
against the resonance frequency of the bare nucleus. It has therefore become universal
practice to measure the shift relative to the resonance position of a standard substance that
has one well defined resonance. For 1H, 13C and 29Si tetramethyl silane [TMS, Si(CH3)4]
is used and the chemical shift scale, known as the δ scale, is defined as:

δa = 106(νa − νTMS)/νTMS (9.4.1)

The factor of 106 is included simply to give readily handled numbers and the δ val-
ues of the chemical shift scale are said to be in parts per million (ppm). This form of
chemical shift scale has a further advantage. Since it is a ratio of a frequency difference
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and a frequency, both of which are directly proportional to the applied magnetic field
(Equation (9.3.2)), the δ value is independent of the field and measurements made with
different instruments using any combination of field and frequency can be immediately
compared. Thus, when the chemical shifts in an NMR spectrum are reported in these units
the result is of permanent value, and such data form the basis of the tables of chemical
shift values which are used to identify molecules and groupings of atoms in them. The δ

values for the protons in Figure 9.5 are given in Table 9.3.
Two important comments may be made concerning these data. In the first instance we

note that the range of resonance frequency is very small, some 3.8 kHz as compared with
the mean resonance frequency, which is very near to 85 MHz. Secondly, the resonance
frequency depends directly upon the magnetic field used. Therefore, the greater the field
the greater is the spacing between the resonances, i.e. the resolution of the spectrometer
is increased and, in order to be able to study more complex molecules, there has been
a continuous drive to increase the available magnetic field. The highest fields currently
available in commercial NMR instruments are in the region of 10 T. With the aid of such
instruments, plus a variety of sophisticated ways of carrying out the experiment including
the use of isotopic labelling with 15N, 13C and 2H, the NMR spectra of proteins with
RMR values of the order of 30–40 kDa can now be measured and interpreted.

9.4.2 The shielding constant, σ (sigma)

In Section 9.3 we saw that the frequency, ν, of a nuclear magnetic resonance signal in
a field B0 is given by Equation (9.3.2), ν = γNB0/2π . We introduce the effect of the
chemical shift into this expression by defining a shielding constant, σa, for each nucleus,
a, in a molecule so that the field, and hence the resonance frequency, is reduced according
to the equation:

νa = γNB0(1 − σa)/2π (9.4.2)

where, in continuing to use γN rather than γa, it is assumed that only nuclei of the same
species are involved in the spectrum.

By substituting Equation (9.4.2) into Equation (9.4.1) we obtain the relation between
σ and δ as:

δa = 106(σTMS − σa)/(1 − σTMS)

But since the σ values of nuclei important for chemical NMR spectroscopy are very much
less than 1, the form:

δa = 106(σTMS − σa) (9.4.3)

is quite sufficient for chemical purposes. Note that increasing δ corresponds to decreasing
σ and that spectra are plotted with ν and δ increasing from right to left.

9.5 NUCLEAR SPIN–SPIN COUPLING

In practice, NMR spectra are normally more complex than the above discussion might
lead us to expect. For example, the 1H spectrum of 1,1,2-trichloroethane, (Figure 9.6)
shows 5 lines (resonances), although it contains only three hydrogen atoms. A clue as to
the assignment of the lines is given by the fact that the sum of the two signals centred
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Figure 9.6 The NMR spectrum of 1,1,2-trichloroethane

at 3.95 ppm (≈237 Hz) is twice that of the three signals at 5.77 ppm (≈346 Hz). Since,
in NMR, the signal height is usually proportional to the number of nuclei in the same
chemical environment, this suggest that the two lines at 3.95 ppm are caused by the
protons marked ‘a’ and the three lines at 5.77 ppm by that marked ‘b’. The cause of
this splitting of the resonance lines is the nuclear spin–spin coupling, which arises in the
following manner.

Each nucleus capable of giving a resonance signal does so because it has a magnetic
moment which, in the case of nuclei with I = 1

2 , can be aligned in two directions with
respect to the direction of the applied magnetic field, B0. The magnetic moment of each
nucleus is therefore capable of increasing or decreasing the applied field and this change
can be detected by other nuclei if they are sufficiently close to it. The process is mutual;
if ‘a’ feels the effect of ‘b’ then ‘b’ feels the effect of ‘a’. Consider the spectrum of
1,1,2-trichloroethane again. The protons ‘a’ experience either an increased or a decreased
magnetic field depending upon whether the proton ‘b’ is aligned with the applied field
or against it. Therefore, they experience two fields, and resonate at two slightly different
frequencies. But this is too simple an explanation of the actual mechanism of spin–spin
coupling and we must examine the phenomenon more closely.

Consider first Figure 9.7. The large open circles represent nuclei and the filled circles
electrons in a hydrogen molecule. The arrows indicate the orientation of the spin magnetic
moments associated with the four particles. On the left-hand side we find that the electron

Figure 9.7 Spin–spin coupling in the hydrogen molecule
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drawn closest to the nucleus has its magnetic moment in the direction opposite to that
of the nucleus, i.e. the two particles have orientated their magnetic moments so as to
minimise the energy of interaction. This type of electron nucleus interaction is known as
Fermi contact interaction after Enrico Fermi (1901–1954) who first suggested it in 1930
to explain effects seen in atomic spectroscopy.

It is important to note that it is not the same as the dipole-dipole interaction, which is
felt when two bar magnets held in the hands are brought close together. The interaction we
are concerned with here arises because, as small as they are, the nucleus and the electron
are not point charges and this interaction is present when the two are in ‘contact’.‡

Thus, because of the Fermi contact effect, the two electrons in the H-H bond are not
exactly equally distributed in the bond. In the region of the hydrogen nucleus on the left
there is a slight excess of the electron with its magnetic moment directed downwards
because the magnetic moment of the nucleus is directed upwards. But since the electron
spins must be paired in total this must imply that there is also a slight imbalance at the other
end of the molecule in the sense that there is an excess of the electron with its magnetic
moment directed upwards in the region of the right-hand hydrogen nucleus. The energy
of the molecule is therefore slightly lower when the right-hand nucleus has its magnetic
moment directed downwards. Thus, the energy of the hydrogen molecule is slightly lower
when the nuclear magnetic moments are opposed (antiparallel) than it is when they are
parallel; this energy difference is the spin–spin coupling energy. It is extremely small.
In the case of the hydrogen molecule its value is h × 280 Hz = 1.855 × 10−31 J, which
should be compared with the molecular binding energy of 7.605 × 10−19 J, a factor of
approximately 4 × 1012! Most coupling constants are much smaller than this and it is a
tribute to the technology of the NMR experiment that we are able to measure and make
use of such tiny energy differences.

Note how the nuclear spin information is transmitted by the electrons. In molecules that
do not have a fixed spatial orientation, e.g. in a solution, the dipole-dipole interaction of
the nuclear spins exists, but we do not see it because the constantly changing orientation
of the molecule with respect to the applied magnetic field averages the dipolar coupling
to zero. The spin–spin coupling which we measure is the electron-mediated coupling.
It should be noted that two other mechanisms, the spin-dipolar and orbital terms, also
contribute to the electron-mediated coupling observed in the fluid phase, but since these
mechanisms have a negligible effect on proton-proton coupling we ignore them here.

Figure 9.8 is a similar illustration of the H–C–C–H unit of 1,1,2-trichloroethane and
in the first H–C bond the situation is qualitatively exactly the same as that in the H–H

H HC C

Figure 9.8 Spin-spin coupling in a hydrocarbon fragment

‡ The idea that the electron can be ‘in contact with’ or ‘at’ the nucleus is a poor classical description, but the best we have,
of a situation which can only be properly described in mathematical terms. But it does make clear why only s-electrons have
a Fermi contact interaction with the nucleus; all other atomic orbitals have a node at the nucleus.
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bond above and if the carbon atom is a 13C atom with I = 1
2 then C–H coupling is

observed. But the coupling message can be transmitted further along the molecule. The
two electrons shown on either side of the carbon atom are involved in different bonds; a
H–C bond on the left and a C–C bond on the right. Consequently, these electrons are not
paired and, according to Hund’s rule (Chapter 5), their energy is lower when their spins,
and therefore their magnetic moments, are parallel. This effect transmits the electron spin
polarisation into the C–C bond and hence to the second carbon atom, where the same
mechanism induces a spin polarisation in the C–H bond. Finally, we arrive at the second
hydrogen nucleus, which for lowest energy should have its magnetic moment aligned
antiparallel to that of the first. This spin–spin coupling mechanism leads to the result
that for coupling over an odd number of bonds the more stable orientation of the nuclear
magnetic moments is antiparallel, while for coupling over an even number of bonds the
parallel orientation is the more stable. The former coupling is defined to be positive
and the latter negative; this alternation of the sign of the coupling with the number of
intervening bonds is frequently observed in NMR spectroscopy. However, the magnitude
of the coupling diminishes quite rapidly as the number of bonds increases.

Though the mechanism of spin–spin coupling by electrons is complex, the quantum
mechanical expression of the effect is very simple if we regard the coupling interaction
energy between two nuclei, r and s, as a parameter, the coupling constant Jrs, to be
determined by experiment. The energy can then be written as Jrs multiplied by the scalar
product of Îr and Îs, the nuclear spin operators for the two nuclei:

Interaction energy = EJ = JrsÎr · Îs = Jrs[ÎrxÎsx + ÎryÎsy + ÎrzÎsz]

= Jrs[ÎrzÎsz + 1
2 (Îr+Îs− + Îr−Îs+)]

(9.5.1)

and we always divide EJ by Planck’s constant and quote the coupling in Hz, the unit in
which it is measured experimentally.

9.6 THE ENERGY LEVELS OF A NUCLEAR SPIN SYSTEM

Summarising Sections 9.4 and 9.5: the Hamiltonian operator from which the energy of all
the nuclear spins in a molecule can be calculated includes the interaction with the applied
field, B0, allowing for the shielding, σ , and the nuclear spin–spin coupling, J. Using
Îz|I,mI 〉 = mI |I,mI 〉 to transform Equation (9.1.8) to operator form and combining with
Equation (9.5.1) we write the Hamiltonian, in units of frequency, as:

h−1Ĥ = −(2π)−1
∑

r

γrB0(1 − σr) Îrz +
∑

r<s

JrsÎr · Îs

or, using Equation (9.4.2), as:

h−1Ĥ = −
∑

r

νrÎrz +
∑

r<s

JrsÎr · Îs (9.6.1)

As an example we shall consider the simple case of two protons, ‘a’ and ‘b’. Very
detailed treatments of much more complex systems may be found elsewhere.1,2

There are four possible arrangements of the z components of the spins of two protons
(always written in the order a,b), |+ 1

2 + 1
2 〉, |+ 1

2 − 1
2 〉, |− 1

2 + 1
2 〉, and |− 1

2 − 1
2 〉. These

are the basis functions of the problem and we shall follow the approach, described in
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Appendix 3, of setting up the matrix of Ĥ in this basis and diagonalising it. The first
term in Equation (9.6.1) is the chemical shift, which gives a contribution to the on-
diagonal elements of our 4 × 4 matrix. There are no off-diagonal elements since the two
nuclei are not linked in any way by Îrz. As an illustration of the operation of this first
term on a basis state we have:

−
∑

r

νrÎrz|+ 1
2 − 1

2 〉 = −νaÎaz|+ 1
2 − 1

2 〉 − νbÎbz|+ 1
2 − 1

2 〉 = − 1
2 [νa − νb]|+ 1

2 − 1
2 〉

To illustrate the second part of the operator, the scalar coupling, we evaluate:

Jab[ÎazÎbz + 1
2 (Îa−Îb+ + Îa+Îb−)]|+ 1

2 − 1
2 〉 = Jab[ 1

2 × − 1
2 ]|+ 1

2 − 1
2 〉 + 1

2 Jab|− 1
2 + 1

2 〉
= − 1

4 Jab|+ 1
2 − 1

2 〉 + 1
2 Jab|− 1

2 + 1
2 〉

The first term gives a diagonal, the second an off-diagonal matrix element. Using the
fact that the spin basis functions are orthogonal and normalised the complete matrix is
found to be:

|+ 1
2 + 1

2 〉 |+ 1
2 − 1

2 〉 |− 1
2 + 1

2 〉 |− 1
2 − 1

2 〉
〈+ 1

2 + 1
2 | − 1

2 [νa + νb] + 1
4 Jab 0 0 0

〈+ 1
2 − 1

2 | 0 − 1
2 [νa − νb] − 1

4 Jab
1
2 Jab 0

〈− 1
2 + 1

2 | 0 1
2 Jab

1
2 [νa − νb] − 1

4 Jab 0

〈− 1
2 − 1

2 | 0 0 0 1
2 [νa + νb] + 1

4 Jab

The matrix is blocked out (Appendix 3) and the energies of the spin functions |+ 1
2 +

1
2 〉 and |− 1

2 − 1
2 〉 can be written down immediately. The spin functions |+ 1

2 − 1
2 〉 and

|− 1
2 + 1

2 〉, however, are mixed by the coupling and the degree of mixing depends upon
the separation of the two diagonal elements and the magnitude of their interaction, 1

2 Jab.
Two extreme cases can be distinguished.

9.6.1 First order spectra

If the chemical shifts of the two protons are very different we have an AX system.
Now, the energies of the states |− 1

2 − 1
2 〉 and |+ 1

2 + 1
2 〉 are as before but the two other

states, |+ 1
2 − 1

2 〉 and |− 1
2 + 1

2 〉 are not mixed equally and their energies must be found
by diagonalising the 2 × 2 matrix. In the extreme where the difference in energy of the
on-diagonal elements, |[νa − νx]|, is very much greater than the off-diagonal element
which links them, 1

2 Jax, the eigenfunctions of the spin system are effectively the four
basis functions and the energy levels are given by the diagonal elements of the above
matrix. The NMR spectra from spin systems for which this is true are known as first order
spectra. Assuming that νa > νx, we can draw the energy-level diagram (Figure 9.9). The
energies of the allowed transitions, i.e. those for which one mI value changes while the
other remains constant are:

X changes:

E(+ 1
2 − 1

2 ) − E(+ 1
2 + 1

2 ) = νx − 1
2 Jax

E(− 1
2 − 1

2 ) − E(− 1
2 + 1

2 ) = νx + 1
2 Jax
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−½[na + nx] + ¼ Jax

+½[na + nx] + ¼ Jax

−½[na − nx] − ¼ Jax

+½[na − nx] − ¼ Jax

|+½ +½〉

|−½ +½〉

|+½ −½〉

|−½ −½〉

|mIa mIx〉

Energy

Spectrum

nx na

 Jax  Jax

Energy

Frequency

Figure 9.9 The energy levels and spectrum of an AX system (νa > νx and [νa − νx] � |Jax|)

A changes:

E(− 1
2 + 1

2 ) − E(+ 1
2 + 1

2 ) = νa − 1
2 Jax

E(− 1
2 − 1

2 ) − E(+ 1
2 − 1

2 ) = νa + 1
2 Jax

We have four lines of equal intensity equally spaced on either side of νa and νx with
a separation of Jax (Figure 9.9).

9.6.2 Second order spectra

If the chemical shifts of the two protons are the same, i.e. they are in identical environ-
ments as in the hydrogen molecule, we have what NMR spectroscopists call an A2 spin
system. The functions |+ 1

2 − 1
2 〉 and |− 1

2 + 1
2 〉 are mixed in equal proportions and the

following four spin energy levels result:

Spin function Energy

1 |+ 1
2 + 1

2 〉 − 1
2 [νa + νb] + 1

4 Jab

2 [|+ 1
2 − 1

2 〉 + |− 1
2 + 1

2 〉]/√2 + 1
4 Jab

3 |− 1
2 − 1

2 〉 1
2 [νa + νb] + 1

4 Jab

4 [|+ 1
2 − 1

2 〉 − |− 1
2 + 1

2 〉]/√2 − 3
4 Jab
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Functions 1, 2 and 3 are the three components of a triplet state having I = 1 and
MI = +1, 0 and −1 respectively. Function 4 is a singlet with I = MI = 0. NMR spectra
in which the eigenstates of Ĥ can only be described in terms of combinations of the basis
functions are known as second order spectra. Since NMR transitions are allowed only
between states in which one proton spin is changed from + 1

2 to − 1
2 , or vice versa, we

might expect to observe the four transitions 1 ↔ 2, 1 ↔ 4, 2 ↔ 3 and 3 ↔ 4. However,
transitions between states of different multiplicity are not allowed (Problem 1), so transi-
tions 1 ↔ 2 and 2 ↔ 3 only should occur and since they correspond to the same energy
difference, νa, the corresponding spectral lines will appear as one. This is a general result.
The NMR spectrum of a group of identical protons appears as a single line and although
spin–spin coupling is present its magnitude cannot be determined from the spectrum. We
expand on this point in Box 9.2 and there are more details on NMR transition probabilities
in Box 9.1 and Section 9.7.

The description ‘second order spectrum’ also applies to the intermediate case of a
smaller difference between the two chemical shifts where there is unequal mixing of two
or more basis states. In the case of two protons unequal mixing produces the AB spectrum
which varies smoothly between the two extremes described above. Harris1 gives a detailed
discussion of all aspects of this problem.

9.7 THE INTENSITIES OF NMR SPECTRAL LINES

Two factors determine the strength of an observed spectral line in all branches of spec-
troscopy. These are the magnitude of the transition probability between the initial and the
final state and the relative populations of the two states. In normal electronic and infrared
spectroscopy the population aspect of the intensity plays no role since the population of
the state of lower energy always massively exceeds that of the state of higher energy.
In NMR spectroscopy this is not the case since, as we have seen, the energy difference
between the resonating states is very small and, at the start of the experiment, the number
of nuclei, NL, in the lower-energy state is only slightly larger than that in the upper state,
NU. For example, for hydrogen nuclei at room temperature in a field of 4 T we have,
using data from Table 9.2 and the Boltzmann distribution:

NU/NL = exp[−(112.9 × 10−27)/(1.38062 × 10−23 × 300)]

= exp[−0.2726 × 10−4] = 0.999972

So that, if we have one million nuclei in the lower state there will be almost as many in
the upper state, 28 less to be exact. Therefore, when we irradiate our sample we rapidly
equalise the number of nuclei in the two states and then, since the selection rule for
a transition absorbing a photon and one giving out a photon are exactly the same, the
number of photons absorbed will be equal to the number emitted and no net signal will be
observed. This phenomenon is known as signal saturation and it presents many problems
for the NMR spectroscopist. The opposing relaxation processes, whereby the system
returns to the lower-energy state also play an important a role in determining the intensity
of an NMR signal, (see Section 9.8). The second factor which determines the strength of
an NMR signal, the transition dipole moment, has been outlined in Sections 8.7.2 and 9.3
and is discussed further in Box 9.1.
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In the case of a molecule containing a number of NMR-active nuclei the probability
of the transition |	i〉 → |	f〉 is proportional to the matrix element:

|〈	f|
∑

r

Îrx|	i〉|2 = |〈	f| 1
2

∑

r

(Îr+ + Îr−)|	i〉|2 (9.7.1)

where the sum extends over all the nuclei, r, involved in the initial and final wave
functions. Since the operator Îrx operates only on the spin of nucleus r, leaving the spins
other nuclei unchanged, it is clear that these must all be the same if the matrix element
is to be non-zero. Thus an NMR transition between |+ 1

2 + 1
2 − 1

2 〉 and | 1
2 + 1

2 + 1
2 〉 is

allowed through Î3x, but the transition |+ 1
2 + 1

2 − 1
2 〉 ↔ |− 1

2 + 1
2 + 1

2 〉 is forbidden. For
the purposes of calculation it is very convenient to replace Îrx by 1

2 (Îr+ + Îr−). Problem
3 provides an example of the use of the above result to determine the relative intensities
of the proton NMR lines of a two-spin system.

Finally, it is noteworthy that the relative intensities of a line in a normal NMR spectrum
is proportional to the number of resonating nuclei responsible for that particular line.
Allowance must be made for the splitting of lines by spin–spin coupling. This simple
proportionality is a great help in the interpretation of the spectra and in the quantitative
analytical applications of NMR spectroscopy.

9.8 QUANTUM MECHANICS AND NMR SPECTROSCOPY

The applications of quantum mechanics in chemical NMR spectroscopy fall into three
rather distinct categories:

(a) The calculation of the energy levels of a nuclear spin system in order to interpret
a spectrum.

(b) The calculation of chemical shifts and coupling constants from molecular wave func-
tions.

(c) The description of the dynamic processes associated with the Fourier transform NMR
technique.

In this Chapter we have been concerned exclusively with topic (a), the analysis of
experimental spectra in terms of the chemical shifts, σ , and coupling constants, J, which
are regarded as parameters. But quantum mechanics also offers the possibility of calcu-
lating chemical shifts and coupling constants from the wave functions of the molecules
concerned and the theoretical expressions required have been available since the 1950s.
Though the methods are well known their application has had only limited quantitative
success and the basic reason for this is not far to seek. The energy of an NMR transi-
tion corresponds to a frequency in the radiowave region of the spectrum and the small
changes in the resonance frequency, which are brought about by chemical shifts and cou-
pling constants, correspond to even smaller energies. The energies of the electrons in a
molecule, however, correspond to frequencies in the visible and ultra-violet regions of
the e-m spectrum some 8 to 10 orders of magnitude greater. Therefore, the calculation
of σ and J values which are of sufficient accuracy to be useful requires extremely good
molecular wave functions, much better than those required for a quantitative interpreta-
tion of electronic spectra. In general, apart from in the case of a few small molecules,
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we do not have such wave functions. Nevertheless, the efforts which have been made
to calculate chemical shifts and coupling constants have been valuable in that they have
revealed the major determining factors and made possible a deeper understanding of the
phenomena. Space does not permit a further examination of the calculation of chemical
shifts and coupling constants here but an introduction to the field can be found in Harris1

and Memory.3

The subjects subsumed under category (c) are many and complex. The modern NMR
experiment utilises the Fourier-transform (FT) technique and as such it is a dynamic
experiment in which the resonating nuclei are subjected to an intricate sequence of pulses
of radio-frequency radiation which vary in frequency, band width, intensity, duration etc.
The result of this treatment is to produce in the spin system a non-equilibrium orientation
of the nuclear spins so that the sample becomes magnetised in some specially chosen
way. The final step is normally the recording of the decay of this induced magnetisa-
tion; the free induction decay. The response of the nuclei to the radiation pulses and the
subsequent relaxation processes are all time-dependent phenomena and very advanced
quantum-mechanical calculations are required to analyse them. An introduction to this
type of NMR spectroscopy may be found in Harris1 and in the first edition of Slichter’s4

text. Freeman5 has given a very readable descriptive account with almost no mathematics.
The most penetrating description of the resonance phenomenon remains the classic trea-
tise of Abragam6 but, naturally, it does not deal with many aspects of the modern NMR
experiment for which the latest edition of Slichter7 and Goldman8 can be recommended.
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BOX 9.1 The NMR selection rule

To calculate the NMR transition probability, W(x, y, z, t), we return to Equation
(8.6.21), repeated here for convenience, in which the electric field, E0, has been
replaced by the magnetic field, B0, because it is the magnetic field of the e-m radiation
which interacts with the nuclear spins:

W(x, y, z, t) = B2
0 · 4π2

h2
|〈φf|V̂ (x, y, z)|φi〉|2 · sin2{ 1

2 (�ω − ω)T }
4{ 1

2 (�ω − ω)}2
(8.6.21)
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B0 is given by the experimental conditions and the term in sin2 is the time-
dependent factor, which is the same in all branches of spectroscopy. We have to
evaluate the time-independent factor:

1

h̄2 |〈φf|V̂ (x, y, z)|φi〉|2

In the case of NMR spectroscopy the operator V̂ (x, y, z) takes the form:

− (γ h̄B1x)〈	f|Îx|	i〉 (B9.1.1)

so that we have to calculate:
1

h̄2 (γ h̄B1x)
2|〈	f|Îx|	i〉|2 = (γB1x)

2|〈	f|Îx|	i〉|2 (B9.1.2)

where B1x is the magnetic field of the applied radiation which oscillates in the x-
direction and Îx is the operator for the x-component of the nuclear spin. Equation
(B9.1.1) as the form of the link between the initial and final states is understandable
if we first recall (Equation (9.1.7)) that the energy of interaction between a nuclear
magnetic moment and an applied field is given by the product of the nuclear moment,
the applied field and the cosine of the angle between them. Therefore, if a field is
applied along the x-direction the interaction will be determined by the x-component
of the nuclear magnetic moment. We can express this interaction with equations
like (9.1.6) and (9.1.8) but with z replaced by x. That Îx links nuclear spin states
having mI + 1

2 and − 1
2 can be readily demonstrated by expressing Îx in terms the

raising and lowering operators of Chapter 4. We have:

Î+ = Îx + iÎy and Î− = Îx − iÎy (B9.1.3)

which, on addition, give:

Îx = 1
2 (Î+ + Î−) (B9.1.4)

The effect of operating on an angular momentum eigenfuction |I,mI 〉 with Î+ and
Î− is given by Equations (4.7.5) and (4.7.6):

Î+|I,mI 〉 = √
[I (I + 1) − mI(mI + 1)] · h̄ · |I,mI + 1〉 (B9.1.5)

Î−|I,mI 〉 = √
[I (I + 1) − mI(mI − 1)] · h̄ · |I,mI − 1〉 (B9.1.6)

Inserting the appropriate values of I ( 1
2 ) and mI (± 1

2 ), we easily find that:

Î+| 1
2 , + 1

2 〉 = 0 and Î+| 1
2 ,− 1

2 〉 = | 1
2 , + 1

2 〉
while

Î−| 1
2 ,+ 1

2 〉 = | 1
2 , − 1

2 〉 and Î−| 1
2 , − 1

2 〉 = 0

so that

Îx| 1
2 , + 1

2 〉 = 1
2 | 1

2 , − 1
2 〉 and Îx| 1

2 ,− 1
2 〉 = 1

2 | 1
2 ,+ 1

2 〉 (B9.1.7)

Note that h̄ has not been included in these expressions because we have γ , which
is the factor which converts angular momentum in units of h̄ into magnetic moment
(see Section 9.1).
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We can now evaluate any matrix element in Equation (B9.1.2):

(γB1x)
2|〈 1

2 , − 1
2 |Îx| 1

2 , + 1
2 〉|2 = (γB1x)

2 · 1
4 |〈 1

2 , − 1
2 | 1

2 , − 1
2 〉|2 = ( 1

2γB1x)
2

[More sophisticated analyses of this problem include a line-shape function in the
expression for the transition probability. This introduces a multiplicative factor of 2π

and a δ function into the above equation, but that need not concern us here.]
We see that the interaction of an e-m wave with its magnetic field vibrating

in the x-direction converts states from mI = + 1
2 to mI = − 1

2 , or vice versa, with
equal facility; i.e. both processes are equally probable. And, because of the form of
Equations (B9.1.5) and (B9.1.6), Îx links any two spin states whose mI values differ
by ±1, e.g. + 1

2 is linked to − 1
2 and + 3

2 and 0 to +1 and −1. But note that the matrix
elements for the two possible links are not, in general, equal.

Thus far we have focused our attention upon a single spin but the spin functions
of interest in NMR spectroscopy are eigenstates of sets of coupled nuclei and we
require the transition probabilities between such states. First we note that, since the
operator Îrx operates solely on the spin of nucleus r, the operator required for a
molecule containing several NMR-active nuclei is

∑
r Îrx. Each term of the sum can

link only initial and final eigenfunctions, which differ in the mI value of nucleus r,
while the mI values of all other nuclei are the same. Thus 〈+ 1

2 + 1
2 + 1

2 |∑r Îrx|− 1
2 +

1
2 + 1

2 〉 
= 0 by virtue of Î1x but 〈+ 1
2 + 1

2 − 1
2 |∑r Îrx|− 1

2 + 1
2 + 1

2 〉 = 0 because, for
example, 〈+ 1

2 |Î1x|− 1
2 〉〈+ 1

2 |+ 1
2 〉〈− 1

2 |+ 1
2 〉 = 0 on account of the orthogonality of the

spin functions of nucleus 3.
Because of the many and complex factors that determine the intensity of an NMR

signal, e.g. relaxation rates, intensity of the exciting radiation, strength of the static
magnetic field, it is very rare that anything more than relative intensity values are
required and for this it is sufficient to calculate only the matrix elements |〈	f|Îx|	i〉|2.
But the relative intensities are vitally important to spectral interpretation, especially
in the case of second order spectra, and recourse to them is frequently made.

As a final comment on the subject of the NMR selection rule we note that the
transition from mI = + 1

2 to mI = − 1
2 involves a decrease of one (h/2π) unit of the

z-component of the angular momentum. Therefore, since the z-component of angular
momentum must be conserved, we require a right circularly polarised photon to effect
it. In an NMR spectrometer we irradiate the sample with linearly rather than circularly
polarised radiation. This is not essentially different because linearly polarised radiation
can always be regarded as a sum of left and right circularly polarised beams (see
Section 8.2). We have taken account of this in the development above by expressing
Îx in terms of Î+ and Î−.

BOX 9.2 Equivalent nuclei

The resonating nuclei in a molecule can frequently be divided into groups of equivalent
nuclei. This simplifies the analysis of the NMR spectrum and makes possible certain
generalisations about the spectrum. The nuclei must be of the same isotopic species
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and, when that condition is satisfied, the sub-division of equivalence into two classes
is possible. In what follows we shall consider only protons, though the concept can
be extended to other nuclei.

If two or more protons have identical electronic environments, as they will have
if they are interchanged by one or more of the symmetry operations of the molecule,
then all their properties will be the same and, in particular, they are isochronous,
i.e. they all resonate at the same frequency. Such protons are said to be chemically
equivalent. The six protons of benzene and the four of methane are examples. But
when we consider their magnetic properties we note that each benzene proton has
different coupling constants to the protons which are ortho, meta and para to it in
the molecule while all six H–C–H couplings in methane are the same. The methane
protons are said to be magnetically equivalent, but the benzene protons are not.
To make the distinction clear, some authors describe the methane protons as being
completely equivalent.

From the theoretical standpoint, the significance of the equivalence classification is
that, in spectral analysis, a group of magnetically equivalent protons can be considered
as a single composite particle. This also reveals why the coupling within a group of
equivalent nuclei does not result in a splitting of spectral lines. The argument goes as
follows.

If the spins of a group of magnetically equivalent nuclei are coupled, the resulting
total spin angular momenta and z-components can be found by exactly the same
methods as we have used elsewhere in this book for electrons. If we take the three
protons, Ha, Hb and Hc of a methyl group as our example then, just as with three
electrons and in accord with the Clebsch–Gordan rule, the coupled system gives rise
to a quartet state and two doublets. The eigenfunctions of these states can be obtained
by applying the lowering operator to the quartet function having MI = 3

2 just as in
Appendix 10, i.e. we evaluate both sides of the equation:

Î−| 3
2 , + 3

2 〉 =
∑

r

Îr−| 1
2 ,+ 1

2 ; 1
2 ,+ 1

2 ; 1
2 ,+ 1

2 〉

(The spins of the three protons on the right-hand side of the above equation are
written in the order a, b, c). We continue down the ladder of MI values until we reach

| 3
2 , − 3

2 〉 = | 1
2 ,− 1

2 ; 1
2 − 1

2 ; 1
2 , − 1

2 〉.
We find, quoting only the mI values of the individual spins:

Spin eigenfunction MI Energy

A quartet, I = 3
2

|+ 1
2 + 1

2 + 1
2 〉 + 3

2 −3ν/2 + 3J/4

(1/
√

3){|+ 1
2 + 1

2 − 1
2 〉 + |+ 1

2 − 1
2 + 1

2 〉 + |− 1
2 + 1

2 + 1
2 〉} + 1

2 −ν/2 + 3J/4

(1/
√

3){|− 1
2 − 1

2 + 1
2 〉 + |− 1

2 + 1
2 − 1

2 〉 + |+ 1
2 − 1

2 − 1
2 〉} − 1

2 +ν/2 + 3J/4

|− 1
2 − 1

2 − 1
2 〉 − 3

2 +3ν/2 + 3J/4

A doublet, I = 1
2

(1/
√

2){|+ 1
2 − 1

2 + 1
2 〉 − |− 1

2 + 1
2 + 1

2 〉} + 1
2 −ν/2 − 3J/4
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Spin eigenfunction MI Energy

(1/
√

2){|− 1
2 + 1

2 − 1
2 〉 − |+ 1

2 − 1
2 − 1

2 〉} − 1
2 +ν/2 − 3J/4

A second doublet, I = 1
2

(1/
√

6){2|+ 1
2 + 1

2 − 1
2 〉 − |+ 1

2 − 1
2 + 1

2 〉 − |− 1
2 + 1

2 + 1
2 〉} + 1

2 −ν/2 − 3J/4

(1/
√

6){2|− 1
2 − 1

2 + 1
2 〉 − |− 1

2 + 1
2 − 1

2 〉 − |+ 1
2 − 1

2 − 1
2 〉} − 1

2 +ν/2 − 3J/4

It is convenient to include the energies of the spin eigenfunctions here. Examples of
how they may be calculated are described later in the Box.

If we define an operator, F̂A, for the total spin of the group of the three magnetically
equivalent protons:

F̂A =
∑

r

Îr, (B9.2.1)

we can write the Hamiltonian operator (Equation (9.6.1)):

h−1Ĥ = −
∑

r

νrÎrz +
∑

r<s

JrsÎr · Îs (9.6.1)

in the form:
h−1Ĥ = −νF̂Az + J{Îa · Îb + Îb · Îc + Îc · Îa}

where ν is the resonance frequency of the three protons and J is the H–C–H coupling
constant.

= −νF̂Az + J{ 1
2 [Îa + Îb + Îc]2 − 1

2 [Î2
a + Î2

b + Î2
c]}

= −νF̂Az + J{ 1
2 F̂ 2

A − 1
2 [ 3

4 + 3
4 + 3

4 ]}
= −νF̂Az + 1

2 J{F̂ 2
A − 9

4 }
This development can easily be generalised. For n nuclei with I = 1

2 for example,
we have:

h−1Ĥ = −νF̂Az + 1
2 J{F̂ 2

A − 3n/4} (B9.2.2)

Thus, the energy depends only on the total spin of the methyl group, FA, and its
z-component, FAz. And the spin states are eigenfunctions of these two commuting,

angular momentum operators with eigenvalues [FA(FA + 1)]
1
2 and MA. But NMR

transitions are allowed only between states with the same value of F 2
A. To see why

this is so we use Equation (B9.1.4) of Box 9.1 where the NMR transition moment
operator, Îx, is expressed as a sum of the corresponding raising and lowering operators:

Îx = 1
2 (Î+ + Î−)

When applied to the eigenfunctions of the operator F̂A, these two operators simply
move us up or down the ladder of the MI values of a single value of FA, so an NMR
transition can never change the value of FA. But, though they differ in energy in an
applied magnetic field, all the 2FA + 1 components of a state of total spin FA are
equally spaced and all have the same spin–spin coupling energy which therefore does
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not change in such a transition. Thus, the coupling has no visible effect on the NMR
spectrum.

We shall now look a little more closely at the energies involved. It is a useful
exercise in basic quantum-mechanical calculation to determine the energy matrix of
the three methyl protons. The on-diagonal matrix elements can be calculated (in
frequency units) using Equation (9.6.1), the first term of which gives the contribution
of the chemical shift and the second that of the coupling constants.

As an example we first evaluate a diagonal element:

〈+ 1
2 + 1

2 − 1
2 |−

∑

r

νrÎrz +
∑

r<s

JrsÎr · Îs|+ 1
2 + 1

2 − 1
2 〉

The chemical-shift term gives:

− 〈+ 1
2 + 1

2 − 1
2 |νaÎaz + νbÎbz + νcÎcz|+ 1

2 + 1
2 − 1

2 〉
= −νa〈+ 1

2 |Îaz|+ 1
2 〉〈+ 1

2 |+ 1
2 〉〈− 1

2 |− 1
2 〉 − νb〈+ 1

2 |+ 1
2 〉〈+ 1

2 |Îbz|+ 1
2 〉〈− 1

2 |− 1
2 〉

− νc〈+ 1
2 |+ 1

2 〉〈+ 1
2 |+ 1

2 〉〈− 1
2 |Îcz|− 1

2 〉
= −νa〈+ 1

2 |+ 1
2 |+ 1

2 〉〈+ 1
2 |+ 1

2 〉〈− 1
2 |− 1

2 〉 − νb〈+ 1
2 |+ 1

2 〉〈+ 1
2 |+ 1

2 |+ 1
2 〉〈− 1

2 |− 1
2 〉

− νc〈+ 1
2 |+ 1

2 〉〈+ 1
2 |+ 1

2 〉〈− 1
2 |− 1

2 |− 1
2 〉

= − 1
2 (νa + νb − νc) = − 1

2ν

if the protons are equivalent.
The coupling term requires a little more thought. We first replace Îr · Îs with the

equivalent expression using the raising and lowering operators Equation (9.5.1):

JrsÎr · Îs = Jrs[ÎrxÎsx + ÎryÎsy + ÎrzÎsz] = Jrs[ÎrzÎsz + 1
2 (Îr+Îs− + Îr−Îs+)] (9.5.1)

The term in Equation (9.5.1) which contains raising and lowering operators cannot
give an on-diagonal matrix element because any operation with it changes the spins
of two of the three nuclei and the spin functions are orthogonal. But the term JrsÎrzÎsz

can give rise to on-diagonal elements because the spin functions are unchanged by it
and for our particular example we find:

〈+ 1
2 + 1

2 − 1
2 |

∑

r<s

JrsÎrzÎsz|+ 1
2 + 1

2 − 1
2 〉

= 〈+ 1
2 + 1

2 − 1
2 |JabÎazÎbz + JbcÎbzÎcz + JcaÎczÎaz|+ 1

2 + 1
2 − 1

2 〉
= 〈+ 1

2 + 1
2 |JabÎazÎbz|+ 1

2 + 1
2 〉〈− 1

2 |− 1
2 〉

+ 〈+ 1
2 − 1

2 |JbcÎbzÎcz|+ 1
2 − 1

2 〉〈+ 1
2 |+ 1

2 〉
+ 〈+ 1

2 − 1
2 |JcaÎczÎaz|+ 1

2 − 1
2 〉〈+ 1

2 |+ 1
2 〉

= 1
4 (Jab − Jbc − Jca) = − 1

4 J

if the protons are equivalent.
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We can find all the other on-diagonal matrix elements in the same way. They are:

Basis state On-diagonal matrix element of Ĥ

1. |+ 1
2 + 1

2 + 1
2 〉 1

2 (−νa − νb − νc) + 1
4 (Jab + Jbc + Jca)

2. |+ 1
2 + 1

2 − 1
2 〉 1

2 (−νa − νb + νc) + 1
4 (Jab − Jbc − Jca)

3. |+ 1
2 − 1

2 + 1
2 〉 1

2 (−νa + νb − νc) + 1
4 (−Jab − Jbc + Jca)

4. |− 1
2 + 1

2 + 1
2 〉 1

2 (νa − νb − νc) + 1
4 (−Jab + Jbc − Jca)

5. |+ 1
2 − 1

2 − 1
2 〉 1

2 (−νa + νb + νc) + 1
4 (−Jab + Jbc − Jca)

6. |− 1
2 + 1

2 − 1
2 〉 1

2 (νa − νb + νc) + 1
4 (−Jab − Jbc + Jca)

7. |− 1
2 − 1

2 + 1
2 〉 1

2 (νa + νb − νc) + 1
4 (Jab − Jbc − Jca)

8. |− 1
2 − 1

2 − 1
2 〉 1

2 (νa + νb + νc) + 1
4 (Jab + Jbc + Jca)

The off-diagonal matrix elements can be found in a similar manner. The first term
on the right of Equation (9.6.1) operates on only one nucleus and cannot therefore link
two nuclei and contribute an off-diagonal matrix element. However, the raising and
lowering operators in the coupling term (Equation (9.5.1)) can. Since Î+|+ 1

2 〉 = 0,
Î+|− 1

2 〉 = |+ 1
2 〉, Î−|+ 1

2 〉 = |− 1
2 〉 and Î−|− 1

2 〉 = 0 we have:

1
2

∑

r<s

Jrs(Îr+Îs− + Îr−Îs+)|+ 1
2 + 1

2 − 1
2 〉

= 1
2 {Jab(Îa+Îb− + Îa−Îb+) + Jbc(Îb+Îc− + Îb−Îc+)

+ Jca(Îc+Îa− + Îc−Îa+)}|+ 1
2 + 1

2 − 1
2 〉

= 1
2 Jbc|+ 1

2 − 1
2 + 1

2 〉 + 1
2 Jca|− 1

2 + 1
2 + 1

2 〉
The basis functions are orthogonal so this result means that we have off-diagonal

matrix elements of the form:

H32 = 1
2 〈+ 1

2 − 1
2 + 1

2 |Jbc|+ 1
2 + 1

2 − 1
2 〉 = 1

2 Jbc

and
H42 = 1

2 〈− 1
2 + 1

2 + 1
2 |Jca|+ 1

2 + 1
2 − 1

2 〉 = 1
2 Jca

The other off-diagonal elements are:

H67 = 1
2 〈− 1

2 + 1
2 − 1

2 |Jbc|− 1
2 − 1

2 + 1
2 〉 = 1

2 Jbc,

H57 = 1
2 〈+ 1

2 − 1
2 − 1

2 |Jca|− 1
2 − 1

2 + 1
2 〉 = 1

2 Jca,

H34 = 1
2 〈+ 1

2 − 1
2 + 1

2 |Jab|− 1
2 + 1

2 + 1
2 〉 = 1

2 Jab

H56 = 1
2 〈+ 1

2 − 1
2 − 1

2 |Jab|− 1
2 + 1

2 − 1
2 〉 = 1

2 Jab
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The eigenfunctions and energies
Two eigenfunctions and energies can be written down immediately:

	1 = |+ 1
2 + 1

2 + 1
2 〉 E1 = 1

2 (−νa − νb − νc) + 1
4 (Jab + Jbc + Jca)

	8 = |− 1
2 − 1

2 − 1
2 〉 E8 = 1

2 (νa + νb + νc) + 1
4 (Jab + Jbc + Jca)

To obtain the remaining solutions to our problem we must diagonalise two 3 × 3
matrices, one of which is:

|+ 1
2 + 1

2 − 1
2 〉 |+ 1

2 − 1
2 + 1

2 〉 |− 1
2 + 1

2 + 1
2 〉

〈+ 1
2 + 1

2 − 1
2 | 1

2 (−νa − νb + νc)
1
2 Jbc

1
2 Jca

+ 1
4 (Jab − Jbc − Jca)

〈+ 1
2 − 1

2 + 1
2 | 1

2 Jbc
1
2 (−νa + νb − νc)

1
2 Jab

+ 1
4 (−Jab − Jbc + Jca)

〈− 1
2 + 1

2 + 1
2 | 1

2 Jca
1
2 Jab

1
2 (νa − νb − νc)

+ 1
4 (−Jab + Jbc − Jca)

A general solution of this problem is clearly rather difficult and it illustrates well
how rapidly the complexity of the analysis of an NMR spectrum increases with the
number of spins in the system. A general solution is possible if certain approximations
are made and analyses along these lines are described in many texts. We can briefly
mention two.

The ABX spectrum
If the chemical shift, i.e. ν value, of one proton, ‘c’ say, is very different from those of
protons ‘a’ and ‘b’ and the difference is also much larger than the coupling constants
Jca and Jbc we have an ABX spin system and the spectrum may be regarded as second
order in AB and first order in X (Section 9.6). In this approximation Jca and Jbc are
regarded as zero where they occur in off-diagonal matrix elements, but not in the
on-diagonal, and the matrix above reduces to a 2 × 2, which is easy to solve, and a
single eigenvalue belonging to the spin function |+ 1

2 + 1
2 − 1

2 〉.

The A3 spectrum
If the three protons are magnetically equivalent the above matrix reduces to:

|+ 1
2 + 1

2 − 1
2 〉 |+ 1

2 − 1
2 + 1

2 〉 |− 1
2 + 1

2 + 1
2 〉

〈+ 1
2 + 1

2 − 1
2 | − 1

2ν − 1
4 J 1

2 J 1
2 J

〈+ 1
2 − 1

2 + 1
2 | 1

2 J − 1
2ν − 1

4 J 1
2 J

〈− 1
2 + 1

2 + 1
2 | 1

2 J 1
2 J − 1

2ν − 1
4 J

This matrix is quite simple to diagonalise, but it is much easier to determine the
energies of the spin eigenfunctions, which have been obtained using the raising and
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lowering operators, by the procedure described below. For example, the energy of the
component (1/

√
2){|+ 1

2 − 1
2 + 1

2 〉 − |− 1
2 + 1

2 + 1
2 〉} of the first spin doublet is:

(1/2)〈{〈+ 1
2 − 1

2 + 1
2 |−〈− 1

2 + 1
2 + 1

2 |}|Ĥ|{| + 1
2 − 1

2 + 1
2 〉 − | − 1

2 + 1
2 + 1

2 〉}〉
= (1/2){〈+ 1

2 − 1
2 + 1

2 |Ĥ| + 1
2 − 1

2 + 1
2 〉 + 〈− 1

2 + 1
2 + 1

2 |Ĥ| − 1
2 + 1

2 + 1
2 〉

− 〈+ 1
2 − 1

2 + 1
2 |Ĥ| − 1

2 + 1
2 + 1

2 〉 − 〈− 1
2 + 1

2 + 1
2 |Ĥ| + 1

2 − 1
2 + 1

2 〉}
= (1/2){− 1

2ν − 1
4 J − 1

2ν − 1
4 J − 1

2 J − 1
2 J} = − 1

2ν − 3
4 J

To calculate the NMR transition probability, P, between the two states of the first
doublet above we must evaluate (Equation (9.7.1)):

〈√
1
2 {〈+ 1

2 − 1
2 + 1

2 |−〈− 1
2 + 1

2 + 1
2 |}∣∣

∑

r

Îrx

∣∣
√

1
2 {| − 1

2 + 1
2 − 1

2 〉 − | + 1
2 − 1

2 − 1
2 〉}〉

and square the result:

= 1
2 〈+ 1

2 − 1
2 + 1

2 |
∑

r

Îrx| − 1
2 + 1

2 − 1
2 〉 + 1

2 〈− 1
2 + 1

2 + 1
2 |

∑

r

Îrx| + 1
2 − 1

2 − 1
2 〉

− 1
2 〈+ 1

2 − 1
2 + 1

2 |
∑

r

Îrx|+ 1
2 − 1

2 − 1
2 〉 − 1

2 〈− 1
2 + 1

2 + 1
2 |

∑

r

Îrx|− 1
2 + 1

2 − 1
2 〉

= 1
4 {〈+ 1

2 − 1
2 + 1

2 |
∑

r

(Îr+ + Îr−)| − 1
2 + 1

2 − 1
2 〉

+ 〈− 1
2 + 1

2 + 1
2 |

∑

r

(Îr+ + Îr−)|+ 1
2 − 1

2 − 1
2 〉

− 〈+ 1
2 − 1

2 + 1
2 |

∑

r

(Îr+ + Îr−)| + 1
2 − 1

2 − 1
2 〉

− 〈− 1
2 + 1

2 + 1
2 |

∑

r

(Îr+ + Îr−)|− 1
2 + 1

2 − 1
2 〉}

Only the third and fourth of the above four integrals are non-zero. To illustrate
their evaluation consider the third:

〈+ 1
2 − 1

2 + 1
2 |

∑

r

(Îr+ + Îr−)|+ 1
2 − 1

2 − 1
2 〉

= 〈+ 1
2 − 1

2 + 1
2 |(Îa+ + Îa−)|+ 1

2 − 1
2 − 1

2 〉
+ 〈+ 1

2 − 1
2 + 1

2 |(Îb+ + Îb−)|+ 1
2 − 1

2 − 1
2 〉

+ 〈+ 1
2 − 1

2 + 1
2 |(Îc+ + Îc−)|+ 1

2 − 1
2 − 1

2 〉
= 〈+ 1

2 |(Îa+ + Îa−)|+ 1
2 〉〈− 1

2 |− 1
2 〉〈+ 1

2 |− 1
2 〉

+ 〈+ 1
2 |+ 1

2 〉〈− 1
2 |(Îb+ + Îb−)|− 1

2 〉〈+ 1
2 |− 1

2 〉
+ 〈+ 1

2 |+ 1
2 〉〈− 1

2 |− 1
2 〉〈+ 1

2 |(Îc+ + Îc−)|− 1
2 〉
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Of these three expressions, six terms in total, only the last is non-zero. The others
are zero because of the orthogonality of the spin functions. The term containing Îc+
in the last evaluates as:

〈+ 1
2 |+ 1

2 〉〈− 1
2 |− 1

2 〉〈+ 1
2 |+ 1

2 〉 = 1

The fourth term also contributes 1 so that the total transition probability is pro-
portional to { 1

4 (−1 − 1)}2 = 1
4 .

PROBLEMS FOR CHAPTER 9

1. Use the information in Box 9.1 to show that transitions between the singlet state of
two identical protons, (1/

√
2){|+ 1

2 − 1
2 〉 − |− 1

2 + 1
2 〉}, and the triplet states, |+ 1

2 +
1
2 〉, |− 1

2 − 1
2 〉 and (1/

√
2){|+ 1

2 − 1
2 〉 + |− 1

2 + 1
2 〉}, are forbidden. That is, show that

〈	S|Îx|	T〉 = 0.

2. Show that for a system of n nuclei the matrix of the Hamiltonian operator given
in Equation (9.6.1) can have off-diagonal matrix elements only between basis states
which have the same total z-component of the nuclear spin, i.e. have the same value
of mI1 + mI2 + mI3 + · · · + mIn.

3. Starting from the matrix in Section 9.6 and the general method for diagonalising a
2 × 2 matrix from Appendix 3, show that the energies and wave functions of a system
of two nuclei, ‘a’ and ‘b’, each with I = 1

2 are (Jab → J to simplify the notation):

Wave function Energy (as frequency)

	1 = |+ 1
2 + 1

2 〉 − 1
2 [νa + νb] + 1

4 J

	2 = − sin ω |+ 1
2 − 1

2 〉 + cos ω |− 1
2 + 1

2 〉 − 1
2 {[νa − νb]2 + J2} 1

2 − 1
4 J

	3 = + cos ω |+ 1
2 − 1

2 〉 + sin ω |− 1
2 + 1

2 〉 + 1
2 {[νa − νb]2 + J2} 1

2 − 1
4 J

	4 = |− 1
2 − 1

2 〉 + 1
2 [νa + νb] + 1

4 J

Where sin ω =



1
2 {[νa − νb]2 + J2} 1

2 + 1
2 [νa − νb]

{[νa − νb]2 + J2} 1
2





1
2

and cos ω =



1
2 {[νa − νb]2 + J2} 1

2 − 1
2 [νa − νb]

{[νa − νb]2 + J2} 1
2





1
2

Show that the four lines of the AB spectrum have frequencies of ± 1
2 (D ± J) relative

to the mean frequency 1
2 [νa + νb], where D = {[νa − νb]2 + J2} 1

2 .
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Show that the intensities of the four possible transitions are proportional to:

Transition Intensity Transition Intensity

	1 ↔ 	2
1
4 (1 − sin 2ω) 	4 ↔ 	2

1
4 (1 − sin 2ω)

	1 ↔ 	3
1
4 (1 + sin 2ω) 	4 ↔ 	3

1
4 (1 + sin 2ω)

4. The nucleus 14N has I = 1 and γ = 1.934 × 107 T−1 s−1. The corresponding data
for 1H are I = 1

2 and γ = 26.75 × 107 T−1 s−1. Use Equation (9.6.1) to construct the
6 × 6 matrix analogous to that in Section 9.6 for the nuclear spin energy levels of the
molecule N–H in a magnetic field. [You should find that the matrix is blocked out into
two 1 × 1 and two 2 × 2 matrices with off diagonal elements of

√
2J.] J, the 14N–1H

coupling constant, has not been reported for N–H, but from other measurements of the
coupling between directly bonded N and H, e.g. [NH4]+, it is expected to be about
50 Hz.

Assuming that the spectrum is first order, calculate the transition probabilities and
predict the 1H NMR spectrum of the molecule.

Using the values of the magnetogyric ratios and J given above and a magnetic field
for which protons resonate in the region of 100 MHz, show that the assumption that
the spectrum is first order is fully justified.
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10.0 INTRODUCTION

There are numerous books dealing, in whole or in part, with the theory and practice of
infrared (IR) spectroscopy1 – 3 and an authoritative account of the historical development of
the subject has recently been given by Sheppard.4 Brand’s5 historical review of dispersive
spectroscopy also contains much of theoretical as well as practical interest. In keeping with
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the title of the book, the purpose of the present chapter is to highlight those aspects of IR
spectroscopy in which quantisation, and hence quantum mechanics, plays an important
role. We shall find that the theory of IR spectroscopy leans quite heavily on classical
concepts and classical mechanics.

It is difficult to pin-point the first application of wave mechanics to the harmonic
oscillator problem, since the theory of oscillation has been inextricably entwined with
the classical and quantum-mechanical description of radiation since before the turn of
the 20th century until the present day. It is clear, however, that the first application of
matrix mechanics to the one-dimensional oscillator was published by Max Born, Werner
Heisenberg and Ernst P. Jordan (1902–1980) in 1925. The matrix mechanics of the
symmetric rotor was first described by David M. Dennison (1900–1976) in 1926; the
wave mechanics of the same system by Fritz Reiche (1883–1962) and, independently, by
Ralph de L. Kronig (1904–) and Isador I. Rabi (1898–1988) in 1927.

10.1 THE ORIGIN OF THE INFRARED SPECTRA OF MOLECULES

If we have a group of N atoms which are not bonded together then each can move,
independently of the others, in one of three directions, i.e. in the x-, y- or z-direction,
and the N atoms are said to possess 3N degrees of freedom. If these N atoms are bonded
together, then the molecule as a whole can move in three directions (translation) and it can
also rotate about axes directed along x, y and z. (If the molecule is linear it can only rotate
about the two directions perpendicular to the line of atoms since a rotation of the line
itself implies no movement of any of the atomic masses.) Thus, a non-linear molecule has
three degrees of translational freedom and three degrees of rotational freedom and, since
degrees of freedom cannot be destroyed, the remaining 3N–6 (3N–5 for a linear molecule)
degrees of freedom must be vibrational, i.e. they must be movements of the atoms with
respect to each other in which the position of the centre of mass of the molecule remains
stationary. The most important vibrations from the point of view of chemical spectroscopy
are those which involve the changing of bond lengths and angles since these properties
are directly related to molecular structure and the strengths of chemical bonds. But a
molecule obeys the laws of quantum mechanics. Therefore the energy associated with
these vibrations is quantised and when a molecule changes its vibrational energy levels
radiation in the infrared region may be emitted or absorbed and the observation of this
process, almost invariably in absorption, is IR spectroscopy. In discussing this problem
it is helpful first to consider vibration from the point of view of classical mechanics.

10.2 SIMPLE HARMONIC MOTION

A sphere of mass, m, attached by two equal, mass-less springs to two immovable walls
is shown in Figure 10.1. If the mass is displaced slightly from its position of rest (the
equilibrium position) on release it will vibrate about the equilibrium position and, if no
energy was dissipated in the springs and the surrounding air etc., this vibrational motion
would continue indefinitely. In order to be quantitative, we assume that the restoring
force, F, which returns the mass to the equilibrium position, xo, is proportional to its
displacement, x, from that position, according to the law discovered by Robert Hooke
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m

Figure 10.1 A vibrating mass, m

(1635–1703). The constant of proportionality, the force constant, is k. Then, since force =
mass × acceleration:

F = −kx = m∂2x/∂t2 (10.2.1)

The negative sign indicates that a displacement in the positive x-direction generates
a force in the negative x-direction, and vice versa. The solution of Equation (10.2.1) is
well known, it is:

x = X sin([k/m]
1
2 t + φ) ≡ X sin(ωct + φ) ≡ X sin(2πνct + φ) (10.2.2)

In Equation (10.2.2) νc is the classical vibrational frequency, ωc the corresponding angular
frequency, X is the amplitude of the vibration and φ is an angle, known as the phase angle,
which depends upon what point in the vibrational cycle we choose to call the starting
point. The subscript “c” serves to remind us that νc or ωc is the classical vibrational
frequency, which we shall take over into the quantum-mechanical analysis shortly. In
terms of the fundamental properties of the oscillator, k and m, the frequency is given by
Equation (10.2.3):

νc = ( 1
2π)[k/m]

1
2 (10.2.3)

The restoring force is the negative derivative of the potential energy, V , and therefore:

−kx = F = −∂V/∂x ⇒ ∂V = kx∂x

Integration gives:
V = 1

2 kx2 + C

so that setting the constant of integration to zero, because we are interested only in relative
energies, and using Equation (10.2.3) we have:

V = 2π2mνc
2x2 (10.2.4)

Thus, the graph of the potential energy against displacement is a parabola (Figure 10.2).
Motion described by Equations (10.2.1) to (10.2.4) is known as simple harmonic motion
and our moving mass is a harmonic oscillator.

We can extend the above model to something very much like a diatomic molecule if we
envisage two masses, m1 and m2 connected by a spring of force constant k (Figure 10.3).
In this dumb-bell model of a diatomic molecule the two masses move, in phase, away
from and towards each other while the centre of mass of the system remains fixed. In
order to treat the two masses as one we introduce the concept of reduced mass, µ, which
is defined by Equation (10.2.5):

µ = m1m2/(m1 + m2) (10.2.5)
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Using the reduced mass we obtain (see Box 10.1) equations exactly analogous to
Equations (10.2.1) to (10.2.4) above where, in each case, m is replaced by µ. X and x
are replaced by R and R − re respectively, where re is the distance between the centres of
the two masses at equilibrium and R is the distance at any other time. R is the amplitude
of the oscillation in the sense that the maximum value of R is re + R and the minimum
value is re − R. Thus, Equation (10.2.2) is replaced by:

R − re = R sin(ωct + φ) ≡ R sin(2πνct + φ) (10.2.6)

The change of the bond length over the vibrational cycle is illustrated in Figure 10.4
in a grossly exaggerated form. The rate of change of R is vR , where:

vR = ∂R/∂t = Rωc cos(ωct + φ) (10.2.7)

and oscillates between the values of zero and the maximum of Rωc as the total energy
changes from purely potential to purely kinetic twice during each cycle. Only one
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vibrational frequency:
ωc = 2πνc = √

(k/µ) (10.2.8)

is possible but the energy associated with it can be changed by changing the amplitude
and any energy is possible, including zero: no displacement, masses at rest.

10.3 THE QUANTUM-MECHANICAL HARMONIC OSCILLATOR

The classical energy of the dumb-bell model of a diatomic molecule is (Box 10.1):

E = V + T = 1
2 k(R − re)

2 + (µvR)2/2µ (10.3.1)

Transforming to quantum-mechanical operators in the usual way (Chapter 3), the
Hamiltonian operator, Ĥ, is given by Equation (10.3.2):

Ĥ = 1
2 k(R − re)

2 − (h2/8π2µ)∂2/∂R2 (10.3.2)

and the Schrödinger equation, Ĥ� = E�, is:

Ĥ� = 1
2 k(R − re)

2� − (h2/8π2µ)∂2�/∂R2 = E� (10.3.3)

As it turns out, this is a tedious equation to solve, but the method of solution is described
in detail by Pauling and Wilson6 and in many other texts. We shall content ourselves with
examining the solutions of the equation, i.e. the eigenvalues and eigenfunctions of the
harmonic oscillator which is our model for the bond-stretching vibration of a diatomic
molecule. The most important differences between classical and quantum mechanics in
this problem are described in the remainder of Section 10.3.

10.3.1 Quantisation of the energy

In classical mechanics the energy of the harmonic oscillator can take any value, depending
upon the displacement from the equilibrium position which initiates the motion. In quan-
tum mechanics the energy levels are quantised. They are characterised by the quantum
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number, v and given by the equation:

Ev = (v + 1
2 )hνc in energy units (10.3.4)

≈ (v + 1
2 )ν/c in wave numbers (10.3.4a)

where c is the velocity of light, v = 0, 1, 2, . . . . In Equation (10.3.4a), the subscript c,
having served its purpose in emphasising the fact that the quantum-mechanical frequency
is the same as the classical frequency, has been dropped to simplify the notation.

There is a constant energy difference of hν between adjacent energy levels. As the
quantum number v increases, the energy increases as a consequence of the increased
amplitude and speed of the motion, while the frequency of oscillation remains the same.
This point should be stressed. The increase in energy of a harmonic oscillator, in both
the classical- and the quantum-mechanical descriptions, arises as a result of increased
potential energy at the extremes of the motion, due to an increase in the amplitude of
the vibration, accompanied by greater kinetic energy, i.e. atomic masses moving faster,
at the equilibrium geometry where all the energy is kinetic energy. There is no change of
frequency. These points are illustrated quantitatively in Box 10.2.

10.3.2 Zero-point energy

The fact that, although v can be zero, the energy can never be lower than 1
2hν is a

remarkable departure from the classical situation where an energy of zero is possible. This
quantity of energy, which the quantum-mechanical oscillator cannot lose, is known as the
zero-point energy. It is responsible for many of the cases where the properties of solids
differ from those predicted by classical mechanics, especially at very low temperatures.
Note also that it is a necessary consequence of the Heisenberg uncertainty principle
(Section 3.10). If the two masses forming the oscillator were stationary with a separation
of re we would know the positions and the momenta (zero) of each of them simultaneously,
and that is not allowed.

10.3.3 Vibrational eigenfunctions

The final important difference between the classical and the quantum-mechanical har-
monic oscillator concerns the eigenfunctions of the latter (Figure 10.5). The probability
of finding the oscillator with a particular distance, R, between the masses is a rather com-
plicated function (Box 10.3). This is compared with the classical function for v = 12 in
Figure 10.6. Whereas the ends of the classical motion are precisely defined, the quantum-
mechanical probability function is not and allows the masses to go outside the rigid
boundaries which confine the classical oscillator. But the two probability functions become
increasingly similar as energy increases Figures 10.5 and 10.6.

10.4 ROTATION OF A DIATOMIC MOLECULE

In Section 10.1 we noted that linear molecules have two degrees of rotational freedom
and non-linear molecules three. At this point we must expand a little on these facts
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since they have important consequences for IR spectroscopy. In solution, and especially
in the gaseous phase, all molecules rotate about the three (two in the case of linear
molecules) mutually perpendicular axes through their centre of mass. The energy, EJ ,
and angular momentum, AJ , associated with these motions are quantised according to the
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equations (Box 10.1):

EJ = h2J (J + 1)/8π2µR2 = h2J (J + 1)/8π2I in energy units (10.4.1)

≈ hJ (J + 1)/8π2cI ≡ BJ(J + 1) in wave numbers (10.4.1a)

AJ = [J (J + 1)]
1
2 h/2π (10.4.2)

where I is the moment of inertia, B the rotational constant and J a quantum number that
can take all positive integer values, including zero. And, since we are dealing here with
angular momentum, each level has a degeneracy of 2J + 1, the levels being characterised
by the quantum number MJ or simply M . Note that since J can equal zero, the lowest
energy state is also zero, in contrast to the zero-point energy of the oscillator. But the
uncertainty principle is not contravened because although the atoms are stationary they
could be anywhere in their circular paths. It is interesting to compare the energy-level
spacing for the vibrational (Equation (10.3.4a)) and rotational (Equation (10.4.1a)) levels
of a diatomic molecule. Experiment shows that for 1H–35Cl, for example, the approxi-
mately constant spacing of the lower vibrational levels is ∼2989.5 cm−1. The spacing
of the rotational levels increases as BJ(J + 1) but B ≈ 10.6 cm−1 so that the vibra-
tional spacing is some two orders of magnitude greater than the rotational (Figure 10.7).
Thus the energy-level diagram consists of a set of widely and approximately equally
spaced vibrational levels, each of which is accompanied by a set of much more closely,
but unequally, spaced rotational levels. Therefore, if the selection rules allow it, the IR
absorption band associated with a change of vibrational quantum number will have, closely
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Figure 10.7 Lower vibrational and rotational energy levels of 1H–35Cl
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spaced on either side of it, a fine structure of bands due to changes in rotational quan-
tum number. This fine structure may or may not be resolved. Note that the energy-level
scale is purely schematic. The energy of a particular level is the sum of the vibrational
and rotational energies and only very high rotational levels of vibrational level v = n

overlap the stack of rotational levels based on the next vibrational level, v = n + 1. But
the overlap provides an important pathway for the relaxation of molecules in excited
vibrational levels. Note also that the spacing of the levels is inversely proportional to the
molecular mass.

10.4.1 Eigenfunctions of the rigid rotator

When the atomic masses are expressed in terms of the reduced mass, the Hamilto-
nian for the rigid rotator is identical to the kinetic energy operator of the one-electron
atom (Box 10.1). The eigenfunctions are the spherical harmonics, Yl,m(θ, φ), which are
described in detail in Appendix 5. When describing the angular momentum of the rigid
rotator it is conventional to replace l and m by J and M (see Section 4.8).

10.5 SELECTION RULES FOR VIBRATIONAL
AND ROTATIONAL TRANSITIONS

We assume the idealised model of a rigid rotator, where there is no increase in bond
length as the speed of rotation increases and hence no interaction between rotation and
vibration. In such a model the vibrational and rotational motions are quite independent
and we can consider the vibrational and rotational energy levels and their wave func-
tions separately. This assumption, together with the Born-Oppenheimer approximation
(Section 6.3), enables us to write the molecular wave functions as products of electronic,
vibrational and rotational wave functions:

�total = ψelec · ψvib · ψrot (10.5.1)

and the selection rules for the molecule as products of the individual electronic, vibrational
and rotational selection rules.

According to Section 8.7, we require the time-independent interaction between the elec-
tric field of the radiation, E, and the transition dipole moment between the initial and final
rotation-vibration states of the molecule. We start with the first line of Equation (8.7.7),
reproduced here as Equation (10.5.2) and use the first line, rather than the second line,
of that equation because we wish to introduce molecular rotation which will affect our
ability to take the terms in M0 and M ′

k outside the integrations:

Mi,f = 〈ψ f
vib| M0(e

fei)|ψ i
vib〉 + 〈ψ f

vib|
3N−6∑

k=1

QkM ′
k(e

fei)|ψ i
vib〉 (10.5.2)

It is useful to make a number of modification to Equation (10.5.2). The superscripts
f (= final) and i (= initial) will be replaced by the single (′) and double (′′) prime marks
respectively; the notation normally used in this subject and the appendage (efei) will be
dropped, since it is assumed throughout this chapter that we are dealing only with the
ground electronic state. Also, since we are focussing attention on a diatomic molecule,
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there is only one normal co-ordinate, the bond stretching represented by r . With these
modifications Equation (10.5.2) becomes:

M = 〈ψvib′ψrot′ |M0|ψvib′′ψrot′′ 〉 + 〈ψvib′ψrot′ |rM ′|ψvib′′ψrot′′ 〉 (10.5.3)

We shall find it important to identify the quantum numbers associated with each of the
vibrational (v ) and rotational (J,M) eigenfunctions, so we now write Equation (10.5.3)
in the form:

M = 〈ψv ′ψJ ′,M ′ |M0|ψv ′′ψJ ′′,M ′′ 〉 + 〈ψv ′ψJ ′,M ′ |rM ′|ψv ′′ψJ ′′,M ′′ 〉 (10.5.4)

The dipole moment, M0, and its derivative with respect to r , M ′, are constants with
respect to r , since they are evaluated at a fixed value of r , the equilibrium internuclear
distance. However, they are vectors in the r-direction in space which changes as the
molecule tumbles. Therefore, they are functions of the co-ordinates which describe their
spatial orientation. We adopt a polar co-ordinate system and call the internuclear direction
r and use θ and φ to describe the orientation of M0 and M ′, which we shall write as
f(θ, φ) = sin θ · cos φ, sin θ · sin φ and cos θ for the x, y and z directions respectively
(Appendix 7). The consideration of molecular rotation also requires the co-ordinates, θ

and φ. Thus, the vibrational wave functions, ψv ′(r) and ψv ′′(r), are functions of r

while the rotational functions, ψJ ′,M ′(θ, φ) and ψJ ′′,M ′′(θ, φ) depend only upon θ and φ

(Box 10.1). We now have:

M = 〈ψv ′(r)ψJ ′,M ′(θ, φ)|M0f(θ, φ)|ψv ′′(r)ψJ ′′,M ′′(θ, φ)〉
+ 〈ψv ′(r)ψJ ′,M ′(θ, φ)|rM ′f(θ, φ)|ψv ′′(r)ψJ ′′,M ′′(θ, φ)〉

= 〈ψv ′(r)|ψv ′′(r)〉M0〈ψJ ′,M ′(θ, φ)|f(θ, φ)|ψJ ′′,M ′′(θ, φ)〉
+ 〈ψv ′(r)|r|ψv ′′(r)〉M ′〈ψJ ′,M ′(θ, φ)|f(θ, φ)|ψJ ′′,M ′′(θ, φ)〉 (10.5.5)

where 〈 〉 implies integration only over the co-ordinate(s) specified in the wave functions.
We distinguish two cases.

Case 1: ψv ′(r) = ψv ′′(r)

This is the case of a change of rotational energy level without a change of vibrational
level; a pure rotational transition. Since the vibrational wave functions are normalised
〈ψv(r)|ψv(r)〉 = 1. But 〈ψv(r)|r|ψv(r)〉 = 0‡ so that only the first term in Equation
(10.5.5) can contribute to the transition dipole moment, provided that neither M0 nor
〈ψJ ′,M ′(θ, φ)|f(θ, φ)|ψJ ′′,M ′′(θ, φ)〉 are equal to zero. The first condition requires that the
molecule in its equilibrium nuclear configuration has a permanent dipole moment so that
only heteronuclear diatomic molecules can show a pure rotation spectrum. The second
condition for a pure rotation spectrum is that the third component of the product, the
integration over θ and φ:

〈ψJ ′,M ′(θ, φ)|f(θ, φ)|ψJ ′′,M ′′(θ, φ)〉 (10.5.6)

does not equal zero. This will provide the rotational selection rule. We first note (Appen-
dix 5) that, apart from some multiplying constants, the three functions f(θ, φ) are three
spherical harmonics just like the three p-orbitals, �2px, �2py and �2pz, which may also be

‡ r is an odd function (it changes sign on passing through re) but the square of any wave function must be even. Therefore,
the integrand ψv(r)|r|ψv(r) is an odd function of r and must be zero.
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written in the forms Y1,+1, Y1,−1 and Y1,0. The second formulation is the more convenient
for our present purposes and we use:

f+(θ, φ) = sin θ · exp(+iφ), f−(θ, φ) = sin θ · exp(−iφ) and f0(θ, φ) = cos θ

Since the rotational eigenfunctions are also spherical harmonics (Box 10.1) the required
integral turns out to be the integral over θ and φ of a product of three spherical harmonics.
The integration over φ is simple; we require that M ′′ − M ′ + Mf = 0, where Mf is the
M-value of the particular choice of f(θ, φ), i.e. +1, −1 or 0 for f+, f− and f0 respectively.
When this condition is satisfied the integral over φ has a value of 2π , otherwise it is zero.
Since Mf = 0 or ±1 this condition is usually written in the form:

M ′ − M ′′ ≡ 	M = 0,±1 (10.5.7)

In molecules with no unpaired electrons the effects of the selection rule on M are
only seen in the presence of an electric field, which partially lifts the degeneracy of the
M levels; a phenomenon known as the Stark effect (Johannes Stark (1874–1957)). The
integration over θ is more complicated, but use of two formulae given in Appendix 5
simplifies the problem. The required formulae are:

cos θ · 
J,|M|(θ) = A(J, M)
J+1,|M|(θ) + B(J, M)
J−1,|M|(θ) (10.5.8)

and

sin θ · 
J,|M|−1(θ) = C(J, M)
J+1,|M|(θ) − D(J, M)
J−1,|M|(θ) (10.5.9)

where A(J, M), B(J, M), C(J, M) and D(J, M) are functions of J and M only. When
the operator f0(θ, φ) is used we have, from Equation (10.5.7), the condition 	M = 0 and
the matrix element requires integration over two 
 functions and cos θ ; explicitly:

Int. = 2π〈
J ′,M ′(θ)| cos θ |
J ′′,M ′(θ)〉
Replacing cos θ |
J ′′,M ′(θ)〉 with the right-hand side of Equation (10.5.8) gives:

Int. = 2π{A(J, M)〈
J ′,M ′(θ)|
J ′′+1,M ′(θ)〉 + B(J, M)〈
J ′,M ′(θ)|
J ′′−1,M ′(θ)〉}
Therefore, since the 
 functions are orthogonal and normalised, the integral is zero

unless J ′ = J ′′ ± 1. When the operators f+(θ, φ) or f−(θ, φ) are used we have the con-
dition 	M = ±1 and the matrix element requires integration over two 
 functions and
sin θ . For that integral we apply Equation (10.5.9), which conveniently combines the sine
function and the change of M value. Again, the orthonormality of the 
 functions leads
to the selection rule:

	J ≡ J ′ − J ′′ = ±1 (10.5.10)

Case 2: ψv ′(r) �= ψv ′′(r)

This is the case in which there is a change of vibrational state which may, or may not,
be accompanied by a change of rotational state. Because of the orthogonality of the
vibrational wave functions, the first term in Equation (10.5.5) is zero and the transition
moment is given by the second, which implies that the transition moment will be zero
unless M ′ �= 0, i.e. the vibration must change the dipole moment of the molecule. The
first term in the product is the integration over r:

〈ψv ′(r)|r|ψv ′′(r)〉
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which will provide the vibrational selection rule. Using a result from Box 10.3 to express
rψv ′′(r) in terms of the functions ψv ′′−1(r) and ψv ′′+1(r) we obtain:

〈ψv ′(r)|r|ψv ′′(r)〉 = P〈ψv ′(r)|ψv ′′+1(r)〉 + Q〈ψv ′(r)|ψv ′′−1(r)〉 (10.5.11)

where P and Q are constants. Since the vibrational eigenfunctions are orthogonal, the first
integral on the right-hand side will be zero unless v ′ = v ′′ + 1, and the second integral
will be zero unless v ′ = v ′′ − 1, which immediately gives us the selection rule:

	v = ±1 (10.5.12)

The integrals over θ and φ are identical in both terms of Equation (10.5.5). Therefore,
the rotational selection rules in the case of vibration-rotation spectra are the same as they
are for pure rotation spectra; in gas-phase spectra rotational transitions are frequently
seen as fine structure surrounding a vibrational absorption band. Spectroscopists call
the transitions with 	J = −1, 0 and +1 the P -, Q- and R-branches of the spectrum
respectively. With regard to the intensity of rotational transitions we must also take note
of the degeneracy associated with the angular momentum. A rotational state characterised
by the quantum number J is (2J + 1)-fold degenerate (Chapter 4) so that the population
of such a state, and hence the intensity of transitions for which it is the initial state,
depends upon J as well as the Boltzmann factor.

Equations (10.5.7), (10.5.10) and (10.5.12) are the selection rules for the rotational
and vibrational spectra of the idealised diatomic molecule. It is worth reiterating that for
an allowed rotational transition the molecule must have a permanent dipole moment,
whereas for an allowed vibrational transition the vibration must be accompanied by a
change in dipole moment.

In conclusion, three remarks should be made concerning the above selection rules and
the derivation of them:

• We have developed this quantum-mechanical analysis of the vibrational transition prob-
ability in the context of a diatomic molecule executing its bond-stretching vibration.
But the treatment is equally valid for any molecular vibration that is an eigenfunction
of the vibrational Hamiltonian operator, i.e. a normal mode (see Section 10.7.1), and
for which M ′ is not zero. However, it should be noted that real molecules are never
harmonic oscillators (Sections 10.6 and 10.8) and therefore they deviate from that ideal
behaviour.10.8

• Many other subtle aspects of these selection rules emerge when a group-theoretical
analysis is made. For further details specialist texts, e.g. Herzberg7 and Hollas,8 should
be consulted.

• Similarly, the selection rules for the changes in vibrational and rotational levels that
accompany a change of electronic state are an important and complex area of spec-
troscopy from which most of our knowledge of the shapes of molecules in their
electronically excited states is derived. The books by Herzberg7 and Hollas8 give
comprehensive treatments of this subject.

Finally, we note that the selection rules for the rotational transitions of the rigid rota-
tor we have found are those which we should expect in view of the established angular
momentum of the electric dipole photon (see Section 8.4.5) Since, following convention,
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J ′ characterises the upper state and J ′′ the lower, a transition with 	J = +1 corresponds
to the addition to the rotator of one unit of angular momentum while 	J = −1 cor-
responds to a loss of angular momentum by the molecule. The selection rule on M ,
	M = ±1, reflects the two possible z-components of the photon’s angular momentum.

10.5.1 A semi-classical view of the selection rules

We have two conditions to fulfil if there is to be a transition between two vibrational
energy levels as a result of the absorption of e-m radiation by a molecule:

• The frequency of the radiation, ν, must be equal to the vibrational frequency of the
molecule, ν.

• The Bohr–Einstein condition must be satisfied, i.e. the product of h and ν must be
equal to the energy gap between two vibrational energy levels.

These two requirements can be simultaneously satisfied. If a molecule in any vibrational
state has a vibrational frequency of ν then the gap, 	E, between two adjacent energy
levels, quantum numbers v and v + 1, is (Equation (10.3.4)):

	E = hν{(v + 1 + 1
2 ) − (v + 1

2 )} = hν (10.5.13)

Thus the two conditions are satisfied for an absorption process in which the quantum
number v is changed by +1, which means that transitions between any two adjacent
levels of the harmonic oscillator model of a diatomic molecule can be stimulated by
e-m radiation of frequency ν; but only, of course, if the oscillation of the molecule pro-
duces an oscillating electric dipole. A homonuclear diatomic molecule such as hydrogen
(H2) or nitrogen (N2) has no electric dipole moment and cannot therefore interact with
e-m radiation in the IR or microwave regions as a consequence of its vibrational, or
rotational, motion.

A semi-classical interpretation of the selection rules for the rotational spectrum of a
rotating dipole similar to that given above for the vibrational spectrum of the harmonic
oscillator is not possible. This is because, in contrast to vibrational frequency where both
classical and quantum-mechanical definitions exist, there is no exact quantum-mechanical
definition of rotational frequency. Therefore, we do not expect to be able to express the
true (quantum-mechanical) selection rule in classical terms. There is a precise quantum-
mechanical description of angular momentum, but it does not imply the motion of a
particle in a closed path and at a particular frequency about some central axis, as we can
see when we think of the orbital angular momentum of a p electron or electron spin.

10.5.2 Infrared intensities

As in all branches of spectroscopy, the intensity of a transition depends not only upon
the transition probability but also upon the population of molecules in the initial, ψ ′′, and
final, ψ ′, states. This can be readily determined from Boltzmann’s equation. For 1H35Cl at
room temperature (300 K) for example, the v = 0 to v = 1 absorption band is observed
at 2885.9 cm−1, which is equal to 5733 × 10−23 J. Thus, according to Boltzmann:

N(v = 1)/N(v = 0) = exp(−5733 × 10−23/300 × 1.381 × 10−23) = 0.9785 × 10−6
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Therefore, in a sample of one million molecules, there is only one molecule in the
v = 1 vibrational state and 999 999 in the v = 0 state. This is a very favourable situation
for absorption spectroscopy. With such a large excess of molecules in the lowest state
problems due to saturation do not occur in the infrared: contrast NMR spectroscopy.
However, for vibrations of low frequency and energy, there can be a significant population
of molecules in the v = 1 or v = 2 states and transitions from these states to higher
values of v are sometimes observed; especially with samples at high temperatures. Such
bands are known as hot bands.

10.6 REAL DIATOMIC MOLECULES

Though the model described in Sections 10.3 to 10.5 is a very useful starting point, a
moment’s reflection reveals that there are important differences between the harmonic
oscillator and a real diatomic molecule. We know, for example, that if we supply sufficient
energy to the molecule it will vibrate with such a large amplitude that the atoms separate
at the extreme of the vibration and the molecule decomposes. Similarly, though it is
not quite so obvious, at very small bond lengths the potential energy of the molecule
increases more rapidly than the parabolic curve indicates. A rather general expression
for the potential V (R) as a function of the internuclear distance, R, can be obtained by
expanding (R − re) as a Taylor series about re:

V (R) = V (re) + (R − re)∂V (re)/∂R + ( 1
2! )(R − re)

2∂2V (re)/∂R2

+ ( 1
3! )(R − re)

3∂3V (re)/∂R3 + · · · (10.6.1)

If we define the potential energy to be zero at the equilibrium bond length, the first
term in the expansion is zero. The second term is zero because there is no change of
V (re) with R at re (Figure 10.5), so the first non-zero term is the quadratic term:

V (R) = 1
2 (R − re)

2∂2V (re)/∂R2 (10.6.2)

from which we see, by comparison with Equation (10.3.1), that the force constant k =
∂2V (re)/∂R2 and we know that this potential function gives rise to harmonic oscillation.
Inclusion of the higher terms provides a representation of the anharmonic oscillator ; this
is sometimes necessary to explain more subtle effects in vibrational spectroscopy. Some
examples are discussed in Section 10.8.

In practice, the V (R): R relationship proposed by Morse (Equation (10.6.3) and Figure
10.8) is frequently used. It provides a simple but quite accurate approximation to the
potential curve of a real diatomic molecule for small values of re − R:

V (R) = De[1 − exp{a(re − R)}]2 (10.6.3)

De is the energy difference between the dissociation energy and the lowest point of
the V versus R curve (not the lowest vibrational level which gives the experimental
dissociation energy, D0) and a is a constant. It is possible, though difficult, to solve the
Schrödinger equation for a Morse potential energy curve. Two aspects of the solution are
of particular interest in the present context:

1. The new energy levels are given by the formula:

E = (v + 1
2 )hν − (v + 1

2 )2xehν
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Figure 10.8 The Morse curve for a diatomic molecule

from which it is clear that they are now no longer equally spaced. xe is the anhar-
monicity constant ; it is a measure of the departure of the real molecule from the ideal
harmonic oscillator.

2. The strict selection rule of the harmonic oscillator no longer applies and transitions
having 	v = ±2,±3 . . . are now possible, in addition to the original 	v = ±1.

Though the transitions with 	v = ±1 remain by far the strongest, transitions having
	v = +2 are frequently seen in infrared absorption spectra where they are known as
overtones. Their frequencies are normally just less than twice the frequency of the 	v =
+1 transitions. Transitions having 	v > 2 are much rarer and the intensity of overtones
decreases rapidly with increasing 	v . For example, the first overtone (v ′′ = 0 → v ′ =
2) of hydrogen chloride (HCl) has only 1.6 % of the intensity of the fundamental (v ′′ =
0 → v ′ = 1). Combination bands, transitions in which two fundamental vibrations are
simultaneously excited, are also seen with a much-reduced intensity.

10.7 POLYATOMIC MOLECULES

The number of vibrations, 3N–5 or 3N–6, increases rapidly with the number of atoms
(N), in a molecule and the possibility of observing vibrations of different types arises. In
water, for example, there are vibrations associated with the stretching of the two O–H
bonds and with the changing of the H–Ô–H bond angle. In benzene there is a vibration
in which all six C–C bonds grow longer or shorter simultaneously and the C6 hexagon is
said to execute a breathing vibration. We need to consider the actual forms of the possible
vibrations of a polyatomic molecule in more detail.

10.7.1 Normal co-ordinates, normal vibrations, vibrational
eigenfunctions and eigenvalues

In Section 5.2 we noted that the expression of Schrödinger’s equation for the hydrogen
atom in polar rather than Cartesian co-ordinates was a great aid to its solution because
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the equation could then be separated into three equations, one in each of the three co-
ordinates r, θ and φ. The eigenfunctions are then found as products of the solutions of
the three separate equations, the radial function, Rn,l(r) and the two angular functions,

l,m(θ) and �m(φ). We adopt a similar approach to find the solutions of Schrödinger’s
equation for the vibrations of a polyatomic molecule.

There is a set of co-ordinates in which the wave equation is separable into 3N–6
(3N–5) separate eigenvalue–eigenfunction equations. They are called the normal co-
ordinates and are usually given the symbol Qn. When the atoms move along a normal
co-ordinate they are said to be executing a normal mode of vibration and there are no
cross-terms in the Hamiltonian operator for the potential or kinetic energies between any
two different normal modes. Since there are no cross-terms in the Hamiltonian the normal
modes do not interact with each other, which is why the wave equation can be separated.
Most importantly, the normal modes and their associated energies are the eigenfunctions,
ψ(Qn), and eigenvalues, En, of the wave equation for the vibrational problem, just like
those of the harmonic oscillator which we have studied above:

Ĥnψ(Qn) = Enψ(Qn) (10.7.1)

And, in just the same way, we usually consider them to be harmonic, although we
know that this is only an approximation. Each normal mode must belong to one of the
symmetry species (irreducible representations) of the molecular point group‡ and they are
not too difficult to envisage. A normal mode describes the movement of all the atoms
in the molecule, including the possibility that one or more atoms do not move. When
the atoms are vibrating in a normal mode they all move in phase, though not necessarily
with the same amplitudes, and pass through the equilibrium nuclear configuration and
the turning points of their motion simultaneously. Therefore, although the motion may be
complex, it can be thought of in terms of a single displacement in which all atoms are
simultaneously involved and the basic theory of the motion can be expressed in the same
form as that of the simple bond stretching of a diatomic molecule. Thus, the eigenfunctions
ψ(Qn) have exactly the same algebraic form as those for the diatomic molecule, which
are described in Box 10.3, with R replaced by Qn. And just as for the hydrogen-atom
problem, the solution for the whole molecule is given by the product of the 3N–6 (3N–5)
solutions:

�total = ψ(Q1) · ψ(Q2) · · · ψ(Q3N−6) ≡
∏

n

ψ(Qn) (10.7.2)

However, unlike the hydrogen-atom case, each of the 3N–6 (3N–5) separated eigen-
value – eigenfunction equations is of exactly the same form as Equation (10.7.1) and the
total vibrational energy of the molecule is the sum of the 3N–6 (3N–5) En values, i.e.
the sum of the energies of the individual modes, taking account of the number of quanta
(v n) of energy in that mode:

Etotal =
∑

n

En =
∑

n

(
v n + 1

2

)
hνn (10.7.3)

‡ Group theory has many important and valuable applications to IR spectroscopy and any text on the theory of molecular
vibrations will discuss these in detail.
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10.7.2 Vibrations of real polyatomic molecules

In general, we do not observe the vibrations of individual bonds. Thus, using water as
our example, we do not see a vibration which corresponds to an oscillation in the length
of one O–H bond. The simple mathematical reason for this is that such a vibration is
not a normal mode. Furthermore, a change in the length of one O–H bond affects the
other O–H bond because they share the oxygen atom and also because any change of
bond length introduces some change in the electron distribution in a molecule. The two
O–H stretching vibrations are therefore coupled and we do not observe their independent
frequencies in the infrared spectrum of water. When two systems, φa and φb say, which
obey the laws of quantum mechanics are coupled then a mixing takes place and two new
systems with the wave functions, ψ+ and ψ− are formed, where:

ψ+ = cos θ.φa + sin θ.φb

ψ− = sin θ.φa − cos θ.φb

We note that since cos2 θ + sin2 θ = 1, the new mixed functions are always normalised
(Section 4.5). The mixing of two vibrations depends upon two factors, the magnitude of
the interaction causing the mixing and the separation in energy (frequency) between the
mixing vibrations. The mixing is at a maximum when the two vibrations to be mixed have
exactly the same energy, in which case the two new vibrations contain equal quantities
of the old combined in-phase and out-of-phase. The O–H stretching vibrations of water
are illustrated in Figure 10.9, where the angle bending vibration has been included for
completeness. The movements of the atoms are inversely proportional to their masses and
must be such as to keep the centre of mass of the molecule stationary. The observed wave
numbers of the bands show some important general characteristics. The symmetric stretch-
ing (3832 cm−1) is lower than the asymmetric (3942 cm−1) and the bending (648 cm−1)
is much lower than the two stretchings. This reflects the different force constants which
are much larger for bond stretching than for angle bending (Table 10.1).

What cannot be detected without more detailed analysis of the data is the fact that
there is a mixing of the symmetric stretching and the bending vibration. A change in
the O–H bond length changes the force constant for the H–Ô–H angle bending, and vice
versa. Therefore, the two types of vibration are coupled, which is the same as saying
that the bond-stretching and angle-bending vibrations are not themselves normal modes
because they are linked by energy terms in the Hamiltonian operator. We can view this
as the process of diagonalising a 2 × 2 matrix (Appendix 3), in which the basis states,
i.e. the two modes, are combined in such a way as to reduce the interaction to zero and

symmetric stretching

 ≈ 3832 cm−1
n = 114.9 × 1010 s−1

asymmetric stretching

  ≈ 3942 cm−1
n = 118.2 × 1010 s−1

angle bending

  ≈ 648 cm−1
n = 19.41 × 1010 s−1

Figure 10.9 The vibrations of the water molecule
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Table 10.1 The bond-stretching and angle-bending force constantsa for some small molecules

Molecule Bondb

stretching
Anglec

bending
Molecule Bondb

stretching
Anglec

bending

H2O H–O = 780 HOH = 70 H2S H–S = 430 HSH = 45
NH3 H–N = 650 HNH = 50 CH4 C–H = 540 HCH = 45
CO2 C=O = 1550 OCO = 60 SO2 S=O = 995 OSO = 80

aMany more force constants are tabulated in sources such as E.B. Wilson Jr, J.C. Decius and P.C. Cross, Molec-
ular Vibrations, McGraw-Hill, New York, 1955, and G. Herzberg, Infrared and Raman Spectra of Polyatomic
Molecules, Van Nostrand, New York, 1945.
bThe units of the bond-stretching force constants are Nm−1.
cThe units of the angle-bending force constants are Nm.
The reason for the different units of the two types of force constant is the following. The change of a bond
length or bond angle are measured by δl and δθ respectively. δθ is measured in radians and therefore has
no units. The force constant relates the potential energy due to a change in bond length or bond angle to the
square of the change (Equation (10.2.4)), i.e. V = 1

2 kl(δl)2 or 1
2 kθ (δθ)2, so that in order for the dimensions of

the potential energy to be the same (mass length2 time−2) in both cases, the force constant for angle bending
is usually multiplied by the lengths of the two bonds which define the angle.

generate the two genuine normal vibrational modes. But there will only be mixing if
the symmetry of the two vibrations is the same and we can see that this is the case in
this particular example if we visualise the changing dipole moment associated with each
vibration. In a static water molecule the dipole moment lies along a line in the plane
of the molecule bisecting the H–Ô–H bond angle. When the molecule performs either
symmetric stretching or angle-bending vibration the change in the dipole moment lies
along the same direction. With the asymmetric stretching vibration, on the other hand, the
change in the dipole moment is directed at right-angles to the static dipole moment. This
indicates that the asymmetric stretching vibration is of a different kind from the other
two vibrations; spectroscopists say it belongs to a different symmetry species. Vibrations
of different symmetry species cannot interact and mix, but those of the same species
can and usually do. As before, the degree of their mixing depends upon the interaction
between them and the difference in their energies. In the case of the stretching/bending
vibrations of water the mixing is small, only 1–2 % of the one is found in the other. But
it is important to recognise that this phenomenon exists and that a band observed in an
infrared spectrum cannot always be assigned to the stretching of just one bond or a single
angle-bending vibration.

The fact that the direction of the changing dipole moment of the water molecule is
different for different vibrations has important applications. A molecule can only interact
with e-m radiation that is polarised in the same direction as a changing dipole moment in
the molecule. Therefore, if a molecule is irradiated with plane polarised light it will absorb
the light only if it is orientated so as to fulfil the above condition. If the structure of a
solid sample (a crystal, for example) is known then the orientation of the sample necessary
for a particular band to appear in the infrared absorption spectrum can be used to assist
in the assignment of the band. Similarly, the metal-surface selection rule (Section 8.7.3)
depends for its efficacy upon the fact that an allowed IR transition can be related to the
direction of a changing dipole moment within a molecule.

A typical spectrum of a small molecule which illustrates several of the most important
points about infrared spectra is that of bromochloromethane (CH2BrCl) (Figure 10.10).
The assignment of the bands is given in Table 10.2. Two carbon–halogen stretching
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Figure 10.10 The infrared absorption spectra of dibromomethane and bromochloromethane

Table 10.2 The assignment of the infrared spectra of dibromomethane and bro-
mochloromethane (shown in Figure 10.10)

CH2Br2
† CH2BrCl†

1. CH2 asymmetric stretch 3065 3060
2. CH2 symmetric stretch 3003 2986
3. CH2 scissors 1390 1407
4. CH2 wagging 1192 1227
5. CH2 twisting 1095 1130
6. CH2 rocking 813 850
7. CBr2 asymmetric stretch 639 C–Cl stretch 730
8. CBr2 symmetric stretch 578 C–Br stretch 605
9. CBr2 scissors 169 CBrCl scissors 229

†Band positions in wave numbers (cm−1)

vibrations are visible. The two C–H stretching vibrations interact, as the O–H stretches
in water do, to form asymmetric and symmetric combinations which occur at 3060 and
2986 cm−1 respectively; the asymmetric stretch at the higher wave number has the greater
intensity because it entails a greater change of dipole moment than the symmetric stretch.
These are the highest wave number bands in the spectrum. The C–Cl stretch is found at
730 cm−1 and the C–Br even lower at 605 cm−1. The decrease in wave number in the
sequence C–H > C–Cl > C–Br reflects the fact that the frequency, and therefore the wave
number, is inversely proportional to the reduced mass of the two atoms forming the bond
(Equation (10.3.3)), though changes in the force constant also play a part. The effect of the
atomic mass can also be seen in the angle bending where the H–C–H scissoring vibration
is found at 1407 cm−1 while the Cl–C–Br scissoring is off the scale at 229 cm−1. Two
other significant bands can be identified in this spectrum. The intense CH2 wagging at
1227 cm−1 and the less intense CH2 rocking at 850 cm−1.
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The names of these three types of vibration arise in the following way. Imagine that
the plane containing the carbon, chlorine and bromine atoms is at right-angles to the
plane containing the carbon and two hydrogen atoms. If the atoms in the Cl–C–Br plane
remain stationary then the vibration in which the H–C–H bond angle opens and closes
is the H–C–H scissoring. If the H–C–H plane moves to and fro in such a way that the
two hydrogens move towards and then away from a halogen atom, this is the wagging
vibration. If, on the other hand, the H–C–H plane moves from side-to-side at right-angles
to the Cl–C–Br plane, then this is the rocking vibration.

Note that all 3N–6 = 9 bands are allowed by the selection rules and all are seen but
with very different intensities, which reflect the magnitude of the change in dipole moment
associated with the different modes of vibration. The strong absorption of the C–Cl (7) and
C–Br (8) stretching vibrations is a consequence of the large dipole moments of these
bonds, which therefore undergo large changes during the vibrational cycle. But the change
is very small for the CH2 scissoring (3) and twisting (5) vibrations. Indeed, unassigned
bands stronger than the last two can be seen in the spectrum, one at approximately
1560 cm−1, for example. Such a band may be due to an impurity in the sample or to
an overtone or a combination band (Section 10.6). The sum of the wave numbers of the
strong bands 6 and 7 is 1580 cm−1, which suggests that the 1560 cm−1 band may be due
to the combined excitation of these two vibrations. Compare the spectrum just described
with that of dibromomethane and note the effect of increasing the mass of one halogen
atom on the frequencies.

10.7.3 Characteristic group frequencies

In the last section the spectra of CH2BrCl and CH2Br2 were compared. In Table 10.2
there is a close similarity in the wave numbers of each of the six vibrations attributed to
the CH2 group. The frequencies of vibrations such as these, usually involving atoms on
the periphery of a molecule, do not change much when the remainder of the molecule
is changed and they therefore constitute a valuable method in molecular structure deter-
mination. They are known as characteristic group frequencies and lists of them can be
found in many books devoted to IR spectroscopy.1,9 – 11 In this context vibrations involv-
ing hydrogen, e.g. the O–H stretch in alcohols (∼3600 cm−1), the N–H stretching of the
NH2 group (∼3400 cm−1) are useful and easy to identify because, like the C–H vibra-
tions, they lie near the upper extremity of the spectrum. Similarly, the bands of C–Cl
(∼725 cm−1), C–Br (∼650 cm−1) and C–I (∼550 cm−1), which are found near the other
spectral extreme, provide evidence of the presence of halogen atoms. A band that occurs
in the centre of the spectral range (1750–1600 cm−1) is the C=O stretch of aldehydes
and ketones; it is particularly well known.

10.7.4 Large molecules

Everything that has been said above concerning the water and bromochloromethane
molecules is equally important in the infrared spectra of the larger molecules which
are of interest to chemists. But as the number of atoms in a molecule rises the spec-
trum becomes increasingly difficult to assign and interpret. Moreover, when many atoms
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are linked together in a complex three-dimensional structure changes of individual bond
angles and bond lengths are not possible. In benzene, for example, a single C–C–C
bond angle cannot change without some corresponding change in other C–C–C angles
or C–C bond lengths. Complicated vibrations involving many simultaneous changes of
bond angles and bond lengths are known as skeletal vibrations and, even when their exact
nature is obscure, they give rise to a series of infrared absorption bands which are highly
characteristic of the molecule. This fingerprint is very important in qualitative analysis
and structure determination.

10.8 ANHARMONICITY

We have frequently noted above that although the concept of the harmonic oscillator is
a good model for molecular vibrations, all real molecules depart from this ideal and the
effects of their anharmonicity must be taken into account when we attempt to interpret
some of the more subtle, but none the less important, effects seen in IR spectroscopy. We
can distinguish two different types of anharmonicity.

Electrical anharmonicity has to do with the problem of correctly representing the
molecule as an array of electrical charges which can interact with e-m radiation. In
Equation (10.5.2) the transition dipole moment is written in terms of the dipole moment
plus its first derivative with respect to the normal co-ordinates; in mathematical parlance,
the Taylor series expansion of the dipole moment. But these are simply the first two terms
in the series and if higher derivatives were included they would allow transitions having
	v > 1. Thus, the effect of electrical anharmonicity is primarily to allow bands to appear
which we would not have expected.

Mechanical anharmonicity, from which the adjective mechanical is often omitted,
describes the fact that the potential energy curve associated with a molecular vibration
is not parabolic in the co-ordinate, i.e. is not of the form of Equation (10.2.4). The
effects of mechanical anharmonicity are seen in the vibrational energy levels and hence
band frequencies. Also, in some rather special cases where the anharmonicity results in
a mixing of vibrational states, there can be quite dramatic effects upon band intensities.
Some classic examples of mechanical anharmonicity are examined in the following two
sections. Both involve carbon dioxide.

10.8.1 Fermi resonance

The assumption of harmonic vibrations provides such a simplification that it is invariably
the starting point for the analysis of IR spectra. However, the effects of anharmonicity
can be large and we are sometimes forced to recognise them. The vibrational spectrum of
carbon dioxide provides a good example. Unfortunately, this most famous of examples
involves Raman spectroscopy,1,2 which is not discussed in this book, rather than IR.
However, our primary objective is to illustrate how anharmonicity can bring about the
mixing of vibrational energy states and the fact that the effects of this mixing are seen
here in the Raman rather than IR spectrum is of secondary importance.

The bands seen in the IR and Raman spectra of carbon dioxide (CO2) under conditions
of low resolution are listed in Table 10.3. For this linear molecule we expect to see
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Table 10.3 The vibrational spectrum of carbon dioxide under condi-
tions of low resolution

Mode ν(cm−1) Description R/IR active

ν1 1340 symmetric bond stretching R
ν2 667 angle bending IR
ν3 2349 asymmetric bond stretching IR

++ •

Z

X

y)

x)

Figure 10.11 The two components, ν2x and ν2y, of the doubly degenerate angle-bending vibration
of carbon dioxide

four (3 × 3 − 5) fundamental vibrations and we do because the angle bending is doubly
degenerate. (The O=C=O angle can be deformed in either of two planes at right-angles
to each other (Figure 10.11).) However, when the spectra are measured under higher
resolution the 1340 cm−1 band in the Raman spectrum is found to consist of two bands
of approximately equal intensity centred at 1285 and 1388 cm−1. This observation appears
to be at odds with theory.

The following is a simplified version of the explanation suggested by Enrico Fermi in
1931, since when very many similar examples have been reported. Although he knew ν2

and ν3 from infrared spectroscopy, Fermi had no value for ν1 so he determined the force
constant, k, for the C=O bond stretching from ν3 and using this and the atomic masses he
estimated that the symmetric stretch should lie somewhere near 1230 cm−1; close to the
predicted first overtone of ν2 at approximately 2 × ν2 = 1334 cm−1. Furthermore, Fermi
knew from the symmetry of the overtone that it could interact with ν1. The mechanism of
the interaction is the anharmonicity, in particular cubic terms (Equation (10.6.1)) which
are neglected in the simple, harmonic oscillator theory. The formulation of the energy
matrix (Appendix 3) for this interaction is slightly complicated by the fact that ν2 is a
doubly degenerate vibration and thus its first overtone may correspond to three different
excitations. Since ν3 had no part to play in the calculation, Fermi omitted it and wrote
his wave functions in the form (v 1, v 2x, v 2y), where ν2x and ν2y are the two degenerate
components of ν2. In this notation the singly excited ν1 state is (100) and it may, in
principle, interact with the three doubly excited ν2 states (020), (002) and (011). How-
ever, symmetry forbids an interaction between (100) and (011) and the energy matrix
reduces to:

Ĥ (100) (020) (002)

(100) ν1 α α

(020) α 2ν2 0
(002) α 0 2ν2

(α is the interaction for which Fermi estimated a value of 40 cm−1.)
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Rather than evaluating the matrix immediately, Fermi simplified it by combining the
two overtone functions into their sum and difference:

�+ =
√

1
2 {(020) + (002)} and �− =

√
1
2 {(020) − (002)}

which reduces the matrix to the form:

Ĥ (100) �+ �−
(100) ν1

√
2α 0

�+
√

2α 2ν2 0
�− 0 0 2ν2

We require the eigenvalues and eigenfunctions of the 2 × 2 matrix. Each will be a
mixture of the Raman-allowed excitation (100) and �+ giving two new excited states to
which Raman transitions are allowed by virtue of their component of (100). They can
easily be found using the method described in Appendix 3 if the values of α, ν1 and ν2

are known. Since he had no reliable value of ν1, Fermi simply noted that if ν1 ≈ 2ν2

we expect the two new vibrational states to be separated by 2 × √
2α = 113 cm−1 and

the corresponding spectral bands to be approximately equal in intensity. These results
are both in good agreement with experiment where the two Raman bands are almost
equal in intensity and the observed 	ν is 103 cm−1. In the light of the value of 	ν

Fermi suggested that his estimate of ν1 ≈ 1230 cm−1 was probably about 100 cm−1

too low.
In the last part of his paper Fermi explains the presence of two further, very weak

Raman bands in terms of exactly the same type of mixing among groups of three states:
(110), (030) and (012) in the case of one band and (101), (003) and (021) for the other.
In each of these states the molecule is already excited with at least one quantum of ν2

and there are only 7 % of such molecules in the gas at room temperature, hence the very
low intensity.

Finally, we might note that, although a quantitative solution of the carbon dioxide
problem requires a quantum-mechanical analysis, we can see in a simple classical view
why there is an interaction between the vibrations ν1 and ν2 and why resonance is possible
when ν1 ≈ 2ν2. As the molecule executes the angle-bending vibration, ν2, the oxygen
atoms swing from one side of the linear O=C=O configuration to the other and back again,
passing through the linear configuration twice in each vibrational cycle. The centrifugal
force arising from this motion over an arc of a circle is at a maximum when the molecule
is linear and acts in such a way as to extend both C=O bonds simultaneously. If the
frequency of this effect, 2ν2, coincides with that of the symmetric bond stretching, ν1,
then we have the ideal conditions for resonance.

10.8.2 Vibrational angular momentum and the Coriolis interaction

The mechanics of bodies undergoing simultaneous linear and rotational motion, was first
investigated by Gaspard de Coriolis (1792–1843), a French physicist who studied the
movements of air and water on the surface of the earth. The eponymous force which his
work revealed is responsible, among other things, for the whirling motions of tropical
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Figure 10.12 Coriolis forces on a single mass, (a) the symmetric stretching vibration of carbon
dioxide (b) and the asymmetric stretching vibration (c)

storms. It also has some very interesting effects upon the spectra of molecules; but first
we should clarify its origin.

Consider an atom of mass, m, which is part of a molecule rotating about an axis
through the centre O and perpendicular to the plane of the paper (Figure 10.12(a)). The
rotating molecule has angular momentum so that if in the course of a vibration the mass
moves to the right, increasing its distance from O, the speed of movement of the mass
must be reduced to conserve that momentum. The slowing of the mass will appear to an
observer riding on the molecule, who will not be aware of the rotational motion as we
are unaware that the earth is rotating, as the response to a force in the direction indicated
by the downwards arrow. This is the Coriolis force and it has the potential to cause an
interaction between the vibration and rotation of a molecule, as the following examples
will show. Several types of Coriolis interaction can be distinguished.

Type 1. Taking carbon dioxide as our example with z as the internuclear axis we
first examine the Coriolis forces arising from the symmetric stretching vibration, ν1,
(Figure 10.12(b)). The heavy, horizontal arrows represent the velocities of the oxygen
atoms; the carbon atom is stationary. The molecule is rotating, end-over-end, and the
lighter, vertical arrows show the resulting Coriolis forces which, in this case, produce
a coupling to the rotation rather than the vibration of the molecule. This has a very
small effect upon the rotational energy levels but is not normally considered to be a
Coriolis effect.

Type 2. We continue with our carbon dioxide example and examine the effect of Coriolis
forces on the asymmetric stretching ν3. In this case (Figure 10.12(c)) the directions of
the Coriolis forces on each atom are such as to promote the bending vibration, ν2, but
with the frequency of ν3. ν2 is a doubly degenerate mode and in order to appreciate fully
the effect of the Coriolis coupling it is necessary to examine it in more detail. We again
define the two components of the vibration, ν2x and ν2y, to occur in the xz and yz planes
(Figure 10.11). Inspection of the figure shows that a rotation of π /2 about the z axis, in
either sense, converts one of the angle-bending vibrations into the other. This suggests that
there is angular momentum about the z-axis associated with the vibration and we can show
that this is indeed the case in the following manner. We first use Box 10.3 to write down
the harmonic oscillator eigenfunctions, �v, for the normal co-ordinate q with v = 0 − 2:

�0 = [γ/π]
1
4 exp(− 1

2γ q2)

�1 = [γ/π]
1
4
√

(2γ )q exp(− 1
2γ q2)

�2 = [γ/π]
1
4 (

√
2γ q2 − 1/

√
2) exp(− 1

2γ q2)
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In accordance with the concept of the normal mode or normal co-ordinate (Section
10.7.1), we can regard the vibrational modes in the figure as displacements along a
single co-ordinate x or y, with the proviso that, to keep the centre of gravity stationary, a
displacement of the carbon atom of 12C16O2 by −x is accompanied by displacement of the
two oxygen atoms by + 1

2 (12/16)x = +3x/8, and similarly for y. There are simultaneous,
equal and opposite displacements of the oxygen atoms in the z direction.

We can now write down the appropriate functions to describe the three degenerate
vibrationally-excited states, �, which can be formed by adding two vibrational quanta to
the ν2 vibration. Each is a product of two harmonic oscillator eigenfunctions characterised
by their quantum numbers (v 2x, v 2y) as subscripts, the co-ordinates, q, being replaced
by x or y, as required:

�11 = [γ/π]
1
2 2γ xy exp(− 1

2γ [x2 + y2])

�20 = [γ/π]
1
2

(√
2γ x2 − 1/

√
2
)

exp(− 1
2γ [x2 + y2])

�02 = [γ/π]
1
2

(√
2γ y2 − 1/

√
2
)

exp(− 1
2γ [x2 + y2])

We know from Chapters 3 and 4 that if we are looking for angular momentum then
a polar co-ordinate system is more useful than a Cartesian and we use the plane-polar
system in which:

r2 = x2 + y2, x = r cos φ and y = r sin φ

Substituting r and φ for x and y we have:

�11 = [γ/π]
1
2 2γ r2 sin 2φ exp(− 1

2γ r2)

�20 = [γ/π]
1
2

(√
2γ r2 cos2 φ − 1/

√
2
)

exp(− 1
2γ r2)

�02 = [γ/π]
1
2

(√
2γ r2 sin2 φ − 1/

√
2
)

exp(− 1
2γ r2)

We shall look for functions which are eigenfunctions of the operator for the z-component
of angular momentum, l̂z = −ih̄∂/∂φ (see Chapters 3 and 4). None of the above functions
can satisfy this requirement since they each give a different function when differentiated once
with respect to φ. But we can attempt to find the functions we seek by making combinations.
Provided that we ensure that they are normalised, any new functions we form will remain
eigenfunctions of the Hamiltonian operator, Ĥ, because all three functions, �11, �20 and
�02, are degenerate. �20 and �02 are functions of cos2φ and sin2φ respectively and we know
that cos2 φ + sin2 φ = 1. Therefore, the normalised sum:

�0 =
√

1
2 {�20 + �02} = [γ/π]

1
2 (γ r2 − 1) exp(− 1

2γ r2)

does not contain φ and is an angular momentum eigenfunction with an eigenvalue of
zero, hence the subscript of 0 qualifying the new function. This is the state which we
called �+ in the previous section. Having taken the sum of �20 and �02 we must also
take their difference:

�− =
√

1
2 {�20 − �02} = [γ/π]

1
2 γ r2 cos 2φ exp(− 1

2γ r2)
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We note that �11 and �− are functions of sin 2φ and cos 2φ respectively which is
reminiscent of Chapter 3 (Table 3.1), where we found that the functions (1/

√
π)sin(nφ)

and (1/
√

π)cos(nφ) were not eigenfunctions of the angular momentum operator (l̂z =
−ih̄∂/∂φ) but that eigenfunctions such as:

1√
2π

· exp(±inφ) = 1√
2

·
{

1√
π

cos(nφ) ± i
1√
π

sin(nφ)

}

could be formed from normalised combinations of them. The new functions remained
eigenfunctions of the energy operator, Ĥ. This suggests a similar approach here‡ so
we form:

�+2 =
√

1
2 {�− + i�11} = [γ/2π]

1
2 γ r2 exp(− 1

2γ r2) exp(+2iφ)

and:

�−2 =
√

1
2 {�− − i�11} = [γ/2π]

1
2 γ r2 exp(− 1

2γ r2) exp(−2iφ)

We now have:

l̂z�+2 = −ih̄
∂

∂φ
�+2 = +2h̄�+2

l̂z�0 = −ih̄
∂

∂φ
�0 = 0

and:

l̂z�−2 = −ih̄
∂

∂φ
�−2 = −2h̄�−2

These are three eigenfunctions of l̂z with eigenvalues, characterised by the quantum
number, symbol l, of +2, 0 and −2 respectively. All excitations of the bending vibra-
tion give rise to angular momentum about the z axis so it is important to include l in
the notation for the vibrational state of the carbon dioxide molecule given in the form
(v 1, v 2

l , v 3). The functions �+2 and �−2 correspond to a slightly bent carbon dioxide
molecule, which is rotating around the z axis thereby giving rise to a moment of inertia
where previously there was none. The state �0 has no angular momentum about z and
the differing interactions of the three functions lifts the triple degeneracy of the (0, 2, 0)
state. To a first approximation (see below) the sense of rotation makes no difference to
the rotational energy levels due to the end-over-end rotation of the molecule, but there
is a difference between l = 0 and l = ±2 since the correction, 	E, to the total energy,
rotational plus vibrational, is given by:

	E = (g22 − B)l2 (10.8.1)

The first term in Equation (10.8.1) is the correction to the vibrational energy in which
g22 is the anharmonicity constant (Section 10.6) for the degenerate vibration ν2. The
second term is the correction to the rotational energy in which B is the rotational constant
defined by Equation (10.4.1a). Since the values of g22 and B for carbon dioxide are

‡ When forming combinations by adding and subtracting functions, addition corresponds to the in-phase combination (phase
angle = 0) while subtraction corresponds to the out-of-phase combination (phase angle = ±π). When the combination also
involves i we are combining functions which differ in phase by +π /2 (+i) or −π /2 (−i). Compare the Argand diagram in
Appendix 8.
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−0.62 and 0.39 cm−1 respectively, the separation of the l = 0 and l = 2 levels would be
expected to be of the order of −4.0 cm−1 but this cannot be determined directly from the
spectrum because, as we have seen above, the (0200) level is in Fermi resonance with
the (1000), which accounts for the anomalously large observed splitting of ∼51 cm−1.
Furthermore, the resonance interaction causes the two states to mix in almost a 1 : 1 ratio
(see below) so that it is no longer correct to speak of either of them as being (0200)
or (1000).

Type 3. In the last example of Coriolis coupling we examined the angular momentum
associated with the doubly excited ν2 vibration. In fact, every overtone of ν2 has angular
momentum and the two components of the singly excited ν2 state also undergo a Coriolis
interaction as a consequence of their angular momentum about the z axis for which l = ±1
(see problem 5). As shown in Figure 10.13, the Coriolis forces on the atoms convert one
component of (0110) into the other. This is an example where, even if the energy of
interaction (off-diagonal matrix element) is small, the resulting splitting of the energy
levels can be large because, prior to the interaction, they were degenerate. It is frequently
called a first order Coriolis perturbation and it removes the degeneracy of the pairs of ±l

levels. This effect is known as l-type doubling. Thus the two (0110) energy levels, which
are degenerate in the absence of vibrational angular momentum, are split into two. And
in the case of the doubly excited ν2, the degeneracy of (02+20) and (02−20) is removed
so that all three states have different energies.

To see in a simple way how this may come about, we note that since carbon dioxide
is a linear molecule there is no moment of inertia or angular momentum associated with
rotation about the internuclear axis. But the angle-bending vibration removes this linearity
and the molecule becomes, momentarily, capable of angular momentum with respect to
rotation about that axis. This perturbs the energy levels of the molecule, especially, but
not exclusively, the rotational levels. Unfortunately, there appear to be no experimental
observations of l-type doubling in carbon dioxide in the literature though there are for
other molecules, e.g. hydrogen cyanide (HCN). This may well be because the splittings
are very small and normally measurable only in microwave spectroscopy but the carbon
dioxide molecule gives no microwave spectrum since it has no permanent dipole moment.

The energy levels associated with some of the interactions which we have discussed
above are represented in Figure 10.14. The figure is illustrative rather than exact because
the energy levels are determined by many subtle effects of anharmonicity which have
not been discussed above and these factors result in a slightly larger value of the Fermi-
resonance interaction (α in Section 10.8.1) than we find in the following. On the sides of
the diagram the estimated positions of the levels in the absence of the Fermi resonance and
Coriolis coupling are shown; the three degenerate double excitations of ν2 on the left at

O

O

C

Figure 10.13 Coriolis forces on the nuclei of a carbon dioxide molecule rotating about the inter-
nuclear axis
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Figure 10.14 The effect of Fermi resonance and Coriolis coupling on some vibrational energy
levels of carbon dioxide (Not to scale)

1339.1 cm−1 and the singly excited ν1 on the right at 1334.6 cm−1. The Fermi resonance
interaction of (0200) and (1000) mixes these levels and displaces them to 1285.4 cm−1 and
1388.2 cm−1, where they are observed experimentally. α = 51 cm−1 and the vibrational
wave functions after the mixing are found to be:

�(1388.2) = 0.72(0200) + 0.69(1000)

and
�(1285.4) = 0.69(0200) − 0.72(1000)

The Coriolis interaction of rotation and vibration lowers the two (0220) levels about
4 cm−1 to the experimental value of 1335.1 cm−1. The loss of the (02+20)/(02−20) degen-
eracy is not shown.

10.9 THE AB-INITIO CALCULATION OF IR SPECTRA

In the second half of the 20th century the quantity of IR-spectral data increased rapidly and
the quantitative analysis of that information, i.e. the determination of the force constant
for each normal mode, grew in importance. The determination of force constants was
of interest not only for a complete assignment of the spectrum but also for the light
which they could throw upon the strength of chemical bonds and on the fundamental
thermodynamic properties of the molecules. Most calculations employed the FG-matrix
method proposed by Edgar Bright Wilson (1908–1992) and when, in the 1960s, they
were programmed for computers many important advances were rapidly achieved. Bands
in the spectrum could then be quantitatively ascribed to mixtures of the vibrations of
chemically significant groupings of atoms in a molecule or to the whole molecule in the
case of skeletal vibrations. The force constants found could be related to the strength of
bonds, and the rigidity, i.e. resistance to deformation, of the molecule. The mechanics
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used in the calculations, which were based upon an input of atomic masses and trial
normal modes and force constants, was purely classical. The trial force constants were
empirical values deduced from those in the literature for similar molecules and groups;
they were not calculated.

More recently, as the power of density-functional methods and ab-initio molecular
orbital calculations has increased, molecular vibrational energy levels have been derived
using force constants calculated quantum mechanically from molecular wave functions
and the use of normal modes as a basis has been superseded by expressing the motions
of the atoms in Cartesian co-ordinates. Very good theoretical IR spectra are now being
obtained by this method; sufficiently good, in fact, to assign an absolute configuration to
each member of a pair of optical isomers by comparison of their theoretical and exper-
imental vibrational circular dichroism (VCD) spectra.12 (A VCD IR spectrum is an IR
spectrum in which the differential absorption of left and right circularly polarised radia-
tion (Section 8.2.2), rather than the total absorption, is recorded against wave number.)
However, the assignment of the spectral bands to particular bond-angle or bond-length
changes does not emerge as naturally as with the earlier approach.

10.10 THE SPECIAL CASE OF NEAR INFRARED SPECTROSCOPY13

Measurements in the region of the infrared nearest to the visible, i.e. the wavelength
range 8 × 10−7 to 3 × 10−6 m justify a brief mention in this chapter for two reasons.
From the theoretical standpoint we should note that the absorption of e-m radiation in
this region is entirely due to the overtones and combination bands of vibrations involving
hydrogen, rather than to fundamental vibrations. There are a very large number of such
combinations and overtones and though they are weak bands they provide strong spectra
when neat samples are measured in transmission or reflectance. Generally, the spectral
bands are broad and lack the distinctive features of mid infrared spectra. The second reason
concerns the applications of NIR spectroscopy which are of a very special nature. When
analysed by means of rather sophisticated statistical methods, NIR spectra have proved
uniquely valuable in quantitative analysis, especially the analysis of foods and agricultural
products; e.g. the amount of water and protein in grains, flour, malt and beans.
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BOX 10.1 The reduced mass and the Hamiltonian operator for the vibration and
rotation of a diatomic molecule

Vibration
Consider first the case of the vibrating dumb-bell model of a diatomic molecule
(Figure B10.1.1). The kinetic energy, T , depends upon the masses of the two nuclei
and the speed with which they are moving, va1 and va2. The subscript ‘a’ indicates that
the velocity with which we are concerned is that directed along the internuclear axis:

T = 1
2m1va1

2 + 1
2m2va2

2 (B10.1.1)

The potential energy (V ) depends upon the difference between the distance bet-
ween the two nuclei (R) and the equilibrium distance (re). Both atoms are subject to
a restoring force equal to k(R − re), which gives rise to a parabolic potential energy
of the form:

V = 1
2 k(R − re)

2 (B10.1.2)

The occurrence of two masses in the equation for T presents problems and an
analysis of the motion of the molecule would be easier if the two masses could be
expressed as one quantity. That objective can be realised in the following way.

The masses m1 and m2 oscillate in phase on either side of the centre of mass in
such a way that at all times:

m1r1 = m2r2 (B10.1.3)

The amplitude of the motion of the lighter mass is greater than that of the heavier
by the ratio of their masses.

R

r1 r2

centre of mass

m1 m2

Figure B10.1.1 The vibrating dumb-bell model
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At any moment in time the bond length is R and:

R = r1 + r2 (B10.1.4)

Using the above equations we can express r1 and r2 in terms of R and m1 and m2:

r1 = m2R/(m1 + m2) and r2 = m1R/(m1 + m2) (B10.1.5)

Since the centre of mass is stationary, the velocity of each mass is:

va1 = ∂r1

∂t
=

(
m2

m1 + m2

)
· ∂R

∂t
≡

(
m2

m1 + m2

)
· vR (B10.1.6)

and

va2 = ∂r2

∂t
=

(
m1

m1 + m2

)
· ∂R

∂t
≡

(
m1

m1 + m2

)
· vR

where vR is the rate of change of the bond length. Inserting the above results into
Equation (B10.1.1) we have:

T = m1

2
·
(

m2

m1 + m2

)2

· v2
R + m2

2
·
(

m1

m1 + m2

)2

· v2
R

= 1

2

(
m1m2

m1 + m2

)2

· v2
R

m1
+ 1

2

(
m1m2

m1 + m2

)2

· v2
R

m2

= 1

2

(
m1m2

m1 + m2

)2

·
(

m1 + m2

m1m2

)
· v2

R

≡ 1

2µ
· (µvR)2 or

1

2
· µv2

R (B10.1.7)

where

µ = m1m2/(m1 + m2) (B10.1.8)

is the reduced mass which replaces m while vR replaces v in the standard expression
for the kinetic energy of a moving mass.

Thus, the total vibrational energy (Evib) is given by:

Evib = V + T = 1
2 k(R − re)

2 + 1
2 (µvR)2/µ (B10.1.9)

so that, replacing µvR by −(ih/2π)∂/∂R, the energy operator Ĥ is:

Ĥ = k

2
· (R − re)

2 − h2

8π2µ
· ∂2

∂R2
(B10.1.10)

Rotation

There are three properties of interest which are associated with the end-over-end
rotation of the dumb-bell model (Figure B10.1.2).

The moment of inertia (I ):

I = m1r1
2 + m2r2

2 = µR2 (B10.1.11)
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R

r1 r2

centre of mass

m1

Vt1

Vt2

m2

Figure B10.1.2 The rotating dumb-bell model

where we have used Equation (B10.1.5), and the angular momentum, A, (see
Chapter 4):

A = m1r1vt1 + m2r2vt2 (B10.1.12)

The subscript ‘t’ indicates that we are concerned with the tangential velocity along
the circular path taken by each atom around the molecular centre of mass. The velocity
is the length of the path divided by the time taken to complete one revolution which
is the inverse of the frequency of rotation, νrot, so that we have:

vt1 = 2πr1νrot and vt2 = 2πr2νrot (B10.1.13)

Using this result we readily find that:

A = 2πνrot(m1r1
2 + m2r2

2) = 2πνrot(I1 + I2) = 2πνrotI (B10.1.14)

and using Equation (B10.1.11):

A = 2πνrotµR2 or ωI (B10.1.15)

where ω = 2πνrot is the angular velocity in radians s−1.
Finally, a very similar development shows that the kinetic energy (there is no

potential energy) associated with the rotational motion, Erot, is given by:

Erot = 2π2ν2
rotµR2 = 2π2ν2

rotI = 1
2ω2I (B10.1.16)

Equations (B10.1.11), (B10.1.15) and (B10.1.16) show the close and constant rela-
tionship between I, A and Erot in classical mechanics. We expect that relationship to
persist in quantum mechanics so that the quantisation of the angular momentum and
energy will go hand-in-hand, as they do for the one-electron atom. Indeed, we have
here two particles rotating about their centre of mass, exactly as in the one-electron
atom, apart from the fact that the distance between the two particles is constant and
their relative potential energy may be regarded as zero in the rigid rotator approxima-
tion. (Actually, the bond becomes longer as the frequency of rotation increases, but
we shall not consider such refinements to the theory here.) Therefore, the Hamiltonian
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operator is that for a system with kinetic energy only and in Section 3.13.4 it was
shown that for motion in the x-direction it is:

Ĥ = −(h2/8π2m)∂2�/∂x2

Since we are dealing here with three-dimensional motion, Ĥ becomes:

Ĥ = −(h2/8π2m){∂2�/∂x2 + ∂2�/∂y2 + ∂2�/∂z2}
and the Schrödinger equation is:

− (h2/8π2µ)∇2� = E� (B10.1.17)

in which the three derivatives of the wave function have been written in the standard
abbreviation as ∇2� and m has been replaced by the reduced mass, µ. The eigenvalues
of this equation are deduced in many texts. They are:

EJ = h2J (J + 1)

8π2µR2
= h2J (J + 1)

8π2I
≈ hJ (J + 1)

8π2cI
in wave numbers

(B10.1.18)
where J is a quantum number which can take all positive integer values, includ-
ing zero.

Using Equation (B10.1.15) we obtain the equation for the quantised values of the
angular momentum as:

AJ = [J (J + 1)]
1
2 h/2π (B10.1.19)

The eigenfunctions of the energy or angular momentum operators are the same
and since this is a problem with spherical symmetry they are almost always expressed
in polar coordinates (Appendix 7). They are, in fact, the spherical harmonics which
are described in detail in Appendix 5. There, l is used for the quantum number
which we have called J here. The quantum number ml which characterises the z-
component of the angular momentum in spherical harmonic functions is called MJ

or simply M in rotational spectroscopy and we should note that every level with
total angular momentum characterised by J is (2J + 1)-fold degenerate which has
important implications for the intensities of the rotational fine structure of the IR
absorption bands.

BOX 10.2 Some numerical data concerning the vibration of the 1H–35Cl molecule
(assuming that it behaves as an harmonic oscillator)

The relative molecular masses are:

1H = 1.0078250 ⇒ 1.6735 × 10−27 kg
35Cl = 34.968853 ⇒ 58.067 × 10−27 kg

which give (Equation (10.3.5)) a reduced mass, µ, of 1.6267 × 10−27 kg.
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The equilibrium internuclear distance, re, is 127.5 pm and the v = 0 to v = 1
transition is found at 298 974 m−1 which corresponds to a frequency, ν, of 8.9630 ×
1013 Hz.

Entering these data in Equation (10.3.3) with m replaced by µ, we find a force
constant, k, of 515.9 Nm−1.

The energy of the lowest vibration energy level of the molecule, E0, is 1
2hν =

2.9695 × 10−20 J.
When the H–Cl bond is at its maximum (or minimum) length all this energy

is potential energy so that at this point Equation (10.3.1) can be used to calculate
|R − re| max, the maximum extension (compression) of the bond. We find:

|R − re|max =
√

2E0

k
= 1.0729 × 10−11 m (B10.2.1)

This value of |R − re|max for maximum extension (compression) is R, the ampli-
tude of the vibration, and the percentage change in bond length for this vibration, the
zero-point vibration, is R/re = 0.084 or 8.4 %.

The rate of change of the internuclear distance, vR, is given by Equation (10.2.7)
and its maximum value will be that where the cosine function takes its maximum
value of 1.0.

This will occur when the bond length is at its equilibrium value (R = re), which
is the instant at which all the energy is kinetic energy, the potential energy being
zero. Thus:

vR(max) = 2πνR = 6.0424 × 103 m s−1 (B10.2.2)

The rate of change of the bond length is composed of two terms, the velocity of
the hydrogen and chlorine atoms:

vR = vH + vCl (B10.2.3)

Furthermore, in order that the centre of mass does not move, the motions of the
two atoms must satisfy the equation:

vH/vCl = mCl/mH (B10.2.4)

With the aid of Equation (B10.2.3) we can eliminate vCl and obtain, vH = 5.8731 ×
103 m s−1. The value of vCl is found to be 1.6927 × 102 m s−1.

These are the maximum velocities achieved by the two atoms in the lowest vibra-
tional state. They correspond to the situation in which all the vibrational energy is
kinetic energy and the calculation can be checked by evaluating the equation:

E0 = 1
2 (mHv2

H + mClv
2
Cl) (B10.2.5)

The results of the above calculations for energy levels with quantum numbers
v = 0 to 5 are given in the table below. To emphasise the fact that the H–Cl molecule
is not, in fact, an harmonic oscillator, the actual values of the energy levels are given
in the last column of the table.
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v Ev (ho) R R/re vH(max)† vCl(max) Ev (obs)
(10−20 J) (10−11 m) % (104 m s−1) (102 m s−1) (10−20 J)

0 2.969 1.0729 8.4 0.5873 1.6972 2.866
1 8.908 1.8584 14.6 1.0173 2.9318 8.393
2 14.847 2.3992 18.8 1.3133 3.7849 13.715
3 20.786 2.8387 22.3 1.5539 4.4784 18.382
4 26.725 3.2188 25.2 1.7619 5.0780 23.745
5 32.644 3.5585 27.9 1.9479 5.6139 28.455
†104 m s−1 = 22 374 mph.

Note how R, the amplitude of the vibration, increases and recall that the forces which
oppose the compression of the bond are not the same as those which oppose its
extension. This removes the exact proportionality between potential energy and bond
length causing the potential energy curve to deviate from the ideal parabolic form
of the harmonic oscillator. This is manifested in the increasing difference between
E(obs) and E(ho).

BOX 10.3 Harmonic oscillator eigenfunctions and the Hermite polynomials

The solutions of Schrödinger’s equation for the harmonic oscillator are of the form:

ψv(r) = NvHv(
√

γ r) · exp(− 1
2γ r2) (B10.3.1)

where r = R − re, γ = 4π2µνc/h and Nv is a normalising constant given by:

Nv = (γ /π)
1
4 (2v · v!)−

1
2

The functions Hv (
√

γ r) are the Hermite polynomials. The first few members of
the series have the following forms:

H0(
√

γ r) = 1 H1(
√

γ r) = 2(
√

γ r) H2(
√

γ r) = 4(
√

γ r)2 − 2

H3(
√

γ r) = 8(
√

γ r)3 − 12(
√

γ r) H4(
√

γ r) = 16(
√

γ r)4 − 48(
√

γ r)2 + 12

H5(
√

γ r) = 32(
√

γ r)5 − 160(
√

γ r)3 + 120(
√

γ r)2

and ψ12(r), which is plotted in Figure 10.6, contains H12(
√

γ r) which is:

H12(
√

γ r) = 4096(
√

γ r)12 − 135168(
√

γ r)10 + 1520640(
√

γ r)8

− 7096320(
√

γ r)6 + 13305600(
√

γ r)4 − 7983360(
√

γ r)2 + 665280

There is a particularly useful recursion formula which enables a member of the
series to be calculated from the two preceding members. It is:

Hv +1(
√

γ r) = 2
√

γ rHv(
√

γ r) − 2vHv−1(
√

γ r) (B10.3.2)
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If we multiply throughout by exp(− 1
2γ r2) and use Equation (B10.3.1) we can find

a recursion formula for the harmonic oscillator eigenfunctions:

ψv +1(r)

Nv +1
= 2

√
γ rψv(r)

Nv
− 2vHv −1(r)

Nv −1

which can be rearranged to give a result, which we find very useful in Section 10.5:

rψv(r) = {Nv/2
√

(γ )}{[ψv +1(r)/Nv +1] + [2vψv −1(r)/Nv −1]}
(B10.3.3)

PROBLEMS FOR CHAPTER 10

1. Confirm Equation (10.2.3) by differentiating Equation (10.2.2) with respect to t and
substituting the result into Equation (10.2.1).

2. Use Equation (10.2.8) to complete the following table:

Molecule X–H stretcha Reduced massb Force constant
(m−1) (atomic mass units) (N/m−1)

XHn

OH2 365 200
NH3 333 400
CH4 291 400
aThe wave number given is that of the symmetric stretching, i.e. the vibration in which
all n X–H bonds extend or contract simultaneously.
b1 a.m.u. = 1.6605 × 10−27 kg.

3. By expanding the exponential (Box 3.1) of the Morse function show that the force
constant for harmonic motion (k in Equation (10.3.1)) can be expressed as:

k = 2Dea2

4. Under conditions of low resolution the IR spectrum of gaseous H–Cl at 25 ◦C shows
a very strong, broad absorption band centered at 2990 cm−1. Under high resolution
the band can be resolved into a large number of bands; those near the centre of the
spectrum have the following wave numbers (cm−1):

2906.8, 2927.6, 2948.4, 2969.2, 3010.8, 3031.6, 3052.4 and 3073.2.

Draw an energy-level diagram to interpret these data and calculate the H–Cl bond
length. (Answer 128.6 pm).

Note: The experimental data above have been slightly modified in order to remove
the small effects of complicating phenomena which have not been described in this
chapter.
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5. Following the method described in Section 10.8.2, write down the functions �10 and
�01 for the vibrational state of carbon dioxide, which has one quantum of energy
in the bending vibration ν2. By converting to plane-polar co-ordinates and forming
normalised, complex combinations of �10 and �01, show that the vibrational angular
momentum of the state may be characterised by the quantum numbers l = ±1.

6. In Figure 10.10, the C–Cl (7) and C–Br (8) bands of CH2BrCl are approximately equal
in intensity but the two C–Br bands of CH2Br2 are very different. Suggest why.
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11.0 INTRODUCTION

Electronic spectroscopy is the oldest of the spectroscopies and has played a central role
in the development of our understanding of the structure of atoms and molecules. The
work of Bunsen and Kirchhoff in the 1860s demonstrated that the absorption and emis-
sion of light provided a characteristic bar code for each element which could be used for
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qualitative analysis. Subsequent developments have made atomic spectroscopy one of the
most important quantitative analytical methods available to us. At the turn of the cen-
tury, however, the sharp line spectra of atoms were of central theoretical interest because
of the challenge presented by their interpretation. As we have seen in Chapter 2, this
puzzle was finally solved by quantum mechanics and since that time it has been clear
that no real understanding of the electronic spectra of atoms or molecules is possible
without it. In the first half of the 20th century technological advances made the system-
atic study of the electronic spectra of molecules possible and the interpretation of the
spectra became intimately linked with the quantum-mechanical theory of the chemical
bond.

The significance of electronic spectroscopy in modern science often lies more in its
wide range of applications than in the fundamentals of the subject itself. Thus, the
time scale of electronic spectroscopy is very short (Section 8.8), so it finds applica-
tion in measuring the rates of very fast processes such as photosynthesis. The transition
probability of electronic transitions can be very high (Section 8.7) and electronic spec-
troscopy is therefore a very sensitive, quantitative tool in analytical chemistry, both in
direct application and as a detection method in chromatography. The discrimination and
precision of electronic spectroscopy has provided much of our data on the composi-
tion of extra-terrestrial bodies and the velocities at which they are receding from us.
These are highly specialised subjects which we can take no further here. The purpose
of the remainder of this chapter is to set out some of the theoretical concepts which
underlie our current understanding of atomic and molecular electronic spectroscopy.
Since the basic features of the spectroscopy of atoms and of the transition metal ions
have been described in Chapters 5 and 7 respectively, in this chapter attention will be
focused on the electronic spectra of molecules, apart from the use of the helium atom
to illustrate some important principles. In Sections 11.2 and 11.3 we review the major
classes of such spectra in a purely qualitative manner. Following that we outline the
quantum-mechanical approach to the quantitative interpretation of molecular electronic
spectra.

11.1 ATOMIC AND MOLECULAR ORBITALS

The atomic orbitals of Schrödinger’s hydrogen atom (Chapter 5) and the molecular orbitals
developed soon afterwards by Hund and Mulliken (Chapter 6) have proved to be indis-
pensable starting points in the interpretation of molecular electronic spectra. The simplest
approach is to identify the energy of an observed absorption band with the energy differ-
ence between the orbital which the electron initially occupied (φi) and the orbital which
it finally occupies (φf):

�E(i → f) = Ef − Ei (11.1.1)

Although, as we shall see later, there are fundamental problems with this over-simplified
view of electronic spectroscopy, it has nevertheless served as a useful concept on which
to construct a broad view of the types of electronic spectra which we might expect atoms
and molecules to have. Furthermore, more sophisticated theories almost always begin
from an orbital view point and must return to orbitals when an explicit calculation of
a quantity, e.g. a transition probability (Sections 8.7 and 11.7.2) is required to interpret
a spectrum.



The Spectra of Covalent Molecules 329

11.2 THE SPECTRA OF COVALENT MOLECULES

As we have seen in Section 6.11, the molecular orbitals of diatomic molecules may
be described as σ and π bonding, σ ∗ and π∗ antibonding and nonbonding, n, depend-
ing upon the type and phase of their atomic orbital overlap. The same essential fea-
tures may be recognised in larger molecules and a generalised energy-level diagram
based on them can be drawn (Figure 11.1). On the basis of this diagram, in a simple
orbital view we expect that electronic transitions will increase in energy in the order
n → π∗, π → π∗, π → σ ∗ ≈ σ → π∗, σ → σ ∗. This corresponds well with the experi-
mental observations, though transitions involving σ and σ ∗ orbitals are rarely seen since
they lie in the far ultraviolet, well outside the range of conventional laboratory spec-
trometers which are normally limited to wavelengths greater than 200 nm, i.e. energies
less than ∼600 k J mol−1 or ∼6.3 eV. The vast majority of spectra observed and used in
chemical applications where transition metal ions are not involved are therefore either n
→ π∗, π → π∗ or charge-transfer transitions (see Section 11.3).

11.2.1 π → π∗ transitions

As far as spectroscopy is concerned, the archetypal π-electron systems are the linear con-
jugated polyenes and the aromatic hydrocarbons. The Hückel theory (Section 12.1) is the
simplest way of obtaining the relative energies of the π-electron molecular orbitals of such
molecules. It is also the starting point for methods which introduce electron repulsion into
the scheme. As one would expect from the behaviour of an electron on a ring or in a box
(Sections 3.3 and 3.6), the spacing of the energy levels diminishes as the length of the elec-
tron’s path, linear or circular, increases. In particular, the gap between the highest occupied
MO (HOMO) and the lowest unoccupied MO (LUMO) decreases, which is reflected in the
electronic spectrum by a shift of the lowest energy absorption band to longer wavelengths,
i.e. lower energies;1,2 a discussion of the spectra of linear conjugated molecules appears in
Box 3.6.

The difference between the energies of the LUMO and the HOMO, as calculated by
the Hückel theory, correlates well with the observed first absorption band in the case of
linear conjugated systems and quite well for the aromatic hydrocarbons (Section 12.1.5,
Figure 12.4). However, the apparent success of these correlations owes much to the sim-
ilarity of the series of molecules compared; attempts to improve the correlation or extend
the spectral interpretation to other bands or other molecules was not successful. It was
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Antibonding
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Figure 11.1 The order of energy levels in small covalent molecules
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soon realised that the problem lay in the lack of explicit consideration of electron repulsion
and, with the advent of computers, a systematic analysis of the spectra of the aromatic
hydrocarbons provided a satisfying interpretation of their spectra; this is described in
detail in Section 11.6.

11.2.2 n → π∗ transitions

By definition, n or lone-pair electrons play little or no role in chemical bonding and therefore
their energies remain approximately constant from molecule to molecule. They are close
to those in the isolated atom and lie in the energetic centre of the energy level diagram
(Figure 11.1). Thus, in a simple orbital energy view an n-orbital constitutes a HOMO of
constant energy and the variation in the position of an n → π∗ transition is a function of
the changing energy of the π∗ LUMO, which decreases as the length of the conjugated
chain increases. This concept has provided a clear interpretation of the n → π∗ transitions
observed in the spectra of conjugated carbonyl compounds.1,2 More sophisticated analysis
of such spectra was hampered by the fact that the n-orbitals could not be readily incorporated
into a π-electron theory that included electron repulsion. However, later methods, based
upon the same principles but including the σ as well as the π electrons, provided a more
versatile and comprehensive interpretation of the spectra of organic molecules.

11.2.3 Transition-metal complexes

The interpretation of the spectra of the transition metal complexes is very specialised and
differs significantly from that of covalent molecules in several important respects. Further-
more, the theoretical analysis of the spectra is intimately linked with the explanation of
other properties of these compounds, notably their magnetism. Therefore, the spectra of
transition metal complexes are discussed in Chapter 7, which is devoted to all aspects of
the electronic structure of these compounds.

11.3 CHARGE TRANSFER (CT) SPECTRA

Many, though not all, electronic transitions involve a redistribution of charge. (But note
that a redistribution of charge is not essential for a transition dipole moment, Appendix
9.) Normally, electrons move from one part of a molecule to another and the process
is described as intramolecular charge transfer. An example of this is the complex ion
[FeII(2,2′-bipyridene)3]2+ which absorbs strongly at 522 nm. (ε = 8700 l mol−1 cm−1). In
the transition responsible for the absorption the electron is transferred from the ferrous iron
atom to the bipyridene ligands, leaving the iron in the ferric state. This is a metal-to-ligand
charge transfer (MLCT) and such transitions find important applications in analytical chem-
istry on account of their specificity and sensitivity. LMCT transitions are also important,
e.g. the intense purple of the [MnO4]− ion.

In extreme cases the charge is essentially transferred from one molecule to another;
intermolecular charge transfer. A very dramatic example of this is the blood-red solution
produced when a colourless solution of hexamethyl benzene is added to a faintly yellow solu-
tion of chloranil. The electron is transferred from the chloranil to the hexamethyl benzene.
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Outside the range of the human eye are the charge transfer to solvent (CTTS) transitions of
some inorganic ions, especially the halide ions. In these transitions an electron is transferred
from the halide ion to the water molecules in its immediate vicinity. This much is agreed,
but there remains some uncertainty concerning the exact nature of the orbital in which the
electron ends its journey.

If the intensity of the charge-transfer band of a solution of two substances, an electron
donor D and an electron acceptor A, is studied as a function of the concentrations of A
and D, it can be readily established that there is an equilibrium between separate A and
D and a weak complex of the two, A− − D+, in which there is an appreciable transfer of
charge from D to A:

A + D ↔ A− − D+ (11.3.1)

The complex A− − D+ is usually very weakly bonded and can only be isolated in excep-
tional circumstances. It is the charge transfer process itself which is responsible for the
stability of the complex as R.S. Mulliken pointed out in 1952. If we describe the states
on either side of the above equilibrium with wave functions φ(A + D) and φ(A− − D+),
then Mulliken proposed that the ground state of the complex (�g) would be a state which
was largely φ(A + D) with a small admixture of φ(A− − D+), while for the excited
state (�e) the reverse would be the case. He wrote the ground and excited state wave
functions as:

�g = cos θ · φ(A + D) + sin θ · φ(A− − D+) (11.3.2a)

and
�e = sin θ · φ(A + D) − cos θ · φ(A− − D+) (11.3.2b)

Use of the sine and cosine functions as multiplying coefficients ensures that the two
wave functions are orthogonal and normalised, provided that it is assumed that the two
basis functions, φ(A + D) and φ(A− − D+), are also orthonormal; even though this is not
usually the case. Mulliken’s wave functions show how the ground state of the complex
is stabilised by an admixture of the charge transfer state in a way which is essentially
quantum mechanical.

Mulliken also estimated the energy of the charge transfer absorption band (�E) as the
ionisation energy of the donor (ID) minus the electron affinity of the acceptor (EA) and
other contributing terms (�) with an equation of the form:

�E = ID − EA − � (11.3.3)

The equation predicts that a graph of �E against ID for a series of donors and a single
acceptor, or the corresponding plot for a series of acceptors and a single donor will be
a straight line and this is found to be approximately true in practice. There are however,
considerable deviations from the expected linearity and slope which are the result of the
fact that the last term, �, also varies with A and D. This suggests that we examine it in
a little more detail.

The contributions made by the ionisation energy and the electron affinity (recall that it
is the unconventional way in which electron affinity is defined which results in it appearing
in this equation with the negative sign) are clear. There are two major contributions to
�. The first is the Coulombic attraction (EC) between the negative charge created on the
acceptor and the positive charge on the donor. The second part is the quantum mechanical
or resonance stabilisation (ER), which results from the mixing of the two basis functions,
φ(A + D) and φ(A− − D+) and makes �g lower in energy than φ(A + D) and �e higher
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Figure 11.2 Energy curves for a charge-transfer complex

than φ(A− − D+). How the interaction of the basis states φ(A + D) and φ(A− − D+) splits
their energy curves apart when the composite states (Equations (11.3.2a) and (11.3.2b)) are
formed is illustrated in Figure 11.2. In its essence this is just the same as the stabilisation
which results when two hydrogen atoms combine their 1s wave functions to form bonding,
σ1s, and antibonding, σ ∗

1s, molecular orbitals.

11.4 MANY-ELECTRON WAVE FUNCTIONS

The electrons themselves have played a rather insignificant role in the brief survey of
electronic spectroscopy above. But, with the notable exception of the hydrogen atom
and some ions of the early members of the periodic table, atoms and molecules contain
many electrons each of which feels the repulsion of all the other electrons in the system
(Section 5.7). These electron-repulsion energies are large and require explicit considera-
tion. If the two electrons of the helium atom are placed opposite each other in the first
Bohr orbit of the atom, the energy of the repulsion between them is 4.35 × 10−18 J or
2.62 × 103 kJ mol−1; the energy of the attraction of each to the doubly charged nucleus
is, of course, four times as large. Although this is a very artificial model, the energies
determined are of the same order of magnitude as those obtained by more sophisticated
calculations (Table 11.2) and, clearly, the repulsion energy cannot be ignored.

Since the energy due to interelectronic repulsion is so large, the description of any one
electron depends upon the positions of all the others and the wave function describing
the electronic state of an atom or molecule must therefore be a wave function which
includes all the electrons. Thus, the wave function of the helium atom in its ground state,
configuration 1s2, must be something of the form �(He g.s.) = φ1sα(1) · φ1sβ(2). We take
the product, and not the sum, of the two atomic wave functions because wave functions
represent probabilities. But, as it stands, this is not sufficient. In Section 2.8 we saw that
we cannot ascribe a trajectory or path to an electron and one consequence of this is that
we cannot ‘keep track’ of an electron. Since we cannot follow an electron along a path
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we cannot ever be sure which of many electrons we are observing; we cannot distinguish
them with a label as we can identical classical objects. It is important to understand that
this is a fundamental problem, not a practical one, and our helium atom wave function
must therefore contain the second possible way of assigning electrons 1 and 2 to orbitals
φ1sα and φ1sβ, i.e. φ1sβ(1) · φ1sα(2).

We now have two ways of combining these two parts of the wave function:

�+(He g.s.) =
√

1
2 {φ1sα(1) · φ1sβ(2) + φ1sβ(1) · φ1sα(2)} (11.4.1a)

or:
�−(He g.s.) =

√
1
2 {φ1sα(1) · φ1sβ(2) − φ1sβ(1) · φ1sα(2)} (11.4.1b)

The two results are very different. (The factor
√ 1

2 ensures that the wave function
remains normalised.) If we take the positive sign the exchange of electrons does not
change the sign of �(He g.s.), but if we take the negative sign the sign changes:

P̂1,2�+(He g.s.) =
√

1
2 {φ1sα(2) · φ1sβ(1) + φ1sβ(2) · φ1sα(1)} = �+(He g.s.)

but:

P̂1,2�−(He g.s.) =
√

1
2 {φ1sα(2) · φ1sβ(1) − φ1sβ(2) · φ1sα(1)} = −�−(He g.s.)

where P̂1,2 is the operator for the exchange of electrons 1 and 2. The wave function
�+ (He g.s.) does not change sign and is said to be symmetric with respect to electron
exchange while the wave function �− (He g.s.) changes sign and is antisymmetric with
respect to that operation. Quantum mechanics tells us that both possibilities cannot co-
exist in nature, but does not say which one is, in fact, found. However, experiment shows
that it is the function which is antisymmetric with respect to electron exchange, �−(He
g.s.), which is found in our universe and this gives rise to a law which may be stated:

Many-electron wave functions are antisymmetric with respect to electron exchange.
This is, in fact, just another way of stating the Pauli principle because if two electrons

could occupy the same atomic orbital with the same spin then:

�−(He g.s.) =
√

1
2 {φ1sα(2) · φ1sα(1) − φ1sα(2) · φ1sα(1)} = 0

and the wave function vanishes.
The fact that atomic and molecular orbitals can be occupied by not more than two

electrons with their spins paired has a profound influence upon the structure of atoms
and molecules and thus upon the whole of chemistry. It also plays an important role in
electronic spectroscopy and it is this aspect of the Pauli principle which we must examine
in this chapter. We again use the example of the helium atom.

11.5 THE 1s12s1 CONFIGURATION OF THE HELIUM ATOM;
SINGLET AND TRIPLET STATES

Though it is not always possible, we find it very convenient here to separate the electronic
wave functions of the 1s12s1 configuration of the helium atom into spin and space parts.
For the space part, there are two ways of describing the assignment of the two electrons,
1 and 2, to the two atomic orbitals (φ1s and φ2s):

φ1s(1) · φ2s(2) and φ2s(1) · φ1s(2)
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Four combinations of the spin functions of the two electrons are possible:

α(1) · α(2), β(1) · β(2), α(1) · β(2) and β(1) · α(2)

As we have seen above, quantum mechanics is quite adamant about the effect upon
a wave function of the exchange of identical particles. A wave function must be clearly
symmetric or antisymmetric with respect to such an operation. The two space wave
functions above change one into the other and hence have no identifiable symmetry in this
respect. They also imply that we can assign a known electron to a particular orbital. Both
these facts are quite unacceptable and must be removed by taking the two combinations:

�+ =
√

1
2 {φ1s(1) · φ2s(2) + φ2s(1) · φ1s(2)} (11.5.1a)

and

�− =
√

1
2 {φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)} (11.5.1b)

�+ is clearly symmetric with respect to electron exchange while �− is antisymmetric
and these functions are potentially acceptable provided that, when they are combined with
acceptable spin functions, the total wave function is antisymmetric. When we check the
spin functions for symmetry with respect to electron exchange we see that the first two are
symmetric while the last two change one into the other. We resolve the problem, as before,
by taking normalised combinations of the problem functions and obtain a symmetric (�+)
and an antisymmetric (�−) spin function:

�+ =
√

1
2 {α(1) · β(2) + β(1) · α(2)} (11.5.2a)

�− =
√

1
2 {α(1) · β(2) − β(1) · α(2)} (11.5.2b)

We should also note that �+ and �− are eigenfunctions of Ŝ, the operator for the
total spin angular momentum (Chapter 4), whereas α(1) · β(2) and β(1) · α(2) are not.
A complete wave function for the 1s12s1 configuration of the helium atom must be a
product of a spin function and a space function, so we have eight possible functions and
the requirement for antisymmetry applies to the total wave function, space × spin, not to
the individual space or spin parts (if they can be separated as they are in this example). It
is easy to check for antisymmetry because the product of two symmetric or two antisym-
metric functions gives a symmetric function, whereas an antisymmetric function results
from combining a symmetric with an antisymmetric function. The possibilities are set
out in Table 11.1. We find that there is one acceptable wave function (1�) formed from
the symmetric space and the antisymmetric spin part and three acceptable functions (3�)
formed from the antisymmetric space and the symmetric spin parts. The three functions
are said to form the three components of a triplet whilst the other function is a singlet:

1� = 1
2 {φ1s(1) · φ2s(2) + φ2s(1) · φ1s(2)} {α(1) · β(2) − β(1) · α(2)} (11.5.3a)

α(1) · α(2)

3� = 1
2 {φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)}{α(1) · β(2) + β(1) · α(2)} (11.5.3b)

β(1) · β(2)
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Table 11.1 The possible combinations of space and spin functions for the 1s12s1 configuration of
the helium atom

Spin wave functions Space wave functions

Symmetric �+ Antisymmetric �−

Symmetric
α(1) · α(2) 3 unacceptable 3 acceptable

�− = √ 1
2 {α(1) · β(2) + β(1) · α(2)} symmetric antisymmetric

β(1) · β(2)
functions functions

Antisymmetric
1 acceptable 1 unacceptable

�− = √ 1
2 {α(1) · β(2) − β(1) · α(2)} antisymmetric symmetric

function function

Furthermore, recalling our discussion of angular momentum in Chapter 4, it is clear
that the spin functions α(1) · α(2),

√ 1
2 {α(1) · β(2) + β(1) · α(2)} and β(1) · β(2) have z-

components of spin angular momentum of +1, 0 and −1 respectively. The three symmetric
spin functions are therefore the three components of a spin system having a total spin
quantum number, S, equal to 1. The singlet is a spin state with S = 0. These two states are
the lowest two excited states of the helium atom and from the point of view of electronic
spectroscopy we need to know their energies.

11.5.1 The energies of the 1s → 2s excited states of the helium atom

Having deduced the wave functions which describe two of the excited states of the helium
atom we should now be able to calculate the energies of the states. The most significant
contributions to the energies are the kinetic energy, the attraction between the nucleus
and the electrons and the interelectronic repulsion. In atomic units (Appendix 1) the
Hamiltonian operator is:

Ĥ = −∇2
1

2
− ∇2

2

2
− 2

r1
− 2

r2
+ 1

r12
(11.5.4)

In this Hamiltonian the first two terms are the operators for the kinetic energies of
electrons one and two respectively. The third and fourth terms represent the attraction of
each electron for the nucleus which has a charge of +2. The first four terms each involve
only one electron and are therefore often known as the one-electron terms or operators.
Since r12 is the distance between the electrons, the last term is the interelectronic repulsion;
it is clearly a two-electron term.

11.5.2 The one-electron energies; operator − 1
2∇1

2 − 1
2∇2

2 − 2/r1 − 2/r2

If electron repulsion is neglected, the electronic energy is that of two electrons occupying
the 1s and 2s atomic orbitals of a hydrogen-like atom which has a nuclear charge of
Z = +2. This energy, potential plus kinetic, is given by the formula below, in which Z
is the nuclear charge and n the principal quantum number (Section 5.5):

E(Z, n) = − 1
2

∑
n=1,2

(Z/n)2 = − 1
2 {(4/1) + (4/4)} = −2.5EH (Hartrees)
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Note that the energy is negative. The system is more stable than the isolated particles
at rest would be.

11.5.3 The two-electron, i.e. electron-repulsion, energy; operator 1/r12

The triplet wave function where the two electrons have α spin components is:

�αα =
√

1
2 {φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)} × α(1)α(2) (11.5.5)

and the electron repulsion energy integral to be evaluated (ERtrip) is:

ERtrip = 1
2 〈φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)|1/r12|φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)〉
× 〈α(1)α(2)|α(1)α(2)〉

Note that the integration implied by 〈〉 must be carried out for both electrons and over
both their space and their spin functions. These two types of integration can be separated
because 1/r12 only operates on the spatial part of the wave function. We consider the
integration term-by-term. Taking the first term on the left of the operator with the first on
the right in the above integral we have:

〈φ1s(1) · φ2s(2)|1/r12|φ1s(1) · φ2s(2)〉 × 〈α(1)α(2)|α(1)α(2)〉
= 〈φ1s(1) · φ2s(2)|1/r12|φ1s(1) · φ2s(2)〉 × 〈α(1)α(1)〉 × 〈α(2)α(2)〉
= 〈φ1s(1) · φ2s(2)|1/r12|φ1s(1) · φ2s(2)〉 ≡ J1s,2s

where the third line follows from the second because the spin functions are ortho-normal
and J1s,2s is simply a symbol for the electron repulsion integral which precedes it. Later,
we shall give it a numerical value. If we evaluate the integral formed from the second
term on the left and the second on the right we get an extremely similar result, with
electron 1 now in the 2s orbital and electron 2 in the 1s. Since all electrons are identical,
this term must have exactly the same value as the one to which we have assigned the
symbol J1s,2s. We shall return to give a physical meaning to the integral when we have
evaluated another of a different form. The first term on the left and the second on the
right give the following contribution to the integral:

− 〈φ1s(1) · φ2s(2)|1/r12|φ2s(1) · φ1s(2)〉 × 〈α(1)α(2)|α(1)α(2)〉
= −〈φ1s(1) · φ2s(2)|1/r12|φ2s(1) · φ1s(2)〉 × 〈α(1)α(1)〉 × 〈α(2)α(2)〉
= −〈φ1s(1) · φ2s(2)|1/r12|φ2s(1) · φ1s(2)〉 ≡ −K1s,2s

The second term on the left and the first on the right give a similar result so that we
finally obtain:

ERtrip = 1
2 {J1s,2s + J1s,2s − K1s,2s − K1s,2s} = J1s,2s − K1s,2s (11.5.6)

Exactly the same result is obtained for the other two triplet wave functions. It is
appropriate at this point to attempt to obtain a physical picture of the meaning of these
two-electron repulsion integrals. J1s,2s is quite straightforward but it may be helpful if we
express the integral to be evaluated in a more familiar form:

J1s,2s =
∫

2

∫

1
{φ∗

1s(1) · φ1s(1)|1/r12|φ∗
2s(2) · φ2s(2)} dv1dv2
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Note that the integration has to be carried out over all three spatial co-ordinates of
both electrons, i.e. six integrations in total, and the two wave functions (φ1s and φ2s) and
the distance between the electrons (r12) must all be expressed in the same co-ordinate
system. Since the probability of finding electron 1 at a particular point in space is given
by φ1s

∗(1)φ1s(1), we have in the expression for J1s,2s the probability distributions for
electrons 1 and 2, the former in φ1s and the latter in φ2s. The operator is the inverse
distance between the two electrons. Thus, the physical interpretation of the integral is that
we take the product of an element of the distribution of electron 1 and an element of the
distribution of electron 2, divide by the distance between them and sum up (integrate)
all such terms. This is exactly the procedure we would adopt if we wished to calculate
the repulsion of two charge distributions in classical electrostatics (Figure 11.3). Thus
J1s,2s represents a classical Coulombic repulsion energy and is therefore known as a
Coulomb integral.

But what of K1s,2s? In this integral the distributions of the two electrons are not
given by the product of an atomic orbital function and its complex conjugate but by the
product of one atomic orbital function and the complex conjugate of another! Once we
have accepted, as we must do, that φ∗

1s(1)φ2s(1) also describes the spatial distribution
of electron 1 and φ∗

2s(2)φ1s(2) that of electron 2, then we can view the integration to
obtain the contribution to the electron repulsion in just the same manner as we viewed
the calculation of J1s,2s. The fundamental difference lies in the fact that the description
of an electron distribution as a product of two different functions is an entirely quantum-
mechanical concept; it has no classical counterpart. The existence of integrals such as
K1s,2s is one of the most important reasons for the difference between the results of
classical and quantum mechanical calculations. Because it arises as a result of the fact
that, in quantum mechanics, we have to allow for the exchange of electrons between
orbitals, K1s,2s is usually called an exchange integral.

We can now calculate the contribution of electron repulsion to the energy of the singlet
state. We have to evaluate:

ERsing = 1
4 〈φ1sα(1) · φ2sβ(2) − φ2sβ(1) · φ1sα(2) − φ1sβ(1) · φ2sα(2) + φ2sα(1) · φ1sβ(2)

|1/r12|φ1sα(1) · φ2sβ(2) − φ2sβ(1) · φ1sα(2) − φ1sβ(1) · φ2sα(2) + φ2sα(1) · φ1sβ(2)〉
In this integration terms of exactly the same form as the J1s,2s and K1s,2s found above

arise. But among the 16 terms there are others of a type we have not yet encountered.

r12

element of 
density of 
electron 1

element of 
density of 
electron 2

nucleus

Figure 11.3 The Coulomb integral J1s,2s
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For example, the first term on the left of |1/r12| and the second on the right give:

− 〈φ1sα(1) · φ2sβ(2)|1/r12|φ2sβ(1) · φ1sα(2)〉
= −〈φ1s(1)φ2s(2)|1/r12|φ2s(1)φ1s(2)〉 × 〈α(1)β(2)|β(1)α(2)〉
= −〈φ1s(1)φ2s(2)|1/r12|φ2s(1)φ1s(2)〉 × 〈α(1)|β(1)〉 × 〈β(2)α(2)〉 = 0

where the integral vanishes because the spin functions are orthogonal.
The final result for the electron repulsion energy of the singlet state is:

ERsing = 1
4 {4J1s,2s + 4K1s,2s} = J1s,2s + K1s,2s (11.5.7)

11.5.4 The total energies of singlet and triplet state

Fortunately, the integrals J1s,2s and K1s,2s are not particularly difficult to evaluate. They
depend upon the nuclear charge (Z), which determines the extension in space of the two
spherical atomic orbitals, and are found to be:

J1s,2s = Z(17/81) = 0.420 EH and K1s,2s = Z(16/729) = 0.044 EH

Armed with these figures we can complete the first three rows of Table 11.2. It is
immediately clear that, because K1s,2s enters the singlet energy expression with a positive
sign and the triplet energy expression with a negative sign, the calculated energies of the
two states should differ by 2K1s,2s(�E = 0.088 EH = 0.384 × 10−18 J); the triplet being
the lower. Qualitatively, this fact is completely substantiated by experiment, though we
shall see below that a quantitative comparison exposes a weakness in our theory. The
difference in energy of the singlet and triplet states arising from the same electronic con-
figuration is quite general and has very widespread implications. Since the vast majority
of covalent molecules have all their electrons paired in their ground state they have singlet
ground states. However, the excitation of any one of those electrons can give rise to either
a singlet (spins still paired) or a triplet (spins parallel) state, with the triplet state always
2K lower in energy than the singlet. Since the selection rule strongly forbids transitions
between the singlet ground state and a triplet excited state (Section 11.7), transitions to
triplet states are much less frequent than those to singlet states. But if a molecule does
enter a triplet excited state then its transition to the ground state is forbidden and it may
remain in the excited state for a time that can be as long as seconds. The singlet excited
state, on the other hand, returns to the ground state in a time of the order of 10−9 s. The
exceptional life of the excited triplet state offers the energy-rich molecule a long time in
which to react and much photochemistry proceeds from this fact.

Table 11.2 The energies of the 1s12s1 states of the helium atom

Triplet Singlet

(EH) 1018(J) (EH) 1018(J)

One-electron energy −2.500 −10.899 −2.500 −10.899
Coulomb energy, J1s,2s +0.420 +1.831 +0.420 +1.831
Exchange energy, K1s,2s −0.044 −0.192 +0.044 +0.192
Total (sum first three rows) −2.124 −9.260 −2.036 −8.876
Experimental energy −2.175 −9.487 −2.146 −9.360
∴ Charge correlation −0.051 −0.227 −0.110 −0.484
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A very important fact must be stressed. The differing energies of the two states with
different electron pairings, singlet (spins antiparallel) and triplet (spins parallel) is only
an indirect result of the different spin pairings. Because of the Pauli principle the spatial
distributions of the electrons in the two states differ; because of that their electron repulsion
energies differ and hence their total energies differ. The singlet/triplet energy difference
is not a consequence of a magnetic interaction between the two electrons. These thoughts
lead us on to consider the last two rows of Table 11.2.

The true energies of the helium singlet and triplet states can be obtained from the
electronic spectrum of the atom. The last row of the table gives the difference between
theory and experiment, which arises as follows. Since the electrons are charged they move
such that they keep out of each other’s way, i.e. their motions are correlated. Expressed
in another way, the 1s and 2s orbitals of a two-electron atom differ from those of a one-
electron atom because the motion of one electron is modified by the repulsion of the other.
We do not fully allow for this fact when we calculate K1s,2s and J1s,2s using φ1s and φ2s

since these are one-electron orbitals with a fixed, spherical distribution. A comparison of
the singlet-triplet energy difference (=0.029 EH) and 2 K1s,2s(=0.088 EH) already reveals
that there is a problem. This modification of the electronic motion gives rise to the charge
correlation energy, which is the major reason for the discrepancy between theory and
experiment. Note that the correlation energy of the singlet is approximately twice that of
the triplet. This is due to the fact that in the triplet state the electrons are already kept
more apart than in the singlet, so the effect of correlation is smaller.

11.5.5 Electron repulsion in the triplet and singlet states of the excited
helium atom3: a diagrammatic illustration

The differing electron distributions which result in the differing energies of the singlet and
triplet excited states of helium are illustrated in Figures 11.4(a) and 11.4(b). The following
normalised, singlet and triplet radial functions form the basis of our plot:

�sing = 8{exp(−2r1) · [1 − r2] exp(−r2) + exp(−2r2) · [1 − r1] exp(−r1)} (11.5.8)

�trip = 8{exp(−2r1) · [1 − r2] exp(−r2) − exp(−2r2) · [1 − r1] exp(−r1)} (11.5.9)

Since the atomic orbitals involved are spherically symmetrical, the radial co-ordinates
of the two electrons (r1 and r2) give all the information we require. To represent the
probability of finding an electron at a particular radius (r), i.e. in the shell between r

and r + δr which increases as r2, we multiply each of the above functions by r1 and r2

and square the result. Thus, the functions plotted are {r1 × r2 × �sing}2 and {r1 × r2 ×
�trip}2. r1 is plotted on the vertical and r2 on the horizontal axis; both in atomic units.
Any point on either diagram therefore represents the momentary situation in which the
distance of each electron from the nucleus is given by the projection of the point upon
the relevant axis; the probability that such a situation will pertain can be determined from
Equations (11.5.8) or (11.5.9) and ascribed to each point. If sufficient point probabilities
are calculated for any particular atomic state a set of contours may be drawn, as shown
in the figures. The most notable difference between the two figures is the zero probability
along the r1 = r2 line in the triplet in contrast to the marked peak at r1 = r2 ≈ 0.5 ao in
the singlet. Clearly, the probability that r1 = r2 is much higher in the case of the singlet,
which accounts for the higher electron repulsion in that state. Of course, two electrons
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having the same value of their radial co-ordinate can reduce their mutual repulsion by
moving in such a way that they are positioned on opposite sides of the nucleus. And in the
real atom that is what they do. But this angular correlation cannot take place in our simple
mathematical model because our orbitals are defined to be spherically symmetrical and
do not permit a non-spherical electron distribution. To introduce an element of angular
correlation we would have to use p-orbitals in our wave functions. Calculations using
p-orbitals do indeed result in a reduction in energy.

It is also possible to include the correlation energy in a more explicit manner, just as
James and Coolidge did for the hydrogen molecule (Section 6.8).

11.5.6 Summary of Section 11.5

The reader may feel that the arcane problem of the excited states of the helium atom has
received far too much attention in the preceding paragraphs. It is true that the problem
is not one with which many chemists are concerned, but it does raise a number of very
important points which may be summarised as follows:

1. In quantitative work it is not sufficient to consider that the energy of an excited state
is given simply by the difference in energy between two orbitals, molecular or atomic.
Electron repulsion terms are very large and must be taken into account.

2. Because of the influence of electron spin on electron spatial functions, i.e. the Pauli
principle, electron repulsion in a triplet state is always somewhat less than in the
corresponding singlet state. Therefore, the energy of the triplet state is always lower,
as Hund first noted.

3. The energy difference between singlet and triplet is due to electron repulsion. It is
therefore very much larger than any energy which might arise because of a direct
interaction of the electron spins through their magnetic properties.

4. The fact that singlet-triplet transitions are strictly forbidden (in molecules where spin-
orbit coupling is small) means that, once created, triplet states can have a very long
lifetime which is important in photochemistry.

11.6 THE π-ELECTRON SPECTRUM OF BENZENE

The π → π∗ electronic spectrum of benzene provides a good illustration of the way in
which interelectronic repulsion affects the spectra of systems of more general chemi-
cal interest. The Hückel molecular orbital theory of the π-electron structure of benzene
(Section 12.1) gives an energy-level scheme for the molecule in which both the highest
occupied MOs and the lowest unoccupied MOs are a degenerate pair (Figure 11.5). More
sophisticated theories give the same result since the π-electron energy level pattern is
determined by symmetry. The forms of the six molecular orbitals, in order of increasing
energy (β is a negative quantity!), are:

ψ1 = {1/
√

6}{φ1 + φ2 + φ3 + φ4 + φ5 + φ6} E = α + 2β

ψ2 = { 1
2 }{φ2 + φ3 − φ5 − φ6} E = α + β HOMO
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Figure 11.5 π-electron energy levels and molecular orbitals for benzene

ψ3 = {1/
√

12}{2φ1 + φ2 − φ3 − 2φ4 − φ5 + φ6} E = α + β HOMO

ψ4 = {1/
√

12}{2φ1 − φ2 − φ3 + 2φ4 − φ5 − φ6} E = α − β LUMO

ψ5 = { 1
2 }{−φ2 + φ3 − φ5 + φ6} E = α − β LUMO

ψ6 = {1/
√

6}{φ1 − φ2 + φ3 − φ4 + φ5 − φ6} E = α − 2β

In a simplistic view therefore, the spectrum of benzene at lower energies would con-
sist of four transitions from the two HOMOs to the two LUMOs, all having the same
energy. The experimental finding (Figure 11.6), however, bears no relation to this predic-
tion. Three singlet bands are seen with maxima at approximately 256 nm (38 000 cm−1),
200 nm (48 000 cm−1) and 180 nm (54 500 cm−1); the last is doubly degenerate. How
does this arise? The discrepancy is directly attributable to the effect of electron repulsion
on the energy levels of the molecule, which is best considered in two stages. First, as we
have seen above (Section 11.5), the energy of an excited electronic state depends not only
upon the energies of the orbital the electron leaves and that which it enters but also on
the Coulomb and exchange integrals between those orbitals. In a general formulation2 we
write the energy difference between an excited singlet state (1�i→k), in which an electron
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Figure 11.6 The π-electron spectrum of benzene

has been promoted from molecular orbital �i to �k, and the ground state (1�0) as:

E(1�i→k) = 〈1�i→k|Ĥ|1�i→k〉 − 〈1�0|Ĥ|1�0〉 = Ek − Ei − Ji,k + 2Ki,k (11.6.1)

where Ei and Ek are the molecular orbital energies, which also contain electron-repulsion
terms, and Ji,k and Ki,k are the corresponding Coulomb and exchange integrals. The
evaluation of the energy difference (Equation (11.6.1)) is difficult, but by making a series
of justifiable approximations in the calculation of all the electron-repulsion terms the
following energies may be determined:

E(1�2→4) = E(1�3→5) = 5.923 eV

and
E(1�2→5) = E(1�3→4) = 6.127 eV

These results show immediately that the four transitions do not all have the same
energy. And there is a second effect of electron repulsion which we must take into
account. The states |1�i→k〉 are not eigenfunctions of the Hamiltonian operator (Ĥ),
which includes electron-repulsion terms, and this causes a mixing of the states through
off-diagonal matrix elements (Appendix 3), which may be calculated using the formula2:

〈1�i→k|Ĥ|1�j→l〉
= 2〈�j(1)�k(2)|1/r12|�l(1)�i(2)〉 − 〈�j(1)�k(2)|1/r12|�i(1)�l(2)〉 (11.6.2)

Using the same approximate electron-repulsion terms as before we calculate that:

〈1�2→4|Ĥ|1�3→5〉 = 1.023 eV and 〈1�3→4|Ĥ|1�2→5〉 = −0.818 eV

All other off-diagonal terms are found to be zero. We can now set up an energy matrix
(Appendix 3) for the interaction of the four lowest π-electron excited states of benzene.
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It is:
Ĥ/eV |1�2→4〉 |1�3→5〉 |1�3→4〉 |1�2→5〉
〈1�2→4| 5.923 1.023 0.0 0.0
〈1�3→5| 1.023 5.923 0.0 0.0
〈1�3→4| 0.0 0.0 6.127 −0.818
〈1�2→5| 0.0 0.0 −0.818 6.127

We can diagonalise the two 2 × 2 sub-matrices separately to obtain the following four
energies. Since the interactions occur only between states with equal on-diagonal matrix
elements we readily find:

1B2u(α,1 Lb);
√

1
2 {1�2→4 − 1�3→5} E = 5.923 − 1.023 = 4.90 eV ≈ 39 500 cm−1

1B1u(p,1 La);
√

1
2 {1�3→4 + 1�2→5} E = 6.127 − 0.818 = 5.31 eV ≈ 43 000 cm−1

1E1u(β,1 B);
√

1
2 {1�2→4 + 1�3→5} E = 5.923 + 1.023 = 6.95 eV ≈ 56 000 cm−1

1E1u(β
′,1 B);

√
1
2 {1�3→4 − 1�2→5} E = 6.127 + 0.818 = 6.95 eV ≈ 56 000 cm−1

The symbols 1B2u etc. are the symmetry labels of the states; α, p, β and β ′ are labels
for the bands proposed by E. Clar; and 1La, 1Lb and 1B are those proposed by J.R.
Platt. All are widely used by practical spectroscopists. These results are in reasonable,
quantitative agreement with experiment. They illustrate the magnitude of the electron
repulsion energy and bear witness to the fact that no satisfactory interpretation of electronic
spectra is possible without taking it explicitly into account. Murrell2 has given a detailed
description of the methods outlined above for the interpretation of the spectra of benzene,
the aromatic hydrocarbons and other π-electron systems.

11.7 SELECTION RULES

Under conditions of high resolution, absorption of light, which results in a change of
electronic state accompanied by a fine structure due to changes in vibrational and rotational
quantum number, may be observed in gas-phase molecules. The detailed analysis of this
structure has provided much valuable information about the geometry of small molecules
in their excited electronic states. However, in general chemical spectroscopy, which is
usually performed on samples in solution, only vibrational fine structure is resolved; and
that only in a small percentage of samples. Therefore, we shall confine our attention here
to the selection rules for electronic transitions and the associated vibrational fine structure.
Consider first the effect of electron spin on transition probability, using the helium atom
as an example.

11.7.1 Electron spin (multiplicity) and transition probability

In Section 11.4 (Equation (11.4.1b)) we found that the correct wave function for the
helium atom in its ground electronic state, which is a singlet state, is:

1�i =
√

1
2 {φ1sα(1) · φ1sβ(2) − φ1sβ(1) · φ1sα(2)}

= {φ1s(1)φ1s(2)}
√

1
2 {α(1)β(2) − β(1)α(2)}

(11.7.1)
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The superscript ‘1’ has been introduced to indicate the singlet state and the subscript
‘i’ because it forms the initial state in a spectroscopic transition. The corresponding wave
functions for excited states in which an electron has been promoted from a 1 s to a 2p
orbital (compare Equations (11.5.3)) are:

1�f =
√

1
2 {φ1s(1) · φ2p(2) + φ2p(1) · φ1s(2)}

√
1
2 {α(1) · β(2) − β(1) · α(2)} (11.7.2a)

α(1) · α(2)

3�f =
√

1
2 {φ1s(1) · φ2p(2) − φ2p(1) · φ1s(2)}

√
1
2 {α(1) · β(2) + β(1) · α(2)} (11.7.2b)

β(1) · β(2)

where Equation (11.7.2a) is the singlet and Equation (11.7.2b) the triplet.
As an example we shall evaluate the transition moments 〈1�f|M̂ |1�i〉 and 〈3�f

|M̂ |1�i〉 where M̂ = e(r1 + r2) (Appendix 9) paying particular attention to the influence
of the electron spins. For the singlet excited state:

MS = e〈1�f|r1 + r2|1�i〉
= e

√
1
2 〈φ1s(1) · φ2p(2) + φ2p(1) · φ1s(2)|r1 + r2|φ1s(1)φ1s (2)〉

× 1
2 〈α(1)β(2) − β(1)α(2)|α(1)β(2) − β(1)α(2)〉

We can evaluate the space and spin parts of M separately and for the space part we find:

= 〈φ1s(1)|r1|φ1s(1)〉〈φ2p(2)|φ1s(2)〉 + 〈φ2p(1)|r1|φ1s(1)〉〈φ1s(2)|φ1s(2)〉
+ 〈φ2p(2)|r2|φ1s(2)〉〈φ1s(1)|φ1s(1)〉 + 〈φ1s(2)|r2|φ1s(2)〉〈φ2p(1)|φ1s(1)〉

= 0 + 〈φ2p(1)|r1|φ1s(1)〉 + 〈φ2p(2)|r2|φ1s(2)〉 + 0 because 〈φm(1)|φn(1)〉 = δmn

= 2〈φ2p(1)|r1|φ1s(1)〉 because all electrons are identical.

The integration over spin gives:

〈α(1)|α(1)〉〈β(2)|β(2)〉 − 〈α(1)|β(1)〉〈β(2)|α(2)〉
− 〈β(1)|α(1)〉〈α(2)|β(2)〉 + 〈β(1)|β(1)〉〈α(2)|α(2)〉

= 1 − 0 − 0 + 1 = 2

We finally have:

MS = e

√
1
2 × 2〈φ2p(1)|r1|φ1s(1)〉 × 1

2 × 2 = e
√

2〈φ2p(1)|r1|φ1s(1)〉
For the triplet final state:

MT = e〈3�f|r1 + r2|1�i〉
= e

√
1
2 〈φ1s(1) · φ2p(2) − φ2p(1) · φ1s(2)|r1 + r2|φ1s(1)φ1s(2)〉

× 1
2 〈α(1)β(2) + β(1)α(2)|α(1)β(2) − β(1)α(2)〉
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The space part of the integral gives:

= 〈φ1s(1)|r1|φ1s(1)〉〈φ2p(2)|φ1s(2)〉 − 〈φ2p(1)|r1|φ1s(1)〉〈φ1s(2)|φ1s(2)〉
+ 〈φ2p(2)|r2|φ1s(2)〉〈φ1s(1)|φ1s(1)〉 − 〈φ1s(2)|r2|φ1s(2)〉〈φ2p(1)|φ1s(1)〉

= 0 − 〈φ2p(1)|r1|φ1s(1)〉 + 〈φ2p(2)|r2|φ1s(2)〉 − 0 = 0

Furthermore, the spin part of the integral also gives zero since:

〈α(1)|α(1)〉〈β(2)|β(2)〉 − 〈α(1)|β(1)〉〈β(2)|α(2)〉
+ 〈β(1)|α(1)〉〈α(2)|β(2)〉 − 〈β(1)|β(1)〉〈α(2)|α(2)〉

= 1 − 0 + 0 − 1 = 0

Therefore, on both counts we find that the singlet ↔ triplet transition is forbidden
and we can say that, provided that spin-orbit coupling can be neglected, any transition in
which there is a change of multiplicity is forbidden. It is not always possible to separate
the space and spin functions as we have done here, but the result is quite general and can
be demonstrated using appropriate Slater determinants (Section 11.8 and Appendix 6) as
wave functions.

11.7.2 Spatial aspects of transition probability for an allowed
electronic transition

To proceed further with the spatial aspects of molecular transition moments we build upon
the discussion of transition probability in Appendix 9 and Sections 8.6 and 8.7. The case
of an allowed electronic transition, which may or may not be accompanied by changes
in vibrational levels, is Case 2 of the discussion in Section 8.7.1 where we have deduced
that the transition dipole moment (Mi,f) is given by Equation 8.7.10 which we repeat here
for convenience:

Mi,f = 〈ψ f
vib|ψ i

vib〉 · M0(e
fei) (11.7.3)

M0(efei) is the value of the integral 〈ψ f
elec|M̂ |ψ i

elec〉 evaluated at the equilibrium
nuclear configuration. M̂ is the dipole moment operator and it is important to note that
the integral extends over the electronic co-ordinates only. The integral 〈ψ f

vib|ψ i
vib〉 is the

overlap of the vibrational wave functions of the initial and final states, which is important
in the analysis of the vibrational structure of small molecules but rarely in the spectra of
large molecules.

To illustrate the calculation of the electronic matrix element we take the case of the
transition from a highest occupied (HOMO) to a lowest unoccupied (LUMO) π-electron
molecular orbital of benzene.

The π-electron coefficients of the MOs ψ2 and ψ5 are shown in Figure 11.7. The
y-component of the transition moment integral, Ty, between these two orbitals is:〈
ψ2|

∑
k

qkyk|ψ5

〉
= e〈 1

2 (φ2 + φ3 − φ5 − φ6)|y2 + y3 + y5 + y6| 1
2 (−φ2 + φ3 − φ5 + φ6)〉

where e is the electronic charge. Since the atomic orbitals (φi) are normalised, if we
neglect overlap, i.e. assume that 〈φi|φj〉 = δi,j, we can separate the integral into four parts
and write:

Ty = 1
4e{〈φ2|y2| − φ2〉 + 〈φ3|y3|φ3〉 + 〈−φ5|y5| − φ5〉 + 〈−φ6|y6|φ6〉}
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Figure 11.7 The electron transition density for a π → π∗ transition in benzene

If the co-ordinate origin is the centre of the ring then y2 = y6 = −y3 = −y5 and if we
set y = 1

2 Ry, where R is the C–C bond length and the subscript indicates that the moment
lies in the y-direction, then:

Ty = 1
4e {〈φ2| 1

2 Ry| − φ2〉 + 〈φ3| − 1
2 Ry|φ3〉 + 〈−φ5| − 1

2 Ry| − φ5〉 + 〈−φ6| 1
2 Ry|φ6〉}

= 1
4e {−4 × 1

2 Ry} = − 1
2eRy

In developing the above expression for Ty we have assumed that the π-electron tran-
sition density in the region of each carbon atom k, 〈φk|φk〉, is located at the position
of the atomic nucleus. A similar evaluation of Tx for the 2 → 5 transition results in a
transition moment of zero in that direction. For the 3 → 4 transition we find Ty = + 1

2eRy

and Tx = 0. In the previous section we found that two of the final benzene excited states
(1B1u and 1E1u) were formed from the sum and difference of the states 1�3→4 and 1�2→5

respectively, so that for the transition to 1B1u the transition moment is proportional to
+ 1

2eRy − 1
2eRy = 0, i.e. the transition is forbidden. But for the transition to 1E1u the tran-

sition moment is proportional to + 1
2eRy − (− 1

2eRy) = eRy, i.e. the transition is allowed.
To obtain an absolute value for the transition moment in the y-direction we would need
to evaluate eRy at the equilibrium nuclear configuration and the vibrational overlap inte-
gral, which is discussed in the following Section. However, such calculations are rarely
performed because the quality of the electronic wave functions seldom justifies more
than a semi-quantitative estimate of the transition moment, the most valuable information
being the direction of the moment, which is usually very easy to find and in the case of
symmetrical molecules is possible using group theory alone.

11.7.3 The vibrational factor in the transition probability

The vibrational factor (〈ψ f
vib|ψ i

vib〉) in Mi,f has been discussed in Section 8.7 and Box 8.2
and will not be taken further here. We simply note that the Franck–Condon principle
applies to the vibrational structure of polyatomic molecules, just as it does to diatomics,
though the analysis is naturally more complicated. The calculation of vibrational overlap
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integrals presents formidable problems, not the least of which is the necessity of knowing
the ground and excited state potential surfaces. Such calculations have rarely been carried
out and then only on molecules much smaller than benzene. In the particular case of ben-
zene, the y-polarised transition for which a non-zero transition moment was found above
is one of the pair which take the molecule to the 1E1u state. The other member of the pair is
x-polarised. The high symmetry of the molecule is responsible for the fact that the transi-
tions to the two states of lowest energy (1B1u and 1B2u) are forbidden. However, vibrations
which remove this symmetry by distorting the ring can make the transitions allowed as
described under Case 3 of Section 8.7.1. Both of these forbidden bands show vibrational
fine structure which has been studied in detail. Murrell gives an account of this work.2

11.8 SLATER DETERMINANTS (APPENDIX 6)

It is clear that there are n! (factorial n) ways of placing n electrons in n orbitals so that
the proper description of a many-electron atom or molecule leads to a very complicated
wave function. Slater showed that a many-electron wave function with all the required
antisymmetry could be written most concisely in the form of a determinant. We shall not
work with Slater’s methods here; Appendix 6 contains a brief introduction. The principal
reason for mentioning Slater determinants here is to emphasise that only a many-electron
wave function, which may be written as a single Slater determinant or as a sum of such
determinants, is an adequate description of an atom or molecule as far as its electronic
spectrum is concerned.
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PROBLEMS FOR CHAPTER 11

1. Confirm Equation (11.5.7) for the electron-repulsion energy of the singlet state of the
excited helium atom.
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2. In Section 11.7.1 the transition probability for the transition from 1�i to 3�f in the
helium atom is calculated using the function

√ 1
2 {α(1)β(2) + β(1)α(2)} as the spin

function for the excited state. Repeat the calculation using the spin function α(1)α(2).

3. Following the calculation of transition moments for benzene in Section 11.7.2, calcu-
late the transition dipole moments for the 3 → 5 and 2 → 4 transitions.

4. Confirm, following the calculation in Section 11.7.2, that the inclusion of overlap
terms in the calculation of the transition dipole moment of benzene results in a small
contribution to Ty which opposes that due to the other terms.

5. The electronic spectrum of the bromide ion in acetonitrile shows two absorption bands
at energies corresponding to 45 900 cm−1 and 49 300 cm−1. The iodide ion gives bands
at 40 800 cm−1 and 48 500 cm−1. These bands have been assigned to charge transfer
from the halide ion to the solvent. Explain why two CT bands are seen and show
that this assignment is in agreement with the fact that the bands of lowest energy
in the atomic spectra of bromine and iodine are found at 3685 cm−1 and 7603 cm−1

respectively.
[Hint: What is the lowest energy state (i.e. ground electronic state) of a halogen

atom and what separates it from the state next highest in energy? If necessary, see
Section 5.9 for further information.]

6. The π → π∗ absorption band of ethene (H2C=CH2) is found at λ = 162 nm but it
moves a few nanometres to longer wavelengths when the planarity of the molecule is
removed by twisting about the double bond, usually by steric effects. It is difficult to
separate the effect of the twisting from that of the substituent groups causing it, but
we can estimate the former in the following way.

Given that the π-electron molecular orbitals of ethene as calculated by the Hückel
method (Section 12.1) are π = √ 1

2 {φ1 + φ2} and π∗ = √ 1
2 {φ1 − φ2}, determine their

energies by calculating 〈π |Ĥ|π〉 and 〈π∗|Ĥ|π∗〉 using the Hückel approximations;
〈φ1|Ĥ|φ1〉 = 〈φ2|Ĥ|φ2〉 = α and 〈φ1|Ĥ|φ2〉 = 〈φ2|Ĥ|φ1〉 = β. [E(π) = α + β and
E(π∗) = α − β]. Convert the value of λ to energy and from that figure determine
β. (We show in Section 12.1 that this primitive approach to the calculation of absorp-
tion energies, neglecting electron repulsion, can be quite successful e.g. Figure 12.4).
There is a well-established relationship from which the value of β at a particular angle
(βθ ) can be calculated from its value at θ = 0. It is:

βθ = βo cos(θ)

Now, assuming that nothing apart from β changes, calculate the shift in the absorp-
tion maximum which results from a twist of 10◦. You should find a value of approxi-
mately 2 nm.
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12.0 INTRODUCTION

This chapter is concerned with three important topics which, although they might have
been accommodated in other chapters, are probably best discussed separately. Each of
them has had a very significant impact upon our understanding of chemical structure and
the concepts upon which they are based are now so deeply imbedded in our descriptions
of molecular and material properties that they form a part of the everyday language of
chemistry. They also provide some of the best examples of the way in which quite simple
quantum mechanical concepts can enhance our understanding of the properties of large
molecules, materials and metals that are of paramount interest to biologists, materials
scientists and engineers in the wider world of applied science and technology.

12.1 THE HÜCKEL MOLECULAR ORBITAL (HMO) THEORY

The Hückel theory finds a place here for several reasons, which are worth noting at the
outset. Its place would be justified because it was the first molecular orbital theory that
could be applied to large molecules. It is a theory that can be implemented without the
aid of a computer and is therefore an ideal test bed on which to study some of the basic
principles and procedures of the MO theory. In addition, some 30 years after its birth it
formed the starting point for a very successful theoretical interpretation of the electronic
spectra of the aromatic hydrocarbons, which included electron repulsion terms, and for
the extended Hückel theory, which has been widely used by organo-metallic chemists as
an aid to the interpretation of the chemical reactions and structures of their compounds.

12.1.1 The basis of Hückel’s approach

We saw in Section 6.15.2 how the formation of sp2 hybrids between the 2s and 2p AOs
of a carbon atom gives rise to three hybridised orbitals lying in a plane and ideally suited
to forming 3 σ bonds to neighbouring atoms with bond angles in the plane of approxi-
mately 120◦. The remaining, unhybridised 2p AO is available for forming a π-electron
structure. The geometries and special properties of the aromatic hydrocarbons and conju-
gated polyenes may be interpreted in terms of this type of hybridisation of their carbon
atoms. In 1931 Erich Hückel (1896–1980) proposed that the energies and wave functions
of the π-electron system could be calculated using an approach in which the σ -electron
system was disregarded, apart from the role which it plays in establishing the molecular
geometry. Though obviously not a complete theory, Hückel’s approach has been very
successful because so many of the distinguishing chemical and physical properties of the
conjugated hydrocarbons are π-electron properties. Hückel’s justification of this approach
was based on the following reasoning:

• The σ bonds between sp2-hybidised carbon atoms and their neighbours all lie in the
molecular plane formed by the carbon atoms and they are symmetrical with respect to
reflection in that plane; i.e. the phase of the wave function which describes a particular σ

bond is the same above the plane as below it. In contrast, the phase of the unhybridised
2p AO which lies at 90◦ to the plane changes sign upon reflection in the plane so that
any molecular orbitals formed with such 2p AOs will be antisymmetric. Therefore,
there can be no bonding between σ and π orbitals in planar conjugated molecules.
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• The σ electrons occupy the space in the plane of the molecule whilst the π electrons are
concentrated above and below that plane. The two types of electrons move in different
regions of space.

• The energies of the σ electrons involved in strong σ bonds are, on the whole, lower
than those of the π electrons which are involved in the weaker π bonds.

The first of the above reasons, that involving symmetry, is the most powerful argument
for treating the σ and π electrons separately.

12.1.2 The method

Thus, the problem which we have is to find the set of π-electron MOs (�a) formed as
linear combinations of carbon 2pz AOs, one from each carbon atom; i.e. what are the
values of the coefficients, Cai, in the expression:

�a = Ca1φ1 + Ca2φ2 + Ca3φ3 + · · · + Canφn ≡
∑

i

Caiφi

In order to find the best values of these coefficients we use the criterion, provided by
the variation theorem (Appendix 2), that the best wave function we can obtain is the one
which gives the lowest energy. Therefore, we first write down the expectation value of
the energy (Ea) calculated with the wave function (�a) as:

Ea = 〈�a|Ĥ|�a〉/〈�a|�a〉 =
〈∑

i

Caiφi

∣∣∣∣Ĥ
∣∣∣∣
∑

j

Cajφj

〉/〈
∑

i

Caiφi

∣∣∣∣
∑

j

Cajφj

〉

=
∑

i

Cai

∑

j

Caj〈φi|Ĥ|φj〉
/ ∑

i

Cai

∑

j

Caj〈φi|φj〉

≡
∑

i

Cai

∑

j

CajHij

/ ∑

i

Cai

∑

j

CajSij

Note that there are n2 terms in the numerator and the denominator of the above expres-
sion for Ea. The expressions Hij and Sij are simply symbols for the integrals 〈φi|Ĥ|φj〉 and
〈φi|φj〉 respectively and at some stage in the calculation they have to be evaluated. How-
ever, before we do that we apply the criterion that the coefficients we require are those
which give the lowest value of Ea. We do this by differentiating the above expression
for Ea and setting the result to zero. This procedure is described in detail in Appendix 2.
Here we need only note that the process leads to a set of n simultaneous linear equations
all equal to zero:

Ca1(H11−EaS11) + Ca2(H12−EaS12) + Ca3(H13−EaS13) + · · · + Can(H1n − EaS1n) = 0

Ca1(H21−EaS21) + Ca2(H22−EaS22) + Ca3(H23−EaS23) + · · · + Can(H2n−EaS2n) = 0

: : : :

: : : :

Ca1(Hn1−EaSn1) + Ca2(Hn2−EaSn2) + Ca3(Hn3−EaSn3) + · · · + Can(Hnn−EaSnn) = 0
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In order to solve these equations Hückel made some drastic assumptions.1 When we
apply the theory we shall see how far these were justified in terms of the insight which
the Hückel theory gives us. First, we describe each one in turn.

12.1.3 Hückel’s assumptions

Sij = 〈φi|φj〉 is an overlap integral, it is a measure of the extent to which the 2pz AOs
on carbon atoms i and j occupy the same region of space and is therefore closely related
to the π-electron bonding between atoms i and j. When i = j we have the overlap of an
AO with itself which is unity for a normalised wave function. Therefore, Sii = 1.0. The
overlap integrals where i �= j are not difficult to calculate and it is found that for adjacent
carbon atoms Sij ≈ 0.25. For carbon atoms separated by two bonds the value of Sij is
much smaller and it drops off rapidly with distance. Hückel set all overlap, even that
between neighbouring carbon atoms, to zero. This is quite a drastic assumption.

The integrals Hij = 〈φi|Ĥ|φj〉 are very complex since the Hamiltonian operator consists
of many terms representing the energy of a single π-electron moving in the averaged field
of all the σ -electrons and all the other π-electrons. But its essential physical content is the
energy of interaction between the two AOs, φi and φj which, where φi is adjacent to φj,
represents the π-electron bonding energy between the two carbon atoms. The integral is
often called the resonance integral and because it represents the bonding energy between
two carbon atoms it is a negative quantity. When i = j the integral represents the energy
of an electron in a carbon 2pz AO, but in the molecule rather than in a free carbon
atom. Hückel assumed that the value of Hij for carbon atoms separated by two or more
bonds was sufficiently small to be neglected. He did not attempt to calculate Hii and Hij (i
adjacent to j) but expressed them in parametric form as indicated in Table 12.1. With these
assumptions the secular equations become much simpler but, since the simplifications
depend upon the particular geometry of the molecule (which atoms are adjacent to which
other atoms), the simplification is not readily appreciated when it is expressed in a general
form. Therefore, let us assume that we are dealing with the special case of the butadiene
molecule Figure 12.1.

12.1.4 Determination of HMO energies and AO coefficients

For butadiene Hückel’s approximations lead to the following secular equations. Note that,
in Hückel theory, no allowance is made for the fact that the two end bonds of the molecule

Table 12.1 Hückel’s approximations

i = j i adjacent to j i not adjacent to j

Sij (overlap integral) 1.0 0.0 0.0
Hij (interaction integral) α β 0.0

C H
C

C
C

H

H H

H

H
2

3
41

Figure 12.1 trans Butadiene
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are not the same as the central bond. Note also, that the equations for the cis isomer are
exactly the same as those for the trans.

Ca1(α − Ea) + Ca2β = 0
Ca1β + Ca2(α − Ea) + Ca3β = 0

Ca2β + Ca3(α − Ea) + Ca4β = 0
Ca3β + Ca4(α − Ea) = 0

To proceed further it is useful to divide all four equations by β. Since β is an energy
this step is tantamount to adopting β as our energy unit and expressing all other energies
in terms of it. Setting (α − Ea)/β = x we then have:

Ca1x + Ca2 = 0
Ca1 + Ca2x + Ca3 = 0

Ca2 + Ca3x + Ca4 = 0
Ca3 + Ca4x = 0

These are four simultaneous equations from which we hope to determine the values of
the coefficients Ca1, Ca2, Ca3 and Ca4. We should also note that, since we do not know Ea, x
is also unknown. There is a trivial solution to our problem, Ca1 = Ca2 = Ca3 = Ca4 = 0.0;
but this is clearly not what we require. From the theory of simultaneous equations we
know that in order for there to be a non-trivial solution the determinant formed by the
factors which multiply the coefficients Cai in the above equations must be equal to zero:

∣∣∣∣∣∣∣∣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣
= x ×

∣∣∣∣∣∣

x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣
− 1 ×

∣∣∣∣∣∣

1 1 0
0 x 1
0 1 x

∣∣∣∣∣∣

= x × x ×
∣∣∣∣
x 1
1 x

∣∣∣∣ − x × 1 ×
∣∣∣∣
1 1
0 x

∣∣∣∣ − 1 × 1 ×
∣∣∣∣
x 1
1 x

∣∣∣∣ + 1 × 1 ×
∣∣∣∣
0 1
0 x

∣∣∣∣

= x2(x2 − 1) − x2 − 1(x2 − 1) = x4 − 3x2 + 1 = 0.0

At this stage in a HMO calculation we are always confronted with the problem of
finding the roots of a polynomial, the order of which is the number of carbon atoms. In
the present case, the easiest way to a solution is to first set y = x2 and solve for y, which
gives y = 0.38197 and 2.61803. The positive and negative square roots of these values
of y give the roots x = (α − Ea)/β = ±0.61803 and ± 1.61803. Or in terms of α and β;
Ea = α ± 0.61803β and α ± 1.61803β. Note that although we began by looking for the
lowest value of Ea we have found not one but four values for that quantity. Naturally,
we could simply take the lowest one, but it is interesting to consider the significance of
the others. We shall return to that subject later. Our immediate task is to determine the
coefficients which go with each of the energy values. To do this we return to the secular
equations expressed in terms of x and substitute one of the values of x which we have
found into all four equations. Let us choose x = −0.61803 giving Equation (12.1.1):

−0.61803Ca1 + Ca2 = 0
Ca1 − 0.61803Ca2 + Ca3 = 0

Ca2 − 0.61803Ca3 + Ca4 = 0
Ca3 − 0.61803Ca4 = 0

(12.1.1)
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The first equation provides a simple relationship between Ca1 and Ca2 and the last does
the same for Ca3 and Ca4. By substituting these results into equations 2 and 3 any three
coefficients can be expressed in terms of the other one. For example, Ca2 = 0.61803Ca1;
Ca3 = −0.61803Ca1; Ca4 = −Ca1. But note that the absolute values of the Cai are not
found, only their relative values. This is because the equations are all equal to zero, i.e.
they are homogeneous. Fortunately, we have one further criterion which must be satisfied
and by means of which we can fix the absolute values of the coefficients. The MO �a

must be normalised if it to be satisfactory from the physical viewpoint:

〈�a|�a〉 =
∑

i

Cai

∑

j

Caj〈φi|φj〉 ≡
∑

i

Cai

∑

j

Cajδij =
∑

i

(Cai)
2

where we have used the fact that, in Hückel theory, the overlap integrals are equal to
unity when i = j and zero otherwise. Using the normalisation condition and the relative
values of the coefficients given above their absolute values can be determined. When this
procedure is repeated for each of the values of x the results given in Table 12.2 are found.

As a check of the calculation of the MO coefficients, the energy of the corresponding
orbital can be calculated:

〈�2|Ĥ|�2〉 = 〈0.6015φ1 + 0.3718φ2 − 0.3718φ3 − 0.6015φ4|Ĥ|0.6015φ1

+ 0.3718φ2 − 0.3718φ3 − 0.6015φ4〉
= α{2.0 × (0.6015 × 0.6015 + 0.3718 × 0.3718)}

+ β{2.0 × (0.6015 × 0.3718 − 0.3718 × 0.3718 + 0.3718 × 0.6015)}
= α + 0.6180β

Although we set out to determine one energy value, the lowest, we regard the four
energies above and the associated MOs (wave functions) as four possible π-electron
energy levels for butadiene.

The above equations for the MOs and the energy-level diagram (Figure 12.2) illustrate
a number of important points:

• Since β is a negative quantity, because it represents the π-electron bonding energy
between two adjacent carbon atoms, �1 is the MO of lowest energy and �4 the highest.

• The order of the energy levels follows the number of nodes, i.e. changes in sign between
one coefficient and the next. Thus �1 has no nodes but �4 has three.

• The term α is common to all the energies which split out from that value in a symmet-
rical pattern as illustrated in Figure 12.2. α is the energy of a non-bonded 2pz electron
of carbon and MOs of energy greater than α are π-antibonding while those below α

are π-bonding.

Table 12.2 The Hückel orbitals and energies for butadiene

�4 = 0.3718φ1 −0.6015φ2 +0.6015φ3 −0.3718φ4 α − 1.6180β
�3 = 0.6015φ1 −0.3718φ2 −0.3718φ3 +0.6015φ4 α − 0.6180β
�2 = 0.6015φ1 +0.3718φ2 −0.3718φ3 −0.6015φ4 α + 0.6180β
�1 = 0.3718φ1 +0.6015φ2 +0.6015φ3 +0.3718φ4 α + 1.6180β
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a − 1.61803b

a

a − 0.61803b

a + 0.61803b

Energy

a + 1.61803b

Figure 12.2 π-Electron energy levels for butadiene

• Each carbon atom contributes one π electron and before bonding each has an energy
of α. All four of them can enter bonding orbitals and stabilise the molecule. The
stabilisation due to the π-electrons (�Eπ ) is:

�Eπ = 4α − 2 · (α + 1.61803β) − 2 · (α + 0.61803β) = −4.47212β

The energies and coefficients, illustrated above for the case of butadiene, are the primary
results of a Hückel theory calculation. In the next section we examine some of the ways
in which these data can be used to interpret experimental results.

12.1.5 Applications of HMO energies

The energies of individual MOs

As a general rule, π-bonding is weaker than σ -bonding and π-antibonding less antibond-
ing than σ . Therefore the π-electron energy levels of a molecule lie near the energetic
centre of gravity and, in particular, the highest occupied MO (HOMO) is usually a π-
electron orbital. The major exception to this is the presence of non-bonding MOs in
carbonyl compounds and heterocycles. Similarly, the lowest unoccupied MO (LUMO) is
almost invariably a π orbital and the energies of these frontier orbitals may be expected
to correlate with the experimental ionisation energy and electron affinity of the molecule.
If these properties cannot be measured directly, the reduction and oxidation energies of
the molecule can sometimes be measured by electrochemical techniques; in the case of
the aromatic hydrocarbons this has been done very successfully. All that need be said here
about these methods is that the molecule (M) is dissolved in an electrically conducting
solution (e.g. acetonitrile containing tetraethylammonium perchlorate) which is placed in
an electrochemical cell where the negative potential required to form M−, or the positive
potential required to form M+, is measured. The potentials so measured correlate well
with the Hückel HOMO and LUMO energies as Figure 12.3 shows.2 The slopes of the two
correlations also enable us to determine values of β of 287 kJ mol−1 and 197 kJ mol−1

for the reduction and oxidation potentials respectively. We shall return to comment upon
the differing values of β given by the various correlations with experimental data in
Section 12.1.7.
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reduction potentials2

MO energy differences

It is tempting to think that the energy difference between the HOMO and LUMO will
be a measure of the energy of the lowest energy band in the electronic spectrum of
the molecule. However, as we have seen in Chapter 11, this is an oversimplified view
since it does not allow for the very significant energies which arise from interelectronic
repulsion. Nevertheless, the LUMO–HOMO energy difference (�E) does make a very
significant contribution to the corresponding electronic spectral band and we do find a
good correlation between calculated and observed �E in many cases. The example of
the para-band (1La) of the aromatic hydrocarbons is shown in Figure 12.4.3 A value of
β = 257 kJ mol−1 can be deduced from the slope of the graph.

Total π-electron energy

The hydrocarbons where electron delocalisation is possible are distinguished from their
brethren that do not have delocalised π-electron systems by the important property of
additivity of bond energies. This can be seen when we compare heats of combustion.
Where there is no delocalisation, each bond type, C–H, C–C, C=C etc., can be assigned
a heat of combustion and the total heat of combustion of the molecule can be written
as a sum of the individual contributions from each bond. For a molecule with electron
delocalisation, such as benzene, this is not possible, the molecule being found to be more
stable, i.e. to have a smaller heat of combustion, than the sum of the individual bond
contributions, 3xE(C–C) + 3xE(C=C) + 6xE(C–H):‡ Table 12.3 lists some typical data
illustrating this discrepancy.4

‡ The thermochemical argument is explained in more detail in Box 12.1.
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Figure 12.4 Correlation of the LUMO–HOMO energy difference with the energy of the para
band of some aromatic hydrocarbons3

Table 12.3 Delocalisation energies (DLE) of some aromatic hydrocarbons

Compound Heat of Combustion (kJ mol−1) Difference Hückel DLE
Calculated Observed (kJ mol−1) (β)

Benzene 3 451 3 302 149 2.00
Naphthalene 5 484 5 229 255 3.68
Diphenyl 6 631 6 333 298 4.38
Anthracene 7 513 7 154 359 5.32
Phenanthrene 7 516 7 101 415 5.45
Pyrene 8 401 7 946 455 6.51
Chrysene 9 554 9 048 506 7.19
Perylene 10 430 9 902 528 8.25

Naturally, the discrepancy has been associated with the fact that we do not believe
there are three double and three single carbon-carbon bonds in benzene. Rather, we know
from experiment that all the carbon-carbon bonds are the same and that the molecular
structure should be represented by something intermediate between, or some combination
of, the two Kekulé structures which we can draw. This is the cause of the additional
stability of the molecule over and above that of one of the Kekulé structures. This extra
stability, the difference between the experimental combustion energy and the sum of
bond contributions, is called the resonance or delocalisation energy. Some comparisons
of theory and experiment are listed in Table 12.3.

The heat of combustion for a particular Kekulé structure of localised single and double
bonds was calculated by Klages from the following values for individual bonds, which
he deduced from experimental calorimetric data: E(C–H) = 226 kJ mol−1, E(C–C) =
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206 kJ mol−1 and E(C=C) = 491 kJ mol−1 with some additional corrections for spe-
cial structural features, e.g. 4 kJ mol−1 for a benzene ring.‡ Thus the calculated heat of
combustion for benzene is:

6E(C–H) + 3E(C=C) + 3E(C–C) + 4 (for ring)

6 × 226 + 3 × 491 + 3 × 206 + 4 = 3451 kJ mol−1

But experimental heat of combustion = 3302 kJ mol−1

Therefore delocalisation energy = 149 kJ mol−1

The energies of the three HMO levels occupied by the six π electrons of benzene are
α + 2β, α + β and α + β and the occupied π orbital of ethene has an energy of α + β.
Therefore, the theoretical value with which this experimental delocalisation energy is
to be compared, the Hückel π-electron energy of benzene minus that of three ethene
molecules, is:

6.0α + 8.0β − 3(2.0α − 2.0β) = 2.0β

A graph of calculated versus experimental delocalisation energies from which a value
of β = 64 kJ mol−1 can be derived is shown in Figure 12.5.

2 3 4 5 6 7 8 9

100

200

300

400

500

600

F. Klages, Chem. Ber., 82, 358 (1949). Reproduced by permission of Wiley-VCH.

b = 64 kJ mol−1

E
xp

er
im

en
ta

l d
el

oc
al

is
at

io
n 

en
er

gy
 (

kJ
 m

ol
−1

)

Calculated delocalisation energy (b)

Figure 12.5 Correlation of calculated and experimental delocalisation energies for some aromatic
hydrocarbons4

‡ There are many subtle corrections of this form to allow for special aspects of the structures. Therefore, the data in Table 12.3
cannot be reproduced using only the three bond energies given. For more information see F. Klages, Chem. Ber., 82, 358
(1949).
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12.1.6 Applications of HMO coefficients

Charge densities and bond orders

The square of the AO coefficient Cai measures the participation of the particular carbon
2pz AO, φi on carbon atom i, in the MO �a and, in particular, the proportion of the
electron delocalised in �a which may be said to be present in φi. Since each MO normally
accommodates two electrons, the charge density in φi (qii), which is due to the occupation
of �a, is 2Cai

2. For the total charge density on carbon atom i (Qii) this must be summed
over all occupied orbitals:

Qii = 2
∑

a occ.

(Cai)
2

The bond order, Pij, is obtained in an analogous manner:

Pij = 2
∑

a occ.

CaiCaj

The meaning of the bond order may be appreciated by noting, firstly, that for a sig-
nificant value of Pij both Cai and Caj must also have significant values. Secondly, if the
two AO coefficients have the same sign they make a positive contribution to the bond
order whereas if they are of opposite signs the contribution is negative. Since a change of
sign on going from atom i to atom j implies a node between the two atoms for that MO,
negative contributions to Pij are antibonding contributions while positive contributions are
bonding. Therefore, a large positive bond order indicates a strong π-bond between the two
atoms concerned while a negative value indicates an antibond. The charge densities and
bond orders for butadiene calculated from the MOs in Table 12.2 are given in Table 12.4.

Two points about Table 12.4 are worthy of comment:

• The charge density in the ground state is 1.0 on each carbon atom. This is quite
generally true for a large class of compounds, which are known as alternant. All the
aromatic hydrocarbons that contain no five- or seven-membered rings and all the linear
polyenes are alternant hydrocarbons.

• The bond order of the terminal bonds is twice that of the central bond, in stark contradic-
tion to the Hückel approximation of the same resonance integral (β) for all C–C bonds.

As far as applications are concerned, it seems natural to assume that positively charged
reactants (electrophiles) will preferentially attack those atoms of a molecule where the

Table 12.4 π-electron charge densities and bond orders for butadiene

MO q11 p12 q22 p23

2 electrons in �4 +0.2764 −0.4472 +0.7236 −0.7236
2 electrons in �3 +0.7236 −0.4472 +0.2764 +0.2764
2 electrons in �2 +0.7236 +0.4472 +0.2764 −0.2764
2 electrons in �1 +0.2764 +0.4472 +0.7236 +0.7236

Q11 P12 Q22 P23
Ground statea +1.0000 +0.8944 +1.0000 +0.4472

aMOs �1 and �2 only are occupied in the ground electronic state.
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electron density (Q) is high while negatively charged reactants (nucleophiles) will seek
out atoms where Q is low. This assumption is based upon the simple concept that the
Coulombic energy of the two reacting molecules will be lowered by the approach of
oppositely charged atoms and raised by the converse. This simple analysis contains much
more than a grain of truth, but the progress of a chemical reaction from reactants to
products is a very complicated process in which the major role is played by the energy
differences between the reactants, the transition state(s) and the products. For molecules
to which the Hückel theory is applicable, and for many others, Klopman5 has shown that
the interaction of atom r of a nucleophile (R) with atom s of an electrophile (S) may be
expressed in the form:

�E = −QrQs/εD + 2(CHOMO
r CLUMO

s β)2/(EHOMO
r − ELUMO

s )

�E is the energy change due to the interaction of r and s. The first term on the right
is the Coulombic term representing the interaction between the total charges (assumed to
be opposite) on the atoms r and s which are separated by a distance D. ε is the dielectric
constant of the solvent. The second term contains the product of the coefficient of the
HOMO of the nucleophile at the interacting atom (r) and the coefficient of the LUMO
of the electrophile at atom s multiplied by β. The denominator is the energy difference
between the HOMO and LUMO. The many and varied applications of this equation, and
others like, it are largely responsible for the explosive growth in our understanding of
organic chemical reactions which took place in the second half of the 20th century. The
results leave no room for doubt as to the value of the Hückel MO coefficients in the
interpretation of organic chemical reactions. This is far too extensive a subject for us to
enter into here but, fortunately, Fleming6 has provided us with a splendid and readable
account to which interested readers should turn for further information and confirmation
of the bald statement in the last sentence.

Our last example of a correlation of Hückel theory with experiment will also serve
to illustrate the way in which the theory can be extended to take account of π-electron
systems involving atoms other than carbon, such as nitrogen and oxygen. If we call the
hetero-atom X, then we have to ascribe to it appropriate values of αX and βX. Since βC is
our unit of energy, we define these two quantities in terms of βC and two new parameters,
hX and kX, as follows; allowing only for C–X bonds:

αX = αC + hXβC βX = kXβC

A good discussion of hX and kX and a table of values may be found in Streitwieser.7

The correlation in question is that of π-electron bond order with the carbonyl stretching
frequency in aldehydes, ketones and quinones. Since the mass of the atoms and the σ -
bonding are a constant feature, we expect the frequency of the C=O stretching vibration
to increase linearly with the bond order. Figure 12.6,8 in which the bond orders were
calculated with hO = 1.2 and kO = 2.0, confirms this expectation.

12.1.7 Some final comments on the Hückel theory

The simplicity of the Hückel theory and the wide range of important chemical compounds
to which it is relevant ensured its extensive application from the outset. For such a simple
theory its success has been remarkable. However, it is only fair to say that the success
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Figure 12.6 Correlation of C=O π bond order with carbonyl stretching frequencies5

is in an important sense a result of the parameterisation of the theory and of the fact that
our expectations of the results are not overly high. This is illustrated most clearly in the
different values of β which result from the applications described above. We do not find,
and for such a simple theory we should not expect to find, the same value of β from each
application. This is because β is a composite parameter representing the electron-nucleus
attraction, the interelectronic repulsion and the kinetic energy. These three forms of energy
make different contributions to the experimental energies with which the results of the
Hückel calculations are compared. This subject has been discussed in detail by Murrell,
Kettle and Tedder9 who, taking the subject further, show how the inclusion of the all-
important electron repulsion terms makes the theory far more quantitative; but also far
more complex!

12.2 MAGNETISM IN CHEMISTRY

The fact that many atomic nuclei possess magnetic properties made possible the chemi-
cal applications of nuclear magnetic resonance spectroscopy (Chapter 9), which has had
such a profound effect upon the determination of molecular structure. But the magnetic
moments of nuclei are very small and the major, macroscopic magnetic phenomena, some
of which have been known since antiquity, are due to the spin and orbital motion of elec-
trons. In this section we shall be concerned only with ‘electronic’ magnetism. Our task
is to study the way in which the magnetic properties of atoms manifest themselves in
molecules and extended solids, and how the magnetic behaviour of such materials can be
used to extract information about their electronic structures. The study of magnetism dates
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back to the 19th century when the classical phenomena of paramagnetism, diamagnetism
and ferromagnetism were identified and defined. More recently, especially in the second
half the 20th century, the study of the magnetic properties of chemical compounds has
been stimulated by two factors. The growing understanding of the connection between
magnetism and chemical structure has shown that magnetism can be a valuable tool in the
elucidation of the finer details of molecular electronic structure, and the use of magnetic
materials in many technological devices has provided a strong applied-science stimulus
to research into chemical magnetism.

12.2.1 Magnetic susceptibility: diamagnetism and paramagnetism10

If a substance is placed in a magnetic field of strength H (units A m−1) then a magnetic
moment of magnitude M (A m−1) will be induced in that substance. The relationship
between H and M , which is known as the magnetisation, is:

M = χH (12.2.1)

where χ (chi) is the volume magnetic susceptibility, which is dimensionless.
The magnetic flux density within the substance, B (Tesla ∼ T = J C−1 s m−2), is related

to the strength of the applied field and the magnetisation by:

B = µo(H + M) = µo(1 + χ)H (12.2.2)

where µo is the vacuum permeability which is defined to have the value 4π × 10−7 J C−2

m−1 s2. If χ > 0 H and M add to increase B within the magnetised substance which is
then said to be paramagnetic. If χ < 0 the substance is said to be diamagnetic.

Diamagnetism is found in all materials. The electrons are always in motion and their
motion constitutes an electric current. When the material is subjected to a magnetic field,
the motion of the electrons is perturbed and, according to Lenz’s law, in such a way that
the very small magnetic field which results from this perturbation of the electric current
opposes the field which caused it. Thus, the induced magnetisation opposes and therefore
reduces the magnetic field within the material which is the characteristic behaviour of a
diamagnetic substance. The effect is largely independent of temperature.

Though ever-present, the diamagnetism can be overwhelmed by the magnetic effects of
unpaired electrons, if there are any, giving rise to paramagnetism. The magnetic properties
of a purely diamagnetic substance are induced by an applied magnetic field, but in the case
of a paramagnetic substance each molecule or atom already has a permanent magnetic
moment and the observed bulk magnetic moment arises from the partial alignment of these
molecular (atomic) moments by the applied field. Two characteristics of paramagnetic
materials stand out. Firstly, the induced moment (M) adds to the magnetic field (H ) and,
secondly, paramagnetism, in contrast to diamagnetism, is very temperature-dependent.
The reason for the marked temperature dependence is not far to seek. The individual
atomic/molecular magnets of which the material is composed tend to align themselves
with the applied field, thereby increasing B (Box 12.2). But this alignment is opposed by
the thermal motion of the atoms/molecules which increases with increasing temperature.
Thus, paramagnetism decreases as temperature increases according to a law discovered
by Pierre Curie (1859–1906):

χ = C/T (12.2.3)
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C is the Curie constant of the material and T is the absolute temperature. Though
many paramagnetic substances follow the Curie law many others follow the Curie-Weiss
(Pierre Weiss, 1865–1940) law:

χ = C/(T − θ) (12.2.4)

where θ is the Weiss constant. The susceptibility of paramagnets shows little or no depen-
dence upon the applied field.

Temperature-independent paramagnetism (t.i.p.) is a form of paramagnetism which, as
its name implies, does not depend on temperature. Unlike normal paramagnetism, this
form of paramagnetism is not the result of the alignment of magnetic moments already
present in the substance. Like diamagnetism, it is the result of orbital electronic motion
induced by the applied field. T.i.p. differs from diamagnetism in that while the latter
involves the use of ground-state orbitals only, the former requires the use of excited-state
orbitals and is therefore of significance only in those molecules or atoms where there are
excited states of low energy, such as are sometimes found in complexed transition-metal
ions (see Chapter 7).

12.2.2 Magnetic susceptibility: ferromagnetism and antiferromagnetism

The Curie or Curie-Weiss behaviour is typical of simple paramagnetic substances but
there are other forms of paramagnetism which show a more complicated dependence
upon temperature and applied field. These more complex behaviours arise where there is
some degree of interaction between the permanent, individual molecular or atomic mag-
netic moments, so that if thermal motion is sufficiently reduced this interaction causes
the individual moments to orient themselves, one with respect to the other. If the mutual
orientation of the moments is parallel (Figure 12.7a), the bulk magnetic moment becomes
very large and the material is said to be ferromagnetic. If the mutual orientation is antipar-
allel (Figure 12.7b), the material is antiferromagnetic. In each case there is a transition
temperature below which the mutual interaction of the magnetic moments is dominant and
Curie-Weiss behaviour is replaced by ferro- or antiferro-magnetism. This characteristic
temperature is known as the Curie temperature in the former case and the Néel (Louis
Néel, 1904–2000) temperature in the latter.

To obtain quantitative relationships between observed magnetic properties and molec-
ular parameters we must now define some of the terms which we shall use when we
derive expressions for the magnetic moments due to electronic orbital motion and spin;
first some definitions.

12.2.3 Magnetic fields and dipoles: some definitions

A magnetic field (H) is a vector quantity and the direction of the vector, by definition, is
the direction in which a hypothetical, isolated north pole would move under the influence

(a)

(b)

Figure 12.7 The relative orientations of magnetic moments in ferromagnetic (a) and antiferro-
magnetic (b) materials
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SN

Figure 12.8 The direction of a magnetic field is the direction in which a hypothetical, isolated
north pole would move

i

m

i

Figure 12.9 A magnetic dipole, µ, is a vector representing the magnetic field due to a current
flowing in a small loop. (The current is a flow of positive charge)

of the field. Thus, the field can be represented by lines of force which carry arrows
indicating its direction (Figure 12.8).

The definition of a magnetic dipole (µ) is discussed in Box 12.2. It is a vector formed
by a current (i) circulating in a small loop (area A) (Figure 12.9) and its magnitude is
given by:

µ = iA (12.2.5)

The vector µ is perpendicular to the plane of the current loop and points in the direction
in which a right-handed screw advances when turned in the direction of the current flow.
The units of µ are JT−1 or Am2.

In Box 12.3 the Langevin relationship between the measurable, macroscopic property
(χ) of a substance and the magnetic moment (µ) of the molecules composing that sub-
stance is derived. We must now obtain expressions for µ in terms of the orbital motion and
spin of the electrons so as to establish the vital, quantitative link between the macroscopic
observable, susceptibility, and atomic and molecular electronic structure.

12.2.4 The magnetic effect of electronic orbital motion

We are interested in the magnetic fields, which are created by the orbital motion and spin
of the electron, and the way in which these fields interact with applied magnetic fields. As
we know from Section 2.7, the Bohr theory of the hydrogen atom is not a fully fledged
quantum-mechanical theory. Nevertheless, we can gain much insight into our present
problem by means of that theory and we now use it to calculate the magnetic dipole
generated by an electron moving in a circular Bohr orbit. We make use of the result
from classical electromagnetic theory that the magnetic dipole, often called magnetic
dipole moment (µ) which arises from a current (i) flowing in a closed loop is given by
Equation (12.2.5). The vector (µ) is perpendicular to the plane of the current loop and its
direction is related to the direction of the current as shown in Figure 12.10‡.

‡ By convention, the current in a circuit is taken to flow from regions of positive potential to regions of negative potential.
When the current is being carried by electrons they flow in the opposite direction.
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Figure 12.10 The angular momentum (L) and magnetic dipole moment (µ) due to a current (i)
produced by an orbiting positive charge (q)

If the current flows from +x to +y the magnetic dipole vector points in the +z
direction of a right-handed coordinate system. Thus, if the current is the result of an
orbiting positive charge, the dipole moment vector is parallel to the angular momentum
vector, L, (Chapter 4) of the orbiting charge. A positive charge (q) moving with velocity
(v) in a circular orbit (radius r), produces a current (i) (charge per second) of:

i = qv/2πr (12.2.6)

so that, since A = πr2:
µ = qvr/2 (12.2.7)

The classical angular momentum, L, of an orbiting particle of mass mp is mpvr so that
we can also write the magnetic moment in terms of the orbital angular momentum, L,
and we find that:

µ = qL/2mp (12.2.8)

in which the radius of the orbit no longer features so that the expression applies to an
orbit of any radius.

Here we are interested in the case of an electron in a Bohr orbit to which the above
expression applies if we substitute −e (the electronic charge) for q and me (the electronic
mass) for mp. The change of the sign of the charge means that the angular momentum
and magnetic moment are now anti-parallel (Figure 12.11) and:

µ = −eL/2me (12.2.9)

We now recall that Bohr quantised the angular momentum of his allowed orbits, a
result which arises naturally in the full quantum mechanical analysis of Schrödinger who
found (Chapter 4) that the allowed values of angular momentum (L′) are given, in units
of h/2π , by the quantum number (l) through the formula:

L′ = {l(l + 1)} 1
2 h/2π (12.2.10)

(L′ is used to avoid confusion with the quantum number L in further development).
Thus, the possible values of µ are:

µ = −{l(l + 1)} 1
2 eh/4πme ≡ −{l(l + 1)} 1

2 µB, (12.2.11)
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Figure 12.11 The angular momentum (L) and the magnetic dipole moment (µ) due to an orbiting
electron

where eh/4πme(≡ µB) is the Bohr magneton which, in SI units, has the value 9.27408 ×
10−24 JT−1 (A m2). It is the fundamental constant which relates the magnetic dipole
generated by an orbiting electron to its quantised angular momentum. Thus, the magnetic
moment is also quantised. In a many-electron atom the total magnetic moment may be
calculated using the above formula but replacing l by L, the quantum number for the
total orbital angular momentum:

µ = −{L(L + 1)} 1
2 eh/4πme ≡ −{L(L + 1)} 1

2 µB (12.2.12)

Though the theory just described is a simple one, the above result agrees exactly with
that obtained by a full quantum-mechanical treatment.

12.2.5 The consequences of chemical bonding

When atoms form covalent chemical bonds the freedom of movement of the electrons,
and hence their orbital angular momenta, can be much reduced and this also reduces
the corresponding magnetic moments. This quenching of the orbital angular momentum
which results from bonding is very difficult to calculate; it has proved convenient to
allow for this phenomenon by introducing a parameter, gl , known as the orbital g-factor
which can be determined by experiment and, in favourable cases, calculated. With this
modification Equation (12.2.11) reads:

µ = −gl{l(l + 1)} 1
2 µB (12.2.13)

and in a free atom, gl = 1.0.
We know from Chapter 4 that if we select a particular direction in space, almost

invariably the z-direction, then the orbital angular momentum vector characterised by the
quantum number l can have 2l + 1 orientations with respect to the chosen axis, each
characterised by a value of the quantum number ml , which takes all the integer values
from +l to −l and gives the value of the z-component of the angular momentum (lz)
through the equation:

lz = mlh/2π (12.2.14)
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The corresponding equation for the z-component of the magnetic moment is:

µz = −glmlµB (12.2.15)

The positive (negative) values of ml which characterise electrons with positive (nega-
tive) z-components of angular momentum correspond, in the simple view described above,
to electrons orbiting the nucleus in opposite directions. The magnetic moments due to
pairs of electrons occupying orbitals with equal and opposite values of ml , e.g. a full
shell of 10 d-electrons, cancel and such atoms can have no orbital magnetic moment.
The presence of magnetism due to orbital electronic motion is therefore a characteristic
of atoms with incompletely filled electron sub-shells.

12.2.6 The magnetic effect of electron spin

It seems quite obvious that an orbiting electron can produce a magnetic moment and, as
we have seen above, the magnitude of the moment can be readily calculated using classical
physics. Less obviously, the spin of the electron also gives rise to a magnetic moment,
though this cannot be calculated using a classical approach. Indeed, it was only when
Dirac introduced relativity into quantum mechanics that the exact quantitative description
of a phenomenon which had been well known experimentally for about 30 years was
found. The application of the relativistic theory is very difficult, especially for systems
containing more than one electron. Fortunately however, both theory and experiment show
that an excellent quantitative description of the magnetic moment due to electron spin
may be obtained by a simple extension of the theory derived for the orbital motion. Thus,
the magnetic moment due to electron spin angular momentum and its z-component may
be written:

µ = −gs{s(s + 1)} 1
2 µB (12.2.16)

and
µz = −gsmsµB (12.2.17)

The value of the spin angular momentum is not changed by chemical bonding. How-
ever, we retain the g-factor because we find that the correct relativistic treatment of the
magnetic moment due to electron spin shows that spin angular momentum gives rise to a
magnetic moment which, for a free electron, is 2.002322 times larger than that produced
by an orbital angular momentum of the same magnitude. Thus, for magnetic moments
due to spin the g-factor is 2.002322. For most purposes, and certainly for ours, it is quite
sufficient to set gs = 2.0. As in the case of orbital magnetic moments, the moment arising
from a number of electrons can be obtained using the above formulae and replacing s

and ms with S and Ms , the quantum numbers for the total spin and its z-component,
respectively. If the electron spins are antiparallel, i.e. if they are paired and have equal
and opposite ms values, then their spin magnetic moments cancel. Herein lies the essence
of one of the simplest but most important uses of magnetic measurements in the elucida-
tion of molecular electronic structure–magnetism is a sensitive indicator of the number
of unpaired electrons.

Where there are both orbital and spin contributions, the total magnetic moment is the
vector sum of the two.
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12.2.7 Magnetism in practice

So far, so good; we have obtained the basic formulae with which, in principle, the magnetic
moments of atoms and molecules may be calculated. Unfortunately, their application is
made difficult by the fact that magnetically interesting species have ground electronic
states with unfilled electron shells and are consequently multiply degenerate. For example,
the ground state of an atom having a single d electron outside closed shells is 2D, which
is ten-fold degenerate; this degeneracy may be partially lifted by spin-orbit coupling to
give a four-fold degenerate 2D 3

2
state and a six-fold degenerate 2D 5

2
. In a transition-metal

ion these degeneracies may be lifted further by the crystal field of the surrounding ligands
(see Chapter 7). Therefore, the Boltzmann population of the components of the ground
state must be taken into account when the magnetic properties of the species are calculated
and formulae applicable to general cases can only be given when accompanied by caveats
regarding the relative magnitudes of any ground state splittings and kT. The problem is
discussed in detail in Van Vleck’s classic treatise.11 We illustrate some aspects of the
problem here by examining the magnetic properties of an atom with one d electron under
various conditions relevant to the discussion of Section 7.6.

First, we consider a gas-phase atom or ion with one d electron outside closed shells. All
10 orbitals available to the electron have well defined spin and orbital angular momenta
and their magnetic properties are summarised in Table 12.5.

The magnetisation, M , of an assembly of N d1 atoms can now be calculated, for
a flux density B, using the equations derived in Box 12.3. We multiply the magnetic
moment of each state by its population, sum the result and divide by the total population.
As an example of the contributions to numerator and denominator, consider |+2, + 1

2 〉.
In the numerator, this state is entered as a magnetic moment of −3 Bohr magnetons
multiplied by a population factor of exp (−3B/kT ). The population factor also appears
in the denominator. States having magnetic moments of zero are also populated so they
appear in the denominator, though not in the numerator. The complete expression is:

M = Nµ = N{3(e3x − e−3x) + 2(e2x − e−2x) + 2(ex − e−x)}
{e3x + e−3x + e2x + e−2x + 2(ex + e−x) + 2e0} (12.2.18)

Table 12.5 The magnetic moments (µ in Bohr magnetons) of the states
of a single d electron and their energies (E) in a flux density (B)

|ψ〉 l̂z|ψ〉(h/2π) 2ŝz|ψ〉(h/2π) µ/µB E/J

| − 2,− 1
2 〉 −2 −1 +3 −3B

| − 1,− 1
2 〉 −1 −1 +2 −2B

| − 2,+ 1
2 〉 −2 +1 +1 −1B

|0,− 1
2 〉 0 −1 +1 −1B

| − 1,+ 1
2 〉 −1 +1 0 0

| + 1,− 1
2 〉 +1 −1 0 0

|0,+ 1
2 〉 0 +1 −1 +1B

| + 2,− 1
2 〉 +2 −1 −1 +1B

| + 1,+ 1
2 〉 +1 +1 −2 +2B

| + 2,+ 1
2 〉 +2 +1 −3 +3B
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where x ≡ B/kT. The pairs of exponential terms with equal and opposite exponents can
be taken together as sinh or cosh so the final equation for M is:

M = N{3sinh(3x) + 2sinh(2x) + 2sinh(x)}
{cosh(3x) + cosh(2x) + 2cosh(x) + 1} (12.2.19)

This function, known as a Brillouin function, is plotted in the form M/N versus B/T

in Figure 12.12 (graph 1). Two aspects of the graph deserve comment.
Where B/T < 1.0, i.e. where B is small and T is large, the graph is linear. This

is the Curie region where χ is proportional to 1/T . We shall comment on it further
below. As B/T increases, however, curvature sets in and the graph becomes horizontal
at B/T ≈ 8. This is known as saturation; it arises when the states are split so far apart
by the field and/or the temperature is so low that only the lowest state is occupied. For
d1 this is |−2, − 1

2 〉 with a magnetic moment of +3µB, as the asymptotic value of the
graph confirms. Experimental measurements of the magnetisation of transition-metal and
rare-earth compounds show excellent quantitative agreement with this theory.12

Much of the experimental data on magnetic properties in the literature has been mea-
sured at modest fields (<0.5T ) and temperatures not far from 25 ◦C, with the result that
the determination of magnetic susceptibilities and their use in inferring electronic con-
figurations etc. has usually been based upon measurements made in the Curie region of
the magnetisation curve. In view of the dependence of susceptibility on temperature these
results are now of limited value. In Box 12.3 the slope, C, of the magnetisation curve in
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this region is shown to be Nµoµ
2/3k and this relationship might be used to determine the

required magnetic moment. Alternatively, since x 	 1.0 in this region, we may expand
the exponential functions in Equation (12.2.18) to just two terms and evaluate M , which
we then find to be:

M = Nµ = N(30x/10) = 3NB/kT (12.2.20)

Therefore:
χ = Mµo/B = 3Nµo/kT (12.2.21)

which shows the expected linear dependence of χ upon 1/T . From Box 12.3 we also have:

χ = Nµoµ
2/3kT (12.2.22)

and equating the two results we find µ = 3µB. The moment is in Bohr magnetons because
these are the units of µ used in Table 12.5. Normally, we would calculate µ for the free
d1 atom directly using the quantum numbers for the angular momentum of the 2D state
and a formula (Equation (12.2.23)) derived by Van Vleck11 for the case where multiplet
splittings are small compared with kT. This certainly applies here since we are assuming
that spin-orbit coupling is zero. We also assume that gl = 1 and gs = 2:

µ = [{L(L + 1)} + 4{S(S + 1)}] 1
2 µB (12.2.23)

With this formula, for a 2D state where L = 2 and S = 1
2 , we find µ = 3µB, in agree-

ment with the result above.
When multiplet splittings are large compared with kT, Van Vleck11 has shown that:

µ = −gJ {J (J + 1)} 1
2 µB (12.2.24)

where:

gJ = 1 + {J (J + 1) + S(S + 1) − L(L + 1)}/2J (J + 1) (12.2.25)

Two other magnetisation curves for a d1 atom are shown in Figure 12.12. Graph 2 is
obtained if the atom is subject to a strong, octahedral crystal field when, because of the
large crystal-field splitting, only the dxy, dxz and dyz orbitals are occupied (see problem
4). Graph 3 shows the magnetisation of a free d1 atom which has only spin angular
momentum, all orbital angular momentum having been quenched. This is a case which
we are unlikely to meet experimentally.

To see how a Curie-Weiss dependence of susceptibility on temperature might arise
we can consider the case of a d1 ion in the field of eight equal charges arranged at the
corners of a tetragonal antiprism. To picture such an arrangement, imagine first that you
have eight charges arranged at the corners of a cube. Now grasp two opposite square faces
and pull them apart so that the remaining four faces are now rectangular. The resulting
body is a tetragonal prism. Finally, to obtain the tetragonal antiprism rotate one square
face through 90◦ relative to the other. This arrangement of charges can be adjusted to
give a d-orbital energy-level scheme such as in Figure 12.13, in which D is an arbitrary
energy. The magnetic moments (µ) of the d-electron states and their energies (E) in such
a crystal field are listed in Table 12.6. Setting x = B/kT and y = D/kT and expanding
exponential functions of x and y to two terms only we find:

µ = {20x(1 − y) + 8x(1 − 2y) + 2x}/{4(1 − y) + 4(1 − 2y) + 2} (12.2.26)
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Figure 12.13 The energy levels of the d states of a single d electron in a tetragonal antiprismatic
crystal field

Table 12.6 The magnetic moments (µ in Bohr magnetons) of
the states of a single d electron and their energies (E) in a tetrag-
onal antiprismatic crystal field and a flux density (B)

|ψ〉 (l̂z + 2ŝz)|ψ〉(h/2π) µ/µB E/J

| + 2, + 1
2 〉 +3 −3 D + 3B

| + 2, − 1
2 〉 +1 −1 D + 1B

| − 2, + 1
2 〉 −1 +1 D − 1B

| − 2, − 1
2 〉 −3 +3 D − 3B

| + 1, + 1
2 〉 +2 −2 2D + 2B

| + 1, − 1
2 〉 0 0 2D

| − 1, + 1
2 〉 0 0 2D

| − 1, − 1
2 〉 −2 +2 2D − 2B

|0, + 1
2 〉 +1 −1 +1B

|0, − 1
2 〉 −1 +1 −1B

Multiplying out the numerator and denominator, neglecting terms in x × y which are
second order, we obtain:

M = Nµ = N{15x/(5 − 6y)} = {15NB/kT }/{5 − 6D/kT } (12.2.27)

Therefore:

χ = Mµo/B = {15Nµo/kT }/{5 − 6D/kT }
and multiplying top and bottom by T /5 we find:

χ = {3Nµo/k} · 1/{T − 6D/5k} (12.2.28)

which shows that χ has a Curie-Weiss temperature dependence with θ = 6D/5k.



374 Some Special Topics

12.2.8 Systems of interacting molecular magnets

In Section 12.2.2 the phenomena of ferromagnetism and antiferromagnetism were briefly
mentioned. These properties are the result of interactions between molecular or atomic
magnets and interest in materials which show them has grown rapidly because of their
technological applications. Here we can address only the most basic aspect of this sub-
ject; the mechanism of the interaction. It should be clearly understood at the outset that
the interaction is not the magnetic dipole-dipole interaction of the constituent molecular
magnets. A much-simplified but instructive calculation will make this clear. Iron, a well-
known ferromagnetic material, has a body-centred cubic (bcc) lattice in which every atom
is 2.48 × 10−10 m from its eight nearest neighbours. The individual magnetic moment of
the iron atoms is 2.22 µB and the Curie temperature (TC) below which the ferromagnetic
behaviour is observed is 1043 K. The energy of interaction (Eint) of two magnetic dipoles
(µ1 and µ2) distance R apart is:

Eint = {µ0/4π}{(µ1 · µ2)/R
3 − 3(µ1 · R)(µ2 · R)/R5} (12.2.29)

If the dipoles are orientated at 90◦ to R:

Eint = {µ0/4π}{(µ1 · µ2)/R
3} (12.2.30)

This interaction will be a maximum if µ1 is parallel to µ2 so that, for the particular
case of iron:

Emax = {(2.22 × 9.27 × 10−24)2/(2.48 × 10−10)3} × 10−7 = 27.77 × 10−25 J

Such an interaction in a bcc lattice will give rise to a band of energy levels, each level
corresponding to a different relative orientation of the magnetic moments, with a spread
of 16 times the above figure, i.e. 44.43 × 10−24 J (see Section 12.3.1).‡ Now, consider
the population of this band of energy levels at 100 K, far below TC , where the iron
should be clearly ferromagnetic. According to the Boltzmann law, at 100 K for every
100 iron atoms in the lowest state in the band there will be approximately 97 in the
highest state. And, of course, all the intermediate levels will be correspondingly highly
populated. Therefore, even at 100 K all relative orientations of the magnetic moments of
the iron atoms will be approximately equally populated, there will be no overall ordering
of the moments and no ferromagnetism. We should also note that if there was significant
excess population in the lowest state the iron would be antiferromagnetic! Clearly, the
energy associated with magnetic dipole-dipole interaction is several orders of magnitude
too small to be responsible for maintaining magnetic order up to 1043 K and, furthermore,
the order which it would produce if it were stronger would not be a ferromagnetic one.
What, then, is the mechanism of this strong interaction?

Section 11.5.3 contains an extensive discussion of the reasons for the difference in the
energies of the two excited states of helium which have the same configuration, 1s12s1,
but differ in the relative orientations of the electron spins. The triplet with parallel spins
is significantly lower in energy than the singlet in which the spins are paired. In that
case too, the difference in energy is not a consequence of the direct magnetic interaction

‡ This is an over-estimate of the band width since it is not possible to have an arrangement in which the magnetic moments
of the central iron atom and each of its eight nearest neighbours are all parallel to each other and perpendicular to the line
joining each pair. However, this is not important since we shall show that the interaction is much too small anyway.
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of the electron spin magnetic moments but arises in an indirect way from the effects of
inter-electronic repulsion, a very much more potent force.

In order to understand more clearly why the interaction between the magnetic centres
has the characteristics of a dipole-dipole interaction, even though it is not, we first return to
the helium atom problem, following van Vleck.11 The symmetric (+) and antisymmetric
(−) spin functions for the two electron are:

+ =
√

1
2 {α(1) · β(2) + β(1) · α(2)} (12.2.31a)

and

− =
√

1
2 {α(1) · β(2) − β(1) · α(2)} (12.2.31b)

It is sufficient for our present purpose to consider only the two spin functions above
and neglect the other two symmetric functions, α(1) · α(2) and β(1) · β(2).

The corresponding space functions are:

�+ =
√

1
2 {φ1s(1) · φ2s(2) + φ2s(1) · φ1s(2)} (12.2.32a)

and

�− =
√

1
2 {φ1s(1) · φ2s(2) − φ2s(1) · φ1s(2)} (12.2.32b)

Because, according to Pauli, a total wave function must be antisymmetric with respect
to the exchange of electrons 1 and 2, the spin and space functions must be combined as
follows to form the triplet (|T〉) and the singlet (|S〉) state wave functions:

|S〉 = �+ · − (12.2.33a)

and

|T〉 = �− · + (12.2.33b)

The energies of the triplet and singlet states differ because the inter-electronic repulsion
in the two states is different. We can express this result in terms of the matrix of the
operator for inter-electronic repulsion, e2/r12:

e2/r12 |T〉 |S〉
〈T| J1s,2s − K1s,2s 0
〈S| 0 J1s,2s + K1s,2s

(12.2.34)

J1s,2s and K1s,2s are the Coulomb and exchange electron repulsion integrals respec-
tively (Section 11.5.3) and we recall that the operator e2/r12 operates solely on the space
functions, �+ and �−.

We now examine the operation of the spin operator Ŝ1 · Ŝ2 on the spin functions, +
and −. First we express the operator in terms of the components of the vectors Ŝ1

and Ŝ2:

Ŝ1 · Ŝ2 = Ŝ1zŜ2z + Ŝ1xŜ2x + Ŝ1yŜ2y = Ŝ1zŜ2z + 1
2 {Ŝ1+Ŝ2− + Ŝ1−Ŝ2+} (12.2.35)

Bearing in mind that an operator with subscript 1 (2) operates only on electron 1 (2), we
can tabulate the results of the above spin-component operators on the two spin functions:
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|α(1) · β(2)〉 |β(1) · α(2)〉
Ŝ1zŜ2z − 1

4 |α(1) · β(2)〉 − 1
4 |β(1) · α(2)〉

1
2 Ŝ1+Ŝ2− 0 1

2 |α(1) · β(2)〉
1
2 Ŝ1−Ŝ2+ 1

2 |β(1) · α(2)〉 0

Using the results in the above table and Equation (12.2.35) we find that Ŝ1 · Ŝ2|T〉 =
+ 1

4 |T〉 and Ŝ1 · Ŝ2|S〉 = − 3
4 |S〉 and we can also express this result as a matrix:

Ŝ1 · Ŝ2 |T〉 |S〉
〈T| + 1

4 0
〈S| 0 − 3

4

(12.2.36)

Again we recall that, although we have placed the symbol for the complete wave
function |T〉 and |S〉 at the head of the columns and rows of the matrix, the matrix
elements in this case are derived solely from the spin functions. The matrices 12.2.34 and
12.2.36 can be linked with a matrix (Equation (12.2.37a)):

−2K1s,2sŜ1 · Ŝ2 = e2/r12 − J1s,2s + 1
2K1s,2s (12.2.37a)

or, in terms of the complete matrices (Equation (12.2.37b)):
[−K/2 0

0 3K/2

]
=

[
J − K 0

0 J + K

]

+
[ −J + K/2 0

0 −J + K/2

]
(12.2.37b)

where the subscripts 1s,2s on J and K have been omitted to simplify the notation. The
rules of matrix algebra require that the equality holds for every set of corresponding matrix
elements, e.g. for (1, 1), −K/2 = J − K − J + K/2. This result shows that the eigenval-
ues of the operator e2/r12, which are the different energies of the parallel (symmetric spin
function) and anti-parallel (antisymmetric spin function) electron pairings, plus a constant
term (−J + K/2) are equal to the eigenvalues of the operator −2 K Ŝ1 · Ŝ2. Remarkably,
the spin operator Ŝ1 · Ŝ2 mimics the operator e2/r12, which is in fact responsible for the
energy difference between the parallel and antiparallel coupling of the magnetic moments,
and provides a much simpler way of calculating the relative energies of the coupled levels
than would otherwise be the case. An important question remains. The above analysis is
based on the very simple system of just two electrons in the helium atom; does it apply
to other systems with many more electrons? Dirac has shown that it does. In a many-
electron molecule or crystal the spins of any pair of electrons, i and j, may be regarded as
being coupled together by an energy of the form −2 Ki,jŜi · Ŝj. Note that the subscripts
on K relate to the spatial wave functions of the electrons i and j so that the value of the
coupling energy will always depend upon the distribution of the electrons involved.

12.2.9 A note of warning

The reader’s attention is drawn to some potential causes of confusion. The symbol Ki,j

has been used here in the expression for the coupling for the sake of consistency with the
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discussion of the helium atom in Chapter 11. But in the magnetochemistry literature J

is invariably used in this context. It is most important to note that the magnetochemist’s
J is our K and not the Coulomb integral which we have called J . Unfortunately, there
is also a lack of consistency in the form of the coupling expression used in applications;
some authors neglect the factor of 2 and/or the negative sign.

12.2.10 An application

As an example of the above theory we consider the case of a triangular arrangement of
three interacting centres (Figure 12.14). Systems of this form, in which the magnetism
derives from transition-metal ions linked by their ligands, have been extensively studied.
In order to limit the size of the problem we consider the case where the magnetism at each
centre derives from one unpaired spin only, i.e. Sz = ± 1

2 . The Hamiltonian operator is:

Ĥ = −2{K12Ŝ1 · Ŝ2 + K23Ŝ2 · Ŝ3 + K31Ŝ3 · Ŝ1} (12.2.38)

and by expressing Ŝ1 · Ŝ2 in terms of Ŝz, Ŝ+ and Ŝ−, as we have done above, we obtain
the 8 × 8 matrix of Ĥ as two 1 × 1 and two 3 × 3 matrices:

|ααα〉 |βββ〉
〈ααα| − 1

2 (K12 + K23 + K31) 〈βββ| − 1
2 (K12 + K23 + K31)

|ααβ〉 |αβα〉 |βαα〉
〈ααβ| 1

2 (−K12 + K23 + K31) −K23 −K31

〈αβα| −K23
1
2 (+K12 + K23 − K31) −K12

〈βαα| −K31 −K12
1
2 (+K12 − K23 + K31)

|ββα〉 |βαβ〉 |αββ〉
〈ββα| 1

2 (−K12 + K23 + K31) −K23 −K31

〈βαβ| −K23
1
2 (+K23 + K12 − K31) −K12

〈αββ| −K31 −K12
1
2 (+K12 − K23 + K31)

When K12 = K23 = K31 ≡ K these four matrices give four-fold degenerate eigen-
values of +3 K/2 and −3 K/2. When K12 = K23 ≡ K and K31 = fK , where f is an
arbitrary parameter, we find two-fold degenerate eigenvalues of (4 − fK)/2 and 3fK/2

1

23

K31

K23

K12

Figure 12.14 Three interacting magnetic centres
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Figure 12.15 The energy levels of three interacting magnetic centres

and a four-fold degenerate eigenvalue of −(2 + f)K/2. Energy-level schemes for f = 1.0
and 0.0 < f < 1.0 are illustrated in Figure 12.15.

12.3 THE BAND THEORY OF SOLIDS

The electrical properties of conductors, semiconductors and insulators are arguably the
material properties most important to modern technology. The basic quantum-mechanical
description of the electronic structures of solids and the interpretation of their properties
by that means has played a vital role in the development of the technology. This is a
branch of solid state physics which we can only touch upon here. We shall emphasise
the elementary principles of the quantum-mechanical description of the bonding in solids
and find it to be a logical extension to infinite arrays of interacting atoms of the concepts
and methods already described in our treatment of discrete molecules. We approach the
problem from two different viewpoints.

12.3.1 The tight binding approximation

Consider the sodium atom; the ionisation energy of the 3s electron is only 5.14 eV.
To remove the next electron 52.43 eV are required which, even allowing for the fact
that this is the removal of an electron from Na+, shows how high the energy of the
3s electron is compared with the 2p electron, i.e. the 3s electron is much less tightly
bound to its atomic core than the 2p electron. It is clear from these figures that the
unpaired 3s electron must play an important role in the bonding in sodium metal and,
although we shall find that the unoccupied 3p orbitals are also involved, the concept of the
interaction of the singly occupied 3s orbitals provides our starting point. We now recall
the molecular orbital theory of the hydrogen molecule (Section 6.5), where two hydrogen
1s AOs of energy E1s combine to form a bonding and an antibonding MO of energy
E1s + β and E1s − β respectively. β is the interaction between pairs of adjacent orbitals
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and is a negative quantity. If we make the reasonable assumption that the interaction of
two sodium atoms is confined to the interaction of their two 3s AOs we can draw an
energy-level diagram of exactly the same type for Na2. We now ask what would be the
result of adding further sodium atoms to form linear Na3, Na4, . . . NaN molecules, with
β �= 0 only between adjacent atoms. This is a problem for which there is an algebraic
solution; the energies are given by the formula:

Em = E3s + 2β cos[mπ/(N + 1)] m = 1, 2, 3, . . . N (12.3.1)

where m is a quantum number characterising the energy level and Em increases with
increasing m. The equation above applies to a linear chain of carbon 2pz AOs such as
we have in the Hückel theory and the interaction (β) has exactly the same meaning here
as it did in Section 12.1. In the limit of a very large value of N we find the lowest and
highest energy levels, E1 and EN, at:

E1 = E3s + 2β cos[π/(N + 1)] ≈ E3s + 2β cos[0] = E3s + 2β

EN = E3s + 2β cos[Nπ/(N + 1)] ≈ E3s + 2β cos[π] = E3s − 2β (12.3.2)

All the other N-2 energy levels must fit in between these two outer limits. They form a
band of closely spaced levels. The extension of this concept to a three-dimensional array
of sodium atoms is quite straightforward. In a row of sodium atoms each atom has two
nearest neighbours and the width of the band is 2 × 2β = 4β; as above. For a simple
cubic lattice each atom has six nearest neighbours, two along each of the three Cartesian
axes, and the total spread of the band is 6 × 2β = 12β. In fact, at normal temperatures
and pressures sodium metal has a body-centred cubic lattice with eight nearest-neighbour
atoms and the spread of the band is 16β. The subject is clearly explained by Kittel.13 A
1-mm cube of sodium contains about 1020 atoms, each of which provides one 3s AO, so
that the number of energy levels in the band, which experiment shows to be approximately
4.8 × 10−19 J from top to bottom, is extremely large and they form, to all intents and
purposes, an energy continuum. If this was the only contribution to the bonding in sodium
metal we would now place the N electrons from N sodium atoms in the lower N/2 orbitals
of the band and our description of the bonding would be complete. But the 3s orbitals
are not the only ones which overlap as the sodium atoms approach each other as a more
detailed study reveals.

An approximate calculated band structure for sodium metal as a function of interatomic
distance (r) is shown in Figure 12.16. As r is reduced, the unoccupied 3p orbitals interact
first and a band begins to form; the highest and lowest levels of the band are indicated by
dotted and solid lines respectively. But since sodium has no 3p electrons the formation of
this band generates no bonding. However, as r is reduced further the 3p band broadens
and the 3s orbitals, which have one electron per atom, begin to interact and bonding
commences. At r ≈ 45 nm the highest level of the 3s band crosses the lowest level of
the 3p band and the equilibrium value of r (ro) follows at 37 nm. At ro the lower part
of the 3p band is low enough to be populated by some of the electrons from the 3s band
and the Na–Na bonds formed have both 3p and 3s character, i.e. they are hybrid bonds
(Section 6.15). There is no significant interaction of the 2p orbitals at ro, and, a fortiori,
of the 2s and 1s, which is why they have not been included in the diagram.

As with sodium, in general a number of different atomic orbitals may be expected to be
involved in metal bonding. In a typical first-row transition metal, for example, 4s, 4p and
3d AOs contribute to band formation and bonding. Each type of orbital will form a band
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Figure 12.16 The band structure of sodium metal

with its energetic centre at roughly the energy of the corresponding AO in the isolated
atom, and an idealised band structure might appear as represented in Figure 12.17(a).

However, we need to add more information to this bare picture. In the first instance
we must indicate on our diagram the occupation of the energy levels by electrons. We
show this (Figure 12.17(b)) by shading the bands, or parts of bands, which are filled with
electrons. The energy at the border between occupied and unoccupied levels is known as
the Fermi level, after Enrico Fermi whose name we have already encountered.

We must also recognise that the width of a band, i.e. the energy separation between the
highest and lowest energy level, depends upon the interaction (β), which will not be the
same for the three types of AOs. The most important factors determining the magnitude
of β are:

• The interatomic distance; the greater the distance the smaller the interaction and the
narrower the band.

• The closeness with which the electron is bound to the atom; the more tightly the electron
is confined to the atom the smaller the interaction and the narrower the band.

Finally, no indication of the number of levels at any particular energy is given in
Figures 12.17(a) and 12.17(b). Generally, the number of levels at the extremes of the
band energy will be low. As we move towards the centre of the band the number of
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Figure 12.17 Band structure for a typical first-row transition metal

levels per energy unit, the density of states, will increase. Thus, the band structure of a
typical transition metal might appear as in Figure 12.17(c).

12.3.2 The electron–gas (free-electron) approximation

An alternative approach to a theoretical description of the structure of metals was sug-
gested by Arnold Sommerfeld (1868–1951) in 1928. It is based on a perturbed, free-
electron model. If we again think of sodium as our example we can imagine that the 3s
electrons, one from each atom, are effectively detached from their atomic cores and form
a sea or gas of mobile electrons free to roam, almost at will, through the metal. They
are not completely free because they move in the periodic potential field of the positively
charged cores, which makes important modifications to their energies and wave functions.
For the sake of simplicity we shall consider a one-dimensional model developing further
the description of an electron in a linear box we initiated in Sections 3.6 and 3.7.

We first make some modifications to the wave functions described there. We noted
that it was only possible to have electrons moving freely in one dimension if there were
no boundaries to restrict the motion and that, under those conditions, the wave functions
were eigenfunctions of both the operator for linear momentum and of the Hamiltonian.
Pairs of wave functions that have equal energies and correspond to electrons moving
in the positive and negative x-direction with equal and opposite linear momenta can be
identified. However, we did not normalise these wave functions, and we must address
that problem here. Also, because we are interested in the effect upon the electrons of the
periodic field of the atomic cores, we need to choose a form of our x co-ordinate that
reflects the arrangement of the cores. Our one-dimensional model consists of a series of
positively charged atomic cores positioned at equal intervals (a) along the x co-ordinate.
The potential energy of a free electron (V ) will be lowest when it is at a core and
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Figure 12.18 The core potential of a linear array of metal atoms (a) Stable +∗+ and unstable
−∗− electron distributions (b)

highest when it is midway between them Figure 12.18(a). A suitable algebraic form for
the potential is:

V = −v · cos(2Nπx/L) (12.3.3)

where L is a length which contains N cores (L = Na) and is assumed to be very much
larger than a, so that the energy levels of the system when V = 0 are En = n2h2/8meL2

and still very closely spaced.
Following Section 3.7.1, but expressing the co-ordinate in a manner compatible with

12.3.3, the pairs of normalised wave functions which we shall use are:

�±n = (1/2L)
1
2 exp{±inπx/L} (12.3.4)

where ±n is the quantum number and i = √
(−1) (Appendix 8). The wave functions are

normalised to unity and orthogonal within any section of the system between α − L and
α + L, where α is an arbitrary point along the chain of cores:

∫ α+L

α−L
�n

∗�n dx = 1

2 L

∫ α+L

α−L
e−iπnx/L · e+iπnx/L dx

= 1

2 L

∫ α+L

α−L
1 dx = 1

2 L
[α + L − α + L] = 1

Since L is defined as the length containing a specific number of atomic cores, the
relative position with respect to the cores of the point α + L is exactly the same as that of
α − L, independent of the value of α. Therefore, in choosing these limits we are simply
recognising the periodic nature of the sequence of cores or lattice; i.e. we are using
periodic boundary conditions.

We must now examine the effect of the potential (V ) upon and the wave functions
and energies of the mobile electrons. In order to approach the essentials of the problem
as directly as possible we eschew a general analysis and concentrate upon a very special
case. What is the effect of this potential upon the wave functions and energies of a pair of
electrons having equal but opposite values of n, i.e. two electrons of equal energy (linear
momentum) moving in opposite directions along x?

We can view the mathematics either as an application of degenerate perturbation theory
(Appendix 4) or as the construction of two new functions from a basis set of the two
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functions (Appendix 2):

�+n = (1/2L)
1
2 exp{+inπx/L}

and

�−n = (1/2L)
1
2 exp{−inπx/L} (12.3.5)

We require the matrix elements 〈�±n|V̂ |�±n〉 and we must remember that 〈�| implies
the complex conjugate of |�〉. As an example of a diagonal element we have:

〈�+n|V̂ |�+n〉 = −v

2L

∫ α+L

α−L
e−iπnx/L · cos

(
2Nπx

L

)
· e+iπnx/L dx

= −v

2L

∫ α+L

α−L
1 · cos

(
2Nπx

L

)
dx

= −v

2L
· L

2Nπ

[
sin

(
2Nπx

L

)]α+L

α−L

= −v

2Nπ
· cos

(
2Nπα

L

)
· sin 2Nπ = 0

The result of zero is scarcely surprising since we know that the wave functions �±n

describe electrons uniformly distributed along x and therefore subject equally to the pos-
itive maxima and negative minima of the potential V . As an example of one of the
off-diagonal matrix elements we evaluate:

〈�−n|V̂ |�+n〉 = −v

2L

∫ α+L

α−L
e+iπnx/L · cos

(
2Nπx

L

)
· e+iπnx/L dx

= −v

2L

∫ α+L

α−L
e+i2πnx/L · cos

(
2Nπx

L

)
dx

= −v

2L

∫ α+L

α−L

{
cos

(
2nπx

L

)
+ i sin

(
2nπx

L

)}
· cos

(
2Nπx

L

)
dx

= −v

4L

∫ α+L

α−L

{
cos

(
[n + N]2πx

L

)
+ cos

(
[n − N]2πx

L

)}
dx

−iv

4L

∫ α+L

α−L

{
sin

(
[n + N]2πx

L

)
− sin

(
[n − N]2πx

L

)}
dx

If n �= N each of the four integrals above gives zero! However, if n = N the integration
of the first and third terms is essentially unchanged and the fourth goes to zero even before
the integration is performed. But the second term now becomes the integral of cos(0) = 1
and we have:

−v

4L

∫ α+L

α−L
cos(0) dx = −v

4L
[x]α+L

α−L = −v

2

For the pair of wave functions (�±N) we can now express the total energy, kinetic
plus potential, in the form of the Hamiltonian matrix:
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Ĥ |�+N〉 |�−N〉
〈�+N| N2h2/8meL2 −v/2
〈�−N| −v/2 N2h2/8meL2

By subtracting E from each diagonal element and multiplying the resulting matrix out
as a determinant (Appendix 6) we obtain the characteristic equation of the matrix:

(N2h2/8meL2 − E)2 − v2/4 = 0

from which we find the eigenvalues of the total energy as N2h2/8meL2 ± v/2. Since the
diagonal elements of the above matrix are equal, the two functions will be equally involved
in both new eigenfunctions which, when normalised, will therefore be of the form:

+N =
√

1
2 (�+N + �−N)

and
−N =

√
1
2 (�+N − �−N) (12.3.6)

We can find which of our two energies belongs to which eigenfunction simply by
evaluating the integrals 〈+N|Ĥ|+N〉 and 〈−N|Ĥ|−N〉 using the matrix elements
from the 2 × 2 matrix of Ĥ above. For example:

〈+N|Ĥ|+N〉 = 1
2 〈�+N + �−N|Ĥ|�+N + �−N〉

= 1
2 {〈�+N|Ĥ|�+N〉 + 〈�−N|Ĥ|�−N〉 + 〈�−N|Ĥ|�+N〉 + 〈�+N|Ĥ|�−N〉}

= 1
2 {N2h2/8meL2 + N2h2/8meL2 − 1

2 v − 1
2 v} = N2h2/8meL2 − 1

2 v

Similarly:
〈−N|Ĥ|−N〉 = N2h2/8meL2 + 1

2 v

We see that the effect of V has been to combine the wave functions of electrons
travelling with equal velocities in opposite directions in equal proportions, converting
running to stationary waves. The result of the mixing has been to raise the energy of
one combination and to lower the energy of the other. The origin of this effect of the
introduction of V is clear when we examine the forms of the new wave functions:

+N =
√

1
2 (�+N + �−N) = (1/2L)

1
2 [exp{+iNπx/L} + exp{−iNπx/L}]

= (1/2L)
1
2 [cos{Nπx/L} + i sin{Nπx/L} + cos{Nπx/L} − i sin{Nπx/L}]

= (1/2L)
1
2 [2 cos{Nπx/L}]

The corresponding electron density is:

+N
∗+N = (1/L)[2 cos2{Nπx/L}] = (1/L)[1 + cos{2Nπx/L}]

Similarly:
−N

∗−N = (1/L)[1 − cos{2Nπx/L}]
The argument of the cosine in the expressions for the electron density is exactly the

same as that in the potential V and the variation of the density with x is therefore very
similar to that of V . Figure 12.18(b) shows that +N

∗+N peaks at the position of the
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cores where V is at its lowest whilst the reverse is true for −N
∗−N. This is the reason

for the energy difference of v between the two functions. The periodic potential of the
cores has combined two travelling waves with quantum numbers +N and −N to give
two standing waves of different energies and has created an energy gap, or band gap,
in the continuum (L is assumed to be very large) of energy levels at that point. A more
general analysis shows that we expect off-diagonal matrix elements of V to occur between
all pairs of wave functions of the form �m and �n if n − m = ±2N, since such cases
will also give rise to the integral of cos(0) = 1. Thus, the matrix of |�+N〉 and |�−N〉
shown above is simply a part of a much larger matrix, involving all the unperturbed states
(�n). The following is a small section of it, centred on the matrix of |�+N〉 and |�−N〉;
� = h2/8meL2:

Ĥ |�+(N−1)〉 |�−(N−1)〉 |�+N〉 |�−N〉 |�+(N+1)〉 |�−(N+1)〉
〈�+(N−1)| (N − 1)2� 0 0 0 0 −v/2
〈�−(N−1)| 0 (N − 1)2� 0 0 −v/2 0
〈�+N| 0 0 N2� −v/2 0 0
〈�−N| 0 0 −v/2 N2� 0 0
〈�+(N+1)| 0 −v/2 0 0 (N + 1)2� 0
〈�−(N+1)| −v/2 0 0 0 0 (N + 1)2�

We see that the matrix is blocked out (Appendix 6) into the single central 2 × 2 matrix
and pairs of identical 2 × 2 matrices of the form:

Ĥ |�+(N−k)〉 |�−(N+k)〉
〈�+(N−k)| (N − k)2� −v/2
〈�−(N+k)| −v/2 (N + k)2�

and

Ĥ |�−(N−k)〉 |�+(N+k)〉
〈�−(N−k)| (N − k)2� −v/2
〈�+(N+k)| −v/2 (N + k)2�.

The eigenvalues of these matrices are easily found to be:

E±k = [N2 + k2]� ± [4N2k2�2 + v2/4]1/2

In the cases where k �= 0 the two free-electron functions, which are mixed, do not have
exactly the same energy and so their displacement from their original positions will be
smaller than the maximum of v/2. The displacement will decrease with increasing k and
there will no longer be equal mixing of the two wave functions. Thus, as we move into
a band and away from the band edges the standing waves with zero electron momentum
gradually metamorphose into running waves with increasing electron momentum.

One can envisage other values of n and m for which n − m = ±2N, e.g. (3N + k) −
(N + k) = 2N. But the energies of the corresponding wave functions will be very different
and to a good approximation the existence of off-diagonal elements in the energy matrix
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Figure 12.19 The formation of a band gap by a periodic potential, V

may be ignored. The effect of a periodic perturbation on the energy levels of a free
electron is illustrated in Figure 12.19. The stacks of energy levels at the sides of the
diagram are those of the unperturbed system (V = 0) immediately above and below EN.
The degenerate pairs of states are plotted separately according to the sign of their linear
momentum. The perturbed levels (V �= 0) are plotted in the centre of the diagram. The
two with k = 0 are singly degenerate, but the remainder occur in degenerate pairs and are
represented by heavier lines. Of the four levels characterised by a value of |k| �= 0, one
of each degenerate pair arises from the V -induced mixing of �+(N+k) and �−(N−k) and
the other two from the mixing of �−(N+k) and �+(N−k). The dashed lines, which indicate
the connection between perturbed and unperturbed states, have been limited to the case
of |k| = 1 in the interests of the clarity of the figure.

Figure 12.19 is artificial in a number of respects, most notably in the large spacing
between the levels, which in a realistic view would be much closer together. But it does
show how the effect of the potential V is to create a gap of v, centred on EN, in the
energy levels with a consequent increase in the number of levels (density of states) in
the regions immediately outside the range EN ± v/2. This situation is unchanged and the
gap will not decrease if we now imagine the energy levels to be such that there is no
discernible space between them when V = 0.

Finally, we must note that in a real, three-dimensional metal the cores will form periodic
potentials in many directions, and not necessarily along the three Cartesian co-ordinates,
and the band structure becomes very complicated. The treatment of a real metal crystal
lattice requires more advanced theoretical methods.

12.3.3 Molecular and ionic solids

The tight-binding and free-electron descriptions of solids seem to be naturally applicable
to single crystals composed of one type of atom only; a crystal of sodium (free-electron)
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or of diamond (tight-binding) for example. The differing physical properties of these two
examples can be related to the delocalised electrons in the sodium and the localised elec-
trons in diamond. In the case of molecular solids, however, a distinction must be drawn
between the bonding of the atoms of one molecule to those of another, the intramolecular
bonding, and the intermolecular bonding within each molecule. For the lighter elements,
e.g. solid hydrogen, phosphorus or benzene, where the intermolecular bonds are far
stronger than the intramolecular, the band theory has little to offer. But as we ascend
the periodic table the difference between the strengths of the intra- and inter-molecular
bonds decreases and band models become more applicable.

For ionic solids too, the tight-binding version of the band theory is appropriate. If we
take sodium chloride as our example and assume that the transfer of one electron from
sodium to chlorine is complete, then the 3s and 3p orbitals of the Cl− form 3s and 3p
bands, both of which will be full because the chloride ion has a full complement of 3s
and 3p electrons. Detailed calculations show that at the equilibrium internuclear distance
these two bands and the empty Na+ 3s band are very narrow and that the gap between
the highest filled band, Cl− 3p, and lowest unfilled band, Na+ 3s, is large, approximately
82 × 104 J mol−1. The narrowness of the bands confirms the concept of an ionic bond,
which is largely electrostatic in nature since it is atomic orbital overlap, and covalent
bonding, which causes the energy spread of a band. The large gap between a full valence
band, i.e. a band formed from the valence atomic orbitals of the bonded atoms, and the
empty band above it explains why sodium chloride is an insulator, vide infra.

12.3.4 Applications

It is only fair to say that the simplicity of the basic principles of the above theoretical
descriptions belies the difficulty of using them quantitatively. For quantitative purposes
many more sophisticated interpretations of the basic ideas have been developed.13 – 15.
But we might bear in mind here that it was in their introduction to a review of the
theory of metals that Wigner and Seitz made the remarks quoted in Section 6.2. For our
present purposes, these theories are more important for the light they shed on the reasons
underlying the general properties of solids, and for the way in which they show how the
bonding in discrete molecules and extended arrays of atoms can be explained with the
same concepts. The types of solids to which the above theories are most applicable are
summarised in Table 12.7.

12.3.5 Metals, insulators and semiconductors

The varying behaviour of solids with respect to the conduction of an electric current
is one of their most well-known and technologically important properties. The range

Table 12.7 Areas of application of the free-electron and tight-binding theories

Free-electron approximation with V very small Akali metals
Free-electron approximation with larger V Solids with s and p valence electrons outside

closed shells
Tight-binding approximation Transition-metal d-electrons (heavier TMs)

Valence electrons of non-metals (diamond)
Ionic solids
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Table 12.8 The effect of temperature on the electrical conductivity of solids

Solid Conductivity, κ (Sm−1) Effect of temperature, T

Metals and metallic alloys κ = 106 − 108 κ rises with falling T and may become
infinite at very low T

Semiconductors κ = 10−7 − 105 κ rises with rising T

Insulators κ = 10−20 − 10−10 κ rises with rising T

of conductivity (κ in S m−1) and the effect of temperature upon it are summarised in
Table 12.8.

The band theory provides a convincing interpretation of these data in terms of the
occupation of bands and the gap between full and empty bands (Figure 12.20). The
running electron wave functions immediately suggest a mechanism for the transfer of
electrons from one end of a solid to the other. We must remember, though, that in every
direction the wave functions are paired so that, if the band is full, transport of electrons
in either direction is not possible, since there is no way in which an excess of electrons
travelling in a particular direction can be generated. A solid in which every band is
either completely full or completely empty is therefore an insulator (Figure 12.20(a)).
But the gap between the full and empty bands must be large enough to prevent electrons
occupying the latter as a consequence of the Boltzmann distribution, vide infra.

However, if a band is only partially occupied the application of a voltage to the
ends of the metal creates a situation in which the energies of the electrons at the two
ends of the metal are unequal. The electrons in the higher-energy orbitals just below
the Fermi level react to this situation by moving to previously unoccupied orbitals, just
above the Fermi level, where they can respond to the applied voltage by moving in
the appropriate direction. Thus an excess of electrons moving through the metal in the
direction of the applied voltage, i.e. an electric current, is generated. Consequently, we
see that an incompletely filled band, known as a conduction band, is required for metallic
electrical conductivity (Figure 12.20(b)). Note that in this case the size of any band gap
is unimportant.

When the band gap of a nominal insulator is so small that the Boltzmann distribution
places some electrons in the higher, empty band (Figure 12.20(c)) there can be electrical

Energy

Dopant levels

(a) (b) (c) (d) (e)

Figure 12.20 Schematic band structures for: a) an insulator, b) a metal, c) an intrinsic semicon-
ductor, d) an n-type semiconductor and e) a p-type semiconductor
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conduction and this depends critically upon the population of the higher band. Such sub-
stances are known as intrinsic semiconductors; germanium and silicon are two important
examples. The conductivity of an intrinsic semiconductor can be enhanced by the addition
of very small quantities of impurities, which increase the number of electrons in the con-
duction band. Such a substance is known as an n-type extrinsic semiconductor because
the impurity adds negatively charged particles (electrons) to the conduction band.

The IV-V semiconductors in which an element from group IV of the periodic table,
e.g. germanium (the host), is doped with an element from group V, e.g. antimany, form a
good example. The dopant atoms substitute host atoms in the crystal lattice, which remains
unchanged because the quantity of dopant is very small, of the order of 1 dopant atom to
109 host atoms. Since the dopant atoms are so far apart there is no interaction between
them and their electronic energy levels are like those of an isolated atom perturbed by the
host. Thus, the dopant levels are much narrower than the representation in Figure 12.20(d)
suggests. But the important aspect of the situation is that the valence electrons of the
dopant are higher in energy than those of the host and lie just below the vacant conduction
band; they are thus able to contribute conducting electrons to that band. The band structure
of an extrinsic p-type semiconductor is shown in Figure 12.20(e). In this case the dopant
is an element from an earlier group in the periodic table; it has vacant electronic energy
levels just above the full valence band of the pure semiconductor. These vacant levels
are able to accept some of the electrons from the top of the full band below them leaving
vacancies, usually regarded as positive holes (hence p-type), in it. Again, because the band
is now no longer completely full, electrons are able to respond to an imposed voltage and
the conductivity is increased.

The different effects of a change of temperature on the conductivity of a semiconductor
and a metal may be understood in the following way. Generally, the energies associated
with the movement of atoms or atomic cores, e.g. vibration, are small compared with
those of electronic energy levels. However, if the temperature of a semiconductor is
sufficiently high it may be possible for the Boltzmann distribution to take some electrons
at the top of a full valence band above the band gap to a previously empty conduction
band. Once there they can move in response to the applied voltage and, as the temperature
is increased, the conductivity of the semiconductor increases. The effect of temperature
on a metallic conductor arises in a different manner. Conducting electrons proceeding
through a metal must run the gauntlet of the positive cores which impede their motion.
As the temperature is raised the increasing movement of the cores makes this more
difficult and the travelling electrons collide more frequently with the cores, so reducing
the current. This effect outweighs the increase in conductivity that arises because the
electrons populate higher levels of the conduction band as a result of the Boltzmann
distribution. Conversely, as the temperature is reduced metallic conductivity increases
and at very low temperatures, 20 K or lower, the resistance of most metals and metallic
alloys falls to zero; they become superconductors. This is surprising since we know that
vibrational motion persists, even at absolute zero, giving rise to the zero-point energy.
Superconductivity therefore requires a degree of coupling between the motions of the
electrons and the cores. Theoreticians have found that synchronous movements of the
cores combine to assist the passage of pairs of electrons through the lattice. Where a
group of positive cores have been drawn slightly closer together by the passage of an
electron, the resulting region of enhanced positive charge attracts a second electron to
follow the same path.
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12.3.6 Optical properties of solids

We are concerned here with the optical properties of pure solids, e.g. metals or dia-
mond; the properties of composite solids such as porcelain require a consideration of the
components of the substance and the way in which those components interact. The most
characteristic optical property of the metals is their high reflectivity and opacity, both of
which arise directly from the presence of the electrons, which are highly mobile and not
confined to specific interatomic regions as they are in molecules. When the oscillating field
of a light wave strikes a metal the mobile electrons respond by oscillating at the frequency
of the incident light. The moving electrons produce an oscillating electric field and them-
selves become a light source of the same frequency as the incident light. We perceive this
light emitted by the moving electrons as a reflection from the metal surface. Being very
free, the electrons can respond to light of a broad range of energies and light of all visible
frequencies is reflected. Furthermore, since there are so many electrons no light beam can
penetrate far into a metal without being reflected; metals are therefore opaque. However,
at high frequencies in the ultraviolet range a limit is reached where the electrons can no
longer respond at the frequency of the light. At this wavelength the light passes through
the metal without interacting with the electrons and the metal becomes transparent.

A few metals appear coloured. The reddish hue of copper ([Ar]3d104s1), for example,
is a consequence of the fact that electrons can be raised from the 3d valence band to the
4s conduction band by light from the blue end of the visible spectrum. This is a normal
absorption process of the kind described in Chapters 8 and 11. Thus, the light reflected
from the surface of a piece of copper has less blue light than the incident light and the
metal therefore appears red. The same phenomenon is found with most other metals but
we do not notice it because the light absorbed lies outside the visible range.

12.3.7 Mechanical properties of solids

There are many other aspects of the solid state–thermal conductivity, heat capacity, mag-
netism–which cannot even be touched upon here. They lie more in the realm of solid
state physics.13,14 However, a few brief comments on the mechanical properties of solids
and their interpretation in terms of the electronic structure may be in order. The bonds
in metals, for which the primary bonding forces are a sea of delocalised electrons, are
not directional. Thus, when metals are deformed their atoms are able to form new bonds
with their new neighbours and metals can be easily deformed and withstand considerable
distortion before they rupture. On the other hand, solids such as diamond with highly
directional covalent bonds are the hardest substances which we know. They are very
difficult to deform but if sufficient force to break the bonds is applied they shatter. Ionic
solids are brittle. The force required to move an ion with respect to its neighbours is fairly
large, but once the regular ionic array is disrupted the repulsion of ions of like charge
destroys the crystal.
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BOX 12.1 The enthalpy of combustion and the delocalisation energy of benzene

The enthalpies of combustion of carbon and hydrogen atoms are −1110 kJ mol−1 and
−361 kJ mol−1 respectively, so the combustion of six moles of carbon atoms and six
moles of hydrogen atoms produces 8826 kJ of energy. The calculated energy evolved
in the combustion of one mole of ‘Kekulé’ benzene is 3451 kJ, considerably less than
that produced by the combustion of the constituent atoms because more than half of
the energy released is used to break the C=C, C–C and C–H bonds. The energy
released by the combustion of one mole of ‘real’ benzene is even less, indicating that
the benzene molecule is yet more stable than the Kekulé structure implies (Figure
B12.1.1). The difference of 149 kJ mol−1 is the resonance or delocalisation energy.

One mole of 'real' benzene

One mole of 'Kekulé' benzene−3351

0

−8826

−3302

6 moles of carbon dioxide + 3 moles of water

6 moles of H atoms + 6 moles of C atoms

Energy required to break 3 moles of C=C bonds,
3 moles of C–C bonds and 6 moles of C–H bonds

149 kJ = Delocalisation/resonance energy of 1 mole of benzene

Energy (kJ)

Figure B12.1.1 The enthalpies of combustion of one mole of ‘Kekulé’ and one mole of ‘real’
benzene (not to scale)
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BOX 12.2 The orientation of a magnetic dipole in a magnetic field

In Section 12.2.1 we stated, without further justification, that when atomic or molec-
ular magnets are placed in a magnetic field they align their magnetic dipoles with the
applied field, thereby increasing B. This statement may appear counter-intuitive, espe-
cially so when one considers the case with which it has a great deal in common – the
orientation of molecules with a permanent dipole moment in an electric field. In that
case the orientation of lowest energy is where the molecules align themselves so that
their positive ends point towards the negative pole of the applied field and their neg-
ative ends towards the positive pole, thereby opposing and reducing that field. The
origin of this apparent dilemma lies in the fact that isolated positive and negative
charges are real entities, whereas isolated north and south poles are figments of our
imagination. If we take a bar magnet and saw it in half we obtain two bar magnets,
each with a north and south pole, and we know that this remains true even when we
continue the process until our remaining magnets are individual atoms or molecules.
But bodies of atomic or macroscopic size, charged with an electrical charge of one
sign only, can be readily generated in the laboratory. Therefore, when we calculate
the energy of a magnetic dipole in a magnetic field we have to consider the exact
form of the dipole carefully.

Since there are no such things as isolated north and south magnetic poles we
cannot represent a magnetic dipole in an applied magnetic field simply by replacing
the positive and negative signs of the corresponding electric dipole–electric field
problem by N and S respectively. In fact, the origin of all magnetism is the circulation
of electric charge and the only true representation of a magnetic dipole is the magnetic
field produced by a current flowing around a small loop. The energy of the resulting
magnetic dipole with respect to its orientation in an applied field must be determined
by calculating the forces exerted by the field on the current-carrying components of
the loop.

A plan view of a rectangular loop (area A) perpendicular to the plane (xz) of the
paper and carrying a flow of positive charge (i) which enters the paper at + and
emerges again at · is shown in Figure B12.2.1. The magnetic moment (µ) produced
by the current is perpendicular to the plane of the loop (compare Figure 12.10) and
makes an angle of θ with the direction (z) of an applied field (B). Since the currents
on opposite sides of the loop flow in opposite directions there is no net force on the
loop, if the field is uniform. But Fleming’s left-hand rule tells us that there are forces
(F), as indicated in the figure, acting on the ascending and decending conductors of
the loop which are parallel to y. The loop is therefore subject to a torque (τ ), which
tends to align the moment (µ) with the field (B). It is not difficult to show1,2 that:

τ = iAB sin θ = µB sin θ

or in vector notation:
τ = µ × B

The corresponding forces acting on the two horizontal components of the loop
are vertical and opposed and produce no torque. It is clear from the figure that the
torque acts in such a way as to align µ and B and we see that the presence of the
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Figure B12.2.1 The forces on a current loop in a magnetic field

paramagnetic atom or molecule does indeed enhance the applied field, which was the
main objective of this discussion.

We can also obtain an expression for the potential energy (E) because in order to
increase the energy by dE we must perform work (dW ) against the torque and:

dE = dW = τ dθ = µB sin θ dθ

Integration gives:
E = −µB cos θ + constant

Since we are interested here only in relative energies we set the constant to zero
so that:

E = −µB cos θ or E = −µ · B

Finally, we should note that although we have considered only the case of a
rectangular loop, the result applies to a loop of any shape and the magnetic moment
is always iA, where i is the current and A the area of the loop.
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BOX 12.3 The connection between experimental magnetic susceptibility and
atomic/molecular magnetic moment – a classical treatment

In order to measure the macroscopic magnetic susceptibility of a substance, and to
derive information about its electronic structure from such a measurement, we must
normally study the interaction of the substance with an imposed magnetic field. The
potential energy (E) of a magnetic dipole (µ) subjected to a magnetic field (H)
(Figure B12.3.1) is given (Box 12.2) by the equation:

E = −µB cos θ = −µ · B



394 Some Special Topics

q

m

H

SN

Figure B12.3.1 The energy of a magnetic dipole (µ) in a magnetic field (H)

where B is the magnetic flux density at the position of the dipole and θ is the angle
between the magnetic field and the dipole. This important result assumes that the
applied field (H) and the resultant flux density (B) are parallel.

When a sample substance that consists of molecules each having a magnetic dipole
moment (µ) is placed in a magnetic field the molecules will be subject to two forces;
the tendency for the individual molecular dipoles to orientate themselves along the
direction of the magnetic field and the opposing thermal motion. The measured macro-
scopic magnetic properties of the material will depend upon the resulting distribution
of orientations.

The fraction of dipoles (dN) lying at an angle between θ and θ + dθ is equal to
the fraction of the surface of a sphere of unit radius which lies within the same range
of θ . This is a band of radius sin θ , i.e. length 2π sinθ , and width dθ running around
the surface of the sphere, (Figure B12.3.2).

Dipoles orientated at different values of θ have different potential energies and the
fraction of molecules with dipoles lying at an angle between θ and θ + dθ is deter-
mined by the Boltzmann population appropriate to that particular energy. The dipoles
with this orientation have energy (−Bµ cos θ) so that their fractional population (dNθ )
depends upon the Boltzmann factor (exp {Bµ cos θ/kT }) and the orientational factor
({2π sin θ}):

dNθ ∝ exp{Bµ cos θ/kT } · {2π sin θ} dθ

sin q

dq

q

Field H

Area of element

 =2p sinq dq

1

Figure B12.3.2 The area element for magnetic dipoles lying at an angle between θ and
θ + dθ to the magnetic field
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where k is Boltzmann’s constant and T is the absolute temperature. We can replace
the proportionality sign with a constant (A), which depends upon the number of
molecules in the sample, and the relative areas of the band and the sphere:

dNθ = A · exp{Bµ cos θ/kT } · {2π sin θ} dθ

Since the contribution to the macroscopic dipole moment of each member of this group
of molecules is µ cos θ their contribution (dMθ ) to the total macroscopic magnetic
moment (M) will be:

dMθ = A · exp{Bµ cos θ/kT } · {2π sin θ} · {µ cos θ} dθ

M can now be obtained by integrating this expression over all possible molecular
orientations, i.e. from 0 to π . To determine the average value of µ(µav) we divide by
the total number of molecules, which we can find by integrating the expression for
dNθ over the same range of θ :

µav =

∫ π

0
A · exp{Bµ cos θ/kT } · {2π sin θ} · {µ cos θ} dθ

∫ π

0
A · exp{Bµ cos θ/kT } · {2π sin θ} dθ

=
µ

∫ π

0
exp{Bµ cos θ/kT } · sin θ · cos θ dθ

∫ π

0
exp{Bµ cos θ/kT } · sin θ dθ

These integrals can be simplified by writing s = Bµ/kT , t = cos θ (whence
sin θ dθ = −dt) and replacing the integration limits accordingly to give:

µav =
µ

∫ −1

+1
−t · exp{st} dt

∫ −1

+1
− exp{st} dt

= µ[exp{st} · (st − 1)/s2]−1
+1

[exp{st}/s]−1
+1

= µ

[
exp{s} + exp{−s}
exp{s} − exp{−s} − 1

s

]
= µ

[
coth{s} − 1

s

]

This equation was first derived by Paul Langevin (1872–1946) and carries his
name. In order to apply it, important and readily justified approximations are usually
made. Since µ is of the order of 10−23 A m2, s = Bµ/kT ≈ 2.5 × 10−3 in a magnetic
field of one Tesla and the expansion of the exponential functions (see Box 3.1) can
be truncated after terms in s3 giving:

µav = µ

[
exp{s} + exp{−s}
exp{s} − exp{−s} − 1

s

]
≈ µ

[
2 + s2

2s + s3/3
− 1

s

]
= µ

[
2 + s2

2s(1 + s2/6)
− 1

s

]

≈ µ

[
1

2s
· (2 + s2)(1 − s2/6) − 1

s

]
= µ

[
s

3
− s3

12

]
≈ Bµ2

3kT
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In the third step we have used the fact that (1 + s2/6)−1 ≈ (1 − s2/6) if s is small.
Thus:

µav = Bµ2/3kT

and for an assembly of N molecules per unit volume:

M = Nµav = NBµ2/3kT

Therefore:
χ = M/H = NBµ2/3kT H

and since B = µo(H + M), when M is small we have:

χ = Nµoµ
2/3kT ≡ {NµoµB

2/3kT }µ2
eff (B12.3.1)

The identity in Equation (B12.3.1) defines the Bohr magneton number (µeff),
which is taken to be positive. It is the effective magnetic moment measured in Bohr
magnetons. Comparing the result with Curie’s equation, χ = C/T , we obtain an
expression for C:

C = Nµoµ
2/3k or {Nµoµ

2
B/3k}µ2

eff (B12.3.2)

We have derived a classical expression for the magnetic moment (M) induced in a
collection of N dipoles by the application of a magnetic field (H ). This is the macro-
scopic, experimental side of the problem, a relationship between the susceptibility
(χ), which we can measure, and a property (µ or µeff) of the individual molecule,
which we would like to know. Note that the susceptibility is defined in terms of the
applied magnetic field (H), as it must be since the applied magnetic field is something
that we can measure. But our dipole (µ) interacts with the resulting flux density (B),
which we cannot measure directly. But the approximation B = µoH is a good one
when M is small.

We now turn to the microscopic, quantum-mechanical aspect of the problem. How
do the individual electronic states of a single atomic/molecular magnet contribute
to the total µ for that entity? The important factors are the magnetic moment of
each state, which depends upon the orbital and spin angular momentum, and the
energy of the state, which determines its population through the Boltzmann distri-
bution. Let these two factors for any state i be µi and Ei respectively; the means
of calculating them are described in the main body of the text. We set i = 1 for
the state which has the lowest energy in the applied field and express the popula-
tions (Ni) of all other states in terms of the population N1. According to Boltzmann
we have:

Ni = N1 exp{(E1 − Ei)/kT } ≡ N1e(E1−Ei)/kT

The total magnetic moment (µt) for the molecule or atom is:

µt =
∑

i
µiNi
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To obtain the average moment (µav) the above expression for the total must be
divided by the total population:

µav =
∑

i
µiNi

∑
i
Ni

=
N1

∑
i
µie

(E1−Ei)/kT

N1

∑
i
e(E1−Ei)/kT

=
N1eE1/kT

∑
i
µie

−Ei/kT

N1eE1/kT
∑

i
e−Ei/kT

Cancelling out the factors multiplying both series, the expression for µ

simplifies to:

µ =
∑

i
µie

−Ei/kT

∑
i
e−Ei/kT

(B12.3.3)

Applications of Equations (B12.3.1), (B12.3.2) and (B12.3.3) can be found in
Chapter 12.

PROBLEMS FOR CHAPTER 12

1. Hückel orbitals for methylenecyclopropene (C4 H4 ). The molecule has the carbon-atom
skeleton below:

c

c
c c

3
2 1

4

Following the method described in Section 12.1.4, set up the secular equations for the
π-electron system and show that the molecular orbital energies are given by the roots
of the equation:

x4 − 4x2 + 2x + 1 = 0

where x = (α − E)/β.
The evaluation of the Hückel energies and atomic orbital coefficients is rather

tedious; they are found to be:

Energy Coefficients

α − 1.481β 0.506 −0.749 0.302 0.302
α − 1.000β 0.0 0.0 0.707 −0.707
α + 0.311β −0.815 −0.254 0.368 0.368
α + 2.170β 0.282 0.612 0.523 0.523

Draw an energy-level diagram for the molecule and calculate the π-electron charge
densities on each atom and the bond orders for all bonds for the neutral molecule.

[Ans: Q1 = 1.488, Q2 = 0.877, Q3 = Q4 = 0.818, P12 = 0.758, P34 = 0.818, P23 =
P24 = 0.453.]

What would be the distribution of positive or negative charge in the ions [C4H4]+
and [C4H4]−?
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2. C–C bond lengths and bond orders. Complete the following table:

Molecule π-Bond order Bond lengtha (pm)

Ethane 153.4
Benzene 139.7
Ethene 133.9
Ethyne 120.4
aInteratomic Distances Supplement, Special Publication No. 18,
The Chemical Society, London, 1965.

[Hints for determining bond order: Ethane has no π bond, ethene has one and ethyne
two. The bond order of benzene can be calculated from the molecular orbital coeffi-
cients given in Figure 11.5.]

Plot a graph of bond order versus bond length and use it to estimate the lengths
of the two C–C bonds in butadiene for which the bond order data can be found in
Table 12.4. Compare your results with the experimental values of r1−2 = 133.7 pm
and r2−3 = 148.3 pm. The prediction is not very good; suggest why.

3. Hückel orbitals for methanal (H2 C=O).
The hetero-atom, oxygen, can be incorporated into the Hückel scheme using the pro-
cedure described at the end of Section 12.1.6. Form the two secular equations for
methanal with hO = 1.2 and kO = 2.0 and show that the energy levels are given by
the roots of the polynomial x2 + 1.2x − 4 = 0. Calculate the energies and coefficients;
you should find:

E = α − 1.488β CC = +0.802 CO = −0.597

E = α + 2.688β CC = +0.597 CO = +0.802

Calculate the π-electron charge densities and bond orders for the neutral molecule.
[QC = 0.713, QO = 1.286, PCO = 0.958]. Note how the larger value of α assumed for
oxygen draws charge to that end of the molecule.

4. Construct a table like Table 12.5 for a single d electron in a strong octahedral crystal
field. Assume that spin-orbit coupling is zero and that, because of the large field, only
the orbitals dxy, dxz and dyz are occupied. The atomic orbitals having ml = 1 (i.e. dxz

and dyz) are not mixed by the field (Chapter 7) and can be used in the form |ml , ms〉
in the calculation. The dxy however must be used in the calculation in the form:

|dxy,± 1
2 〉 = {i/√2}{| − 2, ± 1

2 〉 − | + 2, ± 1
2 〉}

and

〈dxy, ± 1
2 | = −{i/√2}{〈−2, ± 1

2 | − 〈+2, ± 1
2 |}

Show that:

µ = 2 exp(2x) − 2 exp(−2x) + exp(x) − exp(−x)

exp(2x) + exp(−2x) + exp(x) + exp(−x) + 2 exp(0)
= 2 sinh(2x) + sinh(x)

cosh(2x) + cosh(x) + 1

where x = B/kT .
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Use a spreadsheet or other plotting program to draw the magnetisation curve like
graph 2 in Figure 12.12.

5. Calculate the magnetic energy levels of a system consisting of two interacting metal
ions one of which has S = 1

2 , MS = ± 1
2 and the other has S = 1, MS = 0, ±1. Use the

coupling Hamiltonian operator (Ĥ = −2KŜ1 · Ŝ2) and proceed as in Section 12.2.10.
You will find that your result has much in common with the energy levels of a single
p electron, in which spin and orbital magnetic moments are coupled by the spin-orbit
coupling. [The ubiquity of phenomena based on angular momentum is such that the
same problems occur again and again.]

6. Show that the wave functions (�m) defined by Equation (12.3.4) are orthogonal to
each other, i.e. show that 〈�m|�n〉 = 0.0 if m �= n.

7. Derive an expression for the general matrix element 〈�m|V̂ |�n〉 where V̂ is the
potential defined by Equation(12.3.3) and �m are the wave functions defined by
Equation (12.3.4).





Appendix 1

Fundamental Constants
and Atomic Units

Fundamental constants1

Constant Value in
SI units

Value in
other units

c vacuum velocity of light 2.99792 × 108 m s−1 2.99792 × 1010 cm s−1

e elementary charge 1.60218 × 10−19 C 4.80321 × 10−10 esu
k Boltzmann’s constant 1.38066 × 10−23 J K−1 1.38066 × 10−16 erg deg−1

h Planck’s constant 6.62608 × 10−34 J s 6.62608 × 10−27 erg s
h̄ Planck’s constant/2π 1.05457 × 10−34 J s 1.05457 × 10−27 erg s
NA Avogadro’s constant 6.02214 × 1023 mol−1

ε0 permittivity of free 8.85419 × 10−12 J−1

space C2 m−1 (F m−1)
µ0 permeability of free 4π × 10−7 J s2 C−2 m−1

space (N A−2)
me rest mass of electron 9.10939 × 10−31 kg
mp rest mass of proton 1.67262 × 10−27 kg
µB Bohr magneton 9.27402 × 10−24 A m2 9.27402 × 10−21 erg gauss−1

µN nuclear magneton 5.05079 × 10−27 A m2 5.05079 × 10−24 erg gauss−1

Atomic units

The metre, kilogram, etc. are not very convenient units with which to measure atomic and
molecular quantities; they are too large. It is easier to work with units which are directly
related to the fundamental physical quantities such as electronic charge and mass. Such
a system is in widespread use and the units are known as atomic units.

Apart from the convenience associated with the appropriate sizes of the atomic units,
the system has another, equally important advantage. A result expressed in terms of the
fundamental physical constants is always correct algebraically and can be easily brought
up to date numerically whenever a more accurate determination of any of the physical

The Quantum in Chemistry R. Grinter
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constants is made. The following atomic units occur most widely, a full list is given by
Mills et al.1

The atomic unit of mass is the rest mass of the electron; me = 9.10956 × 10−31 kg.
The unit of charge is the elementary charge; e = 1.60219 × 10−19 C.
The atomic unit of length is the Bohr radius or bohr (ao), the radius of the orbit of

lowest energy of the electron of the hydrogen atom in the Bohr theory. The exact value
of this quantity depends upon the mass of the nucleus (see Section 5.5). Therefore, the
radius is defined for a nucleus of infinite mass; a0 = ε0h

2/mee
2 = 5.29177 × 10−11 m.

The atomic unit of energy is the Hartree; EH = h2/4π2mea0
2 = 4.35975 × 10−18 J.

The Hartree is equal to the coulombic repulsion energy of two elementary charges one
bohr apart or twice the ionisation energy of the hydrogen atom (assuming an infinite
nuclear mass).

The atomic unit of action is Planck’s constant divided by 2π . It has no special name
and is very frequently denoted by drawing a bar through the h for Planck’s constant:

h/2π ≡ h̄ = 1.05459 × 10−34 J s.

The atomic unit of time has no special name; it is h̄/EH = 2.41888 × 10−17 s.
The atomic unit of velocity has no special name; it may be expressed as a0EH/h̄ =

2.18769 × 106 m s−1.
In atomic units, the Schrödinger equation for an electron moving in a potential V can

be written:
∇2� + 2(E − V )� = 0

REFERENCE

1. I. Mills, T. Cvitaš, K. Homann, N. Kallay and K. Kuchitsu, Quantities, Units and Symbols in
Physical Chemistry, 2nd edn, International Union of Pure and Applied Chemistry, 1993.



Appendix 2

The Variation Method
and the Secular Equations

The number of problems for which we can solve the Schrödinger equation directly is
small. It is therefore very fortunate that the hydrogen atom is one of this type, since
the solutions obtained form the starting point of all our quantum-mechanical models of
atomic structure and for many descriptions of molecular structure. In the great majority of
cases, however, a direct solution of Schrödinger’s equation is not possible and we must
adopt other methods. This appendix describes one such approach. As a preliminary we
need a proof of the variation theorem.

The variation theorem

Given any approximate wavefunction φ, which satisfies the boundary conditions of the
problem, the expectation value Pφ , of the observable P calculated from φ with the operator
P̂ will always be greater than or equal to the lowest exact eigenvalue of P̂.

Proof

Suppose that we have an operator P̂ the exact eigenvalues and eigenfunctions of which
are p0, p1, p2, . . . and ψ0, ψ1, ψ2, . . . respectively. Then:

P̂|ψi〉 = pi|ψi〉 (A2.1)

and the |ψi〉 can always be chosen to be orthogonal and normalised so that:

〈ψi|ψj〉 = δij (A2.2)

Suppose now that we have a wave function |φ〉, which is not one of the |ψi〉, then the
expectation value Pφ of P̂ calculated for the function |φ〉 is given (Section 3.9) by:

Pφ = 〈φ|P̂|φ〉
〈φ|φ〉 (A2.3)
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The functions ψi form a complete set and any function φ that satisfies the boundary
conditions of the problem can be written in terms of them:

|φ〉 =
∑

i

Ci|ψi〉 (A2.4)

[Two vectors at right-angles form a complete set and any other vector in the same
plane can be written in terms of them].

We can always normalise |φ〉 so that:

〈φ|φ〉 =
∑

i

C∗
i

∑

j

Cj〈ψi|ψj〉 = 1

Note that the sums over i and j in the above expression are independent of each other
so that if the are n functions ψi there are n2 terms in total.

Now, because of Equation (A2.2):
∑

i

C∗
i Ci = 1 (A2.5)

Expanding φ in Equation (A2.3) using Equation (A2.4) we have:

Pφ =
∑

i C∗
i

∑
j Cj〈ψi|P̂|ψj〉∑

k C∗
k

∑
l Cl〈ψk|ψl〉 (A2.6)

Using Equation (A2.1) gives:

Pφ =
∑

i C∗
i

∑
j Cjpj〈ψi|ψj〉∑

k C∗
k

∑
l Cl〈ψk|ψl〉

With the help of Equations (A2.2) and (A2.5) we find:

Pφ =
∑

i

C∗
i Cipi

/ ∑

k

C∗
kCk =

∑

i

C∗
i Cipi (A2.7)

Subtracting the lowest eigenvalue (p0) from both sides of Equation (A2.7) we obtain:

Pφ − p0 =
∑

i

C∗
i Cipi − p0 =

∑

i

C∗
i Ci(pi − p0)

where we may take p0 into the bracket because of Equation (A2.5).
But, pi ≥ p0, by definition and Ci

∗ Ci must always be positive (Appendix 8), therefore:

Pφ − p0 ≥ 0 or Pφ ≥ p0

Q.E.D.

Application of the variation method

Suppose that we have a set of n basis functions |a〉. They might be atomic electronic states
characterised by |L, ML, S, MS〉, spin functions |α(1)β(2)α(3)〉 in an NMR problem or
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atomic orbitals |2px〉, . . . etc. in the molecular orbital theory. We wish to find linear
combinations of these basis functions:

|ψ〉 =
n∑

a=1

Cψ,a|a〉

which are eigenfunctions (or as near to eigenfunctions as is possible within the limitations
of the basis) of some operator, P̂ say. The coefficients Cψ,a are simply numbers which
may be real, pure imaginary or complex. In what follows we shall assume that they are
real. Ideally, the function |ψ〉 must be such that:

P̂|ψ〉 = Pψ |ψ〉
The operator may represent any measurable property P and applications in which

it is energy are especially common. Pψ is the eigenvalue of P̂ corresponding to the
eigenfunction |ψ〉. We know from the variation theorem that the expectation value of P̂
with the function |ψ〉, Pψ , will always be greater than the lowest eigenvalue of P̂, or
equal to it if we find the exact eigenfunction. We use this as a criterion for determining
the values of the coefficients Cψ,a by finding the condition that the expectation value shall
be a minimum. We choose to minimise the expectation value rather than the eigenvalue
because we cannot be sure, a priori, that our set of basis functions will allow us to find
an eigenfunction of our problem; they may not form a complete set for example.

The expectation value of P̂ with the function |ψ〉, Pψ , is (Section 3.9):

Pψ = 〈ψ |P̂|ψ〉
〈ψ |ψ〉 =

∑
a Cψ,a

∑
b Cψ,b〈a|P̂|b〉∑

a Cψ,a
∑

b Cψ,b〈a|b〉 ≡
∑

a Cψ,a
∑

b Cψ,bPab∑
a Cψ,a

∑
b Cψ,bSab

Pab and Sab are simply abbreviations for matrix elements, 〈a|P̂|b〉, and overlap integrals,
〈a|b〉, which we must know or be able to calculate. Therefore:

Pψ

∑

a

Cψ,a

∑

b

Cψ,bSab =
∑

a

Cψ,a

∑

b

Cψ,bPab

But, according to the variation theorem, the lowest value of Pψ we can obtain is the
best, so we look for the set of coefficients which give lowest point in the surface of the
plot of Pψ against the unknown coefficients C. Firstly we differentiate both sides of the
above equation with respect to a particular C, Cψ,i say. We must remember that Pψ is
itself a function of Cψ,i, though Pab and Sab are not. Thus, on the left-hand side we have
a product to differentiate:

∂Pψ

∂Cψ,i
·
∑

a

Cψ,a

∑

b

Cψ,bSab + Pψ · ∂{∑a Cψ,a
∑

b Cψ,bSab}
∂Cψ,i

= ∂{∑a Cψ,a
∑

b Cψ,bPab}
∂Cψ,i

For a minimum in Pψ , ∂P ψ/∂Cψ,i is zero and we have:

Pψ · ∂{∑a Cψ,a
∑

b Cψ,bSab}
∂Cψ,i

= ∂{∑a Cψ,a
∑

b Cψ,bPab}
∂Cψ,i

To carry out the differentiations we express the double sum as three terms, paying
particular attention to terms involving Cψ,i :

∑

a

Cψ,a

∑

b

Cψ,bSab =
∑

a �=i

Cψ,a

∑

b �=i

Cψ,bSab + 2Cψ,i

∑

b �=i

Cψ,bSib + C2
ψ,iSii
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Where we have assumed that Sab = Sba and that all the coefficients C are real. If we
wish to recognise the fact that the coefficients C and the overlap integrals S may be
complex or pure imaginary we have to proceed slightly differently at this point, but we
shall not take that course.

The differentiation is now straightforward and we find:

∂{∑a Cψ,a
∑

b Cψ,bSab}
∂Cψ,i

= 0 + 2
∑

b �=i

Cψ,bSib + 2Cψ,iSii = 2
∑

b

Cψ,bSib

The other side of the equation gives a result of exactly the same form and we have:

2P ψ ·
∑

b

Cψ,bSib = 2
∑

b

Cψ,bPib ⇒
∑

b

Cψ,b(Pib − P ψSib) = 0

We obtain one such equation for every Cψ,i, i.e. for every basis function, |i〉. These are
the secular equations. Thus, for the expectation value Pψ we have for i = 1, 2, 3, . . . :

Cψ1(P11 − PψS11)+ Cψ2(P12 − PψS12) + · · ·+ Cψn(P1n − PψS1n) = 0

Cψ1(P21 − PψS21) + Cψ2(P22 − PψS22) + · · ·+ Cψn(P2n − PψS2n) = 0

: : :

: : :

Cψ1(Pn1 − PψSn1) + Cψ2(Pn2 − PψSn2) + · · ·+ Cψn(Pnn − PψSnn) = 0

These are simultaneous, homogeneous equations in which the unknowns are the coef-
ficients C. They are satisfied by the trivial solution Cψ,1 = Cψ,2 . . . = Cψ,n = 0.0 but,
clearly, we are not interested in that. The condition that they have a non-trivial solution
is that the determinant below is equal to zero:

∣∣∣∣∣∣∣∣∣∣∣∣

(P11 − PψS11) (P12 − PψS12) (P13 − PψS13) · · · (P1n − PψS1n)

(P21 − PψS21) (P22 − PψS22) (P23 − PψS23) · · · (P2n − PψS2n)

: : : :

: : : :

(Pn1 − PψSn1) (Pn2 − PψSn2) (Pn3 − PψSn3) · · · (Pnn − PψSnn)

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Since all the Pab and Sab are known, we can expand the determinant and obtain a
polynomial of order n in Pψ . We require the lowest root. We also make use of higher
roots, as will be described below.

Having found the required value of Pψ , we can enter it in the secular equations and
solve them for the coefficients C. The fact that the solution gives only the ratios of
the coefficients and not their absolute values (because the equations are homogeneous),
presents no great problem since we also have the requirement that the eigenfunctions be
normalised which gives us one further equation:

∑

a

Cψ,a

∑

b

Cψ,bSab = 1.0

In the development so far we have made no particular assumptions about the basis
functions |a〉, so if they are not orthogonal to each other terms in Sab appear off the
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diagonal and this raises extra, but not insurmountable, problems. Fortunately, we can
usually find a set of orthogonal and normalised basis functions so that Sab = δab and we
then have only diagonal terms in S. The secular equations become:

Cψ1(P11 − Pψ) + Cψ2P12 + Cψ3P13 + · · · + CψnP1n = 0

Cψ1P21 + Cψ2(P22 − Pψ) + Cψ3P23 + · · · + CψnP2n = 0

: : : :

: : : :

Cψ1Pn1 + Cψ2Pn2 + Cψ3Pn3 + · · · + Cψn(Pnn − Pψ) = 0

The condition for a non-trivial solution of the equations:
∣∣∣∣∣∣∣∣∣∣

(P11 − Pψ) P12 P13 · · · P1n

P21 (P22 − Pψ) P23 · · · P2n

: : : :

Pn1 Pn2 Pn3 · · · (Pnn − Pψ)

∣∣∣∣∣∣∣∣∣∣

= 0

is of exactly the same form as the procedure for extracting the eigenvalues Pψ of the
matrix formed of the elements Pab by evaluating the characteristic equation of the matrix;
an nth order polynomial in Pψ (Appendix 3). This illustrates the connection between the
two approaches to the problem. Since the basis states are orthonormal the normalisation
requirement reduces to: ∑

a

C2
ψ,a = 1.0

Our purpose has been to find the lowest value of Pψ , but what of the other values
which the method inevitably produces? We can distinguish two cases.

Case 1. In some problems, especially in angular momentum, we have a complete set
of basis states |a〉. For example, if we are calculating the spin-orbit coupling of a single
p electron then there are only six states characterised by |l, ml, s, ms〉 (three values of ml

and two values of ms). Under such circumstances the n values of Pψ are the n eigenvalues
of our problem and the coefficents C give us the corresponding n eigenfunctions. These
types of problem are also easy to handle because the basis states conform rigorously to
the condition Sab = δab.

Case 2. If the basis set is of necessity incomplete, as in the LCAO-MO theory
for example where we can never include all the AOs which contribute to the MOs
(Section 6.13), then the higher values of Pψ have no fundamental significance. How-
ever, we always regard them as approximations to the higher eigenvalues of the system,
though we have no way of knowing how accurate they are except by comparison with
experiment. In the Hückel theory (Section 12.1) we also make the drastic approximation
Sab = δab. Though it is manifestly untrue it simplifies the problem enormously.

Example: The hydrogen atom in a magnetic field

The nucleus and the electron which together form a hydrogen atom each have a magnetic
moment which is proportional to their spin angular momentum. These magnetic momenta
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interact with each other, the Fermi contact interaction, and with an applied magnetic
field, the Zeeman effect. The mutual magnetic interaction of nucleus and electron is not
the classical dipole-dipole interaction which averages to zero in a free atom. The Fermi
contact interaction represents the energy of the nuclear moment in the magnetic field of
the electron when the electron is at the nucleus. (For s orbitals the maximum electron
density is found at the nucleus, as an examination of atomic orbital wave functions will
show.) The Hamiltonian operator for the magnetic interactions of a hydrogen atom in a
flux density (B) is:

Ĥ = gµBBŜZ − gNµNBÎZ + aŜ · Î

The first two terms are the Zeeman terms and the last the Fermi contact. g and gN are
the electron and nuclear g-factors, µB and µN are the Bohr and nuclear magnetons, Î and
Ŝ are the operators for the spin angular momenta of the nucleus and electron and ŜZ and
ÎZ are the operators for the z components of those momenta. a = ( 2

3 )µ0gµBgNµN|�(0)|2
where µ0 is the vacuum permeability and |�(0)|2 is the electron density at the nucleus.
(See Section 12.2 for more on magnetic properties.) The scalar product (Ŝ · Î) can be
written in terms of the Cartesian components of the vector operators (Ŝ and Î), or in
terms of the corresponding raising and lowering operators (Section 4.7):

aŜ · Î = a{Ŝx Îx + Ŝy Îy + ŜzÎz} = aŜzÎz + (a/2){Ŝ+Î− + Ŝ−Î+}

Our basis states are the spin states of the hydrogen atom and they can be defined by
writing down all possible combinations of the z-components of the nuclear and electron
spin, i.e. |mS (electron), mI (nucleus)〉. Since mS and mI can each take values of + 1

2 and
− 1

2 we have the four basis functions:

|a〉 = | + 1
2 ,+ 1

2 〉, |b〉 = | + 1
2 ,− 1

2 〉, |c〉 = | − 1
2 , + 1

2 〉 and |d〉 = | − 1
2 ,− 1

2 〉

The individual spin functions are orthonormal, i.e. 〈+ 1
2 | + 1

2 〉 = 〈− 1
2 | − 1

2 〉 = 1.0 and
〈+ 1

2 | − 1
2 〉 = 〈− 1

2 | + 1
2 〉 = 0. Consequently, the functions |a〉 − |d〉 are also ortho-normal

so that for the overlap of any pair Sij = δij.
To set up the secular equations we require all 4 × 4 terms of the form 〈i|Ĥ|j〉; two

examples will suffice to show how they are calculated:

〈b|Ĥ|b〉 = 〈+ 1
2 , − 1

2 |Ĥ| + 1
2 ,− 1

2 〉
= 〈+ 1

2 , − 1
2 |gµBBŜZ − gNµNBÎZ + aŜZÎZ + 1

2 a{Ŝ+ Î− + Ŝ−Î+}| + 1
2 , − 1

2 〉

Since Ŝ and its components operate only on the electron, Î and its components operate
only on the nucleus and the other symbols are not operators, we can write:

〈b|Ĥ|b〉 = gµBB〈+ 1
2 |ŜZ| + 1

2 〉〈− 1
2 | − 1

2 〉 − gNµNB〈+ 1
2 | + 1

2 〉〈− 1
2 |ÎZ| − 1

2 〉
+ a〈+ 1

2 |ŜZ| + 1
2 〉〈− 1

2 |ÎZ| − 1
2 〉

+ 1
2a{〈+ 1

2 |Ŝ+| + 1
2 〉〈− 1

2 |Î−| − 1
2 〉 + 〈+ 1

2 |Ŝ−| + 1
2 〉〈− 1

2 |Î+| − 1
2 〉}
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The results of operating with Ŝ+, Ŝ− and ŜZ on | + 1
2 〉 and | − 1

2 〉 are very simple
(Box 4.1):

| + 1
2 〉 | − 1

2 〉
Ŝ+ 0 | + 1

2 〉
Ŝ− | − 1

2 〉 0

ŜZ + 1
2 | + 1

2 〉 − 1
2 | − 1

2 〉

and there are corresponding results for Î+, Î− and ÎZ, so that:

〈b|Ĥ|b〉 = + 1
2 gµBB + 1

2 gNµNB − 1
4a

Similarly:

〈b|Ĥ|c〉 = gµBB〈+ 1
2 |ŜZ| − 1

2 〉〈− 1
2 | + 1

2 〉 − gNµNB〈− 1
2 | + 1

2 〉〈+ 1
2 |ÎZ| − 1

2 〉
+ a〈+ 1

2 |ŜZ| − 1
2 〉〈− 1

2 |ÎZ| + 1
2 〉

+ (a/2){〈+ 1
2 |Ŝ+| − 1

2 〉〈− 1
2 |Î−| + 1

2 〉 + 〈+ 1
2 |Ŝ−| − 1

2 〉〈− 1
2 |Î+| + 1

2 }
The first three terms are zero, on account of the orthogonality of the individual spin

functions, and so is the fourth because of the properties of the raising and lowering
operators. Only the term in Ŝ+Î− is non-zero so that:

〈b|Ĥ|c〉 = a/2

Thus, setting �e = gµBB and �N = gNµNB, we find the secular equations:

C1(
1
2�e − 1

2�N + a/4 − E) + C20 + C30 + C40 = 0

C10 + C2(
1
2�e + 1

2�N − a/4 − E) + C3(a/2) + C40 = 0

C10 + C2(a/2) + C3(− 1
2�e − 1

2�N − a/4 − E) + C40 = 0

C10 + C20 + C30 + C4(− 1
2�e + 1

2�N + a/4 − E) = 0

The first secular equation contains only C1 and is therefore independent of the others,
so that we have:

1
2�e − 1

2�N + a/4 − E = 0 ⇒ E = 1
2�e − 1

2�N + a/4 and C1 = 1.0

Similarly, the last equation gives E = − 1
2�e + 1

2�N + a/4 and C4 = 1.0.
The secular determinant for equations 2 and 3 is:

∣∣∣∣∣

1
2D − a/4 − E +a/2

+a/2 − 1
2D − a/4 − E

∣∣∣∣∣ = 0

Where D = �e + �N. Multiplying the determinant out, we find that the quadratic
equation for E is:

E2 + (a/2)E − 1
4 D2 − 3(a/4)2 = 0
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giving

E = −a/4 ± 1
2 {a2 + D2} 1

2

Given numerical values of a and D, it is quite simple to extract the two coefficients,
C2 and C3, corresponding to these two energies, but it is tedious and not worthwhile to
obtain algebraic expressions for them. However, the case of zero magnetic field is of
interest and merits further discussion.

In the absence of a magnetic field D = �e + �N = 0 and we find three degenerate
energy levels of a/4 and one of −3a/4. The separation between these two states of the
hydrogen atom, which correspond to the two possible relative orientations of the nuclear
and electronic magnetic moment, is ∼1,420 MHz. It is the frequency which has been
scanned with the intention of detecting intelligent life in the galaxy (Section 4.9). To
obtain the coefficients C2 and C3 for the zero-field case we substitute the two energies
back into the secular equations. When E = a/4 we have:

C2(−a/4 − a/4) + C3(a/2) = 0 ⇒ aC2/2 = aC3/2

and
C2(a/2) + C3(−a/4 − a/4) = 0 ⇒ aC2/2 = aC3/2

from which it is clear that C2 = C3 and, since C2
2 + C3

2 = 1.0, their absolute values are:

C2 = C3 = 1/
√

2

When E = −3a/4 we have:

C2(−a/4 + 3a/4) + C3(a/2) = 0 ⇒ aC2/2 = −aC3/2

and
C2(a/2) + C3(−a/4 + 3a/4) = 0 ⇒ aC2/2 = −aC3/2

giving
C2 = −C3 = 1/

√
2

Thus, summarising our results for the zero-field case we have:
The singlet

E = −3a/4 �s = {1/
√

2}{| + 1
2 , − 1

2 〉 − | − 1
2 , + 1

2 〉}
The triplet

E = +a/4 �t+1 = |+ 1
2 , + 1

2 〉
E = +a/4 �t0 = {1/

√
2}{| + 1

2 , − 1
2 〉 + | − 1

2 , + 1
2 〉}

E = +a/4 �t−1 = | − 1
2 , − 1

2 〉



Appendix 3

Energies and Wave Functions
by Matrix Diagonalisation

To fully understand this subject the reader needs to know how to multiply matrices and
to find the inverse of a matrix.

The determination of eigenvalues and eigenfunctions by the solution of secular equa-
tions (Appendix 2) plays an important pedagogical role in quantum mechanics but finds
very little application today. The advent of the digital computer has made matrix algebra
much more potent for the formulation and solution of practical problems in quantum
mechanics. We shall use the determination of the Hückel MOs for the propyl radical,
C3H5, to compare the two methods.

The secular equations for the π-electron system based on three conjugated carbon
atoms having AOs φ1, φ2 and φ3 are (Section 12.1):

C1(α − E) + C2β = 0

C1β + C2(α − E) + C3β = 0

C2β + C3(α − E) = 0

Their solution, by the method described in Section 12.1, leads to the following energies
and wave functions; eigenvalues and eigenvectors respectively in matrix terminology:

ψ1 = 1
2φ1 + (1/

√
2)φ2 + 1

2φ3 E1 = α + √
2β

ψ2 = (1/
√

2)φ1 + 0φ2 − (1/
√

2)φ3 E2 = α

ψ3 = 1
2φ1 − (1/

√
2)φ2 + 1

2φ3 E3 = α − √
2β

Matrix elements

When using matrix-algebra we first set up a matrix the elements of which are the possible
values, nine in this case, of 〈φi|Ĥ|φj〉, where Ĥ is the Hamiltonian operator and the φi,
i = 1 − 3, are known as the basis functions. In the present case they are the three carbon
2pz atomic orbitals. These are the quantities which we first denoted by Hij in the Hückel
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theory and then replaced by α and β in accordance with Hückel’s approximations. We
obtain the Hamiltonian matrix [H]:

Ĥ φ1 φ2 φ3

φ1 α β 0

φ2 β α β

φ3 0 β α

≡ [H]

Note that, following Hückel’s method, we set all overlap integrals to zero. If the
basis functions are not orthogonal and there are overlap integrals then their inclusion
complicates the problem, though it can also be handled perfectly well with matrix methods.
However, most chemical applications of quantum mechanics, apart from those arising from
MO theory, start from a basis of orthogonal functions and the problems associated with
overlap do not therefore arise. The present description of the matrix method of obtaining
eigenvalues and eigenfunctions applies only to a set of basis functions which are either
truly orthogonal or are assumed to be so.

In a computational solution of our problem we would now insert appropriate numerical
values for α and β and use a computer to diagonalise the resulting matrix. However, in
order to understand the process of diagonalisation we shall here proceed algebraically.
We pose the question: What would the Hamiltonian matrix look like if we used the three
functions ψi rather than the φi to construct it? To answer that question we evaluate two
matrix elements as examples:

〈ψ1|Ĥ|ψ1〉 = 〈 1
2φ1 + (1/

√
2)φ2 + 1

2φ3|Ĥ| 1
2φ1 + (1/

√
2)φ2 + 1

2φ3〉
= 1

4 〈φ1|Ĥ|φ1〉 + 1
2 〈φ2|Ĥ|φ2〉 + 1

4 〈φ3|Ĥ|φ3〉
+ 2 · ( 1

2 ) · (1/
√

2)〈φ1|Ĥ|φ2〉 + 2 · ( 1
2 ) · (1/

√
2)〈φ2|Ĥ|φ3〉

= 1
4α + 1

2α + 1
4α + (1/

√
2)β + (1/

√
2)β = α + √

2β

〈ψ1|Ĥ|ψ2〉 = 〈 1
2φ1 + (1/

√
2)φ2 + 1

2φ3|Ĥ|(1/
√

2)φ1 − (1/
√

2)φ3〉
= (1/2

√
2)〈φ1|Ĥ|φ1〉 − (1/2

√
2)〈φ3|Ĥ|φ3〉 + 1

2 〈φ2|Ĥ|φ1〉 − 1
2 〈φ2|Ĥ|φ3〉

= (1/2
√

2)α − (1/2
√

2)α + 1
2β − 1

2β = 0

When we evaluate the remaining elements we find, as the reader can confirm, that the
matrix constructed using the three functions ψi is the diagonal matrix [D], in which the
diagonal elements are the MO energies, or eigenvalues of our problem:

Ĥ ψ1 ψ2 ψ3

ψ1 α + √
2β 0 0

ψ2 0 α 0

ψ3 0 0 α − √
2β

≡ [D]

The process of diagonalising a matrix is the process of forming combinations of the
basis functions such that all the off-diagonal elements of the matrix constructed with
the new combinations are zero. The diagonal elements are then the eigenvalues. The
formation of the combinations is subject to the requirement that each of the original basis
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functions is completely ‘used up’ in the process. From a purely mathematical viewpoint,
the procedure involves the construction of a second matrix [V] such that:

[V]−1 × [H] × [V] = [D]

where [H] is the Hamiltonian matrix to be diagonalised, [V]−1 is the inverse of [V] and
[D] is the resulting diagonal matrix. This form of transformation of [H] to [D] is called a
similarity transformation. The multiplications are, of course, matrix multiplications. The
matrix [V] is built up by an iterative process which computers do very well, and many
sophisticated subroutines are available for the purpose. When the procedure is complete
the required eigenvectors, which are the atomic orbital coefficients, Ci in this particular
application, are the elements of the matrix [V]. Thus, diagonalisation is a process whereby
those combinations of the basis functions, φi, which are eigenfunctions of Ĥ and their
associated eigenvalues, are found simultaneously.

Readers who are familiar with matrix operations may like to confirm that if:

[V] =




1
2

1√
2

1
2

1√
2

0 −1√
2

1
2

−1√
2

1
2


 then [V]−1 =




1
2

1√
2

1
2

1√
2

0 −1√
2

1
2

−1√
2

1
2




(There is no error here. In this particular case, as is often found in applications of quantum
mechanics, [V] = [V]−1. [V] is called a unitary matrix.)

and

[V]−1[H][V] = [D] =



α + √
2β 0 0

0 α 0

0 0 α − √
2β




The characteristic equation of a matrix

A further example of the underlying similarity between the use of matrix and determinantal
methods to find eigenvalues is found in the characteristic equation of a matrix. We return
to our Hückel matrix for the propyl radical [H] and subtract E from each diagonal element:

φ1 φ2 φ3

φ1 α − E β 0

φ2 β α − E β

φ3 0 β α − E

If we regard the new matrix as a determinant and multiply it out according to the rules
of determinant algebra we obtain a cubic equation in E:

{α − E} {(α − E)2 − β2} − β{β(α − E)} = 0

⇒ {α − E} {(α − E)2 − 2β2} = 0
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The polynomial we have obtained in E is called the characteristic equation of the
matrix and its roots are the eigenvalues of the matrix, as we now confirm. The roots are:

α − E = 0 ⇒ E = α

and
(α − E)2 − 2β2 = 0 ⇒ α − E = ±√

2β or E = α ± √
2β

In principle, the eigenvalues of any matrix can be determined by finding the roots of
the characteristic equation. However, apart from in the simplest cases, diagonalisation is
by far the more efficient method.

Blocked-out matrices

In quantum-mechanical calculations it is quite common to find matrices where a diagonal
element has no off-diagonal element associated with it. One may also find smaller sub-
matrices within a larger matrix where there are no off-diagonal elements connecting the
sub-matrix with the remainder of the matrix:



a x 0 0

x b 0 0

0 0 c y

0 0 y d




In the example above, the two 2 × 2 sub-matrices at top left and bottom right have no
connections to each other through off-diagonal elements. Matrices of this form are said
to be blocked out and each block is independent of the others. Thus the above matrix is
actually two independent matrices:

[
a x

x b

]
and

[
c y

y d

]

each of which can be diagonalised separately.

General solution of a 2 × 2 eigenvalue problem

There is a general solution of the 2 × 2 eigenvalue problem which we use several times
in this book. Suppose that we have to determine the eigenvalues and eigenvectors of the
following matrix in which the basis functions (φa and φb) are normalised and orthogonal:

φa φb

φa A Z

φb Z B

We define:

� = 1
2 (A + B), � = 1

2 (A − B) and � = {�2 + Z2} 1
2

where for � we take the root which has the same sign as Z.
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We also define an angle (θ ) such that:

cos θ = |{(� + �)/2 �} 1
2 | and sin θ = |{(� − �)/2 �} 1

2 |
where we take the positive square root in each case.

The eigenvalues (E) and their normalised, orthogonal eigenvectors (
) are now
given by:

E1 = � + � 
1 = cos θ φa + sin θ φb

E2 = � − � 
2 = − sin θ φa + cos θ φb

If Z > 0 then � > 0 and the lower eigenvalue has a node while if Z < 0 � < 0 and
the higher eigenvalue has a node. This is the case, for example, when Z represents the
bonding interaction between two atomic wave functions (φa and φb) and is therefore a
negative quantity. Then, � is <0, E1 is the lower energy and 
1 is the bonding molecular
orbital. 
2 is the antibonding MO.





Appendix 4

Perturbation Theory

Exact solution of Schrödinger’s equation is possible for only a very small proportion of
the problems of interest in the physical sciences. Great importance therefore attaches to
approximate methods of solution and among these methods perturbation theory, which
is also extensively used in classical mechanics, occupies a very important place. The
technique can be applied where the Hamiltonian can be written as a sum of two parts, a
simple part which if present alone would generate a soluble Schrödinger equation, and a
second part consisting of one or more relatively small additional terms. The approximate
behaviour of the system can then be obtained by considering the soluble part as giving
the dominant behaviour and treating the actual behaviour as a relatively minor deviation,
or perturbation, from this calculable behaviour. The perturbation can be estimated by
studying the small, complicating additional terms in the second part of the Hamiltonian.

The analysis of time-independent and time-dependent perturbations is different and we
treat only the former type of problem here.

Time-independent perturbation theory

We have a Hamiltonian operator of the form:

Ĥ = Ĥ(0) + Ĥ ′ (A4.1)

where the energy associated with Ĥ(0) is large compared with that derived from Ĥ ′. In
order to facilitate the algebra we write Equation (A4.1) in the form:

Ĥ = Ĥ(0) + λĤ ′ (A4.2)

λ is an arbitrary parameter, which we use to keep track of the order of the perturbation,
i.e. the degree to which our approximate Hamiltonian (Ĥ(0) + λĤ ′) approaches the true
Hamiltonian (Ĥ). Once it has performed its labelling duty λ is simply set equal to 1. We
seek eigenfunctions |ψk〉 and energies Ek which satisfy the Schrödinger equation:

Ĥ|ψk〉 = (Ĥ(0) + λĤ ′)|ψk〉 = Ek|ψk〉 (A4.3)

In addition to the assumption concerning the relative magnitudes of the energies asso-
ciated with Ĥ(0) and Ĥ ′ we also assume the following:

i) Ĥ does not depend explicitly on the time.
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ii) The complete set of orthonormal eigenfunctions |ψn
(0)〉 and energies En

(0) which
satisfy the Schrödinger equation:

Ĥ(0)|ψn
(0)〉 = En|ψn

(0)〉 (A4.4)

are known.

iii) It is possible to expand the solutions of the perturbed problem as a power series in λ:

|ψk〉 = |ψk
(0)〉 + λ|ψk

(1)〉 + λ2|ψk
(2)〉 + · · ·

Ek = Ek
(0) + λEk

(1) + λ2Ek
(2) + · · · (A4.5)

|ψk
(1)〉 is the first order correction to |ψk〉, |ψk

(2)〉 is the second order correction, and
so on, and it is these functions, together with the corresponding values of Ek

(1), Ek
(2)

etc., which we wish to find. The Expansion (A4.5) requires that the successive absolute
values of Ek

(n) decrease rapidly and it should be noted that it is difficult to establish this,
a priori, in any particular case. Therefore, when perturbation calculations are carried out
the values of Ek

(n) must always be checked to ensure that the required decrease in their
absolute values is in fact found.

If we now substitute the Expansions (A4.5) into the Schrödinger Equation (A4.3) we
obtain:

(Ĥ(0) + λĤ ′)(|ψk
(0)〉 + λ|ψk

(1)〉 + λ2|ψk
(2)〉 + · · ·)

= (Ek
(0) + λEk

(1) + λ2Ek
(2) + . . .)(|ψk

(0)〉 + λ|ψk
(1)〉 + λ2|ψk

(2)〉 + · · ·) (A4.6)

Since λ is an arbitrary parameter, the coefficients of the same power of λ on the two
sides of Equation (A4.6) must be equal. Equating these coefficients for increasing powers
of λ, i.e. orders of perturbation, we find:

λ0 Ĥ(0)|ψk
(0)〉 = Ek

(0)|ψk
(0)〉

λ1 Ĥ(0)|ψk
(1)〉 + Ĥ ′|ψk

(0)〉 = Ek
(0)|ψk

(1)〉 + Ek
(1)|ψk

(0)〉
λ2 Ĥ(0)|ψk

(2)〉 + Ĥ ′|ψk
(1)〉 = Ek

(0)|ψk
(2)〉 + Ek

(1)|ψk
(1)〉 + Ek

(2)|ψk
(0)〉

etc. (A4.7)

λ has now served its purpose. The first of these equations is simply Equation (A4.4), the
Schrödinger equation for the unperturbed system and it tells us what we already knew,
namely that the zeroth approximations to |ψk〉 and Ek are |ψk

(0)〉 and Ek
(0).

The second equation may be written:

(Ĥ(0) − Ek
(0))|ψk

(1)〉 + (Ĥ ′ − Ek
(1))|ψk

(0)〉 = 0 (A4.8)

Two possibilities are open to us here. We may be able to solve this equation directly to
obtain the required corrections |ψk

(1)〉 and Ek
(1), but this is rarely possible. Normally we

proceed further by expressing the correction |ψk
(1)〉 in terms of the complete set of zeroth

order wave functions, |ψn
(0)〉, which are assumed to be known (assumption (ii) above):

|ψk
(1)〉 =

∑

n

Cn|ψn
(0)〉 (A4.9)

We substitute this expansion into Equation (A4.8), multiply on the left by one of the
〈ψn

(0)|, 〈ψj
(0)| say, and integrate over all space giving:

〈ψj
(0)|(Ĥ(0) − Ek

(0))
∑

n

Cn|ψn
(0)〉 + 〈ψj

(0)|(Ĥ ′ − Ek
(1))|ψk

(0)〉 = 0
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And using Equation (A4.4):

⇒
∑

n

Cn〈ψj
(0)|(En

(0) − Ek
(0))|ψn

(0)〉 + 〈ψj
(0)|(Ĥ ′ − Ek

(1))|ψk
(0)〉 = 0

⇒
∑

n

Cn(En
(0) − Ek

(0))〈ψj
(0)|ψn

(0)〉 + 〈ψj
(0)|(Ĥ ′ − Ek

(1))|ψk
(0)〉 = 0. (A4.10)

Because the functions |ψn
(0)〉 are orthonormal, of the n terms in the sum only that

for which n = j is non-zero. Therefore, when j = k the only term in the sum which
remains has n = k and is zero because the energy difference is zero. Equation (A4.10)
then reduces to:

〈ψk
(0)|Ĥ ′ − Ek

(1)|ψk
(0)〉 = 0

or
〈ψk

(0)|Ĥ ′|ψk
(0)〉 = Ek

(1)〈ψk
(0)|ψk

(0)〉 = Ek
(1).

This gives us the first correction to the energy (Ek
(1)), in the form of the matrix element

of the unperturbed wave function |ψk
(0)〉 with the perturbation Ĥ ′:

Ek
(1) = 〈ψk

(0)|Ĥ ′|ψk
(0)〉 ≡ Hkk (A4.11)

where Hkk is simply a convenient symbol for the matrix element.
If j �= k in Equation (A4.10), the only term in the sum over n which can be non-zero

is the one where n = j which gives us an expression for all the coefficients except Ck:

Cj(Ej
(0) − Ek

(0))〈ψj
(0)|ψj

(0)〉 + 〈ψj
(0)|(Ĥ ′ − Ek

(1))|ψk
(0)〉 = 0

⇒ Cj(Ej
(0) − Ek

(0))〈ψj
(0)|ψj

(0)〉 + 〈ψj
(0)|Ĥ ′|ψk

(0)〉 − Ek
(1)〈ψj

(0)|ψk
(0)〉 = 0

⇒ CjEj
(0) − CjEk

(0) + Hjk − 0 = 0

Or
Cj = Hjk/(Ek

(0) − Ej
(0)) (A4.12)

The form of Equation (A4.12) raises two important points:

i) If there is degeneracy such that Ek
(0) = Ej

(0) the coefficient becomes infinite and the
theory breaks down. We return to this point later.

ii) The initial assumption that Ĥ ′, is small compared with Ĥ(0) implies that Hjk is small
compared with Ek

(0) and Ej
(0). Thus, provided that there is no degeneracy, or near

degeneracy, Cj will be small and the perturbed wave function will not differ much
from the unperturbed, which is the basic premise of the theory.

By means of Equation (A4.12) we can find all the Cj except Ck which can be found
using the requirement that the wave function, up to the order considered (power of λ = 1
in this case), shall be normalised. According to Equation (A4.5), our wave function correct
to first order is:

|ψk〉 = |ψk
(0)〉 + |ψk

(1)〉
so the condition for normalisation is:

〈ψk|ψk〉 = 〈ψk
(0) + ψk

(1)|ψk
(0) + ψk

(1)〉 = 1.0 (A4.13)
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From Equation (A4.9) we have:

|ψk
(1)〉 =

∑

j�=k

Cj|ψj
(0)〉 + Ck|ψk

(0)〉 (A4.14)

where Cj can be obtained from Equation (A4.12). Thus the normalisation integral
(Equation (A4.13)) becomes:

〈ψk
(0) +

∑

j�=k

C∗
j ψj

(0)|ψk
(0) +

∑

j�=k

Cjψj
(0)〉 (A4.15)

where we have, for the moment, omitted the term Ck|ψk
(0)〉 in |ψk

(1)〉.
Since the |ψn

(0)〉 are orthonormal (A4.15) becomes:

〈ψk
(0)|ψk

(0)〉 +
∑

j�=k

Cj
∗Cj〈ψj

(0)|ψj
(0)〉 = 1.0 +

∑

j�=k

Cj
∗Cj

Thus, the normalisation integral (Equation (A4.15)) is equal to unity plus the term∑
j�=k Cj

∗ Cj which is of the order of λ2 because Cj is of order λ since it is a measure of
the small mixing of |ψj

(0)〉 into |ψk
(0)〉 induced by the perturbation. Therefore, the wave

function |ψk〉 = |ψk
(0)〉 + |ψk

(1)〉 is normalised to order λ if we neglect the term Ck|ψk
(0)〉,

i.e. if Ck = 0. This is reasonable, |ψk
(0)〉 cannot be corrected by adding a further small

contribution from the same function.
Our wave function, correct to first order and normalised, is therefore:

�k = �k
(0) +

∑

j�=k

{
Hjk

Ek
(0) − Ej

(0)

}
�j

(0) (A4.16)

To obtain Ek
(2) we write the third Equation (A4.7) as:

(Ĥ(0) − Ek
(0))|ψk

(2)〉 + (Ĥ ′ − Ek
(1))|ψk

(1)〉 − Ek
(2)|ψk

(0)〉 = 0 (A4.17)

and expand |ψk
(2)〉 in terms of the |ψm

(0)〉 as before:

|ψk
(2)〉 =

∑

m

Bm|ψm
(0)〉 (A4.18)

Substituting Equations (A4.9) and (A4.18) into Equation (A4.17), multiplying on the
left by 〈ψj

(0)| and integrating over all space, we obtain:

〈ψj
(0)|Ĥ(0) − Ek

(0)|
∑

m

Bmψm
(0)〉 + 〈ψj

(0)|Ĥ ′ − Ek
(1)|

∑

n

Cnψn
(0)〉

− 〈ψj
(0)|Ek

(2)|ψk
(0)〉 = 0

⇒
∑

n

Cn〈ψj
(0)|Ĥ ′|ψn

(0)〉 −
∑

n

CnEk
(1)〈ψj

(0)|ψn
(0)〉 − Ek

(2)〈ψj
(0)|ψk

(0)〉

+
∑

m

Bm〈ψj
(0)|Ĥ(0)|ψm

(0)〉 −
∑

m

Bm〈ψj
(0)|Ek

(0)|ψm
(0)〉 = 0 (A4.19)

If j = k the last two terms of Equation (A4.19) cancel each other and we have:
∑

n

Cn〈ψk
(0)|Ĥ ′|ψn

(0)〉 − CkEk
(1)〈ψk

(0)|ψk
(0)〉 − Ek

(2)〈ψk
(0)|ψk

(0)〉 = 0
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or
Ek

(2) =
∑

n

CnHkn − CkEk
(1) =

∑

n �=k

CnHkn (A4.20)

Using Equations (A4.11) and (A4.12) gives:

E
(2)

k =
∑

n �=k

{
HnkHkn

E
(0)

k − E
(0)

j

}
(A4.21)

We do not usually pursue perturbation theory to terms of order higher than Ek
(1), Ek

(2)

and ψk
(1), but such formulae are available. [e.g. J.O. Hirschfelder, W. Byers Brown and

S.T. Epstein, Advances in Quantum Chemistry, 1, 256 (1964)]. The results obtained here
are summarised in Equations (A4.22) and (A4.23).

Energy correct to second order:

Ek = Hkk +
∑

n �=k

{
HnkHkn

E
(0)

k − E
(0)
n

}
(A4.22)

Wave function correct to first order:

�k = �k
(0) +

∑

j�=k

{
Hjk

Ek
(0) − Ej

(0)

}
�j

(0) (A4.23)

The case of degenerate eigenvalues in the unperturbed solution

Formulae (A4.22) and (A4.23) fail when there are degeneracies. Under such circum-
stances we adopt a variational approach and proceed as follows, we have:

Ĥ = Ĥ(0) + Ĥ ′ (A4.1)

Ĥ|ψk〉 = Ek|ψk〉 (A4.3)

We expand |ψk〉 using Equation (A4.9), multiply on the left by 〈ψj
(0)| and integrate

over all space giving:

〈ψj
(0)|Ĥ|

∑

n

Cnψn
(0)〉 − Ek

∑

n

Cn〈ψj
(0)|ψn

(0)〉

=
∑

n

Cn{〈ψj
(0)|Ĥ|ψn

(0)〉 − Ek〈ψj
(0)|ψn

(0)〉}

≡
∑

n

Cn{Hjn − Ekδjn} (A4.24)

Here, Hjn is a matrix element of the full Hamiltonian and δjn (the Kronecker delta) =
1 if j = n and 0 otherwise. There is an equation of the form of Equation (A4.24) for
each degenerate wave function 〈ψj

(0)|, so that we obtain a set of linear, homogeneous
equations which are known as the secular equations. Methods of solving secular equations
are described in Appendices 2 and 3.

Example

Consider the problem of a particle confined within a one-dimensional box of length L by
infinite potential walls at x = 0 and x = L. The solutions of the Schrödinger equation for
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the unperturbed problem:

Ĥ(0)|ψn
(0)〉 = En

(0)|ψn
(0)〉 (A4.4)

are (Section 3.6)–eigenvalues: En
(0) = n2h2/8mL2 and eigenfunctions: ψn

(0) = √
(2/L)

sin (nπx/L), where h is Planck’s constant, m the mass of the particle and n = 1 − ∞
the quantum number. These results apply where the particle has only kinetic energy. The
perturbation which we shall apply is an electrostatic field such that the potential energy
of the particle (V) increases linearly from −v/2 at x = 0 to +v/2 at x = L. This potential
forms our perturbing Hamiltonian, which we can write as:

Ĥ ′ = v(x − 1
2 L)/L = vx/L − v/2

In order to apply perturbation theory using Equations (A4.22) and (A4.23) we require
matrix elements of the form:

〈ψj
(0)|Ĥ ′|ψk

(0)〉 ≡ Hjk

and it is convenient to evaluate and tabulate these. In general we have:

Hjk = 〈ψj
(0)|vx/L − v/2|ψk

(0)〉 = 〈ψj
(0)|vx/L|ψk

(0)〉 − 〈ψj
(0)|v/2|ψk

(0)〉
= (v/L)〈ψj

(0)|x|ψk
(0)〉 − (v/2)〈ψj

(0)|ψk
(0)〉

Since the eigenfunctions are orthonormal, the last term contributes a constant energy
of −v/2 to all diagonal elements and zero to all off-diagonal elements. To evaluate the
contribution of the first term we write out its full algebraic form and consider first the
diagonal elements:

〈ψk|V|ψk〉 = 2

L
· v

L

∫ L

0
x · sin2

{
kπx

L

}
dx = v

L2

∫ L

0

[
x − x cos

{
2kπx

L

}]
dx = v

2

Thus, the two contributions to the diagonal elements cancel and all Hkk = 0.
When we consider the off-diagonal elements we find:

〈ψj|V|ψk〉 = 2

L
· v

L

∫ L

0
sin

{
jπx

L

}
· x · sin

{
kπx

L

}
dx

= v

L2

∫ L

0

{
x cos

{
(j − k)πx

L

}
− x cos

{
(j + k)πx

L

}}
dx

=
[

L2

(j − k)2π2
cos

{
(j − k)πx

L

}
+ xL

(j − k)π
sin

{
(j − k)πx

L

}]L

0

−
[

L2

(j + k)2π2
cos

{
(j + k)πx

L

}
+ xL

(j + k)π
sin

{
(j + k)πx

L

}]L

0

It is necessary to consider whether (j + k) and (j − k) are odd or even. When (j + k)
and (j − k) are even, inserting the limits of 0 and L shows that in this case the integral
is zero and there are therefore no off-diagonal matrix elements when j and k themselves
are either both even or both odd. Another way of saying this is to say that there are
no off-diagonal elements between states of the same parity and we shall return to this
important point below. Where (j + k) and (j − k) are odd, i.e. where j and k themselves
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are of different parities, we find on inserting limits that:

〈ψj|V|ψk〉 = 2v

π2
·
{ −4jk

(j2 − k2)2

}

Inserting appropriate values for j and k and adding the constant contribution of −v/2
to each diagonal element, we can tabulate the matrix elements for the lower quantum
numbers:

k =
〈ψj

(0)|Ĥ ′|ψk
(0)〉 1 2 3 4 5

j = 1 0 −1.778 v/π2 0 −0.142 v/π2 0
j = 2 −1.778 v/π2 0 −1.920 v/π2 0 −0.181 v/π2

j = 3 0 −1.920 v/π2 0 −1.959 v/π2 0
j = 4 −0.142 v/π2 0 −1.959 v/π2 0 −1.975 v/π2

j = 5 0 −0.181 v/π2 0 −1.975 v/π2 0

It is interesting to note how rapidly the magnitude of the off-diagonal matrix elements
decreases as the difference between j and k increases; (π2/v)H1k = −1.778, −0.142,
−0.039, −0.016 for k = 2, 4, 6 and 8 respectively. The matrix elements for j − k = ±1
decrease slowly to a limiting value of −2.0v/π2 for large values of j and k.

The absence of off-diagonal matrix elements between eigenfunctions of the same parity
exemplifies a quantum-mechanical principle that is of particular importance. In order that
an integral such as 〈ψj

(0)|Ĥ ′|ψk
(0)〉 be non-zero, the symmetry of each component of the

integral 〈ψj
(0)|, Ĥ ′ and |ψk

(0)〉 must be such that their product is of the highest possible
symmetry. In the language of group theory we say that the integral must belong to
the totally symmetric representation of the symmetry group of the problem. The only
symmetry property which we have recognised here is that of parity; the phases of the
wave functions can either change sign (odd) or be unchanged (even) on inversion in the
centre of the box. Even functions have the highest symmetry, so in order to have a finite
value the integral 〈ψj

(0)|Ĥ ′|ψk
(0)〉 must be even. The phases of the wave functions |ψk

(0)〉
(Figure 3.6) determine that the functions are even when k is even and odd when k is odd.
And the potential is odd since it changes sign at the centre point of the box. Therefore,
when 〈ψj

(0)| and |ψk
(0)〉 are of the same parity the integral as a whole is odd and must

therefore be zero as the above numerical results show. But when 〈ψj
(0)| and |ψk

(0)〉 are
of opposite parity the integral as a whole is even and a finite result is possible.

We are now in a position to apply perturbation theory to a problem. In Box 3.4 we
interpreted the electronic spectra of the cyanine dyes in terms of the energies of an
electron in a one-dimensional box. We found there that the experimental data gave a
value of 313 × 10−20 J for h2/8ml2, where l is the length of an individual bond in the
cyanine chain. For our example we consider a chain of 16 bonds for which, since L = 16l,
h2/8mL2 = (313/162) × 10−20 J = 1.223 × 10−20 J. Thus, the lower energy values for
this molecule are:

E1
(0) = h2/8mL2 = 1.223 × 10−20 J

E2
(0) = 4h2/8mL2 = 4.891 × 10−20 J

E3
(0) = 9h2/8mL2 = 11.004 × 10−20 J
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Suppose, for the sake of this example, that v = 2.0 × 10−20 J and we wish to determine
the new E2 and |ψ2〉 which result from this perturbation. According to Equation (A4.22):

E2 = H22 +
∑

j�=2

Hj2H2j

E
(0)

k − E
(0)

k

H22 = 0.0 and the largest term in the summation is when j = 1 and for that term in
the summation we find:

E(2)

2 (j=1)
= (1.778 × 2.0 × 10−20)2

π4(3.668 × 10−20)
= 12.65 × 10−20

357.3
= 0.035 × 10−20 J

For j = 3:

E(2)

2 (j=3)
= (1.920 × 2.0 × 10−20)2

π4(−6.113 × 10−20)
= 14.75 × 10−20

−595.5
= −0.025 × 10−20 J

Note how interaction with a state of lower energy, |ψ1
(0)〉 raises the energy of |ψ2〉,

whereas interaction with a state of higher energy, |ψ3
(0)〉, depresses it. The contributions

to the energy of |ψ2〉 from states of energy higher than E3
(0) are negligible and we

finally have:

E2 = (4.891 + 0.035 − 0.025) × 10−20 J = 4.901 × 10−20 J

For the corrections to the wave function we use:

|ψ2〉 = |ψ(0)

2 〉 +
∑

j�=2

Hj2

E
(0)

2 − E
(0)

j

|ψ(0)

j 〉

= |ψ(0)

2 〉 − 1.778 × 2.0 × 10−20

36.202 × 10−20
|ψ(0)

1 〉 + 1.920 × 2.0 × 10−20

60.333 × 10−20
|ψ(0)

3 〉

= |ψ(0)

2 〉 − 0.098|ψ(0)

1 〉 + 0.064|ψ(0)

3 〉
Finally, it is of interest to consider the first order correction to |ψ1

(0)〉 which is readily
found to be:

|ψ1〉 = |ψ1
(0)〉 + 0.098|ψ2

(0)〉
We note that the small admixture of |ψ2

(0)〉 has a positive coefficient so that (see
Figure 3.6) the amplitude of the wave function |ψ1

(0)〉 in the region between x = 0 and
L/2 is slightly increased by the perturbation while between x = L/2 and L it is reduced.
Since the electron density is proportional to the square of the wave function, this means
that the perturbation increases the electron density in the lower half of the box and
decreases it at the upper end. This is just what we would expect, since the perturbing
potential increases linearly with x and the electron will respond to this by moving to
lower values of x. In applying perturbation theory it is rather easy to make trivial errors
of sign and simple, qualitative considerations such as the above can be a useful aid to the
detection of such errors.



Appendix 5

The Spherical Harmonics
and Hydrogen Atom Wave
Functions

The functions of θ and φ which form the solutions of the angular part of the hydrogen-atom
problem are well known. They are frequently found as the solutions of differential equations
arising from the theoretical analysis of problems having spherical symmetry, such as the
vibration of a gas inside a sphere or the motion of the water on a flooded planet. They are
especially important in atomic physics because, since all atoms are spherically symmetrical,
the solutions of Schrödinger’s equation for any atom can be formed from the same angular
functions as the hydrogen atom; the presence of other electrons and the consequent inter-
electronic repulsion changes the radial but not the angular part of the wave function.

Furthermore, since combinations of atomic orbital functions are frequently used to
construct orbitals for molecules their use extends throughout theoretical chemistry. We
shall not describe the extensive mathematics of these functions, but simply write down
the lower members of the group in a form which is useful in chemical applications.

The explicit normalised forms of the function �m(φ) for m = 0, ±1, ±2

�0(φ) = (2π)
− 1

2 �0(φ) = (2π)
− 1

2

�1(φ) = (2π)
− 1

2 exp(iφ) �1c(φ) = (π)
− 1

2 cos(φ)

�−1(φ) = (2π)
− 1

2 exp(−iφ) �1s(φ) = (π)
− 1

2 sin(φ)

�2(φ) = (2π)
− 1

2 exp(2iφ) �2c(φ) = (π)
− 1

2 cos(2φ)

�−2(φ) = (2π)
− 1

2 exp(−2iφ) �2s(φ) = (π)
− 1

2 sin(2φ)

The above functions are normalised in the sense that:∫ 2π

0
�∗

m(φ)�m(φ) dφ = 1.0

Note that there is a choice of function. The functions on the left are eigenfunctions
of both the energy operator and the angular momentum operator. Those on the right are
eigenfunctions of the energy operator only.
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The explicit normalised forms of the function �l,m(θ) for l = 0, 1 and 2

l = 0 l = 1 l = 2
s-functions p-functions d-functions

�0,0 = + 1
2

√
2 �1,0 = +√

(3/2) · cos θ �2,0 = + 1
2

√
(5/2) · (3 cos2 θ − 1)

�1,+1 = − 1
2

√
3 · sin θ �2,+1 = − 1

2

√
15 · sin θ · cos θ

�1,−1 = + 1
2

√
3 · sin θ �2,−1 = + 1

2

√
15 · sin θ · cos θ

�2,+2 = + 1
4

√
15 · sin2 θ

�2,−2 = + 1
4

√
15 · sin2 θ

The above functions are normalised in the sense that:∫ π

0
�∗

l,m(θ)�l,m(θ) sin θ dθ = 1.0

Note that the value of m is restricted to integers in the range +l to −l. The positive
signs have been included to emphasise that there is a rather subtle sign convention in use
here. It will not affect our use of the functions in any way, but it is important when they
are used in conjunction with advanced vector-coupling methods.

There are two useful recursion formulae for the �.

sin θ · �l,|m|−1(θ) = [(l + |m| + 1)(l + |m|)/(2l + 3)(2l + 1)]
1
2 �l+1,|m|(θ)

− [(l − |m| + 1)(l − |m|)/(2l + 1)(2l − 1)]
1
2 �l−1,|m|(θ)

and
cos θ · �l,|m|(θ) = [(l + |m| + 1)(l − |m| + 1)/(2l + 2)(2l + 1)]

1
2 �l+1,|m|(θ)

+ [(l + |m|)(l − |m|)/(2l + 1)(2l − 2)]
1
2 �l−1,|m|(θ)

The spherical harmonics Yl,m(θ , φ)

Products of the functions �l,m(θ) and �m(φ) are commonly known as the spherical
harmonics. Some normalised examples follow:

l = 0 s-functions Y0,0 = + 1
2

√
(1/π)

l = 1 p-functions l = 2 d-functions

Y1,0 = + 1
2

√
(3/π) · cos θ Y2,0 = + 1

4

√
(5/π) · (3 cos2 θ − 1)

Y1,+1 = − 1
2

√
(3/2π) · sin θ · exp(iφ) Y2,+1 = − 1

2

√
(15/2π) · sin θ · cos θ · exp(iφ)

Y1,−1 = + 1
2

√
(3/2π) · sin θ · exp(−iφ) Y2,−1 = + 1

2

√
(15/2π) · sin θ · cos θ · exp(−iφ)

Y2,+2 = + 1
4

√
(15/2π) · sin2 θ · exp(2iφ)

Y2,−2 = + 1
4

√
(15/2π) · sin2 θ · exp(−2iφ)
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The hydrogen atom wave functions

Although they are not spherical harmonics, the hydrogen atom radial functions (Rn,l (r))
and the complete hydrogen wave functions (�n,l,m) are included here for the sake of
completeness.

The normalised explicit forms of the function Rn,l (r) for n = 1, 2 and 3

We define ρ = 2Z

na0
· r

where Z is the nuclear charge in units of +e and a0 is the Bohr radius.

n = 1 l = 0 R1,0(r) = (Z/a0)
3
2 · 2 exp(−ρ/2)

n = 2 l = 0 R2,0(r) = (Z/a0)
3
2

2
√

2
(2 − ρ) exp(−ρ/2)

n = 2 l = 1 R2,1(r) = (Z/a0)
3
2

2
√

6
ρ exp(−ρ/2)

n = 3 l = 0 R3,0(r) = (Z/a0)
3
2

9
√

3
(6 − 6ρ − ρ2) exp(−ρ/2)

n = 3 l = 1 R3,1(r) = (Z/a0)
3
2

9
√

6
(4 − ρ)ρ exp(−ρ/2)

n = 3 l = 2 R3,2(r) = (Z/a0)
3
2

9
√

30
ρ2 exp(−ρ/2)

All the above functions of r, θ and φ are all individually normalised to unity and
mutually orthogonal:∫ 2π

0
�∗

m(φ)�m′(φ) dφ = δm,m′ ;

∫ π

0
�∗

l,m(θ)�l′,m′(θ) sin θ dθ = δl,l′δm,m′ ;
∫ ∞

0
R∗

n,lRn′,l′ r
2 dr = δn,n′δl,l′

Therefore, a complete hydrogen atom wave function formed from a product of three
of them is also normalised to one. See Appendix 7 concerning the volume element in
polar co-ordinates.

Some complete normalised wave functions for the hydrogen atom

�1s = 1√
π

(
Z

a0

) 3
2

exp(−ρ/2)
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�2s = 1

4
√

2π

(
Z

a0

) 3
2

(2 − ρ) exp(−ρ/2)

�2pz = 1

4
√

2π

(
Z

a0

) 3
2

cos θ · ρ exp(−ρ/2) = 1

4
√

2π

(
Z

a0

) 5
2

z · exp(−ρ/2)

Using the functions �1,+1, �1−1, �1c(φ) and �1s(φ), or simply by noting that the
three 2p orbitals must be exactly the same apart from their dependence upon x, y or z,
we obtain:

�2px = 1

4
√

2π

(
Z

a0

) 5
2

x · exp(−ρ/2)

�2py = 1

4
√

2π

(
Z

a0

) 5
2

y · exp(−ρ/2)



Appendix 6

Slater Determinants

Suppose that we have a system in which n atomic or molecular orbitals are each doubly
occupied by a total of 2n electrons. The wave function for the system might be thought
to be:

� = φ1α(1)φ1β(2)φ2α(3)φ2β(4) . . . φn−1β(2n − 2)φnα(2n − 1)φnβ(2n)

But it is fundamental to quantum mechanics that electrons are indistinguishable and an
equally acceptable wave function could be obtained by interchanging any two electrons,
e.g. 1 and 4, giving:

� = φ1α(4)φ1β(2)φ2α(3)φ2β(1) . . . φn−1β(2n − 2)φnα(2n − 1)φnβ(2n)

Indeed, any one of the (2n)! permutations‡ of electrons in orbitals is equally acceptable
and all must be included in the complete description of the system. Furthermore, we know
that the wave functions describing sets of indistinguishable, fundamental particles must
have a clear symmetry with respect to interchange of any two of those particles (see
Sections 11.4 and 11.5 for a further discussion of this point). For electrons the wave
function must change sign (be antisymmetric) when a pair of electrons are interchanged,
which is simply another way of stating the Pauli principle. John Clarke Slater (1900–1976)
pointed out that these requirements could be concisely fulfilled by writing the total wave
function as a determinant of the form:

� = 1/
√

(2n)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1α(1)φ1α(2) . . . φ1α(2n − 1)φ1α(2n)

φ1β(1)φ1β(2) . . . φ1β(2n − 1)φ1β(2n)

φ2α(1)φ2α(2) . . . φ2α(2n − 1)φ2α(2n)

· · · ·
· · · ·
· · · ·
φnβ(1)φnβ(2) . . . φnβ(2n − 1)φnβ(2n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Determinantal wave functions such as � are frequently represented by the leading
diagonal of the complete determinant enclosed between two pairs of vertical bars:

� = 1/
√

(2n)! ||φ1α(1)φ1β(2)φ2α(3)φ2β(4) . . . φn−1β(2n − 2)φnα(2n − 1)φnβ(2n)||
The determinant includes all possible permutations of electrons in orbitals and when we

multiply it out according to the established rules of determinantal algebra each constituent

‡ (2n)! (spoken ‘2n factorial’ or ‘factorial 2n’) = 2n × (2n − 1) × (2n − 2) × · · · × 1.
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permutation is generated, with the correct change of sign for interchange of any two
electrons; e.g.

� = (1/
√

6)

∣
∣
∣
∣
∣
∣

φ1α(1)φ1α(2)φ1α(3)

φ1β(1)φ1β(2)φ1β(3)

φ2α(1)φ2α(2)φ2α(3)

∣
∣
∣
∣
∣
∣

≡ (1/
√

6)||φ1α(1)φ1β(2)φ2α(3)||
On multiplying the 3 × 3 determinant out we obtain the total wave function in the

explicit form:

(1/
√

6) {φ1α(1)φ1β(2)φ2α(3) − φ1α(1)φ1β(3)φ2α(2) + φ1α(2)φ1β(3)φ2α(1)

− φ1α(2)φ1β(1)φ2α(3) + φ1α(3)φ1β(1)φ2α(2) − φ1α(3)φ1β(2)φ2α(1)}
The example of a three-electron wave function alerts us to a further point about the

complete description of many-electron systems. Clearly, the function in which the electron
in orbital φ2 has β spin would be equally acceptable and the complete description of the
system must therefore be the normalised sum of two Slater determinants:

� = (1/
√

12) {||φ1α(1)φ1β(2)φ2α(3)|| + ||φ1α(1)φ1β(2)φ2β(3)||}



Appendix 7

Spherical Polar Co-ordinates

We require three co-ordinates to specify a position in space. In the Cartesian system
we choose three mutually perpendicular axes which we normally designate x, y and z.
However, for a spherically symmetrical problem such as the hydrogen atom, the spherical
polar co-ordinate system is much more convenient.

The relationships between the Cartesian and polar co-ordinate systems is shown in
Figure A7.1. Consider the point P; its projection onto the xy-plane is p. In the Cartesian
system the co-ordinates of P are x, y and z; in the polar system they are r, θ and φ. r
is the distance of P from the origin of the co-ordinate system, O. θ is the angle between
OP and the z-axis. φ is the angle between Op and the x-axis. Since Op = r · sin θ , simple
trigonometry shows that the relationships between the two co-ordinate systems are:

x = r · sin θ · cos φ y = r · sin θ · sin φ z = r · cos θ

and
r2 = x2 + y2 + z2

The volume element in polar co-ordinates

Many quantum-mechanical calculations involve the evaluation of the integral of a product
of two or more wave functions over the whole of co-ordinate space. For example, the

X

Y

Z

q

f

P

r

p

O

Figure A7.1 The relationships between Cartesian and spherical polar co-ordinates
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wave function (ψ) must be normalised, i.e. we must have:∫∫∫

all space

�∗� dx dy dz ≡
∫

all space

�∗� dv = 1.0

In Cartesian co-ordinates the volume element, dx dy dz ≡ dv is an infinitesimally small
cube with sides dx, dy and dz. We obtain it by moving infinitesimally small distances
along the x, y and z axes in the vicinity of a point such as P in the figure above. To
obtain the volume element in polar co-ordinates we have to do the same thing, but the
process and the result is not quite so simple:

1. First we move a distance dr along OP.

2. When we change the angle θ by dθ , P moves along an arc the length of which depends
not only upon dθ but also upon r, the distance of P from O, according to the formula:
arc = r dθ , where dθ is measured in radians.

3. A movement along the co-ordinate φ brings about a movement of p, the projection of
P in the xy-plane. As above, since the length of Op is r · sin θ , p moves along an arc
of length r · sin θ dφ.

Thus, in polar co-ordinates, the sides of our infinitesimal volume are dr, rdθ and
r· sin θ dφ, and the new volume element is r2 sin θ dr dθ dφ. Therefore, the normalisation
integral becomes:∫∫∫

all space

�∗� dx dy dz ⇒
∫

all space

�∗�r2 · sin θ dr dθ dφ = 1.0

The limits of the three co-ordinates are: 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . In
order to make clear which integration limits belong to each variable, multiple integrals
of this sort are often written:

∞∫

0

r2 dr

π∫

0

sin θ dθ

2π∫

0

�∗� dφ = 1.0



Appendix 8

Numbers: Real, Imaginary
and Complex

Any number which can be plotted as a point on a scale extending from −∞ to +∞ is
known as a real number. Real numbers are divided into two types: rational numbers
can be expressed in the form p/q, where p and q are integers, and irrational numbers,
which cannot be expressed in that form; e.g. 1.375 = 11/8 is a rational number and
π = 4(1 − 1/3 + 1/5 − 1/7 + · · ·) is an irrational number.

The square root of −1 is denoted by i. This quantity cannot be expressed as a real
number and the product of i and any real number is a number which also cannot be placed
on the scale of real numbers. It is known as an imaginary number. No real number can
be equal to an imaginary number; apart from zero which is found on both scales at the
point where they cross (Figure A8.1). Note that i2 = −1, i3 = −i, i4 = +1, i5 = i, and
that these values recur in cycles for higher powers of i.

A complex number is the sum of a real and an imaginary number written in the
form (a + ib), where a and b are both real numbers. It can be represented in a diagram
(Figure A8.1) where the scale of imaginary numbers is plotted at right angles to the real
number scale. This type of representation of complex numbers is known as an Argand
diagram. When two complex numbers are added (subtracted) the real and imaginary parts
are added (subtracted) separately:

(a + ib) − (x + iy) = a − x + i(b − y)

In an equation involving complex numbers, the real and imaginary parts on the two
sides of the equation are separately equal.

imaginary axis

real axis

• (a + ib)

•(−c−id) −d

−c
a

 b

Figure A8.1 The representation of complex numbers on an Argand diagram
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The two complex numbers, (a + ib) and (a − ib), have a special relationship and are
said to be the complex conjugates of each other. When a complex number is multiplied
by its complex conjugate a positive real number is always obtained:

(a + ib)(a − ib) = a2 − abi + bai − b2i2 = a2 + b2 which must be positive.

In quantum mechanics the complex conjugate of a complex quantity is usually indicated
by an asterisk so that (a + ib)∗ = (a − ib) and it is especially important that the product
of two such quantities always gives a positive result.

A fraction having a complex number in the denominator can be simplified by multi-
plying the numerator and the denominator of the fraction by the complex conjugate of
the denominator.

The Italian mathematician Girolamo Cardano (1501–1576) appears to have been the
first to publish (in 1545) mathematics involving the square roots of negative numbers
which he obtained in the process of solving quadratic equations. For many years mathe-
maticians regarded such entities as strange and useless. In 1702, Gottfried Wilhelm Leibnitz
(1646–1716), who developed calculus independently of Newton and whose notation we use
in modern mathematics, wrote: ‘The Divine Spirit found a sublime outlet in that wonder of
[mathematical] analysis, that portent of the ideal world, that amphibian between being and
non-being, which we call the imaginary root of negative unity’. And indeed, anyone might
have been excused for thinking that such an unworldly concept would have no application
in science but, on the contrary, it has proved extremely valuable. Complex numbers play
a very important role in the theoretical models of many phenomena including alternating
currents, diffusion and the refraction of light. The mere existence of this brief account attests
to their importance in quantum mechanics.

A particularly interesting and useful result is obtained when the argument of the expo-
nential function contains i. From Box 3.1 we have:

exp(iax) = 1 + iax + (iax)2/2! + (iax)3/3! + (iax)4/4! + · · ·
which, using the properties of the powers of i noted above, and the series for sine and
cosine given in box 4.1:

= 1 + iax − (ax)2/2! − i(ax)3/3! + (ax)4/4! + · · · = cos(ax) + i · sin(ax)

Similarly:
exp(−iax) = cos(ax) − i · sin(ax)

Alternatively, cos(ax) and sin(ax) can be expressed in terms of the exponential functions:

cos(ax) = 1
2 {exp(+iax) + exp(−iax)}

sin(ax) = 1
2i

{exp(+iax) − exp(−iax)}



Appendix 9

Dipole and Transition Dipole
Moments

The dipole moment of a molecule is an important quantity in its own right and the
transition dipole moment plays a central role in the description of the transition probability
in infrared and electronic spectroscopy. Here we first determine the quantum-mechanical
expression for the dipole moment of a molecule. In order to be specific we shall take
as our example the lithium hydride molecule and we shall assume that its orientation in
space is fixed so that the Li–H bond is aligned along the x-axis. The situation might be
crudely represented as in the schematic representation of the lithium hydride molecule
shown in Figure A9.1, in which the black dots represent the electrons and the open circles
the nuclei.

As an illustration of the principles of the procedure, consider first the determination
of the centre of mass of the molecule. If we neglect the mass of the four electrons and
consider only the nuclei then the x co-ordinate of the centre of mass (x0) is given by:

x0 = mH · xH + mLi · xLi

mH + mLi
(A9.1)

where xH and xLi are the co-ordinates of the hydrogen and lithium nuclei with respect to
any co-ordinate origin which we choose. Rearrangement of Equation (A9.1) gives:

mLi · (x0 − xLi) = mH · (xH − x0)

and if we set the origin to be the centre of mass, i.e. x0 = 0.0, then we obtain the more
familiar relationship:

mLi · xLi + mH · xH = 0

The centre of charge can be determined in an exactly analogous way, but there are two
obvious differences. Firstly, since the charge on the electron is equal in magnitude to that

1+ 3+

x-axis

Figure A9.1 A schematic representation of the lithium hydride molecule
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of the proton we cannot neglect it and, secondly, we must take account of the different
signs of the charges on the nuclei and the electrons. In fact, we can determine a centre
of positive and a centre of negative charge. If these two centres are coincident then the
molecule has no dipole moment but if they are not coincident then the molecule has a
dipole moment (M) and for a neutral molecule:

M = Q · D (A9.2)

where Q is the sum of either the electronic or the nuclear charges and D is the distance
between the centres of positive and negative charge.

The centre of positive charge for our lithium hydride molecule might be written:

x+
0 = 3 · xLi + 1 · xH

4
=

∑
N qNxN

4
(A9.3)

where qN is the charge on nucleus (N). But this equation assumes that the nuclei are
stationary and we know that they are not. However, by using the vibrational wave function,
(ψvib), which describes the motions of the nuclei in the vibrational ground state, we can
replace Equation (A9.3) by the quantum-mechanically exact expression:

x+
0 =

∫

�∗
vibM̂nuc�vib∂v

4
≡ 〈�vib|M̂nuc|�vib〉

4
(A9.4)

where M̂nuc = �NqNXN in which the co-ordinate XN has been replaced by the operator
XN. (We use X for the co-ordinates of the nuclei and x for those of the electrons.)

The remarks above are even more true with regard to the determination of the centre of
negative charge because we certainly cannot consider the electrons to be localised point
charges. But we do know that the distribution of the electrons is given by the product of
a wave function (ψelec) and its complex conjugate (ψ∗

elec) so that:

x−
0 =

∫

�∗
elecM̂elec�elec∂v

4
≡ 〈�elec|M̂elec|�elec〉

4
(A9.5)

where M̂elec = �eqexe.
But Equations (A9.4) and (A9.5) are also oversimplified in that they assume that we

can use wave functions for the nuclei (ψvib) and for the electrons (ψelec) independently
of each other. But we know that they are inter-related because, for example, the strength
of a bond, and hence the force constant and the vibrational frequency, depend upon
the electron distribution in the molecule. Therefore, we must write our wave functions
as functions of both the electronic and the nuclear co-ordinates and, according to Born
and Oppenheimer (Section 6.3), it is a very good approximation to write the total wave
function as a simple product:

φtotal(x,X) = ψelec(x,X) · ψvib(X) (A9.6)

In Equation (A9.6) x represents all the co-ordinates (not just the x co-ordinates) of all
the electrons described by the electronic wave function and X represents the co-ordinates
of the nuclei. It is therefore a general expression that is not limited to diatomic molecules.
The presence of both electronic and nuclear co-ordinates following ψelec reminds us of
the fact that the electronic wave function depends upon the positions of the nuclei as
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well as upon those of the electrons. Thus, the full expression for the molecular dipole
moment is:

M = 4(X+
0 − x−

0 ) = 〈φtotal(x,X)|M̂nuc|φtotal(x,X)〉 − 〈φtotal(x,X)|M̂elec|φtotal(x,X)〉
(A9.7)

This is the quantum-mechanical expression for the dipole moment of a molecule in the
state φtotal(x,X). It can be written more concisely in the form:

M = 〈φtotal(x,X)|M̂|φtotal(x,X)〉 (A9.8)

where M̂ = �kqkxk and the sum runs over all particles, electrons and nuclei, with appro-
priate changes of the sign and magnitude of qk.

The transition dipole moment

For the determination of the probability that a spectroscopic transition between an initial
state (φi

total) and a final state (φf
total) (Section 8.6) will be allowed we require an expression

for the transition dipole moment. This is a generalisation of Equation (A9.8) in which the
wave function to the left of the operator is replaced by one for the excited molecular state
(φf

total). The resulting integral represents the transitory dipole moment generated when
the molecule changes its state, which is the ‘handle’ by means of which the oscillating
electric field of the radiation is able to couple with the molecule. That is – dropping the
(x,X) to simplify the notation – we require:

Mi,f = 〈φf
total|M̂|φi

total〉 = 〈ψ f
elecψ

f
vib|M̂|ψ i

elecψ
i
vib〉 (A9.9)

Equation (A9.9) is the basic form of the expression for a transition dipole moment. In
order to apply it to UV-VIS and IR spectroscopies it is expedient to develop the formula
further. This is done in Section 8.7.

Selection rules

In other parts of this book, notably Chapters 5 and 8, selection rules have been discussed,
often on the basis of the conservation of energy, angular momentum and parity. This is not
the most common approach to the problem. It is more usual to start from Equation (A9.9),
which shows that the observation of a spectroscopic transition requires a non-zero value for
the transition moment integral (Mi,f). The fulfilment of that requirement is best investigated
by considering the e-m radiation as a wave rather than a particle and to invoke the powerful
methods of group theory. Since group theory is not discussed here we shall not use it,
but the basic principles of its application can be illustrated by deriving Laporte’s atomic
spectral selection rule (Section 5.10.2). The integral 〈φf

total|M̂|φi
total〉 consists of three

parts to each of which a parity can be assigned. The operator (M̂) is a property of the
e-m radiation or photon and the parity of the dipole photon is u (Section 8.5). The initial
and final states can be of either parity and if they are both g the overall parity of the
integrand is g × u × g = u. If both states are u the integrand is also u, but if the two
states are of different parity then the integrand is g. The crucial argument now goes as
follows. The fact that we can classify our operator and states and their product in terms
of their parities means that they are composed of pairs of parts which are exactly equal
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in magnitude and of the same sign if the function is g but of opposite sign if it is u.
The process of integration is the summation of these parts, so the integration of a u
function is always a sum of equal and opposite parts which has to give zero. In the case
of a g function, however, a non-zero result is expected, though a fortuitous cancellation
of oppositely signed contributions to the sum can always occur. Thus we deduce that
allowed electric dipole transitions in atomic spectroscopy are always u ↔ g in accord
with Laporte’s rule.



Appendix 10

Wave Functions for the 3F States
of d2 using Shift Operators

The use of the lowering operators (L̂− and l̂−) to determine the combination of microstates
which form the 3F state of the configuration d2 provides a good example of the application
of the raising and lowering or shift operators (Section 4.7).

Notation:

The required 3F states are completely described by the kets |L,ML, S, MS〉. However,
since we shall concentrate on the component of the triplet which has S = 1 and MS = +1,
it will be convenient to abbreviate to |L,ML〉, i.e. |3, ML, 1, +1〉 becomes |3, ML〉.

Similarly, to simplify the notation the microstates are written in the form |ml
±(1),

ml
±(2)〉 where the ± superscripts indicate the ms value of the electron.
A table of the microstates of the electron configuration d2 is not an essential prerequisite

for this exercise, but it does provide a useful running check. Another useful check is the
fact that each combination of microstates, as it is found, is normalised.

The microstates of the configuration d2

MS

+1 0 −1

+4 |+2+(1), +2−(2)〉
+3 |+2+(1), +1+(2)〉 |+2+(1), +1−(2)〉|+2−(1), +1+(2)〉 |+2−(1),+1−(2)〉
+2 |+2+(1), 0+(2)〉 |+2+(1), 0−(2)〉|+2−(1), 0+(2)〉 |+2−(1), 0−(2)〉

ML |+1+(1), +1−(2)〉
+1 |+1+(1), 0+(2)〉 |+1+(1), 0−(2)〉|+1−(1), 0+(2)〉 |+1−(1), 0−(2)〉

|+2+(1), −1+(2)〉 |+2+(1), −1−(2)〉|+2−(1), −1+(2)〉 | + 2−1(1),−1−(2)〉
0 |+1+(1), −1+(2)〉 |+1+(1), −1−(2)〉|+1−(1), −1+(2)〉 |+1−(1),−1−(2)〉

|+2+(1), −2+(2)〉 |+2+(1), −2−(2)〉|+2−(1), −2+(2)〉 |+2−(1),−2−(2)〉
|0+(1), 0−(2)〉
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plus the ‘mirror image’ of microstates having ML values of −1, −2, −3 and −4.
Clearly, the component of the 3F which has the highest z-component of orbital angular

momentum may be written in the two equivalent notations:

|3, 3〉 ≈ |+2+(1), +1+(2)〉 (A10.1)

We now apply the lowering operator:

L̂−|L, M〉 = {L(L + 1) − M(M − 1)} 1
2 |L, M − 1〉 (A10.2)

to the left-hand side of Equation (10.1) and the operator:

l̂−|l, m〉 = {l(l + 1) − m(m − 1)} 1
2 |l, m − 1〉 (A10.3)

to each electron on the right-hand side. Since no confusion can arise, subscripts L and l

have been dropped to simplify the notation.
We find that:

L̂−|3, 3〉 = √
6|3, 2〉 (A10.4)

while
∑

i

l̂i−|+2+(1), +1+(2)〉 = 2|+1+(1), +1+(2)〉 + √
6|+2+(1), 0+(2)〉 (A10.5)

Note that l̂i− has to be applied to the two electrons, 1 and 2 (indexed with subscript
i), in turn and the results added. But the first term on the right is unacceptable, because
both electrons have the same quantum numbers, and it must therefore be discarded. The
right-hand sides of Equations (A10.4) and (A10.5) must be equal so that:

|3, 2〉 = |+2+(1), 0+(2)〉
We proceed in exactly the same manner to obtain |3, 1〉 from |3, 2〉:

L̂−|3, 2〉 = √
(10)|3, 1〉

and ∑

i

l̂i−|+2+(1), 0+(2)〉 = 2|+1+(1), 0+(2)〉 + √
6|+2+(1), −1+(2)〉

so that:
|3, 1〉 = √

(2/5)|+1+(1), 0+(2)〉 + √
(3/5)|+2+(1), −1+(2)〉

Note that the coefficients of the linear combination of microstates are such that the
function is normalised. This provides a good check for errors.

Similarly, after applying the lowering operators to both sides of the last equation
we find:

√
12|3, 0〉 = √

(12/5)|0+(1), 0+(2)〉 + √
(12/5)|+1+(1), −1+(2)〉

+ √
(12/5)|+1+(1), −1+(2)〉 + √

(12/5)|+2+(1), −2+(2)〉
Rejecting the first term on the right because it contravenes the Pauli principle (both

electrons in the same orbital, ml = 0, with the same spin, ms = + 1
2 ) we have:

|3, 0〉 = (2/
√

5)|+1+(1), −1+(2)〉 + (1/
√

5)|+2+(1), −2+(2)〉
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The process can be continued until the remaining three components of the 3F state
with MS = +1 have been found.

A similar procedure using Ŝ− and ŝ− can be used to find the components having
MS = 0 and −1. As an illustration we do this for the |3, 0, 1,+1〉 wave function where
we have reintroduced the S and MS quantum numbers. Since MS = S = 1 we find:

Ŝ−|3, 0, 1, +1〉 = √
2|3, 0, 1, 0〉

while
∑

i

ŝi−{(2/
√

5)|+1+(1), −1+(2)〉 + (1/
√

5)|+2+(1), −2+(2)〉}

= (2/
√

5){|+1−(1), −1+(2)〉 + |+1+(1), −1−(2)〉}
+ (1/

√
5){|+2−(1), −2+(2)〉 + |+2+(1), −2−(2)〉}

Therefore:

|3, 0, 1, 0〉 = √
(2/5){|+1−(1), −1+(2)〉 + |+1+(1), −1−(2)〉}

+ (1/
√

10){|+2−(1), −2+(2)〉 + |+2+(1), −2−(2)〉}
Continuing, and noting that an electron spin denoted by a superscript – must be anni-

hilated by ŝ−, we find:

|3, 0, 1,−1〉 = (2/
√

5)|+1−(1), −1−(2)〉 + (1/
√

5)|+2−(1), −2−(2)〉
The method described above is ideally suited to problems involving a small number

of electrons, but for numbers of electrons larger than three the method is very tedious
to apply. For these cases more direct approaches, based on advanced angular momentum
theory, are available.
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dibromomethane, IR spectrum, compared with
dibromochloromethane 307

Dickinson, W.C. 267
dipole–dipole interaction, compared with

electron–nucleus interaction 200n, 272
dipole moments 435–7
Dirac, Paul 69, 78

notation for angular momentum
eigenfunctions 82

double-zeta functions 173
doublet states 281–2
dumb-bell oscillator 18

as model for diatomic molecule 18, 20,
291, 292, 318–20

comparison with real molecule 302–3
rotation of 319–20
vibration of 291, 292, 318–19

potential energy characteristics 19
Dwingeloo 1 galaxy 86

effective nuclear charge 172
eigenfunction(s) 29, 39

Born’s interpretation 41–4
combinations of 58
determination of

by matrix algebra 411–15
by solution of secular equations 406–10

of different operators 52–3
and experimental measurements 53–4
of hydrogen atom 29
normalisation of 46, 64
orthogonality 46, 65
physically acceptable 43–4, 47–8

eigenvalue problem, general solution of 2 x 2
problem 414–15

eigenvalue(s) 29, 39
angular momentum of electron on ring 51
and experimental measurements 53
of hydrogen atom 29, 96–7

Einstein, Albert 8, 13
on light-quanta (photons) 21, 223, 224,

226
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on photoelectric effect 20, 21, 223
experimental confirmation 22, 223

relativity theory 13
see also Bohr–Einstein...

Einstein coefficients 250, 258–9
electric current, units of measurement 7, 216
electric dipole interaction energy 234
electric dipole radiation 222

photons
angular momentum 115, 225
selection rules 225–6

electric dipole transitions, conservation of
angular momentum 242

electric quadrupole radiation 222
photons, selection rules 226

electric quadrupole transitions 116
conservation of angular momentum 243

electrical anharmonicity 309
electrical conductivity, temperature effects

388
electromagnetic radiation 216–19

electric field component 217–19
forms 222
magnetic field component 219
Maxwell’s equations 7, 216, 217–19
see also light

electromagnetic spectrum 217, 222
electromagnetic units (emu) 7, 216

ratio to electrostatic units 7, 216
electron

in Bohr’s model of atom 24
charge on 22
magnetic properties 262
mass at rest 401, 402
particle–wave duality 27–8
probability distribution for 42, 51

electron affinity, in charge transfer absorption
band 331

electron configuration(s) 108
carbon atom 156
oxygen molecule 164

electron correlation 106–7
excited helium atom 341
hydrogen molecule 143–5

electron g-factor 118, 408
electron in linear box 46–8

angular momentum eigenvalues 51
boundary conditions 48
eigenfunctions for 47–8

normalisation of 64
orthogonality 65

Hamiltonian operator for 46–7
linear momentum 49–50

electron-mediated coupling 272
electron–neutron interaction 85–7, 200n, 272
electron–nucleus attraction, in helium atom

332

electron paramagnetic resonance (EPR)
spectroscopy 199, 261

electron repulsion energy
singlet state 174, 337–8
triplet state 174, 336–7

electron repulsion integrals 205–6, 337
combination for 3P and 3F states of d2

190, 207–8
listed for d orbitals

in complex forms 210
in real forms 209

electron on ring 40–4
acceptable eigenfunctions for 41–4
angular momentum 50–2

calculation of expectation value 67–8
energy levels for 45
Hamiltonian operator for 40–1
Hückel’s rule for aromatic hydrocarbons

44–6
electron spin 105

magnetic properties affected by 78, 369
transition probability affected by 344–6

electron spin correlation 173–5
electron spin quantum number 78
electron spin resonance (ESR) spectroscopy,

interactions studied 261
electron transition density, π→π∗ transition in

benzene 347
electron volt 248
electronic energy levels, transition-metal

complexes 187–96
electronic orbital motion, magnetic effect of

366–8
electronic spectroscopy 327–48

applications 328
and atomic orbitals 328
classification of spectra 46, 344
and molecular orbitals 328
selection rules 344–8
timescales 246, 246
transition-metal complexes 196–7
see also UV–VIS spectroscopy

electronic states of atom 107–11
electronic transition dipole moment 236
electronic transitions

allowed 236–7
compared with IR and NMR transitions

241
forbidden 237
hydrogen atom (1s→2p transition) 238–9

electrostatic field due to ligands 182
see also crystal field theory

electrostatic units (esu) 7, 216
ratio to electromagnetic units 7, 216

elementary charge (electron/proton) 401, 402
emission spectra 23–6
emissivity 13
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energy
conservation of 115, 227
units 248, 402

energy-conversion factors 249
energy level diagram(s)

atomic electronic spectroscopy, sodium D
lines 242–3

infrared spectroscopy 296
NMR spectroscopy, first-order spectrum

275
π-electron energy levels for butadiene 357
three interacting magnetic centres 378

energy operator
eigenfunctions of 52
for electron in linear box 46–7
for electron on ring 40–1

eigenfunctions 52
equilibrium internuclear distance 133

hydrogen chloride 322
equivalent nuclei 280–7
ethene 159

bonding in 158, 160
electronic spectroscopy 243–4
Hückel orbitals 243

ethyne 160
bonding in 160

exchange integral 175, 206, 337, 375
expectation value 54
experiment design 2–3
experimental measurements

effect on system 55–7
and eigenfunctions/eigenvalues 53

exponential function 62
extinction coefficient 257

see also absorption coefficient

f-orbitals 100
angular part of wave function 104

3F state (triplet F), of d2 in octahedral field
calculation of matrix elements of

crystal-field Hamiltonian 204–5
weak-field coupling scheme 189–90

with 3P state 190–1
Faraday, Michael 7, 216
Fermi contact interaction 200n, 272, 408
Fermi level 380, 381
Fermi resonance 309–11

and Coriolis interaction 315–16
Fermi resonance interaction term 310, 316
ferromagnetism 365, 374
fine structure

IR spectra 297, 300
NMR spectra 200

fingerprint (in IR absorption spectrum) 309
Fizeau, Armand 216
Fleming’s left-hand rule 392

Fock, Vladimir A. 106
forbidden electronic transition 237
force constant 291

angle-bending, for small molecules 306
bond-stretching, for small molecules 306

Foucault, Jean 216
Fourier transform IR spectroscopy 244
Fourier transform NMR spectroscopy 278
Franck–Condon principle 236–7, 253–6
free induction decay (NMR spectroscopy)

278
frontier orbitals see highest occupied molecular

orbital; lowest unoccupied molecular
orbital

fundamental constants (listed) 401

g-factor see electron g-factor; orbital g-factor
gas equations

pressure–volume 3
pressure–volume–temperature (for ‘ideal’

gases) 5
temperature–volume 3–4, 4

Gay-Lussac’s law 3–4
German nouns, construction of 29
Germer, Lester Halbert 27
Gillespie, R.J. 164
‘good’ quantum numbers 80, 81
Goudsmit, Samuel Abraham 78, 105, 118,

120
group theory 182
gyroscope 75, 265

Haber, Fritz 132
see also Born–Haber cycle

Hamiltonian formulation 12
Hamiltonian operator 40

for crystal field 188
calculation of matrix elements 204–5
matrix 189

for electron in box 46–7
for electron on ring 40–1
for harmonic oscillator 293
for hydrogen molecule 134–6
for many-electron atom 105–6
for nuclear spin system 273, 282
for rotation of diatomic molecule 321
for vibration of diatomic molecule 319

harmonic oscillator 291
compared with real diatomic molecule

02–3
eigenfunctions 294, 295, 312, 323–4
energy–distance curves 19, 292
quantisation of energy 293–4
quantum mechanics first applied 290

Hartree–Fock functions 106
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Hartree (unit of energy) 402
Heisenberg, Karl Werner, matrix mechanics

26
Heisenberg uncertainty principle 56–7, 246

effects 58, 294
Heisenberg uncertainty relationships 56, 68
Heitler, Walter 132, 137
Heitler and London’s calculations for energy of

covalent bond 132, 137–8
helium atom

ground state (1s2) configuration, wave
function 332–3, 344–5

1s12s1 configuration 333–41
electron repulsion in triplet and singlet

states 339–41
energies of 1s→2s excited states 335–9
energies of singlet and triplet states

338–9
magnetic interactions 375–6
one-electron energies 335–6
total wave function 334
two-electron (repulsion) energy 336–8,

374–5
helium–helium bond 146
Hermite polynomials 323
Herschel, (Sir) William 217
Hertz, Heinrich 7, 20, 217
heteronuclear diatomic molecules, molecular

orbital theory applied 151–3
high-spin complexes 197
highest occupied molecular orbital (HOMO)

357
energy difference between HOMO and

LUMO, correlation with spectral band
energies 329, 358, 358

Hoffman, Roald, extended Hückel MO theory
203

homonuclear diatomic molecules, molecular
orbital theory applied 149–51

Hooke’s law 18, 290–1
hot bands 302
Hückel molecular orbital (HMO) theory

352–63
applications of HMO coefficients 361–2
applications of HMO energies 357–60
assumptions 354
basis 352–3
delocalisation energies 359
determination of HMO energies 354–5
Hoffman’s extended version 203
HOMO and LUMO energies calculated

using 329, 357
LUMO–HOMO energy difference 358

correlation with energy of para band of
aromatic hydrocarbons 359

method 353–4

π-electron energy calculations 329,
358–60

π-electron structure of benzene 341
Hückel orbitals

butadiene 356
ethene 243

Hückel’s (4N + 2) rule 44–6
Hund–Mulliken bonding model 139

and electronic spectroscopy 328
Hund–Mulliken function 139
Hund’s rules 110–11

applications 150, 156, 197, 273
basis 174
data illustrating 110

Huygens, Christian 216
hybrid atomic orbitals 154
hybrid orbitals, choice of 161–2
hybrid-orbital bonds, properties 162
hybridisation 153–62

of carbon AOs 156–60, 161
choice of hybrid orbitals 161–2
Pauling’s approach 153–5
and valence bond theory 156

hydrides, bond angles 164, 165
hydrocarbons

molecular geometry
type 1 (alkanes) 156, 157–8
type 2 (alkenes and aromatic

hydrocarbons) 156, 158–60
type 3 (alkynes) 156, 160

hydrogen 1s atomic orbital(s)
out-of-phase combination of 143, 145–6
parity operation on 116–17
polarisation of 140–1
radial density function 99

hydrogen atom
Bohr’s model 24–6, 30, 31–3, 78, 223,

226, 366
characteristic emission (1420 MHz/

0.2111 m) 86, 410
eigenfunctions 29
eigenvalues 29, 96–7
electronic energy 133
electronic transition (1s→2p transition)

238–9
interactions in magnetic field 407–10
mass 20, 38
parallel-to-antiparallel transition 86
radial density functions 99
spectral series 121–2
spin properties 85–6
transition dipole moment 252–3
wave functions 97–100, 427–8

angular parts 99–104, 104
effect of polarisation 140–1
Heitler–London (valence bond) approach

137–9
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hydrogen atom (continued )
Hund–Mulliken (molecular orbital)

approach 139
improvements 140–1
nodes 104, 104
nuclear charge and 140
radial parts 98–9, 104

hydrogen atom emission spectrum 25, 97,
121–2

Lyman series 97, 121, 122
hydrogen chloride (1H–35Cl), vibration of

321–3
hydrogen molecule

binding energy 133–4
Heitler and London’s calculations 132,

137–8
bond length 20, 38
dissociation energy 133

experimental value 133, 138
various calculations 138, 143–4

energy terms
kinetic energy of electrons 134
kinetic energy of nuclei 134
potential energy due to interelectronic

repulsion 135
potential energy due to internuclear

repulsion 134
potential energy due to nucleus–electron

attraction 134
energy vs internuclear distance 136
equilibrium bond length 133

experimental value 133, 138
various calculations 138, 143–4

frequency of oscillation 20, 38
Hamiltonian operator for 134–6
molecular orbital energy-level scheme for

146
normalisation of wave functions for

169–70
quantisation in 20
spin–spin coupling in 271–2

hydrogen sulfide, bond angle 164, 165
hydroxyl radical

charge distribution in 153
molecular orbital energy-level scheme for

152
molecular orbital theory applied 151–3
O–H bond length 151

hypothesis
meaning of term 6–7
testing correctness 3

ideal gas constant 5
ideal gas law 5
imaginary numbers 49, 433

infinitesimal rotations theory 90
infrared (IR) spectroscopy 289–324

basis 290
characteristic group frequencies 308
compared with NMR spectroscopy 240–1
electric dipole interaction energy 234
experimental aspects 240
selection rules 244, 297–302
timescales 246, 246
vibrations of polyatomic molecules

305–8
infrared transitions 235–6

compared with UV–VIS/electronic and
NMR transitions 238–41

intensities 301–2
insulators 388

effect of temperature on electrical
conductivity 388

integration, over ‘all space’ 54, 63
inter-electron repulsion

calculation for some states of d2 205–8
in crystal field theory 188, 194
for p2 configuration 123–4
triplet/singlet states 174

inter-electronic spin–orbit coupling 115
intermediate spin–orbit coupling 113–14
intermolecular charge transfer 330–1
intramolecular charge transfer 330
inverse distance, expressed in terms of

spherical harmonics 183
ionic contributions, in covalent bonding models

142
ionic solids

mechanical properties 390
tight-binding version of band theory used

387
ionisation of atom 97
ionisation energy, in charge transfer absorption

band 331
IR spectra

ab initio calculations 316–17
bromochloromethane compared with

dibromomethane 307
combination bands 303
fingerprint 309
overtones 303

IR spectroscopy see infrared (IR) spectroscopy
iron

effective nuclear charge for occupied orbitals
172

ferromagnetism 374
irrational numbers 433
isochronous protons 281

Jahn–Teller effect 199
James, H.M. 143
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Jeans, James Hopwood 15
jj coupling 112–13

Kelvin scale (of temperature) 4
Kepler’s laws of planetary motion 10–11
keto–enol equilibrium 245, 247
kets 189, 439

see also bra–ket notation
kinetic energy operator 60
kinetic theory of gases 7
Kirchhoff, Gustav 7, 14, 23, 216

l-type doubling 315
ladder operators 82–3
Lagrangian formulation 12
Landé formula 120
Landé interval rule 195
Langevin relationship 366, 395
Laporte (selection) rule 117, 196, 437
Larmor frequency 265, 266
Larmor precession 265, 266
laws

deduction from experimentation 5–6
meaning of term 6

lead atom, eigenstates 128
Leibnitz, Gottfried Wilhelm 434
Lenard, Philipp Eduard Anton 20
length units 402
Lennard-Jones, J. 175
Lewis, Gilbert Newton 223
ligand field (LF) theory 181

and covalency 199–203
historical development 182

ligand-to-metal charge transfer (LMCT) 196,
330

light
corpuscular model 216
Einstein’s quantum model 22, 223
velocity of 223, 401

factors affecting 216
as limiting velocity 13
ratio of electrostatic to electromagnetic

units 7, 216
wave theory 216

limitations 21, 223
see also electromagnetic radiation

linear combination of atomic orbitals (LCAO)
approach 200, 353

linear molecules 166, 166, 167
linear momentum

conservation of 251
definition 73–4
of electron in linear box 49–50
of photon 224–5

linear momentum operator 49, 60

linearly polarised radiation 220
as sum of left and right circularly polarised

radiation 280
Linnett, J.W. 161
London, Fritz 132, 137

see also Heitler and London’s
calculations

lone pairs (of electrons) 165
in coordination complexes 202
in various molecules 166, 167

lone-pair electrons, n→π transitions 330
low-spin complexes 197
lowering operator 82–3, 89, 90–1, 92

applications 279, 281, 282, 283
lowest unoccupied molecular orbital (LUMO)

357
energy difference between HOMO and

LUMO, correlation with spectral band
energies 329, 358, 358

LS coupling 111–12
Lucretius 2
Lummer, Otto Richard 14
Lyman series (emission spectrum of hydrogen

atom) 97, 121, 122

magnetic dipole
definition 366, 392
orientation in magnetic field 392–3

magnetic dipole–dipole interaction 374
magnetic dipole interaction energy 234, 374
magnetic dipole radiation 222

photons, selection rules 225–6
magnetic dipole transitions 116
magnetic field 364, 365–6

polarised light affected by 7, 118, 119
spectral lines affected by 118–20

magnetic interactions
helium excited state 374–6
three-centre 377–8

magnetic moment(s)
for atomic nuclei 262–3
formulae for 197–8
listed for various transition-metal ions 198
and magnetic susceptibility 364, 393–7

magnetic properties
atomic nuclei 262–4
electrons 262
protons 262

magnetic susceptibility 364–5
relationship with atomic/molecular magnetic

moment 393–7
see also volume magnetic susceptibility

magnetically equivalent nuclei 281
magnetisation 364
magnetism 363–78

effect of electron spin 369
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magnetism (continued )
origins 392
practical applications 370–3
and spin angular momentum 78, 369
transition-metal complexes 197–9
see also nuclear magnetic resonance

(NMR) spectroscopy
magnetogyric ratio 263
many-electron atom(s) 105–7

electronic structure 112
quantum numbers for 108
selection rules for dipolar radiation

115–16
many-electron wave functions 332–3
mass

conservation of 224
reduced 291–2, 319
unit 402

mathematical models 2
matrix diagonalisation 412–13
matrix elements 411–13
matrix mechanics 26
Maxwell’s equations 7, 216
mean value

of energy 137
of observable 53

measurement, effect on system 55–7, 70
mechanical anharmonicity 309
mechanical properties, solids 390
metal-surface selection rule 244–5, 306
metal-to-ligand charge transfer (MLCT)

196–7, 330
metals

effect of temperature on electrical
conductivity 388, 389

theory of
free-electron approximation 381–6
tight-binding approximation 378–81
Wigner and Seitz’s remarks 135, 387

methane
bonding in 157–8
magnetically equivalent protons 281

microstates 109
for d2 configuration 439
for p2 configuration 109
as Slater determinants 122, 207

Millennium Bridge, London 238
Millikan, Robert Andrews 22

experiments on Einstein’s photon hypothesis
23, 223

models, categories 2
molecular geometry 163–7

VSEPR model used 164–7
molecular magnets

interactions 374–6
orientation in magnetic field 392–3

molecular orbital energy-level schemes

hydrogen molecule 146
hydroxyl radical 152

using sp hybrid oxygen orbitals 155
lines joining AOs and MOs 153
nitrogen molecule 150
octahedral MH6 molecule (hypothetical)

202
oxygen molecule 150

molecular orbital (MO) theory 139
compared with crystal field theory 200
compared with VB theory 156, 163
computational developments 167
heteronuclear diatomic molecules 151–3
homonuclear diatomic molecules 149–51
unification with valence bond theory

141–3
molecular orbital (MO) wave functions,

normalisation of 170
molecular orbitals

bonding and antibonding 145–6
and electronic spectroscopy 328
imaging of 168

molecular solids
mechanical properties 390
tight-binding version of band theory used

387
moment of inertia 296
momentum see angular momentum; linear

momentum
Morse potential energy curve 302, 303
Mulliken, Robert Sanderson 139, 331

see also Hund–Mulliken bonding model
Mulliken population analysis 153
Mulliken wave functions 331
multiple bonds, VSEPR theory 165–7

n-type semiconductor 388, 389
natural phenomena, observation of 1–2
near-infrared (NIR) spectroscopy 317
near-infrared spectrum 217

first discovered 217
nebulae, emission spectra 243
Néel temperature 365
Newton’s corpuscular view of light 216
Newton’s laws of motion 6, 7, 11–12
nitrogen molecule

bonding in 150
molecular orbitals 150

imaging of highest occupied MO 168
NMR tomography 267
NMR transitions 264

compared with UV–VIS and IR transitions
238–41, 277

selection rule 266, 278–80
non-bonding (atomic orbital) overlap 148–9
normal mode of vibration 304
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normalisation
of eigenfunctions 46, 63–64, 425
of wave functions

in Hückel MO calculation 356
for hydrogen molecule 169–70

notation, angular momentum 83
nuclear charge

effective 172
in hydrogen molecule 140

nuclear g-factor 408
nuclear magnetic resonance (NMR) imaging,

medical applications 267
nuclear magnetic resonance (NMR)

spectroscopy 261–87
A2 spectrum 275–6
A3 spectrum 285–7
ABX spectrum 285
AX spectrum 274–5
chemical shift 267–70

delta (δ) scale 268–70
shielding constant 270
standard used 269

early discoveries 261
equivalent nuclei 280–7
experimental aspects 240, 270
first order spectra 274–5
free induction decay 278
frequency region 264
intensities of NMR spectral lines 276–7
interactions studied 261
magnetic dipole interaction energy 234
and quantum mechanics 277–8
relaxation processes 276
second order spectra 275–6
signal saturation 276
timescales 246, 246

nuclear magneton 401
nuclear spin angular momentum quantum

number(s) 83
boron isotopes 84

nuclear spin–spin coupling 270–3
nuclear spin system, energy levels 273–6
Nyholm, R.S. 164

observables 38
observation of natural phenomena 1–2

prediction based on 2
octahedral complex

angular integrals listed for 186
Brillouin functions for single d electron

371, 372
octahedral crystal field

calculation of matrix elements 182–7
results 186–7

octahedral MH6 molecule (hypothetical) 200
atomic orbital overlap in 201

molecular orbital energy-level scheme
202

molecular orbital theory applied 200–2
octahedral species 166–7
octahedral symmetry, d-electron energy levels

188
one-dimensional box

electron in
acceptable eigenfunctions 47–8
boundary conditions 48
Hamiltonian operator for 46–7
linear momentum 49–50

particle in 421–2
perturbation theory applied 422–4

one-dimensional model
in band theory 381–6
see also electron in linear box

one-electron atoms 104–5
selection rules for dipolar radiation 115
see also hydrogen atom

one-electron energies, excited states of helium
atom 335–6

operands, meaning of term 33
operators 33–4, 39

angular momentum operator 50, 60
commutation/non-commutation of 34,

57–8, 68
eigenfunctions of different 52–3
kinetic energy operator 60
linear momentum operator 49, 60
position operator 59
potential energy operator 59–60

Oppenheimer, J. Robert 136
see also Born–Oppenheimer

approximation
optical density 257

see also absorbance
optical properties, solids 390
orbital angular momentum 76–8, 87

causes 78
notation 83

orbital angular momentum quantum number
of rotating diatomic molecule 83
of single electron 83–4, 108

orbital g-factor 368
orbital hybridisation 153–62
orbital overlap 146–9
Orgel diagram 191

see also Tanabe–Sugano diagram
orthogonality of eigenfunctions 46, 63–5
oscillating electric field component of light

217–19
oscillating magnetic field component of light

219
overlap integrals 169

in Hückel MO theory 356
overtones (in IR absorption spectra) 303
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oxygen
Schumann–Runge bands 256
sp hybrid orbital 154

oxygen molecule
bonding in 150–1
electron configuration 164

π bonding, in hydrocarbons 160
π-electron spectra, benzene 341–4
π-electron systems

in aromatic hydrocarbons 45, 341
in conjugated polyenes 65

π (pi) overlap 147–8
π→π∗ transitions 329–30

in benzene, electron transition density 347
p2 configuration, terms determined for

109–10
p2 electron configuration

energies 122–5
spin–orbit coupling in 114
terms determined for 109–10

p-orbitals 100
angular part of wave function 101–3
radial part of wave function 99

3P state (triplet P) 110–111
energies for various atoms 110
weak-field coupling scheme in octahedral

field 190–1
5P state (quintet P) 108
p2-to-s1p1 transition 126–7
p-functions 426
p-type semiconductor 388, 389
pairing energies 197
paramagnetism 364

effect of temperature 364–5
temperature-independent 365

parity 423
atomic orbitals 116–17
in crystal field theory 184
photons 225

parity selection rule 117, 225
Paschen series (emission spectrum of hydrogen

atom) 121
Pauli, Wolfgang 78, 261
Pauli exclusion principle 45, 78, 105, 138,

333
applications 107, 113, 150, 440
effects on valence electron distribution

161–2, 173
Pauling, Linus Carl 153, 182
2,4-pentane dione, keto–enol equilibrium

245, 247
periodic boundary conditions 48, 382
periodic potential, band gap formed by 382–6
periodic table, quantum-mechanical view

107, 114

perturbation theory 417–24
examples of 112, 382, 421–4

Pfund series (emission spectrum of hydrogen
atom) 121

phase angle 291
photochemical reactions 146, 338
photoelectric effect 20–3, 223

Einstein’s theory 21
experimental confirmation 22

photon counting 69
photon(s) 21, 223

angular momentum 115, 225
detection of 242
energy 224
linear momentum 224–5
mass 224
parity 225
properties 223–6
release of electrons caused by 20–3, 55
term first used 223
velocity 223–4

photosynthesis 146
physical laws 5–6
Planck, Max 8, 15

black-body radiator hypothesis 13, 15–16,
24

Planck’s constant 15, 24, 401
experimental determination of 22

plane polarised light 220
directional interaction 306
resolution into x and y components 220

planetary motion 10–11
Platt, J.R. 46, 344
polar coordinates 431

relationship with Cartesian coordinates
431

Schrödinger equation expressed in 97–8,
303–4

volume element in 431–2
polar diagrams

d-orbital angular functions 103–4
p-orbital angular functions 101–3
s-orbital angular function 101

polarisation
of atomic orbitals 140–1
as observable property 70

polarised light 219–21
circularly polarised light 221
effect of magnetic field 7, 118, 119
linearly polarised light 220
and quantum mechanics 69–71

polyatomic molecules, vibrations 303–9
polynomial, roots of, for Hückel molecular

orbital calculation 355
Pople, J.A. 175
position operator 59
postulate, meaning of term 6–7
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potential-energy curves, diatomic molecules
253–255

potential-energy operator 59–60
Powell, H.M. 164
prediction, approaches to 2
principal quantum number 96
principle, meaning of term 6
Pringsheim, Ernst 14
probability, determination in quantum

mechanics 232
Proctor, W.G. 267
progression (of spectral bands) 238
propyl radical, Hückel matrix for 412–13
proteins, NMR spectroscopy 270
proton

magnetic properties 262
mass at rest 401

proton NMR transitions
compared with electronic and infrared

transitions 241
see also nuclear magnetic resonance

(NMR) spectroscopy

quanta/quantum, term first coined 16
quantisation of energy 16

in classical mechanics 18–20
quantum electrodynamics (QED) 92, 247
quantum mechanical harmonic oscillator

293–4
quantisation of energy 293–4
vibrational eigenfunctions 294
zero-point energy 294

quantum mechanics
addition and conservation of angular

momentum 79–80
applications 37–72

covalent chemical bond 131–79
and NMR spectroscopy 277–8
orbital angular momentum in 76–8
progression from classical mechanics

13–34
Schrödinger method 39–40
of transition probability 227–33

quantum number(s) 16
for many-electron atom 108
of single electron 108

quarter-wave plate 221
quartet state 281
quenching 198, 368

Racah parameters 197, 206
A parameter 194, 206
B parameter 193, 206
C parameter 206

radial functions 98–9

of hydrogen atom 99
Slater’s simplification 172

radiation–matter interaction 216
time-dependent interaction 230–3,

266–7
time-independent interaction 230,

233–45, 297
radio astronomy, hydrogen emission used 86
raising operator 82–3, 89–92

applications 279–280, 282–3
Raman spectroscopy 309

carbon dioxide vibrational spectrum 310,
311

rare earth coupling scheme 188
rational numbers 433
Rayleigh–Jeans equation 14, 15
real numbers, types 433
reduced mass 291–2, 319

hydrogen chloride 321
Regnault, Charles 4
relativistic mechanics 13
relaxation processes, in NMR spectroscopy

276, 278
resonance energy 359

see also delocalisation energy
resonance stabilisation, in charge transfer

transitions 331
resonance structures 163

benzene 163
carbonate anion 163
cyanine dyes 66

restoring force (in simple harmonic motion)
290

rigid rotator model 297
eigenfunctions 297
rotational motions 298–9
vibrational motions 299–300

Ritter, Johann Wilhelm 217
Rosen, N. 140–1
rotation of diatomic molecules 319–20
rotational constant 296

carbon dioxide 314–15
rotational selection rule 298–9

semi-classical interpretation 301
Russell–Saunders coupling 111–12
Rutherford’s model of atom 24
Ryberg, Johannes Robert, on Balmer equation

121
Ryberg constant 121

values listed for various atoms and ions
105

σ bonding, in hydrocarbons 160
σ (sigma) overlap 147
s-functions 426
s-orbitals 100
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s-orbitals (continued )
angular part of wave function 101
radial part of wave function 99

1S states (singlet S) 110–11
energies for various atoms 110

saturation (magnetism) 371
SCF (self-consistent field) calculations 106
Schrödinger, Erwin 26, 28
Schrödinger equation 28–9

in atomic units 402
expression in polar coordinates 97–8,

303–4
angular functions 99–100, 304
radial function 98–9, 304

solution of 41, 53, 96, 100, 135
for Morse potential energy curve 302–3
perturbation theory used 417–24
for polyatomic molecules 304

for system under perturbation 229
time-dependent equation 228
time-independent equation 228

Schrödinger method in quantum mechanics
39–40, 96

‘sea’ of electrons 381
secular equations 406–7

for butadiene 355
for propyl radical 411
see also variation theorem

Seitz, Frederick 135, 387
selection rules 115–17, 196, 225–7, 437–8

electronic spectroscopy 344–8
IR spectroscopy 244, 297–302
NMR spectroscopy 264–7, 278–80
see also Bohr–Einstein condition

self-consistent field 106
see also SCF calculations

semiconductors 388–9
effect of temperature on electrical

conductivity 388, 389
SETI (search for extraterrestrial intelligence)

86, 410
shielding constant (σ) in NMR spectroscopy

270
shift operators 82–3

wave functions for 3F states of d2 439–41
Sidgwick, N.V. 164
similarity transformation 413
simple harmonic motion 290–3

see also harmonic oscillator
simultaneous homogeneous equations 406
sine function 62
singlet states 85, 173

electron distributions for excited helium
atom 339–41

electron repulsion energy 174, 337–8
lifetimes 338

space wave functions 173–4, 333, 335
spin wave functions 173, 334, 335
total energies in 1s12s1 helium atom

338–9
Slater determinant(s) 189, 348, 429–30

microstates as 122, 207
Slater rules for calculation of screening 172
Slater-type orbitals (STOs) 171–3

orbital overlap for 161
sodium D-lines 224, 242

Zeeman effect 120, 242
sodium metal

band structure 379, 380
bonding in 378–9

solids
band theory 378–89
electrical conductivity 387–9
mechanical properties 390
optical properties 390

Sommerfeld, Arnold 26, 381
sp hybrid orbitals 159, 160
sp2 hybrid orbitals 159, 160
sp3 hybrid orbitals 158, 158

proof of normalisation and orthogonality
171

space functions 173–4
space quantisation 77
spectroscopic timescales 245–7
spectroscopic transitions

comparison of IR, NMR and UV–VIS
transitions 238–41

particle and wave views 242–5
time-independent and time-dependent parts

of wave functions 227–8, 266–7
spectroscopic units and notation 247–9
spectroscopy 215–59

definition 216
see also absorption...; atomic...;

electronic...; infrared...; nuclear
magnetic resonance spectroscopy

spectrum
energy/frequency/wavelength axis, units used

248–9
intensity/absorbance axis, units used

249–50
spherical harmonics 426

applications 100, 183, 297
spherical polar coordinates 431

see also polar coordinates
spin angular momentum 78, 261

notation 83
of nucleus 262

spin-forbidden transitions 197
spin functions 85, 173
spin–orbit coupling (SOC) 81, 111–15

in crystal field theory 195–6
first-order 129
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inter-electronic 115
intermediate coupling 113–14
jj coupling 112–13
matrix for microstates of p2 configuration

124–5
Russell–Saunders (LS ) coupling 111–12
and state energies 114

spin–orbit coupling constant 195
spin–orbit coupling energy 111
spin quantum number

of nuclei 83, 262
of single electron 83–4, 108

spin–spin coupling, in NMR spectra 270–3
spin–spin coupling energy 272
spin states

hydrogen atom 85–6
single electron 84
two-electron system 85

spinning bullets/projectiles 75
square planar molecules 166–7
Stark effect 299
state energies, effect of spin–orbit coupling

114
Stefan–Boltzmann constant 13–4
Stefan’s radiation law 13
strong-field coupling scheme 188

for d2 in octahedral field 193–5
Strutt, John William 15
sulfur dioxide, molecular geometry 166–7
super-pairs (of electrons) 166

in various molecules 167
superconductors 389
superposition of states 59
surface-adsorbed species, FTIR spectroscopy

244–5
symmetry species 304, 306
synchronised stepping frequency 238

T-shaped molecules 166
Tanabe–Sugano diagrams 191, 192–3

limitations 193
temperature-independent paramagnetism (t.i.p.)

365
term energies 110
term symbols 108

assignment of 108–10
tetragonal antiprismatic crystal field

states of single d electron
energy levels 373
magnetic moments 372–3, 373

tetrahedral complexes, d→d transitions 196
tetrahedral molecules 157–8, 166–7
tetrahedral symmetry, d-electron energy levels

188
tetramethylsilane (TMS), as standard in NMR

spectroscopy 269
theory

at end-19th century 7–8
role in science 1–3

thermal radiation 13
thermodynamics, laws of 6
Thomson, George Paget 27
three-body problem 106
time, atomic unit of 402
time-independent perturbation theory 417–21
tin atom, eigenstates 128
total angular momentum 78–81
transition dipole moment 234–8, 437

in hydrogen atom 252–3
transition-metal complexes

electronic energy levels 187–96
electronic spectroscopy 196–7, 330
magnetism 197–9

transition metals
band structure 381
bonding in 379–81
density of states 381
properties explained 107

transition moment (TM) integral, evaluation of
126–7

transition moment operator 125
transition probability

effect of electron spin 344–6
nuclear magnetic resonance 278–9
quantum mechanics 227–33

confirmation of method 239
spatial aspects for allowed electronic

transition 346–7
vibrational factor in 347–8

1,1,2-trichloroethene
1H NMR spectrum 270–1, 271
spin–spin coupling in 272–3

trigonal bipyramidal molecules 166–167
trigonal molecules 166–167
trigonal pyramidal molecules 166
triplet states 85, 173

electron distributions for excited helium
atom 339–41

electron repulsion energy 174, 336–7
lifetimes 338, 341
space wave functions 173–4, 333–4, 335
spin wave functions 173, 334, 335
total energies in 1s12s1 helium atom

338–9
two-electron repulsion integrals 205–6

listed for d orbitals
in complex forms 210
in real forms 209

Tycho Brahe 10

Uhlenbeck, George Eugene 78, 105, 118, 120
ultraviolet catastrophe 14, 15
ultraviolet spectrum 217

first discovered 217
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uncertainty principle 56–7, 246
effects 58, 77

unification of molecular orbital and valence
bond models 141–3

unitary matrix 413
units 248, 401–2

conversion factors 249
UV–VIS spectroscopy

electric dipole interaction energy 234
experimental aspects 240
terminology 257
timescales 246, 246
see also electronic spectroscopy

UV–VIS transitions, compared with IR and
NMR transitions 238–41

vacuum magnetic susceptibility 364
relationship with magnetic moment 366,

395
valence band 387
valence bond (VB) theory 137–9

compared with MO theory 156, 163
computational developments 167–8
and hybridisation 156
and resonance 163
unification with molecular orbital theory

141–3
valence bond (VB) wave functions,

normalisation of 169
valence electron distribution, effects of Pauli

exclusion principle 161–2
valence electrons/orbitals 107
valence-shell electron-pair repulsion (VSEPR)

model 164–7
first developed 164
and multiple bonds 165–7
water molecular shape considered 165

Van de Hulst, Hendrick 86
Van der Waals’ gas equation 5
Van Vleck, John Hasbrouck 182, 199, 375
vanadium(III) hexacyano complex ion,

spectrum 194–5
variation theorem 403–10

application of 404–7
examples of use 140, 151, 353, 407–10
proof 403–4

vector quantity 74
angular momentum as 74–6

velocity, atomic unit of 402
velocity of light 223, 401

factors affecting 216
as limiting velocity 13
ratio of electrostatic to electromagnetic units

7, 216
vibrational angular momentum, and Coriolis

interaction 311–16

vibrational circular dichroism (VCD) spectra
317

vibrational selection rule 299–300
semi-classical interpretation 301

vibrations of diatomic molecules 291, 292,
318–19

vibrations of polyatomic molecules 305–8
angle bending mode 305–6, 310
asymmetric stretching mode 305–6, 307,

310
normal mode 304
rocking mode 307, 307, 308
scissoring mode 307, 307, 308
skeletal vibrations 309
symmetric stretching mode 305–6, 307,

310
wagging mode 307, 307, 308

vibronic transition 236
virial theorem 97
volume magnetic susceptibility 364

and Bohr magneton number 396
variation with temperature 364–5

VSEPR model see valence-shell electron-pair
repulsion model

Wang, S.C. 140
water molecule

bond angle 164
vibrations 305–6
VSEPR model 165

wave functions
of hydrogen atom 97–100

angular parts 99–104, 104
Heitler–London (valence bond) approach

137–9
Hund–Mulliken (molecular orbital)

approach 139
improvements 140–1
nodes 104, 104
radial part 98–9, 104

normalisation of
in Hückel MO calculation 356
for hydrogen molecule 169–70

time-dependent part 227
time-independent part 227–8

wave mechanics 26, 28–9, 50
wave number 248
wave theory of light 216

limitations 21, 223
weak-field coupling scheme 188

for d2 (3F in octahedral field) 189–90
for d2 (inclusion of 3P) 190–1

Weinbaum, S. 142
Weiss, Pierre 365

see also Curie–Weiss law
Wigner, Eugen P. 135, 387
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Wilson, Edgar Bright 316
work function (of surface) 21

Young, Thomas 216
Yu, F.C. 267

Zeeman effect 105, 117–20, 408
anomalous Zeeman effect 120
normal Zeeman effect 118–20
practical applications 119–20

zero of energy, definition 96, 133
zero-point energy 16, 47, 58, 134, 294

With thanks to Paul Nash for creation of this index.


	THE QUANTUM IN CHEMISTRY: An Experimentalist’s View
	Contents
	Preface
	Chapter 1 The Role of Theory in the Physical Sciences
	1.0 Introduction
	1.1 What is the role of theory in science?
	1.2 The gas laws of Boyle and Gay-Lussac
	1.3 An absolute zero of temperature
	1.4 The gas equation of Van der Waals
	1.5 Physical laws
	1.6 Laws, postulates, hypotheses, etc.
	1.7 Theory at the end of the 19th century
	1.8 Bibliography and further reading

	Chapter 2 From Classical to Quantum Mechanics
	2.0 Introduction
	2.1 The motion of the planets: Tycho Brahe and Kepler
	2.2 Newton, Lagrange and Hamilton
	2.3 The power of classical mechanics
	2.4 The failure of classical physics
	2.5 The black-body radiator and Planck’s quantum hypothesis
	2.5.1 Planck’s solution to the black-body radiation problem
	2.5.2 A qualitative interpretation of the form of the black-body emission curve in the light of Planck’s hypothesis
	2.5.3 Quantisation in classical mechanics

	2.6 The photoelectric effect
	2.6.1 Einstein’s theory of the photoelectric effect confirmed experimentally

	2.7 The emission spectra of atoms
	2.7.1 Bohr’s theory of the structure of the hydrogen atom
	2.7.2 Comparison of Bohr’s model with experiment
	2.7.3 Further development of Bohr’s theory

	2.8 de Broglie’s proposal
	2.9 The Schrödinger equation
	2.9.1 Eigenfunctions and eigenvalues

	2.10 Bibliography and further reading
	Problems for Chapter 2

	Chapter 3 The Application of Quantum Mechanics
	3.0 Introduction
	3.1 Observables, operators, eigenfunctions and eigenvalues
	3.2 The Schrödinger method
	3.3 An electron on a ring
	3.3.1 The Hamiltonian operator for the electron on a ring
	3.3.2 Solution of the Schrödinger equation
	3.3.3 The acceptable eigenfunctions

	3.4 Hückel’s (4N + 2) rule: aromaticity
	3.5 Normalisation and orthogonality
	3.6 An electron in a linear box
	3.6.1 The Hamiltonian operator for an electron in a linear box
	3.6.2 The acceptable eigenfunctions
	3.6.3 Boundary conditions

	3.7 The linear and angular momenta of electrons confined within a one-dimensional box or on a ring
	3.7.1 The linear momentum of an electron in a box
	3.7.2 The angular momentum of an electron on a ring

	3.8 The eigenfunctions of different operators
	3.9 Eigenfunctions, eigenvalues and experimental measurements
	3.10 More about measurement: the Heisenberg uncertainty principle
	3.11 The commutation of operators
	3.12 Combinations of eigenfunctions and the superposition of states
	3.13 Operators and their formulation
	3.13.1 Position or co-ordinate,
	3.13.2 Potential energy,
	3.13.3 Linear momentum, (x)
	3.13.4 Kinetic energy,
	3.13.5 Angular momentum,

	3.14 Summary
	3.15 Bibliography and further reading
	Problems for Chapter 3

	Chapter 4 Angular Momentum
	4.0 Introduction
	4.1 Angular momentum in classical mechanics
	4.2 The conservation of angular momentum
	4.3 Angular momentum as a vector quantity
	4.4 Orbital angular momentum in quantum mechanics
	4.4.1 The vector model

	4.5 Spin angular momentum
	4.6 Total angular momentum
	4.6.1 The addition and conservation of angular momentum in quantum mechanics
	4.6.2 The laws of quantum-mechanical angular momentum

	4.7 Angular momentum operators and eigenfunctions
	4.7.1 The raising and lowering, shift or ladder operators

	4.8 Notation
	4.9 Some examples
	4.10 Bibliography and further reading
	Problems for Chapter 4

	Chapter 5 The Structure and Spectroscopy of the Atom
	5.0 Introduction
	5.1 The eigenvalues of the hydrogen atom
	5.2 The wave functions of the hydrogen atom
	5.2.1 The radial function, R(n,l)(r)
	5.2.2 The angular functions, Q(l,m)(q) and F(m)(f)

	5.3 Polar diagrams of the angular functions
	5.3.1 The s-functions
	5.3.2 The p-functions
	5.3.3 The d-functions

	5.4 The complete orbital wave functions
	5.5 Other one-electron atoms
	5.6 Electron spin
	5.7 Atoms and ions with more than one electron
	5.7.1 The self-consistent field
	5.7.2 Electron correlation
	5.7.3 The periodic table of the elements

	5.8 The electronic states of the atom
	5.8.1 The five quantum numbers of a single electron
	5.8.2 Quantum numbers for the many-electron atom
	5.8.3 The assignment of term symbols
	5.8.4 Term energies and Hund’s rules

	5.9 Spin-orbit coupling
	5.9.1 Russell–Saunders or LS coupling
	5.9.2 jj coupling
	5.9.3 Intermediate coupling
	5.9.4 Inter-electronic spin-orbit coupling

	5.10 Selection rules in atomic spectroscopy
	5.10.1 Angular momentum
	5.10.2 Parity

	5.11 The Zeeman effect
	5.11.1 The normal Zeeman effect
	5.11.2 The anomalous Zeeman effect

	5.12 Bibliography and further reading
	Problems for Chapter 5

	Chapter 6 The Covalent Chemical Bond
	6.0 Introduction
	6.1 The binding energy of the hydrogen molecule
	6.2 The Hamiltonian operator for the hydrogen molecule
	6.3 The Born–Oppenheimer approximation
	6.4 Heitler and London: The valence bond (VB) model
	6.5 Hund and Mulliken: the molecular orbital (MO) model
	6.6 Improving the wave functions
	6.6.1 The value of Z
	6.6.2 Polarisation

	6.7 Unification: Ionic structures and configuration interaction
	6.8 Electron correlation
	6.9 Bonding and antibonding MOs
	6.10 Why is there no He–He Bond?
	6.11 Atomic orbital overlap
	6.11.1 s (sigma) overlap
	6.11.2 p (pi) overlap
	6.11.3 d (delta) overlap
	6.11.4 Non-bonding overlap

	6.12 The Homonuclear diatomic molecules from lithium to fluorine
	6.13 Heteronuclear diatomic molecules
	6.14 Charge distribution
	6.15 Hybridisation and resonance
	6.15.1 Hybridisation: Pauling 1931
	6.15.2 Hybridisation and the valence bond theory
	6.15.3 Hybridisation of carbon AOs
	6.15.4 The choice of hybrid orbitals
	6.15.5 The properties of hybrid-orbital bonds

	6.16 Resonance and the valence bond theory
	6.17 Molecular geometry
	6.17.1 The valence-shell electron-pair repulsion (VSEPR) model
	6.17.2 The VSEPR model and multiple bonds

	6.18 Computational developments
	6.19 Bibliography and further reading
	Problems for Chapter 6

	Chapter 7 Bonding, Spectroscopy and Magnetism in Transition-Metal Complexes
	7.0 Introduction
	7.1 Historical development
	7.2 The crystal field theory
	7.3 The electronic energy levels of transition-metal complexes
	7.3.1 The weak-field scheme for d(2) (example of (3)F in an octahedral field)
	7.3.2 The weak-field scheme for d(2) (inclusion of (3)P)
	7.3.3 The d(2) energy levels for weak, strong and intermediate octahedral fields
	7.3.4 The strong-field scheme for d(2) in an octahedral field
	7.3.5 Spin-orbit coupling

	7.4 The electronic spectroscopy of transition-metal complexes
	7.5 Pairing energies; low-spin and high-spin complexes
	7.6 The magnetism of transition-metal complexes
	7.7 Covalency and the ligand field theory
	7.8 Bibliography and further reading
	Problems for Chapter 7

	Chapter 8 Spectroscopy
	8.0 The interaction of radiation with matter
	8.1 Electromagnetic radiation
	8.1.1 The electric field
	8.1.2 The magnetic field

	8.2 Polarised light
	8.2.1 Linearly polarised light
	8.2.2 Circularly polarised light

	8.3 The electromagnetic spectrum
	8.3.1 Three forms of electromagnetic radiation

	8.4 Photons and their properties
	8.4.1 Velocity
	8.4.2 Energy
	8.4.3 Mass
	8.4.4 Linear momentum
	8.4.5 Angular momentum
	8.4.6 Parity

	8.5 Selection rules
	8.5.1 The Bohr–Einstein condition

	8.6 The quantum mechanics of transition probability
	8.7 The nature of the time-independent interaction f(f)|(x, y, z)|f(i)
	8.7.1 The transition dipole moment
	8.7.2 The relative intensities of UV–VIS, IR and NMR transitions
	8.7.3 The particle and wave views of spectroscopic transitions

	8.8 Spectroscopic time scales
	8.9 Quantum electrodynamics
	8.10 Spectroscopic units and notation
	8.10.1 The energy/frequency/wavelength axis
	8.10.2 The intensity/absorbance axis

	8.11 The Einstein coefficients
	8.12 Bibliography and further reading
	Problems for Chapter 8

	Chapter 9 Nuclear Magnetic Resonance Spectroscopy
	9.0 Introduction
	9.1 The magnetic properties of atomic nuclei
	9.2 The frequency region of NMR spectroscopy
	9.3 The NMR selection rule
	9.4 The chemical shift
	9.4.1 The delta (d) scale
	9.4.2 The shielding constant, s (sigma)

	9.5 Nuclear spin–spin coupling
	9.6 The energy levels of a nuclear spin system
	9.6.1 First order spectra
	9.6.2 Second order spectra

	9.7 The intensities of NMR spectral lines
	9.8 Quantum mechanics and NMR spectroscopy
	9.9 Bibliography and further reading
	Problems for Chapter 9

	Chapter 10 Infrared Spectroscopy
	10.0 Introduction
	10.1 The origin of the infrared spectra of molecules
	10.2 Simple harmonic motion
	10.3 The quantum-mechanical harmonic oscillator
	10.3.1 Quantisation of the energy
	10.3.2 Zero-point energy
	10.3.3 Vibrational eigenfunctions

	10.4 Rotation of a diatomic molecule
	10.4.1 Eigenfunctions of the rigid rotator

	10.5 Selection rules for vibrational and rotational transitions
	10.5.1 A semi-classical view of the selection rules
	10.5.2 Infrared intensities

	10.6 Real diatomic molecules
	10.7 Polyatomic molecules
	10.7.1 Normal co-ordinates, normal vibrations, vibrational eigenfunctions and eigenvalues
	10.7.2 Vibrations of real polyatomic molecules
	10.7.3 Characteristic group frequencies
	10.7.4 Large molecules

	10.8 Anharmonicity
	10.8.1 Fermi resonance
	10.8.2 Vibrational angular momentum and the Coriolis interaction

	10.9 The ab-initio calculation of IR spectra
	10.10 The special case of near infrared spectroscopy
	10.11 Bibliography and further reading
	Problems for Chapter 10

	Chapter 11 Electronic Spectroscopy
	11.0 Introduction
	11.1 Atomic and molecular orbitals
	11.2 The spectra of covalent molecules
	11.2.1 p p* transitions
	11.2.2 n p* transitions
	11.2.3 Transition-metal complexes

	11.3 Charge transfer (CT) spectra
	11.4 Many-electron wave functions
	11.5 The 1s(1)2s(1) configuration of the helium atom; singlet and triplet states
	11.5.1 The energies of the 1s 2s excited states of the helium atom
	11.5.2 The one-electron energies; operator –½(1)(2) – ½(2)(2) – 2/r(1) – 2/r(2)
	11.5.3 The two-electron, i.e. electron-repulsion, energy; operator 1/r(12)
	11.5.4 The total energies of singlet and triplet state
	11.5.5 Electron repulsion in the triplet and singlet states of the excited helium atom: a diagrammatic illustration
	11.5.6 Summary of Section 11.5

	11.6 The p-electron spectrum of benzene
	11.7 Selection rules
	11.7.1 Electron spin (multiplicity) and transition probability
	11.7.2 Spatial aspects of transition probability for an allowed electronic transition
	11.7.3 The vibrational factor in the transition probability

	11.8 Slater determinants (Appendix 6)
	11.9 Bibliography and further reading
	Problems for Chapter 11

	Chapter 12 Some Special Topics
	12.0 Introduction
	12.1 The Hückel molecular orbital (HMO) theory
	12.1.1 The basis of Hückel’s approach
	12.1.2 The method
	12.1.3 Hückel’s assumptions
	12.1.4 Determination of HMO energies and AO coefficients
	12.1.5 Applications of HMO energies
	12.1.6 Applications of HMO coefficients
	12.1.7 Some final comments on the Hückel theory

	12.2 Magnetism in chemistry
	12.2.1 Magnetic susceptibility: diamagnetism and paramagnetism
	12.2.2 Magnetic susceptibility: ferromagnetism and antiferromagnetism
	12.2.3 Magnetic fields and dipoles: some definitions
	12.2.4 The magnetic effect of electronic orbital motion
	12.2.5 The consequences of chemical bonding
	12.2.6 The magnetic effect of electron spin
	12.2.7 Magnetism in practice
	12.2.8 Systems of interacting molecular magnets
	12.2.9 A note of warning
	12.2.10 An application

	12.3 The band theory of solids
	12.3.1 The tight binding approximation
	12.3.2 The electron–gas (free-electron) approximation
	12.3.3 Molecular and ionic solids
	12.3.4 Applications
	12.3.5 Metals, insulators and semiconductors
	12.3.6 Optical properties of solids
	12.3.7 Mechanical properties of solids

	12.4 Bibliography and further reading
	Problems for Chapter 12

	Appendices
	1 Fundamental Constants and Atomic Units
	2 The Variation Method and the Secular Equations
	3 Energies and Wave Functions by Matrix Diagonalisation
	4 Perturbation Theory
	5 The Spherical Harmonics and Hydrogen Atom Wave Functions
	6 Slater Determinants
	7 Spherical Polar Co-ordinates
	8 Numbers: Real, Imaginary and Complex
	9 Dipole and Transition Dipole Moments
	10 Wave Functions for the (3)F States of d(2) using Shift Operators

	Index




