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Preface to the First Edition

The Structures Notebook was originally written by Tony Hunt as a brief teaching aid for students at
the Royal College of Art who had very little, if any, knowledge of physics or structural behaviour.
The original Notebook was oversimplified but served its purpose as a primer. It has now been
expanded into a more comprehensive book while retaining a simple visual and non-mathematical
approach to structural behaviour.

The purpose of the Structures Notebook is to explain, in the simplest possible terms, about the
structure of ‘things’, and to demonstrate the fact that everything you see and touch, live in and
use, living and man-made, has a structure which is acted upon by natural forces and which
reacts to these forces according to its form and material.

The book is divided into seven main sections, in a logical sequence, and is written in simple
language. Each section, related to its text, contains a comprehensive set of hand-drawn sketches
which show, as simply as possible, what the text is about. The book is almost totally non-
mathematical, since the author believes very strongly that structural behaviour can be understood
best by diagrams and simple descriptions and that mathematics for the majority of people
interested in design is a barrier. The design of structures is a combination of art and science and
to achieve the best solution, concept should always come before calculation.

Professor Tony Hunt
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Preface to the Second Edition

Since this book is about the basics of structure and structural behaviour, both of which are
subject to the laws of physics and mathematics, it is difficult o know what to add.

This book was first puglishecl in 1997. The author feels that some key structural ideas and
assemblies were not illustrated and they have now been included, together with some recent
examples. These expand the range of ideas conceived by different designers and show
further different ways of creating inventive structures and structural assemblies. These illus-
trations are included in a new Chapter 8.

Recently, with some designers, there has been a move away from orthogonal geometries
to more random forms (see ‘informal’ by Cecil Balmond). This has been aided by the enor-
mous power of modern analytical and graphic computing, and has been driven by both
architects’ and engineers’ inferest in exp?oring more complex geometries. This adds to the
complexity of design solutions and has to be considered as part of current design thinking.

Finally, the reaging list has been added to for up-to-date references to books which |
consider to be important for architects, engineers and designers.

Professor Tony Hunt
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Introduction

This book is about the basic structure of things.
lts aim is to develop an understanding of
essential structural principles and behaviour by
a descriptive and largely non-mathematical
approach. It relates to the structure occurring
in such diverse objects as a bridge, a box for
packaging, furniture, buildings etc. and it
covers all the common structural elements
singly and in composite form.

This book is a primer on the subject. There
are a large number of books on building
structures, the most important or relevant of
which are listed in Appendix il.
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Structure and
structural form

Structure

What structure is

Structure is the load-carrying part of all natural
and man-made forms. It is the part which
enables them to stand under their own weight
and under the worst conditions of externally
applied force.

The designer

In the context of structure, a designer is one
who conceives a structural part or a structural
system which functions satisfactorily, is
infegrated successfully within the overall design
and is appropriate for its purpose in terms of
material and form.
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The design process

Without a brief it is not possible to design, since
there are no rules and no constraints.
Therefore, no matter how sketchy, it is the brief
which sets the basic framework for the designer.
It provides the lead-in for the first analysis of
the problem which then develops into an
iterative process, with ideas being tested,
maodified, rejected, until an appropriate solution
to the problem is reached.

Optimum design

A designer should generally aim for the
optimum solution in order to obtain the maxi-
mum benefit with the minimum use of material
within the constraints of strength, stiffness
and stability. The result will be EFFICIENCY
combined ideally with ELEGANCE AND
ECONOMY.

Influences on the designer

The maijor influences on creative structural
design are:

Precedent —  what’s gone on
Awareness —  what’s going on
Practicality = -  howtodo it
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Structural form

Structures take one of four basic forms which
may exist singly or in combination.

Solid An homogeneous mass structure
where the external surface
is independent of the internal
form — a three-dimensional solid
body

Surface An homogeneous surface where
the external and internal forms
are similar — a two-dimensional
panel

Skeletal  Aframework where the assembly
of members gives a clear
indication of the form usually using
one-dimensional elements

Membrane A flexible sheet material
sometimes reinforced with linear
tension elements used either as
single cables or as a cable net.
A variation is the pneumatic
where air under pressure is
contained by a tension
membrane skin

Hybrid A combination of two of the
above forms of near equal
dominance

For examples of all the above, see Chapter 7.
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Structural form in nature

Here are some examples of objects in nature,
all of which have a structure in one or more
forms:

Human and animal skeletons
Birds” wings
Fish

Flowers
Honeycombs
Leaves

Plants

Rock caves
Shellfish
Snails
Snowflakes
Spiders” webs
Trees
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Structural form — man-made

Here are some examples of man-made
objects, all of which have a structure in one or
more forms:

Aeroplanes
Bicycles

Bridges

Buildings

Cars

Clothes

Cranes

Dams

Engines

Fabrics
Fastenings
Furniture

Musical instruments
Packaging

Pottery

Roads

Sculpture (3-D art)
Ships and yachts
Sports gear
Technical instruments
lents

Tools

Toys

Tunnels

Wheels
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Structural materials

All materials have a stiffness and strength and
are manufactured into a shape. Stiffness and
strength are different, complementary
characteristics and describe the properties of
a solid material. Shape affects performance.

Strength

Strength is the measure of the force required
to break the material.

A material can be strong or weak - see
Appendix .

Mild steel stiff and strong
Sheet glass stiff and weak
Nylon rope flexible and strong
Rubber flexible and weak

12



Structural materials

Stiffness

The majority of structural materials behave in
an elastic manner according to Hooke's Law
which states that elastic extension is
proportional to load. When the load is
removed, the material recovers its original
length and shape.

Different materials have different stiffness
characteristics. They can be: stiff, flexible,
stretchy, springy or floppy.

This stiffness is defined for each material
as the £-value —~ Young’s modulus, named
after its discoverer.

E is the value of stress/strain and is a
constant for a given material.

Stiffness and strength do not necessarily go
hand in hand as the above examples show.

13
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Shape

Shape is the third property which affects the
performance of a material in a particular
loading situation. In pure tension, shape does
not matter, but in all other loading modes —
compression, bending and shear — the cross-
sectional shape affects performance.

In general terms, for maximum perform-
ance, the material should be arranged in
order to be as far away from the centre of the
section as possible.

Material behaviour

Materials are either ‘isotropic’ or ‘anisotropic’
depending on their behaviour under load.

Isotropic Providing equal performance
in all directions in both tension
and compression

Anisotropic  Providing differing perform-
ances in different directions
and in compression and
tension

Some examples:

Isotropic materials

Metals
Including steel, aluminium, bronze, titanium
etfc.

14



Structural materials

Anisotropic materials

Timber

Different values for compression and tension.
Different values for load parallel and
perpendicular to the grain.

Concrete and masonry
Good in compression, poor in tension. Steel
reinforcement provides the fension element in
reinforced concrete.

Plastics and reinforced plastics

Usually stronger in tension than compression.
A very wide range of performance according
to type of plastic and reinforcement.

15
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Structural materials
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Loads on structure

All structures develop infernal forces which are
the result of external applied loads and the
weight of the structure itself.

Loads are conventionally divided into a
number of classifications under the following
headings:

Permanent

Dead load The self-load of the object or
part due to its mass

Temporary

The ‘user’ load which is
removable and thus is a ‘live’
load

Imposed load

Thermalload ~ The load induced by
temperature change causing
expansion or contraction of
the object

20

Dynamicload A cyclical load coused by
varying external conditions
which cause the object to
vibrate or oscillate

Structures must always be designed for
the worst anticipated combination of
loading otherwise unserviceability or failure
can result.
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Examples of load cases

Dead load

Aeroplane

Building

Vehicle (bus,
railway carriage,
truck, passenger
car)

Yacht

Object (e.g. chair)

The weight of the plane
without fuel, passengers or
baggage

The weight of the structure,
cladding, fixed equipment
etc.

The weight of the vehicle
without fuel, passengers
or freight

The unladen weight of the
vessel

The weight of the chair
itself

All these are examples of permanent load.

22
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Imposed load

Aeroplane

Building

Vehicle
Yacht

Object (chair)

24

The fuel, passengers and
cargo all of which are
variable

The ‘user’ load — people,
furniture, factory mach-
inery, any equipment
which is movable.
Environmental loads —
snow, the ‘static” effects of
wind

The fuel, passengers,
freight efc.

The crew, stores, fuel,
water etfc.

A person sitting or
standing on or filting a
chair

Nr
PERSON /MousE
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T
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Thermal load

Aeroplane

Building

Vehicle

Object

26

Temperature changes in the
skin due to height and speed
(speed causes air friction and
generates heat)

Roofs and walls facing the sun
are subject to diurnal temp-
erature change. Elements may
have a different outside and
inside temperature

The engine increases in
temperature due to combustion
and outside air temperature. |t
requires cooling

A hot liquid poured into a glass
can cause it to shatter — thermal
shock. A spoon in the glass acts
as a ‘heat sink’
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Dynamic load

Aeroplane

Building

Vehicle

Yacht

Bridge

Object

A sudden change in direction
causes dynamic flexing of the
wings and G forces on humans

Gusty wind conditions cause
oscillations. Surge caused by a
lift starting and stopping. Surge
due to overhead crane travel

Accelerating, decelerating and
cornering all cause dynamic
loads on parts of the vehicle

Wind on the sail causing heel
(overturning). ‘Pounding’ of the
hull in heavy seas

Rolling loads cause the bridge
deck to flex

Rocking or tilting a chair is
dynamic and affects the joints

Imposed, thermal and dynamic loads are all
temporary loads but their worst combination
added to the dead load must be considered
for design purposes.

28
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Equilibrium

To stand up and stay in place structures must
be in equilibrium.

External loads act on a structure and induce
internal forces, both loads and forces having
magnitude and direction.

For equilibrium, reactions must act in an
equal and opposite sense to the applied
loads.

There are three conditions which may have
to be satisfied to achieve equilibrium
depending on the form of loading. These
conditions are expressed as simple equations
with meanings as follows:

V=20 The sum of vertical loads and
reactions must equal zero

H=0 The sum of horizonta!l loads
and reactions must equal zero

M=0 Clockwise moments must
equal anti-clockwise
moments
Moment = load X distance of
load from support or point of
rotation

30

MZ oo

Load (linear)

Reaction (linear)

Moment (bending or rotation)
Sum
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Examples of equilibrium

Vertical

Horizontal

Rotational

32

The load and reactions of an
object sitting on the floor

A horizontal structure carrying a
vertical load producing end
reactions

The tug of war where, for
equilibrium, both teams must pull
with equal force.

The vehicle travelling horizontally
which meets an obstruction

The see-saw where the sums of the
loads x their distance from the
point of support must equal for
balance

Notes:
2 = sum
# = not equal
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Equilibrium

W is constant for object
As P increases, rotation increases

When action line of W falls outside base then
obiject is unstable and falls over

For stability
P, < W,

If y increases and x decreases, instability occurs
when P, > W,

Graphical solution
P and W are drawn to scale to represent load
magnitude and direction, R is resultant

external load
weight of object
= reaction
greater than
less than

P
W
R
>
<

34
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Parallelogram of forces
(vectors)

Forces acting at a point in a direction other
than vertical or horizontal can be resolved into
vertical and horizontal by a vector diagram
drawn fo scale or by trigonometry. Similarly, two
forces can be resolved info a resultant by the
same method. The opposite of the resultant
forms the equilibrium force.

36
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Settlement and earthquake
hehaviour

Both settlement and earthquakes can cause
movements and distress in building structures.
Settlement occurs due to compression of
the soil under the foundations. Differential
settlement occurs due to uneven bearing
capacity of the soil or to uneven loading.
Earthquakes give rise to horizontal ground
movement and can also be the cause of
settlement due to ground compaction.

38
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Structural elements
and element
behaviour

Structural elements

The design of a structural element is based on
the loads to be carried, the material used and
the form or shape chosen for the element. See
Chapter 7.

The elements from which a structure is
made or assembled have, in engineering
or building terms, specific names which are
used for convenience. In other disciplines
such as naval architecture and furniture design
the names are different but the functions are
the same.

The elements

Strut A slender element designed to
carry load parallel to its long axis.
The load produces compression

40
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Tie

Beam

Slab/plate

Panel

A slender element designed to
carry load parallel to its long axis.
The load produces tension

Generally a horizontal element
designed to carry vertical load
using its bending resistance

A wide horizontal element
designed to carry vertical load in
bending usually supported by
beams

A deep vertical element designed
to carry vertical or horizontal load
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Element behaviour -
deformation

The loaded behaviour of structural elements is
dependent on internal and external factors.

Internal factors —type of material, cross-
sectional shape, length, type of end fixity

External factors —type of position and
magnitude of load

Under load, elements deform in the
following ways:

Struts compress under load and can buckle if
not stabilized laterally

Ties extend under load
Beams and slabs deflect due to bending

Panels deform due to in-plane load

42
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Element behaviour - stress
When an element is loaded it becomes
stressed. The type of stress and its effects on
an element are as follows:

Tensile

Compressive

Shear

Torsion

Bending

46

The particles of material are
pulled apart and the element
increases in length. A tie is in
tension

The particles of material are
pushed together with a
consequent decrease in length.
A strut is in compression

The particles of material slide
relative to one another

A form of shear caused by
twisting

A combination of tension,
compression and shear. Beams
are in bending
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Some stress and strain definitions
Stress f = load per unit area = P/A

Ultimate stress  fu = the stress at which a
material fails

Working stress  fw = the safe maximum stress
for a material

Strain e = extension per unit length
under load
Extension =1/L

Original length

Modulus of E = a constant defining the
elasticity stiffness of a material
_ stress
strain

_ Ultimate stress

Factor of safety ~ Working stress

48
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Structural types

Structures can be classified by their basic forms.
Solid Walls, arches, vaults, dams efc.
Surface Grids, plates, shells, stressed skins
Skeletal ~ Trusses and frameworks

Membrane Cable/membrane tents, cable
nets, pneumatics

Hybrids Tension-assisted structures

The classifications are not mutually
exclusive. For example a thin curved shell dam
would be classified as a surface structure.

Combinations of more than one type are
common. For example, skeletal frameworks
are often stiffened by the insertion of a panel
which is a surface structure. Buildings and
furniture, aircraft and vehicles are treated in
this way. Similarly, monocoque structures are
a combination of skin and skeletal.

50



Structural types

Walls, arches and vaults

Walls are the simplest form of compression
structure with loads transmitted vertically
downwards. Construction is usually in masonry
or concrete. When stiffened with ribs they can
also act as retaining structures.

Arches and vaults carry compression loads
in a most efficient way due to their curvature.
Construction traditionally is in masonry, more
recently in reinforced concrete.
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Trusses

Trusses are an assembly of structural members
based on a triangular arrangement with
member to member pin-jointed connections
called ‘nodes’.

Trusses can be two-dimensional (planar) or
three-dimensional (prismatic).

Prismatic or space-trusses linked together
become space frames.
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Single-layer lattice grids
Sometimes called single-layer space frames,
they are latticed structures with their structural
action enhanced by folding. They span
longitudinally instead of transversely and are
capable of covering quite large areas.

Each fold line acts as a support edge
interacting with adjacent planes to prevent
deformation.
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Frameworks

Frameworks are composed of elements which
when assembled in two or three directions form
a skeletal structure.

The stiffness of a frame depends on the
stiffiness of the elements and the type of joints
between frame members which can be
pinned, fixed or partially fixed.

Pinned joint frames are unstable under
load and require the addition of a further
element to give stiffness: diagonal bracing or
stiff panels.

Partially or fully fixed joint frames are stable
under load. Loads on beam members cause
deflection of the member and rotation of the
adjacent joints. This rotation in turn causes
deformation of the connected column
members and in multi-member frames it
becomes a complex problem to analyse. It is
now usually solved by computer as the frame
is statically indeterminate, i.e. the problem
cannot be solved by simple calculations due
to the interaction of one member with another
through continuity at joint connections.
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Grids are composed of a series of members
arranged at right angles to one another, either
parallel to the boundary supports (rectangular
grids) or at 45° to the boundary supports (skew
grids or diagrids). They behave structurally by
load-sharing according to the position and
direction of the members close to and further
from the position of the load.

The structural analysis of such grids is
complicated due to the number of variables
involved and therefore is ideal for solution by
computer. Grids are commonly used only for
large spans where scale economies balance
cost and construction complications.
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Space frames

Space frames are three-dimensional lattice
structures made up from linked pyramids or
tetrahedra into a two-layer or three-layer
triangulated framework. Load span and edge
conditions determine the form and depth of
the space frame. Because of the continuous
member linking, optimum load-sharing occurs
and for large clear spans —above about
20m, the space frame is a very efficient form
of structure with a span/depth ratio of
approximately 20:1.

Plan proportions should be near square
and not exceed 1.5:1.
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Plates

Plates or flat slabs are generally horizontal
elements with a length and breadth which are
large in comparison with their thickness — span
to depth up to 40:1. They are designed to span
in two directions at right angles and may be
flat, have stiffening strips or thickening at
supporting column points.

Multi-bay plates are statically indeterminate
and are calculated by textbook design factors
or computer.

Slabs can be designed around lines of
equal stress but formwork is elaborate and
thus expensive (cf the work of Pier Luigi Nervi).
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Shells

Shells are surface structures which are curved
in one of two directions or are warped as in
the hyperbolic paraboloid shell.

Structural forces in shells are largely pure
tension and compression.
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Stressed skins

A combination of thin plates with rib-stiffeners
is a stressed skin surface.

The ribs contribute stiffness to what would
otherwise be a too thin and flexible sheet
material, which under load would buckle.

The material used for stressed skin
construction can be metal, timber, GRP or
sometimes a combination (e.g. ‘Nomex’ -
see composite material panels).

Analysis of stressed skins is carried out by
computer or by testing, according to the
complexity of the problem since this structure
is statically indeterminate.
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Membranes

In membrane structures all the primary forces
are arranged to be in tension, either in the form
of cables forming a net or by means of a
coated fabric with tensioned edge cables.
Loads from the membrane can be taken to
the ground via compression masts with
perimeter anchor cables or by some other form
of aerial structure.

Stress concentrations tend to occur at the
boundaries and curved cables are often
intfroduced to even them out {fear drops and
zigzags at the mast fop, boundary cables at
the edge). Curvature of the surface must be
maintained in two directions (anticlastic)
otherwise flutter will occur under wind load
and failure may result.

Pneumatics are air supported membranes
usually without any other form of structure
required to support them, except a foundation
ring beam to act as an anchor.

There are a number of fabric types in use
and others constantly under development.The
three typical ones in current use are:

Polyvinyl chloride coated polyester — PVC
polyester

Polytetrafluoroethylene coated glass fibre —
PTFE glass

Ethylene-tetra-fluoroethylene foil — ETFE foil
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Hybrids

There are a number of structural types which
do not fit into any of the four previous
classifications and these are defined as hybrids.
It is a fact that although the primary type may
be ‘solid’, ‘skeletal’ etc., secondary elements
of a different type may be part of the structure.
The hybrid is where there is a combination of
two types of near equal dominance.

Many tension-assisted structures fall into
this category and typically will consist of the
following combinations:

Steel and tensile membrane
Structural glass and steel
Masonry and steel
Timber/plastic and steel

Examples of the above, in order, are as
follows:

Schlumberger Cambridge Research —
Cambridge

Waterloo International Station Concourse Wall
Pabellén de Futur-Seville Expo

IBM Travelling Exhibition
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Some further significant
structures and assemblies

A detailed look at the work of well-known
engineers throws up a number of original
and inventive solutions for both complete
structural assemblies and structural parts.

As with hybrids in Chapter 7, these
designs are difficult to classify. They are
always a combination of, at least, tension
and compression. They can, however, be
put into categories and these are listed with
the relevant structures illustrated.

Primary tension
Kempinski Hotel, Munich
ETFE Foil ‘Pillow’ — Eden Project

Parc de la Villette, Paris -

Cable Trussed Glass Wall
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Tension and compression

84

The Skylon — Festival of Britain
1951

Visionary Structures — Robert le
Ricolais

Hong Kong Aviary
International Conference
Centre, Paris - fu||{ adjustable

main glazing bracket

Stuttgart 21 — Station Roof
Structure



Some further significant structures and assemblies

FXERIc CoVERTD

‘"j <TEE L FRAME TURE
42 WAITH INTERNAL LIGHTING

THE SKMLON - FERTIWALL - BRITAIN - LONDoN 195

AN EXRLY) EXAMPLE AF A TENSEGRATY] STRUZTURE 85



Tony Hunt's Structures Notebook

END STROMC RING SPACER RING S DiAG oNAL CABLES

N { !

TENSION
ARSI R

" Holiow RoPe !
BRIDG =

TENSto N CABLES
: TEWS10 v

TN

) \\ﬁ/ BAKSTAYS

Y

1
toliow RESPE S USPEysiow RRDsC

TWO EXEMPLES oF 1RORERT LE RacoLAvs’

86 PVSIoNARY T S TRATTTURES



Some further significant structures and assemblies

2-WAY] L7
QKBL..E NE T R 4\ JE B

STAINLESS STEEL MES

HONC, KDNG ANV LARY

87



Tony Hunt's Structures Notebook

THTERNATIoN AL (ONFERENCE CENTRE — PXRrv s

FULLVY] AD)USTARLT MAIN QLAZ (NG BRATKE T
88



Some further significant structures and assemblies

CoMPRESS IoN Booas

TENS N
Roos

TENSIon
CHELES

< ANCHUR BLETK

STUTTGART 21 — $TATION RooF STRUCTURE

89



Tony Hunt's Structures Notebook

Primary compression

90

Thin Concrete Shells — Switzerland

Geodesic Domes — Eden Project,
Cornwall

Compression Arch and Joint —
National Botanic Garden of Wales
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Composite
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Appendices

Appendix I: Tensile strength of some common materials

Material Tensile strength—-S
Ib/in? MN/m? Relative
strength
Cement and concrete 600 4.1 0.6
Ordinary brick 800 5.5 0.8
Fresh tendon (animal) 12,000 82 12
Hemp rope 12,000 82 12
Wood (air dry) along grain 15,000 103 15
Wood (air dry) across grain 500 3.5 0.5
Fresh bone 16,000 110 16
Ordinary glass 5,000-25,000 35-175 5-25
Human hair 28,000 192 28
Spider’s web 35,000 240 35
Good ceramics 5,000-50,000 35-350 5-50
Silk 50,000 350 50
Cotton fibre 50,000 350 50
Catgut 50,000 350 50
Flax 100,000 700 100
Glassfibre plastics 50,000-150,000 350-1,050 50-150
Carbon fibre plastics 50,000-150,000 350-1,050 50-150
Nylon thread 150,000 1,050 150
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Tensile strength of some common materials (cont’d)

Material Tensile strength-S
Ib/in? MN/m? Relative
strength
Steel piano wire (very brittle) 450,000 3,100 450
High tensile engineering steel 225,000 1,550 225
Commercial mild steel 60,000 400 60
Traditional wrought iron 15,000-40,000 100-300 15-40
Traditional cast iron (very brittle) 10,000-20,000 70-140 10-20
Modern cast iron 20,000-40,000 140-300 20-40
Aluminium: cast 10,000 70 10
Aluminium: wrought alloys 20,000-80,000 140-600 20-80
Magnesium alloys 30,000-40,000 200-300 30-40
Titanium alloys 100,000-200,000 700-1,400 100-200
Carbon fibre (high strength) 270,000 4,000 270
Kevlar 49 270,000 4,000 270

96



Appendices

E values for some common materials

Material E value
Ib/in? MN/m? Relative
stiffness
Rubber 1,000 7 1
Shell membrane of an egg 1,100 8 1.1
Human cartilage 3,500 24 3.5
Human tendon 80,000 600 80
Wallboard 200,000 1,400 200

Unreinforced plastics,

polythene and nylon 200,000 1,400 200
Plywood 1,000,000 7,000 1,000
Wood (along grain) 2,000,000 14,000 2,000
Fresh bone 3,000,000 21,000 3,000
Magnesium metal 6,000,000 42,000 6,000
Ordinary glass 10,000,000 70,000 10,000
Aluminium alloys 10,000,000 70,000 10,000
Brasses and bronzes 17,000,000 120,000 17,000
Kevlar 49 19,000,000 130,000 19,000
lron and steel 30,000,000 210,000 30,000
Carbon fibre (high strength) 60,000,000 420,000 60,000
Aluminium oxide (sapphire) 60,000,000 420,000 60,000
Diamond 170,000,000 1,200,000 170,000
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Appendix 1I: Bending and deflection formulae for beams
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Appendix llI: Reading list

Bill Addis, The Art of the Structural Engineer,
Artemis

Some philosophy and a wide range of recent case
studies of building structure in all materials

Allen Andrews, Back fo the Drawing Board: The
Evolution of Flying Machines,

David & Charles

Drawings, models, photographs and text from
before the birth of the lighter-than-air machine to
nearly the present. A must for anyone inferested in
aircraft development

Fred Angerer, Surface Structures in Building,

Alec Tiranti

Probably the best non-mathematical book on surface
structures, with excellent diagrams

Cecil Balmond with Jannuzzi Smith, ‘Informal’,
Prestel

A book by an engineer who collaborates with archi-
tects in creating ‘non-cartesian’ free-form structures.
The book is part engineering, part mathematics and
part philosophy and outlines a different approach to
structural thinking

Derrick Beckett, Bridges, Paul Hamlyn
A very good general view

Behnisch/Hartung, Elsenconstruktionen

Des 19 Jahrhunderts (in German), Schiriner/
Mosel

Comprehensive coverage of nineteenth-century iron
and steel engineering and architecture

Adriaan Beukers and Ed van Hinte, Lightness —

the Inevitable Renaissance of Minimum Energy
Structures,

010 publishers, Rotterdam

Essential reading for any designer interested in ways
of using ‘smart’ materials in the most economical
way. It has some very revealing examples and statis-
tics. Based on research carried out at the Faculty of
Aerospace Engineering, Delft Technical University

John Borrego, Space Grid Structures,

MIT Press

A comprehensive catalogue of three-dimensional
structures, with good diagrams and photographs of
models

Alan J Brookes and Chris Grech, The Building
Envelope, Butterworth Architecture
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Isambard Kingdom Brunel, Recent Works,

Design Museum

Analysis and drawings by practising architects and
engineers of a number of Brunel’s famous works
including the Royal Albert Bridge at Saltash, the
Great Eastern and Paddington Station

Santiago Calatrava, The Daring Flight, Electa

Centre George Pompidou/Le Moniteur, art de
I'ingénieur

A biography of engineering and engineers world-
wide. Only published in French

Connections — Studies in Building Assembly,
Butterworth Architecture

Two excellent books on the ‘parts of buildings’ with
clear drawings to complement the photographs

Keith Critchlow, Order in Space, Thames and
Hudson
The book on three-dimensional geometry

Christopher Dean (Ed.), Housing the Airship,
Architectural Association

James Dyson, Against the Odds

Orion Business Books

James Dyson'’s fascinating autobiography outlining
his design and business tribulations from Royal
College of Art days to the final production of the
Dyson Cyclone vacuum cleaner

H Engel, Structure Systems, Penguin
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Giunti Florence, The Art of Invention
Leonardo and Renaissance Engineers

J E Gordon, Structures and Why Things Don't Fall
Down, Penguin

The New Science of Strong Materials, Penguin

The Science and Structure of Things, Scientific
American Library

Three books that are essential reading for an under-
standing of general structures, with very little maths

Sembach Leuthduser Gossel, Twentieth Century
Furniture Design, Taschen

Probably the most comprehensive book on the
subject

Erwin Heinle and Fritz Leonhardt, Tiirme (Towers)
(in German), DVA

Wide coverage of towers worldwide through the
ages

Monica Henning-Schefold, Transparanz und
Masse, Du Mont

A German book illustrating glazed malls and halls
from 1800 to 1880 — masses of photographs

John Hix, The Glass House, Phaidon
A review of glass architecture up to the present

Alan Holgate, The Work of Jorg Schlaich and his
Team,

Edition Axel Menges

A comprehensive and beautifully produced book on
the work of the German engineer who to my mind is
one of the great inspirational engineers of the twen-
tieth century and who, together with his team, is still
working today
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Institution of Structural Engineers, Structural Use of
Glass in Buildings

Probably the best technical design guide to structural
glass and glazing including many design examples

Ross King, Brunelleschi’s Dome,

Chatto & Windus

The story of the construction of the Great Cathedral
in Florence (completed in 143¢)

Fritz Leonhardt, Brijken (Bridges), Architectural
Press

The comprehensive coverage of bridges worldwide
through the ages

Angus J MacDonald, Structure and Architecture,
Butterworth Architecture

This could be considered to be the companion
volume to Tony Hunt's Structures Notebook

Rowland Mainstone, Developments in Structural
Form, 2nd Edition, Allen Lane

Probably the best and most comprehensive book on
structures of all ages with marvellous photographic
coverage

Z Makowski, Steel Space Structures, Michael Joseph
A very good review of built structures with excellent
photographs and diagrams

Robert W Marks, The Dymaxion World of
Buckminster Fuller, Reinhold
The best of Bucky Fuller'’s ideas

Meadmore, The Modern Chair, Studio Vista
A good, but not very comprehensive review of
modern chairs with scale drawings

John and Marilyn Newhart and Ray

Eames, Eames Design, Ernst & John

A complete record of the multi-faceted work of
Charles and Ray Eames

Frei Otto, Tension Structures, Volumes | and 2,

MIT Press

These and other later books cover nets, membranes
and pneumatics and see also the IL series

Martin Pearce and Richard Jobson, Bridge
Builders, Wiley-Academy

Recent book on bridges again with superb photo-
graphs and illustrations, some overlap with Matthew
Wells’ book and with a briefer text

Jean Prouvé, Prefabrication: Structures and
Elements, Pall Mall Press

Prouvé was a much underrated designer whose
inventive work in the field of lightweight panels and
structures has never been bettered although much of
it was carried out fifty years ago

Peter Rice, An Engineer Imagines,

Artemis

The engineering and philosophical memoirs of the
famous engineer who sadly died much too young. A
number of the seminal structures of the twentieth
century are here including the Sydney Opera
House, the Centre Pompidou, the Lloyds Building
and many others.
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Lyall Sutherland, Master of Structure: Engineering
Today’s Innovative Buildings

Publ. Lawrence King.

This is the book that gives credit to the usually unac-
knowledged work of the engineer. It clearly shows
the collaboration between engineer and architect
that is essential to produce a good building

Robert le Ricolais, Visions and Paradox,

Fundacion Cultural C.O.AM.

The inventor of the ‘Hollow Rope’ structural principle
with drawings and illustrations of all his many
experimental models

Salvadori and Heller, Structure in Architecture,
Prentice Hall

Salvadori and Levi, Structural Design in
Architecture, Prentice Hall

Two very good books on building structures, the first
entirely non-mathematical, the second with worked
examples

Daniel Schodek, Structures, Prentice Hall
A good comprehensive textbook on basic principles
with analysis and design

Dennis Sharp (Ed.), Santiago Calatrava, Book Art

Thomas Telford Press, The Engineers Contribution to
Contemporary Architecture

Monographs by various authors on the following
engineers: Eladio Dieste, Anthony Hunt, Heinz Isler,
Peter Rice and Owen Williams. A self-explanatory
series of books reflecting the title, with more volumes
to come
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Eduardo Torroja, Philosophy of Structures,
University of California Press

Maritz Vandenburg, Soft Canopies, Academy
Editions
A good primer on tensile membrane structures

Maritz Vandenburg, Glass Canopies and Cable
Nets, Academy Editions

Two good primers on the subjects with beautiful
drawings.

Konrad Wachsmann, Turning Point in Building,
Reinhold

A seminal book on jointing and ideas on long span
structures

Matthew Wells, 30 Bridges, Lawrence King

A book discussing the history of bridge building and
giving examples together with superb sketches and
photographs of 30 interesting bridges with analysis
of their behaviour

Michael White, Isaac Newton the Last Sorcerer,

4th Estate

A fascinating biography of a brilliant but not entirely
likeable genius

Chris Wilkinson, Supersheds, 2nd Edition,
Butterworth Architecture

The definitive work on clear span structures from the
nineteenth century to the present
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