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Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material
sciences, including theoretical, mathematical and computational
chemistry, physical chemistry and chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory is
used to interpret experimental results and may suggest new experiments; experiment
helps to test theoretical predictions and may lead to improved theories. Theoretical
Chemistry (including Physical Chemistry and Chemical Physics) provides the concep-
tual and technical background and apparatus for the rationalisation of phenomena in the
chemical sciences. It is, therefore, a wide ranging subject, reflecting the diversity of
molecular and related species and processes arising in chemical systems. The book
series Progress in Theoretical Chemistry and Physics aims to report advances in
methods and applications in this extended domain. It will comprise monographs as well
as collections of papers on particular themes, which may arise from proceedings of
symposia or invited papers on specific topics as well as initiatives from authors or
translations.

The basic theories of physics — classical mechanics and electromagnetism, relativity
theory, quantum mechanics, statistical mechanics, quantum electrodynamics — support
the theoretical apparatus which is used in molecular sciences. Quantum mechanics
plays a particular role in theoretical chemistry, providing the basis for the valence
theories which allow to interpret the structure of molecules and for the spectroscopic
models employed in the determination of structural information from spectral patterns.
Indeed, Quantum Chemistry often appears synonymous with Theoretical Chemistry: it
will, therefore, constitute a major part of this book series. However, the scope of the
series will also include other areas of theoretical chemistry, such as mathematical
chemistry (which involves the use of algebra and topology in the analysis of molecular
structures and reactions); molecular mechanics, molecular dynamics and chemical
thermodynamics, which play an important role in rationalizing the geometric and
electronic structures of molecular assemblies and polymers, clusters and crystals;
surface, interface, solvent and solid-state effects; excited-state dynamics, reactive
collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides a
method of investigation which transcends the traditional division between theory and
experiment. Computer-assisted simulation and design may afford a solution to complex
problems which would otherwise be intractable to theoretical analysis, and may also
provide a viable alternative to difficult or costly laboratory experiments. Though
stemming from Theoretical Chemistry, Computational Chemistry is a field of research
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in its own right, which can help to test theoretical predictions and may also suggest
improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions, and
the role of molecules in the biological sciences. Therefore, it involves the physical basis
for geometric and electronic structure, states of aggregation, physical and chemical
transformations, thermodynamic and Kinetic properties, as well as unusual properties
such as extreme flexibility or strong relativistic or quantum-field effects, extreme
conditions such as intense radiation fields or interaction with the continuum, and the
specificity of biochemical reactions.

Theoretical chemistry has an applied branch — a part of molecular engineering,
which involves the investigation of structure—property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or genetic
engineering. Relevant properties include conductivity (normal, semi- and supra-),
magnetism (ferro- or ferri-), optoelectronic effects (involving nonlinear response),
photochromism and photoreactivity, radiation and thermal resistance, molecular recog-
nition and information processing, and biological and pharmaceutical activities, as well
as properties favouring self-assembling mechanisms and combination properties needed
in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular or
cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical or computational chemistry in their
research programmes. It is also intended to provide the graduate student with a readily
accessible documentation on various branches of theoretical chemistry, physical chem-
istry and chemical physics.
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Preface

This book is meant to provide a window on the rapidly growing body of
theoretical studies of condensed phase chemistry. A brief perusal of physical
chemistry journals in the early to mid 1980’s will find a large number of theoret-
ical papers devoted to 3-body gas phase chemical reaction dynamics. The recent
history of theoretical chemistry has seen an explosion of progress in the develop-
ment of methods to study similar properties of systems with Avogadro’s number
of particles. While the physical properties of condensed phase systems have long
been principle targets of statistical mechanics, microscopic dynamic theories that
start from detailed interaction potentials and build to first principles predictions
of properties are now maturing at an extraordinary rate. The techniques in use
range from classical studies of new Generalized Langevin Equations, semiclas-
sical studies for non-adiabatic chemical reactions in condensed phase, mixed
quantum classical studies of biological systems, to fully quantum studies of mod-
els of condensed phase environments. These techniques have become sufficiently
sophisticated, that theoretical prediction of behavior in actual condensed phase
environments is now possible. and in some cases, theory is driving development
in experiment.

The authors and chapters in this book have been chosen to represent a wide
variety in the current approaches to the theoretical chemistry of condensed phase
systems. | have attempted a number of groupings of the chapters, but the di-
versity of the work always seems to frustrate entirely consistent grouping. The
final choice begins the book with the more methodological chapters, and pro-
ceeds to greater emphasis on application to actual chemical systems as the book
progresses. Almost all the chapters, however, make reference to both basic theo-
retical developments, and to application to real life systems. It has been exactly
this close interaction between methodology development and application which
has characterized progress in this field and made its evolution so exciting.

New York, June 2000

Steven D Schwartz

Xi
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Chapter 1

CLASSICAL AND QUANTUM RATE THEORY FOR CONDENSED
PHASES

Eli Pollak

Chemical Physics Department,
Weizmann Institute of Science,
76100, Rehovot, Israel
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2 E. Pollak

. INTRODUCTION

Rate processes! are ubiquitous in chemistry, and include a large variety of
physical phenomena which havemotivated the writing of textbooks,14 reviews>’
and special journal issues.8® The phenomena include among others, bimolecular
exchange reactions, 1011 unimolecular isomerizations,1213 electron transfer pro-
cesses,14 molecular rotation in solids,® and surface and bulk diffusion of atoms
and molecules.1617 Experimental advances have succeeded in recent years in
providing new insight into the dynamics of these varied processes. Picosecond®
and femtosecond™® spectroscopy allows probing of rate processes in real time.
Field ion?-22 and scanning tunneling microscopy?324 are giving intimate pic-
tures of particle diffusion on surfaces. Isomerization rate constants have been
determined for a variety of solvents over large ranges of solvent pressure.1225-28

The availability of high speed computers has led to significant advances in the
theory of activated rate processes. It is routinely possible to run relatively large
molecular dynamics programs to obtain information on the classical dynamics
of reactions in condensed phases.>230 Sampling techniques are continuously
being improved to facilitate computations of increasing accuracy on ever larger
systems.31:32 |t is also becoming possible to obtain quantum thermodynamic
information for rather large scale simulations.3334 Sophisticated semiclassical
approaches have been extended and developed to enable the simulation of electron
transfer and nonadiabatic processes in solution.3538 Very recently it has become
possible to obtain numerically exact quantum dynamics for model dissipative
systems 3738

These experimental and numerical developments have posed a challenge to
the theorist. Given the complexity of the phenomena involved, is it still possible
to present a theory which provides the necessary concepts and insight needed for
understanding rate processes in condensed phases? Although classical molecular
dynamics computations are almost routine, real time quantum molecular dynam-
ics are still largely computationally inaccessible. Are there alternatives? Do we
understand quantum effects in rate theory? These are the topics of this review
article.

The standard ‘language’ used to describe rate phenomena in condensed phases
has evolved from Kramers’ one dimensional model of a particle moving on a one
dimensional potential, feeling a random and a related friction force.3® In Section
11, we will review the classical Generalized Langevin Equation (GLE) underlying
Kramers model and its application to condensed phase systems. The GLE has an
equivalent Hamiltonian representation in terms of a particle which is bilinearly
coupled to a harmonic bath.4% The Hamiltonian representation, also reviewed in
Section |1 is the basis for a quantum representation of rate processes in condensed
phases.41 It has also been very useful in obtaining solutions to the classical GLE.
Variational estimates for the classical reaction rate are described in Section I11.
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These include the Rayleigh quotient method**™® and variational transition state

theory (VTST).46-49 The so called PGH turnover theory®® and its semiclassical
analog,”>1 which presents an explicit expression for the rate of reaction for almost
arbitrary values of the friction function is reviewed in Section V. Quantum rate
theories are discussed in Section V and the review ends with a Discussion of
some open questions and problems.

1. THEGLE AS APARADIGM OF CONDENSED PHASE

SYSTEMS
1.1 THE GLE
In Kramers™®® classical one dimensional model, a particle (with mass m) is

subjected to a potential force, a frictional force and a related random force. The
classical equation of motion of the particle is the Generalized Langevin Equation
(GLE):
t
md+£1%)ﬂ+mj dt'y(t —t")g{t’) = &(t). 1)
q

The standard interpretation of this equation is that the particle is moving on the
potential of mean force w( q), where q is the ‘reaction coordinate’. In a numerical
simulation, where the full interaction potential is V(q, x), (x denotes all the ‘bath’
degrees of freedom) it is not too difficult to compute the potential of mean force,
defined as:

] — x 7
w(a) = —zIn (Tre PY("¥5(q — q")). @

The Tr operation denotes a classical integration over all coordinates. Apart from
the mean potential, the particle also feels a random force ¢ = Qyé—‘;l—] — dv;—(q‘”
which is due to all the bath degrees of freedom. This random force has zero
mean, and one can compute its autocorrelation function. The mapping of the true
dynamics onto the GLE is then completed by assuming that the random force
E(t) is Gaussian and its autocorrelation function is (£(t)&(t')) = %y(t —t’)
where B = 1.

Numerical algorithms for solving the GLE are readily available. Only recently,
Hershkovitz has developed a fast and efficient 4th order Runge-Kutta algorithm.>2
Memory friction does not present any special problem, especially when expanded
in terms of exponentials, since then the GLE can be represented as a finite set of
memory-less coupled Langevin equations.>3-57 Alternatively (see also the next
subsection), one can represent the GLE in terms of its Hamiltonian equivalent
and use a suitable discretization such that the problem becomes equivalent to that
of motion of the reaction coordinate coupled to a finite discrete bath of harmonic
oscillators,38:58
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The dynamics of the GLE has been compared to the numerically exact molec-
ular dynamics of realistic systems by a number of authors.5%-61 In most cases, one
finds that the GLE gives a reasonable representation, although ambiguities exist.
For example, as described above, the random force is computed at a ‘clamped’
value of the reaction coordinate g. Changing the value of q would lead in prin-
ciple to a different ‘random force’ and thus a different GLE representation of
the dynamics. Usually, the clamped value is chosen to be the barrier tog of the
potential of mean force.560 Since the dynamics of rate processes is usually
determined by the vicinity of the barrier top”*® and since the ‘random force’
does not vary too rapidly with a change in ¢, the resulting dynamics of the GLE
provides a ‘good” model for the exact dynamics.

The GLE may be generalized to include space and time dependent friction and
then this coordinate dependence is naturally included. Such a generalization has
been considered by a number of author>7:62-68 and most recently by Antoniou and
Swhwartz8% who found in a numerical simulation of proton transfer that the space
dependence of the friction can lead to considerable changes in the magnitude
of the rate of reaction. The GLE can also be generalized to include irreversible
effects in the form of an additional irreversible time dependence of the random
force.70.71

A further generalization is to write down a multi-dimensional GLE, in which
the system is described in terms of a finite number of degrees of freedom, each
of which feels a frictional and random force. For example, an atom diffusing on
a surface, moves in three degrees of freedom, two in the plane of the surface and
a third which is perpendicular to the surface. Each of these degrees of freedom
feels a phonon friction. Multi-dimensional generalizations and considerations
may be found in Refs. 72-82.

1.2 THE HAMILTONIAN REPRESENTATION OF THE GLE

As shown by Zwanzig#0 the GLE, Eq. 1, may be derived from a Hamiltonian
in which the reaction coordinate q is coupled bilinearly to a harmonic bath:

T 2 G4 2
H:%pq +Z px,+ m,(wx, mjwj)]. ?)

The j-th harmonic bath mode is characterized by the mass mj, coordinate x;,
momentum py; and frequency wj. The exact equation of motion for each of the
bath oscillators is mj%j + mj(ojzxj = ¢;q and has the form of a forced harmonic
oscillator equation of motion. It may be solved in terms of the time dependence
of the reaction coordinate and the initial value of the oscillator coordinate and
momentum. This solution is then placed into the exact equation of motion for the
reaction coordinate and after an integration by parts, one obtains a GLE whose
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form is identical to that of Eq. 1 with the following identification:
2

_ ) .
() = Z_ i’ cos(wjt) @)
and
.q(0 x{0)
E(t) = ; ¢; (Ix;(0) — ;—1?—&%] cos(w;t) + I%n:—(w—)) sin(w;t)). (5)

The continuum limit of the Hamiltonian representation is obtained as follows.
One notes that if the friction function y(t) appearing in the GLE is a periodic
function with period tthen Eq. 4 is just the cosine Fourier expansion of the
friction function. The frequencies w; are integer multiples of the fundamental
frequency 21—" and the coefficients c; are the Fourier expansion coefficients. In
practice, the friction function y(t) appearing in the GLE is a decaying function. It
may be used to construct the periodic function y(t;t) = > > y(t—nT)6(t—
nt)0[(n+ 1)t—t] where 0(x) is the Heaviside function. When the period t goes
to e one regains the continuum limit. In a numerical discretization of the GLE
care must be taken not to extend the dynamics beyond the chosen value of the
period t. Beyond this time, one is following the dynamics of a system which is
different from the continuum GLE.

For analytic purposes, it is useful to define a spectral density of the bath modes
coupled to the reaction coordinate in a given frequency range:

c?
J(w) =7 Z s Bl — @) = 8+ ;)L ©®)

The friction function (Eq. 4) is then the cosine Fourier transform of the spectral
density.

1.3 THE PARABOLIC BARRIER GLE

If the potential of mean force is parabolic (w(q) = - %mwﬂqz) then the GLE
(Eg. 1) may be solved using Laplace transforms. Denoting the Laplace transform
of a function f(t) as f(s) = JS" dte-'f(t), taking the Laplace transform of the
GLE and averaging over realizations of the random force (whose mean is 0) one
finds that the time dependence of the mean position and velocity is determined
by the roots of the Kramers-Grote-Hynes equation39:83

2+ s9(s) = wh @

We will denote the positive solution of this equation as X. As shown in Refs.
39,8384 one may consider the parabolic barrier problem in terms of a Fokker-
Planck equation, whose solution is known analytically. One may then obtain
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the time dependent probability distribution, and estimate the mean first passage
time® to obtain the rate. The phase space structure of the parabolic barrier
problem has been considered in some detail in Ref. 85 and reviewed in Ref. 86.

A complementary approach to the parabolic barrier problem is obtained by
considering the Hamiltonian equivalent representation of the GLE. If the potential
is parabolic, then the Hamiltonian may be diagonalized*®®":88 using a normal
mode transformation.82 One rewrites the Hamiltonian using mass weighted
coordinates g — +/md,x; — /T;x;. An orthogonal transformation matrix use
diagonalizes the parabolic barrier Hamiltonian such that it has one single negative
eigenvalue ~3 and positive eigenvalues A% j = 1, .., N, .. with associated
coordinates and momenta p pp, Y j, Py;3J = 1, .., N, ...

I s 2 12 2 2.2
sz[po"_;puj_?\ e +;}‘iyi]‘ ®)

There is a one to one correspondence between the unperturbed frequencies
o*, o) =1, ..., N, ... appearing in the Hamiltonian equivalent of the GLE
(Eg. 3) and the normal mode frequencies. The diagonalization of the potential
has been carried out explicitly in Refs. 88,90,91. One finds that the unstable
mode frequency A* is the positive solution of the Kramers-Grote Hynes (KGH)
equation (7). This identifies the solution of the KGH equation as a physical
barrier frequency.

The normal mode transformation implies that g = ugop + X Ujoyj and that
P = Ugog + Zj Ujxj. One can show,50:88 that the matrix element ugy may be
expressed in terms of the Laplace transform of the time dependent friction and
the barrier frequency A*:

19T | 99(s) -
ugo = (1+ o s =) ©)
The spectral density of the normal modes I(A)51 is defined in analogy to the
2

spectral density J(o) (cf. Eq. 6) as IM)= 5 35 u)\—”:’[é(k— A=A+ N It
is related to the spectral density J(w):

J(A)

1 = (Wi + AIm9(ir) + A2)2 + J2(A)

(10)

The dynamics of the normal mode Hamiltonian is trivial, each stable mode
evolves separately as a harmonic oscillator while the unstable mode evolves as a
parabolic barrier. To find the time dependence of any function in the system phase
space (g,pq) all one needs to do is rewrite the system phase space variables in
terms of the normal modes and then average over the relevant thermal distribution.
The continuum limit is introduced through use of the spectral density of the
normal modes. The relationship between this microscopic view of the evolution
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of a dissipative parabolic barrier and the solution via a Fokker-Planck equation
for the time evolution of the probability density in phase space has been worked
out in Ref. 92 and reviewed in some detail in Ref. 49.

Il. VARIATIONALRATE THEORY
1.1 THERATE CONSTANT

The “chemist’s view” of a reaction is phenomenological. One assumes the
existence of reactants, labeled a and products labeled b. The time evolution of
normalized reactant (ny) and product (n,) populations, na(t) + np(t) = 1, is
described by the coupled set of master equations:

ha[t) = - ana(t)+rbnb(t)
My (t) = rana(t) - Ianb (t) (11)

where the rates I, and I'y are the decay rates for the reactant and product channels
respectively. Detailed balance implies that the forward and backward rates are
related as e PEaT, = e PEeT,. In a typical experiment, one follows the time
evolution of the population of reactants and products and describes it in terms of
the rate constants T3, T,. It is then the job of the theorist to predict or explain
these rate constants.

In a realistic simulation, one initiates trajectories from the reactant well, which
are thermally distributed and follows the evolution in time of the population. If the
phenomenological master equations are correct, then one may readily extract the
rate constants from this time evolution. This procedure has been implemented
successfully for example, in Refs. 93,94. Alternatively, one can compute the
mean first passage time for all trajectories initiated at reactants and thus obtain
the rate, cf. Ref. 95.

If the dynamics is described in terms of a GLE, then one can adapt a more for-
mal approach to the problem. By expanding the time dependent friction in a series
of exponentials, one may rewrite the dynamics in terms of a multi-dimensional
Fokker-Planck equation for the evolution of the probability distribution function
in phase space. This Fokker-Planck equation has a ‘trivial’ stationary solution,
the equilibrium distribution, associated with a zero eigenvalue. Assuming that
the spectrum of eigenvalues of the Fokker-Planck equation is discrete and that
there is a ‘large’ separation between the lowest nonzero eigenvalue and all other
eigenvalues, then at long times the distribution function will relax to equilibrium
exponentially, with a rate which is equivalent to this lowest nonzero eigenvalue.
Instead of following the time dependent evolution, one then may solve directly,
as also described below, for this lowest nonzero eigenvalue.

Will these two different approaches give the same result? Usually yes, or in
more rigorous terms, differences between them will be of the order of e‘BV1
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where V1 is the energy difference between the relevant well and the barrier to
reaction. If the temperature is sufficiently low, or equivalently the reduced barrier
height sufficiently large ([3Vqt 25) then the differences are negligible. For lower
barriers, ambiguities arise and one must treat the system with care. For example,
in the Fokker-Planck equation one may put reflecting boundary conditions or
absorbing boundary conditions. The difference between the two shows up as
exponentially small terms of the order of e—BY" I the reduced barrier height
is sufficiently low, one gets noticeable differences and the decision as to which
boundary condition to use, is dependent the specifics of the problem being
studied. A careful analysis of the relationship between the phenomenological
rate constant and the lowest nonzero eigenvalue of the Fokker-Planck equation
has been give in Ref. 96.

From a practical point of view, integrating trajectories for times which are of the
order of eBV* is very expensive. When the reduced barrier height is sufficiently
large, then solution of the Fokker-Planck equation also becomes numerically very
difficult. It is for this reason, that the reactive flux method, described below has
become an invaluable computational tool.

1.2 THE REACTIVE FLUX METHOD

The major advantage of the reactive flux method is that it enables one to initiate
trajectories at the barrier top. instead of at reactants or products. Computer time
is not wasted by waiting for the particle to escape from the well to the barrier. The
method is based on the validity of Onsager’s regression hypothesis,* * which
assures that fluctuations about the equilibrium state decay on the average with the
same rate as macroscopic deviations from equilibrium. It is sufficient to know the
decay rate of equilibrium correlation functions. There isn’t any need to determine
the decay rate of the macroscopic population as in the previous subsection.

The relevant correlation function in our case is related to population fluctu-
ations. Reactants, labeled a, are defined by the region q < g¥ and products,
labeled b, are defined by the region g > g* Following the discussion in Ref.
7, one defines the characteristic function of reactants 6a (q) =6 (g* — g) and
products 8b (q) = 8(q — q*) where is the Heaviside function. At equilibrium
(0a) = 0Baeqand similarly (6p) = 6peq.

After a short induction time, the correlation of the fluctuation in population
30i = 0ieq, I = a, b decays with the same rate as the population itself,
such that (for t > t):

(80;[q(1)180:[q(t")]) = e (TatTe) (t—t")

(66%) , i=ab. (12)
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Taking the time deravitive of Eq.12 with respect to t and setting t" = 0 finds
that the reactive flux obeys:

(68:[q(0)16:[q(t)])

(667)
Due to the high barrier, it is safe to assume that the induction time is much shorter
(by a factor of e™BV#) than the reaction time (1/T") so that the time dependence
on the right hand side of Eq. 13 may be ignored. Then, noting that the derivative

of a step function is a Dirac delta function, and using detailed balance one finds
the desired formula:

=—(Tq+ TpeMetVt {=qb (13)

(6[q(0)1g(0)8:[q(t)]) .
T ey e a4
In this central result the choice of the point g (0) is arbitrary. This means that at
time t = 0 one can initiate trajectories anywhere and after a short induction time
the reactive flux will reach a plateau value, which relaxes exponentially, but at
a very slow rate, It is this independence on the initial location which makes the
reactive flux method an important numerical tool.

In the very short time limit, g (t) will be in the reactants region if its velocity at
time t = 0 is negative. Therefore the zero time limit of the reactive flux expression
isjust the one dimensional transition state theory estimate for the rate. This means
that if one wants to study corrections to TST, all one needs to do numerically is
compute the transmission coefficient k defined as the ratio of the numerator of Eq.
14 and its zero time limit. The reactive flux transmission coefficient is then just
the plateau value of the average of a unidirectional thermal flux. Numerically it
may be actually easier to compute the transmission coefficient than the magnitude
of the one dimensional TST rate. Further refinements of the reactive flux method
have been devised recently in Refs. 31,32 these allow for even more efficient
determination of the reaction rate.

To summarize, the reactive flux method is a great help but it is predicated on
a time scale separation, which results from the fact that the reaction time (1/T)
is very long compared to all other times. This time scale separation is valid,
only if the reduced barrier height is large. In this limit, the reactive flux method,
the population decay method and the lowest nonzero eigenvalue of the Fokker-
Planck equation all give the same result up to exponentially small corrections
of the order of e™BV* For small reduced barriers, there may be noticeable
differences® between the different definitions and as already mentioned each
case must be handled with care.

1.3 THE RAYLEIGH QUOTIENT METHOD

If the dynamics may be represented in terms of a GLE then usually, it can
also be represented in terms of a multi-dimensional Fokker-Planck equation. As
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already mentioned, if the reduced barrier is large enough, then the phenomeno-
logical rate is also given by the lowest nonzero eigenvalue of the Fokker-Planck
operator. The Rayleigh quotient method provides a variational route for deter-
mining this eigenvalue. Since detailed balance is obeyed, the zero eigenvalue
of the Fokker-Planck operator L is associated with the equilibrium distribution,
such that LP,, = 0. The equilibrium distribution is invariant under time reversal
(denoted by atilde). The time reversed distribution is obtained by reversing the
signs of all momenta.

It is also useful to define the transformed operator L* whose operation on a
function f is L*f = P;q‘ L(Peqf). This operator coincides with the time reversed
backward operator, further details on these relationships may be found in Refs.
43,44, L* operates in the Hilbert space of phase space functions which have
finite second moments with respect to the equilibrium distribution. The scalar
product of two functions in this space is defined as (f, g) = (fgy,. It is the
phase space integrated product of the two functions, weighted by the equilibrium
distribution P, The operator L* is not Hermitian, its spectrum is in principle
complex, contained in the left half of the complex plane.

The Rayleigh quotient with respect to a function h is defined as:

ulh] = “(‘]f:)‘). (15)

If h is an eigenfunction, then p is an eigenvalue. Importantly, just as in the
usual Ritz method for Hermitian operators, one finds that iff is an approximate
eigenfunction such that the exact eigenfunction is h = f +8f then the error in
the estimate of the eigenvalue obtained by inserting f into the Rayleigh quotient,
will be second order in &f It is this variational property that makes the Rayleigh
quotient method useful. Only, if the operator L* is Hermitian, will the Rayleigh
quotient give also an upper bound to the lowest nonzero eigenvalue.

As shown by Talkner® there is a direct connection between the Rayleigh
quotient method and the reactive flux method. Two conditions must be met.
The first is that phase space regions of products must be absorbing. In different
terms, the trial function must decay to zero in the products region. The second
condition is that the reduced barrier height BVi > 1. As already mentioned
above, differences between the two methods will be of the order e BV

A useful trial variational function is the eigenfunction of the operator L* for
the parabolic barrier which has the form of an error function. The variational
parameters are the location of the barrier top and the barrier frequency. The
parabolic barrier potential corresponds to an infinite barrier height. The derivation
of finite barrier corrections for cubic and quartic potentials may be found in Refs.
44,45,100. Finite barrier corrections for two dimensional systems have been
derived with the aid of the Rayleigh quotient in Ref. 101. Thus far though, the
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Rayleigh quotient method has been used only in the spatial diffusion limited
regime but not in the energy diffusion limited regime (see the next Section).

1.4 VARIATIONAL TRANSITION STATE THEORY

The fundamental idea underlying classical transition state theory (TST) is due
to Wigner.2% Inspection of the reactive flux expression for the rate (Eq. 15)
shows that an upper bound to the reactive flux may be obtained by replacing
the dynamical factor 6;[q(t)] with the condition that the velocity is positive. As
explained by Wigner, considering only those trajectories with positive velocity,
leads at most to over-counting the reactive flux, since a trajectory which crosses
the dividing surface in the direction of products may return to the dividing
surface. More formally, the product ¢ (0)6 [qa (t)]I< §(0) 6( g (0) ) . If the velocity
is negative, then the inequality is obvious. If the velocity is positive, then
0[g,(t)] < 1. Therefore, the TST expression gives an upper bound to the
reactive flux estimate for the rate.

In a scattering system, the reactive flux is invariant with respect to variation
of the dividing surface, as long as the dividing surface has the property that all
reactive trajectories must cross it. Therefore, one may vary the dividing surface
S0 as to get a minimal upper bound, this is known as variational TST (VTST).
Reviews of classical VTST may be found in Refs. 46-49,103,104, But when
applying VTST to condensed phase systems one immediately faces the problem
of defining what is meant by ‘reactive trajectories’. Consider a typical double
well potential system. Intuitively, a reactive trajectory is one that is initiated in
the reactants well and ends up in the products well. But of course, over an infinite
time period, any trajectory will visit the reactant and product well an infinite
number of times. In contrast to a scattering system, one cannot divide the phase
space into disjoint groups of reactive and unreactive trajectories.

The saving aspect is again a time scale separation. The time atrajectory spends
in a well before escaping is of the order of eBV+ If the reduced barrier height is
sufficiently large, this is a very long time compared to the time a particle spends
when traversing between the two wells. For these shorter times, one can label
trajectories as reactive by the condition that they start out in the reactant well and
end up in the product well. The dividing surface must then have the property
that all these trajectories must cross it. When these conditions hold, the TST
method provides a variational upper bound to the numerator in the reactive flux.
Under the same conditions, a change in the dividing surface will at most lead
to negligible variations in the denominator of Eq. 15 which are of the order of
e BV". For practical purposes, VTST is thus applicable also to condensed phase
systems.
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The TST expression®*® for the escape rate is given by

r_ {dpqdall, dp, dx,5(f)(Vf - p)8(Vf - ple FH 16
[ dpqdq H) dp,dx,8(—f)e~PH . (16)

The Dirac delta function &(f) localizes the integration onto the dividing surface
f = 0. The gradient ofthe dividing surface (Vf)is in the full phase space, p is the
generalized velocity vector in phase space with components {4, Dq; Xj, Py ) =
1,..., N}, and 6(y) is the unit step function which restricts the flux to be in one
direction only. The term vf ‘p is proportional to the velocity perpendicular to the
dividing surface. The numerator is the unidirectional flux and the denominator
is the partition function of reactants.

The choice for the transition state implicit in Kramers® original paper,% is the
barrier top along the system coordinate q. The dividing surface takes the form
f =g — g* and the rate expression reduces to the so called “one dimensional”
result

e~ Bwla*) Wq

_ (2np)+ ~Pa—pvi
frst = (B) 2 T e pvat@ ~2m ¢ 1n

where the barrier of the potential of mean force w(q) is located at q = g*.

Kramers,® Grote and Hynes® and H&nggi and Mojtabai® showed that if one
assumes that the spatial diffusion across the top of the barrier is the rate limiting
step, then by approximating the barrier as being parabolic with frequency ®®,
one finds (see also Eq. 7) that the rate is given by the expression

Af
Mo = C—U“irTST~ (18)

The same result may be derived® from the Hamiltonian equivalent representation
for the parabolic barrier (see Eq. 8). Since motion is separable along the
generalized reaction coordinate p, TST will be exact (in the parabolic barrier
limit) if one chooses the dividing surface f = p — p*. Inserting this choice
into the TST expression for the rate,®” also leads to Eq. 18, thus showing that
Kramers’ result in the spatial diffusion limited regime is identical to TST albeit,
using the unstable collective mode for the dividing surface. The prefactor in Eg.
18, is not of dynamical origin but is derived from the equilibrium distribution.
The parabolic barrier result is suggestive. It shows thatthe best dividing surface
may be considered as a collective mode which is a linear combination of the
system coordinate and all bath modes. A natural generalization of the parabolic
barrier result would be to choose the dividing surface as a linear combination of
allcoordinates but to optimize the coefficients even in the presence of nonlinearity
in the potential of mean force and a space dependent coupling. Such a general
dividing surface is by definition a planar dividing surface in the configuration
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space of the system and the bath since it defines a hyperplane. The general
form of a planar dividing surface is given by f = ao q +Z]anj , Where the
coefficients are normalized according to a2 + Z)aj2 =1

One may now define a potential of mean force w[f] along the generalized
coordinate f as:

wlf] = —kgTln <Lf - (8lf —aoq—)_ a)xJDCoord) (19)
)

where the length scale L; is defined as: L; = Jdfe 17l and the averaging is
over all coordinates, with the thermal weighting e -BY where the potential V is
the sum of all potential terms of the Hamiltonian, Eq. 3.

Because the generalized coordinate f is a linear combination of all bath modes
and the potential is quadratic in the bath variables one can express the potential

of mean force w[f] in terms of a single quadrature over the system coordinate
q:107

1
2\ ¥ (o
o Bwlf] _ (52/; ) J dgel~BLEAZ (aC—N +w(a)]) (20)

The collective frequency, A, and the collective coupling parameter, C are given,

byA™2 =3 -—f and C =ap +) <z . TheTSTexpressionfortherate
using the planar d|V|d|ng surface reduces to 'the result:

F[f] = rTSTe—-{i[w[f]—w(qi]]' (21)

Optimal planar dividing surface VTST is thus reduced to finding the maximum
of the free energy wif].

The free energy w[f] must now be varied with respect to the location f as well
as with respect to the transformation coefficients {ao, a;j = 1,...,N}. The
details are given in Ref. 107 and have been reviewed in Ref. 49. The final result
is that the frequency A and collective coupling parameter C are expressed in
the continuum limit as functions of a generalized barrier frequency A One then
remains with a minimization problem for the free energy as a function of two
variables - the location f and A Details on the numerical minimization may be
found in Refs. 68,93. For a parabolic barrier one readily finds that the minimum
is such that f = 0 and that A = A*. In other words, in the parabolic barrier
limit, optimal planar VTST reduces to the well known Kramers-Grote-Hynes
expression for the rate.

Optimal planar dividing surface VTST has been used to study the effects of
exponential time dependent friction in Ref. 93. The major interesting result was
the prediction of amemory suppression of the rate of reaction which occurs when
the memory time and the inverse damping time (%) are of the same order. When
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this happens, the time it takes the particle to diffuse over the barrier is similar
to the memory time and the particle *feels’ the nonlinearity in the potential of
mean force. This leads to substantial reduction ofthe rate relative to the parabolic
barrier estimate.

A study of the effects of space and time dependent friction was presented in
Ref. 68. One finds a substantial reduction of the rate relative to the parabolic
barrier estimate when the friction is stronger in the well than at the barrier. In all
cases, the effects become smaller as the reduced barrier height becomes larger.
Comparison with molecular dynamics simulations shows that the optimal planar
dividing surface estimate for the rate is usually quite accurate.

A planar dividing surface might seem to lead to divergences in the case of
a cubic potential of mean force. This question has been dealt with at length in
Ref. 108. By introducing a kink into the planar dividing surface one can remove
the divergence. In practice, if the reduced barrier height is sufficiently large
[.’)V:c 25), the kink has hardly any effect on the location of the barrier or the
generalized barrier frequency A.

A second difficulty has to do with the fact, that strictly speaking, the maximum
of the free energy is « and this limit is reached when the generalized barrier
frequency A = 0.%° In this case, though, the planar surface f is no longer a
dividing surface, as it is perpendicular to the reaction coordinate q and so does
not divide between reactive trajectories. In practice, the VTST flux as a function
of the generalized barrier frequency A becomes large when A is large, reaches a
minimum for some smaller value of A then increases, reaching a maximum and
then goes to 0 when A — 0. As long as the barrier height is sufficiently large
(BV* 25), the minimum is well defined, and there isn’t any special problem. For
smaller barrier heights, one may reach a situation in which the only minimum of
the function is found at A = 0 and in this case, one can no longer use a planar
dividing surface.®®

This does not mean that VTST fails when the barrier is small. The concept
of a planar dividing surface may lose its meaning, but it is possible to generalize
VTST using curved dividing surfaces.* ' Instead of reducing the problem
to a single degree of freedom, one may define two degrees of freedom, a col-
lective reaction coordinate and a collective bath mode, both of which are linear
combinations of all degrees of freedom, but such that the two collective modes
are perpendicular to each other. One constructs a free energy surface which is
the mean potential at each point in the configuration space of the two collective
modes. VTST is then reduced to finding the dividing surface that minimizes the
flux in this two degrees of freedom system. The solution to this minimization
problem is a classical trajectory with infinite period which divides the config-
uration space between reactants and products.**° This minimization may
be used also for low barriers and is guaranteed to bound the exact reactive flux
from above. In Ref. 110 it has been applied to a quartic double well system
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at BV* = 1. Differences between this VTST estimate and the Kramers-Grote-
Hynes factor were not very big.

Drozdov and Tucker have recently criticized the VTST method™ claiming
that it does not bound the ‘exact’ rate constant. Their argument was that the
reactive flux method in the low barrier limit, is not identical to the lowest nonzero
eigenvalue of the corresponding Fokker-Planck operator, hence an upper bound
to the reactive flux is not an upper bound to the ‘true’ rate. As already discussed
above, when the barrier is low, the definition of ‘the’ rate becomes problematic.
All that can be said is that VTST bounds the reactive flux. Whenever the reactive
flux method fails, VTST will not succeed either.

VTST is a formalism which enables one to obtain estimates for the rate in
the presence of non parabolic potentials. It has been used for the cusped barrier
problem™ and most recently for estimating the rate in bridged systems, where the
distance between the reactant and product wells is very large.** There are other
methods for studying such nonlinear systems. Calef and Wolynes™ suggested
a heuristic method, which generalizes the Kramers-Grote-Hynes expression by
fitting a temperature dependent barrier frequency so that the partition function of
the associated parabolic well best mimics the partition function of the inverted
potential in the barrier region. This procedure is very convenient, since in many
cases, it leads to simple analytical expressions for the rate, as for example in the
bridged system.®* Its disadvantage is that it is in reality only an interpolation
formula, correct in the limit of strong friction and it reduces to the TST expression
when friction is weak. Berezhkovskii et al** suggested a different approximate
solution and applied it to cusp shaped and quartic barriers. Drozdov, improved
this approximation, so that it also agrees with the parabolic barrier limit.:

VTST has also been applied to systems with two degrees of freedom coupled
to a dissipative bath.s Previous results of Berezhkovskii and Zitserman which
predicted strong deviations from the Kramers-Grote-Hynes expression in the
presence of anisotropic friction for the two degrees of freedom™"** were well
accounted for. Subsequent numerically exact solution of the Fokker-Planck
equation” further verified these results.

The main advantage of the VTST method is that it can be applied also to
realistic simulations of reactions in condensed phases.!?> The optimal planar
coordinate is determined by the matrix of the thermally averaged second deriva-
tives of the potential at the barrier top. VTST has been applied to various models
of the CI™+CH3Cl Sn2 exchange reaction in water,”** a system which was
previously studied extensively by Wilson, Hynes and coworkers.”** Excellent
agreement was found between the VTST predictions for the rate constant and the
numerically exact results based on the reactive flux method. The VTST method
also allows one to determine the dynamical source of the friction and its range,
since it identifies a collective mode which has varying contributions from differ-
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ent modes of the composite system and bath. The VTST method for determining
the friction is similar to the local normal modes method developed subsequently
by Stratt and coworkers. 12°

\VA TURNOVER THEORY
V.1 CLASSICAL MECHANICS

When the coupling between the system and the bath is weak, the rate limit-
ing step becomes the diffusion of energy from the thermal bath to the system.
Transition state theory, using a dividing surface in configuration space grossly
overestimates the rate since it assumes that reactive trajectories are thermally dis-
tributed. In the energy diffusion limited regime, the exchange of energy between
the particle and the bath is slow, and once the particle has sufficient energy to
react it does so. The population of reactive particles with energy above the top
of the barrier is severely depleted relative to the canonical distribution. In this
limit, one must consider the dynamics, a thermal equilibrium theory such as TST
is insufficient (even if one chooses a dividing surface in energy space'?127),

Kramers solved the problem in the underdamped limit but could not find a
uniform formula valid for all damping strengths. In adeep analysis of the Fokker-
Planck equation in phase space, valid when the friction is Ohmic (9(s) = 7),
Mel’nikov and Meshkov128-129 derived a uniform expression for the rate leading
from the energy diffusion limited expression to the TST expression for the rate
Eq. 17). The Kramers-Grote-Hynes expression for the rate (Eq. 18) is valid
in the spatial diffusion limited regime and reduces to the same TST expression
when the damping becomes weak. Mel’nikov and Meshkov therefore argued that
a uniform theory, valid for all friction strengths is obtained by multiplying their
expression with the prefactor (75F / W*) of the Kramers-Grote-Hynes expression.
Pollak, Grabert and Hanggi (PGH)® provided a uniform solution for the rate
also in the presence of memory friction, and showed why the uniform expression
really is a product of three terms - a depopulation factor for the energy diffusion
limited regime, the TST rate expression and the Kramers-Grote-Hynes factor
which accounts for the spatial diffusion limited regime. In the underdamped
limit, the Mel’nikov Meshkov and PGH theories are identical. But even for
Ohmic friction they are different away from this limit. In the following, we will
briefly outline the ideas underlying PGH theory and compare whenever necessary
with the Mel’nikov-Meshkov approach.

The main difference between the two approaches is that PGH consider the
dynamics in the normal modes coordinate system. At any value of the damping,
if the particle reaches the parabolic barrier with positive momentum in the unstable
mode p, it will immediately cross it. The same is not true when considering the
dynamics in the system coordinate for which the motion is not separable even
in the barrier region, as done by Mel’nikov and Meshkov. In PGH theory the
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energy diffusion limited regime is not characterized by a small damping constant
(% < 1), but by a weak coupling between the unstable normal mode p and the
other stable modes.

The potential of mean force may always be written as:

1

w(a) =w(0) — 3w ¢ +-wi(a) 22)

where wy(q) is designated as the nonlinearity of the potential of mean force and
we assumed that the barrier is located at g = 0. The exact equation of motion for
the unstable mode is:

5 — A p = —wgow] (uoop + u10)
1 (Moo p +U10). (23)

where we used the notation uic =} ; ujoy; and ud,+ u? =1 (see also Eq.
9). If u; = 0, the motion of the unstable mode is decoupled from the rest of the
stable modes. In this limit, the escape rate would be zero since the particle cannot
escape from the well without receiving the necessary energy from its surrounding.
The small parameter which identifies the energy diffusion limited regime is thus
ur. For - Ohmic friction, sinceug, = (1 +5%)~"', itis clear that in the limit
thatg — 0; u3, — 1 sothatu; — 0. In other words, the weak damping limit,
identified as -z — 0 is a special case of the energy diffusion limited regime,
identified asu; < 1. In the presence of memory friction, there exist limits such
that u,— 0 but A¥ # w*50 Claims to the contrary not withstanding,™ using
u, as the perturbation parameter leads therefore to a more general theory for the
depopulation factor than any theory based on the weak damping limit which is
defined by a small damping constant, defined as ¢(0).

The energy E of the unstable mode is defined as: E =3p? - ‘Z?\izpz +
wi(Uoop). When the particle is in the close vicinity of the barrier one may
ignore the nonlinear part of the potential w;, . If the energy E > 0 the particle will
cross the barrier, if E < 0 it will be reflected. Following Kramers we imagine
injecting particles at a constant rate near the bottom of the well and removing
them when they reach the adjacent well or the continuum. The system will
approach a steady state probability W with a constant flux across the barrier. If
the barrier height is sufficiently large with respect to ksT then close to the bottom
of the well the probability W will be identical to the thermal distribution.

For E <0, let f(E)dEdt denote the probability to find the system within the
time interval dt, with a mode energy between E and E + dE at the barrier of the p
mode. For a thermal distribution W, near the barrier top feq(E) = [%;_ Q—ie*f“.
The rate of transitions out of the well is by definition

M= L dEf(E) (24)

since all particles reaching the barrier with positive energy in the unstable mode
escape. This is not true for the system coordinate g where the coupling with
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the bath can cause the particle to recross the barrier and is a major difference
between PGH theory and the Mel’nikov Meshkov approach. The distribution f (E)
is determined by the conditional probability P(E|E")dE that a system leaving the
barrier region with energy E’ in the p mode returns to the barrier with an energy
between E and E + dE. In the steady state,> one will find that the distribution of
particles f(E) at energy E is related to the distribution at energy E’ by the relation

0
£(E) :J ] dE/P(EJE/)F(E"). (25)

The boundary condition for this integral equation is that deep in the well, equilib-
rium is maintained. If the barrier height is large with respect to kgT, this allows
one to replace the lower limit of the integration by — oo.

The dynamics of the energy diffusion process is in the probability kernel. As
in the theory of Mel’nikov and Meshkov, if the barrier height is large relative
to ksT, the rate determining process occurs only at energies in the vicinity of
the barrier top and so only the structure of the energy kernel around the barrier
top is important. As detailed in Refs. 49,50 the ensuing probability kernel is a

Gaussian:
% E _ EI A 2
P(EE’) = (%) exp (‘E(“T+“)‘> . (26)

The important quantity here, is A which is the average energy lost by the unstable
p mode as it traverses from the barrier to the well and back. The equation of
motion for the unperturbed unstable mode is § + V’(p) = 0 and this defines the
trajectory p(t) which at time —eo is initiated at the barrier top, moves to the well,
reaches a turning point and then comes back to the barrier top at the time + <o,
The force exerted by the unstable mode on the bath comes from the nonlinearity
F(t) = —w{[ugop(t)]. The average energy loss A, to first order in u, is then
found to be (see also Eq. 10):

[e9)

A= j_m DAL FO) = j ML), 27)

—0C

For many one dimensional potentials, the infinite period trajectory is known
analytically so that also the Fourier transformed force F(A) is known analytically.
Finding the energy loss reduces then to a single quadrature.

At this point, one may solve the integral equation, a detailed description of the
solution method may be found in Refs. 51,128, here we summarize the result.
The rate may be factorized into a product of three factors:

Al
I'=Trst¥ . (28)
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The TST rate Isr has already been defined above (Eq. 17), the Kramers-Grote-
Hynes spatial diffusion factor is defined in Egs. 7 and 18. The depopulation
factor v is found to be:

T=Y(A)= —
(A) exp( N X X2+1z

2 (29)

1 Jm In[1 — e-BA(X”%)])
When the energy loss is small in comparison to keT the depopulation factor
reduces to y ~ BA and one recovers Kramers’ estimate for the rate in the energy
diffusion limit. When the energy loss is large compared to kBT the depopulation
factor approaches unity exponentially fast, y ~ 1—%Ae‘ 7 EQ. 28 gives
an expression which covers all possible damping strengphs and thus provides a
uniform solution for the Kramers turnover problem. The result given in Eq. 29 is
correct for a single well potential. For a double well potential in which the energy
loss in each of the two wells is A,, Ap, one must revise the integral equation to
take into consideration the flux returning from each one of the wells. As shown
by Mel’nikov,"®* the depopulation factor becomes:

Y(Aq)Y(4p)

T VB A (@)

PGH theory has its limitations. The derivation depends on three central
conditions:

(a) First order perturbation theory, uf < 1.

(b) The energy loss is mainly determined by the dynamics at the barrier energy.

(c) A large reduced barrier height v* > kgT.
When the ‘small’ parameter v, is of the order of unity, the energy loss will typ-
ically become large too. Since the depopulation factor becomes exponentially
insensitive to the energy loss when it is large, it will often be the case,™ that even
though condition (a) does not hold, the rate expression remains quite accurate.
In the presence of memory friction it may happen that the bottleneck for the
energy diffusion process is at energies substantially lower than the barrier height.
as demonstrated recently by Tucker and coworkers.®*** In this case PGH
theory must be substantially modified, see for example the discussion in Ref.
127. Finite barrier corrections to the depopulation factor have been discussed
by Mel’nikov.* In the presence of memory friction, even when the perturba-
tion parameter is small it may happen that the effective barrier for the unstable
mode motion will become very small and this will again cause a breakdown of
PGH theory. This deficiency may be corrected by using a curvilinear reaction
coordinate, as suggested by Reese and Tucker.”™

The solution of the integral equation (25) may be also used to obtain infor-
mation on the distribution f (E) of particles hitting the barrier.?® One finds for
example, that in the underdamped limit, the average energy is VA < kgT
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in agreement with earlier predictions of Blttiker et al."* In this limit, reactive
trajectories with substantial energy above the barrier get depleted and their dis-
tribution is very different from the thermal distribution. More details about the
distribution may be found in Ref. 136.

PGH theory has been extended. It can be used in conjunction with VTST
and optimized planar dividing surfaces,®® in which case, the energy loss is to
be computed along the coordinate perpendicular to the optimal planar dividing
surface. In the same vein it has been generalized to include the case of space and
time dependent friction.® **

In many cases, when the damping is weak there is hardly any difference
between the unstable mode and the system coordinate, while in the moderate
damping limit, the depopulation factor rapidly approaches unity. Therefore,
if the memory time in the friction is not too long , one can replace the more
complicated (but more accurate) PGH perturbation theory, with a simpler theory
in which the small parameter is taken to be Z—i'f for each of the bath modes. In

such a theory, the average energy loss has the r%uch simpler form:

1(* [* ' )
A=2J j dtdt’g(t)y(t—t")a(t’), (31)

-0 v —00
The expressions for the depopulation factor as given in Egs. 29 and 30 for the
single and double well potential cases respectively, remain unchanged. This
version of the turnover theory for space and time dependent friction has been
tested successfully against numerical simulation data, in Refs. 68,137.

Away from very weak damping, the PGH estimate for the energy loss as given
in Eq. 27 typically gives lower energy losses than the Mel’nikov estimate (Eq.
31). This is caused by the fact that in PGH one is evaluating the energy loss
from the unstable normal mode which is already affected by the medium. The
differences show up in the intermediate turnover region, where typically the PGH
estimate for the rate is lower than the Mel’nikov-Meshkov estimate. Numerical
simulations indicate that the PGH estimate is in fact more accurate.%

The turnover theory has also been generalized to systems with more than one
dimension in which the Hamiltonian describing the dynamics of the particle in
the absence of friction has more than one degree of freedom. The existence
of two (or more) system modes leads to a much richer physics than in the one
dimensional case. In the weak damping limit, a critical parameter is the extent
of coupling between the two modes. If the coupling is stronger than the coupling
of each mode to the bath, then there will be efficient energy transfer between
the modes and the spectator mode will be able to ‘feed’ energy into the reaction
coordinate. In such a case, one would expect the two dimensional rate to be
larger than the one dimensional.**** If the intramode coupling is weaker than
the coupling to the baths then one would expect the multi-dimensional dynamics
to reduce to an effective one dimensional case.*® A complete turnover theory
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should be able to reduce correctly to all these limits and provide solutions also
for intermediate regimes.

The extension of Kramers energy diffusion result to the multi-dimensional
case, when the coupling between the two modes is ‘strong’ was given by
Matkowsky, Schuss and coworkers, 2 Borkovec and Berne™ ** and Nitzan.®
The multi-dimensional solution in the spatial diffusion was given by Langer’ for
Ohmic friction and by Nitzan®* and Grote and Hynes= for memory friction.
In the moderate and strong damping regimes, a critical parameter is the friction
anisotropy, the ratio of damping strengths in the two modes. Berezhkovskii and
Zitserman1 "** have shown that depending on the coupling between the modes
and the friction anisotropy, one can obtain regimes in which the “‘standard’ Langer
solution, which is based on a parabolic expansion around the saddle point of the
multi-dimensional potential energy surface fails. A turnover theory which deals
uniformly with all these cases has been proposed by Hershkovitz and Pollak’™*
and reviewed in Ref. 49.

V.2 SEMICLASSICAL TURNOVER THEORY.

There are two main ingredients that go into the semiclassical turnover theory,
which differ from the classical limit> In the latter case, a particle which has
energy E > 0 crosses the barrier while if the energy is lower it is reflected. In a
semiclassical theory, at any energy E there is a transmission probability T(E) for
the particle to be transmitted through the barrier. The second difference is that the
bath, which is harmonic, may be treated as a quantum mechanical bath. Within
first order perturbation theory, the equations of motion for the bath are those of a
forced oscillator, and so their formally exact quantum solution is known.

These differences imply that the classical expression for the escape rate Eq.
24 is replaced by its semiclassical version:

= J dET(E)f(E). (32)
The integral equation (25) is also modified:
f(E) = J dE'P(E[E)R(ENF(E"). (33)

where R(E) = 1 — T(E) is the reflection coefficient. The quantization of the bath
of stable normal modes affects the probability kernel P(E|E"), which is no longer
Gaussian (see also Eq. 38 below). Although the energy loss remains the same
as given in Eq. 27, the variance is larger than the classical variance and higher
order cumulants do not vanish.

If one uses for the transmission coefficient, the parabolic barrier result

2nE

T(E) = [+ expl ) (34)
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then the solution of the integral equation can be obtained in closed form. The
resulting expression for the rate is valid only for temperatures such that ABAF <
2w, that is for temperatures above the crossover temperature**** that separates
between tunneling dominated reaction at low temperatures and activated barrier
crossing above it. The derivation follows the same path as the solution of the
classical equation. Details are provided in Ref. 51. The resulting expression for
the rate now becomes a product of four factors:
A

Tq = rTSTE:YQ~ (35)
The quantum thermodynamic factor Z is the quantum correction to the Kramers-
Grote-Hynes classical result in the spatial diffusion limited regime, derived by
Wolynes:**

Q]
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where wn, :% are the Matsubara frequencies and w, is the harmonic fre-
quency of the reactants well in the potential of mean force w(q).

The quantum depopulation factor also differs from the classical and takes the
form:

ABAE o In[1 — P(x —1/2)]
Yqo = exp ( 5 sin(ABAT/2) Jim dxcosh(xhﬁ?\i) —cos(hBAi/Z)) (37)

where the Fourier transformed quantum probability kernel is given by the exp
sion:

1 r’ I(A)F(A)2[cosh(ABA/2) — cos(x/BA]

“hPx-tDl =77 ] A sinh(1ipA/2) -38)

—00

where F(A) is the Fourier transform of the force as given in Eq. 27.

This semiclassical turnover theory differs significantly from the semiclassical
turnover theory suggested by Mel’nikov,” who considered the motion along the
system coordinate, and quantized the original bath modes and did not consider
the bath of stable normal modes. In addition, Mel’nikov considered only Ohmic
friction. The turnover theory was tested by Topaler and Makri,® who compared
it to exact quantum mechanical computations for a double well potential. Re-
markably, the results of the semiclassical turnover theory were in quantitative
agreement with the quantum mechanical results.

The expressions presented above are restricted since we used the parabolic
barrier transmission probabilities. Extension of the theory to temperatures below
the crossover temperature may be found in Ref. 136. More sophisticated quantum
rate theories will be discussed in Section V.
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V.3 TURNOVER THEORY FOR ACTIVATED SURFACE
DIFFUSION.

Activated diffusion occurs in a variety of different physical contexts, including
surface diffusion of atoms and molecules,?* the current voltage characteristics
of superconducting devices™ or the rotation of molecules in solids or on sur-
faces.™ Experiments on diffusion on metal surfaces have shown in recent years
that there is a finite probability that a diffusing atom will hop over more than one
adjacent site before being retrapped.?* The activation energy for multiple hops
has been found to be larger than the activation energy for single hops.?* There is
thus experimental impetus for working out a turnover theory for surface diffusion.
Long hops were observed in a variety of numerical simulations.***" The ex-
perimental observations have revived interest in the classical theory of activated
rate processes,® =1t and the escape dynamics of a particle moving on
an infinite periodic potential.

Activated surface diffusion may be modeled by a one dimensional GLE in
which the potential of mean force w(q) is a periodic potential, with alternating
barriers and wells. The distance between adjacent wells (the lattice length) is
denoted lo This problem is richer than the escape problem in a single or a double
well potential discussed above. Here, beyond the rate of escape from a well (I'),
the particle has a probability Pj of hopping a distance jlo before being retrapped.
The turnover theory gives explicit expressions for these probabilities as a function
of the damping strength. From these quantities one obtains the mean squared
hopping length (1%) = 322, P;j?13 and thus the diffusion coefficient which is
D= lF(lz .156,162

2

As in the single and double well case, the starting point for the evaluation of
the escape rate is an equation for the stationary flux of particles exiting each well
at either barrier.*®* The number of particles per unit energy and per unit time
hitting the right (left) barrier of the j-th well with positive (negative) velocity
is denoted by (f;") (fj™) For simplicity, the transmission probability through the
barrier is taken as the parabolic barrier result (see Eq. 34) although one may also
use anharmonic transmission probabilities, as done for example in Ref. 136. The
reflection symmetry of the potential and the boundary conditions about the 0-th
well implies that £} (E) = fZ;(E).

As the particle traverses from one barrier to the next it changes its energy.
The conditional probability kernel P(E|E") that the particle changes its energy
from E” to E is determined by the energy loss parameter & = A and a quantum
parameter a = 5123% The quantum kernel is as in Eq. 38. The main difference
between the double and single well cases and the periodic potential arises in the
steady state equation for the fluxes:

i (E) = J_ dE'P(E[E")R(E)f; (E') + T(ENF, (EN)]. (39)
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The boundary conditions for the fluxes are:

fF(E) = 8jo5——=e PF,  E— —oo (40)
where Jj, is the Kronecker *5” function, and C is the equilibrium ratio of panltlgn
functions around the barrier and the bottom of the well: (C=2¢? sin(Z)Ze V9,
see also Eq. 36.

The number of particles per unit time, trapped in the j-th well (I}), is given by
the difference between the incoming and outgoing fluxes of the j-th well:

o0
= | CETEI, (€)+ 0 (8) ~ 1 (E) — 1 (B @1
-0

The rate of escape I from the 0-th well is ' = —I'o. The probability of being
trapped at the j-th well is Pj%:.

The periodicity of the potential implies that one can solve the integral equations
by Fourier transforms, the details may be found in Ref. 163. The result for the
partial rates is:

2
N = —sd%JO dksinz(‘z‘)cos(jk)
sin(Z) [ In[G(t — % k)]
X expl a Jﬁmdrfcosh(%ﬁ)—cos(%)}' (42)

r . .
where I'yy = FTSTE% is the rate of escape from the 0-th well in the spatial
diffusion limited regime. The expression for the diffusion coefficient simplifies
considerably because of the infinite summation:

=Yg expl

D g sin(Z) % In[1 + P(t -5

g JVOO dt ] (43)
where Dsd = }_lzl“sdis the diffusion coefficient in the spatial diffusion limit and
is independent of the energy loss &. The ‘depopulation factor’ YqQ is as given in
Eq. 37.

Egs. 42 and 43 provide a uniform expression for the partial rates, the decay
rate and the diffusion coefficient in terms of the energy loss &, the quantum
parameter a and the rate expression in the spatial diffusion limit. The mean
squared traversal distance may be obtained directly from the ratio of the diffusion
coefficient to the escape rate.

From an experimental point of view, a quantity of major interest is the hopping
probability distribution P;. A major source of friction for surface diffusion of
metal atoms on metal surfaces is phonon friction. As shown in Refs. 164-167,
the typical phonon friction is expected to be Ohmic (although there are claims
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that it is superohmic’®) and rather weak.® Since the timescale in which
metal atom diffusion is measured is typically seconds, the reduced barrier height
for diffusion is usually rather large BVIt > 15. Therefore the characteristic
reduced energy loss found for such systems is 3 < & < 10. In this limit of
weak damping but moderate to large energy loss, the expressions for the hopping
distribution simplify considerablys: and in the classical limit (a — o) they
become exponential in the energy loss &:%"°

j—3/2

Piv1 =P_(41) =~
P (j+1) \/7?5
This result has a simple physical interpretation. When the energy loss is large, the
distribution of escaping particles is thermal. *® Therefore the fraction of particles

that start at a barrier top and make it to the adjacent barrier top is given by (the
barrier energy is 0):

CRE A P (44)

© % B’ Ve, 2
F2i ~L dEJo dE'P(EJE/Je PE :erfc(—z—) ~ \/—7—1—36 4 85> 1, (45)
where the classical Gaussian probability kernel (Eq. 26) was used. The general-
ization to longer hogs is evident.

In this exponential hopping limit, the activation energy for a hop length of
(j + Do is larger by kgTd/4 than the activation energy for a hop whose length
is jlo. This result is in good agreement with experimental observation for the
diffusion of Pt on the Pt(110)-( 1 x2) missing row reconstructed surface.2* For this
system, the reduced energy loss varies from 5.8 to 7.4 over the temperature range
studied experimentally (300-380 K). The absolute magnitude of the energy loss
is estimated to be 0.19 eV leading to an added activation energy of ~ .05 eV for
double jumps as compared to single jumps. A somewhat different interpretation
of the added activation energy has been suggested in Ref. 171.

The exponential hopping limit can be worked out in the presence of tunnel-
ing,}"2 one then has to add the transmission factor into Eq. 45. The result is that
the quantum double hopping probability is reduced by the factor Z-cot( 7z)< 1
showing that tunneling and above barrier reflection tend to reduce the multiple
hopping probability. This reduction, first discovered in Ref. 163 leads to an in-
teresting inverse isotope effect. The diffusion coefficient has two contributions,
one is the escape rate T, the other is the mean squared hopping length (I*). The
former is always increased due to tunneling. The latter is always decreased due
to tunneling and above barrier reflection. The reduction is much larger for weak
damping ( 8 << 1) than for strong damping ( 6 >> 1). The net result is that when
the energy loss is small, the quantum diffusion coefficient is smaller than the
classical but for large energy losses, it is larger.

In a typical experiment?*'* one measures the time dependence of the
spatial probability distribution of the initially localized particle. At long times
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the evolution is universal, controlled by the diffusion equation and the shape of the
distribution is Gaussian. At the early stage however, the shape of the distribution
is sensitive to the hopping distribution. The time dependent distribution is a
function of only three parameters, the energy loss 3, the rate I'sq and the quantum
parameter a. In contrast to the procedures used by the experimentalists,t+7
where they assume that each I is an independent parameter, in the classical limit,
one should fit the complete time dependent distribution using only & and T'sq as the
two experimental parameters. All measured time dependent distributions have
been shown to be described accurately using this two parameter theory.® "7
Finally, it should be mentioned that the power of the turnover theory for multiwell
systems reviewed here has not been yet fully appreciated by the community. For
example, in Ref.,"®the authors claim that the Mel’nikov method is generally not
valid in the multiwell case’. These authors use the Onsager-Machlup formalism,
valid for very weak noise, in which the escape dynamics is described in terms
of optimal paths for which the friction along the path is minimized."® This
approach, is of interest in itself, and has not yet been applied systematically to the
periodic potential problem. However, the Mel’nikov formalism can be applied
to finite multiwell problems, where for each specific potential one must modify
the integral equation (see Egs. 25 and 39) according to the structure of the wells
and barriers of the problem at hand.

V. QUANTUM RATE THEORY
V.1 REAL TIME METHODS

A major unsolved problem in theoretical chemistry today is obtaining quantum
reaction rates in large systems. Large, meaning anywhere between four atoms
and infinity. The advent of fast computers allows for simulations of force fields
for systems of ever increasing size. The use of classical mechanics as a tool
for studying the dynamics is by now a standard procedure. However, the Monte
Carlo methods which are essential for obtaining numerically exact quantum rates
have thus far largely eluded the quantum dynamicist. The averaging over a large
number of oscillatory terms, even with today’s computers, does not converge.
The impressive state of the art computations on dissipative system? 118
remain limited and are not readily generalized to large ‘realistic’ systems.:

One way of overcoming these problems is by treating the dissipation approxi-
mately, Whether one uses the Lindblad form'*® or second order perturbation
theory,**** one can write down quantum dissipative equations of motion which
are linear in the density. If the system is limited to two or three degrees of freedom,
one can integrate the resulting equations of motion exactly. This methodology
has been developed extensively by Kosloff, Tannor and their coworkersies
and is today perhaps the most practical tool for understanding the effects of dis-
sipation on quantum processes. The major disadvantage of this methodology is
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its approximate and phenomenological character, especially when the damping
is moderate or strong.197

A different way, developed extensively by Schwartz and his coworkers,**® ** is
to use approximate quantum propagators, based on expansions of the exponential
operators. These approximations have been tested for a number of systems,
including comparison with the numerically exact results of Ref. 38 for the rate in
a double well potential, with satisfying results. **

Much effort has been expended in recent years in developing semiclassical real
time methods,”**® which are based on initial value representations, following
Herman and Kluk* The advantage of the semiclassical approach is that one
averages only over classical trajectories, however one is still faced with two
problems. One is that it is necessary to average over amplitudes with varying
phases and convergence is slow. The second one is that each amplitude is
weighted by a prefactor which depends on the monodromy matrix. The prefactor
is prohibitively expensive to compute in large systems. Progress has been made on
both fronts. Makri and later Miller and their coworkers'®****? take advantage
of the forward-backward time symmetry of quantum thermal correlation functions
to reduce the oscillations. Most recently Shao and Makri**° have suggested ways
of computing semiclassical correlation functions without the prefactor.

In contrast to the difficulties in computing real time quantum properties, the
numerical computation of quantum thermodynamic properties is a well advanced
field.?*** Efficient quantum Monte Carlo methods have been developed for
computing partition functions and thermodynamic averages for systems with
many degrees of freedom. It is therefore an old dream of dynamicists to use ther-
modynamic quantities, for computing dynamical properties. A straightforward
route would seem to be numerical analytical continuation, going from the inverse
temperature to real time B — it. This route has been studied, using for example
Pade approximants®” and the upshot of much work is that for short times of
the order of 4B, one could obtain reasonably accurate quantum dynamics, but if
longer times are important, one runs into difficulties.

A second analytic continuation methodology which is becoming increasingly
popular is based on the inverse Laplace transform. The idea is to compute imag-
inary time correlation functions and by Laplace inversion obtain the real time
correlation function. This route has been tested extensively in recent years with
some success.™*° Especially noteworthy is a very recent paper by Rabani
and Berne?2® in which the quantum reactive flux expression for the rate is ex-
pressed as an inverse Laplace transform of an imaginary time flux flux correlation
function, The main stumbling block though is the Laplace inversion. Whether
one uses maximum entropy techniques®®? or singular value decomposition
methods,?*?* the bottleneck is the sensitivity of any of the methods to noise.
Since presumably the imaginary time signal comes from quantum Monte Carlo
computations, it is inherently noisy and it is difficult to reduce the noise suffi-
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ciently to obtain accurate dynamical information. An additional problem is that
when quantum effects are really important, such as in the deep tunneling region,
it turns out that the computation of the imaginary time correlation functions does
not converge very easily either.””

Progress has been recently made in constructing an iterative inverse Laplace
transform method which is not exponentially sensitive to noise.?**" This
Short Time Inverse Laplace Transform (STILT) method is based on rewriting the
Bromwich inversion formula as:

BE (o
f(E]———ez—ﬂJ dtelBH(p + it) (46)

—

where f(B) = [3° dEe~PEf(E). Eq. 46 is exact for any B for which the Laplace

transform does not diverge. The STILT formula is obtained by expandingf( B+it)
with respect to the time variable t up to second order:

?((5+it)g%‘(meitln’?(ﬁ)—%tzln“?(s) @)

where we used the notation In® f(p) = %;—‘;}In f(B). Inserting the Gaussian
short time approximation into Eq. 46 gives a Gaussian approximation for the
function f(E).

The exact inversion formula does not specify though the value of the Laplace
transform variable B. For each B we thus obtain a different Gaussian approx-
imation to the original function f (E). Consider the function e #®f(E). For a
given value of B it might have a maximum at some value of E, say Ef. In the
vicinity of the maximum a Gaussian approximation may not be bad. But for a
different value of B, the maximum will shift, and the Gaussian approximation
will be valid but albeit using the changed value of . In other words, the short
time approximation is considerably improved by allowing the Laplace parameter
B to become a function of the original variable E. One would want to choose
this dependence such that the maximum of the Gaussian follows the maximum
of the original function. B (E) is therefore determined by the ‘stationary phase’
condition E + In” f(B) = 0. The STILT formula is then:

_ ePEEAB(E)]

T (48)
/2 In” f1B(E)]

This approximate inversion formula is quite accurate for bell shaped or mono-
tonically increasing functions f(E). It can be substantially improved by iteration.
One Laplace transforms the function f, [E) and then applies STILT to the differ-
ence function f(B) - f1(B). The iterated inversion formula is exact for the class
of functions E™e~*E. As shown in Ref. 227 it is stable with respect to noise. It
has been applied successfully for obtaining quantum densities of states in Ref.
226.

f1(E)
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V.2 QUANTUM THERMODYNAMIC RATE THEORIES.

V.21  Centroid transition state theory. A third methodology, is to con-
struct approximate theories for dynamical properties, which make use of only
thermodynamic quantities. In analogy with classical TST, Gillan, Voth and
coworkers??8-232 have formulated and studied a quantum TST which is based on
the centroid potential of mean force w¢ (q):

wela) =~ In (Tr5(q ~q)eP). (49)

The quantum mechanical Tr operation is represented as a path integral over all
closed paths g(t) whose time (t) average is centered at the point q such that
g=q= ﬁ Jgﬁ d t q (1 ). The centroid potential of mean force is thus obtain
from a restricted summation over all paths whose zero-th Fourier mode in a
Fourier expansion of the path integral is given by q. Deep tunneling reflects
itself as a significant lowering of the barrier of the centroid potential of mean
force.233,234

Centroid TST is obtained using the classical formula as given in Eq. 18 ex-
cept that one substitutes the classical potential of mean force with the quantum
mechanical centroid potential of mean force. The analog of the spatial diffusion
limited regime in the presence of dissipation can be obtained by introducing a
variational centroid TST. For example, Schenter et al?®® included the optimal
planar dividing surface VTST method described in Section I11.D above, within
the centroid TST method for GLE’s. Comparison with numerically exact com-
putations on a model system with two degrees of freedom showed that except for
the case of a slow bath mode, the variational centroid method is quantitative. The
same methodology was then generalized in Ref. 236 to arbitrary solute solvent
interactions.

Further improvement of the centroid method came with the introduction of
centroid dynamics.237238 Here the fundamental idea is to construct a centroid
Hamiltonian in the full phase space of the system and the bath. The Boltzman
factor is then the one obtained from this centroid Hamiltonian while seal time
dynamics is obtained by running classical trajectories. This method has been
applied to realistic systems?**2® and recently derived from first principles.244
The main advantage of the centroid methodology is that thermodynamic quantum
effects can be computed numerically exactly as it is not too difficult to converge
numerically the computation of the centroid potential.

V.2.2 Quantumtransition state theory. The centroid method is one way
of formulating a quantum TST. Other ways have also been devised. For example
Hansen and Andersen?4> have suggested a quantum thermodynamic theory which
is based on an extrapolation to long time of the short time quantum flux flux
correlation function. By construction, the method gives the correct parabolic
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barrier limit, It has been recently applied successfully to the 3D D+H, reaction
by Thompson246 but only at temperatures for which tunneling is not too important.
Computations on an asymmetric one dimensional Eckart barrier showed that the
method can give unphysical results if the asymmetry is too big.

A central challenge is to formulate a variational quantum TST. Such a theory
should have the following properties:

a: The quantum TST expression is derived from first principles.

b: The evaluation of the rate is based on knowledge of the matrix elements of the
thermal density matrix (zle—ﬁ‘qlz'). No real time propagation is necessary.

c: The expression is a leading term in an expansion of the rate in terms of a ‘small
parameter’ and reduces to known results in known limits.

d: The theory is variational, allowing for optimization by variation of a dividing
surface.

e: The theory gives an upper bound to the exact rate.

Variational upper bounds to the quantum rate have been found.247-251 The
trouble is that they are not very good. Typically, in the deep tunneling regime,
where the transmission factor T < 1 the best upper bound derived to date goes
as~vVT>T.

The history of quantum transition state theory spans more than half of the
twentieth century. Perhaps the most inspired (and oldest) guess was Wigner’s
expression for the thermal rate.252 Wigner suggested that the quantum rate
be computed as a product of the Wigner phase space representation? of the
thermal density operator and the classical flux operator. This approximation
gives the correct leading order expansion term in & for the rate and has been
used by Miller® to derive a semiclassical transition state theory which led to
the concept of the instanton. It has also served as a source of inspiration for
other approximate theories. For example, instead of using Wigner’s distribution
function, Chapman et al®® suggested using a semiclassical partition function.
This idea was implemented by Sagnella et al.2¢ Though useful and instructive,
Wigner’s expression which is a wonderful guess, was never derived from first
principles. Millerl®% proposed a variational thermodynamic quantum expression
based on the Weyl correspondence rule and classical rate theory. But it too, is not
derived (property a), there is no ‘small expansion parameter’ (property c), and
the theory does not give an upper bound to the rate (property e).

As described below, it is possible to construct a theory which satisfies condi-
tions a-d and at least thus far it has been found empirically to bound the exact
quantum rate from above. This Quantum Transition State Theory (QTST) is
predicated on the exact quantum expression for the reactive flux, derived by
Miller, Schwartz and Tromp:257

K(T) = Q:(T)™" lim TriF(3, qas )Rt} A(t) = &R/ R/A. (50)



Classical and quantum rate theory for condensed phases a

R is the step function operator which is unity on the product side ( g > 0) and is
zero on the reactant side (q < 0). ?( B, qgs) is the symmetrized quantum thermal
flux operator at the dividing surface defined by q:

5 1
F(B,das) = e F2 5 [98(a ~ das) + 8(@ — qas)Ble P2 (s

Obtaining the exact rate (which is independent of qg4s), necessitates a real time
propagation. A numerically exact solution is feasible for systems with a few
degrees of freedom,258-263 put as already discussed above, there is still a way to
go before one can rigorously implement the time evolution in a liquid.

The region of the potential surface which determines the outcome of the
reaction, is a strip localized in the vicinity of the saddle point to reaction.284 The
time propagation must be carried out long enough to determine those parts of
the wave packet that end up on the reactant or the product side. VVoth, Chandler
and Miller? therefore suggested replacing the exact time propagation needed
to determine the rate in Eq. 5 1, with an approximation based on a parabolic
barrier truncation of the propagator and exact evaluation of the quantum density
and flux operators. They obtained good agreement with exact results for a
symmetric Eckart barrier, but negative unphysical results for the asymmetric case
at low temperatures, perhaps because they didn't use the symmetrized form of
the thermal flux operator.

QTST s predicated on this approach. The exact expression 50 is seen to be
a quantum mechanical trace of a product of two operators. It is well known,
that such a trace can be recast exactly as a phase space integration of the product
of the Wigner representations?>3 of the two operators. The Wigner phase space
representation of the projection operator lim,_ ., A(t) for the parabolic barrier
potential is h(p + mw*g). Computing the Wigner phase space representation
of the symmetrized thermal flux operator involves only imaginary time matrix
elements. As shown by Pollak and Liao,2%6 the QTST expression for the rate is
then:

o0

karst(T) = Q. (T) " f dpdghlp + mw'alow (F(B, das)ip, q).  (52)
—00

This derived expression satisfies conditions a-d mentioned above and based on

numerical computation266-269 seems to bound the exact result from above. It is

similar but not identical to Wigner’s original guess. The quantum phase space

function which appears in Eq. 52 is that of the symmetrized thermal flux operator,

instead of the quantum density.

QTST was applied to symmetric and asymmetric Eckart barriers in Ref. 266.
Variational QTST was tested on the asymmetric Eckart barrier in Ref. 267. QTST
is derived by rewriting the potential as a sum of a parabolic barrier term and a
nonlinearity, as in Eq. 22. Therefore, it is a leading term for an expansion of the
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exact rate expression, where the nonlinearity wy (q) is the small parameter. The
first order correction was also studied in Ref. 267. It was seen that this leads to
a replacement of the step function about the classical separatrix with an integral
of an Airy function, localized about the classical separatrix. The semiclassical
limit of QTST was studied in Ref. 270. Application to a model system of a
symmetric Eckart barrier coupled bilinearly to a single harmonic bath mode was
presented in Ref. 268. QTST was found to be as accurate as the centroid based
approximation, with the added advantage that for all parameters studied, QTST
bounded the numerically exact results from above. Application to the collinear
hydrogen exchange reaction2® also gave numerical upper bounds to the exact
rate. The theory correctly accounted for the famous ’corner cutting’ found in the
deep tunneling regime of this model system.

Further refinements of QTST may be obtained by replacing the parabolic
barrier projection operator with the classical projection operator. Pollak and
Eckhardt?7® showed that this approximation is identical to the semiclassical limit
of the quantum projection operator. This Mixed Quantum CLassical rate The-
ory (MQCLT) was originally proposed in Ref. 266 and implemented in Ref.
267. Subsequently, Miller and coworkers?’? used the same theory to study the
dissipative double well problem and justified it with what they termed as the
linearization approximation.2! 1271272 MQCLT may be also thought of as the
leading term in an %2 expansion of the projection operator.®’” The first order
correction term was also studied in Ref. 267. The main disadvantage of MQCLT
is that as the dimensionality of the system increases, one needs to carry out a
multi-dimensional Fourier transform to obtain the thermal flux operator in the
full phase space of the system and this becomes as difficult as computing the
numerically exact projection operator.2 QTST does not suffer from this defi-
ciency, since the parabolic barrier projection operator is restricted to one degree
of freedom, one only needs the phase space projection of the symmetrized ther-
mal flux operator in this degree of freedom. This necessitates a one dimensional
Fourier transform for which there is no real difficulty.

One of the interesting outcomes of all these studies is the phase space picture
of the symmetrized thermal flux operator. At high temperatures, when tunneling
is negligible, the flux operator is localized around the barrier with a positive
(negative) peak when the momentum is positive (negative). As the temperature
is lowered, each of these peaks subdivides into alternating positive and negative
lobes. The net reactive flux is then an integral over these alternating positive
and negative contributions, restricted by the projection operator. Even though
one is using a thermodynamic quantity, the alternating positive and negative
contributions make it increasingly more difficult to obtain the net flux.

Both QTST and MQCLT can be extended to deal with dissipative systems,
whose classical dynamics is described by a GLE.2”# The main difficulty is that
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the system coordinate (q) which is coupled bilinearly to a continuum of harmonic
bath modes, is not the unstable mode (p) at the saddle point. The parabolic barrier
projection operator must be taken along the unstable mode. As aresult, it is not
trivial to integrate out the bath modes when evaluating the symmetrized thermal
flux. However, by a linear transformation of the coordinate system and using
some tricks given in Ref. 80, one can integrate out the bath modes. The resulting
influence functional does not cause any undue difficulty. Using similar tricks,
one can also define an MQCLT for the dissipative problem. Here one recasts the
one dimensional GLE into a coupled set of GLE’s, one for the unstable mode p,
the other for the collective bath mode ¢ (see Eq. 23). The classical projection
operator is then obtained for the stochastic trajectories ofthe two coupled GLE’s,
the symmetrized flux operator is computed numerically exactly, by integrating
out the rest of the modes in the usual way.?’

V.3 SEMICLASSICAL RATE THEORY

The semiclassical theory of rates has along history.”* #27?% Here, we will
just review briefly the final product, a unified theory for the rate in a dissipative
system, at all temperatures and for arbitrary damping. Two major routes have
been used to derive the semiclassical theory. One is based on the so called ‘ImF’
method,?’” whereby, one derives a semiclassical limit for the imaginary part of
the free energy. This route has the drawback thatthe semiclassical limit is treated
differently for temperatures above and below the crossover temperature.*?®

A second approach, has as its starting point a semiclassical TST proposed
by Miller,” whereby the microcanonical rate constant is given by an adiabatic
semiclassical theory, in which the modes perpendicularto the reaction coordinate
are harmonic and the tunneling is given by the uniform semiclassical microcanon-
ical expression. Thermal averaging of thisexpression, taking suitable limits, has
been shown by Héanggi and Hontscha to give a theory that reduces to the low
and high temperature ImF results and the crossover between them is smooth and
natural.”>*® In this way, the artificial treatment of the high and low temperature
regions has been removed. This theory is also incomplete, its starting point is a
rather heuristic semiclassical expression of Miller, which has not been derived in
any systematic way from first principles.

Pollak and Eckhardt have shown?270 that the QTST expression for the rate (Eq.
52) may be analyzed within a semiclassical context. The result is though not very
good at very low temperatures, it does not reduce to the low temperature ImF
result, The mostrecentand “best’ resultthus far is the recent theory of Ankerhold
and Grabert,® who study in detail the semiclassical limit of the time evolution
of the density matrix and extract from it the semiclassical rate. Application to the
symmetric one dimensional Eckart barrier gives very good results. It remains to
be seen how their theory works for asymmetric and dissipative systems.
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VI. DISCUSSION

In retrospect, one may say that the theory of activated rate processes has
matured during the past twenty years. Atthis point, theory precedes experiment.
Forexample, although the energy diffusion limited regime is well understood as is
the full Kramers turnover, there isn't a single chemical system to date where one
can say with any certainty that the Kramers turnover has really been observed.?%
Even in the spatial diffusion limited regime, itis not at all clear that the Kramers-
Grote-Hynes transmission factor really is important. There are papers which use
itto explain experimental data such as fractional power dependence of the rate on
viscocity.?*#* However, numerical simulations indicate that the transmission
factor is usually of the order of unity.*®*'** The characteristic frictional
forces one finds in liquids are weak and one is usually in the region where the
simple TST theory accounts for almost everything, provided that one chooses a
‘reasonable’ reaction coordinate.

This does not mean though that everything is well understood. For example,
our studies of the stilbene system show that the barrier of the potential of mean
force for this system depends strongly on the pressure.”*'* Can one come up
with a ‘simple’ theory for this pressure dependence? Is this specific to the stilbene
system or is this a general result? There is a large body of experimental data on
unimolecularisomerization reactions in liquids which has not yet been addressed
in depth by theorists.>® One should expect to see during the coming years
some serious molecular dynamics studies of these reactions in varying solvents
and under different temperature and pressure conditions.

It seems that the Kramers turnover theory is ideally suited for understanding
surface diffusion. Thus far though, it has only been applied to metal atom diffu-
sion on metal surfaces, where the classical limitis appropriate. A thorough study
ofits applicability to hydrogen atom diffusion , where tunneling is important,28
has not yet been undertaken. In most cases, one would suspect that the one
dimensional theory reviewed here would not be sufficient and except for special
surface geometries, one would have to take into account at least the coupling
between the two degrees of freedom parallel to the surface. Even the classical
multi-dimensional Kramers theory is not yet fully matured,””®® so there is
quite some way to go in developing the quantum theory.

A fundamental assumption in the turnover theory, is that the escape rate
is independent of the initial conditions. This is the case if the barrier height
is sufficiently large. Any trajectory will spend a long time in a well before
escaping and therefore there is no appreciable memory of the initial condition.
The situation is altered in a system with many degrees of freedom, such that
the number of degrees of freedom (N) is larger than the reduced barrier height
V#ksT.* In this case, the average thermal energy of the molecule is larger
than the barrier height and interesting state specific phenomena may occur. [t



Classical and quantum rate theory for condensed phases 35

is this property which underlies the recently discovered effect of vibrational
cooling found for the isomerization of the thermal trans-stilbene molecule in the
electronically excited S, state.288 Here, the photo-excitation process leads to an
initial vibrational energy distribution which is cold when compared to the thermal
distribution. If the surrounding medium manages to rethermalize the molecule
prior to reaction, then one will observe isomerization at the thermal rate. If
isomerization is fast relative to energy transfer, the rate will be as expected for
the cold molecule, that is it will be much slower. It is for this reason that the
isomerization rate of the isolated trans-stilbene molecule is much slower* than
in the liquid phase.2%° This theory was corroborated by experimental observation
of a parabolic like dependence of the trans-stilbene isomerization rate on the
photo-excitation frequency.?®

One of the exciting new directions is the control of activated rate processes
using external fields. Addition of an external field opens the way for a wide vari-
ety of new phenomena such as stochastic resonance,” resonance activation,”
directed transport,22 control of the hopping distribution in surface diffusion?°
and more. Even the addition ofa constant force to the problem leads to interesting
additional phenomena such as the locked to running transition, which remains
a topic of ongoing research.?** Quantum mechanics in the presence of external
fields may differ significantly from the classical.2%

In summary, one may expectthatactivated rate processes in Chemistry, Physics
and Biology will continue to be a source of new challenges, in which the contact
between experiment and theory will be coming closer.
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Abstract

The theoretical basis for the quantum time evolution of path integral centroid

variables is described, as well as the motivation for using these variables
to study condensed phase quantum dynamics. The equilibrium centroid
distribution is shown to be a well-defined distribution function in the canonical

ensemble. A quantum mechanical quasi-density operator (QDO) can then be
associated with each value of the distribution so that, upon the application
of rigorous quantum mechanics, it can be used to provide an exact definition
of both static and dynamical centroid variables. Various properties of the
dynamical centroid variables can thus be defined and explored. Importantly,
this perspective shows that the centroid constraint on the imaginary time paths
introduces a non-stationarity in the equilibrium ensemble. This, in turn, can
be proven to yield information on the correlations of spontaneous dynamical
fluctuations. This exact formalism also leads to a derivation of Centroid
Molecular Dynamics, as well as the basis for systematic improvements of
that theory.

l. INTRODUCTION

The Feynman path integral formalism** in quantum mechanics has proven to
be an important vehicle for studying the quantum properties of condensed matter,
both conceptually and in computational studies. Various classical-like concepts
may be more easily introduced and, in the case of equilibrium properties,*® the
formalism provides a powerful computer simulation tool.

Feynman first suggested’? that the path centroid may be the most classical-
like variable in an equilibrium quantum system, thus providing the basis for the
formulation of a classical-like equilibrium density function. The path centroid
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variable, denoted here by the symbol xo, is the imaginary time average of a
particular closed Feynman path x(t) which, in turn, is simply the zero-frequency
Fourier mode of that path, i.e.,

1 ("
Xg = B Jo drx(t) . (1)
Feynman noted that the quantum mechanical “centroid density,” pc (xc), can be
defined for the path centroid variable which is the path integral over all paths
having their centroids fixed at the point in space xc. Specifically, the formal
imaginary time path integral expression for the centroid density is given by

pelxe) J---JDX(T]S(XC—XO) exp{=SIx(t)l/A} . @

In this equation, Dx(x) and S[x(t)] are, respectively, the position space path
measure and the Euclidean time action. The centroid density also formally
defines a classical-like effective potential, i.e.,”®

Vem(xe) = — kgT Infpc(xc)] + const. (3)

so that the quantum partition function is given by the integration over the centroid
positions. It should be noted that a one-dimensional notation is adopted through-
out this article. Moreover, the centroid density equation above is written as a
proportionality since the normalization chosen below in subsequent equations is
slightly different than in our other work (except Refs. 9,10). It should also be
appreciated that the centroid density is distinctly different from the coordinate
(or particle) density p(x) = (x|exp(-p H)|x). The particle density function is
the diagonal element of equilibrium density matrix in the coordinate representa-
tion, while the centroid density does not have a similar physical interpretation.
However, the integration overeitherdensity yields the quantum partition function.

FollowingFeynman’s original work, several authors pursued extensions of the
effective potential idea to construct variational approximations for the quantum
partition function (see, e.g., Refs. 7,8). The importance of the path centroid
variable in quantum activated rate processes was also explored and revealed,™ **
which gave rise to path integral quantum transition state theory* and even more
general approaches.** The Centroid Molecular Dynamics (CMD) method™ *®
for quantum dynamics simulation was also formulated. Inthe CMD method, the
position centroid evolves classically on the effective centroid potential. Various
analysis®™ ** and numerical tests for realistic systems"” have shown that CMD
captures the main quantum effects for several processes in condensed matter such
as transport phenomena.

Until recently, however, a true dynamical understanding of the centroid vari-
able has remained elusive, including the explicit motivation for employing these
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variables in a dynamical context outside of the equilibrium path integral formal-
ism. Also not until recently has an exact definition of centroid time evolution
been used to derive the CMD method, although some of the early justifications
employed analytic arguments.”® Thus, systematic improvements and/or gener-
alizations of the CMD method were difficult to develop. A focus of the present
review is to describe primarily our recent advances in centroid theory® in which
the time evolution of centroid variables are both rigorously defined and dynam-
ically motivated. The outgrowth of the CMD approximation from this exact
formalism is also described.” In should be noted that a preliminary version of
this work appeared in Ref. 18, but the full analysis was presented in Refs. 9,10.
Similar work appears to have been published later by other authors in Ref. 19.
This review is organized as follows: In Sec. Il., the explicit form of the
centroid distribution is derived, while Sec. Il1. then builds on this formalism to
define dynamical centroid variables. Section IV. contains a derviation of the
CMD approximation based on the exact formalism, while Sec. V. provides some
illustrative applications of CMD. Section V1. contains concluding remarks.

1. THE CENTROID DISTRIBUTION FUNCTION
1.1 BACKGROUND

For a classical system at equilibrium, the canonical partition function is written

dxdp H
Z — l?’ (X,P)

where B = 1/kgT and H(x, p) is the classical Hamiltonian. The integrand is the
classical canonical distribution function, which gives the equilibrium probability
for the system to have the given values of position and momentum. A classical
system at equilibrium is completely specified by these variables so the classical
partition function given by Eq. (4) contains all equilibrium information.

The quantum version of the partition function is obtained by replacing the
phase space integral and the classical Boltzmann distribution with the trace op-
eration of the quantum Boltzmann operator, giving the usual expression

T = T PR ©)

This expression contains all the equilibrium information for the quantum ensem-
ble as is in the classical case.
One possible definition of a classical-like quantum density is given by

h (o.9) o0 . B . _ B
pqm(x,p)ﬂr{ﬂj dcj_ dn et(x-xiHinP=p) ‘3“} )

Forexample, the classical-like phase space trace ofthis distribution function over
the scalars x and p gives the quantum partition function in Eq. (5). However, in
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the path integral formalism,1-4 one can show that the above equation is equivalent
to the phase space centroid density.15,16,20 Since all three operators, &, f, and
A, appear within the same exponential (in contrast to the Wigner distribution,
for example), one might assert that the resulting density pgm (x, p) should behave

more classically. This perspective is supported by the fact that the centroid
density is always positive definite.****

The positive definiteness of the centroid distribution of Eq. (6) suggests that
effectively some sort of “smearing” of the underlying quantum mechanical infor-
mation has been involved. Although this has resulted in the desirable property of
positivity, the lost information makes it impossible for the resulting distribution
to specify the quantum system completely. One thus needs auxiliary quantities
to recover the full information. One can indeed find this missing information and
therefore construct acomplete formal framework.

112 THE CENTROID VARIABLE AND DISTRIBUTION
FUNCTIONS

We first assume a separable Hamiltonian of the following standard form:

2
ﬂ(sz,ﬁ):‘HV:Z%M?(sz) . @)

Application of the Trotter factorization®** for the exponential operator appear-
ing in Eq. (6) leads to the expression

- (8)

By representing the operator containing the potential energy in position state
space and the one containing the kinetic energy in momentum space, one obtains
the following phase space discretized path integral representation:

etRHNP—BR _ iy del ---de,,H Jdm ---Jd‘pplxﬁ

P—oo

GLCRHNP—BA _ [ (e—mv—icsz)me—(ﬁ?—ima)/PeA(av—icsz)m)P

P—oo

=

{e~eka1/z+im/sz e~ EPE/2Mm D /P o—eV(xk 1)/24+10xi11/2P
1
Xilpic) {Prlxic+1)} (¢, | )

/\?IT‘

X

where € = 3/P. Insertion of this expression into the integrand of Eq. (6) and the
use of the explicitexpression for the momentum eigenstate leads to the following
identity,

B[ o o B
®lxe,pe) = ﬂjvm dCJ dn etl(&—xe)+in(P-pe) BA

—00
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. AP .
= ‘Jl_)ﬂgo (ﬁ) th “'de‘m J dps '--Jdpp 8(xo —xc)8(po —pe)

x [x1) H{ —eV{xx)/2 ~€vk/2m —eV{xk 1 )/Zei(Xk—m+x)vk/h} (x, ., (10)

where
1 /1 1
Xy = E zX]+X2+"'+XP+§XP+I > (11)
1
o = it (12)

According to Eq. (10), {x'|®(x¢,pc)Ix”) is a phase space path integral repre-
sentation for the operator 27th exp{—ﬁﬂ}, where all the paths run from x” to x”,
but their centroids are constrained to the values of xc and pc.*% Integration over
the diagonal element, which corresponds to the trace operation, leads to the usual
definition of the phase space centroid density multiplied by 2w/. In this review
and in Refs. 9,10 this multiplicative factor is included in the definition of the
centroid distribution function, pc (xc, pc). Equation (6) thus becomes equivalent
to

Pelxc,Pe) =Tr{@(xc,pc)} (13)

and Eq. (5) can be rewritten as

dx.dp.
Z:J'J' ZCTCh/ pC(XCpr) 3 (14)

where the subscript ‘gm’ has been omitted because there is no longer a need to

distinguish the classical and quantum cases. Note that the factor of (2m)™ has

been grouped with the centroid variable differentials, so that the centroid distri-

bution function has an alternative normalization to that in our earlier work.15 16
Equation (10) can be simplified to give in the P — oo limit

2
(<10, pe)’ >—exp{ i (ve= G = )) ](X’l@(XC)IX”) ,
(15)
where
, . 22 B x(BR)=x"
(IpxeI) =y T L(O)=X'DX(T)5(Xc—Xo) exp{—Six(1))/A} . (16)

Combining Egs. (13), (15), and (16), the centroid distribution function can be
written as

2
PclXe,Pe) = evﬁpc/Zmpc(xc) an
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with

2mh2p

m Jx(O):x(sh)

pelxe) Dx(7) 8(xc —xo) exp{=Slx(t)I/i}, (18)

where xo is given by Eq. (11) with the cyclic condition, xp+1 = x1, i.e., the usual

centroid variable for cyclic paths. Equation (18) is the usual position centroid
density aside from the free particle normalization factor.

1. EXACT FORMULATION OF CENTROID DYNAMICS
.1 QUASI-DENSITY OPERATOR

For an arbitrary canonical density operator, the phase space centroid distri-
bution function is uniquely defined. However, this function does not directly
contain any dynamical information from the quantum ensemble because such
information has been lost in the course of the trace operation. The lost informa-
tion may be recovered by associating to each value of the centroid distribution
function the following normalized operator:

Belxe,pe) = Qlxe,pe)/peXe,Pe)

eiPe 'R (x/j(x )x")
=JdX/J dx//|xl>{e_m(x/_xﬂ)l/zﬁﬁZ pelxc) <X”] (19)

where Egs. (15) and (17) have been used. This operator is Hermitian and has
nonnegative diagonal elements in position state space, yielding some of the
necessary conditions for a density operator.??> However, the condition of positive
definiteness is not guaranteed for the above operator in general. Thus, it cannot
be termed a genuine density operator and is therefore considered to be a “quasi-
density operator” (QDO).

Integration of the operator of Eq. (10) over xc and p¢ results in the following
important identity:

] — dx- d XesPe) 2
e ‘m=” 2;;° pe Zp ) 8ee e - (20)

This expression suggests that the canonical ensemble can be considered to be an
incoherent mixture of the QDO’s, each with different position and momentum
centroids, and the latter having a probability density given by pc(xc, pc)/ Z.
Each QDO can then be interpreted as a representation of a thermally mixed state
localized around (x¢,pc), with its width being defined by the temperature and
the system Hamiltonian.
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1.2 EQUILIBRIUM CENTROID VARIABLES

For any physical observable corresponding to the operator A, one can define
a Corresponding centroid variable as

Ac = TI'{/SC(XC,DC]A} ’ (21)

which is interpreted as an average of the given physical observable over the state
represented by the QDO. Since 3c(xc,pc) is a function of xc and pe, Ac is
likewise a function of xc and pc. The average of the centroid variable Ac over
the phase space centroid density can then be shown to be identical to the usual
canonical equilibrium average of the given operator as follows:

1 dx.d
<Ac>c = ZJJ 2;;c Pc(xc»pc)Ac

1 dx.d N a
_ zTr{” e P pc(xc,chsc(xc,pc)A}

= lz-Tr{e‘ﬁﬂA}E (7\\) , (22)

where the second equality is a consequence of the linearity of the trace operation
and the third equality comes from the relation in Eq. (20).

When the physical observables of interest are position and momentum, the cor-
responding centroid variables are equal to the position and momentum centroids,
ie.,

Xe = Tr{/SC(XCspC)Q} s (23)

pe = Tr{8c (xe, pc)P) - (24)
In this way, the position and momentum centroids are seen to be the average
position and momentum of the state represented by the QDO 8 (Xe, Po)-

The explicit expressions for two additional physical observables will prove to
be useful later. The first one is the centroid force, given by

Fo = Tr{gc(xc»pc)F(Q)}
c 1 d
- n{&drg) e . @)

where the second equality can be shown from Egs. (16) and (18). The centroid
potential of mean force is defined as

1
Vem(xc) = — B In{pc(xc)} (26)
so the centroid force of Eq. (25) can be expressed as
d
Fe(xe) = = =—Vem(xc) 27)

dx.
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where Vem(xc) is the usual effective centroid potential.
The second quantity of interest is the centroid Hamiltonian,

He = Tr{Bc(xe, pc ) A} = Te + Ve (28)
where T¢ is the centroid kinetic energy given by
N p2
Te = Tr{0c(xc, Pe)5—1} (29)
and V¢ is the centroid potential energy given by
Ve =Tr{8c (xc, pe)VR)} . (30)

This latter quantity may be different in general from Vem. While V. can be easily
expressed in a path integral form, the expression for T is more complicated and
is detailed in Ref. 9. It should be again noted that in earlier literature the effective
centroid potential Vem(xc) has been denoted by Vc(xc) (see Sec. IV.). However,
the notation used here and in Refs. 9,10 allows for a distinction between the two
effective potentials.

1.3 GENERALIZATION TO TREAT BOSE-EINSTEIN AND
FERMI-DIRAC STATISTICS

In the case that exchange interactions becomes important, the formalism may

be appropriately extended by generalizing Eq. (10) to give the following sym-
metrized version in discretized notation,®

1\ (P-1d
otxe,pe) = Jim 3 (217 (77
n
xjdm ---jdxm jdm --'jdpp (%0 — xe)5(po — pe) (lix))

H {e—ev(xk)/Ze—€Pk'M_“Pk/ze—ev(xkn /2 ot (X =Xk 11 )'Pk/ﬁ} <XP+1 1(31)
k=1

where d is the dimensionality of the total system, 1 is the permutation operator
of identical particles, and M is the inverse mass matrix. The case of (+1)!1
corresponds to Bose-Einsten statistics and the case of (-1 )“ to Fermi-Dirac
statistics. The centroid distribution resulting from Eq. (31) is positive for bosons,
but it can be negative for fermions.2

1.4 DYNAMICAL CENTROID VARIABLES

It is first important to provide an explicit argument for casting centroid vari-
ables in adynamical context. To do this, one can manipulate a simple proof of the
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stationarity of the canonical ensemble, Consider, for example, the Heisenberg
position operator %(t). The equilibrium average of this operator is given by

(&(1) = -]Z-Tr{e-ﬁ’*eim/ﬁsze-m*/ﬁ}
_ ] —iAt/h,~BA iAt/h) _ ] ~BAL) _
= zTr{e e Ple 52} = zTr{e 52} =(®) , (32)

where the canonical ensemble is seen to be stationary because the Boltzmann
operator commutes with the time evolution Operator. However, by using the
identity from Eq. (20), one can re-express Eq. (32) in terms of the QDO such that

<Q(t)> — (2> =JJ‘ dxcdpe pelXe,Pe) Tr {&;(xc,pc)emt/hﬁe”m‘/h} ’

2mth Z
(33)
or bed ( )
X Xe, PN
(Q(t)>=<5?>=” Zcﬂ;c Be Epc Tr {8c(tixe, pe)®} ,  (34)
where the QDO is now time-dependent such that
Beltyxe, pe) = eV, (xc, pe)et Pt/ (35)

with the cyclic invariance of the trace being used in going from Eq. (33) to Eq.
(34).
Equation (34) is now written in a classical-like form as

_ _ dxcdpe pelxe,Pe)
@ity = @) = | [ Tpope EePd gy (@)
where x¢ (t) is a scalar centroid “trajectory”, given formally by the expression

xc(t) =Tr {/gc(t;xmpc)'?} . 37

The interpretation of the above expressions is rather remarkable. The centroid
constraints in the Boltzmann operator, which appear in the definition of the QDO
from Egs. (19) and (20), cause the canonical ensemble to become non-stationary.
Equally important is the fact that the non-stationary QDO, when traced with
the operator ® (or P) as in Eq. (37), defines a dynamically evolving centroid
trajectory. The average over the initial conditions of such trajectories according
to the centroid distribution [ cf. Eq. (36) ] recovers the stationary canonical
average of the operator % (or $). However, centroid trajectories for individual
sets of initial conditions are in fact dynamical objects and, as will be shown in the
next section, contain important information on the dynamics of the spontaneous
fluctuations in the canonical ensemble.
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The time-dependent QDO can be shown to obey the following quantum Liou-
ville equation:

d . i N
'd;éc(tixc»pc) =7 [ﬂ,éc(txcfpc)] . (38)

Accordingly, a generalized dynamical centroid variable at time t can be defined
as

Ac(t) = Tr{bc (e, pe)A} (39)

The average of this centroid variable over the centroid distribution can be calcu-

lated in the same way as the zero time case of Eq. (22). The time derivative of
the dynamical centroid variable is given by

d

d/\ A
aAc(t] =Tr {a;&c(t;xc»pc)A}

=_%Tr{[ﬂ,/8c(t;xc>pc)] ;‘\‘} = ihTr {8°(t;xc’pC) [ﬂ,//&]} (40)

where the fact that A does not have any explicit time dependence has been used
and the last equality results from the cyclic invariance of the trace operation.
A generalization of this analysis is given in Ref. 9 which shows that centroid
variables can also be used to study inherently nonequilibrium situations.

As special cases of Eq. (40), the dynamical laws for the position and momen-
tum centroids are given by

dx.(t) _ Pelt)

ad = m (41)
dpc(t)

o = et (42)

where F¢ (t) is given by inserting the force operator into Eq. (39). Equations (41)
and (42) are the centroid generalizations of Ehrenfest’s theorem.24  Although
these equations have classical forms, the time dependent centroid force is not a
function of the position centroid at time t only, but it can be determined by the
diagonal position space elements of the exact time dependent QDO at time t.
The exception to this rule is when the potentials are quadratic. In this case, the
time dependent centroid force is given by a linear function of the time dependent
position centroid and the above equations are closed.
The time dependent centroid Hamiltonian may be similarly defined as

Hc(t) =Tr{gc(t;xc,pc)ﬂ} . (43)

According to Eq. (40), the time derivative of this is zero because the Hamiltonian
which evolves the QDO commutes with itself. In other words,

He(t) = He(0) (44)
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for arbitrary time t. In the classical limit, this centroid Hamiltonian goes to
the classical Hamiltonian as do the centroid position and momentum and the
dynamical centroid trajectory equations above.

1.5 DYNAMICAL FLUCTUATIONS AND TIME
CORRELATION FUNCTIONS

A centroid trajectory for a given set of initial centroid conditions must contain
some degree of dynamical information due to the nonstationarity of the ensemble
created by the centroid constraints. It is therefore important to explore the
correlations in time of these trajectories. In the centroid dynamics perspective, a
general quantum time correlation function can be expressed as

BO)A®R) = %Tr{e—ﬁﬂﬁeiﬂt/nge-mt/h}
1 dx.d , ~ . A
- Z Jj ch;c pC(XC’pC) Tr{e_lﬂt/héc(xmpc)gelgt/h}\} (45)

where Eq. (20) and the cyclic invariance of the trace operation have been used.

For general operators B, Eq. (45) cannot be expressed in terms of the time
dependent centroid variables defined in the previous section because the time
evolution of S‘C(xc,pc)ﬁ is different from 3, c(xc,pe), A general result can be
derived, however, in the case that B is linear in position and momentum. In
particular, one can show that

dx.d
”—ﬁ:ﬁ Xe ®(xc,Pe)

x(Bh)=x"
= dex’dx” [x") {J Dx (1) %o exp{—S[x('r)]/h}} (x"|

x(0)=x"'

1B
=BL etz e (46)

where the first equality can be derived using Eg. (16) and the second equality is
given by discretizing the integration over A and going through the usual path inte-
gral limit via the Trotter factorization. A similar identity holds for the momentum
centroid, Therefore, for linear operators of the form:

B=Bo+Bi1R+B2f , “7)

the following identity holds:

dxcd 1 (P -
JJ );;;cpc(xcmc)gc(xc»pc)sc=BL dre (P Mﬂ@g M - (48)
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Multiplying the above identity by the general time dependent operator, Ai(t) =
Rt Re~tAtand then taking the trace of the resulting expression, one obtains the
following important identity:

1 dx.d
Z JJ % Pe(Xe,Pe)BeAc(t)

_ llJB D Tr{e__(g—)\)ﬂﬁ e—AHeiﬂt/hAe—iﬂt/h} , (49)
ZB Jo

which is the usual Kubo-transformed equilibrium time correlation function?
from quantum linear response theory. This important identity shows that as long
as the operator B is linear in the position and momentum operators the quantum
time correlation function can be obtained in a classical-like fashion through the
exact time evolution of the centroid variables.

The important step of identifying the explicit dynamical motivation for em-
ploying centroid variables has thus been accomplished. It has proven possible to
formally define their time evolution (“trajectories”) and to establish that the time
correlations ofthese trajectories are exactly related to the Kubo-transformed time
correlation function in the case that the operator B is a linear function of position
and momentum. (Note that A may be a general operator.) The generalization of
this concept to the case of nonlinear operators B has also recently been accom-
plished, but this topic is more complicated so the reader is left to study that
work if so desired. Furthermore, by a generalization of linear response theory it
is also possible to extract certain observables such as rate constants even if the
operator Bis linear.

V. THE CENTROID MOLECULAR DYNAMICS
APPROXIMATION

The CMD method is equivalent to the following compact approximation for
the time dependent QDO: *°

3c(t;xc,pc) zgc(xc(t),pc(t)) » (50)

with the calculation of the phase space centroid trajectories, x¢(t) and pc(t),
given by the generalized Ehrenfest’s relations for the centroid variables. In this
case, the approximate QDO of Eq.(50) closes the dynamical equations as follows:

mie(t) = pe(t) & Tr {Be(xe 1), pe ()5} 51)
Pel(t) ® Fema(t) = Tr {SC(XC(t),pc(t))?} =Felxc(t)) . (52)

where x¢(t), pe(t), and Fng(t) also depend on xc and pc, the position and
momentum centroids at time zero, but these relations are not shown explicitly.
These abbreviations will be used for all the time dependent centroid variables
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considered hereafter unless stated otherwise. The expression Femg (t) represents
the CMD approximation for the time dependent centroid force.

Equation (52) shows that in CMD the approximate centroid force is determined
for the instantaneous centroid position x. (t) by the same functional form as for
the zero time centroid force. Equation defines the zero time centroid force to be
the negative gradient of the centroid potential of mean force, i.e,

Vema(xe) = Vem(xe) = —% I pelxe) - 53)

Thus, the CMD method is isomorphic to classical time evolution of the phase
space centroids on the quantum centroid potential of mean force, Vemg. 1t should
be noted that in the harmonic, classical, and free particle limits, the CMD rep-
resentation for the QDO [Eq. (50)] is also exact. Furthermore, it should also be
noted that the approximation in Eq. (50) does not rely on any kind of mean field
approximation.

The approximation embodied in Eq. (50) deserves further explanation. It
assumes that the QDO at a later time t has the same mathematical form as
it does at time t = 0, except that the centroids of the physical particles have
moved according to the dynamical CMD equations in Egs. (51) and (52). Such
an approximation can be argued to be reasonable in either of two cases. The
first is when the fluctuations about the centroid are independent of the centroid
location; this is the case of the harmonic oscillator for which CMD is known to
be exact.® More generally speaking, this should also be the case for condensed
phase systems in which linear response theory is a good approximation (i.e., the
quantum fluctuations about the centroid motion are independent of its motion -
they respond linearly). Linear response is often an excellent approximation for
systems which are, in fact, very far from the actual harmonic limit. The second
case for which the approximation embodied in Eq. (50) should be accurate is when
the system exhibits strong regression behavior (i.e., decorrelation of spontaneous
fluctuations), In such instances, one would expect the form of the QDO as it
evolves in time to remain close to its equilibrium form att = 0 even if the
particles (centroids) have moved. Interestingly, as the system approaches the
classical limit, the fluctuations about the centroids in the QDO will always shrink
to zero so they cannot deviate from their t = 0 value. This is why CMD is very
accurate in the nearly classical limit, but the system need not be in that limit to
remain a good approximation. Furthermore, one can also understand why tests
of CMD for low dimensional systems which exhibit rno regression behavior do
not allow a significant strength of the method to be operational.

A second important property of CMD is that it will produce the exact equi-
librium average of a dynamical variable A if the system is ergodic. That is, the
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following relationship holds

1 T
Jim 3 [ aeace = @) (54)
where
Ac(t)=Tr {/Sc (xc(t)>pc(t))'ﬁ\} . (55)

This property may not be possessed by many other approximate methods based
on, e.g., mean field or semiclassical approaches. Also, in low dimensional
systems, the above property is not true for CMD, so to apply CMD to such
systems is not consistent with spirit of the method (though perhaps still useful
for testing purposes).

On the negative side, the exact time dependent centroid Hamiltonian in Eq.
(44) is a constant of motion and the CMD method does not satisfy this condition
in general except for quadratic potentials.

V. SOME APPLICATIONS OF CENTROID MOLECULAR
DYNAMICS

There has been extensive development of algorithms for carrying out CMD
simulations in realistic systems,'827.28 as well as a number of non-trivial appli-
cations of the methodology (see, e.g., Ref. 17). In this section, a few illustrative
applications will be described. The interested reader is referred to the above
citations for more details on CMD algorithms and applications.

V.1 STUDIES ON SIMPLE SYSTEMS

Tests of CMD on simple one-dimensional systems can be carried out by
calculating the symmetrized position correlation function:

1 . . . X
Conlt) = ZTr {e—ﬁr-‘t (Qetﬂt/ﬁQe—lﬂt/h 4 elﬂt/hge—lﬂt/hﬁ) /2} . (56)

In the perspective of the centroid time evolution, this correlation function cannot
be calculated directly but is obtained through the following relation between the
Fourier transforms:

Crnlw) = BhTwcoth (B—g‘ﬁ) & (w) 57)
where CZ, () is the Fourier transform of the Kubo-transformed position corre-
lation function, 2 The relationship between the latter function and the exact
centroid time correlation function, which is calculated approximately by CMD,
was established in Ref. 9 as described earlier.

The centroid distribution function and the effective potential for the CMD

simulation can be obtained through the path integral simulation method,>® but
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this introduces additional statistical errors. For the low-dimensional benchmark
results described here, the numerical matrix multiplication (NMM) method®*
was used. For the details of this procedure, the reader is referred to Ref. 10.

Natural units were used in these simulations, wherem = i = kg = 1. The
sampling of the initial position and momentum centroids were made through the
Nosé-Hoover chain dynamics (NHC)3! on the effective potential of Vem, More
details of these calculations can again be found in Ref. 10.

Results for two types of model systems are shown here, each at the two dif-
ferent inverse temperatures of B = 1 and B = 8. For each model system, the
approximate correlation functions were compared with an exact quantum corre-
lation function obtained by numerical solution of the Schrédinger equation on a
grid and with classical MD. As noted earlier, testing the CMD method against
exact results for simple one-dimensional non-dissipative systems is problemati-
cal, but the results are still useful to help us to better understand the limitations
of the method under certain circumstances.

V.1.1  Single well potential with weak anharmonicity.  The first model stud-
ied was the anharmonic single well potential:
1

_.1 2 3 1 4
V(X)—‘EX +T6X +ﬁ6x . (58)

Figure 1 compares the exact, CMD, and classial correlation functions. For
the case of B = 1, all the results overlap during the time shown except for the
classical result. At longer times which are not shown in the figure, the CMD
result will eventually deviate from the exact one through dephasing.

For the case of B = 8, the quantum effects of the dynamics become more
evident. The CMD method gives the correct short time behavior, but there is
a small frequency shift. However, the classical result is much worse at this
temperature.

V.1.2  Quartic potential. The second model potential studied is given by
the purely quartic potential:

V(x) = %x“ . (59)

No harmonic term is present in this potential, so it represents a good test case
as to whether the CMD method can reproduce inherently nonlinear oscillations.
Along these lines, Krilov and Berne32 have independently explored the accuracy
of CMD for hard potentials in low dimensional systems and also as a basis for
improving the accuracy of other numerical approaches.®

Figure 2 shows the various time correlation functions compared to the exact
result. For B = 1, the CMD method exhibits similar behavior to the classical
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one, with none of the correct coherent behavior existing after about t = 10.
The dephasing in these one-dimensional potentials is a result of simple ensem-
ble dephasing - a well known behavior of one-dimensional nonlinear classical
systems.

Interestingly, for the lower temperature case of B = 8, the CMD method
is in much better agreement with the exact result. In contrast, the classical
result does not show any low temperature coherent behavior. The more accurate
low temperature CMD result also suggests that CMD should not be labeled
a “ quasiclassical ” method because the results actually improve in the more
quantum limit for this system. The improvement of these results over the higher
temperature case can be understood through an examination of the effective
centroid potential. The degree of nonlinearity in the centroid potential is less at
low temperature, so the correlation function dephases less.

V.2 QUANTUM WATER

One of the first applications of CMD to a realistic and important system was
to study the quantum dynamical effects in water.3* It was found that, even at
300 K, the quantum effects are remarkably large. This finding, in turn, led us to
have to reparameterize the flexible water model (called the “SPC/F,” model) in
order to obtain good agreement with a variety of experimental properties for the
neat liquid. An example of the large quantum effects in water can be seen in Fig.
3 in which the mean-spared displacement correlation function, {|x(t) - x(0)|2)
is plotted. (These are new results which are better converged than those in Ref.
34.) Shown are the quantum CMD and the classical MD results for the SPC/F,
model. The mean-squared displacement for the quantized version of the model
is 4.0 x 10° m2s-t, while the classical value is 4.0 x 10°mz2s-1, The error in
these numbers is about 15%. These results suggest that quantum effects increase
the diffusivity of liquid water by a factor of two.

V.3 HYDRATED PROTON TRANSPORT IN WATER

A second important application of CMD has been to study the dynamics ofthe
hydrated proton.3® This study involved extensive CMD simulations to determine
the proton transport rate in on our Multi-State Empirical VValence Bond (MS-EVB)
model for the hydrated proton.z2 Shown in Fig. 4 are results for the population
correlation function, {n(t)n(0)), for the Eigen cation, H;O", in liquid water.
Also shown is the correlation function for D;O* in heavy water. It should be
noted that the population correlation function is expected to decay exponentially
at long times, the rate of which reflects the excess proton transport rate. The
straight line fits (dotted lines) to the semi-log plots of the correlation functions
give this rate, For the normal water case, the CMD simulation3® using the MS-
EVB model yields excellent agreement with the experimental proton hopping
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rate of 0.69 ps- Furthermore, the calculated kinetic isotope effect of a factor of
2.1 is also in good agreement with the factor of 1.4-1.6 measured experimentally
(there is some uncertainty in both numbers). In general, this CMD simulation
serves to highlight the power and generality of the method in its application to
realistic systems.

VI. CONCLUDING REMARKS

In this review, the exact formulation of centroid dynamics has been presented.
An important new aspect of this theory is the association of the exact QDO,
given by Eq. (19), to each value of the centroid distribution function. Each
QDO represents a non-positive definite mixed state, which is governed by the
dynamical quantum Liouville equation. A centroid variable is then seen to be
the expectation value of a physical observable for a given QDO. Time evolution
of the centroid variable is therefore a manifestation of the time evolution of the
nonequilibrium distribution for the QDO corresponding to a given set of initial
centroid constraints. A generalized Ehrenfest’s theorem, Eqgs. (41) and (42),
for the centroid position, momentum, and force in turn exists. For the dynam-
ically evolving centroid variable, a relation between the classical-like centroid
correlation function and the Kubo transformed time correlation function is also
exactly derived. This set of rigorous results have then provided both the formal
basis for deriving and improving approximate methods such as CMD, as well
as an explicit dynamical rationale for employing dynamical centroid variables to
study many-body quantum systems. In the strongly quantum regime where the
indistinguishability of particles results in significant exchange interactions, the
appropriate symmetrization should be made to reflect the underlying quantum
statistics.

A significant advantage of the centroid formulation lies in the fact that the
centroid distribution function can be readily evaluated for realistic systems using
imaginary time path integral simulations. Furthermore, the centroid formalism
in essence folds the thermal averaging into the nonstationary distribution which
is then dynamically propagated, thus helping to address the phase oscillation
problem. Therefore, when spontaneous dynamical fluctuations in the canonical
ensemble are of interest, a centroid dynamics formulation such as CMD has
proven to be particularly advantageous as is evidenced by the applications re-
viewed and cited in the present work. Most importantly, the new perspective on
exact centroid dynamics has yielded both a better understanding and a derivation
of CMD, as well as shed light on several possible avenues to improve and gener-
alize the method. In a parallel fashion, significant new applications of CMD to a
multitude of realistic systems are certain to be forthcoming.
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Figure 1  Position time correlation functions for the weakly anharmonic potential at two

different temperatures of B = 1 and B = 8. Shown are the exact (dots), CMD (solid line),
and classical MD (dashed line) resullts.
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Figure 2 Position time correlation functions for the quartic potential at two different

temperatures of B = 1 and B = 8. Shown are the exact (dots), CMD (solid line), and
classical MD (dashed line) results.
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Figure 3  Mean-squared displacement correlation function for liquid water at 300 K.
Shown are the gaumtum CMD (solid line) and classical MD (dashed line) results.
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Figure 4  Semi-log plot of the population correlation function for an Eigen cation in liquid
water at 300 K. Shown are the water (solid line) and heavy water (dot-dashed line) results,
and the best fit (dotted line) to each.
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Chapter 3

PROTON TRANSFER IN CONDENSED PHASES:
BEYOND THE QUANTUM KRAMERS PARADIGM

Dimitri Antoniou and Steven D. Schwartz

Department of Biophysics,

Albert Einstein College of Medicine,
1300 Morris Park Ave.,

Bronx, New York 10461, USA

Abstract This chapter will describe recent advances in the study of quantum particle
transfer in condensed phase. In the Introduction we will discuss some con-
cepts and results from the classical theory of reaction rates. The starting point
for our quantum theory is the generalized Langevin equation and the equiv-
alent formulation due to Zwanzig that allows for a natural extension to the
quantum case. We also show how one can perform calculations for realistic
systems using aMD simulation as input. This forms the basis of our quantum
Kramers calculations. Inthe second section we discuss a method that we have
developed for the solution of quantum many-particle Hamiltonians. Wethen
discuss whether the Hamiltonians that are based on the quantum Kramers
problem are appropriate models for realistic proton transfer problems. In the
final three sections we describe some cases when the GLE-quantum Kramers
framework is not sufficient: symmetric coupling to a solvent oscillation.
position dependent friction and strong dependence on low-frequency modes
of the solvent. In each case we describe physical/chemical examples when
such complexities are present, and approaches one may use to overcome the
challenges these problems present.

I. Generalized Langevin equation. Zwanzig’s Hamiltonian.
Il. Evaluation of quantum rates for multi-dimensional systems.
111. Beyond the Langevin equation/quantum Kramers paradigm:
1. Rate-promoting vibrations.
2. Position-dependent friction.
3. Slow environment modes.
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1 INTRODUCTION

A common approach for the study of activated barrier crossing reactions is
the transition state theory (TST), in which the transfer rate over the activation
barrier V is given by (wr/21)e BV, where wr (the oscillation frequency of the
reaction coordinate at the reactant well) is an attempt frequency* to overcome the
activation barrier. For reactions in solution a multi-dimensional version? of TST
is used, in which the transfer rate is given by

Ly _gv
kTST:kBTZe BV, 1)

where Zx, Zg are the partition functions when the reaction coordinate is at the
transition state and reactantwell respectively. A subtle pointof the multi-dimensi-
onal TST result Eq. (1) is that the effect of the bath is not only to provide thermal
energy, but also to modify the attempt frequency from the bare value wr to the
coupled eigenfrequency ksTZ#Zg. In other words, the pre-Arrhenius factor in
Eg. (1) includes (to some extent) the dynamics of the environment, which is one
reason why the multi-dimensional TST is a successful theory.

An alternative view of the same physical process is to model the interaction
of the reaction coordinate with the environment as a stochastic process through
the generalized Langevin equation (GLE)

t
mgz_erJ dt’y(t —t)s + F(t), (2)
0s 0
where V(s) is the potential along the reaction coordinate s, F(t) is the fluctuating
force of the environment and y(t) is the dynamical friction which obeys the
fluctuation-dissipationtheorem?

1

= mww)e—i%m». @A)

v(t)
Here, T is the Liouville operator and the operator Q projects® onto the orthogonal
complement of $.There are arguments#® that suggest that it is a good approx-
imation to calculate e—1QTtF (0) by “clamping” the reaction coordinate at the
transition state.

It is generally accepted that the GLE is an accurate description for a large
number of reactions. In order to understand the subtleties of the GLE we will
briefly mention three important results.

A cornerstone of condensed phase reaction theory is the Kramers-Grote-Hynes
theory.2 In a seminal paper® Kramers solved the Fokker-Plank equation in two
limiting cases, for high and low friction, by assuming Markovian dynamics
v(t) ~ &(t). He found that the rate is a non-monotonic function of the friction
(“Kramers’ turnover™.) Further progress was made by Grote and Hynes”#who
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included memory effects in their Langevin equation study which they solved in
the high-friction limit. They found a transfer rate equal to the TST rate times the
Grote-Hynes coefficient

N

KGH = wp ' (4)

where wp is the inverted parabolic barrier frequency and )\ff is the frequency
of the unstable? mode at the transition state obtained from the solution of the
integral equation

}\(’f Wy
o 00 ®
where -
) = L ate N by (1), ©)

is the Laplace transform of the dynamical friction. The case of Markovian
dynamics corresponds to y(t) = 2nd(t), or equivalently ?(7\3&): 2n. Many
experimental studies have confirmed the validity of Grote-Hynes theory as an
accurate description of activated reactions in solution.

Another critical result, which provided a more microscopic view of the
Langevin equation, was the proof by Zwanzig® that when the dynamics of a
system obeying the classical Hamiltonian

PZ
H= o2+ V(s)+ )
k

2m

P +lm wy? oG8 ’
Tmyg 2Tk dr T ; @)

is integrated in the bath coordinates, then the GLE Eq. (2) is obtained with a
dynamical friction equal to

C

() = ; to? cos{wit). ®)
It is important to notice that the solution of the GLE depends only on y(t) and
not on the particular set of parameters ck, mk, ok that generate it through Eq.
(8). In order to make this result more intelligible we should emphasize that the
modes k in the Zwanzig Hamiltonian Eq. (7) do not (except in the crystalline
case) refer to actual modes of the system; rather, they represent a hypothetical
environmentthat generates the correct dynamical friction vy (t) through Eqg. (8),
such that when entered in the GLE Eq. (2) it provides an accurate description of
the dynamics.

The third result was the establishment of a connection between the TST and
GLE viewpoints by Pollak.** He solved for the normal modes of the Hamiltonian
Eq. (7) and then used the result in a calculation of the reaction rate through the
multi-dimensional TST. Surprisingly, he recovered the Kramers-Grote-Hynes
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result. This means that the Grote-Hynes theory is a transition state theory for the
hypothetical environment of Eq. (7).

These results suggest a computational strategy for the study of reactions in
condensed phases. One starts from some realistic intermolecular potentials and
performs a molecular-dynamics-Kramers-Grote-Hynes scheme that consists of
the following steps.*? First, we fix the proton at the transition state and run a
MD simulation. The friction kernel y(t) is calculated and along with Egs. (7,8)
enables the calculation of the Grote-Hynes rate. This scheme has also been used
as a means of obtaining input for quantum calculations as well.***

We are now at the point where a quantum theory of condensed phase reactions
may be developed. The Zwanzig Hamiltonian Eqg. (7) has a natural quantum
analog that consists in treating the Hamiltonian quantum-mechanically. In the
rest of this paper we shall call this quantum analog the quantum Kramers problem.

1. CALCULATION OF QUANTUM TRANSFER RATES

The quantum version of the Hamiltonian Eq. (7) has been studied for decades
in both Physics and Chemistry® in the 2-level limit. If the potential energy
surface (PES) is represented as a quartic double well, then the energy eigenvalues
are doublets separated by, roughly, the well frequency. When the mass of the
transferred particle is small (e.g. electron), or the barrier is very high, or the
temperature is low, then only the lowest doublet is occupied: this is the 2-level
limit of the Zwanzig Hamiltonian.

In the 2-level limit a perturbative approach has been used in two famous
problems: the Marcus model in chemistry and the “small polaron” model in
physics. Both models describe hopping of an electron that drags the polarization
cloud that it is formed because of its electrostatic coupling to the environment.
This environment is the solvent in the Marcus model and the crystal vibrations
(phonons) in the small polaron problem. The details of the coupling and of the
polarization are different in these problems, but the Hamiltonian formulation is
very similar.”®

If one assumes Markovian hopping, then in the nonadiabatic limit one can
solve the small polaron problem using Fermi’s golden rule to obtain a transfer
rate that has the following form:

k = AZ e—Bf(T, coupling, bath) ,

©9)

where A is the tunneling matrix element between the initial and final stages and f
is a function of the temperature T, the coupling strength ¢ of the electron to the
environment and of parameters of the bath.

A variation of the small polaron problem is the spin-boson Hamiltonian,
which also belongs to the 2-level limit and is how known to have very rich
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dynamical behavior'” captured when solved beyond Fermi’s golden rule, in the
non-interacting blip approximation.

Charge transfer in solution is different than in crystalline environments since
the solvent dynamics is slow and anharmonicities are important. The standard
theory that describes nonadiabatic tunneling in solution is the Marcus-Levich-
Dogonadze model,'>18 9 which is closely related to the small-polaron problem.
Let's assume that the PES can be modeled by a double well and that tunneling
proceeds from the ground state. The coupling to the solvent environment mod-
ulates the asymmetry of the PES. The probability for tunneling is largest when
the PES is almost symmetric, i.e. when the tunneling splitting is maximum. A
1-dimensional coordinate p is used to describe the configuration of the solvent
coordinates. Let's call p* the solvent configuration that symmetrizes the PES
along the reaction coordinate. When p reaches the value p*, the particle tunnels
instantaneously. For this idea to make sense, the dynamics of the charged en-
vironment must be slow compared to the tunneling time. After the proton has
tunneled, subsequent motion of the polar groups asymmetrizes the potential and
traps the proton in the product well. The solvent atoms are described by classical
dynamics and the reaction barrier is related to the reorganization energy E; of the
medium. The reaction rate is given by

k ~ AZe B(Ecte)? /4 ’ (10)
where e is the exothermicity of the reaction. Similarly to the crystalline case Eq.
(9), the rate has an Arrhenius form and the activation energy is independent of
the height of the potential barrier along the reaction coordinate (the barrier height
does affect the pre-Arrhenius factor.)

The goal of studying the quantum Zwanzig Hamiltonian is to generalize these
results to the case when excitations to higher doublets are possible. This detail
changes the problem completely since there is no small parameter for a perturba-
tive approach.

An earlier approach®was to solve the quantum problem in the high-temperature
limit using Markovian dynamics and assuming a parabolic barrier. The quantum
rate has the following form:202

_=Wo Mo gy
i Wt a
The factor Ao/mb is the classical (Grote-Hynes) correction to the TST result Eq.
(4). The quantum enhancement factor = is equal to

[']

0 202
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Here Q = 2rtksT, oo is the frequency at the bottom of the reactant well, @y is
the frequency at the top of the barrier and % is the Laplace transform Eq. (6) of
the friction function.

One exact formulation for the quantum rate is the Miller-Schwartz-Tromp rate
formula.?2 In this formulation the quantum rate is given by an integration of the
correlation function

1 —+o0
k= — dt Ce(t
=], e, (13
where k is the transfer rate, Zr is the partition function for the reactants and
te= t—ip/2 is a complex time. We should emphasize that Eq. (13) is exact and

not a linear response theory result like other correlation function formalisms.2
The flux-flux correlation function Cs is given (for a symmetric PES) by

c ——L—Jd Jd |2
€= gmz | 99 %9 | 35as

where Hgq is the bath Hamiltonian, q is a N-dimensional coordinate that describes
the bath. For the Zwanzig Hamiltonian Eq. (7) itis f = Z{\':, cigis. We shall
follow convention and call the s subsystem the **system” and the ¢ subsystem the
“bath”. The interaction of the reaction coordinate with the bath destroys phase
coherence of the s wavefunction, and as a result the correlation function decays
to zero after some time which is a new time scale for the transfer problem.

In the last few years we have witnessed the successful development of sev-
eral methods for the numerical solution of multi-dimensional quantum Hamil-
tonians: Monte Carlo methods?* centroid methods,> mixed quantum-classical
methods,?2” and recently a revival of semiclassical methods.®%° We have de-
veloped another approach to this problem, the exponential resummation of the
evolution operator.3-¢ The rest of this Section will explain briefly this method.

The adiabatic approximation in the operator context is written as

. 2
<S!ql|e~1(Hs+Hq+f)tc|Sq>‘ 11 , (14)

s=s’=0

e—tHt = p—i(HotHa+)t o p—iH t—i(Hq+f)t

e it (15)

To improve upon this approximation, we make a Taylor expansion of the left-
hand side of Eq. (15) and then make a resummation to infinite order with respect
to commutators [f, Hs] of the fast subsystem s and to first order with respect to
commutators [f, Hq] of the slow subsystem g. The result is%

e—i(Hs+Hq+f)t ~ e—iHste—i(Hq +f)te+1(Hs+f)te—1Hst . (16)

This approximation has a philosophical and mathematical resemblance to
the linked-cluster expansion?® that has been applied successfully to the small
polaron problem. The linked-cluster expansion is an exponential resummation of
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the matrix element of the evolution operator with respect to the electron-phonon
coupling constant. Of course, in the present problem there is no small parameter
and we resum the evolution operator itself, but it is very interesting that the
success of the linked cluster expansion is due to the fact that it describes correctly
the dynamics at long times'® which is exactly the motivation behind resumming
to infinite order for the fast subsystem in Eq. (16).

Using Eq. (16) the correlation function Eq. (14) can be rewritten as

C = —1—Jd Jd’———az
£ = gz %)% 55

% <ql|e—i(Hq+f)