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PREFACE

In this book, the design of chemical reactors is approached from microscopic heat
and mass transfer principles. The content is influenced heavily by my training at
Stevens Institute of Technology, Yale University, and the University of Wiscon-
sin. Several ideas presented herein crystallized out of thin air, just like snowflakes,
in the Colorado high country above 10,000 feet, where phones, faxes, e-mail,
junk mail, and all other media disturbances were nonexistent. A few problems
were synthesized in les hautes Alpes, where the ascent of any premiere col with
42 x 24 low gearing is a test of strength and perseverance. Isothermal design
strategies begin with the microscopic mass transfer equation, and assumptions
are invoked until a one-dimensional mass balance can be integrated to produce
macroscopic results. We focus on packed catalytic tubular reactors in which reac-
tant gases must diffuse into the pores of the pellets and adsorb on active catalytic
sites before chemical reaction occurs. Hence, Langmuir adsorption isotherms,
Langmuir—Hinshelwood mechanisms, and Hougen—Watson kinetic rate expres-
sions are employed to design heterogeneous catalytic reactors. Once the kinetics
are understood and rate laws can be generated, isolated catalytic pellets are
analyzed in terms of pseudo-homogeneous models with diffusion and chemical
reaction. This section of the book treats zeroth-order, first-order, nth-order, and
Hougen—Watson chemical kinetics with the overall goal of generating dimension-
less correlations between the effectiveness factor and the intrapellet Damkohler
number. Quantitative methods are described to estimate effective intrapellet diffu-
sivities as well as axial dispersion coefficients in packed beds. Effective intrapellet
diffusion coefficients appear in the denominator of the intrapellet Damkohler
number, and axial dispersion coefficients are required to calculate the mass trans-
fer Peclet number and the interpellet Damkohler number when convection, axial
dispersion, and chemical reaction are operative in non-ideal packed catalytic

Xix
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tubular reactors. Nonisothermal effects in isolated pellets are addressed within
the framework of classical irreversible thermodynamics. The complete expression
for the molecular flux of thermal energy in multicomponent systems, exclud-
ing the Dufour effect, is used to predict intrapellet temperature profiles that are
coupled to reactant concentration profiles within the catalyst. Complete details
are provided to calculate nonisothermal effectiveness factors, and examples are
discussed which illustrate key dimensionless parameters that exhibit strong influ-
ence on the effectiveness factor. The complete design of a heterogeneous catalytic
tubular reactor combines all the previous information when nonisothermal effects
are important and the external resistances to heat and mass transfer cannot be
neglected. Convective diffusion in regular polygon channels with expensive metal
catalyst coated on the inner walls of the flow channel is described and compared
with packed reactors. Optimal catalyst deposition strategies are incorporated into
a three-dimensional mass transfer model.

In an attempt to broaden the scope of the book, several examples of heat
and mass transfer with multiple chemical reactions in continuous stirred tanks
and plug-flow reactors, including start up behavior, adiabatic operation, and
gas—liquid dispersed systems, are discussed primarily in the introductory section
(i.e., Part I). Novel examples of multiple stationary states in exothermic tubular
reactors with countercurrent cooling are presented quantitatively and compared
with similar phenomena in continuous-stirred tanks. Thermal energy effects in
batch reactors are also discussed. Most problems and examples require numerical
methods to obtain quantitative results. The appropriate software is employed to
solve coupled ordinary differential equations, in some cases with split bound-
ary conditions, and results are presented graphically or in tabular form. Various
segments of this book can be incorporated into several chemical engineering
courses at both the graduate and undergraduate levels. Complementary topics
in transport phenomena and thermodynamics that provide support for chemi-
cal reactor analysis are included for completeness. These are (1) fluid dynamics
in the creeping and potential flow regimes around solid spheres and gas bub-
bles, (2) the corresponding mass transfer problems that employ velocity profiles
derived in the fluid dynamics section to calculate interphase heat and mass trans-
fer coefficients, (3) heat capacities of ideal gases via statistical thermodynamics
to calculate Prandtl numbers, and (4) thermodynamic stability criteria for homo-
geneous mixtures which reveal that binary molecular diffusion coefficients must
be positive. Topics 1 and 2 are based on information from Professor Ed Light-
foot’s intermediate transport phenomena course at the University of Wisconsin.
Complementary topic 3 was extracted from a statistical mechanics course in the
chemistry department at Wisconsin taught by Professor Charles F. Curtiss, and
the information in topic 4 was presented by Professor Curtiss in a chemical ther-
modynamics course. The primary use of the entire treatise follows a complete
year of graduate courses in transport phenomena and chemical reactor design. In
this mode, Part I works well as a review of the required undergraduate reactor
design course, and topics 1 through 4, described briefly above, provide useful
information that complements the main focus of this book.



PREFACE xxi

There are a few instructors from my undergraduate and graduate education that
I must thank personally, because they introduced me to the topics discussed in this
book and provided me with the tools to address these issues. Professor George
B. DeLancey at Stevens Institute of Technology presented most of the material
in the introductory review section when I was a senior in his chemical reactor
design course in 1975. These problems were intriguing, with practical implica-
tions, and they required numerical analysis via Newton—Raphson root finding
or Runge—Kutta—Gill integration of coupled ordinary differential equations. In
1975, it was necessary to write Fortran code on punchcards or at remote tele-
types to obtain numerical solutions. Most of these problems in the introductory
section have been modified and reworked via Engineering Equation Solver or
Polymath. One of the most versatile problems discussed by Professor DeLancey
was the chlorination of benzene in a gas—liquid continuous-stirred tank. This
material is presented in Chapter 24. These results can be used to analyze the
effect of interphase mass transfer on the design of a gas—liquid CSTR. Without
algebraic equation solvers, Professor DeLancey presented an elaborate substitu-
tion approach which involved nonlinear analysis due to second-order irreversible
chemical reaction between benzene and dissolved chlorine in the liquid phase.
More recently, the solution is obtained with much less tedium via nonlinear
algebraic equation solvers. The solution to the first review problem on multi-
ple chemical reactions in gas-phase plug-flow tubular reactors in Chapter 1 was
developed in its entirety by undergraduate student Terrence Pikul at Colorado
State University during the 2.5-hour chemical reactor final exam in December
1994. While I was grading Terrence’s exam, it was immediately obvious that
his solution was much better than mine. So I swallowed my ego, gave him
10 or 20 points extra credit, and adopted his approach. At the University of
Wisconsin, Professor Bob Bird presented Laplace transform and matrix analyses
of the start up behavior of a CSTR train with first-order irreversible chemi-
cal reaction in a 1977 fall semester course offering of mathematical methods
in chemical engineering. This review problem has been extended to multiple
chemical reactions in Chapter 2, and it also appeared on a reactor design final
exam at Colorado State University. Professor Stuart W. Churchill at the Univer-
sity of Pennsylvania is acknowledged for reviewing the multiple-stationary-states
introductory problem in plug-flow tubular reactors with countercurrent cooling.
Professor Churchill convinced me that, indeed, multiple steady states are possible
in tubular reactors.

Professor Stanley H. Langer’s personal notes on Langmuir adsorption,
Langmuir—Hinshelwood mechanisms, and Hougen—Watson kinetic models were
extremely helpful. I obtained this information from a 1976 fall semester graduate
course on kinetics and catalysis at the University of Wisconsin. In a 1978 spring
semester graduate course offering of physicochemical hydrodynamics presented
by Professor Bird, I learned the fundamentals of irreversible thermodynamics
in binary mixtures with chemical reaction. After extending this information
to multicomponent mixtures, I employed the results to analyze nonisothermal
effectiveness factors via the complete expression for the molecular flux of thermal
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energy, which includes Fourier’s law, the Dufour effect (this was neglected), and
the interdiffusional flux. Laurent Simon, a graduate student in advanced mass
transfer at Colorado State, is acknowledged for checking some of my numerical
results on this topic, which require the solution of three coupled first-order
ordinary differential equations with split boundary conditions. Professor Lightfoot
is acknowledged for introducing me to boundary layer heat and mass transfer
around solid spheres and gas bubbles in a 1976 graduate course in intermediate
transport phenomena. This information provides the general scaling behavior of
Nusselt and Sherwood numbers in terms of the Reynolds and Prandtl or Schmidt
numbers when the thermal and concentration boundary layers are thin. Heat
and mass transfer coefficients based on these correlations are used to estimate
external transport resistances between catalytic pellets and the bulk fluid phase
moving through a packed catalytic tubular reactor. Correlations for flow around
gas bubbles are employed to estimate the magnitude of mass transfer coefficients
in gas—liquid dispersed systems for the chlorination of benzene in Chapter 24.

In the summers of 1975 and 1976, I participated in an undergraduate research
program at Yale University hosted by its Department of Engineering and Applied
Science. Professor Daniel E. Rosner of Yale’s Chemical Engineering Department
chose me to work on a simulation-based project focusing on convection, dif-
fusion, and heterogeneous chemical reaction in flow channels with noncircular
cross section and metal catalyst coated on the inner walls. This “tube-wall” reac-
tor problem is described in detail in Chapter 23. I used some of the methodology
presented by Professor DeLLancey for tray-by-tray calculations in multicomponent
distillation columns and employed the Thomas algorithm to solve a partial differ-
ential mass balance using linear algebraic finite-difference equations characterized
by a tridiagonal coefficient matrix. When the flow cross section is annular, the
inner cylindrical wall is catalytically active, and the outer wall is inert, numerical
simulations were performed in parallel with nitrogen atom recombination exper-
iments on a metal wire. The overall objective of this research was to understand
thermal energy transfer to the heat shield of the Space Shuttle upon re-entry
into the Earth’s atmosphere. Most of the numerical results in Chapter 23 were
extracted from the 1988 M.S. thesis of Seong Young Lee at Colorado State Uni-
versity, entitled “Convective Diffusion in Heterogeneous Catalytic Reactors with
Rectangular Cross Section and Nonuniform Catalyst Activity.”

Diffusion and zeroth-order chemical reaction in porous catalysts are presented
in detail for pellets with rectangular, cylindrical, and spherical symmetry. These
effectiveness factor problems represent a logical extension of Section 18.7 in Bird,
Stewart, and Lightfoot’s Transport Phenomena, Second Edition (pp. 563—567).
However, with no guiding light, I stumbled several times before correcting all of my
mistakes. I must acknowledge Mark Heinrich, a student in graduate reactor design at
Colorado State during the spring of 1994, for informing me that my initial approach
to diffusion and zeroth-order chemical reaction produced effectiveness factor vs.
intrapellet Damkohler number, correlations that intersected curves for other reaction
orders instead of defining the asymptotes at large and small Damkohler numbers.
Then Brandon Vail, a senior in transport phenomena at Colorado State during the
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spring of 1997, refined my definition of the critical spatial coordinate in porous cata-
lysts below which reactants do not penetrate when the intrapellet Damkohler number
is larger than its critical value. This crutch is required for zeroth-order kinetics
because there is no automatic method of “turning off” the rate of reactant con-
sumption when the central core of the catalyst is starved of reactants. Zeroth-order
chemical kinetics generate mathematically simple problem definitions, but these
problems are conceptually challenging. Diffusion and Hougen—Watson chemical
kinetics posed another stumbling block because the rate law contains molar den-
sities of several reactants and products, and I couldn’t relate all of these molar
densities within the pores of the catalyst. Coupled solution of several second-order
ODE:s with split boundary conditions was not the preferred approach because trial
and error was required for each ODE via the “shooting” method. Hence, a mod-
ification of stoichiometry and the steady-state mass balance with convection and
chemical reaction was required because, now, diffusion and chemical reaction were
important. Professor DeLancey’s notes from a 1976 graduate course in mass trans-
fer provided the solution to this bottleneck moments before the graduate reactor
design class at Colorado State was scheduled to meet one morning in the spring
of 1994.

Finally, I must thank students and colleagues in Colorado State’s Department
of Chemical Engineering for their assistance. Professor David B. McWhorter
introduced me to a porous media approach to estimate axial dispersion coeffi-
cients. These are required to calculate mass transfer Peclet numbers and inter-
pellet Damkohler numbers, and to compare ideal and non-ideal simulations in
packed catalytic tubular reactors. Jeremiah J. Way’s M.S. thesis in 2003 under
my guidance, entitled “Interpellet Axial Dispersion and External Mass Transfer
Resistance in Heterogeneous Packed Catalytic Tubular Reactors: A Simulation-
Based Study,” has identified the critical value of the mass transfer Peclet number
above which packed catalytic tubular reactors perform ideally. Jeremiah’s corre-
lations and tabular data reveal that the critical value of the mass transfer Peclet
number depends on the interpellet Damkohler number, the effectiveness factor,
and the catalyst filling factor for a packed bed. These results are summarized in
Chapter 22. Of particular importance, correlations are presented that allow one to
predict deviations from ideal reactor performance when one operates at subcritical
mass transfer Peclet numbers. Jeremiah is also acknowledged for clarifying some
intrapellet diffusion concepts about the orientation part of the distribution func-
tion and the corresponding tortuosity factors in the parallel-pore model. Professor
Ranil Wickramasinghe provided useful information about commercial chromato-
graphic separation columns and maximum filling factors for spherically shaped
catalysts (i.e., 66 to 74%) in packed beds. Professor Terry G. Lenz provided ther-
modynamic comments on the nonisothermal batch and adiabatic tubular reactor
introductory problems in Part I which employ a reversible reaction scheme for
the production of methanol from carbon monoxide and hydrogen. Professor Lenz
was extremely helpful in his identification of energy changes for chemical reac-
tion in the thermal energy balance, based on partial molar properties instead of
pure-component molar properties. Professor Naz Karim provided assistance with
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the matrix analysis of start up behavior for multiple tanks (i.e., CSTRs) in series.
Professors Vince Murphy, Jim Linden, and Ken Reardon fine-tuned a biochemi-
cal engineering cell culture problem based on principles discussed in Chapter 24,
which focuses on gas—liquid continuous-stirred tanks. Professors Vince Murphy
and David Dandy are acknowledged for providing reference material and answer-
ing my “off-the-wall” questions, whenever asked. Professor Dandy supports my
choice of boundary conditions at the inlet to a packed catalytic tubular reactor
with significant interpellet axial dispersion. In other words, the dimensionless
molar density of reactant A at the tube inlet is, by definition, unity. This bound-
ary condition is appropriate in the design of an ideal tubular reactor in which
axial dispersion is negligible at high mass transfer Peclet numbers. However, I
also employ this boundary condition to simulate non-ideal reactor performance,
whereas most of the chemical reactor community has settled on a modification
of this boundary condition because axial dispersion is important beyond the inlet
plane, but absent prior to the inlet plane. Professors Branka Ladanyi and Mar-
shall Fixman of the Colorado State Chemistry Department and Professor Vince
Murphy are acknowledged for helping me analyze the pressure dependence of
kinetic rate constants in terms of the volume of activation, which is described
best as a difference between partial molar volumes of the activated complex and
all the reactants. As a senior at Colorado State, Mark Heinrich was enrolled in
an undergraduate transport phenomena course in the fall of 1991 when he sug-
gested that the finite-difference formula for first and second derivatives, presented
in Chapter 23, should be developed in general for non-equispaced data points.
Mark Heinrich and Tony Rainsberger, in the same class, suggested that coupled
heat and mass transfer in nonisothermal tubular reactors in Chapter 4 should be
analyzed with cocurrent cooling fluids. Then, in the spring of 1994, as a gradu-
ate student in advanced reactor design at Colorado State, Mark Heinrich helped
me finalize an approximate method to estimate multicomponent diffusivities and
resistances in porous catalysts. Dimensionless correlations between the effective-
ness factor and the intrapellet Damkohler number in various shaped catalysts were
prepared by graduate students Chris Cannizzaro, Bill Nagle, David Oelschlager,
and Ken Tunnicliff in the spring of 1994. Bill Nagle suggested a modification of
the Danckwerts boundary condition in the exit stream of a non-ideal plug-flow
tubular reactor such that ideal and non-ideal reactors satisfy the same bound-
ary conditions in the inlet and exit streams. This idea is described in detail in
Chapter 22. When David John Phillips was enrolled in undergraduate chemical
reactor design at Colorado State in the fall of 1999, he generated the idea for Prob-
lem 5-3. In other words, he questioned the number of steady states that exist in
a nonisothermal CSTR when the rate of thermal energy removal vs. temperature
coincides with the steepest section of the rate of thermal energy generation such
that there is essentially a continuum of operating points that are common to both
curves. Graduate student Neema Saxena corrected some mathematical errors in
Chapter 27 by replacing total derivatives with partial derivatives when the “dot”
product of unit normal vectors with temperature and concentration gradients is
constructed. Neema also clarified one of the momentum boundary conditions
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at gas—liquid interfaces, where continuity of the velocity vector is imposed. In
other words, “perfect slip” is more appropriate than “no slip,” and the veloc-
ity component tangential to the interface in the liquid phase induces circulation
within bubbles. Graduate student Anthony Tartaglione helped me generate ideal
and non-ideal reactor simulations when the external resistance to mass transfer
cannot be neglected. Jeremiah Way completed the analysis of external mass trans-
fer resistance in packed catalytic tubular reactors and discovered the following
simulation-based phenomena: (1) Higher conversion of reactants to products is
achieved at shorter residence times, over a restricted range of mass transfer Peclet
numbers; and (2) non-ideal reactors perform better than ideal reactors, based on
the conditions required to achieve maximum conversion of reactants to products,
because the ideal simulations are not valid when the mass transfer Peclet number
is smaller than its critical value. These nontraditional results are attributed to
the interplay between external mass transfer resistance and average residence-
time effects in packed catalytic tubular reactors. Graduate student Eric M. Indra
deserves a special thanks for proofreading a major portion of the manuscript
during the “early years,” and Dr. Pronab Das and Dr. Mary Pat McCurdie also
read various chapters. It gives me great pleasure to express sincere appreciation
for many fruitful discussions with two colleagues, Drs. Rajiv Bhadra and Allen
Rakow, who knew about, but are no longer here to witness the impact of, this
textbook. Their intellectual enthusiasm and sense of humor are greatly missed. I
apologize to anyone else, who provided assistance directly or indirectly, whose
name was forgotten.

Fort Collins, Colorado L.AB.
November 22, 2002
belfiore @engr.colostate.edu
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1

MULTIPLE CHEMICAL REACTIONS
IN PLUG FLOW TUBULAR
REACTORS AND CONTINUOUS
STIRRED TANK REACTORS

1-1 GAS-PHASE PLUG-FLOW TUBULAR REACTORS
THAT PRODUCE TRIETHANOLAMINE FROM ETHYLENE
OXIDE AND AMMONIA

Triethanolamine is produced from ethylene oxide and ammonia at 5 atm total
pressure via three consecutive elementary chemical reactions in a gas-phase plug-
flow tubular reactor (PFR) that is not insulated from the surroundings. Ethylene
oxide must react with the products from the first and second reactions before
triethanolamine is formed in the third elementary step. The reaction scheme
is described below via equations (1-1) to (1-3). All reactions are elementary,
irreversible, and occur in the gas phase. In the first reaction, ethylene oxide,
which is a cyclic ether, and ammonia combine to form monoethanolamine:

CHQCHzO + NH3 —_— HOCHQCHzNHg (1-1)

At 325 K, the kinetic rate constant for the first reaction is 5 L/g mol-min. In
the second reaction, ethylene oxide and monoethanolamine combine to form
diethanolamine:

CHQCHzO + HOCHQCHzNHz —_— (HOCHzCHz)zNH (1-2)

At 325 K, the kinetic rate constant for the second reaction is 10 L/g mol-min.
In the third reaction, ethylene oxide reacts with diethanolamine to generate tri-
ethanolamine:

CH,CH,0 + (HOCH,CH,),NH —— (HOCH,CH,);N (1-3)
3
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At 325 K, the kinetic rate constant for the third reaction is 7 L/g mol-min. Coupled
mass and thermal energy transport with multiple reactions in a plug-flow reactor
suggests that the temperature of the reactive mixture changes by about 4 °C from
inlet (323 K) to outlet (327 K).

The overall objective is to produce triethanolamine, which is featured in the
third reaction. Which of the following alternatives is more desirable: a stoichio-
metric (1:1) feed of ethylene oxide and ammonia enters the reactor; or a 3:1
molar ratio of ethylene oxide to ammonia enters the reactor? Provide support for
your answer by calculating the reactor volume in liters and the outlet molar flow
rate of triethanolamine that correspond to your design.

1-1.1 Strategy to Solve This Problem

The solution to this problem requires an analysis of multiple gas-phase reactions
in a differential plug-flow tubular reactor. Two different solution strategies are
described here. In both cases, it is important to write mass balances in terms
of molar flow rates and reactor volume. Molar densities and residence time are
not appropriate for the convective mass-transfer-rate process because one cannot
assume that the total volumetric flow rate is constant in the gas phase, particu-
larly when the total number of moles is not conserved. In each reaction, 2 mol
of reactants generates 1 mol of product. Furthermore, an overall mass balance
suggests that the volumetric flow rate is constant only when the overall mass
density does not change. This is a reasonable assumption for liquid-phase reac-
tors but not for gas-phase problems when the total volume is not restricted. The
exception is a constant-volume batch reactor.

A few comments are in order about the fact that the reactor does not operate
isothermally and that there is at least a 4 K difference between the temperatures
of the inlet and outlet streams. Since the wall of the reactor is not insulated,
interactions with the surroundings will provide a heating or cooling mechanism
to offset the endothermic or exothermic nature of the chemical reaction. In an
adiabatically enclosed reactor, the bulk temperature will increase or decrease
continuously for reactions that are exothermic or endothermic, respectively. In
the absence of thermodynamic data for enthalpies of formation at 298 K and heat
transfer coefficient information, it seems reasonable to neglect thermal effects as
a first approximation. The problem statement indicates that the outlet tempera-
ture of the reactive mixture is 4 K higher than the inlet temperature. However,
no information is provided about the actual temperature profile from inlet to out-
let, and more information is required to predict the bulk temperature within the
reactor as a function of reactor volume or axial coordinate. It could be incor-
rect to conclude that the maximum temperature of the mixture is 327 K at the
outlet of the reactor. Consider the following scenario. If the sum of all three
heats of reaction suggests that the multiple reaction scheme is exothermic, strong
temperature increases within the reactor could trigger the phenomenon of ther-
mal runaway, where the reaction rates increase dramatically. For irreversible
chemical reactions, thermal runaway depletes the reactants rather quickly at high
temperatures. Under these conditions, all reactions are essentially completed and
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heat is no longer generated far upstream from the reactor outlet. The remainder
of the reactor functions as a heat exchanger to decrease the bulk temperature to
327 K, which is slightly higher than the inlet temperature. The solution strategies
neglect temperature variation within the reactor and use the kinetic rate constants
at 325 K as provided in the problem description.

When multiple reactions occur in the gas phase, the mass balance for compo-
nent i is written for an ideal tubular reactor at high mass transfer Peclet numbers
in the following form, and each term has units of moles per volume per time:

dF,
dVl = vk, (1-4)
J

where F; is the molar flow rate of component i, dV the differential reactor
volume, v;; the stoichiometric coefficient of component i in reaction j, and
R; the intrinsic rate law for reaction j. There are three elementary irreversible
chemical reactions, and the units of the kinetic rate constants suggest that each
second-order rate law should be constructed in terms of molar densities. Partial
pressures and mole fractions can be introduced via the ideal gas law and Dalton’s
law as follows:
N; 14

=Yion 1-5)

C =
Vtotal RT

Finally, the mole fraction of component i is written as its molar flow rate
divided by the total molar flow rate. The differential mass balance is written
for each component in the mixture: A = ethylene oxide, B = ammonia, C =
monoethanolamine, D = diethanolamine and E = triethanolamine. The matrix of
stoichiometric coefficients is summarized as follows for five components that
participate in three independent chemical reactions:

Component

Reaction A B C D E

First -1 -1 +1 0 0
Second -1 0 -1 +1 0
Third -1 0 0 -1 +1

Five coupled ordinary differential equations (ODEs) can be written for the five
unknowns F;, where i = A, B, C, D, E:

Fa _ x _m %
dV - 1 2 3
dF

aFy _ 4,

dv

dFe
e Y

dv
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P x_n

dv 2 3

L (1-6)
av

The kinetic rate law for each elementary irreversible chemical reaction is
written in terms of gas-phase molar densities (A, B, C, D, where A = Ca, etc.)
as follows:

B, = k;AB
B, = kAC (1-7)
B3 = k3AD

The relation between gas-phase molar density and molar flow rates for ideal gases
is obtained via equation (1-5):

_ Pk
RT Z,- F;

where the sum of molar flow rates in the denominator includes all components
and represents the total molar flow rate. Five boundary conditions are required
at V =0 to define a unique solution of these highly coupled ODEs. For a
stoichiometric (1:1) feed of ethylene oxide and ammonia at the reactor inlet,
Fpo = Fg =1 gmol/min and F; = 0 for the three products C, D, and E. For a
3:1 molar ratio of ethylene oxide to ammonia, Fs/3 = Fg = 1 gmol/min and
all other F; = 0. Since triethanolamine is the product desired, it is important to
monitor its molar flow rate Fg as a function of reactor volume in each case.
The reactor design strategy must consider both alternatives [i.e., a stoichiometric
(1:1) feed vs. a 3:1 feed ratio of ethylene oxide to ammonia]. The final deci-
sion should address the need for a costly separation process to extract the desired
product, triethanolamine, from the gas mixture, if necessary. Qualitatively, one
must also consider the initial cost to build the reactor, the operating cost to supply
ethylene oxide, and the rate of production of triethanolamine.

The solution strategy described above is based on writing a differential plug-
flow reactor mass balance for each component in the mixture, and five coupled
ODEs are solved directly for the five molar flow rates. The solution strategy
described below is based on the extent of reaction for independent chemical
reactions, and three coupled ODEs are solved for the three extents of reac-
tion. Molar flow rates are calculated from the extents of reaction. The starting
point is the same as before. The mass balance is written for component i based
on molar flow rate and differential reactor volume in the presence of multiple
chemical reactions:

Ci (1'8)

dF,
dVl = ; ViR (1-4)
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However, the similarities end here. The differential change in the molar flow rate
of component i, d F;, is written as follows:

dF; = (dF)ew (1-9)

J

where the acronym “cfRj” represents the contribution from reaction j. Hence,
(d F;)rj represents the differential change in the molar flow rate of component
i due to the jth chemical reaction. The differential mass balance becomes

dF, dF,
= Ty 1-10
av Xi:(dv>cmj X/:Uj i (1-10)

When all terms are grouped on the left-hand side of equation (1-10), the rear-
ranged mass balance for component i,

dF,-)
— R, =0 (1-11)
;[(dv cfRj ! ]:|

can be written in standard form as

¥ =0 (1-12)

J

v <—dFi) R (1-13)
- — v R -
J AV ) g, B

Now it is necessary to introduce the concept of independent chemical reactions.
A reaction is classified as independent if it cannot be synthesized from a linear
combination of the other chemical reactions. In other words, the backward reac-
tion for a reversible scheme is not independent of the forward reaction because
it is only necessary to multiply the forward step by (—1) to obtain the backward
step. Hence, a reversible chemical reaction represents only one independent step,
and consequently, only one extent of reaction is defined for a reversible sequence.
The theorem states that “if all chemical reactions are independent, X;y; = 0 if
and only if each ¥; = 0 for all values of j.” The differential mass balance for
component i focuses on the contribution from reaction j, and if reaction j is
independent,

v (dFi) R =0 (1-14)
;= E— —_ Ui- = -
J AV ) iR

This relation is rearranged such that all terms which involve component i are
grouped together. The result is

(d F)cfrj

= R;dV = d§; = same for every component in reaction j (1-15)
Vij ’
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where d§; is the differential extent of the jth independent chemical reaction,
with units of molar flow rate. Hence, the design equation for multiple chemical
reactions in a gas-phase differential tubular reactor at high mass transfer Peclet
numbers is

dfj
—L =R 1-1
av (1-16)

and this design equation is written once for each independent chemical reaction,
which is consistent with the fact that a different extent & is defined for each inde-
pendent chemical reaction. For three independent reactions involving ethylene
oxide in the gas phase, the following set of coupled ODEs must be solved:

dg

— k,AB
av !
dé&
952 _ 1 AC 1-17
v 2 ( )
d
48 _ 1L AD
dv

where the molar density of component A is written as Cp = A, and so on. Three
boundary conditions are required to define a unique solution to these ODEs.
By definition, each extent of reaction is zero at the inlet to the reactor, where
V = 0. The similarities between the two approaches return when one relates
molar densities, partial pressures, and mole fractions as

p

Ci=yi— 1-5
YiRT (1-5)
and the mole fraction of component i is
Fi :
Vi 1 < j < total number of components (1-18)

_Zij

The final task, before solving the coupled ODEs for the extents of reaction &,
&, and &; is to express component molar flow rates in terms of the extents of
reaction.

Based on the definition of the differential extent of the jth chemical reaction
via equation (1-15), and the fact that

dF; =) (dF)) (1-9)
J

(d Fy)ctrj

=R;dV = d§; (1-15)
Vij ’
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it follows that the differential of the total molar flow rate of component i can be
expressed as

dF; =Y v dé (1-19)
j

When (1-19) is integrated from the reactor inlet, where V =0, F; = F;o, and
&; = 0 for each independent chemical reaction (j =1, 2,3 for this particular
problem) to any arbitrary position downstream from the inlet, one obtains the
desired relation between a component molar flow rate and the extents of reaction:

F, = Fjy + Z v;;&j 1 < j < total number of independent reactions
/ (1-20)

This equation is written for each of the five components in the gas-phase reactor.
Given the matrix of stoichiometric coefficients for the five gas-phase components
in three chemical reactions (see page 5),

Fa=Fao—8—5—&

Fp = Fpo — &

Fc=6 -6 (1-21)
Fp =58 —4&

Fg=4&

The molar densities in the rate laws are expressed in terms of mole fractions for
ideal gas behavior via

p
C; =y — 1-5
P ViR (1-5)

and the mole fraction of component i is written in terms of the extents of reaction
via molar flow rates:

F;

> Fi

One differential design equation,

Vi = 1 < j < total number of components (1-18)

d§;

=L —R. 1-16
v j (1-16)

is written for each independent chemical reaction, and it is now possible to solve
three coupled ODEs in terms of three unknowns: &, &, and &;. Of course, both
methods of solution produce the same final answers.
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Verify the claim that both methods of solution produce the same final answers,
and hence the same reactor design strategy, when the two alternatives [i.e., sto-
ichiometric (1:1) feed vs. the 3:1 feed ratio] are considered. A more rigorous
addendum to both approaches employs the Hagen—Poiseuille equation for lami-
nar flow or the Ergun equation if the tubular reactor is packed with porous solid
catalysts to calculate the pressure drop through the reactor instead of assuming
that p = constant from inlet to outlet.

1-1.2 Computer-Aided Solution

Since triethanolamine is the desired product, it is important to monitor its molar
flow rate Fg as a function of reactor volume in each case. Most differential
equation solver software packages will integrate five coupled ODEs quickly and
easily to generate the following results. The stoichiometric (1: 1) feed in case 1
requires a 25- to 30-L reactor to produce 0.1 mol of triethanolamine per minute. If
the reactor operates in this fashion, simulations indicate that the outlet molar flow
rate of ethylene oxide is essentially zero. Furthermore, ammonia (B) and the three
products (C > D > E) exit the reactor in measurable quantities. Hence, a costly
separation process is required to extract the desired product, triethanolamine (E),
from the gas mixture. The upper limit of Fg is 0.113 gmol/min if the reactor
volume is increased significantly. For the stoichiometric (1:1) feed, the outlet
molar flow rate of triethanolamine is always smallest, excluding, of course, ethy-
lene oxide. The 3:1 feed ratio in case 2 generates the predictions of reactor
performance in terms of the molar flow rate of triethanolamine that are listed in
Table 1-1.

Hence, a 3:1 molar feed ratio of ethylene oxide to ammonia seems to be
advantageous with a corresponding reactor volume between 75 and 100 L. The

TABLE 1-1 Effect of Reactor Volume on the Outlet
Molar Flow Rate of Triethanolamine in an Isothermal
Gas-Phase PFR Operating at 325 K¢

Molar Flow Rate

Reactor Volume of Triethanolamine
@) (g mol/min)
25 0.13
50 0.49
75 0.75
100 0.87
125 0.92
150 0.94
175 0.95
200 0.96

“The feed stream contains a 3 : 1 molar flow rate ratio of ethylene
oxide to ammonia.
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production rate of triethanolamine is between seven- and eight-fold larger than
in case 1 with a stoichiometric (1:1) feed. The initial cost to build the reactor
will be approximately three- or four-fold larger and the operating cost to supply
ethylene oxide will be three-fold larger relative to the stoichiometric (1:1) feed.
However, the increased rate of production of triethanolamine could be worth the
larger capital investments for initial and operating costs. This decision strategy
is qualitative in the absence of cost data, but one should weigh the factor of
3 to 4 from an investment viewpoint against the factor of 7 to 8 in terms of
product revenue. Furthermore, when the reactor volume is greater than ~70 L
with a 3: 1 molar feed ratio of ethylene oxide to ammonia, the outlet molar flow
rate of triethanolamine is largest, and the cost of separating the desired product
should be much smaller relative to the stoichiometric (1:1) feed. For example,
the outlet mole fraction of triethanolamine is 93% when the reactor volume is
250 L. Once again, cost data are required to determine if this exceedingly large
reactor is cost-effective with respect to the separation process required, which
should be rather inexpensive.

1-2 MULTIPLE CHEMICAL REACTIONS IN A LIQUID-PHASE CSTR

1-2.1 Steady-State Analysis Based on Extents of Reaction

If component i participates in several chemical reactions in a well-mixed
continuous-stirred tank reactor (CSTR) with volume VstRr, then the macroscopic
mass balance at large mass transfer Peclet numbers is

dN;
dt

= Fj inlet — Fi, outlet + VesTR Z ViR (1-22)
J

where N; represents the moles of component i and the other notation is the same
as described earlier on page 5. Since the left side of (1-22) vanishes at steady
state, rates of convective mass transfer (i.e., F; ouget — Fi. inler) are balanced by
the production of component i in all the reactions (i.e., Vestr D Vi R, As
illustrated in the liquid-phase problem below, it is possible to:

1. Express the molar flow rate of component i as a product of total volumetric
flow rate gioy and molar density C; (i.e., F; = Gora1 Ci)-

2. Invoke a steady-state macroscopic mass balance for each component in the
reactive mixture.

3. Use chemical kinetic principles to write the rate law for each reaction in
terms of molar densities.

4. Solve coupled algebraic equations for all molar densities in the CSTR exit
stream.

Our objective in this section is to introduce a complementary method of solution
based on extents of reaction &;, which have units of molar density. To initiate
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this approach, one manipulates the convective mass transfer terms for component
i as follows:

Fi, inlet — Fz outlet = Z(Ft, inlet — Fi, outlet)Cij = {total Z(Ci,inlet - Ci, outlet)Cij
J J
(1-23)

Now the steady-state mass balance for component i can be written as a sum of
contributions from each chemical reaction:

Fi intet — Fi, outtet + VesTR E ViR
J

=Y [q0 (Ci. inet = Cr. oute)errj + Vestrvi ;1 =0 (1-24)
J

Division by g and identification of residence time 7 = VcsTR/Grotal Yields the
final form of the complete mass balance for component i:

> I(Ciimet — Croutted)etrj + TVij 81 =10 (1-25)
J

If each step in the multiple reaction sequence is independent and cannot be
synthesized from a linear combination of the other reactions, each kinetic rate
law R ; is unique and

(Ci,intet — Ci,outlet)er] + TV;i®; =0 (1-26)

The previous statement based on the contribution from reaction j obviously satis-
fies the complete mass balance for component i. It is written for each independent
reaction. Furthermore, one applies stoichiometry to the contribution from reaction
J and groups all quantities that are specific to component i. For example,

(Ci, outlet — Ci, inlet)chj
Vij

=&, (1-27)

Since each side of (1-27) is the same for each component in the mixture but
unique to reaction j, one defines the extent of the jth chemical reaction &;
such that:

1. ‘L'aRj = %‘j
2. (Ci, outlet — Ci,inlet)chj = Vijgj

Expression 1 represents the CSTR design equation for steady-state analysis in
the presence of multiple chemical reactions. This design equation is written for
each independent reaction. If there is only one chemical reaction and subscript
J 1s not required, the extent of reaction & is analogous to x Ca inet, Where x
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represents the conversion of reactant A based on molar flow rates, in general,
and molar densities for liquid-phase reactions. Expression 2 is used to calculate
molar densities in terms of the extents of reaction. For example,

Fi, outlet — Fz inlet = Qtota](Ci,outlet - Ci,inlet)

= {total Z(Ci,outlet - Ci, inlet)ctRj = {total Z Vij gj (]‘28)
J J

Hence, molar densities are calculated as follows:

Ci,outtet = Ciintet + »_ VijE; (1-29)
J

1-2.2 Chlorination of Benzene

We apply the concepts discussed above to design a CSTR that operates at 55 °C
for the chlorination of benzene in the liquid phase. It is necessary to account
for all three chlorination reactions. Chlorine gas is bubbled through the liquid
mixture in the CSTR and it must diffuse across the gas—liquid interface before
any of the reactions can occur. For this particular problem, it is reasonable to
assume that chlorine is present as a solubilized liquid-phase component, and its
molar density in the inlet liquid stream is given as a fraction ¢ of the inlet molar
density of pure liquid benzene. In a subsequent example discussed in Chapter 24,
a two-phase gas—liquid CSTR analysis is presented which accounts for the realis-
tic fact that benzene enters the reactor in an undiluted liquid stream, and chlorine
is actually bubbled through as a gas. It is sufficient to consider that the fraction
& = 0.25 remains constant for all simulations. In the first chlorination step, ben-
zene reacts irreversibly with dissolved chlorine to produce monochlorobenzene
and hydrogen chloride:

C¢Hg + Cl, —— C4HsCl + HCI (1-30)

The inlet molar density of benzene iS Chenzene, inlet = 11.28 gmol/L, and the
kinetic rate constant for the first reaction is k; = 8.84 x 1073 L/mol-s at 55 °C.
The overall objective is to design a CSTR that will maximize the rate of produc-
tion of monochlorobenzene. Economics should be considered from a qualitative
viewpoint. In the second reaction, the desired product, monochlorobenzene, reacts
irreversibly with dissolved chlorine to produce dichlorobenzene and hydrogen
chloride:

C¢H5Cl + Cl, —— CgHy4Cl, + HCI 1-31)

The kinetic rate constant for the second reaction is a factor of 8 smaller
than the kinetic rate constant for the first reaction at 55°C. In the third
reaction, dichlorobenzene reacts irreversibly with dissolved chlorine to generate
trichlorobenzene and hydrogen chloride:

C6H4C13 + Clz —_—> C6H3C13 + HCl (1—32)
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The kinetic rate constant for the third reaction is a factor of 30 smaller than the
kinetic rate constant for the second reaction at 55 °C.

Illustrative Problem. Generate a CSTR performance curve for the molar density
of the desired product, monochlorobenzene, in the outlet stream of the reactor
vs. log tky, where t is the average residence time for convective mass transfer
and k; is the kinetic rate constant for the first chlorination step. Identify your
operating point on the CSTR performance curve. Design the CSTR by calculat-
ing the volume associated with this operating point if the volumetric flow rate
is 50 L/min (i.e., ~12 to 13 gallons/min). Solve this problem by two different
methods: (a) using extents of reaction &;, and (b) using only molar densities C;
without introducing £;’s.

SOLUTION. (a) Molar density of pure liquid benzene (g mol/L):
Cbenzene, inlet — 11.28

Ratio of kinetic rate constants for the first and second chlorination reactions at
55°C:

ky 1

ki 8
Ratio of kinetic rate constants for the second and third chlorination reactions at
55°C:

ko1

ky 30
Ratio of dissolved chlorine to benzene on a molar basis in the inlet stream:
e =0.25
Inlet molar density of chlorine dissolved in the liquid phase:
Cehlorine, inlet = € Chenzene, inlet

Matrix of stoichiometric coefficients:

Component
Reaction Extent EJ CﬁH(, C12 HCl C6H5Cl C6H4C]2 CﬁHgC]g
First chlorination & —1 -1 +1 +1 0 0
Second chlorination & 0 —1 +1 -1 +1 0

Third chlorination & 0 -1 +1 0 —1 +1
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Molar density of benzene in the CSTR exit stream (g mol/L):

Cbenzene, outlet = Cbenzene, inlet — 5 1

Molar density of monochlorobenzene in the CSTR exit stream (g mol/L):

Cmonochlorobenzene, outlet = é‘- 1= 52

Molar density of dichlorobenzene in the CSTR exit stream (g mol/L):

Cdichlorobenzene, outlet — 52 - 53

Molar density of dissolved chlorine in the CSTR exit stream (g mol/L):

Cchlorine, outlet = Cchlorine, inlet — gl - %‘2 - §3

Kinetic rate laws, excluding rate constants, for the three chlorination reactions:

i‘1 = Cbenzene, outlet Cchlorine, outlet
332 = Cmonochlorobenzene, outlet Cchlorine, outlet

R3 = Clichlorobenzene, outlet Cehlorine, outlet
CSTR design equations with multiple chemical reactions and tk; as a parameter:
&1 = (Th)Ry
& = (Tkl)lli—fiRz

ky ks
= (thk))——®R
& =(t 1)k1 o

Volumetric flow rate (L/min):
Grota = 50
Kinetic rate constant for the first chlorination step at 55 °C (L/mol-min):
ki = 0.00884 x 60
CSTR volume (L):

(Tkl)qwtal

Vestr = .
1

(b) Without introducing the extents for each independent chemical reaction,
we have the following steady-state mass balance for each component
(accumulation = input — output + rate of production = 0):
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C6H6:
0= Cbenzene, inlet — Cbenzene. outlet — (rk])JR]
Clg:
ka ka k3
0= Cchlorine, inlet — Cchlorine, outlet — (Tkl)aal - (Tkl)_3R2 - (‘[kl)——iﬁg,
ki ky ko
C@HSCIC X
0=0- Cmonochlorobenzene, outlet + (Tkl)aal - (Tkl)k_23&2
1
C6H4Clzi X o k
2 2 K3
0=0- Cdichlorobenzene, outlet + (Tkl)_]RZ - (tkl)_ _3&3
ki ki ko
C6H3C132
ka k3
0=0- Ctrichlorobenzene, outlet + (Tkl)_ _R.’)
ki ko
HCI:

k ko k
0=0- Chydrogen chloride + (tkl)a&l + (rkl)k_2332 + (Tkl)k_ZfRS
1 1 ~2

The performance curve for the desired product, monochlorobenzene, and the
CSTR volume required are presented in Figure 1-1 as a function of log(tk;). The

X . ; : S— .

g o Monochlorobenzene 1100,000

(=]

T 209t 110,000

o

% 11,000

g 157}

o —

S {100 =

© ;7,

() o

S 1.05 ® CSTR volume (L) 110 >

S

[

s {1

S 0525

E {0.1

g

= 0.00318 . . . . . 0.00943
0.0001 1 100 3,360

tkq (L/g mol)

Figure 1-1 CSTR performance curve for the production of monochlorobenzene from
chlorine and benzene in a gas—liquid continuous-stirred tank reactor, and the correspond-
ing total reactor volume required to achieve these outlet molar densities of C¢HsCl.
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two methodologies generate the same results, as expected. A reasonable design
that considers economics qualitatively is as follows;

107! < tk; (L/gmol) < 10°
142 < Cmonochlorobenzene, outlet (g mOI/L) < 2.38
10 < VCSTR (L) < 96

Problem. The following sequence of elementary irreversible reactions occurs in
a liquid-phase CSTR with a feed stream that contains only reactant A.

w2 gic A+c2p

All components exhibit relatively low vapor pressures below 90 °C. The activa-
tion energy for the first reaction is 15 kcal/mol, and the activation energy for the
second reaction is 14 kcal/mol. The steady-state molar density ratio of reactive
intermediate C to reactant A in the CSTR exit stream and in the well-mixed
reactor is

C Tk]A

AT T+ thA
(a) Are the two elementary steps independent?

(b) Calculate the selectivity of the final product D relative to the intermediate
product B.

S _ FD, outlet — FD,inlet _ D
PP Foime B
B, outlet — £'B, inlet

where F; is the molar flow rate of component i.
If component D is the desired product:

(c) Is it better to operate the CSTR at 30°C or 55°C?

(d) Is it advantageous to dilute the feed of reactant A with an inert solvent?
(e) Is it advantageous to increase the reactor volume?

(f) Is it advantageous to increase the volumetric flow rate?

If component B is the desired product:

(g) Is it better to operate the CSTR at 30 °C or 55°C?

(h) Is it advantageous to dilute the feed of reactant A with an inert solvent?
(i) Is it advantageous to increase the reactor volume?

(j) Is it advantageous to increase the volumetric flow rate?

SOLUTION. Answer (b) and verification of the molar density ratio, C/A. Stoi-
chiometric coefficients, extents of reaction, and kinetic rate laws are summarized
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below. Four components participate in two independent elementary reactions.
Hence, two extents of reaction are required.

Component
Reaction Extent §; A B C D Rate Law
2A > B+C 3 -2 +1 +1 0 k A?
A+C—D & -1 0 -1 +1 k,AC

Application of the CSTR design equation for each independent chemical reaction
yields

%’1 = ‘L’Rl = ‘L'k]A2
52 = ‘L’ﬁRQ = ‘L’kgAC

The molar density of each component is expressed in terms of extents of reac-
tion as

A=A)—-25-&

B=¢
C=&-&
D=£§&

If one combines the two design equations with the expression for the molar
density of reactive intermediate C, it is possible to verify the molar density ratio,
C/A, which is given in the problem statement.

C=¢& —& =1hA? — thHAC
C + Tk AC = C(1 4 ThkrA) = Tk A2

Hence,

C ‘L'k]A

A 1+ thA

This intermediate result is employed to calculate the selectivity of final product
D relative to intermediate product B, and its inverse if B is the desired product.
For example:

D %‘2 ‘L’szC _ kz C _ ‘L'kQA

B & thAl kA 1+thA
B 1 1
D

Sp/B =

+
SD/B ‘L’sz

Sg/p =
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Answers (c) through (j). Answers to parts (c) through (f) are based on analysis
of Sp,p. Answers to parts (g) through (j) are based on analysis of Sg,p. Since the
kinetic rate constant k| does not affect either selectivity, comparison of activation
energies for the two reactions is not an important consideration in the final design.
Final product D is favored at (1) higher temperature, (2) higher concentrations of
reactant A in the exit stream, (3) larger reactor volume, and (4) slower volumetric
flow rate. Intermediate product B is favored at (1) lower temperature, (2) lower
concentration of reactant A in the CSTR exit stream, (3) smaller reactor volume,
and (4) larger volumetric flow rate.

1-3 MULTIPLE CHEMICAL REACTIONS IN A CSTR TRAIN

1-3.1 Generalized Steady-State Analysis

Sequential application of the steady-state design equations is required when mul-
tiple chemical reactions occur in a series configuration of well-mixed tanks. If
temperature, residence time, kinetic rate laws, and the characteristics of the feed
to the first reactor are known, then it is possible to predict molar densities in the
exit stream of the first reactor, which represent the feed to the second reactor,
and so on. Subscripts are required to monitor:

Components i
Independent chemical reactions
Reactors in series k
For example,
Cix molar density of component i in the exit stream of the kth tank
Vi stoichiometric coefficient of component i in the jth reaction. If the

reaction scheme is modified by catalysts, etc., that differ in each
tank, then subscript & is required

Rk rate of the jth chemical reaction using conditions in the exit stream of
the kth tank

ik extent of the jth chemical reaction in the kth tank

T residence time for the kth reactor

Ty operating temperature in the kth reactor

The CSTR design equation
Eir = uRji

is written for each independent chemical reaction in each tank. If all reactions
are nth-order and irreversible, the generic form of each rate law is

E .
Rjr = kjoo €Xp <—Ra—CTt]> 1_[ (Cir)™"
k

i reactants
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Molar densities in the kinetic rate laws are expressed in terms of extents of
reaction as follows:

Cik =Cij_1 + Zvijéjk
J

1-3.2 Unrestricted Optimization of the Yield of a Reactive Intermediate

Consider the following generic complex multiple reaction scheme that occurs

isothermally in a liquid-phase CSTR train. Both reactors operate at the same

temperature. In the first elementary step, 1 mol of reactant A and 2 mol of reactant

B reversibly produce intermediate product D, which is the desired product:
A+2B«——D

The equilibrium constant for the first reaction, based on molar densities, is

kforward 1

Keq o1 = =10 (L/mol)?

kbackward 1

The third-order forward kinetic rate constant for the first reaction is
Kforward 1 = 0.05(L/mol)? /min

In the second elementary step, 1 mol of reactant B and 1 mol of intermediate
product D irreversibly generate intermediate product E:

B+D——E
via the second-order kinetic rate constant
k, = 0.01 L/mol-min

In the third elementary step, 1 mol each of intermediate products D and E irre-
versibly generate the final product F:

D+E—F
with the second-order kinetic rate constant
k3 = 0.02 L/mol-min

The feed stream to the first CSTR contains stoichiometric proportions (i.e., 1:2)
of reactants A and B, and the molar density of reactant A in this inlet stream is

CA, inlet — 0.5 g mol/L
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Hllustrative Problem. As a reactor design engineer, your task is to design a
train of two CSTRs in series that operate at the same temperature, which will
maximize the yield of intermediate product D in the exit stream of the second
reactor. What yield is expected for intermediate product D in the exit stream of
the second CSTR? The yield of intermediate product D is defined as

Foy — Ip i Crr — Cp
yleld(D2) = D2 D, inlet _ D2 D, inlet

A, inlet CA, inlet

where Fj; is the molar flow rate of component i in the exit stream of the kth
reactor.

Helpful hints. Use the conjugate gradient method of optimization with 2
degrees of freedom. In other words, you should develop a set of n equations in
terms of n 4 2 variables that describe the steady-state operation of three inde-
pendent chemical reactions in a train of two chemical reactors. Maximization
algorithms implicitly use two additional equations to determine optimum perfor-
mance of the CSTR train:

d[yield(D

dlyield(Dy)] _ 0 at constant 7,
3‘61

d[yield(D

dlyield(Dy)] -0 at constant T
81’2

These two additional restrictions are implemented numerically. Identify two key
independent design variables and provide realistic upper and lower bounds for
these variables to assist the maximization algorithm in finding the best answer.
The conjugate gradient optimization method should converge in approximately
20 iterations.

Matrix of stoichiometric coefficients. Five components participate in three
independent elementary reactions. Hence, three extents of reaction are required.
The kinetic rate law for each elementary step is included in the following table.

Component
Reaction Extent &; A B D E F Rate Law
A+2B <D £ -1 =2 41 0 0 ki(AB* — D/Kcq)
B+D—E & 0 -1 -1 +1 0 k,BD
D+E—F & 0 0 -1 —1 +1 k;DE

SOLUTION. Concentrations C; ine 0f the five reactive species in the inlet stream
to the first reactor, in units of g mol/L:

Ainlet =05
Binlet = ®BAinlet ®B =2
Dinlet = Einlet = l::inlet =0
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Concentrations C;; of the five reactive species in the exit stream of the first
reactor, in terms of the extents of reaction &;; in the first CSTR:

A1 = Ajnler — &1

By = Bintet — 2611 — 21

D = Dintet + 11 — 21 — &31
Ei = Einlet + 621 — &31

Fi = Finet + 631

Kinetic rate laws 3;; for three independent elementary reactions in the first
CSTR:

R, =k (T)[A (B))? Di }
11 — Aforward 1 1 1 1 T N
o Keq, c/1(T1)

By = k(T1)B 1Dy
R3; = k3(T1)DE;y

CSTR design equations, &;; = 713, for three independent reactions in the first
reactor:

i = 1Ry
& = T By
&1 = 1Rz

Concentrations C;, of the five reactive species in the exit stream of the second
reactor, in terms of the extents of reaction &;, in the second CSTR:

Ay =A1 —én

By =Bi — 2810 — é»

Dy =D+ 82— én —éxn
Ey=E; +&n —&3

Fo =F +é&»

Kinetic rate laws R, for three independent elementary reactions in the second
CSTR:

R, =k (T)[A(B)z D }
12 — Rforward 1 2 2 2 S o~
o Keq c1(T)

By = kr(T12)B2Ds
Rz = k3(T2)D2E,




MULTIPLE CHEMICAL REACTIONS IN A CSTR TRAIN 23

CSTR design equations, &, = 7,8 5, for three independent reactions in the sec-
ond reactor:

E1p = 82
& = 18»
&3 = &3

There are 2 degrees of freedom, t; and t;, in this unrestricted optimization
problem. The yield of intermediate product D in the exit stream of the second
CSTR achieves a maximum of 35.4% when 7; = 26.9 min and 7, = 27 min.

1-3.3 CSTR Design Strategies

Four CSTR design strategies are summarized below when simple third-order
irreversible chemical kinetics convert reactants to products.

1. It is advantageous to employ a longer residence time for the last reactor
in series. This claim is justified by the following results, which have been
generated by the supporting numerical algorithms.

a. Two CSTRs in series (see Figure 1-2 and Table 1-2). The sequence
of equations on page 24 calculates the conversion of reactant A in both exit
streams for two CSTRs in series. The kinetics are nth-order irreversible and
depend only on the molar density of reactant A. Both reactors operate at
the same temperature, so that the nth-order kinetic rate constant is the
same in both CSTRs. Furthermore, the characteristic chemical reaction

0.95 T T T r

0.90

0.85 oOlrreversible first-order kinetics

0.80 _

0.75 F ® |rreversible second-order kinetics

X2

0.70 .
0.65
0.60

¢g;ceccc€c¢¢sc“‘¢“““
Sac
o
Sac
c
S4C
c

0.55 o|rreversible third-order kinetics

050 1 1 1 1
0 10 20 30 40 50

74 (min)

Figure 1-2 Example of restricted isothermal optimization for two CSTRs in series. This
graph illustrates the effect of residence time in the first reactor on the outlet conversion
from the second reactor in series for simple nth-order kinetics, where n = 1, 2, 3.
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TABLE 1-2 Restricted Residence-Time Optimization for Two CSTRs in Series Oper-
ating at the Same Temperature®

Residence Time (min) Conversion (%)

Reaction Order T Iy X1 X2
1 25 25 71 92
1.5 23 27 59 81
2 22 28 52 73
3 21 29 42 60
4 20 30 35 52
5 20 30 31 46
6 20 30 28 41
7 19 31 25 37
8 19 31 23 34
9 19 31 22 32
10 19 31 20 30

“Includes the effect of reaction order n for simple nth-order chemical kinetics on optimum residence
times and outlet reactant conversions in each CSTR. k(7)) = k(T3) = 0.1 (L/mol)*~Y/min; 7; +
7 ~ 50 min; Ca_ inlet = | mol/L.

time constant A is the same in both CSTRs when they operate at the same
temperature. When the kinetics are first order, the optimum strategy requires
that both reactors be of equal size. For higher-order kinetics where n >
1, the optimum strategy suggests that the first reactor should be slightly
smaller. Note: There is only one independent variable, 7| or 1, due to the
restricted optimization nature of this formulation.

718 — Cao(x; —x9) =0 design equation for the first CSTR
T8y — Cao(xa —x1) =0 design equation for the second CSTR in series
71 + 1 = 50 example of restricted optimization, residence times are in minutes

By = kiorward (T1)[Cao(1 — x1)]"
nth-order rate law in the first CSTR

Ry = korward (12)[Cao(1 — x2)]"
nth-order rate law in the second CSTR in series

ktorward (T1) = Kforwara(T2)  units depend on n, time units are in
minutes

kiorwara(T1) = 0.1 X is 10 min

xo = 0 conversion of reactant A in the inlet stream to
the first CSTR

Cao =1 molar density of reactant A in the inlet stream
to the first CSTR, moles per volume
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TABLE 1-3 Restricted Residence-Time Optimization for Three CSTRs in Series
Operating at the Same Temperature®

Residence Time (min) Conversion (%)
Reaction
Order T T 73 X X2 X3
1 33 33 33 77 95 99
1.5 28 36 36 63 85 92
2 26 37 37 54 76 85
3 24 38 38 43 63 72
4 23 38 38 37 54 62
5 22 39 39 32 47 55
6 22 39 39 29 43 49
7 21 39 39 26 39 45
8 21 39 39 24 36 41
9 20 39 39 22 33 38
10 20 39 39 21 31 36

“Includes the effect of reaction order n for simple nth-order chemical kinetics on the optimum
residence times and outlet reactant conversions in each CSTR. k(Ty) = k(T») = k(T3)
= 0.1 (L/mol)*~!/min; 7| + 7 + 13 ~ 99 to 100 min; Ca, inlet = 1 mol/L.

b. Three CSTRs in series (see Table 1-3). This strategy can be extended
rather easily to a longer train of reactors, all of which operate at the same
temperature. For higher-order kinetics where n > 1 in a train of three well-
mixed reactors, the optimum strategy suggests that the last two reactors in
the train should be larger than the first. Numerical results from this restricted
optimization are summarized in Table 1-3. Note: This is an example of
restricted optimization because the sum of all three residence times is fixed,
but there are two independent variables, or 2 degrees of freedom, in the
numerical algorithm.

The same reactant conversion can be achieved in the exit stream of the last
reactor in series when the total volume of a CSTR train is less than the
volume of the one-CSTR setup.

If the total volume of a CSTR train is the same as the volume of the
one-CSTR setup, the final conversion in the exit stream of the last reactor
in the train is greater than the final conversion in the exit stream of the
one-CSTR setup.

. When two CSTRs in series operate at different temperatures, it is advan-

tageous to employ a longer residence time for the higher-temperature re-
actor. This strategy should be employed for reversible exothermic reactions,
even though the equilibrium conversion decreases at higher temperature,
because most reactors do not operate in the “near-equilibrium” regime (see
Problem 1-7).
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Figure 1-3 Example of unrestricted optimization in a train of two CSTRs that operate at
the same temperature. This graph illustrates the effect of residence time for each reactor
(i.e., 1 = 7o) on the yield of intermediate product D in the exit stream of the second
reactor.

Let’s revisit the previous unrestricted optimization problem described on pages
20-23 in two CSTRs with 2 degrees of freedom and apply strategy 4. Since both
reactors operate at the same temperature (i.e., 71 = T5), it might seem reasonable
that an optimum design should keep the mixture in each CSTR for the same
amount of time, on average. Hence, t; = 7,. Now, this problem conforms to
unrestricted optimization with 1 degree of freedom (i.e., either t; or 1). The
behavior of the system of equations that describe the yield of intermediate product
D in the exit stream of the second CSTR can be analyzed as a function of
residence time. Optimum performance is obvious in Figure 1-3 when the reactive
mixture remains in each CSTR for 25 to 29 min.

PROBLEMS

1-1. Draw the flow configuration for two CSTRs in series when the chemical
kinetics are third order and irreversible. The objective is to maximize reac-
tant conversion in the exit stream of the last CSTR. One CSTR operates at
75°C and the other CSTR operates at 30°C. Which reactor should be larger?
Which reactor should be first in the train?

1-2. For a particular liquid-phase chemical reaction, the kinetic rate law is zeroth
order:

E
R = koo €Xp <— RaTCl>
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In other words, R is not a function of conversion or molar densities. The
characteristic chemical reaction time constant is 25 min. The temperature is
the same in each case. The following reactor configurations are employed.

(1) One CSTR: V; =50 L, g =5 L/min
(2) One CSTR: V; =100 L, ¢ = 5 L/min
(3) Two CSTRs in series: Vi + V, =50 L, ¢ = 5 L/min

(4) Two CSTRs in series: V; +V, =100 L, ¢ = 5 L/min

From highest to lowest, rank the conversion of reactant A to products in the
CSTR exit stream for the four configurations described above.

One liquid-phase chemical reaction occurs in an isothermal configuration
of PFRs. The chemical kinetics are second order and irreversible [i.e., 8 =
k>(Ca)?], and the characteristic chemical reaction time constant A is 5 min.
Rank the configurations listed in Table P1-3 from highest final conversion
of reactant A in the exit stream of the last PFR in series to lowest final
conversion in the exit stream of the last PFR. In each case, the volumetric
flow rate is 10 L/min and Ca_ini is the same. Calculate the final conversion
of reactant A in the exit stream of the third PFR in series for case 7.

TABLE P1-3 Ten Series Configurations of Plug-Flow
Reactors and Corresponding Reactor Volumes

Volume (L)
No. PFRs
Case in Series Vi Vs V3
1 1 60
2 1 45
3 2 30 30
4 2 40 20
5 2 20 40
6 2 45 45
7 3 20 20 20
8 3 15 15 15
9 3 30 30 30
10 3 20 30 40

Three components (A,B,C) participate in two independent elementary chem-
ical reactions:
A— B —C

in isothermal liquid-phase reactors. The kinetic rate constant for the first
irreversible chemical reaction (A — B) is k; = 0.15 min~!. The kinetic
rate constant for the second irreversible chemical reaction (B — C) is k, =
0.05 min~!. The feed stream contains only 1 mol of reactant A per litre.
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All reactors operate at the same temperature. The reactor types and config-
urations are described below. Notice that the total residence time for each
configuration is 1 min, whereas the chemical reaction time constants are ~7
minutes for the first reaction and 20 min for the second reaction.

(1) One CSTR with a reactor volume of 10 L. The flow rate is 10 L/min.

(2) Two CSTRs in series. The volume of each reactor is 5 L and the volu-
metric flow rate is 10 L/min.

(3) Two CSTRs in parallel. The volume of each reactor is 5 L and the
volumetric flow rate in each reactor is 5 L/min.

(4) One PFR with a volume of 10 L and a volumetric flow rate of 10 L/min.

(5) Two PFRs in series. The volume of each reactor is 5 L and the volu-
metric flow rate is 10 L/min.

The rate of production of intermediate product B in the final exit stream
of each configuration has been calculated for the five cases described above.
When two CSTRs are arranged in parallel, both exit streams contribute to
the overall rate of production. In units of moles of B per minute, five correct
answers and two incorrect answer for g, Cp are

142 136 136 130 124 124 1.18

Associate a numerical answer for the rate of production of intermediate
product B with each of the five configurations and reactor types described
above.

. The following multiple-reaction scheme converts reactants A and B to final

product E via intermediate D in the liquid phase. Each reaction represents an
elementary step. The feed contains a 1:1 molar ratio of reactants A and B.
The kinetic rate constant is indicated for each step in the chemical reaction.

Step 1. A+ B — D via ki (T)
Step 2. D — A + B via kr(T)
Step 3. B+ D — E via k3(T)

(a) How many independent chemical reactions occur?

(b) Use one graph and sketch the molar density of each component vs. time
in a constant-volume batch reactor. Put four curves on one graph and
label each curve.

(c) Use the pseudo-steady-state approximation (PSSA) to obtain an expres-
sion for the molar density of reactive intermediate D.

(d) Elementary step 3 is the slowest one in the mechanism. Use your answer
to part (c) and express the rate law in terms of measurable quantities
for the rate of conversion of reactants to products.
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(e) Use the extents of reaction &; and write all of the equations that must
be solved to design a liquid-phase CSTR based on the three-step mech-
anism described above.

(f) Use the extents of reaction &; and write an expression for the selectivity
of intermediate product D with respect to final product E in a CSTR.
Spe =7

(g) Write all of the equations that must be solved, including the initial
conditions, to analyze the startup behavior of one CSTR based on the
three-step mechanism described above.

(a) Use the extents of reaction &; and write all eight equations that must be
solved to design an ideal gas-phase PFR in which the following three
independent elementary reactions occur.

Step 1. A+ 2B — D via k;(T), (volume/mol)?/time
Step 2. D — A + 2B via kr(T), 1/time

Step 3. A+ 2D — E via k3(T), (volume/mol)?/time
Step 4. 2A +E — F via k4(T), (volume/mol)?/time

The feed stream contains a 1:2 molar flow rate ratio of reactants A and
B. The overall objective is to identify the PFR volume that maximizes
the molar flow rate of intermediate product E.

(b) Use only one set of axes and sketch the molar flow rates of intermediate
product E and final product F as a function of reactor volume Vpgg.
Qualitatively identify the optimum reactor volume (i.e., VprR, optimum)
on the horizontal axis of your graph.

. This exercise deals with the restricted optimization of a train of two CSTRs

with variable temperature options when the chemical reaction is reversible
and exothermic. Consider the following third-order non-elementary rever-
sible chemical reaction, which occurs in a train of two liquid-phase CSTRs:

2A «—— B

The catalyst is most effective when the reactors operate between 350 and
370 K. Under these conditions, the forward kinetic rate constant is described
by a preexponential factor of 1 x 10° (L/mol)?/min and an activation energy
of 17,000 cal/mol. The feed stream to the first CSTR contains reactant A
at a molar density of 0.4 mol/L. Economic considerations restrict the total
residence time of both reactors to be 10° min or less. The temperature depen-
dence of the dimensionless equilibrium constant is modeled as follows (see
pages 57-60):
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1-8.

MULTIPLE CHEMICAL REACTIONS IN PFRs AND CSTRs

B
K equitibrium,c = €Xp (A + ?>

A= ASgy 208 K

The reaction is exothermic because a chemical bond is formed and thermal
energy is liberated when 2 molecules of reactant A combine to produce
1 molecule of product B. The entropy change is negative due to the reduction
in total moles as the reaction proceeds. Hence, the following thermodynamic
data are applicable when the stoichiometric coefficient of reactant A is —1;

AHg, 595 ¢ = —9000 cal/mol

ASgy 208 k = —15 cal/mol-K
Design the CSTR train by specifying the residence time t in minutes and
the temperature 7 in Kelvin for each reactor that maximize the conversion

of reactant A in the exit stream of the second CSTR. The gas constant R is
1.987 cal/mol-K.

Calculate the CSTR operating temperature that maximizes the yield of a
reactive intermediate. Consider the following multiple reaction scheme that
occurs in one liquid-phase CSTR:

A—— B —C

The overall objective is to determine the CSTR operating temperature that
maximizes the yield of intermediate product B. The pre-exponential factor
and Arrhenius activation energy for each reaction are:
A——> B kioo=1x10" (L/mol)"'/s  E.1 = 15 kcal/mol
B—C: kyeo = 4 x 10° (L/mol)"~! /s Eqact,2 = 12 keal/mol
The feed stream contains reactant A at a total mass flow rate of 250 g/s.

The reactor volume is 100 L, and the overall density of the reactive mixture
is 1 g/cm? or 1 kg/L.

(a) Identify the operating temperature that maximizes the yield of interme-
diate product B if both reactions represent elementary steps and

(i) Ca. inlet = 1 mol/L
(ii) Ca, inlet = 2 mol/L
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(b) Identify the operating temperature that maximizes the yield of intermedi-
ate product B if both reactions follow second-order irreversible kinetics,
and

(i) Ca.inlet = 1 mol/L
(ii) Ca.,inlet =2 mol/L

(c) Identify the operating temperature that maximizes the yield of intermedi-
ate product B if both reactions follow second-order irreversible kinetics,
the total mass flow rate is reduced to 100 g/s, and Ca_ inlet = 1 mol/L.
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START UP BEHAVIOR

OF A SERIES CONFIGURATION
OF CONTINUOUS STIRRED TANK
REACTORS

This analysis begins with the unsteady-state mass balance for component i in
the k™ well-mixed reactor. At high-mass-transfer Peclet numbers, which are pri-
marily a function of volumetric flow rate g, the rate processes of interest are
accumulation, convective mass transfer, and multiple chemical reactions. Generic
subscripts are

i designates components in the mixture
j identifies the chemical reaction
k denotes the tank in series

For liquid-phase reactions in a constant-volume CSTR, the mass balance for
component { in tank k is written with units of moles per time, analogous to
equation (1-22). The control volume is the entire contents of the kth tank, Vj:

accumulation = input — output + rate of production (2-1a)

dN; d(V,C;
L= Vi) =qCix1—qCiu + Vi E vii R (2-1b)
dt dt r

where N represents moles, C is molar density, v;; the stoichiometric coefficient
of component i in reaction j, and R the intrinsic kinetic rate law for the jth
chemical reaction evaluated at conditions in the kth tank. Division by the volume
of the kth reactor and identification of the residence time in this tank, 7, = Vi /q,

33
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leads to the final form of the unsteady-state mass balance:

d 1
—Cix =
t

y {Cik—1 — Cix} + Z ViR i (2-2)

Tk ;
which should be written for each component in each CSTR. If each reactor
initially contains an inert mixture, and reactants are injected into the first tank at
t = 0, then the initial conditions in the exit streams are C;; =0 att =0, k > 1.
The inlet molar density of reactant i in the feed stream of the first tank (i.e.,
Ciinlet) 1s based on the characteristics of the feed, which probably does not
contain reactive intermediates or products.

2-1 ANALYSIS OF MULTIPLE REACTIONS IN TWO CSTRs:
ILLUSTRATIVE PROBLEM

Analyze the transient startup behavior of a train of two liquid-phase CSTRs that
operate isothermally at the same temperature. Four components participate in
two independent chemical reactions. In the first independent elementary reac-
tion, 1 mol of reactant A and 2 mol of reactant B reversibly produce 1 mol of
intermediate product D:

A+2B<«——D (2-3)

via forward kinetic rate constant k; (i.e., 0.5 L?>/mol*- min) and an equilibrium
constant based on molar densities, Keq.c = k1/k> (i.e., 10 L%/mol?). In the sec-
ond independent elementary step, 1 mol each of reactant A and intermediate
product D irreversibly produce 1 mol of final product E:

A+D—E (2-4)

with kinetic rate constant k3 (i.e., 0.2 L/ mol - min). The feed stream to the first
reactor contains stoichiometric proportions of reactants A and B (i.e., 1 :2 molar
flow rate ratio of A to B). The average residence times are 15 min for the first
CSTR and 10 min for the second CSTR.

1. How many residence times (i.e., based on t; = 15 min) are required to
achieve a steady-state response in the exit stream of the first CSTR?

[Ans.: 4 or 5.]

2. How many residence times (i.e., based on 7, = 10 min) are required to

achieve a steady-state response in the exit stream of the second CSTR?
[Ans.: ~ 8.]
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3. Do any of the transient molar density profiles exhibit overshoot with respect
to their steady-state values? [Ans.: Yes, reactant A in both CSTRs.]

Solution. Four unsteady-state mass balances are written and solved numerically
to characterize the composition of the exit stream for each reactor. Initially, all
of the parameters are declared. The average residence times are t; = 15 min
and 7 = 10 min. The third-order kinetic rate constant for the forward step in the
first independent elementary reaction is k; = 0.5 L2/ mol? - min. The equilibrium
constant, based on molar densities, for the first independent elementary reaction
is Keq.c =10 L%/mol®>. The second-order kinetic rate constant for the second
independent elementary reaction is k3 = 0.2 L/ mol - min. The molar densities of
all four components in the inlet stream to the first CSTR, for a stoichiometric
feed of reactants A and B, are

Ca.inlet = 1 mol /L

CB, intlet = OBCA inlet (O =2)
Cp,inlet =0

CE,intet = 0

(2-5)

The molar densities of all four reactive components in the exit stream of the first
CSTR at t =0 are

Catt=0)=0
Cpit=0)=0
(2-6)
Cpit=0)=0
Ceit=0)=0

The matrix of stoichiometric coefficients (v;;) that accounts for all four com-
ponents in both independent chemical reactions is as follows:

Component §
Reaction A B D E
1. A+2B«——D —1 -2 +1 0
2. A+D——E -1 0 -1 +1

The kinetic rate laws for both independent elementary reactions in the first CSTR
that operates at temperature 7 are

C
Ry = ki (Ty) {CAI(CBI)Z - }

Keq.c(T1) (2-7)

Ry = k3(T1)Ca1Cpi
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Unsteady-state mass balances for all four components in the first CSTR are

dCar Cainlet — Cai

= By - B
o . 1 21
dCg; _ Cg,inlet —CB1 om,
dt T (2-8)
dcC Cp.intet — C
p1 _ Cb,intet LI
dt T1
dCg; _ CEg, inlet — CE1 LRy,
dt T1

Numerical methods are required to integrate these coupled ordinary differential
equations and to calculate the time-dependent molar density of each component
in the exit stream of the first CSTR. Generic integral expressions are illustrated
below. The Runge—Kutta—Gill fourth-order correct algorithm is useful to perform
this task.

tdC
Car(t) = Car(t = 0) + / gy
=0 dif
tdC
Can) = Cartt =0+ [ “lar
r=0 dt (2:9)
" dCp
Cp1(®) = Cp1(t =0) + —dt
r—o dt
' dC
Can) = Crrr =0+ [ SELar
r=o dt

Results for the first CSTR are illustrated in Figure 2-1.
The molar densities of all four reactive components in the exit stream of the
second CSTR at ¢t = 0 are

Cat=0=0
Cpp(t=0=0
(2-10)
Cp(t=0)=0
Cea(t=0)=0

The kinetic rate laws for both independent elementary reactions in the second
CSTR that operates at temperature 7, = T are represented by equation (2-11).
Hence, the kinetic rate constants and the equilibrium constant are the same in
both reactors:

C
R12=k1(Tz>{cAz(cgz)2— D2 }

Keq.C(TZ) (2-11)

Roy = k3(T2)Ca2Cp2
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Figure 2-1 Multiple chemical reactions in a CSTR train: transient molar density response

in the exit stream of the first reactor. Approximately 4t; or 5t; is required to achieve
steady-state behavior in the first reactor, where t; is 15 min.

In the unsteady-state mass balances for all four components in the second CSTR,
the input terms due to convective mass transfer are based on the unsteady-state
solutions in the exit stream of the first CSTR [i.e., C;1(¢)]:

dCar  Ca1 —Ca

= —R®p—R
7 - 12 2
dC, Cg — C
d;az _ G L
T
dc c 2c (2-12)
D2 _ DI D2 + R — By
dt 1%}
dCg _ Cg1 — Cg P
dt (%)

Numerical methods are required to integrate these coupled ordinary differential
equations, which are also coupled to the ODEs from the first CSTR, and calculate
the time-dependent molar density of each component in the exit stream of the
second CSTR:

't dc
Cralt) = Crat =0+ [ “ar
r=0 dt
tdc
cmn=@m=m+/ b2 ar
t'=0 dt
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Figure 2-2 Multiple chemical reactions in a CSTR train: transient molar density response
in the exit stream of the second reactor. Approximately 87, is required to achieve steady-
state behavior in the second reactor, where 7, is 10 min.

dc
Cbz@)==CDﬂl==0)+l/ 22 ar

r=o dt

rdc
cmanm=m+/ B ar (2-13)

=0 dt

Results for the second CSTR are illustrated in Figure 2-2.

2-2  ANALYSIS OF A TRAIN OF FIVE CSTRs:
ILLUSTRATIVE PROBLEM

Consider a train of five CSTRs in series that have the same volume and operate
at the same temperature. One first-order irreversible chemical reaction occurs in
each CSTR where reactant A decomposes to products. Two mass-transfer-rate
processes are operative in each reactor. The time constant for convective mass
transfer across the inlet and outlet planes of each CSTR is designated by the
residence time T = V /q. The time constant for a first-order irreversible chemical
reaction is given by A = 1/k;. The ratio of these two time constants,

gt Yk s (2-14)

Aooq

is the same in each CSTR. Analyze the startup behavior of the CSTR train.

The molar density of reactant A (i.e., Cag) is 1 mol/L in the inlet stream to the
first reactor.
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(a) Generate one graph that contains five curves. Each curve represents the
molar density of reactant A in the exit stream of each of the five CSTRs as
a function of ¢/t, where ¢ is variable time and 7 is the average residence

time for each reactor.

(b) Prove that the exact analytical solution for the transient behavior of reac-
tant A in the exit stream of each CSTR is given by equation (2-15) for
first-order irreversible chemical kinetics in equisized reactors that operate

at the same temperature.

1\ Cao ]85 [0+ Byr/T)
CAk(‘)—m{1“‘“""[‘“”)?}27

T
a=0

(2-15)

(c) Develop a correlation that allows one to determine the number of residence
times required to achieve steady-state concentrations in the exit stream of

the kth CSTR.

Solution (a). The generic unsteady-state mass balance with one chemical reac-

tion (i.e., j = 1) is written for reactant A in each CSTR:

d 1
—Car = —{Cak—1 — Car} + var By
dt Tk
C
Ry = Ak
A(Te)

Multiplication by residence time 1 yields (i.e., with vy = —1)
d dCAk Tk
—Car = =Caj-1—Car — C

det Ak d(t/m) Ak—1 Ak (To) Ak
dCar__ (1+B)C
A/t Ak—1 Ak

This equation is written in each of the five CSTRs:

) dCai
First CSTR: =Cpro— (1 C
irs 20/0) A0 — (1 4+ B)Ca
dCa
S d CSTR: =Ca1— (1 C
econ 20/0) Al — (1 +B)Caz
i dCas3
Third CSTR: ———=Cpar— (1 C
ir 4G/7) a2 — (1 + B)Cas
Fourth CSTR: M _ ¢ (14 B)C
ou . = J—
20/ A3 Ad
) dChps
Fifth CSTR: =Cps — (1 + ,B)CAS

d(t/7)

(2-16)

(2-17)

(2-18)

(2-19)

(2-20)
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1st CSTR
2nd CSTR
3rd CSTR
4th CSTR
5th CSTR
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Outlet molar density of reactant A in each CSTR
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Figure 2-3 Transient molar density response for reactant A in a series configuration
of five equisized CSTRs that operate at the same temperature, with simple first-order
chemical kinetics.

The numerical solution of these five coupled ODEs is illustrated in Figure 2-3.

Solution (b)

Steady-State Solution. The steady-state response for each CSTR is obtained by
neglecting the accumulation term in the generic mass balance from part (a):

dCar__ 1 Car =0 221
TN Ak—1— 1+ B)Car = (2-21)

Hence, the steady-state recurrence formula is

Ca k-1
Cpr = — 2-22
A= T (2-22)

which suggests that Cy; should be of the following form:
k-1

oEB
Car=0BF = 2-23
Ak =0 11 p (2-23)

1

E=— (2-24)
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The constant o is determined from the molar density of reactant A in the feed
stream to the first reactor:

CA() = O'EO =0 (2-25)
The steady-state solution is

Cao
(14 B)*
Laplace Transform Analysis. Transient response in the exit stream of the kth

CSTR is obtained via Laplace transform analysis of the mass balance that was
developed in part (a):

(CAk)steady state — (2—26)

dCax dCar

= =Cp -1 — (1 C 2-27
40/7) T Ak—1— (1 4+ B)Cax (2-27)
Cu=0atw=1/t=0 fork>1 (2-28)

Hence, the ordinary differential equation for Ca;(w) in the time domain is trans-
formed into the Laplace domain and solved for Cay(s) (Wylie, 1975, pp. 264265,
theorem 2):

SCAk(8) — Car(@ = 0) = Ca x—1(s) — (1 + B)Cax(s) (2-29)

where s is the transformed time variable. The recurrence formula is

Cax-1(5)
s+ (1+8)
The molar density of reactant A in the inlet stream of the first CSTR is Cag/s

in the Laplace domain. Hence, when the recurrence formula (2-30) is applied to
the first reactor (i.e., k = 1),

Car(s) = (2-30)

Cao(s)  Cao/s

Cai(s) = = 2-31
R Sy R Y ) @30
The final solution for the kth reactor in the Laplace domain is
c 1
Cax(s) = == (2-32)

s s+ 1+ Bl

The convolution theorem is useful to invert the final result for Cax(s) in the
Laplace domain and recover Cay(w) in the time domain. The appropriate inverse
Laplace transforms are (Wylie, 1975, p. 268, formula 5; p. 278, formula 3)
C
11220 = oy (2-33)
s
| ! _ o expl=(1 + fo]

L s+ 1+ Bk k—1)! (2-34)
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Application of the convolution theorem yields (Wylie, 1975, p. 309, theorem 1)

Cao
k —1)!

Car(w) = Car(t/7) = /0 " exp[—(1 + B)x]dx (2-35)

This integral expression is equivalent to equation (2-15) when w = t/7.

Matrix Analysis. Startup behavior of a series of n CSTRs in series with first-order
irreversible chemical reaction is described by n coupled ODEs. These equations:

First CSTR dCar _ (14 B)C
irs : = —
4G/ A0 Al
dCpo
Second CSTR: =Ca1 — (1 +8)Caz (2-36)
d(t/7)
dCAn
th CSTR: =Can— (1 Can
n 4G/7) An—1— (1 4+ B)Ca
can be presented in matrix form as
dC
— +A-C=Ciye (2-37)
dw
C(w = 0) = Cipitia =0 (2-38)

where C is an n x 1 column vector that contains the time-dependent molar den-
sity of reactant A in the exit stream of each CSTR (i.e., Cax, | <k <n).w =t/t
contains the independent time variable divided by the average residence time 7,
which is the same for each CSTR because all reactors have the same volume. A is
an n x n square bidiagonal coefficient matrix (see equation 2-53). The main diag-
onal contains n identical elements (i.e., 1 + 8). Convective mass transfer in the
outlet stream of each CSTR accounts for 1, and first-order irreversible chemical
reaction is responsible for 8. The diagonal just below the main diagonal contains
n — 1 identical elements (i.e., —1), which account for convective mass transfer
in the inlet stream of each CSTR. Cjye 1S an n x 1 column vector that contains
only one nonzero constant in the first row (i.e., Cag). This is characteristic of
the feed stream to the first CSTR. All other entries are zero because convective
mass transfer in the inlet stream of the other reactors is variable, not constant.
Hence, this variable contribution to the inlet stream of all reactors, except the
first, is accounted for by —1 along the diagonal below the main diagonal in A
described above.

As a preliminary to the solution of (2-37) it is instructive to solve a similar
inhomogeneous ODE for x(w) without matrices:

dx
+ ax = Xinet (2-39)
do

X (w = 0) = Xinitial (2-40)
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where Xjer and Xijniqa are constants. The homogeneous solution is obtained by
ignoring Xxjye¢ and solving

d_x 4+ax =0 (2-41)
dw

which has the following solution via separation of variables:

dx
— =—adw (2-42)
X

X (@) homogeneous = (constant) exp(—aw) (2-43)

Since xjne; 1S constant, the particular solution is obtained by choosing a constant
for Xparticular- This constant is determined via substitution in the original ODE;

Xinlet

(2-44)

X (a))particular =

The complete solution to (2-39) is obtained by adding the homogeneous and
particular solutions, given by (2-43) and (2-44), respectively:

Xinl
x(w) = x(w)homogeneous + x(a))particular = constant - exp(—aw) + %et (2-45)

Application of the initial condition at @ = 0 allows one to determine the integra-
tion constant:

Xinlet

x(w = 0) = constant + = Xinitial (2-46)

The final solution is

Xinlet Xinlet

x(@) = (S = =2 ) exp(—a) + = (2-47)
By analogy, preserving the order of matrix multiplication, which is not commu-
tative, the solution to the following matrix differential equation for the CSTR

startup response,

dC
— + A C=Cjee (2-48)
dw

Clw=0) = Ciitia =0 (2-49)

is

C(0) = exp(—A®) + (Cinitial — A" + Cinter) + A™" + Cinte (2-50)
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The inverse of A (i.e., A~!) is calculated from the adjoint matrix of A divided by
the determinant of A (see Wylie, 1975, pp. 483—-484, definitions 1 and 2). Hence,

Al adj A
© detA

(2-51)

where det A = (1 4 )", and the adjoint of A is the transpose of the cofactor

matrix. If there are four CSTRs in series (i.e., n = 4), then the adjoint matrix
of A is

(1+p)? 0 0 0
. A+pr a+p)° 0 0
MA= T 0s a+p? a+pd 0 (252)
1 1+8 (A+p8?* (1+8)°
because
148 0 0 0
-1 148 0 0
A= 1 14+8 0 (2-53)
0 0 1 148

Matrix multiplication yields the following 4 x 1 column vector result when n = 4:

1 .
A_l ° Cinlet = M ad] A- Cinlet
(1+p) 254
__Can (148 (2-34)
a+p* 1+8
1

Analogous to the Taylor series expansion of an exponential function, if a matrix
appears as the argument of an exponential operator, then the function is expanded
as follows:

A2w? AW At
- +

exp(—Aw) =1—-Aw + X 3 0

— ... (2-55)

where 1 is the identity matrix of the same rank as A (ie., n), A>=A-A,
A3=(A-A)-A, and so on. The n x 1 column vector represented by Ciyigial
contains all zero elements because startup requires that the molar density of
reactant A in the exit stream of each reactor vanish at w = 0. Hence, the transient
behavior of n CSTRs in series, given by (2-50), can be written in matrix form as

C(@) = [1 —exp(—Aw)] - (A™" - Cinier) (2-56)
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and expansion of the exponential yields the final solution:
A’w? Ao’ Aot
FTRE TRY

Clw) = (Aw - + - ) - (A" Ciner) (2-57)
One should compare the analytical solution given by equation (2-15) with the
Laplace transform and matrix results for startup behavior of a series of n CSTRs
with first-order irreversible chemical reaction. The three solutions are equivalent.
An alternative proof of the analytical solution that does not require mathematical
rigor is based on graphical comparison of the numerical results in Figure 2-3 with
the solution given by equation (2-15). The numerical and analytical solutions are
indistinguishable.

Solution (c). Explicit evaluation of equation (2-15) yields:

Caxr(t
M — 1 — q)k eXp(—Ol) (2-58)
(CAk ) steady state
Cao
(CAk)sleadystale = m (2-59)
1 t
o (1+p) (2-60)
T
o =1
O =1+«
052
Os3=14+a+ —
2! (2-61)
az a3
Oy=1+a+ 5 + ?

® ] o> o ot

s=1+4+a+ 5 + y + Z
The number of residence times required to achieve steady-state conditions in
the exit stream of each CSTR for a series configuration of five equisized reactors
that operate at the same temperature, with simple first-order chemical kinetics, is

t/t Such That,
kth CSTR 1 — ®pexp(—a) ~ 1
in the Train When g =0.5

9.5
11.5
13.1
14.6
16.0

[ N R S
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PROBLEM

2-1. You have designed the following tracer experiment to determine whether
your continuous flow reactor for pilot-scale study is perfectly mixed, like an
ideal CSTR. At time ¢ = 0, you inject 100 g of an inert tracer into the 100 L
reactor after establishing a feed flow rate of 25 L per min. Your technician
measures the tracer concentration in the outlet stream for a few minutes and
provides you with the following data:

Time (sec) Tracer Concentration (g/L)
20 0.94
50 0.84
100 0.53
200 0.30
400 0.15

(a) Develop an unsteady state macroscopic mass balance on the nonreactive
tracer, assuming that the continuous flow reactor is perfectly mixed.
After + = 0, there is no tracer input to the reactor via convective mass
transfer. Hence, use the “spike” input at + = 0 as an intial condition for
your unsteady state mass balance.

(b) Obtain an analytical solution to your unsteady state macroscopic mass
balance from part (a).

(c) Obtain a numerical solution to your unsteady state macroscopic mass
balance from part (a).

(d) Is the reactor perfectly mixed? Explain your answer.
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ADIABATIC PLUG-FLOW TUBULAR
REACTOR THAT PRODUCES
METHANOL REVERSIBLY IN

THE GAS PHASE FROM CARBON
MONOXIDE AND HYDROGEN

A stoichiometric feed of carbon monoxide (CO) and hydrogen (H;) enters a
2-cm-inner-diameter tubular reactor at 340 K and 1 atm total pressure. The wall
of the tube is well insulated from the surroundings, and the pressure drop through-
out the reactor is negligible. The forward rate constant for this elementary
gas-phase reversible reaction is characterized by a pre-exponential factor of
2 x 10* mol/cm?-min-atm? and an Arrhenius activation energy of 5000(R), where
R is the universal gas constant. Based on equilibrium thermodynamic data for
the species in this particular reaction, kinetic and equilibrium relations between
temperature and conversion can be generated and plotted on the same graph. The
two curves intersect at an equilibrium conversion of ~9% based on the molar
flow rate of carbon monoxide. This is the hypothetical maximum conversion
(i.e., ®9%) that can be achieved in one adiabatic tubular reactor, based on the
inlet conditions described above, if the volume is infinitely large. Your task as
a chemical reactor design engineer is to calculate the required length of a PFR
that will convert 8% of the inlet carbon monoxide to methanol in the exit stream
of the first reactor when the overall mass flow rate is 1 kg/min. The physical
property data are listed in Table 3-1.

This problem requires an analysis of coupled thermal energy and mass trans-
port in a differential tubular reactor. In other words, the mass and energy bal-
ances should be expressed as coupled ordinary differential equations (ODEs).
Since 3 mol of reactants produces 1 mol of product, the total number of moles
is not conserved. Hence, this problem corresponds to a variable-volume gas-
phase flow reactor and it is important to use reactor volume as the indepen-
dent variable. Don’t introduce average residence time because the gas-phase
volumetric flow rate is not constant. If heat transfer across the wall of the
reactor is neglected in the thermal energy balance for adiabatic operation, it

47
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TABLE 3-1 Pure-Component Gas-Phase Thermodynamic Properties for CO, H,,
and CH;OH

Physical Property Carbon Monoxide Hydrogen Methanol

Enthalpy of formation —26,416 0 —48,100
(cal/mol), at 298 K

Free energy of formation —32,808 0 —38,700
(cal/mol), at 298 K

Molecular weight 28 2 32

C, (cal/molK) = a + bT (K) + [T (K)] 2,
at 298 K < T <2500 K

a 6.79 6.52
b 0.98 x 1073 0.78 x 1073
c —0.11 x 10 0.12 x 10°

C,(cal/mol-K) = a + BT (K) + y[T (K)I%,
at 298 K < T < 1500 K

a 4.394
B 24.274 x 1073
v —6.855 x 107

is possible to combine the mass and energy balances to obtain an analyti-
cal expression for temperature as a function of conversion when the following
assumptions are invoked.

3-1 TEMPERATURE-AVERAGED SPECIFIC HEATS

The heat capacity term in the thermal energy balance represents the heat capacity
of the mixture, and it is a function of temperature and conversion. There are
a few methods to calculate this heat capacity. Weighting factors are required
to account for the fact that there are three components in the mixture. Mole
fractions y; are the appropriate weighting factors when the molar heat capacity
of each component, with units of cal/mol-K, is used. Mass fractions w; represent
the weighting factors when the specific heat of each component, with units of
cal/g-K, is used. Stoichiometric coefficients v; are not required, except for their
appearance in the expressions for mass or mole fractions. A simplified approach
that eliminates the temperature dependence of the heat capacities is to perform
a temperature average of each pure-component heat capacity before performing
the appropriate weighted average based on mass or mole fractions. Since the
reaction is exothermic and heat is liberated, the inlet temperature to the reactor
is a good choice for the lower-temperature limit (i.e., Tjower = 340 K) in the
integral expression for the temperature-averaged heat capacity. At this stage in
the problem solution, it is necessary to estimate the upper temperature limit
of integration (i.e., Typper ~ 400 K). This estimate is not much different from
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the temperature at the reactor outlet (i.e., 2423 K), which corresponds to 8%
conversion of carbon monoxide. If the temperature polynomial for each pure-
component heat capacity is

Ci
Cp,componenti =a; +bT + ﬁ 3-1)
then the temperature-averaged heat capacity is
(c > ! o {a + b7 “lar
N mponent i = o < a; + 1 —‘f_ _}
P componentt (Tupper - Tlower) Tiower l ' T2
1 Ci
= a; + =bi (Typper + Tiower) + =————— 3-2
a; + ) z( uppe + Tiowe ) + TupperTlower ( )

If the temperature polynomial for each pure-component heat capacity is
Cp, componenti — & + IBiT + ViTz (3'3)

then the temperature-averaged heat capacity is

1 Tupper
C, . = o + BT + T2 dT
( p, component ) (Tupper ~Tiowen) 1 {a; + B viT"}

1 1 )/i[(’z—'upper)3 - (Tlower):;]
= & + 5 Bi (Tupper + Tiower) + 2 (3-4)
2 pper o 3 (Tupper - Tlower)

The results shown in Table 3-2 are obtained for the three gas-phase components
in the reactor.

Now that the pure-component heat capacities have been averaged over the tem-
perature range of operation, it is necessary to focus on the conversion dependence
of mass fractions and mole fractions.

TABLE 3-2 Temperature-Averaged Pure-Component
Heat Capacities for CO, H,, and CH;0H

(Cp, component i )

Component cal/mol-K cal/g-K
CcO 7.07 0.25
H, 6.90 3.45

CH;0H 12.44 0.39
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3-2 CONVERSION DEPENDENCE OF MASS FRACTION AND HEAT
CAPACITY OF THE MIXTURE

For gas-phase flow reactors, conversion of the key-limiting reactant (i.e., CO) is
typically defined in terms of its molar flow rate (i.e., Fu):

FA, inlet — FA

X (3-5)

F, A, inlet
Hence, molar flow rates are linear functions of conversion because d F;/v; is
the same for all components, based on stoichiometry and the mass balance with
convection and one chemical reaction (see equation 3-15):

dF;, _dFy 6)
Vi B VA
Fi - Fi, inlet FA - FA, inlet (3_7)
Vi VA
F, = Fl inlet + Vi FA, inlet X (3-8)

Since the molar flow rate of component i (F;) is defined as the product of total
mass flow rate (i.e., pg) and component i’s mass fraction (w;) divided by its
molecular weight MW,,

w;
F = iPq

T MW, -9)

it follows directly that component mass fractions are linear functions of conversion:

Vi (MW;) w4 inlet
@ = Wj inlet + MWA X (3 10)
This result does not depend on whether the total number of moles is conserved.
In other words, it is not necessary that the sum of stoichiometric coefficients
for all reactants and products vanish. In contrast, the gas-phase mole fraction of
component i is defined as the molar flow rate of component i divided by the
total molar flow rate:

F; )
1<j<N (3-11)

2B

In general, mole fractions are not linear functions of conversion because the
total number of moles and the total molar flow rate are not constant when
§ =) ;v # 0. For this particular problem, § = —2. In summary, the easiest
approach to performing a weighted average of heat capacities of all components
in the mixture is to use a mass-fraction-weighted sum of the temperature-averaged
specific heat of each pure component. Hence,

yi =

<Cp, mixturc) = Za)i<cp,componcnti> 1 = i = N (3'12)
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Now, the heat capacity of the mixture is a linear function of conversion, and the
temperature dependence has been averaged. The final result for the heat capacity
of the mixture in units of cal/g-K is
X WA inlet
(Cp, mixtare) = Z wi,inlet<cp,componenti) + W Z Vi (Mwi)(cp,componenti>
- A .
l l
(3-13)
The feed stream to the reactor is based on a 2 : 1 molar flow rate ratio of hydrogen
to carbon monoxide. This corresponds to an inlet CO mass fraction of wa_ iner =
0.875. The heat capacity of the mixture for this specific problem reduces to

(Cp, mixture) = 0.65 —0.26 x (cal/g-K) (3-14)

Since the maximum conversion required to design the reactor and allowed by
equilibrium constraints is on the order of 10% (i.e., x ~ 0.10), the conversion-
dependent term contributes ~0.03 cal/g-K, which is less than 5% of the total
heat capacity near the reactor outlet and much less near the inlet. Hence, it
seems reasonable to neglect the conversion dependence of (C) mixure) and use
0.65 cal/g-K throughout the adiabatic tubular reactor.

3-3 PLUG-FLOW MASS BALANCE IN TERMS OF CO CONVERSION

Now, the coupled mass and thermal energy balances can be combined and inte-
grated analytically to obtain a linear relation between temperature and conversion
under nonequilibrium (i.e., kinetic) conditions because it is not necessary to con-
sider the temperature and conversion dependence of (C) mixwure). At high-mass-
transfer Peclet numbers, axial diffusion can be neglected relative to convective
mass transfer, and the mass balance is expressed in terms of molar flow rate F; and
differential volume d'V for a gas-phase tubular reactor with one chemical reaction:

dF;,
dv
where the intrinsic rate law R has units of moles per volume per time for homo-
geneous kinetics. Hence, it is obvious that d F;/v; is independent of component
i, which leads to stoichiometric relations for molar flow rate (3-8), mole frac-
tion, and mass fraction (3-10). At the differential level, molar flow rate and mass

fraction are linearly related when the total mass flow rate (i.e., pg) is constant.
Equation (3-9) yields:

ViR (3-15)

_d(wipg) do;
= =p

dF; q
MW; MW;

(3-16)

which is reasonable at steady state with one inlet stream and one outlet
stream. Hence,

1Y = (MW ;)R (3-17)
=V i -
qd\’




52  ADIABATIC TUBULAR REACTOR/METHANOL PRODUCTION IN GAS PHASE

The final form of the mass balance is written in terms of the conversion of CO
by invoking the linear relation between w; and x. Hence, equation (3-10) yields:

Vi MW w4, inlet

do; = OO ket 3-18
o, MW, X (3-13)
and
dx
O inletPq ;= (MW )R (3-19)

This equation is integrated numerically to determine the reactor volume that
corresponds to 8% conversion of CO. However, this task cannot be accomplished
until one employs kinetics, thermodynamics, and stoichiometry to express the
rate law in terms of temperature, pressure, and conversion. Temperature can also
be expressed in terms of conversion upon consideration of the thermal energy
balance at high-heat-transfer Peclet numbers.

3-4 THERMAL ENERGY BALANCE
FOR A DIFFERENTIAL REACTOR

The first law of thermodynamics for an open system at steady state that per-
forms no work on the surroundings other than pV work across the inlet and
outlet planes of a differential control volume is written with units of energy per
volume per time:

dh dQ

PLav = av (3-20)
where & is the specific enthalpy of the reactive mixture, which contains several
components, and Q is the rate at which thermal energy enters the control volume
across the lateral surface. The right-hand side of this thermal energy balance
vanishes for adiabatic operation. Under nonadiabatic conditions, the differential
rate of conductive heat transfer at the reactor wall (d Q) with units of energy
per time is expressed in terms of an appropriate heat transfer coefficient, an
instantaneous temperature difference, and the differential lateral surface area.
Specific enthalpy conveniently includes contributions from both internal energy
and pV work. Heat effects due to the endothermic or exothermic nature of the
chemical reaction are accounted for by the total differential of specific enthalpy
for a multicomponent mixture. For single-phase behavior of a mixture of N
components in which the chemical reactions have not reached equilibrium, the
phase rule suggests that N + 1 independent variables are required to describe
an intensive thermodynamic property, such as specific enthalpy. By choosing
temperature 7, pressure p, and N — 1 mass fractions w; (ie., 1 <i < N — 1),
one is assured that the thermal energy balance will be expressed in terms of
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temperature and the specific heat of the mixture at constant pressure, (Cp, mixture)-
Hence, the objectives are to (1) calculate the total differential of specific enthalpy,
(2) apply the first law of thermodynamics for open systems, and (3) generate
temperature profiles for nonisothermal reactor performance.

3-5 THERMODYNAMICS OF MULTICOMPONENT MIXTURES

In agreement with the phase rule for single-phase behavior, if
h Zh(T, p,a)l,a)z,...,a)N,l) (3—21)

then the total differential of specific enthalpy is expressed as follows:

ah oh
dh = <—

ar + (2 d
oT +( P

> p, composition ap > T, composition

oh

where the summation includes the first N — 1 components in the mixture. The
temperature coefficient of specific enthalpy at constant pressure and composition
is identified as the heat capacity of the mixture. Hence,

oh )
or P, composition

Standard thermodynamic formalism for the total differential of specific enthalpy
in terms of its natural variables (i.e., via Legendre transformation, see equations
29-20 and 29-24b) allows one to calculate the pressure coefficient of specific
enthalpy via a Maxwell relation and the definition of the coefficient of ther-
mal expansion, «.

) dw; (3-22)
T.p, all wjjjzin

<Cp, mixture) = ( (3-23)

dh =T ds + vdp + terms that account for variations in composition (3-24)

dh as
— =T|— +v (3-25)
3p T, composition 8[7 T, composition

0 ]

<—S> = — <_v> (Maxwell relation) (3-26)
ap T, composition oT P, composition

(57)
or P, composition

dh
(—) =u(l —aT) (3-28)
8]7 T, composition

The pressure coefficient of specific enthalpy is identically zero for ideal gases,
but the thermal energy balance must include a pressure contribution for other flu-
ids. The partial derivative of & in the summation of (3-22), (3h/3w;) 1 p, all w;

v (3-27)

LN
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resembles a partial molar quantity because temperature, pressure, and composition
of ‘almost’ all of the other species are held constant. It is not possible to vary
the mass fraction of component i while all other mass fractions remain constant
because the necessary restriction that all mass fractions must sum to unity would
be violated. In other words, at least two mass fractions must change, w; and wy.
Changes in wy are not independent. They are equal and opposite to those of w;
to guarantee that all mass fractions sum to unity. If specific enthalpy is replaced
by extensive enthalpy H and mass fraction is replaced by mole numbers N;, then
one defines the partial molar enthalpy of component i (i.e., ;) as

oH
3N,' T, p, all Njjjzn

The partial derivative of interest, (3/h/0wi)T, p. all wj;.ix» 1S Written in terms of
partial molar enthalpies, h;. Derivation of the exact expression can be found
in Section 26-2 (see equations 26-30 and 26-31). The total differential of spe-
cific enthalpy is written in terms of temperature, pressure, and compositional
variations as

b; by

MW, MWy

dh = (Cp,mixuure) AT +v(1 —aT)dp + Y ( ) dw; (3-30)

where MW is molecular weight and the summation in (3-30) includes the first
N — 1 components. One invokes the restriction that all mass fractions must sum
to unity (i.e., a constant) and differential changes in all mass fractions must sum
to zero. Hence, the summation in equation (3-30) is simplified as follows:

Y dwi=-doy 1<i<N-1 (3-31)
N-1 N-1 N—1
( hl hN )da), hl d . — hN Zdwl
~\MW; MWy ~ MW, MWy &
N B
=Y ——do, (3-32)
MW,

The mass balance for a differential plug-flow reactor (equation 3-17) that operates
at high-mass-transfer Peclet numbers allows one to replace dw; in (3-32):
dv
dw; = vi(MW)BR— (3-33)
rq

Now the total differential of specific enthalpy contains a chemical reaction con-
tribution via the kinetic rate law R:

al dv
dh = (Cp, mixure) dT +v(L —aT)dp + | Y _ vib; RE (3-34)

i=1
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The summation in (3-34) represents an exact expression for the molar enthalpy
change due to chemical reaction, AHgx (see Tester and Modell, 1997,
pp. 769-770):

N
AHgy =) vib; (3-35)
i=1

In practice, pure-component molar enthalpies are employed to approximate A Hgy.
This approximation is exact for ideal solutions only, when partial molar properties
reduce to pure-component molar properties. In general, one accounts for more
than the making and breaking of chemical bonds in (3-35). Nonidealities such as
heats of solution and ionic interactions are also accounted for when partial molar
enthalpies are employed. Now, the first law of thermodynamics for open systems,
which contains the total differential of specific enthalpy, is written in a form that
allows one to calculate temperature profiles in a tubular reactor:

dh daT dp do
PQW = pq<cp,mixlure>ﬁ + Q(l - aT)W + (AI_IRX)BR = W (3'36)
The final form of the differential thermal energy balance for a generic plug-flow
reactor that operates at high-mass and high-heat-transfer Peclet numbers allows
one to predict temperature as a function of reactor volume:

dT dQ dp
pq<Cp,mixture)W = W —q(l— OKT)W + (—AHr)R (3'37)
It should be obvious from the discussion above that thermodynamics plays a
major role in the development of reactor design formulas when heat effects due
to chemical reaction are important.

3-6 COUPLED HEAT AND MASS TRANSFER

For adiabatic performance of a variable-volume gas-phase tubular reactor, the
first term on the right-hand side of (3-37) is identically zero, and the second term
vanishes if the gas mixture behaves ideally. Hence, the coupled plug-flow mass
and thermal energy balances are

dx
Wit Pq — = (MWAR (3-38)

dT
pq<cp,mixlure>ﬁ = (—AHp R (3-39)

These coupled first-order ODEs allow one to generate conversion and temperature
profiles as a function of reactor volume. It is not appropriate to introduce average
residence time unless the fluid is incompressible. If one combines these balances
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and eliminates the kinetic rate law 8, which could be rather complex for reversible
reactions, then conversion and temperature obey the following simple relation
under nonequilibrium conditions:

(A H) X — MW (C 4T (3-40)
Or o (— A . il ;

A, inlet Rx dv A p, mixture dv

Integration from the reactor inlet where V =0, x =0, and T = Tjye to any
position downstream allows one to estimate analytically the reactor temperature
in terms of conversion if the heat capacity of the mixture is averaged over the
operating temperature range and its dependence on conversion is neglected. The
desired relation is

T = Tt + x( Rx)a)A, inlet (3-41)
MWA (Cp, mixture)

For the production of methanol from a stoichiometric feed of CO and H,, the
final expression for nonequilibrium reactor temperature is

T(K)=34041042.5y% (3-42)

The temperature-dependent physical constants in the mass balance (i.e., the
kinetic rate constant and the equilibrium constant) are expressed in terms of
nonequilibrium conversion x using the linear relation (3-42). The concept of
local equilibrium allows one to rationalize the definition of temperature and cal-
culate an equilibrium constant when the system is influenced strongly by kinetic
changes. In this manner, the mass balance is written with nonequilibrium con-
version of CO as the only dependent variable, and the problem can be solved
by integrating only one ordinary differential equation for x as a function of
reactor volume.

3-7 KINETICS AND THERMODYNAMICS OF ELEMENTARY
REVERSIBLE REACTIONS IN THE GAS PHASE

It is necessary to focus on details of the rate law R before the mass balance,

WA, inletpqd_X = (MWA)R (3-43)
dv

can be integrated to calculate the required reactor volume that corresponds to 8%
conversion of CO (i.e., x = 0.08). This is an elementary reversible reaction in the
gas phase where the equilibrium constant is employed to write the kinetic rate law
for the backward step. The reaction rate is third order in the forward direction and
first order in the backward direction. This implies that the forward and backward
kinetic rate constants have different units (i.e., mol/vol-time-atm”) and that the
equilibrium constant based on gas-phase partial pressures, K, = ]_[IN=1 (pi)Yi, is
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not dimensionless, in general. Based on the units of the pre-exponential factor for
the forward kinetic rate constant (mol/cm?-min-atm?), it should be obvious that
the rate law must be constructed in terms of gas-phase partial pressures instead
of molar densities. Hence,

B = ktorward (T) Pco(Pr,)? — kbackward (T) Pcr,0n (3-44)

The principle of microscopic reversibility allows one to express the backward
rate constant in terms of the forward rate constant divided by K,, which is
the equilibrium constant based on gas-phase partial pressures. K, has units of
pressure to the power §, where § is the sum of the stoichiometric coefficients
(i.e., 6 = —2 for this problem). Handbook values for standard-state free energies
of formation at 298 K are used to calculate the Gibbs free-energy change for
reaction at 298 K (i.e., AGy, ,9g), and this is used to calculate a dimensionless
equilibrium constant, Kequilibrium, r at 298 K, based on fugacity ratios or activities.
The temperature dependence of this equilibrium constant is given by (3-61) and
(3-65). Chemical equilibrium for a generic chemical reaction implies that

> wipi(T. p. composition) = 0 (3-45)

i components

where v; and p; are the stoichiometric coefficient and chemical potential of com-
ponent i, respectively. One expresses w; in the reactive mixture at equilibrium in
terms of [1t;, pure(7)]°, the latter of which is based on a pure-component reference
state where the fugacity is 1 atm. Hence,

fi, mixture

wi(T, p, composition) = [/M,pure(T)]O + RT In (3-46)

i, pure

where f; mixure and f; pure represent the fugacity of component i in the reactive
mixture and in the pure-component reference state, respectively. The statement
of chemical equilibrium yields

S vl gD = —RT Y vy In S

i components i components ﬁ » pure
L. Vi
— —RT1n l_[ (ft, m1xlure> (3_47)
i components fi’ pure

One identifies the stoichiometric-coefficient-weighted sum of pure-component
chemical potentials in the reference states, at unit fugacity, with the standard-
state free-energy change for chemical reaction, since [;, pure(T)]O is equivalent to
the molar Gibbs free energy of pure component i in this reference state. Hence,

> vilkipue(D]” = AGR,(T) (3-48)

i components
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The equilibrium constant from thermodynamics is defined as follows in terms of
fugacity ratios:

i, mi K
Kequilibrium, = l_[ < e (3-49)

i components fi’ pure
Now, the statement of chemical equilibrium reduces to
AG]OQX(T) = —RTIn Kequilibriurn, f (3-50)

If the gas-phase reactive mixture behaves ideally at low to moderate pressures, all
fugacity coefficients are very close to unity and the fugacity of each component
in the mixture can be approximated by its partial pressure. Hence,
_ K AGR (T)
K quitibrium, f = l_[ (pi/fi,pure)” = Koip = exp [—ﬁ]

i components standard state

(3-51)
where K, 1.4 s 1S the equilibrium constant for the chemical reaction using a
standard-state fugacity (i.e., f; pure) Of 1 atm for each component. As illustrated
above in (3-46), these standard-state fugacities define the pure-component refer-
ence state about which the concentration dependence of the chemical potential is
expanded, and they identify the standard state for calculation of AGy, via (3-48).
Hence, K iud swe @lWays has a value of unity when standard-state fugacities
are defined as 1 atm. Most important, this standard-state equilibrium constant
has units of atmospheres to the power §, which match the units of K. In other

words, at any temperature,

K,(T)=K

o AG ;X (T)
standard state €XP | — RT

} [=](atm)® (3-52)

and all partial pressures in the rate law must be expressed in atmospheres. The
homogeneous kinetic rate law with units of moles per volume per time is

(3-53)

PCH;0H
R = krorward (T) {pCO(sz)z - - }

K,(T)

Dalton’s law for ideal gas mixtures is used to express partial pressures as a
product of total pressure in atmospheres and mole fraction y;. Based on the
definition of CO conversion yx in terms of molar flow rate for gas-phase flow
reactors and the fact that the mole fraction of component i is equal to its molar
flow rate divided by the total molar flow rate, the following expression is obtained
for the mole fraction of component i:

F; = Fj intee + Vi FAinlet X (3-54)

F. Q; + v,
e VS P (3-55)
E./'Fj (SX + E./'G)j

Yi =
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where v; is the stoichiometric coefficient, § the sum of stoichiometric coefficients,
and ®; the inlet molar flow rate ratio of component i with respect to key limit-
ing reactant A:

Fi, inlet

O, =
FA, inlet

(3-56)

Hence, ®, = 1, by definition. In summary, all partial pressures in the rate law
should be written as a product of total pressure and mole fraction. Then, mole
fractions can be expressed in terms of the conversion of CO. Alternatively, the
ideal gas law can be used to express partial pressures p; as C;RT, and the
conversion dependence of molar density C; is tabulated by Fogler (1999, p. 96)
for variable-volume gas-phase flow reactors. It should be emphasized that y; pioal
and C;RT generate the same function of conversion when the ¢ parameter in
Fogler’s expressions is written as

I}
E =
20,

1<j<N (3-57)

The factor of 7 in the molar density expressions for nonisothermal problems
cancels with RT when partial pressures are calculated via C; RT .

The temperature dependence of the dimensionless equilibrium constant from
thermodynamics, Kecquilibrium, £ (7'), is obtained quantitatively by differentiating
equation (3-50):

_dln Kequilibrium,f _ d(AG?{x/RT) . id(AG?{x) _ AGEX
dT B dT ~ RT dT RT?

The temperature dependence of AG is given by —AS at constant pressure and
composition because

(3-58)

dG=-SdT+Vdp+ ) wdN;, 1<i<N (3-59)

Hence, the final result, which allows one to calculate Kequilibrium, ¢ at any tem-
perature, is

dIn Kequilibrium, f A Sﬁx A G?{x A HROX
= = (3-60)
daT RT RT? RT?

which is a classic expression in any thermodynamics text (see Smith and Van
Ness, 1987, p. 508; Tester and Modell, 1997, p. 765). Equation (3-60) is typically
integrated with respect to temperature under the assumption that the enthalpy
change for reaction is not a function of temperature. Hence, A Hy, is calculated
from enthalpies of formation at 298 K, which are obtained from calorimetry and
tabulated in handbooks. Upon integration from 298 K to temperature 7', one
obtains

B
In Kequitibrium, f = A + T (3-61)
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ASS
A= R _ 967 (3-62)
R
AHS
B=——R2_10913K (3-63)

for the production of methanol from CO and H,.
This is exactly the same as the final result that one obtains if the temperature
dependence of AGy, is approximated as

AGy, = AHg, 03 — TASg, 28 (3-64)

and the dimensionless equilibrium constant Kequilibrium, f 1S calculated from
equation (3-50):

AGloix _ Angx, 298 TASEX, 298
RT RT

In Kequitibrium, f = — (3-65)

For the synthesis of methanol from CO and H,, A < 0 because there is a decrease
in the number of gas-phase moles upon reaction [i.e., X;(v;) < 0], and B > 0

because the reaction is exothermic. The final form of the rate law for the pro-
duction of methanol is

[p(atm)]~*ycu,0n
exp(A+ B/T)

—E
B =ky, poc €XP (Ta;")>[p(atm)]3 {ycoyﬁz — } (3-66)

where

X (—AHry)®a, inlet

T = Tiger + = 340 + 1042.5 (K)
T MW A(C ), misture)
O; +vix :
= — 1<j<N
Yi 3X i Zj ®j =] =

N
§=-2.0c0 =1,0p, =2,0cu,on =0, and Y ©; =3.
j=1

3-8 INTEGRATION OF THE NONISOTHERMAL
PFR DESIGN EQUATION

Now, it is possible to integrate the plug-flow differential mass balance for con-
version as a function of reactor volume:

dx
WA, inletPq 7y = (MW )R (3-67)
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If the mass flow rate is expressed in grams per minute, the pre-exponential factor
for the forward kinetic rate constant has units of mol/cm?-min-atm?, and the
total pressure is expressed in atmospheres, then the reactor volume has units
of cubic centimeters. The problem is solved in terms of an arbitrary mass flow
rate as follows:

MW )R (3-68)

1) X
A, mletd(v/pq)

where the independent variable is reactor volume V divided by total mass flow
rate. This rearrangement is valid for both gas- and liquid-phase flow reactors
because the total mass flow rate is constant unless material escapes across a
permeable wall, such as in blood capillaries and hollow-fiber membranes. The
ideal plug-flow differential mass balance is solved using a fourth-order cor-
rect Runge—Kutta—Gill numerical integration scheme. The truncation error that
accumulates with each step is monitored, and integration should cease if this
error becomes too large. If one increments V/pg from O at the reactor inlet to
1 cm®-min/g in 100 steps, then the conversion of CO achieves an asymptotic
value of 0.089, as illustrated in Figure 3-1. Alternatively, one could increment
CO conversion from y = 0 at the inlet to slightly less than 0.089 (i.e., 176 steps)
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Figure 3-1 Reactor volume vs. nonequilibrium conversion of CO in a single-stage adi-
abatic plug-flow reactor that produces methanol from CO and H,. The steep increase in
reactor volume near 9% CO conversion is a consequence of near-equilibrium conditions
when the feed enters at 340 K.
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and calculate V/pg via numerical integration. The desired conversion of 8%
corresponds to

Vv
— =0.64 cm3-min/g at y =0.08 (3-69)
rq

Hence, reactor volume V = m R>L = 640 cm?® and the reactor length L is about
204 cm when the total mass flow rate is 1000 g/min. These results are valid at
high-mass and heat-transfer Peclet numbers.

PROBLEMS

3-1. Benzene is hydrogenated to cyclohexane in a series of two gas-phase tubular
reactors. A stoichiometric feed of benzene and hydrogen enters the first
reactor. The reversible elementary chemical reaction is

CeHs(g) + 3H2(g) =—— CsHi2(g)

and a catalyst is not required. The appropriate gas-phase thermodynamic
data are provided in Table 3-3.

(a) At 5 atm total pressure, calculate the equilibrium temperature when the
equilibrium conversion of the key reactant, benzene, is 75%. Remember
that the reactor is thermally insulated from the surroundings.

(b) Obtain an expression for the homogeneous kinetic rate law for this
elementary reversible reaction that should be used in the appropriate
mass balance to design the size of the first tubular reactor in series. This
rate law depends on temperature, pressure, and conversion of benzene.
Remember that a stoichiometric feed of benzene and hydrogen enters
the first reactor on a molar-flow-rate basis.

TABLE 3-3 Pure-Component Gas-Phase Thermodynamic Properties at 298 K for
C¢Hg, H,, and CgHy, (cal/g mol)

Benzene Hydrogen Cyclohexane
Property (CsHe) (H») (C¢Hi2)
AGY, ation 30,989 0 7,590
AHE o 19,820 0 —29,430
Molecular weight 78 2 84
Inlet mole fraction® 0.25 0.75 0
Inlet mass fraction? 0.93 0.07 0

“Characteristics of the feed stream to a gas-phase plug-flow reactor are provided for both reactants
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Sketch the temperature profile as a function of reactor length. Based on a
consideration of the residence time for convective mass transfer through
the reactor and the time constant for reversible chemical reaction, it
is estimated that equilibrium conditions are almost achieved when the
length of the reactor is 10 m. Be sure to sketch the temperature profile
from z = 0 to 15 m, and indicate the effect that near-equilibrium con-
ditions will have on the temperature in this first adiabatically enclosed
reactor in series.

Calculate a numerical value for the adiabatic temperature rise (Kelvin) in
the first ideal plug-flow tubular reactor when the conversion of benzene
is 30% based on molar flow rates. A 1:3 molar ratio of benzene to
hydrogen enters the reactor, and the temperature-averaged specific heat
is 0.85 cal/g-K.

Is your answer to part (d) larger, smaller, the same, or too complex to
evaluate relative to the adiabatic temperature rise in one well-mixed
CSTR when the feed streams are identical and the final conversion of
benzene is 30%?

Is your answer to part (d) larger, smaller, the same, or too complex to
evaluate relative to the adiabatic temperature rise in one well-mixed
CSTR if the feed streams are identical and both reactors have the same
volume Vcstr = Vper, and the same residence time, tcstrR = Tper?

Should the reactive gas-phase mixture be heated or cooled prior to enter-
ing the second adiabatic tubular reactor in series to obtain higher con-
version of benzene to cyclohexane? Provide support for your answer.

What equations must be solved to calculate the length of a double-pipe
heat exchanger between each reactor if the liquid-phase cooling fluid
in the annular region moves countercurrent to the gas-phase mixture
of benzene, hydrogen, and cyclohexane in the inner tube. The overall
objective is to obtain a temperature of 400 K for the reactive fluid in
the inlet stream to all the tubular reactors in series. Be sure to include
boundary conditions in your final answer.

Should the second PFR in series operate at higher total pressure, lower
total pressure, or the same total pressure relative to the first reactor? The
overall objective is to obtain the highest possible conversion of benzene
to cyclohexane.

Use Figure 3-1 as a starting point and sketch the relation between reactor
volume and nonequilibrium conversion of carbon monoxide if the insulation
that covers the wall of the tubular reactor is removed. Think about the effect
that heat transfer across the wall of the reactor has on the temperature of the
reactive fluid. Then, consider the effect of temperature on the kinetics of the
reaction, and the effect of chemical kinetics on the reactor volume required
to achieve a specified conversion. Finally, consider the effect of temperature
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on the equilibrium conversion for an exothermic reaction via Le Chatelier’s
principle. You must illustrate differences in both kinetic and equilibrium
conditions for your graph when the insulation is removed relative to the
one in Figure 3-1. Include two graphs of reactor volume vs. CO conversion
on one set of axes, where one of the graphs is exactly the same as the one
in Figure 3-1 for adiabatic operation.
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4

COUPLED HEAT AND MASS
TRANSFER IN NONISOTHERMAL
LIQUID-PHASE TUBULAR REACTORS
WITH STRONGLY EXOTHERMIC
CHEMICAL REACTIONS

4-1 STRATEGIES TO CONTROL THERMAL RUNAWAY

When exothermic chemical reactions are characterized by large enthalpy changes,
a design strategy must be implemented to remove the heat and minimize the tem-
perature rise within the reactive fluid. Thermal runaway is identified by upward
curvature and a steep increase in temperature vs. average residence time t that
will generate charred products which are not very useful. Six possible solutions
are described below to prevent the phenomenon of thermal runaway from occur-
ring. These successful strategies are summarized here for tubular reactors with
the flexibility to implement cocurrent or countercurrent cooling in a concentric
double-pipe configuration.

Lower the inlet temperature of the reactive fluid.

Reduce the outer wall temperature of the reactor.

Increase the surface-to-volume ratio of the reactor.

Increase the flow rate of a cocurrent cooling fluid.

Employ a cooling fluid that undergoes a strongly endothermic reaction.

AN ol S e

Reduce the inlet temperature of a countercurrent cooling fluid.

4-1.1 Plug-Flow Mass Balance That Neglects Axial Diffusion

At high-mass-transfer Peclet numbers, the steady-state mass balance for com-
ponent i, with units of moles per time, is expressed in terms of its molar flow
rate F; and differential volume dV = m R?dz for a tubular reactor. If species i

65
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participates in j reactions, then:

rate of convective input + rate of production = rate of convective output (4-1)

(Fi.,z)‘mle‘ + Z ViR v = (Fi!”dz)outlet
J

(4-2)
dFi = (Fi’z"'dz)oullet - (Fivz)inlet = Z vija&j av
J

where z represents the primary flow direction in cylindrical coordinates, v;; the
stoichiometric coefficient of species i in reaction j, and the intrinsic rate law
for the j™ chemical reaction ® ; has units of moles per volume per time for
homogeneous kinetics. The molar flow rate of component i (F;) is defined as the
product of total mass flow rate (i.e., ¢pwt) and component mass fraction (w;)
divided by its molecular weight MW;:

W; g Protal

F;, =
MW;

(4-3)
where g represents volumetric flow rate and p is the overall mass density
of the reactive mixture. If there is one inlet stream and one outlet stream, then
the total mass flow rate through the tubular reactor remains constant and the
differential mass balance allows one to predict changes in mass fraction for each
species:

dv
4 Protal

da)i = MWZ Z U,‘jﬂ‘j (4-4)
J

This result will be employed in conjunction with the thermal energy balance for
reactive systems. If there is only one chemical reaction, then subscript j is not
required and d F;/v; is independent of component i:

dF;  dFy

— =RdV 4-5)
V; VA

which leads to stoichiometric relations for molar flow rate, mole fraction, and
mass fraction via the mass balance with convection and chemical reaction. Inte-
gration of (4-5) from the reactor inlet to any position downstream produces the
following macroscopic flow rate relation:

Fi — Fi intet _ Fa — Fa,inlet 4-6)

Vi VA

For flow reactors, the conversion of key-limiting reactant A is typically defined
in terms of its molar flow rate (i.e., Fy):
_ FA,inlet - FA

4-7)
Fa, inlet
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Hence, stoichiometry reveals that all molar flow rates are linear functions of
conversion. This is obvious when Fs — Fa inler in the macroscopic flow rate
relation (4-6) is replaced by —x Fa, inlet:

E = E, inlet + Vi FA, inlet X (4_8)

and vy = —1 for reactant A. The macroscopic stoichiometric flow rate relation
also reveals that component mass fractions are linear functions of conversion via
(4-3) and (4-8):

Vi MW )W inlet X

MW, 4-9)

W; = W inlet
when the total mass flow rate through the reactor is constant. This is reasonable
at steady state with one inlet stream and one outlet stream. One must exercise
caution when applying the results in this chapter if, for example, material escapes
across the lateral wall of a hollow-fiber ultrafiltration membrane because the over-
all mass flow rate through the fiber decreases continuously. The stoichiometric
relation for mass fractions (i.e., 4-9) does not rely on conservation of total moles.
In other words, it is not necessary that the sum of stoichiometric coefficients for
all reactants and products must vanish. In contrast, the gas-phase mole fraction
of component i is defined as the molar flow rate of component i divided by the
total molar flow rate:

F;
Vi= —— (4-10)

2o B

In general, mole fractions are not linear functions of conversion because the
total number of moles and the total molar flow rate are not constant when § =
ZlN: 1 Vi # 0. The thermal energy balance described below requires a weighted
average of heat capacities for all components in the mixture. The easiest approach
to perform this average is to use a mass-fraction-weighted sum of temperature-
averaged specific heats of each pure component. Hence,

N
(Cp, mixture) = Z w; (Cp, component i) (4'1 1)

i=1

Now the heat capacity of the mixture is a linear function of conversion, and the
temperature dependence of each C, component i has been averaged. The final result
for (Cp, mixwre) in units of cal/g-K, which employs (4-9), is

N
(Cp, mixture) = Z @; inlet (Cp, component i ) +

i=1

X WA, inlet

N
MWA Z Vi MWi (Cp, componenli)

i=1

(4-12)

At the differential level, molar flow rate and mass fraction are linearly related
when the total mass flow rate (i.e., gppar) 1S constant at steady state with one inlet
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stream and one outlet stream. Differentiating (4-3) with one chemical reaction
yields:

da),-
dF; = qpol MW, VR4V (4-13)
Hence,
da),-
q Protal d— =1, (MWH)R (4-14)

The final form of the mass balance is written in terms of conversion x for
one chemical reaction by invoking the linear relation between w; and x (see
equation 4-9). Hence,

V;  MW;) WA inlet

d ;= —d 4-15
and
<M) dx _y (4-16)
MWA dt

where the average residence time 7 for liquid-phase flow reactors is V /g and the
term in parentheses in (4-16) represents the inlet molar density of reactant A.

4-1.2 Thermal Energy Balance for a Differential Reactor

The first law of thermodynamics for an open system at steady state that per-
forms no work on the surroundings other than pV work across the inlet and
outlet planes of a differential control volume is written with units of energy per
volume per time:

dh dQ
dv —dv
where 4 is the specific enthalpy of the reactive mixture, which contains several
components, and Q is the rate at which thermal energy enters the control vol-
ume across the lateral surface. The differential rate of conductive heat transfer
at the reactor wall (d Q) with units of energy per time is expressed in terms of
an appropriate heat transfer coefficient, an instantaneous temperature difference
and the differential lateral surface area. Specific enthalpy conveniently includes
contributions from both internal energy and pV work. Heat effects due to the
endothermic or exothermic nature of the chemical reaction are accounted for by
the total differential of specific enthalpy for a multicomponent mixture, as illus-
trated in Section 4-1.3. For single-phase behavior of a mixture of N components
in which the chemical reactions have not reached equilibrium, the phase rule
suggests that N + 1 independent variables are required to describe an intensive
thermodynamic property, such as specific enthalpy. By choosing temperature T,
pressure p, and N — 1 mass fractions w; (i.e., | <i < N — 1), one is assured

g Protal (4' 17)
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that the thermal energy balance will be expressed in terms of temperature and
the specific heat of the mixture at constant pressure, (C, mixwure). Hence, the
objectives are to (1) calculate the total differential of specific enthalpy, (2) apply
the first law of thermodynamics for open systems, and (3) generate temperature
profiles for nonisothermal reactor performance.

4-1.3 Thermodynamics of Multicomponent Mixtures

In agreement with the phase rule for single-phase behavior, if
h=n(T,p,w,w...,0N-1) (4-18)

then the total differential of specific enthalpy is expressed as

oh oh
dh = (_) dT + (—
oT p., composition

3p ) T, composition
oh
* Xl: <3wi

where the summation includes the first N — 1 components in the mixture. The
temperature coefficient of specific enthalpy at constant pressure and composition
is identified as the heat capacity of the mixture. Hence,

oh )
ar P, composition

Standard thermodynamic formalism for the total differential of specific enthalpy
in terms of its natural variables (i.e., via Legendre transformation, see
equations 29-20 and 29-24b) allows one to calculate the pressure coefficient of
specific enthalpy via a Maxwell relation and the definition of the coefficient of
thermal expansion, .

dp

) do; (4-19)
T, p,allwjjiN

<Cp, mixture) = ( (4'20)

dh =T ds + vdp + terms that account for variations in composition (4-21)

oh as
- =7(= +v (4-22)
81) T, composition 8]7 T, composition
as ov .
— =—|—= (Maxwell relation) (4-23)
ap T, composition T p, composition
d

Ci> =va (4-24)
oT P, composition
oh

<—) =v(l —aT) (4-25)
8[9 T, composition

The pressure coefficient of specific enthalpy is identically zero for ideal gases, but
the thermal energy balance must include a pressure contribution for other fluids.

The partial derivative of £ in the summation of (4-19), (0h/30w)T, p. alw; sy
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resembles a partial molar quantity because temperature, pressure, and composition
of almost all of the other species are held constant. It is not possible to vary the
mass fraction of component i while all other mass fractions remain constant
because the necessary restriction that all mass fractions must sum to unity would
be violated. In other words, at least two mass fractions must change, w; and wy.
Changes in wy are not independent. They are equal and opposite to those of w;
to guarantee that all mass fractions sum to unity. If specific enthalpy is replaced
by extensive enthalpy H and mass fraction is replaced by mole numbers N;, one
defines the partial molar enthalpy of component i (i.e., h;) as follows:

oH
, (4-26)
8N,~ T, p,all Njjji

The partial derivative of interest, (3h/0w;)7, p, allwjy;.iny» 1S Written in terms of
partial molar enthalpies, h;. Derivation of the exact expression can be found
in Section 26-2 (see equations 26-30 and 26-31). The total differential of spe-
cific enthalpy is written in terms of temperature, pressure, and compositional

variations as follows:

N—1

b b
dh = <Cp,mixturc> dT +v(l —aT) dP + Z <— - N
i=1

MW, MWy

) dw; (4-27)

where MW is the molecular weight and the summation in (4-27) includes the
first N — 1 components. One invokes the restriction that all mass fractions must
sum to unity (i.e., a constant) and differential changes in all mass fractions must
sum to zero. Hence, the summation in (4-27) is simplified as follows:

N-—1
> dw = —doy (4-28)
i=1

N-1 B, b N B, B N-1
<—l — N ) da)i = d da)i — N Z da)i
~ \MW; MWy — MW; MWy =

= dw; (4-29)

The mass balance for a differential plug-flow reactor with multiple chemical
reactions that operates at high-mass-transfer Peclet numbers allows one to replace
dw; in (4-29):
dv
doy = (MW;) Y v B — (4-30)
; g Protal
Now the total differential of specific enthalpy contains a chemical reaction con-
tribution via the kinetic rate law ®; for each reaction:

N
dv
dh = (Cp,mixture)dT + U(l - OlT) dP + ZRJ' <Z vijhi) qp (4'31)
j total

i=1
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The summation over all N components in (4-31) is an exact representation of the
molar enthalpy change for the j" chemical reaction, A Hgy,j (Tester and Modell,
1997, pp. 769—-770). In other words,

N

AHgyj = ) vijhi (4-32)

i=1
which accounts for nonidealities such as heats of mixing and ionic interactions, as
well as the making and breaking of chemical bonds. Typically, one employs pure-
component molar enthalpies to calculate A Hgy, ;. This approximation is exact for
ideal solutions only, because partial molar properties reduce to pure-component
molar properties. Now, the first law of thermodynamics for open systems, which
contains the total differential of specific enthalpy, is written in a form that allows
one to calculate temperature profiles in a tubular reactor with multiple chemical
reactions:

h dT dp do
4 Protal W = qptota]<cp, mixturc) W + Q(l - OlT)ﬁ + XI: AHRX,jaKj = W
' (4-33)

The final form of the differential thermal energy balance for a generic liquid-
phase plug-flow reactor that operates at high-mass and high-heat-transfer Peclet
numbers allows one to predict temperature as a function of the average residence
time T = V/q:
dT dQ dp

Prowat (Cp.misure) —— = == = (I —aT)=— + 2jj(—AHRx,,->RA,- (4-34)
It should be obvious from the discussion above that thermodynamics plays a
major role in the development of reactor design formulas when heat effects due
to chemical reaction are important.

4-1.4 Conductive Heat Transfer across the Lateral Surface:
Forms for dQ /dV

The instantaneous rate of thermal energy transport into the reactive fluid across
the wall at radius R is given by dQ/dV in (4-34), with units of energy per
volume per time. The differential control volume of interest that contains the
reactive fluid is dV = 7 R%dz, where 7 is the spatial coordinate that increases in
the primary flow direction. Four possibilities allow one to determine this rate of
conductive heat transfer across the lateral surface of the reactor:

1. Adiabatically enclosed reactors where the outer wall is insulated completely
from the surroundings

2. Reactors that maintain constant heat flux across the wall at radius R

3. Reactors that maintain constant wall temperature on the outside of the tube,
analogous to steam condensation heat exchangers

4. Cocurrent or countercurrent cooling fluids in the annular region of a con-
centric double-pipe configuration
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Adiabatic Reactors. These reactors operate such that d Q/dV = 0. Hence, there
is no heat transfer across the lateral surface and all the thermal energy generated
via exothermic chemical reaction remains within the reactor. Temperature profiles
within the tube are predicted from the simplified thermal energy balance when
only one chemical reaction occurs:

aTtr dp
ptotal(cp,mixture> — =—{1—-aT)— + (—AHr)R (4-35)
dt dt

where the second term on the right side of (4-35) is primarily responsible for
an increase or decrease in temperature when the chemical reaction is exothermic
or endothermic, respectively. Usually, the pressure contribution is neglected and
the thermal energy balance,

aT
plotal(cp, mixture)E = (_AI_IRX)3R (4'36)
is combined analytically with the mass balance (see equation 4-16):

WA, inlet Ptotal d_X - R

4-37
MWA dt ( )
to predict adiabatic temperature changes as follows:
ar WA inlet Protal d X
Ptotal(Cp, mixture)E = (—AHRx)#AO‘1 E (4-38)
Hence,
dT _ (_AHRX)U)A, inlet (4-39)

a B MWA(Cp,mixlure>

under nonequilibrium conditions. For exothermic chemical reactions where the
temperature dependence of the specific heat of the mixture has been averaged
and the effect of conversion on (C, mixwre) i negligible, (4-39) is integrated from
the reactor inlet (i.e., x =0, T = Tjye) to final conditions downstream where
X = Xfinal a0d T = Tiaximum- The adiabatic temperature rise is predicted from the
following nonequilibrium relation between temperature and conversion:

(—AHgx) WA, inlet Xfinal
MWA (Cp, mixlure)

(4-40)

ATadiabatic = I'maximum — Tinlet =
This temperature rise can be reduced by diluting reactant A with an inert sol-
vent so that the mass fraction of A in the inlet stream (i.e., wa_ inet) decreases.

This strategy is more attractive if the inert solvent exhibits an exceedingly large
specific heat, which contributes significantly to (C, mixture)-

Constant Heat Flux across the Lateral Surface. This condition is described
quantitatively by expressing the differential rate of thermal energy transport d Q
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into the reactor as a product of the constant flux @, with units of energy per area
per time, and the differential lateral surface area. Hence,

dQ = ®27Rdz (4-41)

and the quantity of interest in the thermal energy balance, with units of energy
per volume per time, is

do 1 dQ 2@

— = ——— = — = constant 4-42

dV  7wR? dz R ( )
To develop a well-behaved temperature profile throughout the reactor, the
constant heat flux ® must be negative for exothermic reactions. If the pressure
contribution to specific enthalpy is neglected, one simulates temperature profiles
via the following form of the thermal energy balance when only one chemical
reaction occurs:

dT 2@
ptotal(cp, mixture)ﬁ = ? + (_AHRX) R (4'43)

together with the plug-flow mass balance:

WA, inlet Protal d X — %

(4-44)
MW,  dt

Numerical integration of these two coupled first-order ODE:s (i.e., equations 4-43
and 4-44) is initiated at the reactor inlet, where x(t =0)=0and T(r =0) =
Tinlet-

Constant Outer Wall Temperature. If the chemical reaction is exothermic and
the outer wall temperature of the reactor is lower than the temperature of the
reactive fluid, then conductive heat transfer across the lateral surface will provide
the necessary cooling. This condition is required to prevent thermal runaway.
The differential rate of thermal energy transport d Q into the reactor across the
lateral surface is given by the product of (1) an overall heat transfer coefficient
that accounts for resistances in the thermal boundary layer within the reactive
fluid, as well as the tube wall itself; (2) an instantaneous temperature difference
Twan — T, where T is the bulk temperature of the reactive fluid at axial position
z; and (3) the differential lateral surface area, 27 R dz. Hence,

d Q = Ugyeral[ Twan — T (2)12w Rd z (4-45)

with units of energy per time. Rates of heat transfer across the lateral surface
of the control volume, with units of energy per volume per time, are calcu-
lated as follows:

Q _ 1 @ _ 2Uoveralll
dV ~ mwR*dz R

[Tyan — T ()] (4-46)
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Hence, conversion and temperature profiles in a plug-flow tubular reactor with
constant outer wall temperature are simulated by solving two coupled first-order
ODEs that represent mass and thermal energy balances at high Peclet numbers.
They are summarized here for completeness in terms of a generic rate law &
when only one chemical reaction occurs:

WA, inlet Ptotal d X _

B 4-47
MWA dt ( )
dT 2Uoverall
ptotal(cp,mixture)E = _T (T - Twall) + (_AHRX) R (4'48)
where
\%4 Z
T = =" x(t=0=0 T(t =0) = Tiplet
q (vz)

Numerical methods such as the Runge—Kutta—Gill fourth-order correct integration
algorithm are required to simulate the performance of a nonisothermal tubular reac-
tor. In the following sections, the effects of key design parameters on temperature
and conversion profiles illustrate important strategies to prevent thermal runaway.

Manipulating the Outer Wall Temperature. Reactant A is converted irreversibly
and exothermically to products in a tubular reactor with constant outer wall
temperature. The inlet temperature of the reactive mixture is 340 K. The overall
objective of this design problem is to observe thermal runaway and identify the
critical outer wall temperature which represents the crossover from a thermally
well-behaved reactor to one that exhibits thermal runaway. When this condition
is identified, a reactor design strategy can be formulated to prevent the strong
temperature changes characteristic of thermal runaway from occurring. Since
the chemical reaction is strongly exothermic, heat is liberated and the following
group of terms is negative:

CaoA Hrx

_ AUTTRY 146 K (4-49)
Protal (Cp, mixture)

where

WA, inlet Ptotal

Crp =
A0 MW 1

is the inlet molar density of reactant A. Heat transfer via radial conduction across
the wall at radius R, enhanced by axial convection of thermal energy in the
primary flow direction, provides a cooling mechanism. The time constant for
heat transfer is defined by the following group of terms:

Protal (Cp, mixture ) R _

5 4-50
2 Uoverall ° ( )
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The Arrhenius kinetic rate constant is described by an activation energy (i.e., Eqc)
of 22.5 kcal/mol and a pre-exponential factor (i.e., ko) of 3.94 x 10'2 s~!. Hence,

E
kforward(T) = koo €Xp <_ R?) [=] Sil (4'51)

Identify the critical outer wall temperature which represents the crossover from
a thermally well-behaved reactor to one that exhibits thermal runaway. Qualita-
tively, how should the reactor design engineer manipulate the constant outer wall
temperature to prevent thermal runaway? (See Figures 4-1 and 4-2.)

Manipulating the Surface-to-Volume Ratio of the Reactor. As illustrated in
Figures 4-1 and 4-2, thermal runaway occurs when the inlet temperature of
the reactive mixture is 340 K and the constant outer wall temperature is
>336 K. Since the homogeneous chemical reaction is strongly exothermic, heat
is generated volumetrically throughout the entire reactor. The cooling mechanism
is provided by heat transfer across the wall, and this process is a surface-
related phenomenon. Identify the critical surface-to-volume ratio of the reactor
which represents the crossover from a thermally well-behaved system to one
that exhibits thermal runaway when Tiyee = Tway = 340 K. It is not acceptable
to prevent thermal runaway by changing the inlet and/or outer wall temperatures.
It is also not acceptable to modify the overall heat transfer coefficient Ugyeral-

T T T T T

1.00

0.90 |+ T = 330 K

0.80 L Tan = 331K

- Tl = 332 K

§070r1 Toa = 333 K
(7]
g 060 - Twan = 334 K
§ 0.50 |- T = 335 K
£ . Towa = 336 K
G 0.40 -
@ L
[
@ 0.30 -

0.20

0.10

000 1 1 1

S S T (N T S SO |
0 5 10 15 20 25 30
Average residence time (s)

Figure 4-1 Sensitivity of reactant conversion to changes in the wall temperature for
nonisothermal plug-flow tubular reactors with exothermic chemical reaction. The reactive
fluid enters at 340 K.
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Figure 4-2 Sensitivity of reactor temperature to changes in the wall temperature for
nonisothermal plug-flow tubular reactors with exothermic chemical reaction. The reactive
fluid enters at 340 K.

Qualitatively, how should the design engineer manipulate the surface-to-volume
ratio of the reactor to prevent thermal runaway? (See Figures 4-3 and 4-4.)

Coupled Heat and Mass Transfer with Cocurrent Cooling in a Concentric
Double-Pipe Configuration. Now the differential rate of thermal energy transport
into the reactive fluid across the inner wall at radius Rjnsqe is adopted from
equation (4-46) by replacing Ty, with T,o0, Where To is the bulk temperature
of the cooling fluid, and wall radius R with inner wall radius Rj,sq.. Hence,

d Q 1 d Q 2Uovera]l
= - = e T ) _ T 4_52
av jTRiz"Side dZ Rinside [ R (Z) COO](Z)] ( )

where Try is the bulk temperature of the reactive fluid. The overall heat transfer
coefficient in (4-52) accounts for three resistances in series: the thermal boundary
layers in each fluid, and the wall itself. It is not possible to simulate the perfor-
mance of this reactor with cocurrent cooling until an additional thermal energy
balance is constructed for the cooling fluid, because T, is not constant. The dif-
ferential control volume for the cooling fluid on the shell side of the double-pipe
heat exchanger is

d Vel = 7 (R? —R2..)dz (4-33)

outside inside
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Figure 4-3 Sensitivity of reactant conversion to changes in the lateral heat transfer time

constant

for nonisothermal plug-flow tubular reactors with exothermic chemical reaction.

The inlet and constant wall temperatures are 340 K.
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Figure 4-4 Sensitivity of reactor temperature to changes in the lateral heat transfer time
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for nonisothermal plug-flow tubular reactors with exothermic chemical reaction.

The inlet and constant wall temperatures are 340 K.
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where Ro,ysige 1S the radius of the outer tube and z is the spatial coordinate that
increases in the direction of flow of both fluids. If the outer wall of the double-pipe
configuration is completely insulated from the surroundings, then the steady-state
differential thermal energy balance, with units of energy per time, is

convective input at z = conductive output at Rigige
+ convective output at 7 + dz (4-54)
(/Ocool‘hoolhcool)z = dQ + (p0001q0001h0001)2+dz (4'55)

where pcoo 1 the overall mass density, geoo the volumetric flow rate, hcoo the
specific enthalpy, the subscript “cool” identifies properties of the cooling fluid,
and the differential rate of conductive heat transfer d Q out of the cooling fluid
at radius Rj,qge 1S exactly the same as the rate of conductive heat transfer into
the reactive fluid. Hence,

d Q = Ugyerall [Teool(z) — Trx(2)127 Rinsige dz (4-56)

At steady state, the overall mass flow rate of the cooling fluid (i.e., PcoolGcool) 1S
constant because there are only one inlet stream and one outlet stream, with no
mass transfer across either wall at Rjngge O Rouside- Under these conditions, the
thermal energy balance is equivalent to the first law of thermodynamics for open
systems, as stated in equation (4-17):

pcoochool[(hcool)z+dz - (hcool)z] = Pcoolqcool dhcool = _dQ
= Usverall [ TrRx(2) — Tco01(2)127 Ringige dz  (4-57)

Thermodynamics is required to express the total differential of specific enthalpy
for the cooling fluid in terms of temperature, pressure, and composition. One
adopts a previous result from the thermodynamics of multicomponent mixtures
(i.e., see equation 4-31), which allows for the possibility that a single chemical
reaction might occur in the annular region of the double-pipe configuration. The
generalized result is

A Heo01R o001 d Veool
dheool = <Cp,C001) dTeoo + Veool (1 = 0tcoo1 Teool) dp + o w0 (4'58)

Pcoolqcool

where R, is the kinetic rate law and A H o the enthalpy change for chemical
reaction, v the specific volume, and oo, the thermal expansion coefficient,
all within the cooling fluid. Once again, the pressure contribution to specific
enthalpy is neglected for liquids, and the thermal energy balance is written in
terms of the cooling fluid temperature:

d hcoo] d Tcool d Vcool

d—Z = ,Ocoolqcool(Cp,cool>d—Z + A Hcoo1Bco0l dz

= 27 Rinside Uoveral [ TrRx (2) — To01(2)] (4-59)

Pcoolqcool
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Since

d Vcool 2

=n(R

dz outside Ri2nside) (4'60)

one simulates temperature profiles within the cooling fluid by solving the fol-
lowing first-order ODE for T¢o01(2):

d Tcool
pcool‘]cool<cp,cool) 7 = 27 Rinside Uoverall [ Trx (2) — Tco01(2)]
+ (= A Heoo) Beool T (Roysige — Rinsige)  (4-61)

Obviously, this thermal energy balance is coupled to the mass balance on the
cooling fluid if chemical reaction occurs in the annular region, and it is also
coupled to the mass and thermal energy balances for the reactive fluid within
the inner tube because Trx(z) is required to calculate the rate of conductive heat
transfer across the inner wall. In most cases, the cooling fluid is a pure liquid, such
as water or glycol, which experiences no chemical reaction. Hence, 8.y, — 0
and three coupled first-order ODEs are required to simulate the performance of
tubular reactors with cocurrent cooling in a double-pipe configuration:

WA, inlet PRx A X

= R(Trx, 4-62
MW, doe. (Trx, x) (4-62)
dT, 2U.
PRx(Cp ) e = = 22 (T = Teool) + (—AHro)B(Tiy, X) (4-63)
dtRx Rinside

d Tcool

pcoolQC()ol(Cp,cool)d—Z =2m Rinside Uoveratt (TRx — Teool) (4'64)
where
% z
TRy = — = xz=0)=0

gRrx (V2)Rx

Trx(z =0) = TRX, inlet Teool(z =0) = cool, inlet

Properties of the reactive fluid within the inner tube are identified by the subscript
Rx, and R represents the kinetic rate law that converts reactant A to prod-
ucts. Only one independent variable is required to simulate reactor performance
because axial coordinate z and average residence time for the reactive fluid gy
are related by the average velocity of the reactive fluid (v;)rx. In comparison
with the single-pipe reactor discussed earlier, the double-pipe reactor contains
two additional design parameters that can be manipulated to control thermal
runaway; radius ratio ¥ and average velocity ratio ¥, defined as follows:

Rinside (4 65)
K= — -
Roulside
v = {V2)cool (4-66)

(V2)Rx
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One expresses the thermal energy balance for the cooling fluid in terms of the
average residence time of the reactive fluid as follows:

Step 1. Write the volumetric flow rate of the cooling fluid in terms of its average
velocity and flow cross section:

qcool = (vz>cool n(R(z,utside - Riznside) (4'67)

Step 2. Manipulate the spatial derivative of the cooling fluid temperature to
obtain T, as a function of Try:

Gcool dCZOO = <UZ>00017T(R0utside - Rinside)mc;):)m()
d Tl
= ”(R(%utside - Riznside)w d = (4-68)
TRx

Step 3. Divide the entire thermal energy balance of the cooling fluid by the flow

: 2 2
cross-sectional area of the annulus, 77 (R 4 — Rifgide)-

Step 4. Express the following geometric factor in terms of the radius ratio «,
which accounts for the lateral heat transfer area relative to the flow cross
section of the cooling fluid:

27'[ Ringi 2 K2
5 ms1de2 _ . (4_69)
n(Routside - Rinside) Rinsidze 1 — «

Hence, design parameters ¥ and i appear in the final form of the cooling
fluid’s thermal energy balance:

d Tcool _ 2Uoverall K
d TRx Rinside 1-

2
Pcool (Cp, coo])lp Kz (TRX - Tcoo]) (4'70)

The cooling fluid experiences a smaller temperature increase from inlet to outlet
when ¥ is larger, because the residence time of the cooling fluid is shorter. In fact,
the flow rate ratio parameter yr, which was defined above as a ratio of average
velocities, also represents a ratio of average residence times. For example, the
average residence time of the cooling fluid is defined as
2 2
_ Veool _ n(Routside - Rinside)Z
Tcool = — ) 2
Gcool 7T(Routside - Rinside) (Vz)cool

_ Z _ Z — TRx (4_71)
{(v2)cool Y (v)Rx Y

Hence,

v = (v2) ool _ TRx (4-72)
(V2)Rx Teool
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The thermal energy balance (4-70) predicts no change in the cooling fluid’s tem-
perature when « = 0 and an infinite increase in 700 When k — 1. This suggests
that the probability of experiencing thermal runaway can be reduced if the radius
ratio is smaller, because 7., will not increase too much. When the outer radius
of the double-pipe configuration is fixed, smaller values of « correspond to a
larger surface-to-volume ratio for the reactive fluid in the inner tube:

surface 2
= 4-73)
volume /i ner whe K Routside

and to a smaller exposed surface-to-volume ratio for the cooling fluid in the
annular region:

2 K
- e (4-74)
volume annular region Rousside 1 — 1

<heat transfer surface

This is advantageous for a well-behaved double-pipe reactor because the volu-
metric generation of thermal energy in the inner tube has a feasible escape route
across the wall at Rjusqe, Whereas larger volumes of cooling fluid reduce the
increase in T¢oo).

Manipulating the Flow Rate of a Cocurrent Cooling Fluid. Reactant A is con-
verted irreversibly and exothermically to products in a tubular reactor. The
reactive mixture in the inner pipe is cooled using a concentric double-pipe heat
exchanger. The cooling fluid in the annular region flows cocurrently with respect
to the reactive fluid. The radius ratio « of the double-pipe configuration is 0.5,
the inlet temperature of the reactive fluid is 340 K, and the inlet temperature of
the cooling fluid is 335 K. The heat transfer time constant across the inner wall
of the double-pipe configuration for the cooling fluid is

Pcool (Cp, cool ) Rinside
2 Uoverall

=35s (4-75)

The outer wall of the double-pipe configuration at radius Roysige 1S thermally
insulated from the surroundings. These conditions, together with the parametric
values defined earlier in this chapter on page 74, could produce thermal runaway.
Identify the critical ratio of average velocities, ¥ = (V;)cool/(V;)Rx>» Which rep-
resents the crossover from a thermally well behaved reactor to one that exhibits
thermal runaway. It is not acceptable to prevent thermal runaway by changing
the inlet temperature of either fluid. Also, do no change the overall heat transfer
coefficient Uyyera Or the radius ratio «. Qualitatively, how should the reactor
design engineer manipulate the flow rate of the cocurrent cooling fluid to prevent
thermal runaway? (See Figures 4-5 to 4-7.)
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Figure 4-5 Sensitivity of reactant conversion to changes in flow rate ratio for nonisother-
mal plug-flow tubular reactors with exothermic chemical reaction and cocurrent cooling
in a concentric double-pipe configuration with radius ratio « = 0.5. The inlet temperatures
are 340 K for the reactive fluid and 335 K for the cooling fluid.
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Figure 4-6 Sensitivity of reactive fluid temperature to changes in flow rate ratio for
nonisothermal plug-flow tubular reactors with exothermic chemical reaction and cocurrent
cooling in a concentric double-pipe configuration with radius ratio k = 0.5. The inlet
temperatures are 340 K for the reactive fluid and 335 K for the cooling fluid.
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Figure 4-7 Sensitivity of cooling fluid temperature to changes in flow rate ratio for
nonisothermal plug-flow tubular reactors with exothermic chemical reaction and cocurrent
cooling in a concentric double-pipe configuration with radius ratio x = 0.5. The inlet
temperatures are 340 K for the reactive fluid and 335 K for the cooling fluid.

4-2 PARAMETRIC SENSITIVITY ANALYSIS

Numerical simulations of reactor performance in this chapter illustrate that small
changes in key design parameters have a significant influence on temperature
and conversion profiles in plug-flow tubular reactors. This phenomenon is called
parametric sensitivity. Detailed analysis of parametric sensitivity in nonisother-
mal tubular reactors enables the design engineer to control thermal runaway.
Consider the following set of parameters for a single-pipe reactor with con-
stant outside wall temperature in which one first-order irreversible, exothermic
chemical reaction occurs:

Tinlet =340 K
koo = 3.94 x 10'% 57!
E sctivation = 22.5 kcal/mol

CaoA Hgy

—AVZTRY _ 146 K

pr<Cp,Rx>
pr(Cp,Rx>R =55

2Uovcral]

0<tRy <30s
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TABLE 4-1 Summary of Parametric Sensitivity Re-
sults for Nonisothermal Plug-Flow Tubular Reactors
When the Feed Stream Enters at 340 K*

Xmax
Twan Thnax at Ry = 30s
(K) (K) (%)
330 340 28
331 341 32
332 342 37
333 345 44
334 350 55
335 363 81
336 417 100 at gy = 18 s

“Includes the effect of a constant wall temperature on the maxi-
mum temperature and reactant conversion that can be achieved.
Thermal runaway occurs when xmax is 100%.

Numerical results are summarized in Table 4-1 for seven different values of the
outer wall temperature.

The reactor is rather well behaved when the outside wall temperature is
335 K, but thermal runaway occurs when Ty,; = 336 K. Hence, Ty, exhibits
a critical value between 335 and 336 K because thermal runaway occurs when
Twan > (Twal)eritical- Thermal runaway can be prevented when Ty, = 340 K if
the surface-to-volume ratio of the reactor is increased by decreasing the tube
radius R. This important design modification is accounted for by decreasing the
time constant for heat transfer across the lateral surface. Numerical results are
summarized in Table 4-2 for a single-pipe reactor with Tiper = Tywan = 340 K at
nine different values of the heat transfer time constant.

Based on the entries in Table 4-2, it is possible to control thermal runaway in the
tubular reactor with constant outside wall temperature, described above, if the heat
transfer time constant is <3.45 s. Difficulty in identifying the critical value of any
key design parameter via comparison of temperature increases (i.e., Tmax — Tinlet)
is circumvented by analyzing the conversion profile also. For example, the last two
entries in Table 4-2 indicate that 100% conversion of reactant A is achieved in the
first half of the reactor because steep increases in temperature have occurred that are
characteristic of thermal runaway. When a cocurrent cooling fluid is employed in the
annular region of a concentric double-pipe configuration to remove heat generated
by the reactive fluid in the inner tube, conversion and temperature profiles are
influenced by the flow rate ratio ¥ and the radius ratio «. For example, both fluids
exhibit the same time constant for heat transfer across the wall at Rj,gqe, the outer
wall at Ryside 1S thermally insulated from the surroundings, and double-pipe reactor
performance is simulated for the following set of parameters:

(Trx)intet = 340 K
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TABLE 4-2 Summary of Parametric Sensitivity Results
for Nonisothermal Plug-Flow Tubular Reactors When
the Inlet and Constant Wall Temperatures Are 340 K

PRx <Cp,Rx>R/2Uoverall Tmax Xmax at Trx = 30s
(s) (K) (%)
2.50 349 52
2.86 352 59
3.03 354 64
3.13 356 67
3.23 358 72
3.33 363 79
3.45 373 91
3.57 398 100 at gy =20 s
3.70 416 100 at gy =15 s

“Includes the effect of the lateral heat transfer time constant on
the maximum temperature and reactant conversion that can be
achieved. Thermal runaway occurs when xmax is 100%.

(Tcool)inlet =335K

Rinside

K= =0.5
Routside
Koo = 3.94 x 102 7!
Ectivation = 22.5 kcal/mol
CaoA H,
A0S IRx —146 K
pr(Cp, Rx)

(,O(Cp>Rinside> —55
2Uoveralll Rx/cool
0<tmRx<30s

Numerical results are listed in Table 4-3 for five values of ¢ which illustrate that
thermal runaway occurs when the flow rate ratio is less than approximately 20,
but sensitivity to small changes in v is rather weak here.

Obviously, thermal runaway occurs in the previous example if the flow rate
ratio is unity. However, it is possible to control a double-pipe reactor with ¥ = 1
by decreasing the radius ratio. This is illustrated in Table 4-4 for conditions
described in the previous example. Thermal runaway occurs when k& > Kigical
and the critical radius ratio lies somewhere between 0.10 and 0.15.

Hence, the parametric sensitivity analysis outlined in this section identifies
critical values, or a range of critical values, for (1) the outside wall tempera-
ture, (2) the heat transfer time constant, (3) the flow rate ratio ¥, and (4) the
radius ratio «, which delineates the boundary between well-behaved reactor per-
formance and thermal runaway. Other parameters that exhibit critical values and
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TABLE 4-3 Summary of Parametric Sensitivity Re-
sults for Nonisothermal Plug-Flow Tubular Reactors
with Cocurrent Cooling in a Double-Pipe Configura-
tion with Radius Ratio « = 0.5¢

(Tcool)max Xmax
(TRx) max at gy = 30 s at gy, = 30 s
v K) X) (%)

5 418 344 100 at gy = 19 s
10 400 339.6 100 at gy =23 s
20 380 337 96
40 370 336 90

100 366 3354 85

“Inlet temperatures are 340 K for the reactive fluid and 335 K
for the cooling fluid. Includes the effect of the flow rate ratio
parameter ¢ on the maximum temperatures for both fluids and
maximum reactant conversion. Thermal runaway occurs when
Xmax 18 100%.

TABLE 4-4 Summary of Parametric Sensitivity Re-
sults for Nonisothermal Plug-Flow Tubular Reactors
with Cocurrent Cooling in a Double-Pipe Configu-

ration®
(Tcool)max Xmax
(TRx) max at Ty =30 s at gy = 30 s

K (K) (K) (%)
0.02 363.6 335.0 82
0.04 364.4 335.2 83
0.06 365.8 3354 85
0.08 368.1 335.7 88
0.10 371.8 336.2 91
0.11 374.2 336.5 93
0.12 377.0 336.9 95
0.13 380.3 337.2 97
0.14 384.2 337.6 98
0.15 387.6 338.1 99
0.16 392.0 338.5 100 at Tt =29 s
0.18 398.7 339.6 100 at T =24 s
0.20 404.1 340.7 100 at T =21 s
0.25 416.8 344.0 100 at T =19 s

“The flow rate ratio is unity, and the inlet temperatures are 340 K
for the reactive fluid and 335 K for the cooling fluid. Includes
the effect of the radius ratio « on the maximum temperatures for
both fluids and maximum reactant conversion. Thermal runaway
occurs when ymax is 100%.
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TABLE 4-5 Reactor Design Strategies to Prevent the Phenomenon of Thermal
Runaway in Plug-Flow Tubular Reactors

Design Parameter Manipulation
1. Inlet temperature of the reactive fluid Decrease
2. Inlet temperature of the cooling fluid Decrease
3. Activation energy for the chemical reaction Increase
4. Enthalpy change for the chemical reaction Decrease
5. Inlet molar density of reactant A Decrease

the appropriate manipulation of them to control thermal runaway are summa-
rized in Table 4-5. The effect of a catalyst that reduces the potential energy of
the activated complex in the transition state is accounted for in parameter 3,
whereas dilution effects are described in parameter 5. Investigate design strat-
egy 3 in Table 4-5 for a single-pipe reactor with constant wall temperature. Let
Twan = 300 K, Tiner = 330 K, use a lateral heat transfer time constant of 3.57 s,
and maintain all of the other parameters in this section. Then, compare temper-
ature and conversion profiles which correspond to Arrhenius activation energies
of 20.8 and 20.9 kcal/mol.

4-3 ENDOTHERMIC REACTIONS IN A COCURRENT
COOLING FLUID

This novel design strategy to simulate and control thermal runaway in a double-
pipe reactor requires the simultaneous solution of four coupled first-order ODEs
to describe conversion and temperature profiles within the inner pipe and in the
annular region. Mass and thermal energy balances for exothermic reaction within
the inner pipe are exactly the same as those discussed above (see equations 4-62
and 4-63). Hence, for one exothermic reaction (i.e., A — products) in the inner

pipe,

WA, inlet PRx d XA

= B (Trx, 4-76
MW, dix. A(Trx, XA) ( )
dT 2U,
Pre(Cp. ) < R = 0 Toe — Teool) + (—AHr)Ba (Try, xa) (4-77)
TRx Rinside
xalz=0)=0 (4-78)
TRX(Z = 0) = TRX, inlet (4'79)

where ya represents the conversion of reactant A via exothermic chemical reac-
tion in the inner pipe and #, is the corresponding rate law. Similarly, the thermal
energy balance in the annular region, which includes flexibility for chemical
reaction, has been discussed previously, and it remains unchanged if the wall at
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Rouside 18 adiabatic. For one endothermic reaction (i.e., B — products) for the
cooling fluid in the annular region, equation (4-61) yields:

d Tcool

pcool‘]cool(cp, cool>d—Z =2r Rinsiderverall[TRx (Z) - Tcool(Z)]
+ (_AHCOO])RB(TCOOh XB)”(Rgutsidc - Riznside) (4'80)
Teool(z = 0) = Teool, inlet (4-81)

where xp describes the conversion of reactant B to products via endothermic reac-
tion in the annular region, and Rg is the corresponding rate law. One introduces
Trx into the cooling fluid’s thermal energy balance as follows:

Step 1. Write the volumetric flow rate g.oo as a product of the average velocity

{vz)cool and the flow cross section 7T (R%, 4 — Rigige)-

Step 2. Write (v,)c001 as a product of ¢ and (v, )gx.

Step 3. Identify the important independent variable as trx = z/(V;)Rx-

Step 4. Divide the entire thermal energy balance by the flow cross section in the
annular region, 7 (R2, 4. — Riide)-

Step 5. Express 27 Rinside /T (R2 4o — R2gqe) in terms of the radius ratio « and
Rinside-

The final result for the cooling fluid’s thermal energy balance is similar to
(4-70), however, with heat effects due to chemical reaction:

dr. 2oversn K2
cool _ overall (TRx _ Tcool)
d TRy Rinsice 1 — K2

+ (= A Heoo) BB (Teool, XB) (4-82)

Pcool (Cp, cool ) lﬁ

The primary objective of this section is to add a mass balance for reactant B to
the set of coupled ODEs required to simulate the performance of this double-
pipe reactor. The simplest approach to accomplish this task is to adopt the mass
balance at high Peclet numbers for reactant A within the inner pipe, replace
subscript A with subscript B, and replace subscript “Rx” for the reactive fluid in
the inner pipe with subscript “cool” for the reactive cooling fluid in the annular
region. Hence, modification of (4-76) yields:

WB, inletPcool d XB
. = Rg (Teool, 4-83
MW5 I Tooo) B (Teools XB) ( )

XB(z=0)=0 (4-84)

Since both residence times are related by the flow rate ratio (i.e., Tcool = TrRx/¥),
one rewrites the cooling fluid’s mass balance in terms of the residence time for
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the reactive fluid within the inner pipe trx and includes the flow rate ratio i as
a factor for convective mass transfer on the left side of the equation:

B, inletPeool , A XB
- = R (Teo0l, 4-85
MWB 1// dTRx B( cool XB) ( )

The Runge—Kutta—Gill fourth-order correct numerical integration algorithm for
coupled ODEs is useful to simulate this double-pipe reactor after temperature-
and conversion-dependent kinetic rate laws are introduced for both fluids. The
generalized procedure is as follows:

Step 1. Use inlet conditions as a starting point to generate graphs of temperature
and conversion as a function of axial position z, or Tgry.

Step 2. Use mass and thermal energy balances for both fluids to calculate the
slope of conversion and temperature with respect to Trx at conditions in the
feed. The actual algorithm averages this slope at several positions within a
small interval that represents discrete jumps in Try.

Step 3. Use the point-slope method to predict temperature and conversion at a
small distance downstream in the primary flow direction.

Step 4. Be sure that the step size, or jump, in Ty is small enough to avoid
accumulating errors when temperature and conversion change abruptly.

Step 5. March through the reactor by incrementing trx from inlet to outlet. This
is equivalent to repeating steps 1 to 3 numerous times in a computerized loop.

Step 6. Present the results graphically as a function of 7gx.

4-3.1 Cocurrent Cooling Fluid That Undergoes a Strongly Endothermic
Chemical Reaction

Reactant A is converted irreversibly and exothermically to products in a 2-
in.-inner-diameter tubular reactor (i.e., A — products) via first-order chemical
kinetics. This reactive mixture in the inner tube is cooled using a concentric
double-pipe heat exchanger. The cooling fluid in the annular region flows cocur-
rently with respect to the reactive fluid. The radius ratio of the double-pipe
configuration is k¥ = Ripsige/ Rouside = 0.5, the inlet temperature of the reactive
fluid in the inner tube is 340 K, and the inlet temperature of the cooling fluid in
the annular region is also 340 K. Most important, the cooling fluid in the annular
region undergoes a strongly endothermic chemical reaction (i.e., B — products)
that represents a mirror image of the reactive fluid in the inner tube. In other
words, the pre-exponential factor and activation energy for the kinetic rate con-
stants are exactly the same for both fluids (see the examples in Section 4-2).
However, the enthalpy changes for the chemical reactions are exactly opposite.
The chemical reaction in the inner tube (A — products) is strongly exothermic
(A Hgrxa = —15 kcal/mol) and heat is generated volumetrically throughout the
inner tube. Hence, the following group of terms in the thermal energy balance
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within the inner tube is negative:

CaoA Hrxa

— _150 K (4-86)
pr<Cp,Rx>

The overall heat transfer coefficient across the inner wall of the double-pipe
configuration is

Uinsidze = 10* keal/m?-h-K =~ 0.3 cal/cm?.s.K (4-87)
Hence, the time constant for heat transfer across the inner wall at radius Rjpgiqe 1S
the same for the reactive fluid in the inner tube (subscript “Rx”) and the reactive

cooling fluid in the outer tube (subscript “cool”):

PRx <Cp Rx ) Rinside _ Pcool (Cp, cool) Rinside
2 Uinside 2 Uinside

=35s (4-88)

The outer wall of the double-pipe configuration at radius Ryysige 1S thermally
insulated from the surroundings. Identify the acceptable range of the flow rate
ratio parameter v that corresponds to a well-behaved novel reactive system which
does not exhibit thermal runaway. The appropriate reactor design equations are
summarized in Table 4-6.

TABLE 4-6 One-Dimensional Mass and Thermal Energy Balances for Plug-Flow
Tubular Reactors with Cocurrent Cooling in a Concentric Double-Pipe Con-
figuration”

nth-Order irreversible chemical kinetics: R4 (Trx, xa) = krx (TR ) [Cao(1 — xa)]"

Irreversible kinetics, cooling fluid: Bg(Teoor, XB) = kcool (Teool) [Cro(1 — xB)]"

—E activation
Arrhenius model for both fluids: krx/cool (TRx/cool) = koo €XP <#>

RTRx/cool
Mass balance for reactant A, inner tube: Cag XA _ Ra(Trx, XA)
Rx
dxs
Mass balance for reactant B, outer tube: Cgoyr = Bg(Teo01, XB)
Rx

Thermal energy balance for the reactive fluid within the inner tube:

A dTRx 2Uinside
prCpr— = (Teool — Trx) + (—AHry )8 (Tkry, XA)
dex Rinside

Thermal energy balance for the cocurrent reactive cooling fluid:

2
d Tcool 2 Uinside K

pcoolépcooll// = B (TRX - Tcool) + (_AHCOOI)RB(TCOOh XB)
dTRX Rinside -«

“The reactive fluid experiences exothermic chemical reaction. An endothermic chemical reaction
occurs in the cooling fluid to enhance its potential to remove heat generated by the reactive fluid.
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Hlustrative Problem

(a) Describe qualitatively why thermal runaway occurs when the flow rate of
the cocurrent endothermic cooling fluid is too high. In other words, thermal
runaway occurs when ¢ > 0.65. (See Figures 4-8 and 4-9.)

(b) Describe qualitatively why thermal runaway occurs when the flow rate of
the cocurrent endothermic cooling fluid is too low. In other words, thermal
runaway occurs when ¥ < 0.15. (See Figures 4-10 and 4-11.)

(c) Generate graphs of temperature and conversion for both fluids vs. trx that
illustrate thermal runaway at high and low values of .

4-3.2 Concentric Double-Pipe Configurations That Are Not Insulated
from the Surroundings

These reactors contain an additional conductive heat transfer mechanism across
the outer wall at Rgysige that must be included in the cooling fluid’s thermal energy
balance. If one adopts equations (4-55), (4-57), and (4-58) for cocurrent cooling,

Pcoolqcool dhcool ~ Pcoolqcool <Cp,0001> chool + AI_IcoolaRcool dvcool =—d Q
(4-89)
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Figure 4-8 Effect of higher flow rate ratios on the conversion of an exothermic reactive
fluid in a plug-flow reactor with endothermic cocurrent cooling in a concentric double-pipe
configuration with radius ratio k = 0.5. Both fluids enter the double-pipe reactor at 340 K.
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Figure 4-9 Effect of higher flow rate ratios on the temperature of an exothermic reactive
fluid in a plug-flow reactor with endothermic cocurrent cooling in a concentric double-pipe
configuration with radius ratio k = 0.5. Both fluids enter the double-pipe reactor at 340 K.
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Figure 4-10 Effect of lower flow rate ratios on the conversion of an exothermic reactive

fluid in a plug-flow reactor with endothermic cocurrent cooling in a concentric double-pipe
configuration with radius ratio k = 0.5. Both fluids enter the double-pipe reactor at 340 K.
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Figure 4-11 Effect of lower flow rate ratios on the temperature of an exothermic reactive
fluid in a plug-flow reactor with endothermic cocurrent cooling in a concentric double-pipe
configuration with radius ratio k = 0.5. Both fluids enter the double-pipe reactor at 340 K.

then d Q represents the differential rate of conductive heat transfer out of the
cooling fluid, with units of energy/time. Since both walls must be considered,

d Q = Uoverall, inside(Tcool - TRx)ZT[ Rinside dZ
+ Uoverall, outside(Tcool - Tambient)zﬂ Routside dZ (4'90)

where Tympient 1S the temperature of the surroundings and the overall heat transfer
coefficients across the inside and outside walls at Rjpgge and Royside, respectively,
contain a sum of three resistances in series. Ugyerall, inside accounts for thermal
resistances in the liquid boundary layers on each side of the inner wall, as well
as the wall itself. Ugyeranl, ouside accounts for thermal resistances in the liquid
boundary layer that hugs the inside of the outer wall, the gas-phase boundary
layer adjacent to the outside of the outer wall, and the outside wall. In the
absence of phase changes, thermal conductivities and heat transfer coefficients
are much smaller for gases than their counterparts for liquids. Consequently, the
gas-phase boundary layer adjacent to the outside of the outer wall provides the
dominant contribution to Ugyerall, outside» Which is much smaller than Ugyera, inside-
This is consistent with the fact that the time constant for heat transfer across the
outer wall is much larger than its counterpart across the inner wall. Hence, the
rate of heat transfer across the outer wall is of secondary importance. In general,
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temperatures within the cooling fluid are calculated from the following first-order
ODE, which is obtained by combining (4-89) and (4-90):

drT, 1 dV, 1
pcoochool(Cp,cooﬁﬂ = (_AHcool)]Rcoolﬂ
dz dz

+ 2w Rinsidc Uovcral], inside(TRx - Tcool)
-2 Routside Uoverall, outside (Tcool - Tambient) (4'9 1)

subject to the condition that Ttoo1 = Teool, inter at 2 = 0. This equation is simplified
and manipulated for most applications, as follows:

1. In the absence of any chemical reaction within the cooling fluid, 8.0, — 0.

2. The volumetric flow rate g.o, is written as a product of (v;)coo1 and the
annular flow cross section, 7T(R§utside — Riznside), the latter of which is equiv-
alent to dVpo1/dz.

3. The average velocity in the annulus (v,)ce 1S Written as a product of the
flow rate ratio ¥ and (v,)gx.

4. The independent variable z, which increases in the primary flow direction
of both fluids, is rewritten in terms of the average residence time of the
reactive fluid in the inner pipe, trRx = z/(V;)Rx-

5. The entire thermal energy balance for the cooling fluid is divided by the
annular flow cross sectional area.

6. The following ratios are expressed in terms of Rjnsige and the radius ratio «:

27 Rinside _ 2 K> (492)
T (Royside = Rinsige)  Rinsige 1 — k2

27 Rousside _ 2 K 4-93)
T (Royside = Ringige)  Rinsize 1 — k7

Hence, one calculates T, as a function of 7gy via numerical a solution of

2
dTeool o 2U0verall, inside K

peool(cp, cool)w B (TRX - Tcool)
K

d TRy Rinsige 1 —

2U, i K
_ overall, outside - (Toool — Tambient) (4_94)
Rinside l—«

Thought-Provoking Problem. Modify the thermal energy balance (i.e., equation
4-94) in the annular region if the cooling fluid flows countercurrently with respect
to the reactive fluid in the inner pipe. No chemical reaction occurs in the cooling
fluid.
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An equivalent form of the nonreactive cooling fluid’s thermal energy balance in
terms of Ryside 1S

d Tcool _ 2Uoverall, inside K

pcool<Cp,cool> 2 (TRX - Tcoo])

d TRx Routside 1-

2Uoverall, ouside 1
- overaZ, ouee 5 (Tcool - Tambiem) (4‘95)
Routside -«

Equation (4-95) provides efficient rationalization of the cooling fluid’s tempera-
ture profile in the limit as k — 0 at constant Rgysige. This corresponds to pure
heat exchange between the cooling fluid and the surroundings when the inner
pipe does not exist. Hence, (4-95) reduces to:

d Tcool d Tcool

Pcool (Cp, cool) Iﬁ = Pcool (Cp, cool)

d TRx d Tcool

2 Uovera]l, outside

= _7(T0001 - Tambient) (4‘96)
Routside

which agrees with the thermal energy balance for the reactive fluid in the
inner pipe (i.e., see equation 4-77):

dTRx _ 2Uovera]l, inside
dTRx Rinsidc

(TRX - Tcool) + (_AHRX)%A(TR)U XA)

4-97)
if (1) no chemical reaction occurs, &4 (Trx, xa) — 0; (2) the annular region does
not exist; (3) Tioor is replaced by Tympient; (4) the subscript “Rx” is replaced by
the subscript “cool”; and (5) the subscript “inside” is replaced by the subscript
“outside.” If all of these restrictions are applicable, then one obtains the follow-
ing analytical solution for the cooling fluid’s temperature profile when Tymbient
is constant:

PRx <Cp, Rx)

TCMT
TCOO](TCMT) = Tambicnt + (Tcool, inlet — Tambient) exp <_ T > (4'98)
HT

where Tomr = Teool 1S the time constant for convective mass transfer within the
cooling fluid and yr is the time constant for heat transfer across the wall at radius
Routside to the surroundings at temperature Typpient (i-€., see equation 4-75).

4-4 COUNTERCURRENT COOLING IN TUBULAR REACTORS
WITH EXOTHERMIC CHEMICAL REACTIONS

This is the most mathematically demanding situation because the inlet condition
for the cooling fluid (i.e., Ttool = Tcool, inlet) 1S known at the far end of the double-
pipe reactor at z = L, whereas the inlet conditions for the reactive fluid (i.e.,
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X =0, Trx = Trx,inlet) are available at z = 0. This is known classically as a
split boundary value problem, and it is characteristic of countercurrent flow heat
exchangers. When numerical methods are required to integrate coupled mass and
thermal energy balances subjected to split boundary conditions, it is necessary to
do the following:

Step 1. Guess the outlet temperature of the cooling fluid at z = 0.

Step 2. Solve the set of three coupled ODEs from z = 0 to z = L via the appro-
priate Runge—Kutta—Gill algorithm.

Step 3. Compare the calculated inlet temperature of the cooling fluid with the
known boundary condition at z = L.

Step 4. Iterate until the correct guess for Tiool, outer at 2 = 0 produces agreement
with the actual boundary condition at z = L.

Alternatively, as illustrated in the next section:

Step 1. Choose an outlet temperature for the cooling fluid at z = 0.
Step 2. Solve the set of three coupled ODEs from z = 0 to z = L.

Step 3. lIdentify the final value of T, at z = L as the inlet temperature of the
cooling fluid that produces the chosen value of T¢oor, outler at z = 0.

These strategies are required to solve countercurrent flow problems numeri-
cally because ODE algorithms expect the user to provide either initial conditions
at the same time (i.e., typically r = 0) for transient analysis or all boundary
conditions at one value of the independent spatial coordinate for steady-state
analysis.

At steady state, the countercurrent cooling fluid’s thermal energy balance is
constructed from a differential control volume in the annular region:

d Vool = n(R(%utside - Ri2nside) dz (4-99)
where the independent spatial coordinate z increases in the direction of flow of
the reactive fluid within the inner pipe. It is not necessary to introduce another
spatial coordinate z., that increases in the direction of flow of the cooling
fluid because

dzeool = —dz (4-100)

In other words, all mass and thermal energy balances are constructed in terms
of one independent spatial coordinate (i.e., z) or one residence time (i.e., Trx =
z/{v;)rx)- The consequences of this choice are that convective transport of ther-
mal energy enters the cooling fluid’s control volume at z + dz and exits at z. In
contrast, convective transport of thermal energy enters the control volume (i.e.,

dV = wR: 4. dz) of the reactive fluid within the inner pipe at z and exits at
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z +dz. If the outer wall of the double-pipe configuration is not insulated from
the surroundings, then one develops the countercurrent cooling fluid’s thermal
energy balance as follows:

convective input at z 4+ dz = conductive output/both walls

+ convective output at z (4-101)

(pooo]QCoo]hcool)z+dz = dQ + (peoolQCoolhcool)z (4'102)

where each term has units of energy per time. The differential rate of conductive
heat transfer out of the cooling fluid across both walls is the same as (4-90) for
cocurrent flow:

d Q = Uoverall, inside(Tcool - TRx)27T Rinside dZ
+ Uoverall, outside (Tcool - Tambient)zﬂ Routside dZ (4' 103)

Hence, equation (4-102) reduces to:

pcoochool[(hcool)z+dz - (hcool)z] = Pcoolqcool dhcool = dQ (4'104)

which differs by a negative sign from the cooling fluid’s thermal energy balance
given in (4-57). This is a consequence of cocurrent vs. countercurrent flow. If the
cooling fluid does not experience any chemical reaction, the final form of its ther-
mal energy balance for countercurrent flow can be adopted from equation (4-94)
by reversing the sign of each term on the right side of the balance:

d Teool 2Uqverall, inside K 2
C = — . Trx — T
pcool( P, cool)I/f dTRx Rinside 1— Kz( Rx cool)
2Uoverall, outside 1
+ T (Teool = Tambien) (4-105)
outside -

This ODE for T01(Trx) is analyzed in the next section together with mass and
thermal energy balances for the reactive fluid within the inner pipe.

4-5 MANIPULATING THE INLET/OUTLET TEMPERATURE
OF A COUNTERCURRENT COOLING FLUID: MULTIPLE
STATIONARY-STATE BEHAVIOR IN EXOTHERMIC PFRs

Reactant A is converted irreversibly and exothermically to products in a 2-
in.-inner-diameter tubular reactor via first-order chemical kinetics. The reactive
mixture in the inner pipe is cooled using a concentric double-pipe heat exchanger.
The nonreactive cooling fluid in the annular region flows countercurrently with
respect to the reactive fluid. The radius ratio of the double-pipe configuration
iS kK = Rinside/ Rousside = 0.5, the inlet temperature of the reactive fluid is 340 K,
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and the average velocity of the cooling fluid is twofold larger than the average
velocity of the reactive fluid (i.e., ¥ = 2). The homogeneous chemical reaction
is strongly exothermic (A Hgrx = —15 kcal/mol) and heat is generated volumet-
rically throughout the inner pipe. Hence, the following group of terms in the
thermal energy balance for the reactive fluid is negative:

CaoA Hgy
CATRY _ 150 K (4-106)
pr(Cp,Rx>

TABLE 4-7 System of Equations That Must Be Analyzed to Prevent Thermal Run-
away in a Plug-Flow Tubular Reactor with Countercurrent Cooling in a Concentric
Double-Pipe Configuration That Is Not Insulated from the Surroundings®

nth-Order irreversible chemical kinetics: 84 (Trx, x) = krx(Trx)[Cao(1 — x)]"

- Eactivation >

Arrhenius model/transition-state theory: krx(Trx) = koo €Xp ( BT,
Rx

Mass balance for reactant A: Cag = Ba(Trx, X)

TRx
Thermal energy balance for the reactive fluid within the inner pipe:

A dT; X 2(jin\i
IORxCp,Rx R = side

. (Teool — Trx) + (—AHr )R (Trx» X)
dex Rinside

Thermal energy balance for the countercurrent cooling fluid:

A dTeool 2Unside K’
001 Cp. o = Teool — Trx
Pcool p,coolw dTRx Rinside 1— ICZ( cool R )
+ 2U0utside 1

Roulside -«

P (Tcool - Tambient)

Boundary conditions at the inlet to the reactor, where trx = 0:
Conversion of reactant A, x =0
Inlet temperature of the reactive fluid, Trx = 340 K
Outlet temperature of the countercurrent cooling fluid, 70 = (guess)

Parameters defined in the problem statement:

(TrRx)final = 30's k=05 w =2 Tambient = 295 K
koo = 3.94 x 102 57! n=1 Ectivation = 22.5 kcal/mol
CaoA Hyy
AHg, = —15 keal/mol ~ —2077R — _150 K
prCp,Rx
kcal xé xRimi e 'C00! é; €00! Rimi e
l]insidezlo4 PR 2R sid =p o ! sid =SS
m?-h-K 2Ujnside 2Uinside
kcal 'CO0! é) €00l Rou side
Uoutside = 20 « Poool ™ p. cool i = 2500 s
m?-h-K 2Uoutside

“Notice that the boundary conditions are split.
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Heat transfer via radial conduction across the inner wall at radius Rj,de, enhanced
by axial convection of thermal energy in the primary flow directions, is charac-
terized by the following overall heat transfer coefficient:

Uinsige = 10* keal/m?-h-K (4-107)

The time constant for heat transfer across the inner wall of the double-pipe
configuration is the same for the reactive fluid and the nonreactive cooling fluid:

PRx{C p, Rx) Rinside ~ Peool (Cp, cool) Rinside
2Uinsicle 2Uinsicle

=5s (4-108)

The outer wall of the double-pipe configuration at radius Roysige 1S not thermally
insulated from the surroundings and the overall outside heat transfer coefficient is

Ususside = 20 keal/m*-h-K (4-109)

TABLE 4-8 Correlation between the Inlet and Outlet
Temperatures of a Countercurrent Cooling Fluid and
the Maximum Conversion for an Exothermic Reactive
Fluid in a Concentric Double-Pipe Configuration That
Is Not Insulated from the Surroundings®

Temperature of Cooling Outlet Reactant

Fluid (K) Conversion at gy = 30 s
Inlet Outlet (%)
308.8 337.5 100
312 337 90 (thermal runaway)
317 336.8 71 (well-controlled)
322 336 49
323.7 335 39
324.1 334 33
324.1 333 29
323.8 332 26
3234 331 23
322.8 330 20
318.9 325 12
314 320 8
310.8 317 6.5
308.6 315 6
302.9 310 4
297.2 305 3
291.3 300 2.5
285.4 295 2
279.4 290 1.8

@A distinction is made between a thermally well-controlled tubu-
lar reactor and one that exhibits thermal runaway.
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The time constant for heat transfer to the surroundings, across the outer wall, is

Pcool (Cp, cool ) R
2 Uoutside

ouside _ 1500 s (4-110)

and ambient temperature is constant at 295 K. Monitor the performance of this
double-pipe reactor for the following range of average residence times trx of the
reactive fluid: 0 < 7gx < 30 s. Then correlate the inlet and outlet temperatures
of the cooling fluid with the outlet conversion of the reactive fluid, and identify
the critical outlet temperature of the cooling fluid that represents the crossover
from a thermally well-behaved reactor to one that exhibits thermal runaway. The
appropriate reactor design equations are summarized in Table 4-7. As mentioned
in Section 4-4, this split boundary value problem is solved numerically by choos-
ing values of the cooling fluid’s outlet temperature, and solving three coupled
ODEs to determine 7cool, inlet at 2 = L which corresponds to the chosen value of
Teool, outlet at z = 0. Results are presented in Figure 4-12 and Table 4-8.

Notice that the double-pipe reactor is well behaved when the outlet temperature
of the cooling fluid is less than 337 K. On the other hand, if Tiool inlet > 324.5 K,

330 — — ‘ = 100
—&—— Inlet temperature .
_ 300 b |7 R Qutlet conversion H
é B 80 o
o 2
= 2
g 310 §
E - 60 O
]
= k]
g 300 .E
5 &
B -40 2
(0] c
S 290} 8
o 2
@ =]
< 20 ©
280 |
-
il
......... L
T W W e =
270 . | i ! . L . L . 0
280 290 300 310 320 330 340

Outlet temperature of cooling fluid (K)

Figure 4-12 Correlation between the inlet and outlet temperatures of a countercurrent
cooling fluid and the maximum conversion for an exothermic reactive fluid in a con-
centric double-pipe configuration with radius ratio k = 0.5 that is not insulated from the
surroundings. The exothermic reactive fluid enters at 340 K. Two different steady-state
solutions exist when the inlet temperature of the cooling fluid is between 308 K and
324 K.
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then thermal runaway is inevitable, and interestingly enough, no steady-state
solution exists! The biggest surprise is that two steady-state solutions exist when
308 K < Teool, intet < 324 K. For example, if Ttoo1, inter & 309 K, then either

(a) Tcool, outlet = 315K Xfinal = 6% at TRx = 30s
or
(b) Teool, outlet = 337.5 K Xfinal = 100% at tgx = 30 s
Obviously, (a) represents a well-behaved double-pipe reactor, whereas (b) is in
the regime of thermal runaway (see Figure 4-13).
Consider a second example where Tiool inlet = 322 K. Once again, the system

must choose between two different paths (see Figure 4-14). Either

(a) Tcoo],outlet =329K Xfinal = 18% at TRx = 30s

345_'"’l""I""]ff"’l""l""

340 ——=—— Reactive fluid

—2A—— Cooling fluid

335 |
330 |

325 f

Temperature (K)

320f
315 %,

310}

305+
0
Average residence time of reactive fluid (s)

(a)

Figure 4-13 Examples of two different steady-state solutions for the reactive and cooling
fluid temperature profiles in a countercurrent concentric double-pipe configuration with
exothermic chemical reaction in the inner tube. In both cases, the inlet temperatures of the
reactive and cooling fluids are 340 K and 309 K, respectively. (a) Thermally well-behaved
reactor with only 6% outlet conversion of reactants to products. () Thermal runaway
reactor with 100% outlet conversion of reactants to products.
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Figure 4-13 (continued)
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Figure 4-14 Examples of two different steady-state solutions for the reactive and cooling
fluid temperature profiles in a countercurrent concentric double-pipe configuration with
exothermic chemical reaction in the inner tube. In both cases, the inlet temperatures of the
reactive and cooling fluids are 340 K and 322 K, respectively. (a) Thermally well-behaved
reactor with 18% outlet conversion of reactants to products. () Thermally well-behaved
reactor with 49% outlet conversion of reactants to products.
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Figure 4-14 (continued)

or
(b) Tcool,outlet =336 K Xfinal = 49% at trx =30 s

Stability analysis could prove to be useful for the identification of stable and
unstable steady-state solutions. Obviously, the system will gravitate toward a sta-
ble steady-state operating point if there is a choice between stable and unstable
steady states. If both steady-state solutions are stable, the actual path followed by
the double-pipe reactor depends on the transient response prior to the achieve-
ment of steady state. Hill (1977, p. 509) and Churchill (1979a, p. 479; 19790,
p- 915; 1984; 1985) describe multiple steady-state behavior in nonisothermal
plug-flow tubular reactors. Hence, the classic phenomenon of multiple station-
ary (steady) states in perfect backmix CSTRs should be extended to differential
reactors (i.e., PFRs).

The classic landmark paper on parametric sensitivity in nonisothermal chem-
ical reactors is by Bilous and Amundson (1956). A more recent example of
multiple stationary states in packed catalytic tubular reactors is discussed by
Pedernera et al. (1997).
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PROBLEMS

4-1.

4-2,

Consider a liquid-phase plug-flow tubular reactor with irreversible nth-order
endothermic chemical reaction. The reactive mixture is heated with a fluid
that flows cocurrently in the annular region of a double-pipe configura-
tion. The mass and heat transfer Peclet numbers are large for both fluids.
All physical properties of both fluids are independent of temperature and
conversion, and the inlet conditions at z = 0 are specified. What equations
are required to investigate the phenomenon of parametric sensitivity in this
system?

A complex exothermic chemical reaction occurs in a plug-flow tubular reac-
tor with constant energy flux across the wall at radius R. All thermophysical
properties of the reactive fluid are independent of temperature and conver-
sion. Derive the relations between conversion x, fluid temperature 7', and
reactor volume Vppr at high-mass and high-heat-transfer Peclet numbers.
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MULTIPLE STATIONARY STATES
IN CONTINUOUS STIRRED TANK
REACTORS

Multiple steady-state behavior is a classic chemical engineering phenomenon in
the analysis of nonisothermal continuous-stirred tank reactors. Inlet temperatures
and flow rates of the reactive and cooling fluids represent key design parameters
that determine the number of operating points allowed when coupled heat and
mass transfer are addressed, and the chemical reaction is exothermic. One steady-
state operating point is most common in CSTRs, and two steady states occur
most infrequently. Three stationary states are also possible, and their analysis
is most interesting because two of them are stable whereas the other operating
point is unstable.

Nonisothermal operation of a liquid-phase CSTR with reversible exothermic
nth-order chemical kinetics is the focus of this chapter. The reactor is well insu-
lated from the surroundings, except for heat exchange across the cooling coil.
The reaction scheme is

2A «—— B

Coupling of two molecules of reactant A liberates thermal energy, but the entropy
change is negative. The equilibrium constant is expressed in terms of standard-
state enthalpy and entropy changes for reaction at 298 K, and the temperature
dependence of the forward kinetic rate constant is modeled by an Arrhenius
function. Thermal energy is generated volumetrically due to the exothermic nature
of the chemical reaction. As the temperature increases, the equilibrium constant
decreases and Le Chatelier’s principle shifts the reaction to the left, which favors
reactant A. Hence, reactant conversion increases initially and then decreases at
higher temperatures when the reactor operates in the near-equilibrium regime.
Also at higher temperatures, the forward kinetic rate constant increases and the
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characteristic time constant for chemical reaction decreases. For reversible nth-
order reactions, the time constant for chemical reaction is defined in terms of the
kinetic rate constant for the forward step:
A= 1 Kequil
kforward(T)(CA, inlet)n71 I+ Kequil

(5-1)

where Cy e is the inlet molar density of reactant A and K. is the dimension-
less equilibrium constant. When the time constant for convective mass transfer
through the CSTR (i.e., residence time 7) is much larger than A, particularly
at high temperatures, the reaction is equilibrium controlled. The conversion rate
approaches zero when the reaction approaches equilibrium. This provides an
explanation for the fact that the rate of heat generation increases initially and
then decreases at very high temperatures. In each numerical example presented
below, the residence time is 200 s and the reactor volume is 20 L.

5-1 MASS BALANCE

Coupled mass and thermal energy balances are required to analyze the nonisother-
mal response of a well-mixed continuous-stirred tank reactor. These balances can
be obtained by employing a macroscopic control volume that includes the entire
contents of the CSTR, or by integrating plug-flow balances for a differential
reactor under the assumption that temperature and concentrations are not a func-
tion of spatial coordinates in the macroscopic CSTR. The macroscopic approach
is used for the mass balance, and the differential approach is employed for the
thermal energy balance. At high-mass-transfer Peclet numbers, the steady-state
macroscopic mass balance on reactant A with axial convection and one chemical
reaction, and units of moles per time, is

convective input + rate of production = convective output (5-2)
gRxCA. intet + VABVCSTR = gRxCA, outlet (5-3)

This reduces to
TR — Ch inleex =0 (5-4)

where vy = —1 is the stoichiometric coefficient of reactant A (i.e., after division
of the chemical reaction by 2), T = Vestr/grx, and x =1 — Ca_outlet/ Ca. inlet 18
the conversion of reactant A with respect to Ca_ inlet-

5-2 CHEMICAL KINETICS

The reversible kinetic rate law for nth-order chemical reaction is

C’l
R= kforward(CA)n - kbackward(CB)n = kforward |:C§ - Kin] (5'5)
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If the reactor is well stirred, then the molar densities of reactant A and product B
in the kinetic rate law are expressed in terms of conversion x via stoichiometry
and the steady-state mass balance with convection and chemical reaction:

CA = CA, outlet = CA, inlet (1 - X) (5'6)
Cg = CB, outlet = Cintet + CaintetVBX = Cainlet(@p +vx)  (5-7)
where ®gp is the inlet molar density ratio of product B relative to reactant A. The

temperature dependence of the dimensionless equilibrium constant from thermo-
dynamics is

B
chui](T) = exp (A + ?) (5-8)
ASY

A— Rx, 298 (5-9)

Rgas

AH?
B=_ Rx, 298 (5-10)

Rgas

The Arrhenius expression for the kinetic rate constant is

Eactivation
ktorward (T') = koo €XP (—7> (5-11)
orwar 00 RgasT

5-3 THERMAL ENERGY BALANCE

If one adopts a plug-flow thermal energy balance on the reactive fluid within
a differential CSTR at high-heat-transfer Peclet numbers, then equation (3-37)
yields:

dTcstR — d Qinput
dVestr  dVestr

prqRX(Cp,RX, feed) + (—AHr)R (5-12)

where d Qinpye represents the differential rate of thermal energy transfer into the
CSTR across the wall of the cooling coil. There is no other heat exchange with
the surroundings. Integration of this equation over the total volume of a well-
mixed CSTR from inlet to outlet yields the following macroscopic thermal energy
balance for the nonisothermal reactor:

/PRxCIRx(Cp,Rx,feed)dTCSTR - /innput = /(_AHRX)BRdVCSTR (5-13)

If the kinetic rate law R is not a function of position throughout the well-mixed
reactor, and d¥conduction = —d Qinpue 18 the differential rate of thermal energy
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removal from the CSTR across the wall of the cooling coil via heat conduction,
then the macroscopic thermal energy balance reduces to

PRxqRx {Cp,Rx, feed) (TcsTR — TR, intet) + Neonduction = (—AHr)BVestr — (5-14)

The rate of heat generation Grx(7T) due to exothermic chemical reaction in the
CSTR, with units of calories per second, is

Gra(T) = —AHR, 2038 VesTR (5-15)
VestR = TqRrx (5-16)
where T = Tcstr is the temperature within the reactor and in the exit stream.

The rate of heat removal from the CSTR, R(T), contains contributions from
convection and conduction:

N(T) = Nconvection(T) + Nconduction(T) (5‘17)

Convective transport of thermal energy through the reactor is given by

Nconveclion (T) = PRxYqRx (Cp,RX, feed) (T - TRX, inlet) (5'1 8)

The rate of heat removal due to conduction across the cooling coil and into the
cooling fluid is given by
z‘tconduction(T) = pcool‘]cool(cp,cod)[l - eXp(_C001 factor)](T - Tcool, inlet) (5'19)

Uoveran @ Dcoo]ing coil Lcoo]ing coil
Pcoolqcool <Cp,C001)

cool factor =

(5-20)

5-3.1 Thermal Energy Balance for the Cooling Fluid

The rate of thermal energy transport across the wall of the cooling coil, as
summarized by (5-19) and (5-20), is calculated from a thermal energy balance
on the nonreactive cooling fluid when the temperature of the surroundings (i.e.,
in the CSTR) is constant at Tcstr = 7. At high-heat-transfer Peclet numbers,
the quasi-macroscopic thermal energy balance over a differential control volume
in the cooling fluid [i.e., d Viooling fiuid = 7T (Deooling coil /2)2 dz] is adopted from
equation (4-64):

d Rconduction

Pcoolqcool (Cp, cool) @ Teool/dz = dz

= nDcooling coil Uoverall(TCSTR - Tcool)
(5-21)

where d R onduction represents the differential rate of heat removal from the CSTR,
which enters the cooling fluid across the wall of the cooling coil. The calculation
proceeds as follows:
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1. Equation (5-21);

d Tcool

d—Z = nDcooling coil Uoverall(TCSTR - Tcool) (5'22)

Pcoolqcool (Cp, cool)

is integrated to obtain an expression for the instantaneous temperature dif-
ference, TcstrR — Teool-

2. The rate of thermal energy removal from the CSTR across the wall of the
cooling coil is obtained by integrating:

d Nconduction

dz = T[Dcooling coil Uoverall(TCSTR - Tcool) (5'23)

over the length of the cooling coil (i.€., Leooling coil) after the temperature-
difference profile is determined in step 1.

The temperature-difference profile is obtained from (5-22) via separation of
variables:

d Tcool

Peoolqcool {Cp, cool) T = 7T Dcooling coil Uoverall dz (5-24)
C

STR — Tcoo]

Integration from z = 0, where T¢oo1 = Tcool, intet at the inlet to the cooling coil,
yields

TCSTR - Tcool, inlet

pcoochool(Cp, c001> In |: i| = nDcooling coil Uoverallz (5'25)

TestrR — Teool

Rearrangement of (5-25) yields the temperature-difference profile as a function
of axial coordinate z, which increases in the primary flow direction:

T Dcooling coil UoverallZ
Pcoolqcool (Cp, c001>

TestrR — Teool = (TestR — Teool, intet) EXP (— ) (5-26)

Now the macroscopic rate of thermal energy removal from the CSTR, across the
cooling coil is calculated from (5-23) and (5-26):

Lcooling coil
Nconduction = /dxconduction = ”Dcooling coil Uoveral] f (TCSTR - Tcool) dz

z=0
5-27)
Hence,

Nconduclion(T) = peoolQeool(Cp,cool)[l - CXP(—COOI factor)](T - Tcool, inlel)
(5-28)
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5-4 MULTIPLE STATIONARY STATES

The numerical example illustrated below in Figure 5-1 separately evaluates the
rate of thermal energy generation Ggrx(7T) due to chemical reaction, and the
total rate of heat removal from the CSTR, R(T), via convection and conduc-
tion, over the temperature range 200 K < 7 < 600 K. The CSTR operates at
temperature 7cstr When

Grx(Tcstr) = R(Tcstr) (5-29)

as dictated by the steady-state macroscopic thermal energy balance given by
(5-14). Under most conditions, one operating temperature is predicted because
GRrx(T) and R(T) intersect at one point. For the particular set of physically
realistic parameters defined below, the thermal energy balance is satisfied at
the following temperatures and corresponding conversions of reactant A for the
example problem illustrated in Figure 5-1:

Tcstr X

Tiower = 301 K 1.4%
Tiadle = 399 K 29%
Tupper = 513 K 62%

Hence, the reactor operates at one of these three temperatures. One must consider
initial startup conditions and the effect of a fluctuating reactor temperature on

35,000 T T :
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© =
C3 Tiddle 8
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g 12,800 112,800 =
] 3
@ T
5,400 1 5,400
—2,000 L . -2,000
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Figure 5-1 Numerical and graphical example for a nonisothermal CSTR with exother-
mic chemical reaction, illustrating the phenomenon of three steady-state operating points
as dictated by three intersections of the rates of thermal energy generation and removal
Vs. temperature curves.
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Grx(T) and R(T) to determine which operating temperature is most favorable.
The parametric values are as follows:

Ca, inlet = 0.1 mol/mL O =0 vg =0.5
T=200s koo = 10° 87! E sctivation = 14,000 cal/mol
AHZ, 505 = —5000 cal/mol ~ ASp, 545 = —10 cal/mol- K prx = 0.75 g/mL
gqrx = 100 mL/s Try,inet = 325 K Peool = 1 g/mL
Geool = 250 mL/s Teool, inlet = 280 K Rgys = 1.987 cal/mol-K
(Cp Rx, feed) = 0.9 cal/g-K (Cp,coo1) = 1 cal/g-K L ooling coit =200 cm
Vestr =20 L Deooling coit = 1.5 cm n=1

Upveratl = 3600 kecal/m?-h-K = 0.1 cal/em?-s-K

5-4.1 Stable and Unstable Operating Points

If 293-298 K represents a plausible range of startup temperatures for the CSTR
described in the previous section, then:

Grx(T) > X(T) T <301 K (5-30)

and the reactor temperature increases dynamically because the rate of thermal
energy generation is larger than the rate of heat removal. At 301 K, steady state
is achieved because Grx(301 K) = R(301 K). Tiower is a stable operating point
because small fluctuations in reactor temperature decrease in amplitude and the
CSTR operating point returns to 301 K. This is rationalized as follows, based on
the graphs in Figure 5-1:

If T < Tiower Grx(T) > R(T) reactor temperature
increases to Tigwer

If Tiower < T < Thiddie Grx(T) < X(T) reactor temperature
decreases to Tiower

However, operation of the CSTR at 301 K is not very attractive because the
conversion of reactant A predicted is only 1.4%. Similar analysis reveals that
Topper 18 also a stable operating point because small changes in reactor temperature
above or below Typper produce an imbalance between Gry (1) and R(7T') that shifts
the steady-state operating point back to Typper. For example (see Figure 5-1):

If T > Tupper Grx(T) < R(T) reactor temperature
decreases t0 Typper

If Thigate < T < Tupper Grx(T) > R(T) reactor temperature
increases t0 Typper
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It is difficult, if not impossible, to operate at Tipigqie Without implementing external
control of inlet temperatures and/or flow rates of either the reactive mixture or
the cooling fluid. Tingqie represents an unstable operating point because small
fluctuations in reactor temperature grow until the CSTR gravitates toward one of
the two stable operating points at Typper OF Tjower. For example (see Figure 5-1):

If Thiggte < T < Tupper Grx(T) > R(T) reactor temperature
increases t0 Typper

If Tiower < T < Tmiagte ~ Grx(T) < R(T)  reactor temperature
decreases to Tiower

5-4.2  Effect of Tl inlet On Reactor Performance: Ignition

The rate of thermal energy removal vs. reactor temperature is illustrated in
Figure 5-2 when the cooling fluid enters the cooling coil at 280, 300, 320, and
350 K. Teoor inlet affects the rate of thermal energy removal but not the rate of
thermal energy generation in the CSTR. Based on equation (5-19), an increase in
Teool, inlet Shifts the linear heat removal curve X(7') to the right without perturbing
its slope. As illustrated in Figure 5-2, reactor simulations at inlet cooling fluid
temperatures of 280, 300, and 320 K predict three possible steady-state operating
points (i.e., Tiowers Tmiadles and Typper), Where Tiigqie 1S unstable and Tiower and
Tupper are stable. If the CSTR operates at Tjower With rather low conversion and
Teool, intet increases continuously by preheating the cooling fluid, the temperature
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Figure 5-2 Effect of the inlet cooling fluid temperature on the rate of thermal energy
removal and the number of allowed steady-state operating points for a nonisothermal
CSTR with exothermic chemical reaction. All of the other parameters are the same as
those in Figure 5-1.
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of the reactor increases smoothly and follows the increase in Tjoyer. Notice how
Tiower increases and Trigqie decreases as ool inlet iNCreases. These two steady-
state operating points meet at 367 K and 8% conversion when T¢oop, intet = 350 K.
Under these conditions, 8(7") is tangent to the rate of thermal energy genera-
tion curve and there are only two possible steady-state operating points (i.e.,
at 367 K with 8% conversion and at 536 K with 58% conversion). A slight
increase in T¢ool, inler @bove 350 K produces a single CSTR operating point above
536 K. This nonisothermal CSTR phenomenon is called ignition because the
reactor temperature exhibits parametric sensitivity with respect to Tiool, intet- In
other words, a slight increase in the inlet temperature of the cooling fluid pro-
duces a 169 K increase in the reactor operating temperature (i.e., from 367 to
536 K in Figure 5-2).

5-4.3 Effect of T inlet 0N Reactor Performance: Hysteresis
and Extinction

In a continuation of the preceding example, the CSTR operates slightly above
536 K with slightly less than 58% conversion. This is the equilibrium-controlled
regime where Le Chatelier’s principle dictates lower conversion at higher temper-
ature for exothermic reactions. There is only one operating point when Tcool, inlet
is greater than 350 K. Of particular interest is the locus of CSTR operating points
when the inlet temperature of the cooling fluid decreases continuously from above
350 K. Three steady states are possible when Ttoor, inter is less than 350 K. When
multiple stationary states are possible, the system gravitates toward the stable
operating point that is closest to the preceding operating point. Hence, the system
follows the highest-temperature operating point Typper, Which decreases at lower
Teool, intet> as 1llustrated in Figure 5-2. Notice that the CSTR follows one sequence
of operating temperatures when Tgool inlet increases from below 280 K, and a
different sequence when 7ol inlet decreases from above 350 K. For example,

Testr = 316 K conversion = 0.4% if Teool, inler approaches 300 K from <280 K

Testr = 520 K conversion = 61% if Tiool, inler @pproaches 300 K from >350 K

This is an example of hysteresis. In fact, a hysteresis loop is produced by map-
ping the locus of CSTR operating temperatures in response to cycling the inlet
temperature of the cooling fluid from below 280 K to above 350 K. Hysteresis
is observed over the range of T, iner that corresponds to multiple-steady-state
behavior. If the system follows the locus of highest-temperature operating points
(i.e., Tupper) as the inlet temperature of the cooling fluid decreases from above
350 K to the lowest Tiool, intet that is consistent with multiple-steady-state behav-
ior (i.e., on the edge of the hysteresis loop), a further decrease in T¢ool, inlet CAUSES
the operating temperature of the CSTR to drop precipitously. In reference to
Figure 5-2, the reactor temperature decreases by more than 169 K. This phe-
nomenon, called extinction, can be classified as another example of parametric
sensitivity.
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Figure 5-3 Effect of the inlet reactive fluid temperature on the rate of thermal energy
removal and the number of allowed steady-state operating points for a nonisothermal
CSTR with exothermic chemical reaction. See Figure 5-1 for all other parameters.

5-4.4 Effect of Ty inet on Reactor Performance

The inlet temperature of the reactive fluid affects the rate of thermal energy
removal R(T) via equation (5-18) but not the rate of thermal energy genera-
tion Grx(T). Hence, ignition, extinction, and hysteresis loops are generated in
response to cycling Try inlet- This behavior is similar to the discussion in the
preceding two sections. An increase in Try iner Shifts R(7) to the right with-
out perturbing its slope. This is illustrated in Figure 5-3 for three different inlet
temperatures of the reactive fluid (i.e., 300, 350, and 400 K) when the inlet tem-
perature of the cooling fluid is 280 K. All other parameters are as summarized
below Figure 5-1. If three stationary states are predicted for each reactor simula-
tion, then an increase in TRy, inler affects the CSTR operating temperatures in the
following manner:

1. Tower increases.
2. Tmiddie decreases.
3. Tupper increases.

5-4.5 Effect of Flow Rate on Reactor Performance

The flow rate of either fluid affects the slope of R(7T) via equation (5-18) or
(5-19), but not Grx(T) if the CSTR volume and residence time remain con-
stant. Since the reactive fluid flow rate grx cannot be changed without affecting
either the CSTR volume or residence time, Figure 5-4 illustrates how the cool-
ing fluid flow rate g oo affects the steady-state operating points when all of the
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Figure 5-4 Effect of cooling fluid flow rate on the rate of thermal energy removal
and the number of allowed steady-state operating points for a nonisothermal CSTR with
exothermic chemical reaction. See Figure 5-1 for all other parameters.

other parameters are provided below Figure 5-1. As already noted, all numerical
examples in this chapter pertain to a 20-L reactor with a residence time of 200 s.
Lower cooling fluid flow rates decrease the slope of the thermal energy removal
rate R(7T), but the slope is always positive. Multiple-steady-state behavior is
predicted at each of the four values of gcoo1, from 50 to 250 mL/s. Lower-cooling-
fluid flow rates perturb the three CSTR operating points as follows:

1. Tiower 1S essentially unaffected.
2. Tmiddle decreases.
3. Typper increases.

5-5 ENDOTHERMIC CHEMICAL REACTIONS

Nonisothermal response of a well-insulated liquid-phase CSTR with reversible
endothermic nth-order chemical kinetics is compared with earlier examples in
this chapter, where the reaction was exothermic. Now the reaction scheme is

A «—— 2B (5-31)
Dissociation of reactant A is an endothermic process in which the entropy change

is positive. Consequently, the equilibrium constant increases at higher tempera-
ture via Le Chatelier’s principle, which shifts the reaction to the right in favor of
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Figure 5-5 Numerical and graphical example of the operating point for a nonisother-
mal CSTR with endothermic chemical reaction. Multiple stationary-state phenomena do
not occur. All parametric values are provided below.

product B. Hence, reactant conversion increases continuously at higher tempera-
ture. Thermal energy generation Grx(7T), as defined by equation (5-15), is always
negative, due to the endothermic nature of the chemical reaction. In fact, both
Grx(T) and R(T) are negative at the CSTR operating point when the reaction is
endothermic. In Figure 5-5, the CSTR operates at 328 K with 15% conversion
of reactant A, and

Grx(328 K) = R(328 K) = —8.8 kcal/s (5-32)

There is only one steady-state operating point. The endothermic reaction extracts
heat from the fluid medium in the CSTR and lowers its temperature. To coun-
terbalance this effect, the inlet temperature of the reactive fluid is higher in this
example (i.e., 350 K instead of 325 K), and a heat transfer fluid that supplies
thermal energy to the CSTR across the coil replaces the cooling fluid. The phys-
ical properties of the heat transfer fluid (i.e., gneats Pheats {Cp, heat)> and Theat, intet)
replace the corresponding properties of the cooling fluid to obtain the desired
thermal energy balance for the fluid that supplies thermal energy to the CSTR
across the coil.
The parametric values are as follows:

Cainlet = 0.1 mol/mL O =0 vg =2
T=200s koo = 10° 57" Eactivation = 12,000 cal/mol
AHR, 545 = 6000 cal/mol ASY, o5 = 20 cal/mol-K prx = 0.75 g/mL
grx = 100 mL/s Trx. inlet = 350 K Pheat = 1 g/mL
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Gheat = 200 mL/s Theat inlet = 425 K Rgas = 1.987 cal/mol-K

<Cp,Rx, feed) =09 Cal/gK (Cp,hem) =1 Cal/gK Lcooling coil = 200 cm

Vestr =20 L Deooling coit = 1.5 cm n=1

Upyeranl = 3600 kcal/m?-h-K = 0.1 cal/cm?s-K

Further inspection of Ggrx(7T) and R(T") in Figure 5-5 leads to the general
conclusion that multiple stationary states do not occur when the chemical reaction
is endothermic, because d®X/dT is always positive. In other words, multiple
intersections between Ggry(7') and R(7T') are possible only if dX/dT is negative.

PROBLEMS

5-1.

5-2.

A nonisothermal CSTR with exothermic chemical reaction contains a cool-
ing coil and exhibits three possible steady-state operating points. You want
the reactor to operate at the stationary state (i.e., the middle one at Tiyiqqie)
that is unstable. The temperature of the reactive fluid in the CSTR increases
slightly. If you do not counterbalance this increase in temperature, it is not
possible to operate at the unstable operating point because the reactor will
shift toward the high-temperature operating point at Typpe,. Identify three
possible one-line strategies that must be implemented immediately (i.e., “on
the fly”) to counterbalance an increase in reactor temperature and allow
continuous operation at the unstable operating point. Note: Each strategy
represents a possible solution to this problem. It is not necessary to imple-
ment all three strategies simultaneously. Also, it is not possible to modify
the dimensions of the reactor or the cooling coil immediately.

Answer: Increase the flow rate of the reactive fluid, increase the flow rate
of the cooling fluid, and decrease the inlet temperature of the cooling fluid.

It is desired to operate a nonisothermal liquid-phase CSTR with exothermic
chemical reaction at 440 K under steady-state conditions. The complete
description of this reactor was discussed in this chapter via parametric values
and the supporting equations. The reactor design engineer must specify
the heat transfer area for the cooling coil that is immersed in the reactive
mixture. For the conditions illustrated in Figure 5-1, the rate of thermal
energy generation is greater than the rate of thermal energy removal at 440 K
[i.e., Grx(T) > R(T)]. You decide to use the following computer program,
which generated the graphs of Ggrx(7) and R(7") vs. T in Figure 5-1 to
calculate the required heat transfer area, but your colleague correctly realizes
that one equation must be deleted and three equations must be added before
the program will provide the answers required. Hint: Do not change the
diameter of the cooling coil or the inlet temperature and volumetric flow
rate of either fluid.
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This sequence of equations and supporting parameters analyzes the non-
isothermal response of a liquid-phase CSTR with reversible exothermic
nth-order chemical kinetics. The reaction scheme is 2A < B, where 2 mol
of reactant A reversibly produce 1 mol of product B. The equilibrium con-
stant is expressed in terms of the standard state enthalpy and entropy changes
for reaction at 298 K. The temperature dependence of the forward kinetic
rate constant is modelled by an Arrhenius function. The time constant for
convective mass transfer is 200 s and the reactor volume is 20 L. Thermal
energy is generated volumetrically due to the exothermic nature of the chem-
ical reaction. As temperature increases, the equilibrium constant decreases
and Le Chatelier’s principle shifts the reaction to the left, which favors reac-
tant A. Hence, reactant conversion increases initially, and then decreases at
higher temperature. Also, at higher temperatures, the forward kinetic rate
constant increases and the characteristic time constant for chemical reaction
decreases. Remember that for reversible reactions where the order of the
forward and backward steps is the same, the time constant for chemical
reaction A is defined by

1

= n—1
(kforward + kbackward) c A0

N K equil 1
1+ K equil kforward CXH :

Since residence time tau is much larger than lambda at high temperatures, the
reaction is “equilibrium controlled”. This means that the reaction approaches
equilibrium and the rate of reaction approaches zero, which provides an
explanation for the fact that the rate of thermal energy generation increases
initially, and then decreases at very high temperatures.

Nonisothermal CSTR design equations:

TR — Capx = 0 (CSTR mass balance when there is only one chemical
reaction)

n

R = kforward |:CZ -
equil

nth-order reactions)

i| (Reversible kinetic rate law for

Ca = Cao(1 — x) (Definition of reactant conversion based on
molar density of reactant A)

Cp = Cpo(®p + vpx) (Stoichiometry and the mass balance to
calculate all molar densities)

Kequit = exp (A + ) (Temperature dependence of the
CSTR

equilibrium constant, from thermodynamics)
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ASS
A = —RX (Standard state entropy change for reaction at 298 K,

as

divided by the gas constant)

0
B = ——R% (Standard state enthalpy change for reaction at

gas
298 K, divided by the gas constant)

E activation

kforward = koo €XP [— :| (Arrhenius kinetic rate constant for

gas TCSTR o
the forward reaction in terms of the activation energy)

heatgeneration = —AHSXJRVCSTR (Rate of thermal energy generation due to
chemical reaction, cal/sec)

Vestr = Tgrx (The classic expression for reactor volume)

heatemoval = heatonvection + h€ateonduction (2 contributions to the rate of
thermal energy removal, cal/sec)

heatconvection = prQRxCp,Rx,feed(TCSTR - TCSTR, inlet) (Rate of heat removal
due to convective transport of thermal energy thru the
reactor)

heatconduction = paoolQCoole,cool{l — exp(—cool factor)}(Tcstr — Teool, inlet)
(Rate of thermal energy removal due to conduction across
the cooling coil and into the cooling fluid)

cool factor = Ugyeran Dcooling coichooling coil/(pcoolqcoolcp,cool )

Parameters:

Cao = 0.1 (Molar density of reactant A in the CSTR inlet stream in
units of moles per mL)

®p = 0 (Inlet molar density ratio of product B to reactant A)
vg = 0.5 (Stoichiometric coefficient of product B when vy = —1)

T = 200 (Time constant for convective mass transfer (i.e., average
residence time) in seconds)

koo = 10° (Pre-exponential factor for the kinetic rate constant, units
of inverse seconds)

E ctivation = 14000 (Activation energy in calories per mole)

AHR = —5000 (Enthalpy change for the exothermic reaction at
298 K, units of calories per mole)
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ASR, = —10 (2 mol of A produce 1 mol of B, delta S at 298 K is
negative, cal/mole-degree)

100 (Volumetric flow rate of the reactive fluid, mL per
second)

qRrx

Gcool = 250 (Volumetric flow rate of the cooling fluid, mL per second)
TcsTR. intet = 325 (Inlet temperature of the reactive fluid, degrees Kelvin)
Teool, intet = 280 (Inlet temperature of the cooling fluid, degrees Kelvin)

Cp. Ry, feed = 0.9 (Specific heat of the feed stream to the CSTR, only
reactant A, cal/gram-degree)

Cp, ool = 1 (Specific heat of the cooling fluid, which is most likely
water, cal/gram-degree)

prx = 0.75 (Average density of the hydrocarbon reactive mixture,
gram/mL)

Peool = 1 (Average density of the cooling fluid, which is most likely
water, in gram/mL)

Deooling coit = 1.5 (Diameter of the cooling coil, centimeters)

Looling coit = 200 (Length of the cooling along the direction of fluid
flow, cm)

Uoveran = 0.1 (Overall heat transfer coefficient across the cooling coil.
A typical value for forced convection in coils with water as
the cooling fluid is 3600 kcal per square meter-hour-degree
Kelvin, which translates to 0.1 calorie per square centimeter-
second-degree Kelvin)

Rgas = 1.987 (Universal gas constant, in units of calories per mole
per degree Kelvin)

n = 1 (Order of the forward and backward chemical reactions)

(a) What parametric equation must be deleted?
Answer: Lcooling coit = 200 cm.

(b) Write the three equations that must be added to the nonisothermal CSTR
design algorithm provided above. Three one-line answers are required.
Answer: Tcstr = 440 K, heatgeneraion = heatremova, and

heat transfer area = 7 - Deooling coil * Lcooling coil -

(c) Predict the outlet temperature in Kelvin for the cooling fluid.
Answer: Teool, outlet = 366 K.
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(d) Remove the cooling coil and calculate the adiabatic temperature rise in
the CSTR.

. Discuss the interesting situation where the linear rate of thermal energy

removal vs. temperature is coincident with the steepest section of the rate-
of-thermal-energy-generation curve for exothermic chemical reactions in a
CSTR. Even though there is only one theoretical point of intersection of the
two temperature-dependent functions, there could be a range of CSTR oper-
ating points where Ggry (7)) =~ R(T) within a reasonable tolerance. Consider
ignition, extinction, hysterisis loops, stable and unstable operating points,
and fluctuating reactor temperature in your analysis.

How do the following changes in a well-mixed CSTR with exothermic
chemical reaction affect the rates of thermal energy generation Ggryx and
removal R (i.e., increase, decrease, or no change)? Provide two answers for
each part below, one for Grx and one for N.

(a) The inlet temperature of the cooling fluid is increased.

(b) The mass flow rate of the cooling fluid is decreased.

(¢) The enthalpy change for the chemical reaction is larger in absolute value.
(d) The activation energy for the chemical reaction is decreased by a catalyst.
(e) The inlet temperature of the reactive fluid is decreased.

(f) The length of the cooling coil is increased.

(g) The reactor operates at a higher temperature, but it has not reached the
near-equilibrium regime.

. (@) Use the data provided in Figure 5-4 and sketch the operating temperature

of the reactor vs. the volumetric flow rate of the cooling fluid. Use arrows
and indicate the path followed by the reactor in response to cycling the
volumetric flow rate of the cooling fluid.

(b) Does ignition occur (i.e., a large increase in operating temperature)
within the CSTR upon increasing or decreasing the volumetric flow
rate of the cooling fluid?

(c) Does extinction occur (i.e., a large decrease in operating temperature)
within the CSTR upon increasing or decreasing the volumetric flow rate
of the cooling fluid?
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6

COUPLED HEAT AND MASS
TRANSFER WITH CHEMICAL
REACTION IN BATCH REACTORS

6-1 ISOTHERMAL ANALYSIS OF EXPERIMENTAL RATE DATA

If digital control is implemented to maintain isothermal operation of a batch reac-
tor and an external source or sink of thermal energy is available to accomplish
this task, then it is possible to analyze the rate of conversion of reactants to
products via coupled heat and mass transfer. For exothermic reactions, the rate
at which thermal energy is generated by chemical reaction must match the rate
at which thermal energy is removed by heat transfer across the external wall. For
example, a solid sample in an aluminum pan that is placed in a differential scan-
ning calorimeter can be modeled as an isothermal batch reactor during kinetic
measurements of the rate of reaction. The calorimeter operates in an isothermal
mode and functions as a digital controller by monitoring the rate at which thermal
energy must be added to or removed from the system to maintain constant tem-
perature. Analysis begins by writing an unsteady-state total energy balance for a
batch reactor with no exchange of mass between the system and the surroundings
due to convective transport. The most general form of the total energy balance
for a closed system that performs no mechanical work on the surroundings is

dE _ <@) (6-1)
di — \dt )i

where total energy E is the sum of kinetic, potential, and internal energies, and
(d Q/dt)inpu is the rate of heat exchange between the surroundings (i.e., the calori-
meter equipped with digital control) and the batch reactor. This is essentially the
first law of thermodynamics in differential form. By convention, the rate of heat
exchange is positive when the system receives heat from the surroundings. Since the

123
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kinetic and potential energies of the system do not change with time, the unsteady-
state total energy balance reduces to the following thermal energy balance:

av _ (40 _
E B < dt )input (6 2)

where U is the extensive internal energy of the system. Standard thermodynamic
formalism is employed to express the total differential of internal energy in terms
of temperature 7, pressure p, and mole numbers N; for a multicomponent system
that contains r species:

AU AU "L /U
dU = | — dT + | — dp+§ dN;
T p.all N; ap T,all N; i1 IN; T,p,all N;(j#i)

(6-3)

The total time derivative of (6-3) yields

dU _(3(/) dT+<8U> dp
dt T ), an n, dt op ) r.an n, dt

(U dN,
+X () 2 -
p ONi ) 1 p.ail N;(j#i) dt

which is appropriate for this analysis of kinetic rate data. The coefficients of
dT/dt and dp/dt in (6-4) are evaluated from the total differential expression
for the extensive internal energy of a multicomponent system in terms of its
natural variables S, V, and all N;:

dU =TdS—pdV+) pdN; (6-5)

i=1

where pu; is the chemical potential of species i, and V and S are the extensive
volume and entropy, respectively, of the system (i.e., the batch reactor). This
differential form of the first law for multicomponent systems (i.e., equation 6-5) is
used in conjunction with a Maxwell relation and the definition of thermophysical
properties like heat capacity C,, thermal expansion coefficient o, and isothermal
compressibility « to calculate the temperature and pressure coefficients of the
extensive internal energy. For example,

U 0S5 oV

— =T7T|— —pl = =C,—paV  (6-6)
8T p,a]l N; aT p,al] N; aT p,all N;

oUu 0S5 Vv

— =T— —p|\— =Vkp—aT) (6-7)
p /) ra N; P/ 7.1 N; P/ ran N;

S A%
(),
ap T,all N; aT p.all N;
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where C, is an extensive heat capacity with units of energy per Kelvin,

oH a8
C,=\|— =T|— (6-9)
oT p,all N; or p,all N;
a is the coefficient of thermal expansion (i.e., ~10~* K~! for liquids, 1/T for
ideal gases),
olnV
o= ( n ) (6-10)
aT p,al] N;

and k is the coefficient of isothermal compressibility (i.e., ~107° atm~! for
liquids, 1/p for ideal gases),

dnV
(= ( n ) (6-11)
ap T,all N;

The coefficient of dN;/dt in the summation of (6-4) is defined as the partial
molar internal energy of species i, because differentiation with respect to mole
numbers of component i is performed at constant 7, p and mole numbers of all
other species in the mixture. The unsteady-state mass balance for species i in a
batch reactor,

dN;
dt

= VR (6-12)

describes the time dependence of the moles of species i due to one chemical
reaction. In (6-12), R is the intrinsic rate law with units of moles per volume
per time for homogeneous kinetics, and v; is the stoichiometric coefficient of
species i. Hence, (6-2), (6-4), and (6-12) adopt the following form when the
mass and energy balances are combined:

au (C V)dT + V( T)dp
— = — paV)— kp —al)—
PP dt P dt

dt
: 14 d
+VBY v (—) = (—Q> (6-13)
i1 ONi ) 1 pal N; (i) dt Jinput

When the product of v; and the partial molar internal energy of species i is
summed over all components in the system, one obtains an exact expression for
the molar internal energy change for the reaction (see Tester and Modell, 1997,
pp. 769-770). In other words,

r

oUu
AURx = E Vi ( )
ot NN NG

(6-14)
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even though pure component molar internal energies are typically employed in
practice to calculate AUgy. When reactive mixtures behave ideally, the summation
in (6-14) is simplified considerably, because partial molar properties reduce to pure
component molar properties. In general, the summation in (6-14) also accounts for
nonidealities and effects due to pressure and mixing. The unsteady-state thermal
energy balance for a closed system with one chemical reaction is written in the fol-
lowing form when physical processes such as vaporization of volatile by-products
do not occur:

Y _ ¢ N v 1YL 4 VR(AURy) = (42

— = — paV)— kp —al)— =|—

dt P PE P dt R dt ) iput

(6-15)

For isothermal operation of a constant-volume batch reactor, the closed-system
thermal energy balance can be simplified as follows;

1. dT/dt = 0 for isothermal operation at steady state.

2. V(kp —aT)dp/dt is negligible in magnitude relative to VRAUgx and
(d Q/dt)input When pressure represents an additional degree of freedom at
constant 7" and V for liquids.

Hence, the closed-system thermal energy balance reduces to

a0y  _ (42 ~ VR(— i
- <E>input B ( dt )rcmoval - VaR( AURX) (6 16)

where (d Q/dt)removal Tepresents the rate at which thermal energy is removed
from the reactor via heat transfer across the external wall, as specified by the
digital control system to maintain isothermal operation. Equation (6-16) indicates
that this rate of heat exchange must be balanced by the rate of thermal energy
generation for exothermic reactions.

The unsteady-state mass balance for species i in a batch reactor with one
chemical reaction was presented above as

dN;
dt

One introduces the definition of reactant conversion x in terms of the moles of
key-limiting reactant A:

= V,‘VQR (6'17)

Na(t = 0) — Na(1)
Na(t =0)

X (6-18)
Furthermore, stoichiometry and the mass balance for a batch reactor via (6-17)
reveal that

dN; _ dNp

— = VRdt (va=-1 (6-19)
V; VA




ISOTHERMAL ANALYSIS OF EXPERIMENTAL RATE DATA 127

Hence,

dN; dNx dx
= —y— = =y NA(t = 0)—2 6-20
dt Y dt viNa( )dt ( )

and the mass balance given by (6-17) can be re-expressed in terms of the time
dependence of reactant conversion as

Nao P VR (6-21)
where N represents the initial number of moles of reactant A injected into the
reactor at ¢+ = 0. A few comments are required here to analyze the time depen-
dence of reactant conversion when the volume of the batch reactor increases.
For gas-phase reactors, the ratio of reactor volume V to the initial number of
moles of reactant A, Nag, is RT /[yaoPrwota(t = 0)] if the gas mixture behaves
ideally. yao is the initial mole fraction of reactant A at + = 0. Hence, if reactor
volume is increased without introducing more moles of reactants, this effect is
equivalent to decreasing total pressure at constant temperature. Under these con-
ditions, V /Ny increases, but this increase is offset by a decrease in R, which is
proportional to po, raised to the sum of the magnitudes of the stoichiometric
coefficients of all the reactants for elementary reactions. When the kinetics are
irreversible nth-order and n > 1, the time rate of increase of reactant conversion
is smaller when the batch reactor volume increases without introducing more
moles of reactants. For first-order kinetics, d x /dt is unaffected by this increase
in reactor volume because chemical reaction time constants are independent of
molar density or partial pressure. If reactor volume is increased at constant tem-
perature and pressure by increasing the number of moles of reactants, the ratio
V/Nao remains unchanged, d x /dt is unaffected, and reactor volume does not
influence the rate of conversion of reactants to products. For liquids, reactor vol-
ume does not appear explicitly in the unsteady-state macroscopic mass balance
because Nao/V is identified as the initial molar density of reactant A at r = 0.
Since liquid-phase reactors operate approximately at constant density, an increase
in reactor volume is proportional to an increase in the mole numbers of all com-
ponents in the mixture. Hence, molar densities and d x /dt are not affected by an
increase in reactor volume under isothermal conditions.

When the steady-state thermal energy balance (6-16) is combined with the
unsteady-state species mass balance (6-21), the time dependence of reactant con-
version (i.e., d x /dt) can be calculated from the digital controller response, which
monitors the rate of thermal energy removal across the outer wall of the reactor
for exothermic chemical reactions:

d_X _ (d Q/dt)removal

= 6-22
dt Nao(—AUgy) (6-22)

where the numerator on the right side (6-22) is measured experimentally. The
molar internal energy change for reaction, which can be approximated using
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pure component enthalpies of formation at 298 K, specific heat data, and H =
U + pV, (see Section 6-4), is based on a stoichiometric coefficient of —1 for the
component used to define conversion y. Hence, the denominator on the right side
of (6-22) represents the total amount of thermal energy that should be liberated
by an exothermic irreversible reaction that achieves 100% conversion of reactants
to products. If the rate law is modeled empirically as an nth-order irreversible
chemical reaction which depends only on the molar density of reactant A, then:
B  Cao(l=x)"

R =ky(T)(Ca)" = T (6-23)
where k,(T) is a temperature-dependent nth-order kinetic rate constant with
units of (volume/mol)"~! per time, Cpxg = Nao/V is the initial molar density of
reactant A, and A(7T) is a characteristic time constant for nth-order irreversible
chemical reaction, given by

1
 ka(T)(Cao)" !
The parameters n and A(7T) which characterize the rate law are evaluated via

the differential method of reaction-rate data analysis based on the unsteady-state
mass balance:

MT) (6-24)

dx
Npag— = VR 6-25
U (6-25)
Substitution for R via (6-23) yields
dx
log )= nlog(l — x) —log A(T) (6-26)

where conversion vs. time data are obtained experimentally from the transient
response of a digital controller, which is required to maintain isothermal operation
of the batch reactor. In other words, integration of equation (6-22) yields:

/ (d 0/dE)remova dE

(1) == (6-27)
X Nao(—AUrx)
Hence, one combines (6-22), (6-26), and (6-27) as follows:
dQ/d‘i:)removal dé
dQ/dD) o / (
og A2/ emov =nlog & —log M(T) (6-28)
Nao(—AUgx) Nao(—AUgrx)

where (d Q/dt)iemoval 1S the experimental instantaneous rate of heat removal mon-
itored by a digital controller. This analysis reveals that the parameters n and
M(T) which characterize the kinetic rate law can be determined from isothermal
experiments in a batch reactor with digital control. The empirical reaction order
n represents the first-order coefficient (i.e., the slope), and the time constant
log A(T) is the zeroth-order coefficient (i.e., the intercept) of dx/dt vs. 1 — x
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on log-log coordinates when experimental data are matched to a first-order poly-
nomial via linear least-squares analysis. If isothermal experiments are performed
at several different temperatures and A(7") from each set of isothermal data is cor-
related with reciprocal absolute temperature, then an apparent activation energy
for the forward reaction is obtained via linear least-squares analysis of In A vs.
1/T, even if the empirical reaction order n exhibits weak dependence on tempera-
ture. It is not possible to analyze Ink, (T') vs. 1/T and extract an activation energy
if the empirical reaction order n varies with temperature because the units of &,
depend on the value of n, whereas the characteristic time constant for chemical
reaction always has dimensions of time.

6-2 FORMALISM FOR MULTIPLE REACTIONS

If multiple chemical reactions occur, then the coupled mass and thermal energy
balances for isothermal operation with negligible pressure effects are (see
equations 6-2, 6-4, and 6-12):

dN; ,
T =v;u,-,aa, 1<i<r (6-29)
" /U dN; d
B0, ()
8N T,p,all N;(j#i) dr dr input

where v;; is the stoichiometric coefficient of component i in reaction j and R;
represents the kinetic rate law for the jth chemical reaction in the mechanism.
Equations (6-29) and (6-30) can be combined as follows:

[ OU : U
Z( ) = VZQ& Zvu <
ONi ) 1 p.all N;Gj#i) d’ IN;

i=1

)Tp all N;(j#i)

d
=V ) 8;(AUxy); ~ <d—?> (6-31)
input

J

where (AUgy); is the molar internal energy change for the jth chemical reaction.
As mentioned above, one usually replaces partial molar properties with pure-
component molar properties to approximate the molar internal energy change for
each chemical reaction. The analysis described in the previous section for one
chemical reaction will yield useful results for a multiple-reaction sequence if it is
possible to identify a rate-limiting step. If all steps occur on the same time scale
and it is not possible to isolate one that is rate limiting, then the controller provides
experimental information about the rate of heat transfer across the external wall
to operate the reactor isothermally, but one cannot combine the mass and energy
balances to obtain useful information about the extent of each reaction or the rate
of conversion of reactants to products.



130 COUPLED HEAT AND MASS TRANSFER IN BATCH REACTORS

6-3 ADIABATIC OPERATION

If a batch reactor is completely insulated from the surroundings and there is
only one chemical reaction, then the mass and thermal energy balances can be
combined analytically to yield the maximum temperature rise for exothermic
reactions. The same procedure provides an estimate of the maximum temper-
ature drop if the reaction is endothermic. If pressure effects are negligible, in
accord with the previous analyses, coupled heat and mass transfer yield (see
equation 6-15):

du dT do
“Z A~ (Cy— paV)— + VR(AUgy) = <—> =0 (6-32)
dt b dt dt ) it

which allows one to predict temperature changes as follows:
dT
(Cp — paV)E = VR(—AUgy) (6-33)

The unsteady-state mass balance (6-21) is used to replace V& in (6-33) so that
temperature and reactant conversion can be related analytically at any time during
the course of the reaction:

dT dy
- O Nao(—AUg) L 34
(Cp — paV) 1 Npo(—AUr )dt (6-34)

If the concentration dependence of thermophysical properties is neglected and
temperature-averaged properties are employed, then integration of (6-34) yields

(Cp = paV)[T =Tt = 0)] = Nao(—=AUrI[x — x (@ =0)] (6-35)

The maximum temperature rise or drop ATy, in an adiabatic batch reactor occurs
when equilibrium is achieved. By definition, there is no conversion of reactants
to products at + = 0. Hence,

NAO(_ AUgx) Xequilibrium
C, — paV

AThax = equilibrium — T(t = 0) = (6'36)

provides a conservative estimate (i.e., overestimate) of the maximum temperature
change. The actual temperature change will be less than this prediction because
sensible heat effects associated with the wall of the vessel have not been consid-
ered. It is interesting to note that the adiabatic temperature change predicted by
(6-36) for batch reactors is slightly different than AT« for flow reactors (see
equation 4-40). Continuous-stirred tanks and plug-flow reactors exhibit the same
functional form for the adiabatic temperature change. However, plug-flow reac-
tors will experience a larger actual ATy, relative to CSTRs because, if all other
design parameters are the same (i.e., particularly inlet temperature and residence
time), PFRs yield higher conversion than CSTRs. Equation (6-36) reveals that
AT is linearly proportional to xgn, for all types of reactors.
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6-4 NONISOTHERMAL ANALYSIS OF A CONSTANT-VOLUME
BATCH REACTOR

The following sequence of equations and supporting parameters provides an anal-
ysis of the nonisothermal operation of a constant-volume cylindrical batch reactor.
A stoichiometric feed of carbon monoxide and hydrogen is injected into the reac-
tor via an inert carrier gas, such as argon, and the overall objective is to produce
methanol. The reactor is insulated from the surroundings, but it contains a cool-
ing coil to remove the thermal energy generated by the exothermic chemical
reaction. It is necessary to integrate coupled mass and thermal energy balances
to monitor temperature, conversion and pressure profiles as a function of time
for unsteady-state operation. The gas mixture behaves ideally. The coefficient of
thermal expansion « for ideal gases is 1/T, which is about one order of magnitude
larger than « for liquids. The coefficient of isothermal compressibility « for ideal
gases is 1/p, which is about five or six orders of magnitude larger than « for liq-
uids. This is reasonable because gases are relatively easy to compress at ambient
pressure, and liquids are essentially incompressible. The pressure contribution to
the thermal energy balance,

dp
Vkp —aT)— 6-37
(kp —aT)— (6-37)

vanishes identically for ideal gases, and the temperature coefficient of the exten-
sive internal energy of the mixture,

ou =C vec, -2V _c _ NouR (6-38)
T p.al N,-_ P pay =0Cp T — Lp total

is essentially Cy.
Tinitir = 300 K (initial temperature of the reactive gas mixture)

Pinitial = 100/760 atm (initial pressure in atmospheres)

Ogargon = 3 (inlet molar ratio of the inert carrier gas, argon,
relative to CO)

®co = 1 (definition of the inlet molar ratio of CO, with respect
to CO)

Ohydrogen = 2 (stoichiometric feed of hydrogen, injected at ¢t = 0
with CO and argon)

Omethanol = 0 (no methanol is injected into the reactor at t = 0)

4
Z ®i = ®CO + ®hydr0gen + ®methanol + ®arg0n
i=1 (inverse of the initial CO mole fraction)
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Vco =
Vhydrogen =

Vmethanol =

diameterbatch reactor —

heightbatch reactor —

volumepaich reactor =

R// —

gas

gramco(t = 0) =

Nco(t =0) =

Nioal (t) =

Yco(x) =

Yhydrogen (X ) =

Ymethanol ) =

yargon(X) =

kpoo =

Rgas =

—1 (stoichiometric coefficient of CO)
—2 (stoichiometric coefficient of hydrogen)

1 (stoichiometric coefficient of methanol)

V; = Vo + Vhydrogen + Vmethano! (change in the total

-

i=1
number of moles when 1 mol of CO reacts)

25 cm (diameter of the batch reactor)
50 cm (height of the batch reactor)
%(diameterhamh reactor)> N€IZNtyh reactor
(batch reactor volume in mL)

82 mL-atm/mol-K (gas constant)

28 Pinitial volumepaich reactor

4
(Rgas Thvica ), _, ®,»>

(grams of CO injected into the batch reactor at = 0)

t=0
%() (initial number of moles of CO injected

into the reactor at t = 0)
4
Neo(r = 0) [mn +) &}

(time-dependent total number of moles in the reactor)
Oco + vcoX
5X + Xiy O
®hydrogen =+ Vhydrogen X

4
Sx + Zi: | O
®methzmol =+ Vmethanol X

Sx + Z; ©;

1- yCO(X) - yhydrogen(X) - ymethanol(X)

(mole fraction of CO)

(mole fraction of hydrogen)

(mole fraction of methanol)

2 x 10* g-mol/(mL-min-atm®) (pre-exponential factor
for kinetic rate constant)

1.987 cal/mol-K (gas constant)
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Ectivation/ Rgas = 5000 K (activation energy divided by the gas constant)

E activation

kp,forward(T) = kpoo exXp <_ﬁ
gas

temperature dependence of the kinetic rate constant)

) g-mol/mL-min-atm® (Arrhenius

(Thermodynamic data to evaluate the
temperature-dependent equilibrium constant)

AG  mation29s.co = —32,808 cal/g-mol (free energy of formation of CO at
298 K)

AG = —38,700 cal/g-mol (free energy of formation of CH;OH
at 298 K)

[e]
formation298, methanol

o o [e]
AGRy 298 = E :UiAGformationZ%,i = V0 AG formation298,c0
i
o
=+ Vmethanol AGformation298,methanol

(free-energy change for the chemical reaction
at 298 K, cal/g-mol)

AHg, 1 aion20s.co = —26,416 cal/g-mol (enthalpy of formation of CO
at 298 K)

AH?

formation298, methanol

= —48,100 cal/g-mol (enthalpy of formation of CH;0H
at 298 K)

[e] o o
AI-IR)(,298 - z :viAHformation298,i - UCOAHformation298,CO
i
o
~+ Vmethanol A Hformation298,melhanol

(enthalpy change for the chemical reaction at 298 K,
cal/g-mol)

o [e]
AI_IRX,298 - A GRx,298

ASgy 208 = 208 (entropy change for the chemical
reaction at 298 K, cal/mol-K)
AS]gx,298 . .
A = ————— (dimensionless entropy change for the
gas
chemical reaction at 298 K)
AHg
B— R
Rgas

B
Keq,p(T) = exp <A + ?> (equilibrium constant for the chemical

reaction based on partial pressures, atm®)
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4
T Sx+) 6
Tinitial ‘.1 e
i=
pressure within the batch reactor, atm)

P(t) = Pinitial (time-dependent total

§
R = kp forwara(T) [P (D) {yco<x)[yhydmgen<x)]2 - M}

Keq, p(T)
(reversible elementary kinetic rate law based on partial
pressures, g-mol/mL-min)

d .
Nco(t = O)—X = R-volumepych reactor (time rate of change of CO
conversion from the unsteady-state batch reactor mass
balance, g-mol/min)

Xinitiat = O (initial CO conversion at ¢ = 0)
volumepaich reactor !

X (@) = Xinitial + ——————— | Bdt
0

Nco(t =0)
(time dependence of CO conversion)

If temperature T is chosen arbitrarily, the set of equations presented above
will simulate the performance of an isothermal constant-volume batch reactor.
See Figures 6-1 and 6-2 for CO conversion at various temperatures and initial
pressures.

O Pinitia = 100 torr, T=310K
® Dinitiat =80 torr, T=310K
O Pinitiay = 60 torr, T=310K ]
B Pinitia =40 torr, T=310K J

x (conversion of CO)
o
N
o

L

00 40 80 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0
Time (min)

Figure 6-1 Effect of initial pressure on the time-dependent conversion of CO in a con-
stant-volume batch reactor which operates isothermally at 310 K. Le Chatelier’s principle
predicts higher equilibrium conversion of CO to methanol when the pressure increases.
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g 030y, © Pinitiar = 100 torr, T=310 K
~ 0.23 1 ® piniiar = 100 torr, T= 320K 1
0.15 O pjnitial = 100 torr, T=330 K ;
0.075 B pinitiar = 100 torr, T=340 K 1
0.0 . . X . . . . .
00 16 32 48 64 80 96 112 128 144 16.0
Time (min)

Figure 6-2 Effect of temperature on the time-dependent conversion of CO in a con-
stant-volume batch reactor which operates initially at a total pressure of 100 torr. The ini-
tial rate of conversion of CO to methanol proceeds faster when the temperature increases,
but Le Chatelier’s principle predicts lower equilibrium conversion for exothermic chem-
ical reactions at higher temperatures.

If thermal energy effects are important and the reactor does not operate
isothermally, then the information described below is required to analyze reactor
performance.

(temperature polynomials for pure-component molar heat capacities; T is in
Kelvin and C,, is in cal/mol-K).

Cp.co(T) =6.79+0.98 x 10737 — 0.11 x 10°T 2
Cp hydrogen(T) = 6.52+0.78 x 10737 +0.12 x 10372
Cpmethanol (T) = 4.394 +24.274 x 1073T — 6.855 x 107672

Cp argon = %Rgas, monatomic gases do not rotate or vibrate
4
Cp mixture (T, x) = Zyi(X)CI,,,-(T), including argon (mole-fraction-weighted
i=1

molar heat capacity of the reactive mixture, cal/mol-K)

4
ACp,Rx(T) = Z Vi Cp,i(T) = VCOCp,CO(T) + Vhydrogencp,hydrogen(T)
i=1
+ Vmethanol C p, methanol (') (stoichiometric-coefficient-
weighted AC, gy for the chemical reaction, cal/mol-K)
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T
AHp(T) = AHI§X,298 + / AC, rx(§) d§ (temperature-dependent

298
enthalpy change for the chemical reaction, cal/g-mol)

\%
AUrx(T) = AHpx(T) — §p—— (see, for example, Felder and
tal
Rousseau, 200(3(: dp. 444)

= AHpx(T) — 6 Ry T (temperature-dependent internal energy
change for the chemical reaction, cal/g-mol)

a0
(Z = q)speciﬁed to prevent thermal runaway (rate of heat removal due to
removal conduction across the cooling coil and into the cooling
fluid, cal/min)

Peool = 1 g/mL (average density of the cooling fluid, which is
most likely water)

Geool = 50 mL/s (volumetric flow rate of the cooling fluid)
Cp.cool = 1 cal/g-K (specific heat of the cooling fluid)

Teool, inlet = 280 K (inlet temperature of the cooling fluid)

Calculate the outlet temperature of the cooling fluid,

dQ
< = 60pcoolqcoolcp, cool(Tcool,outlet - Tcool, inlet)
removal

dt
dT do
{Ntotal (t)[cp,mixture(Tv X) - Rgas]}_ =\ -5 +R- VOlumebatch reactor(_AURx)
dt di removal

(time rate of change of reactor temperature from the unsteady-state thermal
energy balance, cal/min)

T(I) — Tinitial + /t _(d Q/dt)removal + R VOlumebatch reactor(_AURx) dt

t=0 Ntotal(t)[cp,mixture(T’ X) - Rgas]
(time dependence of reactor temperature) (6-39)

PROBLEMS

6-1. One irreversible chemical reaction occurs in a constant-volume batch reac-
tor. The reaction is exothermic and a digital controller removes thermal
energy at an appropriate rate to maintain constant temperature throughout
the course of the reaction. Sketch the time dependence of the rate of thermal
energy removal, (d Q/dt)iemoval VS. time, for isothermal operation when the
rate law is described by:
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(a) First-order irreversible chemical kinetics, 8 = k;Ca.
(b) Zeroth-order irreversible chemical kinetics, 8 = kg # f(Ca).

6-2. (a) What equations must be solved to calculate the adiabatic temperature
change in a constant-volume batch reactor when five components par-
ticipate in three independent elementary reactions, as illustrated below?

A+2B«+«——D via k1 (T) and Keq.c(T)
A+D—E via k»(T)
D+E—F via k3(T)

All reactions occur on the same time scale, and the energetics of each
reaction are similar.

Answer: The unsteady-state macroscopic mass balance for each com-
ponent in a constant-volume batch reactor with multiple chemical re-
actions,

dN;
dt[ — V;UUBJ 1 S l S r (i.e., r = 5)

reduces to the batch reactor design equation in terms of molar densities
C;, where C; = N;/V:

dcC; .
dtl - ;”l’ji&j l<i=<r

These coupled ODEs describe the time dependence of molar density for
each component in the reactive mixture. Specifically, for the problem
of interest, the unsteady-state mass balances reduce to

dCa
dr
dCg
dr
dCp
dr
dCg
dr
dCr
dr

=R — K

= 2R,

=R — R, — R,

=R; — R,

=R,
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(b)

COUPLED HEAT AND MASS TRANSFER IN BATCH REACTORS

and the corresponding kinetic rate laws for the three chemical reac-
tions are

Cp
R, = k(T) | CA(Cp)? — 7}
1 1( )[ A(Cg) KeaclT)
By =k (T)CaCp
B3 = k3(T)CpCg

Since the reactor does not operate isothermally, these five coupled mass
balances must be solved in conjunction with the unsteady-state ther-
mal energy balance for an adiabatic reactor, where (d Q/dt)inpu = 0. If
pressure effects are negligible,

it — paV)—
dr P N,

d
( Q)
dt input

Coupled heat and mass transfer yield the following ODE for the time
dependence of reactor temperature after substitution for d N;/dt¢:

T.pall N(j#i) 41

d U

_VZR Zv” <8N

=V B;(-AUry);

dT
(Cp —paV)—
dt T,p.all N;(j#i)

where R; represents the kinetic rate law for the jth chemical reaction
in the mechanism, and (AUgy); is the internal energy change associated
with the jth step, as defined by

- aU
(AU, =) vij ( )
aN T,p.all N;(j#i)

Hence, six coupled ODEs (i.e., five mass balances and one thermal
energy balance) must be solved to calculate the adiabatic temperature
change in this mixture of five components.

Explain why kinetic and thermodynamic data are required for each
chemical reaction to obtain a quantitative estimate of the adiabatic tem-
perature change for a multiple-reaction scheme (in any type of reactor),
whereas thermodynamic data are sufficient to calculate A Tygiapagc if only
one reaction occurs.
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7

TOTAL PRESSURE METHOD
OF REACTION-RATE DATA ANALYSIS

7-1 ELEMENTARY REVERSIBLE GAS-PHASE REACTIONS
IN A CONSTANT-VOLUME FLASK

Consider the following generic reversible reaction that contains two reactants and
two products:

A+bB «—— ¢C+dD (7-1)

The four-component gas mixture behaves ideally at moderately low pressures,
and the sum of stoichiometric coefficients v; is not zero. Hence,

d Protal

T >0 if 5=zi:v,-=c+d—b—1>0 (7-2a)
d
%<0 if §<0 (7-2b)

where p 1S the total pressure within the flask (i.e., batch reactor). The objec-
tive of this chapter is to analyze the time dependence of total system pressure
and extract information about the kinetic rate constant for elementary reactions.
The unsteady-state macroscopic mass balance with reversible chemical reaction
is written for component i in a constant-volume flask. The accumulation rate
process is balanced by the rate of production due to one chemical reaction. In
units of moles per time,

dN;
dt

=V /RdVR = U,'iRVR (7—3)

139
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if the contents of the flask are well mixed such that the intrinsic rate law is
not a function of position. N; represents the moles of component i, v; is the
stoichiometric coefficient of component i, & represents the rate law, and Vy is
the volume of the flask. The ideal gas law is written as

Protal Vi = Ntota]RT (7‘4)
Prowal = Y pi (7-5)

i
Niw = Y _ Ni (7-6)

i

where p; is the partial pressure of component i in the mixture. The ideal gas law
is written individually for each component in the mixture:

piVr = N;RT (7-7)

which allows one to re-express the unsteady-state macroscopic mass balance in
terms of p;:
dN,' o VR dpl'
dt  RT dt

= UiJRVR (7'8)

Stoichiometry and the unsteady-state mass balance with chemical reaction yield
the following relation between component partial pressures:
dpi _dpa

—— = RTRdt = same for each component (7-9)
Vi VA

Integration of this stoichiometric relation (7-9) from ¢ = 0, where p; = p;(0), to
variable time ¢ and p;(¢) produces the following result when the stoichiometric
coefficient of reactant A is —1:

pi(t) = pi(0) +vi[pa(0) — pa(n)] (7-10)

Summation of (7-10) over all components in the mixture,

Y i)=Y pi(0) + [pa0) — pa(®] Y _ v (7-11)

provides a relation between total pressure and the partial pressure of reactant A:

Protat (1) = Proar (0) + 8[pa(0) — pa(r)] (7-12)

This equation is rearranged to calculate pa(0) — pa(¢) in terms of total pressure:

Protal (t) — Protal (O)

5 (7-13)

pa0) — pa(t) =
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which allows one to relate the partial pressure of any component in the mixture
to total pressure via (7-10) and (7-13):

pi(t) = pi(0) + %[ptotal(t ) = Protal (0)] (7-14)

Dalton’s law is used to calculate the initial partial pressure of component i in
terms of mole fraction y; and total pressure. Hence,

2i(0) = yi(0) poar (0) (7-15)

Equations (7-14) and (7-15) are useful because it is customary to express the
intrinsic rate law for gas-phase reactions in terms of partial pressures. For the
elementary reversible reaction given by (7-1):

by PEPD
R = kiorward, »(T) _ _PePp (7-16)
forward, p PAPB Kequil, p(T)

where kforward, p(T) i the temperature-dependent kinetic rate constant for the
forward reaction, with units of moles/volume-time-pressure!*”, and Kequit, p(T)
is the temperature-dependent equilibrium constant based on partial pressures, with
units of (pressure)’. Now, each partial pressure in the rate law can be expressed
in terms of total pressure via (7-14) and (7-15). This rate law is combined with
the unsteady-state mass balance,

?:wkw (7-17)

to analyze the time dependence of total pressure. This is achieved by summing
equation (7-17) over all components in the mixture. The result is

d Protal

=8RTR 7-18
1 (7-18)

Now it is possible to develop a strategy for analyzing the time dependence of
total pressure for gas-phase reactions when the sum of stoichiometric coefficients
does not vanish. Since the order of the forward and backward reactions is known
for elementary steps, linear least-squares analysis via the differential approach is
useful to determine the forward kinetic rate constant if the equilibrium constant
can be calculated from thermodynamics. The logical sequence of steps is as
follows:

Step 1. Measure total pressure vs. time and generate two columns of data, #; and
Protal, i -

Step 2. Numerically differentiate pio, VS. ¢ to generate d pioa/dt via an nth-
order-correct finite difference formula at each discrete data point.
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Step 3. The data should be matched to the following model with one independent
variable:

y= b'x+¢ (7-19)
with ¢/ = 0.
Step 4. The dependent variable at each time step, with units of pressure/time, is
dplotal
= — 7-20
Vi ( a ) (7-20)

A central difference expression is appropriate to calculate the time rate of change
of pwrr at most points in the data set, but a forward difference is required
for the initial point at ¢+ = 0, and a backward difference is necessary at the
last data point.

Step 5. The independent variable at each time step, with units of (pressure)!*?, is

L A N [pc) I [pp(t)]? )
xi = pa(t)[ps ()] Keoun o (T) (7-21)

i) = 1 (0) proa (0) + %[pml (1) = Pro ()] (7-22)

Step 6. Since the zeroth-order coefficient (i.e., the intercept ¢’) is forced to be
zero, the first-order coefficient from linear least-squares analysis is

Y — Zi Xi Vi
D @)’

which yields a forward kinetic rate constant with units of moles/volume-time-
(pressure)' 2. Details of the linear least-squares procedure are discussed below.

= 8 RT Ktorwara, » (T )[=](time-pressure”) ™! (7-23)

7-2 GENERALIZED LINEAR LEAST-SQUARES ANALYSIS
FOR A SECOND-ORDER POLYNOMIAL WITH ONE
INDEPENDENT VARIABLE

Experimental measurements yield N data pairs (i.e., x; and y;, 1 <i < N), and
it is desired to model the data with the following quadratic function:

y(x) =ax? +bx +c¢ (7-24)

The objective of this exercise is to use all the data pairs and determine the opti-
mum values of the parameters a, b, and c in the second-order polynomial given
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by (7-24). Even though the polynomial is not linear, the three parameters can
be calculated from simultaneous solution of three linear algebraic equations. The
nature of the model function determines whether linear or nonlinear analysis is
required to determine the parameters. Sometimes, simple algebraic manipulation
together with taking the logarithm of the entire equation reduces a nonlinear
problem to one that requires linear analysis. The quadratic function y(x) that
best matches the discrete data pairs is determined by comparing y(x;) and y;,
1 <i < N. Since differences between y(x;) and y; can be positive or negative,
a very poor match between model and data might yield small overall differences
when y(x;) — y; is summed over all data pairs if some of the differences cancel
fortuitously. To avoid this problem in the evaluation of any polynomial model,
the error is constructed as follows:

N N
Error(a, b, ¢) = Y [y(a) — yi* = Y laGe)> +bx; +c -y (725

i=1 i=1

so that all differences between model and data contribute to larger error. The same
final result could be achieved by summing the absolute value of the difference
between model and data over all points. If Error, as defined in (7-25), is plotted in
four-dimensional space as a function of the three parameters, the best combination
of a, b, and ¢ produces a global minimum on this multidimensional surface. This
condition is expressed mathematically as

dError N 5 5
( ) =23 )’laG)’ +bxi+c—y]l=0  (7-26a)
b,c

da P

(8Error> _ 2XN:xi[a(xi)2 +bxi+c—y]1=0 (7-26b)
b ). i

<8Error> =2 XNJ[a(Jc,-)2 +bxi+c—y]1=0 (7-26¢)
ac Jap

i=1

Minimization is assured because there is no upper bound to the error. These three
linear algebraic equations are rearranged into a canonical form that allows direct
application of Cramer’s rule to calculate a, b, and c:

N N N N

aY ) by () He) ()= (x)y (7-27a)
i=1 i=1 i=1 i=1
N N N N

a) (@) +bYy )P+ xi=) xiy (7-27b)
i=1 i=1 i=1 i=1

N N N N
aY () +bY xi+Y c=> v (7-27¢)
i=1 i=1 i=1 i=1
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The following summations over all of the x; —y; data pairs are defined to simplify
the final solution for the three parameters:

N N N N
Si=)x  S=yy.®) S=Yy® Si=)y ()
i=1 i=1 i=1 i=1

(7-28)

N N N
Ss=Y v = Se=y_ xy S7=) (x)’yi
i=1 i=1 i=1

If one chooses to exclude one or more data points from the analysis, the seven
summations defined above must be modified accordingly and N is reduced. Mul-
tivariable minimization of the error in equation (7-25) is accomplished by solving
the following coupled linear equations:

aSs +bS3 +¢S, =87 (7-29a)
aSs +bS> +¢S; = Ss (7-29b)
aS, +bS| +cN = S5 (7-29c¢)

The determinant of the coefficient matrix is calculated from the left side of (7-29):
det 1 = NS>Ss+ 1585 + 51583 — (852)% — N(83)% — S4(5))° (7-30)
Cramer’s rule yields the following solution for a, b, and c:

0= NS»S7 + 818385 + 518286 — S5(52)* — NS386 — S7(S51)?

7-31
det 1 ( @)
NS4S, 515,85 85,8385 — S6(85)2 — NS38; — 51 S48
b 456 + 815257 + 528385 — S6(S2) 357 15485 (731b)
det 1
828485 + 528386 + 515357 — $7(82)? — S5(S3)% — 15456
. — (7-31c)
e

There are many situations where a linear model is desired (i.e., y = bx + ¢). The
optimum values of the first-order coefficient b (i.e., slope) and the zeroth-order
coefficient ¢ (i.e., intercept) can be calculated from a subset of the information
provided above for a second-order polynomial model. It is not necessary to
minimize the error with respect to the second-order coefficient a. Furthermore,
a = 0 in the other two linear equations. Hence, equations (7-29) reduce to:

bS> +cSi = S (7-324)
bSi +cN = Ss (7-325b)

The determinant of the coefficient matrix is calculated from the left side of (7-32):

det2=NS, — (5))? (7-33)
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Cramer’s rule yields the following solution for b and c:

— NSs — 5155 (7-34a)
det 2

_ 5285 = Sid (7-34b)
det 2

If the linear polynomial has a known value of the intercept c, the linear least-
squares procedure identifies the best slope via minimization of the error with
respect to b. The value of b is obtained by solving the first of the two simultaneous
linear equations for b and c. Equations (7-32) reduce to:

bSy + ¢S =S¢ (7-35)

Hence,

i S6 — CS]
= S2

b (7-36)

where the known value of ¢ is used together with the appropriate summations to
calculate b.

PROBLEMS

7-1. The irreversible decomposition of phosphine follows first-order kinetics at
650°C in a closed vessel:

PH3(g) — 1P4(g) + 2Ha(g)

Calculate the time dependence of (a) the total pressure and (b) the partial
pressure of each component if the batch reactor is injected with 1 atm of
pure PH; at r = 0.

Answer: The unsteady-state macroscopic mass balance describes the time
dependence of total pressure in terms of the kinetic rate law, which is based
on the partial pressure of phosphine for first-order irreversible kinetics:

d 3
Proal =0RTR = _Rkaorward, p(T)pPH3
dt 4
where RT Kiorward, p (1) = Kforward, c (T') is a first-order kinetic rate con-
stant with dimensions of inverse time, and ppy, is the partial pressure of
phosphine. Stoichiometry and the unsteady-state mass balance with chem-

ical reaction for ideal gases allows one to relate ppp, () and pio(2) via
equations (7-14) and (7-15):

per; (1) = Yeu, (1 = 0) prota (t = 0) — 5[ Protat (1) — protar (t = 0)]
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Since the reactor is injected with pure phosphine, ypy,(t =0) =1 and

dptotal 3 4
= _kforward, C(T) ptotal(t = O) - g[plotal (t) - ptotal(t = O)]

dt 4

1
= Zkforward, c (M7 protal(t = 0) — 4 prorar ()]

Separation of variables yields

dptotal _ 1
7pt0tal(t = O) - 4ptotal(t) 4

kforward, C (T) dt

Integration from ¢ = 0 to variable time ¢ provides the desired expression
for the time dependence of total pressure:

! 7ptotal (t = 0) B 4ptota] (t) 1
1! = —kforw )t
" 3 Protal (f = 0) 4 for ard, ¢ (T')

1
Drotal (t) = Zptolal(t = 0){7 -3 eXp[_kforward, C(T)t]} (a)

The total pressure in the reactor asymptotically reaches % Protal (t = 0) after
very long reaction times. The time dependence of the partial pressure of
each component is obtained from stoichiometry and expression (a), which
is rearranged below:
Protal (1) = Protar(t = 0) = 3 protar(t = 0){1 — expl—kforwara, c (T)1]}
PH; : PPH; (t) = Ptotal(t = O) - %[plotal(t) - plotal(t = 0)]
PPH; (t) = ptotal(t = O) eXp[_kforward, C(T)t]

P, P, () = [ Prowl(t) — Protar(t = 0)]
pp, (1) = 1 prow(t = 0){1 — exp[—krorward, ¢ (T)t1}
H, : PH, (1) = 2[Protal (1) — Prota(t = 0)]

sz(Z) = %ptota](t = O){l - exp[_kforward,C(T)t]}

. Ammonia is produced from a stoichiometric feed of nitrogen and hydro-

gen via the following elementary reversible chemical reaction in the
gas phase:

Na(g) + 3Ha(g) «— 2NH3(g)
A constant-volume batch reactor operates at 800 K and reactants are

injected to a total initial pressure of 350 atm. Calculate the time dependence
of total pressure in the reactor.
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Answer: Let’s begin with the kinetic rate law in terms of partial pressures
and the temperature-dependent equilibrium constant from thermodynamics;

2

PN
B = korward, p(T) | PN, PR, — =
onvare. p 2 chuil,p(T)

The forward kinetic rate constant Kforward, p (1) exhibits Arrhenius tem-
perature dependence and has dimensions of moles/volume-time-atm*. The
equilibrium constant based on gas phase partial pressures has dimensions
of (atm)?, where § = —2. Since N, and H, are present in their standard
states, the enthalpy and free energy of formation for NHj3 at 298 K allow
one to construct the temperature dependence of Keqil, , as follows:

o B
Kequil, P(T) = Kstandard state XP <A + ?)

where T must be in Kelvin, and

ASI;X, 298 — AI_IROX, 298 T AGIOQX, 298
R 298R
AI_Ilgx, 298
R
AHg, 205 = 2AH7 1 ion i, (at 298 K) = 2(—11, 040 cal/g-mol)

A =

B=—

AGRy 208 = 2AG formation, na, (at 298 K) = 2(—=3976 cal/g-mol)

The appropriate bond energies that are consistent with these thermody-
namic data are

N=N(945 kJ/mol) ~ H—H(436 kJ/mol)  N—H(391 kJ/mol)

The unsteady-state macroscopic mass balance for a constant-volume batch
reactor describes the time rate of change of total pressure:

d Protal

=0RTR = —2RTR
dt

The partial pressure of each component in the kinetic rate law is evaluated
in terms of total pressure via stoichiometry;
Nitrogen (N3): PN (1) =y, (8 = 0) prowat (! = 0) + 3 [Protat (1) = Protar (0)]
Hydrogen (HZ): PH, (t) = YH, (t = 0)ptolal (t = 0) + %[ptotal (t) - ptotal(o)]

Ammonia (NH3):  pnu, (1) = ynu; (F = 0) prota(t = 0) — [Prota (1) — Prota (0)]
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7-3.

TOTAL PRESSURE METHOD OF REACTION-RATE DATA ANALYSIS
For a stoichiometric feed of reactants,
1 3
N, (E=0) =4 vy, =0) =3 e (1 =0)=0

Hence, one must solve the following ordinary differential equation for the
time dependence of total pressure:

d Protal
dt

2
PNu
= —2RT Kiorward, p(T) ™ Ko 1)
orward, p PN, P, Kequit, p(T)

subject to the initial condition that piy(f = 0) = 350 atm. If the gas
mixture does not behave ideally at this high pressure, it might seem
reasonable to replace partial pressures by fugacities in the kinetic rate
law. For example,

Ji, mixture = Yi®i Protal

where y; represents mole fraction and ¢; is the fugacity coefficient of
component { in the mixture at the prevailing temperature and pressure.
Critical constants are useful to evaluate ¢; for each component at 800 K
and 350 atm. This exercise is performed for pure-component fugacity coef-
ficients below to determine if non-ideal effects are important.

Gas TC (K) Tt pc (atm) Pr ¢pure comp.

H, 33.1 24.2 12.8 27.3 ~1.2
N, 125.9 6.4 335 10.4 ~1.2
NH; 405.4 2.0 111.5 3.1 0.95

Ideality seems like a reasonable assumption for this gas mixture at the
temperature and pressures of operation since each pure-component fugacity
coefficient is not much different from unity. Total pressure will decrease
below 350 atm during the course of the reaction because § = —2.

Simulate the time dependence of total pressure for the ammonia syn-
thesis described in Problem 7-2 at 400 K. The constant-volume batch
reactor is charged initially to a total pressure of 100 atm. The Arrhe-
nius forward kinetic rate constant exhibits a pre-exponential factor of
1 x 10° mol cm?-min-atm*. Since the strongly energetic nitrogen—nitrogen
triple bond (i.e., N=N) must be broken to produce NHj, the activation
energy for this reaction (i.e., 30 kcal/mol) is quite large.

(a) Predict the total pressure in the batch reactor and the fractional con-
version of N, to NHj after 2 h of operation.

(b) Predict the total pressure in atmospheres when equilibrium is achieved.
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(c) Identify two strategies to increase the equilibrium conversion of N,

to NHj.

The gas-phase production of methanol from carbon monoxide and hydro-
gen is carried out in a small constant-volume batch reactor under isothermal
conditions and the pilot-plant operator measures the total pressure within
the reactor vs. time for subsequent reaction-rate data analysis. A stoichio-
metric feed of carbon monoxide and hydrogen is introduced to the reactor
at time ¢ = 0, and the total pressure is 3 atm. Sketch the raw data as
total pressure vs. time. Be sure to indicate the appropriate equation that
describes the shape of the curve.

7-5. (a) We plan to apply the integral method of reaction-rate data analysis for

elementary reversible reactions. Neither you nor anyone else in your
company remembers how to integrate or differentiate, but I claim that
it is possible to prove whether

Ca®) + (1/2Kequirc) + ¥
Cao + (1/2Kequiic) + ¥
Cao + (1/2Kcquiic) — ¥

Ca(®) + (1/2Kequiic) — ¥

1 Cao
¥ = +
4K§quil C Kequil Cc

zwkforward, ct = In

+ In

represents the correct analytical solution to the following unsteady-state
macroscopic mass balance for reactant A in a constant-volume flask:

dCa Cp
——— = kforwar CaCp —
dt forwa d,C|: ACB Kequilc:|

The elementary reversible liquid-phase chemical reaction is
A+B<«——D

the initial molar density of reactant A is Cag, stoichiometric amounts
of A and B are introduced into the flask at # = 0, and Kequiic is the
equilibrium constant for the chemical reaction based on liquid-phase
molar densities. Hence, K.qiic has dimensions of inverse molar den-
sity. Is the analytical solution correct? Provide support for your answer.
Remember that the economy is strong and everyone in your company
is surfing the Internet to trade stocks during normal working hours.
Consequently, they don’t have time to review their math notes, which,
luckily, they didn’t discard after their course on ordinary differential
equations was completed. Hence, no one knows how to perform ana-
lytical integration of the unsteady-state macroscopic mass balance for
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a constant-volume batch reactor with reversible chemical kinetics. This
fact was obvious after you asked everyone about their math skills at
the company meeting yesterday.

(b) Your technician measures the molar density of reactant A vs. time for
the liquid-phase elementary reversible reaction described in part (a).
The equilibrium constant is calculated from thermodynamics. Use
methods (i) and (ii) below, and identify the independent variable x
and the dependent variable y from which linear least-squares analysis
can be implemented in the form y = ax + b, to calculate the second-
order forward kinetic rate constant from the first-order coefficient a
(i.e., the slope) in the model. Hint: In both cases, b = 0.

(i) Differential method of reaction-rate data analysis.
(ii) Integral method of reaction-rate data analysis.

You are applying linear least-squares analysis to a set of 20 data pairs.
The model is a linear first-order polynomial with slope » (i.e., the first-
order coefficient) and intercept ¢ (i.e., the zeroth-order coefficient). It is
necessary to force the intercept ¢ to be zero, analogous to some of your
laboratory calibration curves. Hence, ¢ = 0.

(a) Begin with the linear least-squares description (i.e., see equations 7-29)
for a generalized second-order polynomial (i.e., y = ax? + bx + )
and identify the equation that must be solved to calculate the first-order
coefficient b.

(b) Now calculate b from your equation in part (a) in terms of the appro-
priate summations that involve x;—y; data pairs.

. (@) Provide a detailed explanation of the linear least-squares analysis

(LLSA) procedure to calculate the kinetic rate constant k,(7) for a
stoichiometric feed of reactants A and B in a constant-volume batch
reactor if the rate law is

R =k, (T)CaCg
and the stoichiometrically balanced reaction is A+ B — C 4+ D.

(b) For the irreversible chemical reaction described in part (a), data are
available for the molar density of reactant A vs. time at two different
temperatures. Use one set of axes and sketch the molar density of
reactant A vs. time at higher temperature and lower temperature. Be
sure to label the two curves.

(¢) For the irreversible chemical reaction described in part (a), use one set
of axes and sketch the rate of depletion of reactant A vs. time at higher
temperature and lower temperature. Be sure to label the two curves.

Concentration—time data are available for an irreversible liquid-phase con-
stant-volume reaction in which the rate law R is a function of the molar
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density of reactants A and B. The differential method of data analysis
has been applied to determine the order of the reaction with respect to
each reactant. Using this information, the integral method of data analysis
generates the following model for the time dependence of the conversion
of key-limiting reactant A:

Cao — Cat) | 1

1) = =1-—
x() Cao 1 + k,Caot

By answering the questions below, describe a linear least-squares procedure
that will allow you to process the raw data (¢, Cp) and calculate the nth-
order kinetic rate constant k,,.

(a) Identify the independent data column.
(b) Identify the dependent data column.
(c) What type of polynomial should be used to analyze the data?

(d) How does one calculate the kinetic rate constant &, from the coeffi-
cients of the polynomial model?

. Describe the linear least-squares analysis (LLSA) procedure that allows

one to calculate the reaction order n from a set of discrete data points for
reaction half-time #;, vs. the initial concentration of reactant A, Cag. The
kinetics are irreversible and nth-order, and the rate law is only a function
of the molar density of reactant A. Answer this question by providing the
following information:

(a) Identify the independent variable, x;.
(b) Identify the dependent variable, y;.
(¢) What type of polynomial model should be used to analyze the data?

(d) How does one calculate the reaction order n from the parameters that
are obtained from linear least-squares analysis?

(e) For what value (or values) of the reaction order n is the reaction
half-time independent of the initial concentration of reactant A?

What method of reaction-rate data analysis is most appropriate to calculate
the order of the forward reaction via LLSA when the chemical reaction is
nonelementary and reversible, and the equilibrium constant is not infinitely
large? The constant-volume flask is charged initially with reactants A and
B only, not products C and D.

Fourth-order-correct finite-difference expressions are much more accurate
for calculating the rate of depletion of reactant A (i.e., —dCa/dt) in a
constant-volume flask via concentration—time data than are second-order-
correct formulas.
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(a) How many terms are required in the Taylor series prior to truncation
to develop finite-difference expressions that are fourth-order-correct?

(b) Athow many discrete points (¢, Cx) must the Taylor series be evaluated
to calculate all the unknowns (i.e., the coefficients) in the Taylor series
if the finite-difference expressions are fourth-order-correct?

(c) If the data are nonequispaced on the time axis, how many different val-
ues of Cx (at most) appear in the final fourth-order-correct expression
for the rate of depletion, —dCx/dt?

How many experimental data triplets (¢, Cs, Cg) are required to perform
LLSA of the initial rate of reaction at t+ = 0 via the differential method
in an isothermal constant-volume batch reactor if the following conditions
are satisfied simultaneously:

(1) The rate law is & = k,(T)(Ca0)*(Cpo)”.

(2) All of the summations in the linear least-squares calculations contain
10 terms.

(3) All data points are included in the analysis.

(4) The initial rate of depletion of reactant A at t = 0 is calculated numer-
ically via a second-order-correct finite-difference formula.



Transport Phenomena for Chemical Reactor Design. Laurence A. Belfiore
Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-20275-4

PART II

TRANSPORT PHENOMENA:
FUNDAMENTALS
AND APPLICATIONS

153



Transport Phenomena for Chemical Reactor Design. Laurence A. Belfiore
Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-20275-4

APPLICATIONS OF THE EQUATIONS
OF CHANGE IN FLUID DYNAMICS

Most flow problems in fluid dynamics involve a fluid in motion adjacent to a
stationary wall — the wall of a tube, for example — or a fluid that is set in motion
by a moving surface; this is the case in a viscosity-measuring device. In general,
the bulk fluid and the solid surface are moving at different relative speeds, and
this generates viscous stress at the interface. Macroscopic correlations in fluid
dynamics focus on the fluid—solid interface and calculate the force exerted by
the fluid on the solid, or vice versa, via the fluid velocity gradient at the wall.
These macroscopic momentum transport correlations contain the friction factor
and the Reynolds number. Hence, one calculates the Reynolds number from the
characteristics of the flow problem and uses these dimensionless correlations to
determine the value of the friction factor. Frictional energy losses in straight
sections of a tube are estimated from the friction factor. The size of a pump
required to offset all the dissipative processes that reduce fluid pressure can
be estimated from the non-ideal macroscopic mechanical energy balance (i.e.,
Bernoulli equation) that incorporates friction loss via the friction factor. In some
cases, macroscopic momentum transfer correlations relate torque and angular
velocity for the viscosity-measuring devices, allowing one to calculate the vis-
cosities of Newtonian or non-Newtonian fluids from measurements of torque vs.
angular velocity.

8-1 IMPORTANT VARIABLES

8-1.1 Velocity Vector

The fluid velocity vector is one of the most important variables in fluid dynam-
ics. A vector can be described as a quantity that has magnitude and direction.
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A more sophisticated description identifies a vector as a mathematical entity that
associates a scalar with each coordinate direction in a particular coordinate sys-
tem. Hence, there are three scalar velocity components that constitute the velocity
vector, and they are typically written in the following manner in three different
coordinate systems:

Uy vy U in rectangular Cartesian coordinates
v Vg U in cylindrical coordinates
v Vg Uy in spherical coordinates

Each flow problem is solved in only one coordinate system (i.e., the coordinate
system that best exploits the symmetry of the macroscopic boundaries).

8-1.2 Molecular Momentum Flux

Viscous stress is an extremely important variable, and this quantity is identified
by the Greek letter 7. Viscous stress represents molecular transport of momentum,
analogous to heat conduction and diffusion. All molecular transport mechanisms
correspond to irreversible processes that generate entropy under realistic condi-
tions. When fluids obey Newton’s law of viscosity, there is a linear relation
between viscous stress and velocity gradients. All fluids do not obey New-
ton’s law of viscosity, but almost all gases and low-molecular-weight liquids
are Newtonian.

8-1.3 Pressure

Fluid pressure is the third important variable, and it is designated by the letter
p. Force balances contain fluid pressure because pressure forces are exerted
across surfaces, and there are, at most, six surfaces that enclose fluid completely
within a control volume. Pressure forces are operative under hydrodynamic and
hydrostatic conditions. Force balances in this chapter typically apply to fluids in
motion — hence, the name fluid dynamics. However, these balances are generic
enough to describe the situation when fluids are at rest. In other words, the force
balances will be applicable to describe hydrostatics when the velocity vector and
T vanish.

8-2 PHYSICAL PROPERTIES IN FLUID DYNAMICS

Physical properties of a fluid can be described within the context of transport
analogies for all the transport processes. Numerical solutions to fluid dynam-
ics problems require that the viscosity p and the density p are known. Under
isothermal conditions, if the fluid is Newtonian and incompressible, both of these
physical properties are constants that depend only on the fluid, not the flow con-
ditions. The viscosity w is the molecular transport property that appears in the
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linear constitutive relation that equates the molecular transport of momentum
with velocity gradients. The ratio of viscosity to density is called the kinematic
viscosity, v = u/p, or momentum diffusivity, with units of (length)?/time.

8-2.1 Physical Properties for Heat Transfer

Numerical solutions to simple thermal energy transport problems in the absence
of radiative mechanisms require that the viscosity u, density p, specific heat C,,
and thermal conductivity k are known. Fourier’s law of heat conduction states
that the thermal conductivity is constant and independent of position for simple
isotropic fluids. Hence, thermal conductivity is the molecular transport property
that appears in the linear law that expresses molecular transport of thermal energy
in terms of temperature gradients. The thermal diffusivity « is constructed from
the ratio of k and pC,. Hence, o = k/pC, characterizes diffusion of thermal
energy and has units of length?/time.

8-2.2 Physical Properties for Mass Transfer

The binary molecular diffusion coefficient, Bg, has units of 1ength2/time and
characterizes the microscopic motion of species A in solvent B, for example.
Bap is also the molecular transport property that appears in the linear law that
relates diffusional fluxes and concentration gradients. In this respect, the same
quantity, Bap, represents a molecular transport property for mass transfer and a
diffusion coefficient. This is not the case for the other two transport processes.

8-2.3 Transport Analogies Based on Physical Properties

It is instructive to construct the ratio of the diffusivities for thermal energy trans-
fer and mass transfer with respect to momentum transport. In doing so, one
generates dimensionless numbers that appear in correlations for heat and mass
transfer coefficients. The ratio of momentum diffusivity v to thermal diffusivity
« is equivalent to the Prandtl number, Pr = v/a = uC,/k. The Prandtl number
is simply a ratio of physical properties of a fluid. However, a very large value of
the Prandtl number means that diffusion of thermal energy away from a hot sur-
face, for example, is poor relative to the corresponding diffusion of momentum.
This implies that the thermal boundary layer which contains all the temperature
gradients will remain close to the surface when the fluid flow problem is fully
developed. Convective transport parallel to a hot surface maintains thin thermal
boundary layers by sweeping away any thermal energy that diffuses too far from
the surface. Fully developed laminar flow in a straight tube of circular cross
section means that the momentum boundary layer (containing all of the velocity
gradients) next to the surface on one side of the tube has grown large enough
to intersect the boundary layer from the surface on the other side of the tube. It
should be no surprise that these boundary layers will meet in the center of the
tube when fully developed flow is attained, and the thickness of the momentum
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boundary layer is actually the radius of the tube. Hence, a very large Prandtl
number means qualitatively that under fully developed laminar flow conditions
when the momentum boundary layer has filled the cross section of the tube, the
thermal energy or temperature boundary layer hugs the wall. As a consequence,
high rates of heat transfer are prevalent because transport normal to a surface
is inversely proportional to the thickness of the boundary layer adjacent to the
surface in question. This boundary layer contains all the gradients that generate
molecular transport.

Analogously, the ratio of momentum diffusivity v to mass diffusivity Bap is
equivalent to the Schmidt number, Sc = v/Bap = 1/ pBap. It follows directly
from the discussion in the preceding paragraph that for very large values of
the Schmidt number, mass transfer boundary layers remain close to the adja-
cent surface and high rates of mass transfer are obtained. Hence, the Schmidt
number is the mass transfer analog of the Prandtl number. The momentum trans-
port analog of the Schmidt or Prandtl numbers is 1, because one constructs
the ratio of momentum diffusivity to momentum diffusivity. The consequence
of this statement is that if a heat transfer correlation for the Nusselt number,
which contains the Prandtl number, can be applied to an analogous momentum
transport problem, then the Prandtl number should be replaced by 1 to cal-
culate the momentum transfer coefficient (i.e., 0(V)ayerage f/2, Where f is the
friction factor) via the dimensionless correlation for % f-Re, where Re is the
Reynolds number. Of course, if a heat transfer problem is completely analogous
to a posed mass transfer problem, then the Prandtl number in the dimension-
less Nusselt number correlation should be replaced by the Schmidt number to
calculate the mass transfer coefficient via the dimensionless correlation for the
Sherwood number.

8-3 FUNDAMENTAL BALANCE IN MOMENTUM TRANSPORT

In this section, concepts are discussed that one must understand to construct
force balances based on momentum transfer rate processes. The fluid, the specific
problem, and the coordinate system are generic at this stage of the development.
If the discussion that follows seems quite vague, then perhaps it will become more
concrete when specific problems are addressed. The best approach at present is
to state the force balance in words and then focus on each type of momentum
transfer rate process separately.

The strategy for solving fluid dynamics problems begins by putting a control
volume within the fluid that matches the symmetry of the macroscopic bound-
aries, and balancing the forces that act on the system. The system is defined as
the fluid that is contained within the control volume V, which is completely sur-
rounded by surface S. Since a force is synonymous with the time rate of change
of momentum as prescribed by Newton’s laws of motion, the terms in the force
balance are best viewed as momentum rate processes. The force balance for an
open system is stated without proof as 1 =2+ 3 + 4 + 5, where
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[

is the rate of accumulation of fluid momentum within V

2 represents forces acting on the system across S due to convective momentum
flux, or bulk fluid flow

3 represents viscous forces acting on the system across S due to molecular
momentum transport

4 represents forces acting on the system across S due to fluid pressure

5 is the sum of all external forces that act on the fluid within V

It should be emphasized that force is a vector quantity and, hence, the force
balance described qualitatively above is a vector equation. A vector equation
implies that three scalar equations must be satisfied. This is a consequence of the
fact that if two vectors are equal, then it must be true that they have the same
x-component, the same y-component, and the same z-component, for example,
in rectangular coordinates.

8-3.1 Accumulation Rate Process (i.e., 1)

It is necessary to associate mathematical quantities with each type of momentum
transfer rate process that is contained in the vector force balance. The fluid
momentum vector is expressed as pv, which is equivalent to the overall mass
flux vector. This is actually the momentum per unit volume of fluid because mass
is replaced by density in the vectorial representation of fluid momentum. Mass is
an extrinsic property that is typically a linear function of the size of the system.
In this respect, mv is a fluid momentum vector that changes magnitude when the
mass of the system increases or decreases. This change in fluid momentum is
not as important as the change that occurs when the velocity vector is affected.
On the other hand, fluid density is an intrinsic property, which means that it is
independent of the size of the system. Hence, pv is the momentum vector per unit
volume of fluid that is not affected when the system mass increases or decreases.
The total fluid momentum within an arbitrarily chosen control volume V is

/V,ovdV (8-1)

The rate of accumulation of fluid momentum within V involves the use of a
total time derivative to detect changes in fluid momentum during a period of
observation that is consistent with the time frame over which the solution to a
specific problem is required. The mathematical representation of the accumulation
term 1 with units of momentum per time (hence, rate of momentum) is

., / pPY vdV = / ﬁ dv + / pV(Vsurface ° n)dS (8'2)
S

where n is an outward-directed unit normal vector on the surface S that com-
pletely surrounds the control volume V, and vgyf.ce 1S the local velocity of the sur-
face. The previous expression represents the Leibnitz formula for differentiating
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TABLE 8-1 Appropriate Time Derivative for the Accumulation Rate Process in the
Equation of Motion”

Control Volume Vurface Time Derivative
Stationary, V # f (1) 0 Partial, 3(pv)/dt
MOVing’ V(Z) Vsurface 7& Vfiuid TOta], d(,OV)/dl

Viiuid =V Substantial, D(pv)/Dt

“The surface that completely surrounds the system within the control volume exhibits velocity

Vsurface -

a three-dimensional integral, and it is also known as the Reynolds transport the-
orem. If the control volume is stationary, or fixed in space, then the spatial
coordinates of V are not functions of time and vg,f.ce = 0. Hence, the total time
derivative operator can be replaced by a partial time derivative:

if pvdV:/ 9PV 4y (8-3)
dt Jy v

ot

It should be obvious that this term is volumetric, which means that the accumula-
tion rate process applies to the entire system contained within the control volume.
The stipulation that the control volume be stationary simplifies the mathematics
to some extent, but the final form of the force balance does not depend on details
pertaining to the movement of the control volume. Possibilities for this motion
and the appropriate time derivatives are summarized in Table 8-1. The substantial
derivative operator

D(pv)  9(pv)
Dt ot

+v-Vpv (8-4)

is required if the control volume moves with a velocity at every point on its
surface that matches the local fluid velocity.

8-3.2 Normal Forces and Shear Forces Due to Momentum Flux

Terms identified by 2, 3, and 4 in the force balance are unique because they
are surface related and act across the surface S that bounds fluid within the
control volume V. Surface related is a key terms here; it indicates that flux
is operative. The units of momentum flux are momentum per area per time.
There are three contributions to momentum flux that have units of momentum
per area per time. Since the units of momentum flux are the same as force per
unit area, one of the flux mechanisms is pressure. Recall that pressure is a scalar
quantity, which means that there is no directional nature to fluid pressure. In other
words, fluid pressure acts similarly in all coordinate directions. However, pressure
forces are operative in a fluid, and they act perpendicular to any surface that
contacts the fluid. These forces act along the direction of the unit normal vector
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that characterizes the orientation of the surface, and for this reason, pressure
forces are classified as normal forces. In general, a normal force is one that acts
perpendicular to the surface across which the force is transmitted. Choose any
well-defined simple surface in one of the coordinate systems mentioned above
(rectangular, cylindrical, or spherical) and identify two orthogonal coordinate
directions within the surface and one coordinate that is normal to the surface.
Consider the walls, floor, or ceiling of a room in rectangular coordinates, for
example. An alternative viewpoint is the following. As one moves on a simple
surface, two coordinates change and one remains fixed. This simple surface is
typically defined as one with a constant value of the coordinate that remains
fixed in the surface. The coordinate that remains fixed is also in the direction
of the unit normal vector. In summary, forces due to momentum flux act across
surfaces and can be classified as normal forces or shear forces. Normal forces act
perpendicular to a surface along the unit normal vector. Shear forces act parallel
to the surface along one of the two coordinate directions that define the surface.
Hence, momentum flux initially identifies a simple surface with a unit normal
vector that is coincident with one of the unit vectors of an orthogonal coordinate
system. Then momentum flux identifies a vector force per unit area that acts
across this surface, and this vector force has three scalar components. One of
these scalar force components acts colinear with the unit normal vector to the
surface, and this force is designated as a normal force. The other two scalar force
components act along coordinate directions within the surface itself, and these
forces are called shear forces because the surface area across which the force
acts is parallel to the direction of the force.

Forces Due to Bulk Fluid Flow (i.e., 2). Bulk fluid flow contributes signifi-
cantly to momentum flux. This convective mechanism is designated pvv. The
mathematical form of convective momentum flux is understood best by initially
constructing the total mass flux vector for a pure or multicomponent fluid and
then generating the product of mass flux with momentum per unit mass. Mass
flux is a vector quantity that has units of mass per area per time, and pv is
the mathematical representation of the total mass flux vector. Of course, pv also
represents the momentum vector per unit volume of fluid as introduced above for
the accumulation rate process. The total mass flux vector represents an impor-
tant contribution to the balance on overall fluid mass. If one accepts pv as the
vector representation of convective flux of overall fluid mass, it is possible to
construct the product of pv with the momentum vector per unit mass of fluid,
the latter of which is analogous to the velocity vector v. This product of pv and
v is not the scalar (“dot”) product or the vector (“cross”) product from vector
calculus. Convective momentum flux is a quantity that generates nine scalars.
This should be obvious if one chooses the rectangular coordinate system for
illustration and multiplies the three scalar components of the mass flux vector
(pvx, pvy, pv;) by the three scalar components of the velocity vector (vy, vy, v;).
Using rigorous mathematical terminology, convective momentum flux pvv is a
second-rank tensor that associates a vector with each coordinate direction. Since
there are three orthogonal coordinate directions identified by the unit vectors of
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a coordinate system, pvv identifies a vector with each of the three coordinate
directions. Recall that a vector associates a scalar with each coordinate direction.
Hence, there are nine scalars that one can generate from three distinct vectors, and
these nine scalars constitute the state of a second-rank tensor such as convective
momentum flux. It is instructive to write all nine scalars of pvv and comment
about the subscripts on the scalar velocity components. Eight of the nine scalars
of pvv are identically zero for a simple one-dimensional flow problem when the
velocity vector is given by

vV =0,vy +8,(0) +6,(0) (8-5)

If fluid motion is restricted to the x direction in rectangular coordinates as illus-
trated above, then the only nonvanishing scalar of convective momentum flux
is pv,vy, which has units of momentum per time per area or force per unit
area. Hence, pvv contains forces per unit area that are transmitted across the
surfaces that bound fluid within the control volume, and terms of this nature due
to convection motion of a fluid must be included in the force balance. One must
construct the product of each of the nine scalars generated from this second-rank
tensor with the surface area across which the force (or stress) is transmitted.
Information about these surfaces and the coordinate direction in which the force
acts is contained in the subscripts of the velocity components. For the most gen-
eral type of fluid flow in rectangular coordinates, the nine scalars that one can
generate from convective momentum flux are

PUx Ux PUxVy PUxV;
PV Uy PV PV, (8-6)
PV Vx PV Vy PV,

It should be obvious that these nine scalars for convective momentum flux fit
nicely in a 3 x 3 matrix. All second-rank tensors generate nine scalars, and it
is acceptable to represent the tensor by the matrix of scalars. If the matrix is
symmetric, then the tensor is classified as a symmetric tensor. This is true for
convective momentum flux because the product of two velocity components v;v;
does not change if the second component is written first. Another positive test
for symmetry is obtained by interchanging the rows and columns of the 3 x 3
matrix to generate a second matrix that is indistinguishable from the original
matrix. Notice that the matrix components on the main diagonal from upper left
to lower right have the same two subscripts and can be written in general as
o (v;)?. These forces satisfy the requirement for normal forces. Each acts in the
ith coordinate direction (where i = x, y, or z) and the unit normal vector to
the surface across which the force is transmitted is also in the ith direction. In
summary, when momentum flux is expressed in matrix form, the main-diagonal
entries represent forces per unit area that act along the direction of the normal
vector to the surface across which the force is transmitted. The off-diagonal
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elements represent shearing forces because these forces act in one of the two
coordinate directions that define the surface across which the force is transmitted.

As an illustrative example, focus on the element in the first row and second
column, pv,v,, for the matrix representation of the convective momentum flux
tensor. The subscript x on the first velocity component indicates that pv,v, is
a force per unit area acting across a simple surface oriented with a unit normal
vector in the *x direction. The subscript y on the second velocity component
reveals that this force acts in the y direction. If we perform this analysis for all
nine components in the matrix (8-6) the three entries in the first row represent
x, y, and z components, respectively, of the vector force per unit area that
is transmitted across the simple surface defined by a constant value of the x
coordinate, which means that the unit normal vector to the surface is colinear
with the x direction. In vector-tensor notation, this is

n-pvv = pu,v n=_4, (8-7)

Similarly, the three entries in the second row of the matrix (8-6) represent x, y,
and z components, respectively, of the vector force per unit area that is transmitted
across the simple surface defined by a constant value of the y coordinate, which
means that the unit normal vector to the surface is colinear with the y direction.
This information can be condensed into vector-tensor notation as

n-.pvv = pu,v n=74, (8-8)

Finally, the three entries in the third row of the matrix (8-6) represent x, y, and
z components, respectively, of the vector force per unit area that is transmitted
across the simple surface defined by a constant value of the z coordinate, which
means that the unit normal vector to the surface is colinear with the z direction.
This information is equivalent to

n-.pvv = pu,v n=>,; (8-9)

These vector forces per unit area are obtained by taking the dot product of a
unit normal vector with the second-rank tensor due to convective momentum flux.
Each force is transmitted across the surface in the direction of n. If n represents
an outward-directed unit normal vector on each differential element of surface
d S that surrounds fluid within the control volume, then the vector force acting
on the system due to convective momentum flux is

/(—n - pvv)dS (8-10)
N

because it is desired to express the force transmitted in the direction of —n.

Forces Due to Viscous Momentum Flux (i.e., 3). A molecular momentum flux
mechanism exists which relates viscous stress to linear combinations of veloc-
ity gradients via Newton’s law of viscosity if the fluid is Newtonian. Viscous
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momentum flux 7 is also a second-rank tensor that identifies a vector with each
coordinate direction. In any orthogonal coordinate system,

=Y &7 (8-11)

where t; is a vector viscous force per unit area that acts across a simple surface
with unit normal vector in the ith coordinate direction. Since 7; is a vector, it
can be expanded in summation notation such that 7;; represents the jth scalar
component of this vector. Hence,

T; :Z(Sj‘cij (8'12)
J

Expressions (8-11) and (8-12) can be combined to illustrate how a second-rank
tensor such as 7, associates a scalar with each ordered pair of coordinate direc-
tions, 8;8;:

T=Y 88T (8-13)
ij

where 7;; is the jth scalar component of a vector viscous force per unit area
that acts across a simple surface with unit normal vector in the ith coordinate
direction. Hence, nine scalars (i.e., 7;;) are required to describe the complete
state of viscous stress in a fluid. These forces, or stresses, that arise from 7 are
not due to inertia or bulk fluid motion like those that are generated from pvv,
but they are viewed best as frictional forces that arise when fluid parcels on
adjacent streamlines slide past one another because they are moving at different
relative speeds. A simple analogy of the shearing forces generated by viscous
momentum flux is the action that one performs with a piece of sandpaper to
make a wood surface smooth. The wood surface is analogous to the wall of a
tube, for example, and the motion of the sandpaper is representative of the fluid
layers that are adjacent to the wall. The surface forces under consideration def-
initely meet the requirements of shearing forces because the surface is oriented
parallel to the direction of fluid motion, the latter of which coincides with the
direction of the force. In polymer processing operations, if the fluid viscosity is
large enough and the flow is fast enough, then thermal energy will be gener-
ated by frictional shear at the interface between the fluid and the wall. This is
analogous to the fact that a wood surface is slightly warmer after it is sanded,
and the surface temperature is higher when the sanding is performed more vig-
orously. As illustrated in (8-14), the matrix representation of viscous momentum
flux t is generated by assigning two subscripts to the letter t to facilitate the
row and column for each entry. Unlike the convective momentum flux tensor
in (8-6) where a single subscript was assigned to each velocity component in
the product pvv, now it is necessary to put both subscripts on t. One should
analyze both subscripts on 7 in the same manner that pv;v; was analyzed above.
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In rectangular coordinates, the matrix representation for viscous momentum flux
is written as

Txx Txy Txz
Tyx Tyy Ty; (8-14)
Tzx Tzy Tzz

with 7;; = 7j;. The interpretation of these nine scalars follows directly from the
discussion of the nine scalars that are generated by pvv. The only difference
is that the forces result from a molecular mechanism that is analogous to heat
conduction and mass diffusion rather than bulk fluid motion. For example, the
second-row of scalars in (8-14) represents x, y, and z components, respectively,
of the vector viscous force per unit area that is transmitted across the simple
surface defined by a constant value of y, which means that the unit normal
vector to the surface is colinear with the y direction. In vector-tensor notation,
this is equivalent to

n-t=n-» Y §8T; =) &1,=1, n=54 (8-15)
i J

In other words, n - T represents a vector viscous force per unit area that acts across
a surface with unit normal vector n, and the force is transmitted in the direc-
tion of n. Hence, if n is the outward-directed unit normal vector that emanates
from each differential element of surface d S that surrounds fluid within V, then
the vector viscous force acting on the system (i.e., transmitted in the direction
of —n) is

/ (-n-1)dS (8-16)
S

Normal Forces Due to Pressure Stress (i.e., 4). Using the formalism described
in the preceding two sections, it is also possible to represent the pressure contri-
bution to momentum flux in matrix notation. However in this case, all the entries
have the same magnitude (i.e., p) and they lie on the main diagonal from upper
left to lower right. There are no off-diagonal components because fluid pressure
generates surface forces that act in the direction of the unit normal vector to
the surface across which the force or stress is transmitted —they are all nor-
mal forces. In each coordinate system, the matrix representation of the pressure
contribution to momentum flux can be written in the following form:

0 p 0 (8-17)
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In vector-tensor notation, pressure stress is written as a second-rank tensor as
Py D 88y =p) 8 (8-18)
i i

where §;8; is an ordered pair of unit vectors, better known as a unit dyad or the
dyadic product of §; and §;, and §;; is the Kronecker delta, which has a value of
unity when i = j and zero when i # j. Pressure forces that act on the system
across surface S with outward-directed unit normal vector n are expressed in
vector-tensor notation as

/ —n-pZZ@,-aja,-, dS:/(—n.pz(siai)dS:f(—np)ds
S ] j S ] S
/ (8-19)

The vector-tensor algebra in (8-19) is analogous to multiplying a 1 x 3 row
matrix for n by a 3 x 3 identity matrix for the unit tensor, defined by >, §;8;. If
multiplication is allowed, then the product of any matrix with the identity matrix
yields the original matrix.

Summary of Forces Due to Total Momentum Flux (i.e., 2, 3, and 4). In the pre-
ceding three sections, a total of 21 scalar quantities has been identified; nine from
pvv, nine from t, and three from the pressure contribution to momentum flux.
They represent all the possible surface force components that can be generated
from the total momentum flux tensor. When each of these scalars is multiplied
by the surface area across which the stress acts, a quantity with units of momen-
tum per time is obtained. If n represents the outward-directed unit normal vector
at every point on surface S that encloses the system within an arbitrary control
volume V, then the total force acting on the system across S (i.e., in the direction
of —n) due to total momentum flux is given by

/ |:—n- <pvv+ T +p28i8,-)i| ds = f[—n- (pvv+ 1) —npldS (8-20)
s ; s

The 21 scalar surface forces due to total momentum flux are distributed equally
among the three scalar balances that constitute the total vector force balance.

8-3.3 Momentum Rate Processes Due to External Body Forces (i.e., 5)

All terms in the momentum balance have units of momentum per unit time,
which is synonymous with the units of force. In this respect, it is necessary to
account for external forces (i.e., sources) that act on the fluid within the control
volume. In general, these forces are not surface related. They are called body
forces because they act volumetrically like the accumulation rate process, which
means that each fluid parcel within the system is affected by a body force. The
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primary body force of interest is gravity. The external vector force due to gravity
is written intrinsically via the fluid density in the following manner;

/ pgdV (8-21)
1%

where g is the gravitational acceleration vector. The fluid density is employed
instead of the total fluid mass within the system to ensure that the gravitational
force does not have to be modified if the mass or size of the system changes.
It is true that the size of the control volume V could change in response to an
increase or decrease in system mass at constant density. However, one of the last
steps in the development of all microscopic balances is division by the control
volume, which generates a completely intrinsic equation that is independent of
system size or mass.

8-3.4 Other External Forces

There are other types of external body forces in addition to gravity that should
be included in a compete study of fluid dynamics. For example, fluid particles
that have permanent electric dipoles will experience body forces in the presence
of an electric field, and particles with magnetic moments experience forces and
torques due to magnetic fields. These forces are important and must be con-
sidered in a study of ferrohydrodynamics and magnetohydrodynamics. Unlike
gravity forces, electric and magnetic fields exert forces that are particle specific.
Unfortunately, fluid flow in the presence of electric and magnetic fields is rarely
covered in undergraduate and graduate courses because the complexity of the
problems increases several fold, limiting discussion to the simplest examples
for which exact solutions require the use of advanced mathematical techniques.
Even though surface tension forces cannot be classified as body forces (i.e., they
should be accounted for in the boundary conditions), they play an important role
in the operation of viscosity-measuring devices such as parallel-plate and cone-
and-plate viscometers, where a thin film of fluid is placed between two closely
spaced horizontal surfaces. The lower surface is stationary and the upper one
rotates at constant angular velocity. In the absence of surface tension, the test
fluid would spread and completely wet the solid surfaces, in response to rota-
tion which generates centrifugal forces. Then the fluid would “fall off the table”
since there are no restraining walls. Of course, surface tension plays the role of
restraining walls and keeps the fluid from exiting the viscometer if the rotational
speeds are slow enough.

8-4 EQUATION OF MOTION

8-4.1 Generalized Vector-Tensor Derivation of the Equation of Motion

A stationary control volume V is chosen arbitrarily within the fluid medium and
one applies the force balance described above, where n is the outward-directed
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unit normal vector on the surface S which completely surrounds the fluid in V.
In simple terms, the force balance states that the time rate of change of fluid
momentum must be balanced by all surface-related and body forces acting on
the system. Hence, Newton’s law for fluid dynamics is written as follows;

rate of accumulation of fluid momentum in V % /V pvdV
= convective forces acting on fluid in V /; (—nm - pvv)dS
+ viscous forces acting on fluid in V /;(—n -1)dS
+ pressure forces acting on fluid in V /S (—np)dS

+ external body forces acting on fluid in V / pgdV
v

The total time derivative in the accumulation rate process can be replaced by the
partial time derivative because the control volume is stationary and Vgyfaee = 0.
Furthermore, it is acceptable to reverse the order of integration with respect to
V and partial differentiation with respect to time because the coordinates of V
are not functions of time. Gauss’s law transforms surface integrals to volume
integrals as follows:

Convective forces acting on fluid in V: / (—m-pvv)dS = / (=V.pvw)dV
S 1%

Viscous forces acting on fluid in V: /(—n -7)dS = / (=V.1)dV
S 1%

Pressure forces acting on fluid in V: /(—np) ds = / (=Vp)dv
s 1%

Now, all five terms in the vector force balance can be written volumetrically and
combined into one volume integral:

d
/|: (;;V)+V-pvv+V-r+Vp—pg}dV=O (8-22)
v

If one chooses a different control volume within the fluid medium and performs
a force balance, the same integral expression is obtained because the original
control volume was chosen arbitrarily. However, different limits of integration
are needed. There is only one way that (8-22) can be satisfied with several

different choices for the integration limits —the integrand must vanish. Hence,
the microscopic force balance at the continuum level is

a(pv)
ot

=—-V.pvw—-V.1-Vp+pg (8-23)
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In fluid dynamics this is known as the equation of motion and applies to all types
of fluids in motion or at rest. The only restriction is that gravity represents the
external force field for hydrodynamics or hydrostatics. The hydrostatic equation
(i.e., Vp = pg) is obtained by ignoring all terms that contain v and t. Each term
has units of force per unit volume.

8-4.2 Vector-Tensor Manipulation of the Accumulation Rate Process and
Forces Due to Convective Momentum Flux

The product rule of partial differentiation allows one to expand the accumulation
term on the left side of the equation of motion:

a(pv) av ap

= ,0 —_— V—

ot at at

(8-24)

Next, a vector-tensor identity is employed to expand the convective momentum
flux term in (8-23)

V-.pvw=pv-Vv+vVvV.pv (8-25)

This identity is verified by employing summation notation for v and the del
operator V in rectangular coordinates, because unit vectors d,, &,, and &, are
not functions of position. This strategy applies to all vector-tensor identities
because all unit vectors in rectangular coordinates can be moved to the left of
the derivative operators:

V= Za,vj (8-264a)
J

a
V= Zaiaxi
i

(8-26b)

where

X1 =X X2 =Yy X3 =2

1. Express V : pvv in summation notation:
0
V-pVV=Xi:5i8—m-p2j:8jvjzk:5kvk (8-27)

2. Maintain the order of all unit vectors with respect to the - and move them
to the far left side of the summations. Also, maintain the order of all scalars
with respect to spatial derivative operators:

9
Vepw=> (5 -5j)3kapv,vk (8-28)
1

ijk
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3. The dot operation contracts two unit vectors that are closest to the -. Fur-
thermore,

8 +8; =4 (Kronecker delta) (8-29)

There are 27 terms in the sum, but each term vanishes unless i = j.
Whenever a Kronecker delta is present and summation occurs over both
indicies, equate both indicies and remove the summation over one of the
indicies. Hence,

3
Vepw=>" 8"? OV Vg (8-30)
ik Xi

4. Apply the product rule of differentiation to the scalars:

0 0
V.pvv=28k |:Z <pvi$vk+vkapvi):| (8-31)
k i ! !

5. Add the tensorial rank of each cofactor and subtract 2 for the dot operation.
Scalars are zeroth-rank tensors and vectors are first-rank tensors. Since the
del operator is a vector and convective momentum flux is a second-rank
tensor, V - pvv is a vector. The kth component of V - pvv is

B] B
V. = E ;— —pv; 8-32
(V- pvv)i (pv ox, v + vk ox, oY ) (3-32)

6. If a summation is performed over the components of two adjacent vectors
or tensors, then the - should be placed between these two quantities. In
other words,

d
(pv - Vv = Z pUIG U (8-33a)

0
(VV - pV); = Z Al (8-33b)

Even though this vector-tensor identity was verified using summation notation
in rectangular coordinates, it is valid in any coordinate system. It is extremely
tedious to verify vector-tensor identities that involve the del operator in curvilin-
ear coordinate systems because the unit vectors exhibit spatial dependence. Now
it is possible to combine terms in the equation of motion due to the accumulation
rate process and convective momentum flux. Equations (8-24) and (8-25) yield:

a(pv) av ap
V. = p— -
Jat + PV =0 ot Ty Jat

0 0
=p(a—:+V-Vv>+V<a—f+V-pv> (8-34)

4+ pv-Vv4+vVV.pv
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where the terms in the second set of parentheses on the right-hand side of (8-34)
cancel via the microscopic form of the overall mass balance for pure or multi-
component fluids (see Problem 8-1). If there are no sources or sinks of overall
fluid mass, then this generalized form of the equation of continuity,

ap
5 TV pv=0 (8-35)

is employed to simplify the equation of motion without introducing any additional
assumptions. Hence, equation (8-23) reduces to:

(3V+ V) bv_ v Vp+ (8-36)
R VeVV|=p— = — T — _
o ey P+ pg

where the terms in parentheses correspond to the substantial derivative of v.
Equation (8-36) states that the time rate of change of fluid momentum within a
control volume that moves at the local fluid velocity is balanced by the sum of
viscous, pressure, and gravitational forces that act on the system. This form of
the equation of motion applies to all types of fluids (i.e., gases and liquids) in
which there are no sources or sinks of overall fluid mass, and gravity represents
the only external force. Density p is not necessarily constant in (8-36).

8-4.3 Generalized Equation of Motion for Incompressible Liquids

Pressure and gravity forces are combined for liquids with constant density via
the introduction of dynamic pressure. This is accomplished by defining a time-
independent gravitational potential energy per unit mass of fluid with respect to
an arbitrarily chosen horizontal reference plane, ® = gh, where & is a spatial
variable that increases as one moves vertically upward (i.e., opposite to grav-
ity). The gravitational acceleration vector g is obtained from the gradient of &
as follows:

—5 (-22) = _vo (8-37)
=" ) ]

where the unit vector §j, is oriented vertically upward. When p is approximately
constant, pressure and gravity forces in (8-36) are manipulated as follows:

~Vptpg=-Vp—pVd=-Vp—Vpd=—V(p+pd)=—VP (838)
where P = p + p® is defined as dynamic pressure or a combination of gravita-

tional potential energy per unit volume and actual fluid pressure. The generalized
equation of motion for incompressible fluids is

av Dv
Y Vyv)=p—=-V.7-V 8-39
p<at+v V) P Dy T P (8-39)
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This is a more generalized form of the Navier—Stokes equation that was derived
in 1822 for incompressible Newtonian fluids. Under hydrostatic conditions, VP =
0 and P = constant. This is consistent with the fact that p = preference +
08 (Mieference — 1), and the actual pressure increases as one moves downward in
a static fluid.

8-4.4 Dimensional Analysis of the Equation of Motion

Dimensional scaling factors for each momentum transfer rate process are gener-
ated with the aid of average fluid properties such as density p and viscosity u,
and characteristic quantities such as average fluid velocity V and length scale L.
The characteristic length L can be the tube diameter, diameter of a sphere or gas
bubble, thickness of a falling film, length of a flat plate, and so on. Dimensionless
variables with an asterisk are constructed as follows:

. . X y Z
Spatial coordinates: x* ==, =, F=2
P V7L L
Gradient operator: V*=LV
t
Time variable: = ——
L)V
v
Fluid velocity: vi=—
\%
T
Viscous stress: ¢ =
nV/L
Dynamic pressure: Pt = P
nV/L

pV? represents another possibility to make dynamic pressure dimensionless, but
wV/L is preferred for very slow flow where terms that are proportional to V2
are neglected. Each momentum transfer rate process in the equation of motion is
written in terms of dimensionless variables and a dimensional scaling factor that
contains the appropriate dimensions. For example,

v pV?2av*
Por =L or
2

Accumulation rate process:

Forces due to convective momentum flux: pv-Vy= TV* - VHv*
, Y ow
Forces due to viscous momentum flux: V.t= FV o
: KV e
Pressure and gravity forces: V=—V"Pp
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The equation of motion for a generalized incompressible fluid (8-39) is written
in terms of dimensionless variables and dimensional scaling factors:
pV?
L

(at*—i—v-Vv):—F(V T4 VEPH) (8-40)

Notice that the accumulation rate process and convective forces scale as pV?/L,
whereas viscous, pressure, and gravity forces scale as 1V /L%, If one takes the
ratio of these two dimensional scaling factors, an important dimensionless number
is obtained:

V2/L VL
P /2:'0—5Re (8-41)
nV/L w

The Reynolds number (i.e., Re) represents an order-of-magnitude ratio of convec-
tive forces to viscous forces, and it appears as the most important dimensionless
number on the left-hand side of the dimensionless equation of motion:

8 *
Re ( a:* v V*v*) — V.tV (8-42)

If pressure and gravitational forces were not combined via the definition of
dynamic pressure, then an additional dimensionless number appears explicitly
in the equation of motion. In other words, the ratio of the Reynolds number to
the Froude number (i.e., Re/Fr) is required as the coefficient of the gravitational
force term in equation (8-36), where Fr = V?/gL provides an order-of-magnitude
estimate of the ratio of convective forces to gravitational forces. The ratio Re/Fr
represents an order-of-magnitude estimate of the ratio of gravitational forces to
viscous forces.

8-5 EXACT DIFFERENTIALS
Consider the following differential expression:
Mdx+Ndy+Tdz (8-43)

where the functions M, N, and T depend on x, y, and z. If (8-43) is an exact
differential, then a function ®(x, y, z) exists such that

a9 0P a9
(), (@) (D), e
ax V,Z ay X,z 8Z X,y

The total differential of the scalar function & is

dd=Vd.dr=Mdx+Ndy+Tdz (8-45)
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where r is the position vector in rectangular coordinates and
dr=0,dx +d8,dy+6,dz (8-46)

The line integral around an arbitrarily chosen closed path C that surrounds a
region R in space,

¢ o
closed path C

vanishes because @ is an exact differential. In other words, changes in & depend
on the end points along the integration path, not on the actual path that is tra-
versed. Since the initial and final points are identical for a closed path, the line
integral of an exact differential is zero. Useful information is obtained by apply-
ing Stokes’s theorem to line integrals of exact differential functions around closed
paths (see Wylie, 1975, pp. 683-684):

f do = f V& .dr
closed path C closed path C

sz M-VxVD)dS=0 (8-47)
region R enclosed by path C

where n is an outward-directed unit normal vector that emanates from surface
S in region R, which is surrounded by closed path C. There are many closed
paths in region R, for which the line integral and the corresponding surface
integral vanish. This is possible only if (1) ® is an exact differential and (2) n -
V x V& = 0. Furthermore, n is specific for each closed path C that surrounds
surface S, and condition (2) applies for each choice of n. This suggests that
V x V& = 0. Now, the gradient of @ in rectangular coordinates is

0P od od
Vo =6,—+86—+6——=M~+5N+5.T (8-48)
ox ay 9z

and the curl of the gradient of @ is
] a a ] 0 0
VxVo=6 —T—-—N|+é|—M—-—=T )+, =N—-——M
dy az 0z ax ax oy
(8-49)

The fact that (8-49) vanishes via Stokes’s theorem implies the following three
scalar equations:

8T aN—O a (8@)_8 <8<I>>
ay 9z dy \ 3z ) 9z \ dy

aM aT_O d (3D 3 (3P (8-50)
9z ax ;81 ax ) ox \ oz

BN BM_ 8(8®>_8<8<I>>
ox ay ax \dy /9y \ ox



LOW-REYNOLDS-NUMBER HYDRODYNAMICS 175

Hence, it is acceptable to reverse the order of mixed second partial differentiation
of an exact differential without affecting the final result.

8-6 LOW-REYNOLDS-NUMBER HYDRODYNAMICS

In the next 30 pages, we focus on fluid dynamics at vanishingly small Reynolds
numbers. This is the creeping flow regime, where all terms in the equation of
motion that scale as V2 are neglected at very slow flow rates. In other words,
viscous, pressure, and gravity forces are much more important than convective
forces, and the entire left side of the equation of motion is neglected. The creeping
flow force balance in dimensional form for all fluids is

Ve14+VP=0 (8-51)

which reveals that viscous forces are balanced by pressure and gravity forces.

8-6.1 Newton’s Law of Viscosity

The generalized form of Newton’s law relates 7 to linear combinations of velocity
gradients with the following restrictions:

1. 7 is a symmetric second-rank tensor.
2. Viscous forces should vanish for fluids (a) at rest, (b) in a state of pure

translation (i.e., all v; are constant), and (c) in a state of pure rotation (see
Landau and Lifshitz, 1959, p. 48).

To satisfy these conditions, the following linear transport law was constructed
for isotropic fluids, where the viscosity w is a scalar instead of a fourth-rank
tensor:

T 2
T=—uVV (VD + (5 K ) (VW) > 8 (8-52)
where (Vv)T is the transpose of the velocity gradient tensor and « is the dilata-
tional viscosity, or second viscosity, which is known from the Chapman—Enskog
kinetic theory to be zero for monatomic ideal gases. The sum of the velocity gra-

dient tensor and its transpose in (8-52) is known as the symmetric rate-of-strain
tensor.

Creeping Flow of an Incompressible Newtonian Fluid. 1t is reasonable to
assume that p = constant for liquids that are not subjected to large variations
in temperature and pressure. This assumption of incompressibility leads to the
following form of the equation of continuity (i.e., see 8-35) and Newton’s law
of viscosity:

V.v=0 (8-53)
T=—u[Vv+ (VV)T] (8-54)
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Furthermore, the viscous force term in the equation of motion (i.e., see 8-51)
undergoes considerable simplification:

Ver=—pV-Vv+ V. (VW) =—pV.Vy (8-55)

It is necessary to employ summation notation in rectangular coordinates to verify
that V - (Vv)T vanishes for incompressible fluids. If

V= 8v; (8-56a)
J
V= Za»i (8-56b)
o ; ! 3X,‘
then the velocity gradient tensor and its transpose are represented by
VV_Z8 Za vj = Z”’a vj (8-57a)
T a
(vv)T = Z, 3,-5.,87},- (8-57b)
The divergence of the transpose of the velocity gradient tensor is
V.= Zskﬂ . Z&&Lv
dx, “—~ 7 0x; !
k i,j
0l
= Z(ak 8)8j— ™ (%> v

i,j.k
ad ad
=Y —(—)u 8-58
Z jax,- <8xj)v' ( )
LJ

However complicated the fluid dynamics problem might be, each component
of the velocity vector can be solved analytically or numerically. Hence, each v;
exists, it is unique and it is an exact differential. This means that the order of
mixed second partial differentiation of each v; can be reversed without affecting
the final result. Now

V. (vv)! Za,ax <ax,> Z o (Z aiu,) (8-59)
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where the final term in parentheses of (8-59) is V - v, and the jth component of
the vector V - (Vv)T is

9
V.- (VW] = g(v -v) (8-60)
J

Hence,
V-(VWI=V(V.v)=0 (8-61)

for incompressible fluids. The creeping flow equation of motion for incompress-
ible Newtonian fluids is

uV Vv =V (8-62)

Equation (8-62) generates three coupled linear second-order partial differential
equations (PDEs). For complicated two-dimensional flow problems, this force
balance and the equation of continuity yield three coupled linear PDEs for two
nonzero velocity components and dynamic pressure. In some situations, this com-
plexity is circumvented by taking the curl of the equation of motion:

uVxV.Vv=V x VP (8-63)

because the curl of the gradient of a scalar such as P vanishes if P is analytic.
In other words,

VxVP=0 (8-64)

if P is an exact differential. Hence, dynamic pressure is removed from the force
balance by taking the curl of the equation of motion. The resulting set of third-
order linear PDEs,

VxV-Vv=0 (8-65)
contains only the velocity vector. Another vector-tensor identity,
VxV.Vvy=V.V(V xv) (8-66)

is employed to generate the equation of change for fluid vorticity, where %V XV
is the vorticity vector. Summation notation in rectangular coordinates is required
to verify this identity and evaluate each component of the vorticity equation for
specific two-dimensional flow problems.

Evaluation of the Curl of the Divergence of the Velocity Gradient. Begin by
expressing the velocity gradient tensor using summation notation:

3 3
Vv:Xijaia—m;ajvJ-:;aia,a—mvj (8-67)



178 APPLICATIONS OF THE EQUATIONS OF CHANGE IN FLUID DYNAMICS

The divergence of the velocity gradient tensor is
V. Vv—Z(Sk ;35’3 v
=) (8- 88— 9 v;
T e o )

i,j,k

ad 0

Now take the curl of (8-68):

VxV. Vv—ZSk xZé,a :

=D (8x8))-— ( ) (8-69)

i,j,k

The cross product of two unit vectors produces another unit vector that is orthog-
onal to the two original unit vectors:

8§x8; =Y Smekjm (8-70)

where &, is the permutation index, which assumes the following values:

+1 if kjm = 123,231,312
eim =y —1 if kjm =321, 132,213 (8-71)
0 otherwise

The final result contains a sum over four different indicies with 81 terms, several
of which vanish due to the nature of the permutation index. Equations (8-69) and
(8-70) yield:

a 92
VxV.Vyv= OmEkim v; (8-72)
zJXk:m ! 8 <3x ) '

Evaluation of the Divergence of the Gradient (i.e., Laplacian) of the Curl of the
Velocity Vector. Begin by calculating the curl of the velocity vector with assis-
tance from the permutation index:
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Vxv= E 6kix Z(Sjvj
8xk :
k J
]
= E S x8;)—wv
. ( k /) 9x J
Jik

=>4 ekjm - (8-73)
jk,m
Now take the gradient of (8-73):
0
V(V xv) = Za — D im0,
8xk
Ljkm

= ) 8ibue 9 v; (8-74)

= R k/m 8xk J

The divergence of (8-74) is

PR =Y Y b ()

14 i,j,k.m
= Y (8 8)ne (2N (),
- I x, \ox; ) \oxe )
i,jk,m,p
d
= Z (Smgkjm a Vj (8-75)
i,j.k,m Xk

Vorticity Equation for Creeping Flow of an Incompressible Newtonian
Fluid. Since all scalar components of the velocity vector are exact differentials, it
is permissible to reverse the order of mixed second partial differentiation without
affecting the final result. If this procedure is performed twice, then inspection of
summation representations of the following two vector-tensor operations reveals
that they are equivalent:

a (32

VxV.Vy= ij:m 5”’8"””3 <8x ) v (8-764a)
9

V-ViVxw= ) 3 ek,m o) Y (8-76b)

i,j,k,m
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Since the curl of the creeping flow equation of motion for an incompressible
Newtonian fluid yields

VxV.Vv=0 (8-77)
it follows that the Laplacian of the vorticity vector must also vanish:
V.V(Vxv)=0 (8-78)

Equation (8-78) is also known as the equation of change for fluid angular velocity
in the low-Reynolds-number limit for incompressible Newtonian fluids because
V x v, which is twice the vorticity vector, yields twice the angular velocity vector
of a solid that rotates at constant angular velocity. The summation representation
of the Laplacian of the vorticity vector,

32 3
V-V(va):Z@mZ—Zskjma—xkvjzo (8-79)
m i iojk

provides sufficient detail to analyze each component of this vector equation.
Let’s consider a rather complicated two-dimensional flow problem in rectangular
coordinates where v, = 0 and there is no dependence of v, and v, on spatial
coordinate z:

v (x, y)
vy (X, y)

If one approaches the solution of this problem via the equations of continuity and
motion, then it is necessary to solve three coupled linear PDEs (i.e., one first-
order PDE and two second-order PDEs) for v,, v,, and dynamic pressure. In the
low-Reynolds-number limit, it is also possible to attack this problem via the three
scalar components of the equation of change for fluid vorticity. For example, if

8 =4, 8 =0y 33 =24,
X=X X =y X3=2
V] = Uy V) = U, vz =,
and each scalar component of V - V(V x v) must vanish, then equation (8-79)

yields:

| t (32+32)(3 ) 0 (uivial
m =1, x-component: —+— ) =v.— —v, ) = rivia
P ax2 " 9y?) \ay ° Y

0
0z

m =2, y-component: (8—2 + 8—2> <ivx - ivz> =0 (trivial)
ax2  9y? /) \ 9z 9x

d

3 t (32+32><3 ) 0
m = 3, z-component: —+— )=, — =)=
¢ P ax2 9y J\ax ¥ oy *
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At first glance, three coupled linear third-order PDEs must be solved, as illus-
trated above. However, each term in the x and y components of the vorticity
equation is identically zero because v, = 0 and v, and v, are not functions of z.
Hence, detailed summation representation of the vorticity equation for creeping
viscous flow of an incompressible Newtonian fluid reveals that there is a class
of two-dimensional flow problems for which it is only necessary to solve one
nontrivial component of this vector equation. If flow occurs in two coordinate
directions and there is no dependence of these velocity components on the spatial
coordinate in the third direction, then one must solve the nontrivial component
of the vorticity equation in the third coordinate direction.

8-6.2 Stream Function and Streamlines

Two-Dimensional Planar Flow. A path within a fluid across which no flow
occurs is called a streamline. In other words, fluid parcels move along streamlines.
If n is an outward-directed unit normal vector from an arbitrary path within a
fluid and d! is a differential length along this path, then

dy = m-v)dl (8-80)

where ¥ is the stream function and v is the fluid velocity vector. n- v is the
normal component of the fluid velocity that crosses this arbitrary path. If dl
is oriented along a streamline, then n - v =0 because no flow occurs across a
streamline. Hence, dy» = 0 and v is a constant for each streamline. Since ¥ is
analytic, as well as an exact differential, changes in ¥ around a closed loop must
vanish. In other words,

7§ dy =0 (8-81a)
closed loop

Y dy=0 (8-81b)
closed loop

Consider two-dimensional planar flow in rectangular coordinates [i.e., v,(x, y)
and v, (x, y)] and two adjacent streamlines within the fluid, with stream function
values of ¢ and v + d. Point P is located on streamline ¥, and point Q lies
on streamline ¥ + dv. As one moves from P to Q, the change in the value of
the stream function is dyypo = d/, and this change is path independent because
the stream function is an exact differential. If the straight path from P to Q is
not colinear with either the x or y axis, then it should be possible to arrive at
point Q via an intermediate point R, where PR is colinear with the x axis and
RQ is colinear with the y axis. Consider the first simple path from P to R, which
is parallel to the x axis. Either

n=-8, dl=+dx dypr=Mm-v)dl=—v,dx (8-824)
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or
n=-8, dl=-dx dypr=m-v)dl=+v,dx (8-82b)

Now, consider the second simple path from R to Q, which is parallel to the y
axis. Either

n = +4, dl =+dy dyro=m-v)dl =+v.dy (8-83a)
or
n= -4, dl =+dy dyro =M -v)dl = —v,dy (8-83b)

For the closed triangular loop from P — R — Q — P, the line integral of dr
vanishes because v is an exact differential. Hence,

dypr +dyro +dyrop =0 (8-84)
—dyop =dypg =d¥y =dypr +d¥ro (8-85)
Equations (8-82a) and (8-83a) suggest that
dy = —vydx +v.dy (8-86)
whereas equations (8-82b) and (8-83b) lead to
dy = +vydx — v, dy (8-87)

Since ¥ (x, y) is exact, its total differential is

dy = (ﬁ) dx + (8_1ﬁ> dy (8-88)
ax /, ay /.

Hence, both velocity components for two-dimensional planar flow in rectangular
coordinates are related to the stream function in the following manner. Either

Uy = +$ Vy = —a (8-89(1)
or
ad ad
=W, =4 (8-89b)
dy ox

The sign convention is not important. Both representations given by (8-89a) and
(8-89b) conserve overall mass for two-dimensional flow of an incompressible
fluid in rectangular coordinates because i (x, y) is exact and the order of mixed
second partial differentiation can be reversed without affecting the final result:

v, 0 a1\ d a1\ d
Vov=2 +ﬂ=<—>—¢'—<—>—¢':o (8-90)
ax dy ax ) dy dy /) dx
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In the low-Reynolds-number limit for incompressible Newtonian fluids, one cal-
culates the stream function from the z-component of the vorticity equation, as

described on page 180:
3? N 3? 9 3 0
R R — vy, — | — V| =
dx2  9y? ax) ” dy
92 92 a\ oy a\ oy
— 4+ — — ) — —)—1=0 8-91
(72 +52) [(ax) () ay} o0
92 92 92 92
_ - _ _— = V . V V . V = O
<8x2 + 8y2) <8x2 + 8y2) v = )( V)

Hence, one linear fourth-order PDE must be solved for the stream function
¥, from which v, and v, can be determined. This approach is the method of
choice instead of tackling coupled linear first- and second-order PDEs for three
unknowns via the equations of continuity and motion. The PDE of interest, given
by (8-91), progressed from a second-order equation to a fourth-order equation
by taking the curl of the equation of motion to eliminate dynamic pressure, and
relating both velocity components to the stream function.

Alternative View of the Relation between Fluid Velocity Components and the
Stream Function for Two-Dimensional Flow in Rectangular Coordinates. Con-
servation of overall mass for an incompressible fluid is prescribed by a simplified
form of the equation of continuity when p & constant:

V.v=0 (8-92)

This scalar equation is satisfied for any vector potential A whose scalar compo-
nents (i.e., A, Ay, and A;) are exact differentials if

v=V x A (8-93)
because
V.-v=V.VxA=0 (8-94)

is an identity provided that the order of mixed second partial differentiation of
each A; can be reversed without affecting the final result. If

A=0,A,+58,A,+5.A. (8-95)

then the velocity vector is

9 9 9 ]
Vv=VxA=68|—A,— —A ) +5 | —A — —A,
oy 0z - 0z ax

a d
o, | —A, — —A, 8-96
v (- 2a) 59
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For two-dimensional planar flow with v, =0 and no dependence of v, and v,
on spatial coordinate z, the velocity vector is

vV =208,v,(x,y) +v,(x,y) (8-97)

Hence, one makes the following correspondence based on the two previous
expressions for v, assuming that each A; is not a function of z:

vy = +%AZ
a
vy, = —aAZ (8-98)
Sa="a
ax 7 9y "

Hence, one identifies the z-component of the velocity vector potential (i.e., A;)
with the stream function .

Axisymmetric Stream Function in Spherical Coordinates. 1t is necessary to
understand the stream function in sufficient depth because additional boundary
conditions are required to solve linear fourth-order PDEs relative to the typical
second-order differential equations that are characteristic of most fluid dynamics
problems. Consider the following two-dimensional axisymmetric flow problem in
which there is no dependence on the azimuthal angle ¢ in spherical coordinates:

v, (r, 0) vg(r, 0) vy =0 (8-99)

Whereas the stream function for planar flow in rectangular coordinates has units
of volumetric flow rate per unit depth, { for axisymmetric flow in spherical
coordinates has units of volumetric flow rate:

Q

V=5 (8-100)

Q is the instantaneous volumetric flow rate downward in the negative z direc-
tion which intersects the circle mapped out by one end of a vector that rotates
completely around the z axis while the other end is pinned to the z axis at point
0. The coordinates of the following points are of interest in developing relations
between v, and vy and the stream function:

R at (r,0) P at (r +dr,0) W at (r,0 + do) (8-101)

Rotate vectors OR and OP completely around the z axis and calculate the dif-
ferential volumetric flow rate downward between the two circles mapped out by
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points R and P. The velocity component of interest is vy, and 27wr sinf dr is
the cross-sectional area for flow. Hence,

(d Q)at constant § = zn(dW)at constant § — UGZTH' sinf dr (8'102)

and

1 d
vy = —] (ﬂ) (8-103)
rsin 6 or at constant 6

Now, rotate vectors OR and OW completely around the z axis and calculate the
differential volumetric flow rate downward between the two circles mapped out
by points R and W when 6 < m/2. The velocity component of interest is —v,,
and 272 sin6 d@ is the cross-sectional area for flow. In this case,

(d Q)at constant r — 2”(dw)at constant r — —v,2nr2 sinf do (8'104)

and

1 0
b =] (ﬂ) (8-105)
}"2 sin @ a0 at constant r

The sign convention is arbitrary, provided that one of the two velocity com-
ponents has a negative sign. These relations between v, and vy and the stream
function, given by (8-103) and (8-105), conserve overall mass for an incompress-
ible fluid. When p =& constant, the simplified equation of continuity in spherical
coordinates,

\Y 192 + L 9 s 0=0 (8-106)
V= —5—T1"V, — — Vg sSinf = -
2 or rsing 80

is satisfied because i is an exact differential, which implies that

B3-@E e
ar) 00 00 ) or

Creeping Flow of an Incompressible Newtonian Fluid around a Solid
Sphere. This is a classic two-dimensional fluid dynamics problem in spherical
coordinates. A stationary solid sphere of radius R is located at the origin of
an xyz coordinate system and an incompressible Newtonian fluid with velocity
8; Vapproach far from the sphere approaches from below. Macroscopic results such
as the hydrodynamic drag force and f vs. Re are exactly the same if the sphere
falls through a quiescent liquid at terminal velocity given by —4§, Vioiq, Where
Violid = Vapproach. This axisymmetric problem exhibits no swirling motion (i.e.,
vy = 0), and the radial v,(r, 0) and polar vg(r, 0) velocity components exhibit
angular symmetry, which implies that there is no functional dependence on
azimuthal angle ¢. Since the approach velocity of the fluid is described best



186 APPLICATIONS OF THE EQUATIONS OF CHANGE IN FLUID DYNAMICS

in rectangular coordinates, it is necessary to determine v, and vy far from the
sphere. The scalar (i.e., dot) product is useful in this regard:

v (r — 00) = 8, + 8; Vapproach = Vapproach €08 0 (8-108a)
Vo (r — 00) = 8¢ * 8; Vapproach = — Vapproach $in 6 (8-108b)

because
8, = 8, cosf — 8y sinf + 54(0) (8-109)

In the low-Reynolds-number limit, the nontrivial ¢-component of the equation
of change for fluid vorticity,

V-V(Vxv)=0 (8-110)
together with
v-(r,0) = -3 slinﬁ% (8-111a)
v (r, 0) = rsilne% (8-1115)
yields
EX(E*y) =0 (8-112)

where the E? operator in spherical coordinates,

92 N sinf 9 (sin )" d @-113)
— + ———(sin - -
ar? r2 96 06

is slightly different from the Laplacian operator

19 (,0 19 9
V.V=Vi=__ (2= ———— | sin6— 8-114
72 or <r a;») t 2 ing 90 <Sm ae) (8-114)

Boundary Conditions and Functional Form of the Stream Function. No slip
at the fluid—solid interface requires that the fluid velocity must vanish at » = R
if the sphere is stationary. Hence,

<%> =0 (8-115a)

a0 r=R

<%> =0 (8-115b)
ar r=R

These classic no-slip boundary conditions must be modified if the sphere falls
through a quiescent liquid, because the liquid in contact with the sphere assumes
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the velocity of the solid in the r and 6 directions. The remaining boundary
conditions are based on the definition of . For example,

Yy(@r>R60=0))=0 (8-115¢)
Y(r =R, any ) =0 (8-115d)

if there is no volumetric flow through the circle mapped out by the end of a
vector that rotates completely around the z axis when the other end is pinned
to the symmetry axis. The cross-sectional area for flow is reduced to a point in
(8-115¢), and it is completely blocked by the solid in (8-115d). One postulates
the functional form of the stream function from the boundary conditions far from
the sphere, where the approach velocity is 8; Vapproach, and

1 oy
v (r — 00) = Vipproach €0s 0 = ~ 25ind 99 (8-115¢)
. 1 oy
Vo (r — 00) = —Vipproach Sin 6 = 5ind ar 8-1151)

Condition (8-115¢) is integrated with respect to 6 at constant , which implies
that the integration constant could be an unknown function of r. The result yields
the functional form of r at large r:

1
Y (r — 00,0) = —Vapproach?” / sin6 cos 6 dO = — = Vapproach?” $in” 0 + f(r)

2
(8-116)
Condition (8-115 f) indicates that f(r) = constant, because
, 1 oy Vapproach? sin* @ — d f/dr
-V, 0= — = 8-117
approach SH11 rsinf or rsinf ( )
d

—f =0 (8-118)

dr

and condition (8-115¢) reveals that f(r) = 0. If one postulates that in general,
Y(r,0) = F(r)G(6) (8-119)

then G(0) = sin? @ at large r, and this functional dependence should not change
as one moves closer to the sphere at constant 6. Hence,

Vv (r,0) = F(r)sin’ 0
and

F(r — 00) = _%Vapproachr2 (8-115¢)
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The angular dependence of the stream function represents one of the Legendre
polynomials that is unaffected by the E? operator for creeping viscous flow in
spherical coordinates. In other words,

2
E>Y(r,0) = E*[F(r)sin’> 6] = sin’ @ (% — %) F(r) (8-120)

This reassuring observation is left as an exercise for the student to verify.

Analytical Solution of the Vorticity Equation for ¥(r,0). Equation (8-120) re-
veals that

E*[F(r)sin’6] = H(r) sin’ 6 (8-121)
a2
H(r) = (ﬁ - 72) F(r) (8-122)

For creeping viscous flow in spherical coordinates, the ¢-component of the vor-
ticity equation requires that

E*(E*y) = EX{E*[F(r)sin® 0]} = E*[H(r) sin? 0]
L, (d> 2
= sin’ 6 (W — r—2> Hr)=0 (8-123)

Hence, one arrives at Euler’s differential equation for the radial part of the

stream function:
> 2 > 2
— — = )Jl—=—=-=F(r) =0 8-124
<dr2 r2> <dr2 r2> ) ( )

and postulates that

F(r)~r" (or r" Inr for repeated roots) (8-125)
Upon substitution into Euler’s differential equation,

nn—1) —2][(n —2)(n —3) = 2" * =0 (8-126)

one finds four roots (i.e., n = —1, 1, 2, 4) that yield the following solution for
the stream function:

V(r,0) =sin*0(A/r + Br + Cr> + Dr?) (8-127)

Boundary condition (8-115¢) is satisfied by the functional form of yr. Conditions
(8-115¢) to (8-115g) require that

D=0 C= _%Vapproach
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Conditions (8-115a) or (8-115d) and (8-115b) yield

1 3 3
A=— 4 Vapproach R B = i Vapproach R

The final results are

Y(r,0) = VapproachR2 Sillz@(—%n*] + %77 - %772)
v, (r, 0) = Vapproach cosO(1 — %777 + %7}73) (8-128)

V9(r, 8) = —Vapproacn sin (1 — 311~" — g1

where the dimensionless radial variable n = r/R. The expression for v, is em-
ployed to calculate the error incurred when the radial term of the equation of
continuity in spherical coordinates is simplified:

1 0 av,
szv

——r
r2or or

(8-129)

The polar velocity component is linearized within a thin mass transfer boundary
layer on the liquid side of the solid—liquid interface to facilitate the development
of dimensionless mass transfer correlations.

8-6.3 Integrating Exact Differentials

Consider the following function P(x, y) in which

oP oP
dP = (—) dx + (—) dy (8-130)
ax /, ay /.

is an exact differential. The equation of motion in transport phenomena provides
information indirectly about the function P as follows:

Ox,y) = (%—P> (8-131a)
X Yy
R(x,y) = (%—I;) (8-131b)

It is desired to integrate these equations to obtain P(x, y). This task is accom-
plished as follows:

Step 1. Integrate (8-131b) with respect to y (i.e., from yy to y) at constant x,
realizing that the integration constant can be, at most, a function of x:

P(x,y)= /y R(x,t)dt + f(x) (8-132)
Y

0
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In practice, integration of R with respect to y is performed using dummy variable
t, where t varies from y, to y.

Step 2. The unknown integration constant f(x), which corresponds to P (x, yo),
is determined by differentiating (8-132) with respect to x at constant y, and
comparing the result with (8-131a):

_ (3P _ (2 [ df ]
Q(x,y) = (ax ) = (ax /} R(x,r)dt> += (8-133)
Hence,
—df =0,y — /y iR(x, t)dt (8-134)
dx yo 0x

Step 3. If f(x) and d f/dx are only functions of x, then

3\ d 3 a Yo
<_> df _ 90 _ _/ —R(x,0)dt =0 (8-135)
dy /) dx dy 9y Jy, dx

This is true if

9 3 (Y 8
0 _ —f L R(x,1)dt (8-136)
ay ady Jy, ox

Step 4. The only dependence on y in the integral of (8-136) is found in the
upper limit of integration, because yy is constant. Hence, the Leibnitz rule for
differentiating a one-dimensional integral with variable limits yields:

a Y 0 ay (0 dyog ( 0
— —R(x,)dt =~ — | R(x,t=y)— —— | — ) R(x,t = yp)
ay Jy, ox dy \ ox dy \ox
oR
= — (8-137)
0x

In summary, P(x,y) is determined via (8-132) and f(x) is calculated via
integration of (8-134). This methodology is employed below to calculate dynamic
pressure. No inconsistencies will develop if (8-136) is satisfied. In other words,

90 OR
90 _9R (8-138)
dy ox

9 (0P 8 (0P

9 <_> _ 9 <_) (8-139)

dy \ 0x dx \ dy

Step 3 is satisfied because P is an exact differential, which implies that the order
of mixed second partial differentiation can be reversed without affecting the final
result. It might be worthwhile to verify this test for exact differentials, given
by (8-139), before embarking on the integrations in steps 1 and 2.
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8-6.4 Dynamic Pressure Distribution Via the Equation of Motion

For low-Reynolds-number flow of an incompressible Newtonian fluid, the r and
6-components of the equation of motion are useful to calculate dynamic pressure
after the vorticity equation allows one to determine v, v,, and vy. Hence,

pwV Vv =V (8-140)

provides information about dynamic pressure in a form that matches equations
(8-131a) and (8-131b). It should be obvious that P cannot be obtained directly
from the vorticity equation because the curl of the equation of motion was per-
formed to eliminate V¥ (i.e., see equations 8-62 through 8-65). In spherical
coordinates, with

v, (1, 0) vy (r, 0) v =0 (8-141)
the r, 6, and ¢ components of the equation of motion are evaluated explicitly

with assistance from equations D, E, and F, and M, N, and O, respectively, in
Bird et al. (2002), Table A.7-3, p. 836. For example,

P ) 2v, 2 0dvy 2
(ViB)rZWZM(V'VV)rZM V Ur—r—z—r—zw—r—zvecote

10P 2 2 dv, Vg
\Y/ =—-—— =u(V.-V = \Y —_—— 8-142
(V) r 06 e Ve M( vt 00 2 sin29> ( )

1 0P

v = — =u(V.V =0
VB = g ap ~ VYV

where

RS AV S
=—— |rr— ——— — | sin6—
r2 or or r2sinf 96 a0

The following intermediate results are helpful, with n = r/R:

v, 3 Vapproach €0s 0

= R ="

% = — Vapproach Sin 8 <1 - %n" + %W)
% _ _3>Vappr40;11¢;1 sin 6 2 + 1

% = —Vapproach €08 0 (1 - %n’l - i?ﬁ)

d av _
a7 <r2 a;) = 3Vapproach” 3 cosh
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ad vy 3 3 .
<r2_> = _Vapproachr] ?sin6

ar ' or 2
d . o0v, . 3 ., 1 4
29 sin 6 29 = —2Vapproach Sinf cos 6 | 1 — 57] + 57]
0 D) . 3 _ 1 _
2 (sm98—99> = Vipproach (sin> 6 — cos” ) (1 -3 1_ 77 3) (8-143)

The r and 8 components of the equation of motion yield

op _ 3,U/Vappr()ach -3

ol R n~~ cosf (8-144a)
ad 3uV,

;39 _ M Vapproach 7772 sin@ (8-144b)
a0 2R

Inspection reveals that dynamic pressure P(r, 6) is an exact differential. Integra-
tion of (8-144b) with respect to 6 at constant r yields

3uV,
P(r, ) = K approach ;‘;‘“aehn—z / sinfdé + f(r)

3uV,
- —%n” cosé + f(r) (8-145)

The integration constant f(r) in (8-145) is determined from (8-144a):

0P _ 3,U/Vappr()ach -3

o _ n cosf — 3/JLVapproach -3 df
ar R?

R n~cosf + I (8-146)
r

Hence, d f/dr =0 and f is a constant, determined from hydrostatic conditions
(i.e., V.= 8; Vapproach = constant) far from the sphere where r — o0 and P = P.
The final result for the dynamic pressure distribution is

3:“ Vapproach _2

B, 0) = Poo — R cos 6 (8-147)

8-6.5 Fluid Pressure Distribution

The total force transmitted across the fluid—solid interface requires fluid pressure,
not dynamic pressure. Since dynamic pressure is a combination of gravitational
potential energy per unit volume and actual fluid pressure, it is rather simple
to use equation (8-147) and calculate fluid pressure. The rectangular Cartesian
coordinate that increases in the direction opposite to gravity is z = r cos 6. Hence,

314 Vapproz
P=pr.0)+pgz =Poo — %n* cos (8-148)
The horizontal plane that intersects the center of the sphere (i.e., z =0, 0 = 7/2)

is the reference for the gravitational potential. In this reference plane, dynamic
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pressure is P, and fluid pressure is po,. Furthermore, P, = po. The actual
fluid pressure is

cos 6 (8-149)

3uV,
p(r,0) = poo — pgrcost — Mna

2R

The second term on the right side of (8-149) represents the hydrostatic effect
of gravity on fluid pressure, and the third term on the right side represents the
hydrodynamic consequence of a blunt object (i.e., the solid sphere) perturbing
fluid streamlines in the vicinity of r & R. The following characteristics of p(r, )
are important:

1. Below the xy plane where 6 > m/2, fluid pressure is greater than pe.

2. Directly below the sphere at large r, p = p + pgr, which corresponds to
hydrostatics because the approach velocity of the fluid is constant.

3. Above the xy plane where 6 < /2, fluid pressure is less than p.

4. Directly above the sphere at large r, p = poo — pgr, which is also a hydro-
static situation.

5. As one moves closer to the sphere at constant 6, the hydrodynamic contri-
bution increases fluid pressure on the front side (i.e., southern hemisphere)
and decreases fluid pressure on the back side (i.e., northern hemisphere).

6. The hydrodynamic contribution is more pronounced for higher-viscosity
fluids that move faster past smaller spheres.

7. Except for the effect of gravity far from the sphere, fluid pressure is highest
on the spherical surface at the stagnation point (i.e., r = R, 6 = ) and
lowest on the spherical surface at the separation point (i.e., r = R, 8 = 0).

8. As one moves along a given streamline, the dynamic contribution to fluid
pressure, the magnitude of the tangential velocity component, and the rela-
tion between r and 6 are illustrated in Table 8-2.

9. If one follows the path of the dimensionless streamline given by ¥* =
—0.002 as it approaches the southern hemisphere, the fluid pressure in-
creases from 6 = 180 to 155° and the tangential velocity increases as
well. From 155 to 90°, the tangential velocity continues to increase and
approaches its maximum at 90° while the fluid pressure decreases. From 90
to 25°, the fluid pressure continues to decrease and the tangential velocity
decreases slightly. A fluid parcel moving along this streamline experiences
no difficulty maintaining these conditions. From 25° to the separation point
at 6 = 0, the fluid pressure increases while the tangential velocity decreases.
This poses a severe demand on fluid parcels attempting to traverse the
streamline. This demand is met in the creeping flow regime. However, when
turbulent flow is achieved, hydrodynamic increases in fluid pressure on the
back side of the sphere along a given streamline are magnified several fold.
Consequently, boundary layer separation occurs at 6 > 0 because turbulent
eddies cannot transfer sufficient momentum from the free stream into the
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TABLE 8-2 Numerical Evaluation of the Tangential
Velocity Component vy and the Dynamic Contribu-
tion to Fluid Pressure p (not dynamic pressure ) as
One Traverses a Streamline with ¥ = —0.002 around
a Solid Sphere

* __ 1/[ _ _ 1 -1 3 1 2 s 2
v _W_—0.002_<—117 +Zn—§n>sm 6
p(r,0) — (poo — pgreos6)
= —n~“cosf
3u Vapproach/ZR
»(.0) = <l - En" - ln_3> sin @
Vapproach 4 4
0 n=r/R _77_2 cos® vy (r,0)/ Vapproach
175 1.64 0.37 4.2 x 1072
170 1.31 0.57 5.5 % 1072
165 1.21 0.67 6.1 x 1072
160 1.15 0.71 6.4 x 1072
155 1.12 0.72 6.6 x 1072
150 1.10 0.71 6.8 x 1072
145 1.09 0.69 6.9 x 1072
140 1.08 0.66 7.0 x 1072
135 1.07 0.61 7.1 x 1072
130 1.07 0.56 7.1 x 1072
125 1.06 0.51 7.1 x 1072
120 1.06 0.45 7.2 x 1072
115 1.06 0.38 7.2 x 1072
110 1.06 0.31 7.2 x 1072
105 1.05 0.23 7.2 x 1072
100 1.05 0.16 7.2 x 1072
95 1.05 0.08 7.2 x 1072
85 1.05 —0.08 7.2 x 1072
80 1.05 —0.16 7.2 x 1072
75 1.05 -0.23 7.2 x 1072
70 1.06 —0.31 7.2 x 1072
65 1.06 —0.38 7.2 x 1072
60 1.06 —0.45 7.2 x 1072
55 1.06 —0.51 7.1 x 1072
50 1.07 —0.56 7.1 x 1072
45 1.07 —0.61 7.1 x 1072
40 1.08 —0.66 7.0 x 1072
35 1.09 —0.69 6.9 x 1072
30 1.10 —0.71 6.8 x 1072
25 1.12 —0.72 6.6 x 1072
20 1.15 —0.71 6.4 x 1072
15 1.21 —0.67 6.1 x 1072
10 1.31 —0.57 5.5 x 1072

5 1.64 —0.37 4.2 x 1072
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fluid boundary layer that hugs the solid, thereby hindering the ability of
fluid parcels to penetrate these regions of relatively high pressure. Hence, a
low-pressure chaotic eddy current develops behind the sphere, which pro-
duces a significant drag force on the solid. The separation point is 6 ~ 71°
for laminar boundary layer flow transverse to a solid cylinder, relative to
stagnation at & = & (Schlichting, 1979, p. 171).

8-6.6 Total Vector Force Transmitted across the Fluid—Solid Interface

Interphase momentum transfer is the focus of this section. Macroscopic corre-
lations are based on dynamic forces due to momentum flux that act across the
fluid—solid interface, similar to terms of type 2, 3, and 4 in the equation of
motion. Gravity enters into this discussion via the hydrostatic contribution to
fluid pressure, because volumetric body forces are not operative across an inter-
face. The outward-directed unit normal vector from the solid surface into the
fluid is n. As discussed earlier, forces due to total momentum flux, transmitted
in the —n direction from the fluid to the solid across the interface at r = R, are
(i.e., see equation 8-20):

Fruicsona = —Fioto g = / [—n- (oVV+71) —nplayerdS  (8-150)
S

where Fgyiq.soliq represents the interfacial force exerted by the fluid on the solid,
Fyolig-fiia 1s the force exerted by the solid on the fluid, and S is the exter-
nal surface area of the solid sphere. In this example, n is given by the unit
vector in the r direction (i.e., §,). Hence, the vector-tensor dot operations in
equation (8-150) yield

Fiuicsond = — / (DU + 7 + 8 Plat r—r dS (8-151)
S

where t. is a vector viscous force per unit area that acts across a surface
at constant r (i.e., the fluid—solid interface). In spherical coordinates, dS =
R?sin® dO d¢ and

T = (Srfrr + 891}9 + 5¢Tr¢ (8-152)

Since the fluid velocity vector vanishes on the surface of a stationary sphere and
the fluid velocity relative to a moving sphere also vanishes at » = R unless the
solid is deformed, the interfacial force is

Fiiyid-solid = — R / (tr + 8, P)at r=rSINOdOd¢

= =8 [[ 18,0+ p) + b0+ Botrglu o sin0 A0 dg (8-153)

This result illustrates that ., is a normal viscous stress that acts similarly to
pressure forces (i.e., in the direction of n). The three scalar components of t that
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represent viscous forces transmitted across the surface at r = R are evaluated
with assistance from the two-dimensional velocity profile and Newton’s law of
viscosity for an incompressible fluid. Equations B.1-15, B.1-18, and B.1-20 in
Bird et al. (2002, p. 844) are applicable:

cosO(n > =0 ")y=1 =0

r=R

ar R

_ . 0 /vy 1 dv, _ 3/LVapproach 4 .
T9(r =R)=—pn |:ra—r (7)4—; 50 ]r:R— T(’? )y=18in6
1 ov, 9 vy
o = — : —(Z2)[ =0 8-154
tre M|:rsm9 8¢+r8r<r>:| ( )

Notice that the viscous shear stress 7.4 vanishes everywhere throughout the
axisymmetric flow field, whereas the normal viscous stress 7,, is zero only at
the fluid—solid interface and far from the sphere. The important results from this
section are summarized as follows:

Fiuid-solid = —R* / 8y p + 80Tr9)at r=r SINO dO d¢p (8-155)

3V
p(r=R,60) = pa — (pgR + %) cos 6 (8-156)

Va roach .
- PR sin@

3u
T,0(r = R) = o (8-157)

Integration with respect to polar angle @ is performed from O to 7z, and integration
with respect to longitudinal angle ¢ is performed from O to 2m. In spherical
coordinates, &, and &y are functions of position and, hence, cannot be removed
from the integrals. The general strategy for integrating unit vectors in curvilinear
coordinates is to apply trigonometry and re-express these position-dependent unit
vectors in terms of rectangular unit vectors dy, 8,, and §,, which are not functions
of position. The appropriate relations are provided by equations A.6-28 and A.6-
29 in Bird et al. (2002, p. 828):

8, =8, sinf cos¢p + &, sinf sing + §, cos 6 (8-158a)
8¢ = 8, cosB cos¢ + 8, cosf sing — §, sinf (8-158b)
Nine trigonometric integrals are required to evaluate completely the total vector

force exerted by the fluid on the solid sphere. However, seven of these integrals
vanish because

fcos¢>a’¢=/sin¢d¢=/cos€sin9d9=O O0<¢p<2m, 0<06<m
(8-159)



LOW-REYNOLDS-NUMBER HYDRODYNAMICS 197

The two terms that survive are

3 .
Fuid-solia = 6 (Pg R+ EMR Vapproach> / / cos” 0 sinf df do

3
+6. E;LR Viapproach / / sin® 0 d6 d¢ (8-160)
where the first term represents a contribution from fluid pressure and the second
term arises from viscous shear stress. The integrals of interest are evaluated
as follows:

4
/fcoszésinededq&:gn 0<0<m, 0<¢ <27 (8-16la)

8
f/sin30d0d¢=§n 0<60<m, 0<¢ <27 (8-161b)

The source of each contribution to the final expression for Fyyigsoria 1S

Fiuidsoia = 8:57 R’ pg (hydrostatic effect of gravity
on fluid pressure)

+ 827 (L R Vapproach (hydrodynamic contribution (8-162)
from fluid pressure)

+ 847 1 R Vapproach (hydrodynamic contribution
from viscous shear)

8-6.7 Stokes’s Law

The final result given by equation (8-162) is generalized for creeping flow of
an incompressible Newtonian fluid that impinges on a stationary sphere with
constant approach velocity Vpproach from any direction:

Fiuid-solia = — %NR3,0g + ;Vapproach (8-163)

The first term on the right side of (8-163) represents a hydrostatic buoyant force
due to fluid pressure that acts in the direction opposite gravity. This force remains
operative when the fluid is at rest. The second term on the right side of (8-163)
represents dynamic contributions from fluid pressure (i.e., 33%) and viscous
shear stress (i.e., 67%) which act in the direction of the approach velocity. This
dynamic force vanishes under hydrostatic conditions. The friction coefficient ¢,
which is the inverse of fluid mobility, is given by

= 677MﬂuidRsphere (8-164)

if a single spherical object perturbs the fluid streamlines. The Stokes’s law
dynamic force is ¢ Vypproach, Which applies for Reynolds number less than 0.5
based on the sphere diameter. The Stokes’s law expression for the friction
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coefficient, given by equation (8-164), is combined with Einstein’s diffusion
equation to estimate liquid-phase diffusion coefficients.

Friction Factor/Reynolds Number Correlation for Flow Around Spheres. The
magnitude of the dynamic force exerted across the fluid—solid interface provides
the basis for macroscopic momentum transfer correlations. The component of
this dynamic force in the primary flow direction,

(81 ° Fﬂuid—solid)dynamic ={ az : Vapproach = b MﬂuidRsphere Vapproach

= T R* (3P Vopproacn) (8-165)

is useful to define the friction factor f.In (8-165), = R? represents a characteristic

surface area normal to the bulk fluid flow and } pVa%proaCh is the characteristic

kinetic energy per unit volume of fluid. Rearrangement of equation (8-165) yields

24

== 1
- (8-166)

f

where

1Y Vapproach (2R ) <
uw

Re = 0.5

in the creeping flow regime. The following experimental correlations have been
obtained at higher Reynolds numbers, where analytical solution of the equation
of motion is much more difficult, if not impossible:

18.5
f~ ] Re" (8-167)

0.44 500 < Re <2 x 10°

Generalized Interpretation of f vs. Re. When the characteristic velocity and
the Reynolds number increase, the friction factor for flow around solid spheres
decreases if Re < 500, and f remains approximately constant at 0.44 if Re >
500. However, the dynamic force transmitted across the fluid—solid interface
increases at higher Reynolds numbers in all flow regimes. The generalized cor-
relations are

(81 * Fﬂuid—solid)dynamic =7 R2 ( % Y Vazppmach) f (8-168)
constant
f= a (8-169)
Re

where the exponent a is the negative slope of f vs. Re on log-log coordinates. The
dependence of (8, * Fayid-solid)dynamic On density, viscosity, and approach velocity
of the fluid is

(5z ° Fﬂuid—solid)dynamic ~ Mapliu(vapproachyiu (8‘170)
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Intuitively, this interfacial force should increase for fluids with (1) higher viscos-
ity in the creeping flow regime, (2) higher density in the turbulent regime, and
(3) higher flow rates in general. Hence, the acceptable range of the exponent a is
0 < a < 1. In the creeping flow regime where a = 1,

(81 ¢ Fﬂuid—so]id)dynamic ~ MVapproaCh (8'171)

At high flow rates around spheres where Re > 500, a = 0 and

(81 ° Fﬂuid—solid)dynamic ~ Iovazpproach (8-172)

Shortcut Methods for Axisymmetric Creeping Flow in Spherical Coordi-
nates. All the previous results can be obtained rather quickly with assistance
from information in Happel and Brenner (1965, pp. 133—138). For example, the
general solution for the stream function for creeping viscous flow is

o0
v (r,0) = Z(Anr" + B,r' ™"+ Cor® + Dyr> ™)L, (cos 0) (8-173)

n=z

where the first few Legendre polynomials that describe the angular dependence
of  are

Lo(cosf) =1

Li(cosf) = —cosf
(8-174)

Ly(cosf) = % sin® 0

L3(cosf) = % sin® 0 cos 0

Boundary conditions far from the sphere suggest that only L,(cos®) is required
for Stokes’s flow around solid spheres and gas bubbles. Hence, A, = B, = C, =
D, =0 for n # 2 and

.5 2, B 4
Y(r,0) = 3 sin“ @ | Aoyr= 4+ — + Cor™ + Dyr (8-175)
r

which agrees with the separation of variables solution given by equation (8-127).
Furthermore, the z-component of the dynamic force transmitted across the fluid—
solid boundary at r = R for all spherical coordinate axisymmetric problems in
any flow regime is given by

(@ - Fﬂuid—solid)dynarnic = 4w Dy (8-176)

where D is the coefficient of %r sin” @ in the final expression for . Alternatively,

(5z ° Fﬂuid—solid)dynarnic = 87[“ lim (8'177)

r—o0

{1/f(r,9) —Y@r - 00,49)}

rsin®
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Verification that both of these prescriptions lead to Stokes’s law is left as a
problem assignment for the motivated student.

8-6.8 Momentum Boundary Conditions at a Gas—Liquid Interface

Consider two immiscible fluids in contact across a flat interface where surface
tension and surface tension gradients are not an issue. Translation of the interface
is allowed, but deformation is forbidden. Hence, (n - Vguiq)at interface = 0, Which
also implies that there is no mass transfer across the interface. n is a unit normal
vector extending from the interface into one of the phases. Continuity of the
velocity vector on each side of the interface yields the following result for contact
between a gas and a liquid:

(Vgas)at interface — (V]iquid)at interface (8'178)

If the interface is stationary, or if it translates without accelerating, then a steady-
state force balance given by equation (8-180) states that the sum of all surface-
related forces acting on the interface must vanish. Body forces are not an issue
because the system (i.e., the gas—liquid interface) exhibits negligible volume.
The total mass flux vector of an adjacent phase relative to a mobile interface is

Pphase (Vphase - Vsurface) (8' 179)

and Vjp,se Tepresents the momentum of that phase per unit mass. These considera-
tions are necessary to construct an expression for surface forces due to convective
momentum flux. If n represents a unit normal vector directed from the interface
into the liquid phase, then the force balance at a gas—liquid interface is

/{l’l * [pgasvgas (Vgas - Vsurface) + Tgas] + npgas}at interface ds
N

+ /{_n ° [pliquidVliquid (Vliquid - Vsurface) + Tliquid] - nPliquid}at interface dS =0
N
(8-180)

where S is the surface area of the system. The nondeformable nature of the inter-
face, in addition to the fact that there is no mass transfer across it, eliminates
contributions from convective momentum flux on both sides of the interface.
If the gas is ideal and monatomic and the liquid is incompressible, then New-
ton’s law of viscosity relates viscous stress to velocity gradients in each phase
as follows:

T 2
Toas = _,U«gas[VVgas + (vaas) 1+ gﬂgas (V- Vgas) Z 3i6;

1

Tiiquid = —Miiquid V Viiquid + (V Viiguia) '] (8-181)
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Since gas-phase viscosities are typically 100- to 1000-fold smaller than liquid-
phase viscosities (i.€., fgas <K [iiquid), it is reasonable to neglect viscous forces in
the gas phase relative to those in the liquid phase. The simplified force balance,
subject to these assumptions, becomes

/(npgas — I * Tiquid — np]iquid)at interface dS=0 (8'182)
N

The integrand of (8-182) must vanish since there are several choices for the
integration limits which define the system. Hence,

(N Pgas)at interface = (M * Tiiquid + MPliquid)at interface (8-183)

If surface tension y and surface tension gradients Vy are important, then the
interfacial force balance includes terms that augment the gas-phase pressure:

(npgas)at interface — (Il * Tiquid + np]iquid)at interface

1 1
— 4+ — \v/ 8-184
-|—nJ/<Rl + R2>+ Y ( )

R, and R, are the principal radii of curvature of the interface. For bubbles
dispersed in a continuous liquid phase, both R; and R, correspond to the bubble
radius. This vector force balance at the gas—liquid interface implies the following
scalar results:

1. In the absence of surface tension gradients, which only exist, at most, in
coordinate directions that constitute the surface, all shear components of
(1« Tjiguid)at interface Must vanish. This condition is invoked for flow around a
gas bubble in the next section. The importance of surface tension gradients
could invalidate the use of this boundary condition.

2. The normal component of the interfacial force balance requires that pgqs
must be balanced by the sum of pjiquiq, normal viscous stress, and sur-
face tension effects. Under hydrostatic conditions where t = 0, Laplace’s
equation for surface phenomena yields

2y
Pgas = Pliquid + — (8-185)
Rpubble

where Rpuppie 18 the bubble radius. Since the radii of curvature are infinite
for a flat interface, (8-185) indicates that pg, and pjquig are equal on both
sides of a flat interface under hydrostatic conditions.

Summary of Results for Creeping Viscous Flow Around a Gas Bubble. The
shortcut method described above and boundary conditions at a gas—liquid inter-
face are useful to analyze creeping flow of an incompressible Newtonian fluid
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around a stationary bubble. The final macroscopic results also apply to nonde-
formable bubbles that rise slowly through a quiescent liquid. When the bubble
is stationary and the fluid moves with velocity 8, Vipproach, boundary conditions
at r — oo lead to the same functional form of i that was adopted for flow
around a solid. In other words, the nature of the interface (i.e., gas—liquid or
solid—liquid) is not critical in postulating the functional dependence of ¥ (r, 6).
Hence, L,(cos ) is selected to match the boundary conditions far from the bub-
ble. The solution to E2(E%y) =0 is

B
U@, 0) = - sm ] <A2r2 + 2 L0ty Dzr) (8-186)
r

with C; = 0 and Ay = — Vipproach if the fluid impinges on the southern hemisphere
of the bubble (i.e., upward). The other boundary conditions are as follows:

1. There is no volumetric flow through the bubble:
Yy(r=R,0)=0

2. The bubble is nondeformable:

1 (oY
" :R’Q = - —_— =0
v )= Rising (ae ),_R

3. The interface is characterized by zero shear stress:

0 /vg 10v,
wolr ) # |:r8r (r ) + r 06 :|r:R

which lead to B, = 0 and D> = RVjpproach- Final results for the stream function
and both nonzero components of the velocity vector are

1/’(" 6) approachR SlIl 0(77 77)
v (r, 0) = approach cosO(l —n~ ) (8-187)
vy(r,0) = Vapproach sin6 (1 — 1 _1)

where n = r/R. Notice that the bubble does not deform in the r direction, but
there is slip at the gas—liquid interface [i.e., vy(r = R, 6) #% 0]. Similar to the
analysis presented earlier, the r and 8 components of the equation of motion yield
the following exact differential expressions for dynamic pressure in the vicinity
of the bubble:

3;19 _ 2 Vapproach _3
ar Rz
il P M Vapproach -2

Gp = e sing (8-188b)

cosf (8-188a)
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The final results for dynamic pressure and fluid pressure are

120 Vapproach 7772

ﬁ(rve)ziaoo R

cos 6 (8-189a)

Vapproz
p(r,0) = poo — pgrcosf — <%) n_z cos (8-189b)

If one applies equation (8-153) to gas—liquid interfaces, the total force exerted
by the fluid on the bubble across the nondeformable zero-shear boundary is due
exclusively to normal stresses:

Fiiuid-bubble = —RZ/ [8:(trr + P)]ac r=r Sin0dO d¢

=94, - ‘3—‘71 R3pg (Hydrostatic effect of gravity on fluid
pressure)

+6, - % 7T R Vapproach  (Hydrodynamic contribution from fluid
pressure)

+6, - %71 MR Vapproach  (Hydrodynamic contribution from )
(8-190)

The z-component of the dynamic force transmitted across the gas—liquid bound-
ary at » = R is given by

(8z * Fﬂuid-bubble)dynarnic =4 ,U/D2 =4 MAluid Rboubble Vapproach (8' 19 D

due to normal viscous stress 7,, (i.e., 67%) and fluid pressure (i.e., 33%). This
is the Stokes’s law analog for zero-shear interfaces, whereas results presented
earlier in this chapter apply to high-shear liquid—solid interfaces. The dimen-
sionless macroscopic momentum transfer correlation for creeping viscous flow
of an incompressible Newtonian fluid around a bubble is f = 16/Re, where
Re < 0.5 is based on the bubble diameter.

Creeping Viscous Flow Solutions for Gas Bubbles Which Rise Through
Incompressible Newtonian Fluids That Are Stagnant Far from the Submerged
Objects. A nondeformable bubble of radius R rises through an incompressible
Newtonian fluid such that

Vpubble = 0z Voubble (8-192)

This motion of the bubble induces axisymmetric two-dimensional flow in the
liquid phase such that creeping viscous flow is appropriate. The Reynolds number
for this problem is based on the rise velocity of the bubble, its diameter (i.e.,
2R), and the momentum diffusivity of the liquid. Since the left sides of both the
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low-Reynolds-number equation of motion and the ¢-component of the vorticity
equation are neglected, one calculates the stream function from

E*(E*Y) =0 (8-193)
The general solution for ¢ is

A
¥ (r,0) = sin’6 (— + Br+Cr*+ Dr4> (8-194)
r

Expressions for the two nonzero velocity components are given by

(r,0) L o 2 9<A+B+C+D2> (8-195a)
v, 0) = — — —— = —2C080 | = + — r -195a
r2sinf 96 3
1 oy . A B 2
v(r,0) = ——— =sinf | —— + — +2C +4Dr (8-195b)
rsin@ or 3

If one chooses an orthogonal body-fixed coordinate system in which the center
of the bubble coincides with the origin of the coordinate system throughout the
motion of the bubble, then microscopic results for ¥, v,, and vy are given by
equation (8-187), where the bubble and the coordinate system were stationary. In
other words, an observer in this translating reference frame sees a stationary bub-
ble and a fluid that moves downward. This is the preferred approach to calculate
the steady-state fluid velocity profile and analyze convective mass transfer via
boundary layer theory at very large Schmidt numbers. A slightly different anal-
ysis that yields the same macroscopic results, but different microscopic results,
is based on the following conditions: (1) the bubble achieves its terminal rise
velocity to justify steady-state analysis, and (2) calculations are performed when
the center of the bubble coincides with the origin of a stationary orthogonal
coordinate system. Now the bubble is rising and the fluid is stagnant at large
r, according to an observer in this stationary reference frame. The latter anal-
ysis, which employs a stationary coordinate system, requires that the following
boundary conditions should be invoked to calculate integration constants A, B,
C, and D.

1. The fluid is quiescent far from the bubble, which implies that

v (r > 00,0)=0

vo(r - 00,0) =0

2. The bubble is nondeformable. Hence, the radial component of the bubble
rise velocity must match v, of the liquid at the gas—liquid interface:

v (r =R, 0) =8, + Vouble = Vbubble COS 0
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3. The interface is characterized by zero shear stress:

0 (v 1 0v,
r :R = — — | — — :0
wo(r ) M|:r8r(r>+r 00 :|r_R

Condition 1 requires that C = 0 and D = 0. According to condition 2,

A B
—2cos0 <F + —> = Vbubble COS 6 (8-196)

R

At any position within this Newtonian fluid, one calculates the r—6 component
of the viscous stress tensor as follows:

in6 d A + B + 2sin6 A + B
—udrsing|—(—-——+—= sinf | — 4+ —
H dr ré 2 rv 2

610 A sin 0
= Ao (8-197)
r

Tro

Obviously, integration constant A must be zero to satisfy the zero shear condition 3
at the gas—liquid interface. Now condition 2 is satisfied when 2B = — R Vyyppe.
The final results for the stream function and the fluid velocity profile are

¥ (r,0) = — 1 Vouble R7 sin” 6
v, (7, 0) = Voubblen” ' cos @ (8-198)

vy (r, 6) = —5 Vounbien)” ' sin 6

where n = r/R. If one multiplies the coefficient of %r sin” @ in the expression for
¥ by 41 pquig, then the Stokes’s law hydrodynamic drag force exerted by the fluid
on the bubble across the interface at » = R is obtained (i.e., —47 tauid R Voubble)-
This force is negative because it acts (1) in the flow direction of the approaching
fluid when the bubble is stationary, (2) in the opposite direction of the motion
of the submerged object when the fluid is stationary, or (3) in the direction that
describes the relative motion of the fluid with respect to the submerged object.
In all of these cases, the hydrodynamic drag force exerted by an incompressible
Newtonian fluid on the rising bubble is downward, in the negative z direction.

8-7 POTENTIAL FLOW THEORY

Generalized vector analysis is presented in this section for fluid flow adjacent to
zero-shear interfaces in the laminar regime. The following adjectives have been
used to characterize potential flow: inviscid, irrotational, ideal, and isentropic.
Ideal fluids experience no viscous stress because their viscosities are exceedingly
small (i.e., # — 0). Hence, the V - 7 term in the equation of motion is negligible
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even though velocity gradients exist. The irrotational aspect of potential flow
provides a convenient mathematical description from which one constructs an
expression for the velocity vector. Since irrotational flow implies that there is no
vorticity, the defining equation for potential flow at the microscopic level is

Vxv=0 (8-199)

For solid-body rotation at constant angular velocity, the vorticity vector, defined
by %(V X v), is equivalent to the angular velocity vector of the solid. For
two-dimensional flow in cylindrical coordinates, with v,(r, 8) and vy(r, 6), the
volume-averaged vorticity vector,

1 1 1 10v, Odvy v,  dv,
—/—(va)dV=7/ l———— )+ - —
1% Vv 2 27TR2L Vv r 06 8Z 82 ar
19d(rvg) 109w,
S| = __
+ Z|: or r 060

]}rdrd@ dz (8-200)

simplifies considerably to

1 1 w R 1 9v,
—/—(va)dv:—az/ / 13t 10vet 0 o
V)2 2nR?2 " Jo Jo Lr Or r 00

1

2w
27TR2 Z{\/O\ Ue(r )

R
—/ [v,(r, 0 = 277) — v, (r, = 0)]dr} (8-201)
0

The second integral of (8-201) vanishes, due to the periodicity of v, at 6 =0
and 2m. Hence, the volume-averaged vorticity

I/I[V 1dV ! 3f2” (r =R, 0)do
— | =[V xv = — vo(r = R,
v /]2 2R )y

) =R
— M =36, (Q) (8-202)
R
is equivalent to the average angular velocity of the fluid (€2), based on the
following definition of the average 6-component of the velocity vector at the
outer boundary where r = R:

2
(vo(r = R)) = %f vo(r = R,0)d0 (8-203)
0

Potential flow in liquids implies that there are no rotational tendencies within the
fluid, especially near a boundary. The microscopic description of potential flow,
given by (8-199), requires that the vorticity vector must vanish. The macroscopic
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description of potential flow, given by (8-202), requires that there is no large-
scale vorticity, which implies that the volume-averaged vorticity vector must
vanish. From a mathematical viewpoint based on the microscopic description,
the vorticity vector will vanish if one identifies any scalar velocity potential ®
(not to be confused with the gravitational potential energy per unit mass of fluid),
such that v = V& because V x V& = 0 via Stokes’s theorem if & is an exact
differential. This is true for any multivariable scalar function that is analytic
because the order of mixed second partial differentiation can be reversed without
affecting the final result. Hence, the requirement of no vorticity at the microscopic
level, which is consistent with irrotational flow, suggests that the fluid velocity
vector can be expressed as the gradient of a scalar velocity potential. However,
the requirement of no vorticity does not provide a unique function for ® because
any scalar that is an exact differential will satisfy V x V& = 0. The unique
scalar velocity potential for a particular inviscid flow problem is calculated by
invoking incompressibility. Hence,

V.v=V.Vd=Vd=0 (8-204)

which is Laplace’s equation. Potential flow solutions in n dimensions (i.e, 1 <
n < 3) are obtained by solving one second-order partial differential equation (i.e.,
Laplace’s equation) for & in terms of n independent spatial variables. This is
one of the most straightforward routes to calculate three-dimensional flows. For
special classes of two-dimensional flows in which the two important components
of the velocity vector are not a function of the spatial coordinate in the no-flow
direction, it is also possible to solve potential flow problems rather easily via the
stream function . In this case, 1 is constructed to guarantee incompressibility. In
other words, the relation between v and the two important velocity components
automatically satisfies the equation of continuity for any scalar, such as i, which
is an exact differential. The unique stream function that corresponds to a specific
potential flow solution is obtained by invoking no vorticity at the microscopic
level. Fluid parcels move along streamlines, where each streamline is defined by
a constant value of . Streamlines intersect lines of equipotential (i.e., defined
by a constant value of ®) at right angles. Hence, the complete solution to poten-
tial flow problems can be visualized as a web constructed from streamlines and
equipotentials. For two-dimensional planar potential flows that do not contain an
axis of symmetry, both ® and 1 satisfy Laplace’s equation; V>® = 0 is a con-
sequence of invoking incompressibility, and V2y = 0 represents the nontrivial
component of the fluid vorticity vector, which must vanish for irrotational flow.
Hence, if ® and 1 represent the scalar velocity potential and stream function,
respectively, for a planar potential flow problem, then one can interchange ®
and i to generate another planar potential flow solution because these two func-
tions both satisfy Laplace’s equation. For two-dimensional axisymmetric flows in
cylindrical and spherical coordinates, the nature of the relation between the stream
function and the important components of the velocity vector, together with the
fact that the vorticity vector must vanish, yields E>y = 0 instead of Laplace’s
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equation. However, the scalar velocity potential ® is always calculated from
Laplace’s equation for all potential flow problems in any coordinate system.

8-7.1 Use of the Potential Flow Equation of Motion to Calculate
Dynamic Pressure

The discussion in the preceding section reveals that n-dimensional ideal fluid
flow solutions can be obtained without using the equation of motion. Now the
generalized vector force balance is manipulated to calculate dynamic pressure.
The starting point is the equation of motion for generalized incompressible fluids,
given by equation (8-39):

av
p(a +V-VV> =—-V.7-VP (8-205)
The following assumptions are invoked. Steady-state analysis eliminates the first
term on the left side of (8-205). The absence of viscous stress in ideal fluids
eliminates the first term on the right side. Hence, the steady-state potential flow
equation of motion reduces to

pvVv=-VP (8-206)

This represents a balance between forces due to convective momentum flux, fluid
pressure, and gravity. The vector-tensor identity presented in Problem 8-7 is used
to re-express forces due to convective momentum flux:

V-Vv=1V(.v) —vx (V xV) (8-207)

Obviously, the second-term on the right side of this identity vanishes for ideal
fluid flow in which the vorticity vector vanishes. Hence, for incompressible fluids
with constant density,

pv-Vv=V(Zpv-v)=-VP (8-208)
Rearrangement yields
VGV v+P) =0 (8-209)

Steady-state analysis implies that the combination of fluid kinetic energy per
unit volume and dynamic pressure is not time dependent. The potential flow
equation of motion suggests that this combination of fluid kinetic energy per
unit volume and dynamic pressure is not a function of any independent spatial
variable. Consequently,

%pv -V + P = constant (8-210)

This is the ideal isentropic Bernoulli equation, or the ideal mechanical energy bal-
ance, which neglects the irreversible dissipation of mechanical energy to thermal
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energy. The neglect of friction loss is reasonable for ideal fluids. Equation (8-210)
states that the combination of fluid kinetic energy per unit volume, fluid pressure,
and gravitational potential energy per unit volume is the same at any point within
the fluid. The constant in (8-210) is easiest to evaluate in the horizontal refer-
ence plane which corresponds to the zero of potential energy. After the velocity
potential, or the stream function, and the nonzero components of the velocity
vector have been solved, dynamic and fluid pressure distributions are calculated
as follows:

P = p + pgh = constant — %,ov -V (8-211)

8-7.2 Applications of Potential Flow

In the preceding two sections we described the general methodology for analyz-
ing laminar flow of ideal fluids. In the following sections we present detailed
calculations for potential flow around spheres and cylinders. In most cases, it is
necessary to put a submerged object into the flow field to distort the streamlines
and equipotentials, and generate a challenging problem. However, one must exer-
cise caution when applying the results that are obtained. For example, there is
no difference between potential flow solutions around solid spheres and nonde-
formable gas bubbles. The nature of the interface never influences the solution of
Laplace’s equation or the boundary conditions because viscous stress is neglected.
From a practical viewpoint, potential flow around nondeformable gas bubbles is
more realistic and useful than the corresponding flow problems around solid
spheres because gas—liquid interfaces are characterized by zero shear and per-
fect slip. In contrast, solid—liquid interfaces exhibit significant viscous shear and
no slip. Since ideal fluids have negligible viscosity, all potential flow solutions
reveal significant slip with respect to the velocity component that is parallel to the
interface. Consider the following comments about potential flow theory prior to
adopting any of the results that emerge from the solution of Laplace’s equation.

1. When a nondeformable object is implanted in the flow field and the stream-
lines and equipotentials are distorted, the nature of the interface does not
affect the potential flow velocity profiles. However, the results should not
be used with confidence near high-shear no-slip solid—liquid interfaces
because the theory neglects viscous shear stress and predicts no hydrody-
namic drag force. In the absence of accurate momentum boundary layer
solutions adjacent to gas—liquid interfaces, potential flow results provide a
reasonable estimate for liquid-phase velocity profiles in the laminar flow
regime. Hence, potential flow around gas bubbles has some validity, even
though an exact treatment of gas—liquid interfaces reveals that normal
viscous stress is important (i.e., see equation 8-190). Unfortunately, there
are no naturally occurring zero-shear perfect-slip interfaces with cylindri-
cal symmetry.
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2. When forces due to convective and viscous momentum flux are equally

important, and neither creeping flow nor potential flow is appropriate, bound-
ary layer theory must be invoked. Coupled solutions to the equation of
continuity and the equation of motion require knowledge of the dynamic pres-
sure gradient within the momentum boundary layer. Potential flow theory is
employed to calculate the dynamic pressure gradient outside the momentum
boundary layer where there are no high-shear solid—liquid interfaces. Hence,
V3 is calculated from the potential flow equation of motion (i.e., equation
8-206), and this dynamic pressure gradient is imposed across the boundary
layer. In this manner, two-dimensional momentum boundary layer problems
are solved by considering the equation of continuity and the component of
the equation of motion in the primary flow direction to calculate the two
nonzero components of the fluid velocity vector. Potential flow theory pro-
vides useful information for momentum boundary layer problems in a region
where there are no solid surfaces. It is difficult to envision why the dynamic
pressure gradient in the primary flow direction should be different within the
momentum boundary layer than outside the boundary layer.

Steady-state heat conduction in pure solids is described by the following
thermal energy balance: V - q = 0, where q represents the molecular flux
of thermal energy, and contributions from convective heat transfer are iden-
tically zero. If one relates q to temperature gradients via Fourier’s law of
heat conduction for an isotropic solid, then the pure-component thermal
energy balance with no chemical reactions reduces to

V.q=V-(—kicVT) = —krcV - VT = —kycVET =0 (8-212)

where kyc is the thermal conductivity of the solid. Hence, one obtains
temperature profiles in pure solids via the solution of Laplace’s equation.
This implies that generalized potential flow solutions for the scalar velocity
potential are analogous to temperature profiles in solids with the same
symmetry. The heat transfer problem is described appropriately as steady-
state potential flow of heat in solids.

The velocity vector for viscous flow through porous media is described
by Darcy’s law, v = —kV33, where VP is the dynamic pressure gradient
and k is the conductivity of the medium, which varies inversely with fluid
viscosity. This relation between v and V3 is reasonable when the particle
size is small relative to the dimensions of the system, and the quantities
of interest are averaged spatially over the cross section of a macroscopic
unit cell that captures the periodicity of the porous medium. Darcy’s law
implies that there is no large-scale volume-averaged vorticity on the unit-
cell level. However, the microscopic vorticity vector does not vanish within
the momentum boundary layer adjacent to each individual particle. Since
the microscopic description of flow through porous media is too difficult
to formulate and solve, one relies on expressions for v and P that are
averaged spatially over the cross section of each unit cell. If one invokes
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incompressibility via the equation of continuity, then dynamic pressure
obeys Laplace’s equation:

V.ev=V.(—kVP) = —kVP=0 (8-213)

Hence, temperature profiles in pure isotropic solids, the scalar velocity poten-
tial for ideal fluid flow, and dynamic pressure profiles for flow through porous
media are all based on the solution of Laplace’s equation. Whenever the diver-
gence of a vector vanishes and the vector is expressed as the gradient of a scalar,
Laplace’s equation is required to calculate the scalar profile.

Potential Flow around a Gas Bubble Via the Scalar Velocity Potential. An
incompressible fluid with constant approach velocity (i.e., 6;Vapproacn) flows
upward past a stationary nondeformable gas bubble of radius R. This two-
dimensional flow is axisymmetric about the ¢-axis such that v, = 0 and there is
no ¢-dependence of v, or vy. Hence, one must solve Laplace’s equation for the
scalar velocity potential ®(r, 8) in spherical coordinates because this coordinate
system provides the best match with the macroscopic boundary at r = R. The
appropriate partial differential equation for @ is

19 (,00 1 0 0P

—— — ——— |sin6— | =0 8-214

2 ar (r or ) t 25inG 30 (Sm a@) (8-219)
The boundary condition at large r is employed to calculate the radial and tan-

gential velocity components, as well as the functional form of the scalar velocity
potential. Since the velocity vector far from the bubble is

V=34 Vapproach atr - oo (8-215)

vector algebra allows one to determine the components of v in the » and 6
directions. Then this information is coupled with the definition of v in terms of
the gradient of the scalar velocity potential. For example,

0P

or
(8-216)

v =08, v=_(5 - (Sz)Vapproach = Vapproach cosf = (Vq))r—component =

Integration of (8-216) with respect to r at constant 6 yields an expression for ®
at large r, realizing that the constant of integration can be a function of 6:

D (r — 00, 0) = Vapproach? cos 8 + f(8) (8-217)

Now, this expression for the scalar velocity potential far from the bubble is
compared with the tangential velocity component:

T .
vg =89 - V= (3 - az)vapproach = Vapproach Cos (E + 9) = _Vapproach sin 6

100

=(V cI))G-C()mp()nent = -

— 8-218
r 00 ( )
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Information about the integration constant f(6) from (8-217) is obtained by using
the expression for @ at large r in equation (8-218):

P . . daf
0 = — Vapproach? SiN6 = —Vipproacn? $In6 + 70 (8-219)

This indicates that d f/d6 = 0, or f = C; (i.e., constant). It is acceptable to set
C) to zero because any constant will satisfy Laplace’s equation. Furthermore,
the value of C; does not affect the velocity profile because one calculates the
components of the velocity vector from the gradient of ®, and the gradient of
C; vanishes. At most, C; will affect the magnitude of ¢ along an equipotential.
Analysis of this problem far from the bubble yields the following expression for
the scalar velocity potential:

@ (r — 00, 0) = Vapproach?” €0s 0 (8-220)

where cos@ is one of the Legendre polynomials that represents the solution to
the angular part of Laplace’s equation for two-dimensional axisymmetric flow in
spherical coordinates via separation of variables. Hence, if

@, 0) = F(r)G(0) (8-221)

and one moves closer to the bubble at constant 8, then F(r) will change (i.e.,
terms like 1/7", with n > 0, will become important when r is not infinitely large)
but G(0) should not deviate from its functional form at large r (i.e., cos9). In
light of this analysis and discussion, one postulates the following functional form
for the scalar velocity potential at any position with the incompressible liquid:

&(r,0) = F(r)cosf (8-222)

where F(r) is obtained by solving Laplace’s equation. Since the angular depen-
dence of ® has been determined from the boundary condition far from the bubble,
Laplace’s equation reduces to a second-order ordinary differential equation for
F (r). This is illustrated as follows:

2 cosf d [ ,dF Fry d (. d
Voo = —|rr— )+ —— — | sinf——cosf ) =0 (8-223)
r2 dr dr r2sin6 do do

Manipulation of the angular (i.e., second) term in the spherical coordinate Lapla-
cian operator reveals cosf dependence, analogous to the radial term. Hence, in
operator notation,

V[F(r) cos 6] = C(:—SQ@ [j—r <r2;—r) - 2} F(r)=0 (8-224)
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Both terms in brackets in (8-224) will be proportional to r" if one guesses the trial

function F(r) ~ r". Hence, r" can be factored and the sum of both coefficients
within brackets in (8-225) must vanish to satisfy Laplace’s equation. The result is

cosOn(n+1) —=21r""2=0 (8-225)
which exhibits the following roots: n = —2, 1. The general solution for the scalar

velocity potential is obtained by adding the solution for each value of n because
Laplace’s equation is linear in . Hence,

B
®(r, 0) = cos b (Ar + —2> (8-226)
r

where the integration constants A and B are determined from the boundary
conditions. The solution for n = 1 is consistent with the boundary condition far
from the bubble, because at large r,

O(r - 00,0) = Arcos6 (8-227)

This boundary condition, given by (8-220), reveals that A = Vypproach- The non-
deformable nature of the bubble requires that v, must vanish at the gas—liquid
interface. This boundary condition at r = R translates into

9 2B
v.(r=R,0) = <—> = cosf (A — —) =0 (8-228)
ar J,_r R3

and allows one to solve for the integration constant B = %R3 Vapproach- The final
results for the scalar velocity potential and both components of the velocity
vector are

1
® (7, ) = Vapproach R cos 0 (n + —n2>

2
9 »

v(r,0) = a_r = Vapproach cosf(1 — n ) (8'229)
o =222 __y ing (14 2n
ro)=——=— in -

Vo (r, - 90 approach S 277

where n = r/R. Notice that the tangential velocity component exhibits significant
slip at the gas—liquid interface because vy # 0 at r = R, except for 6 =0, w. It
is relatively straightforward to calculate the dynamic pressure distribution after
the two important velocity components have been determined. Application of

P = p + pgh = constant — %pv .V (8-230)
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yields

1 /R\? 1 /R\®
2 2 2
P, 0) = Poo — 0 Vpproach |:5 <7> (1 —3cos“0) + 3 <_r> (14 3cos 9)j|

(8-231)
where
Poo + % 0 VazppmaCh = constant (8-232)
far from the bubble. Fluid pressure is related to dynamic pressure via
p(r,0) =P, 0) — pgrcosb (8-233)

If the xy plane at z = 0 and 6 = 7 /2 is chosen as the reference for the gravita-
tional potential, then P, is equivalent to the fluid pressure po, in this reference
plane far from the bubble. The final result for the fluid pressure distribution is

p(r,0) = poo — pgr cos

5 1 /R\* 5 1 (R\® 5
— PVpproach S 5 (1 —3cos 9)+§ ~ (1+3cos”0) (8-234)

where the second term on the right side of (8-234) represents the effect of gravity
on fluid pressure, and the predominant third term, which vanishes far from the
bubble, is due to the fact that the bubble disrupts or perturbs fluid streamlines
in its vicinity. The total vector force exerted by the fluid on the bubble across
the gas—liquid interface at » = R results solely from pressure forces, because
viscous forces are unimportant for ideal fluids. Application of equation (8-153)
to ideal fluids with no viscous stress (i.e., T ~ 0) yields

2 T
Fiuid-bubble = —R2/ / 3,0, 9)p(r = R,0)sin0dOd¢ (8-235)
o Jo

The fluid pressure distribution at the gas—liquid interface in the potential flow
regime is

p(r=R,0) = p — %pVa%pmaCh — pgRcosH + %pVa%pmaCh cos’d  (8-236)

where the third term on the right side of (8-236) represents the effect of gravity
and the fourth term results from perturbation of fluid streamlines. Symmetry
considerations suggest that the first, second, and fourth terms on the right side
of (8-236) average to zero over the bubble surface and do not contribute to the
total vector force. This can be verified by detailed calculations. The symmetry
of the dynamic contribution to fluid pressure (i.e., & cos? 6), as illustrated by the
fourth term on the right side of (8-236), yields no dynamic contribution to the
total vector force exerted by the fluid on the bubble. In other words, Fayig-bubble
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for an ideal fluid is the same in any flow regime, provided that the fluid does not
deform the bubble, and this force that results from the gravitational contribution
to fluid pressure can be calculated from hydrostatics. This statement is verified in
the following section via inspection of the stream function for ideal flow around
a bubble. The final result for Fayid-bubble 1S

2 pm 4
Fauig-bubble = pg R> / / 8,(0, p)cosOsinhdb de = gnR3pg8Z (8-237)
0 0

which corresponds to a buoyant force. Hence, the friction factor f and the friction
loss factor e, are zero for ideal fluids.

Potential Flow around a Gas Bubble Via the Stream Function. The same
axisymmetric flow problem in spherical coordinates is solved in terms of the
stream function 1. All potential flow solutions yield an intricate network of
equipotentials and streamlines that intersect at right angles. For two-dimensional
ideal flow around a bubble, the velocity profile in the preceding section was
calculated from the gradient of the scalar velocity potential to ensure no vorticity:

0P 100
v=V® =450, + vy =8 — +8—— (8-238)
ar r 06
Now, v, and vy are related to the stream function i to guarantee incompress-

ibility:

1 oy 1 oy
=— — = — 8-239
T T 2sng 90 T rsing or (8-239)
The gradient to a streamline in spherical coordinates is
a 19
Vo =6 45,2V 5 vrsing — v, sin8 (8-240)
or r 06

If streamlines intersect equipotentials at right angles, then the gradient to a stream-
line must be perpendicular to the gradient to an equipotential. Hence,

Vi « VO = v, vgr sinf — vgv,rsinf =0 (8-241)

One solves for the stream function by invoking no vorticity at the microscopic
level. Since v, and vy are both functions of r and 6, with vg = 0, the r and
6 components of the vorticity vector are trivially zero. The ¢-component of
(V x v) yields an equation that must be solved for i (r, 6). Hence, one combines
the nontrivial component of the vorticity vector with the relations between v,, vy
and v, given by (8-239):

1 9(rvg) 1 0v,
r or r 060

10 1 0 190 1 d
Y (L A P A )
r or \sinf 9r r 30 \r2sinf 96

(V x V)¢-component =
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Multiplication of (8-242) by r sin6 yields

9%y sinf 9 < 1y

4 — ) =E* =0 8-243
ar? + r2 96 \sinf 89) v ( )

Hence, two-dimensional axisymmetric potential flow in spherical coordinates is
described by V2® = 0 for the scalar velocity potential and E%y = 0 for the
stream function. Recall that two-dimensional axisymmetric creeping viscous flow
in spherical coordinates is described by E2(E%y) = 0. This implies that potential
flow solutions represent a subset of creeping viscous flow solutions for two-
dimensional axisymmetric problems in spherical coordinates. Also, recall from
the boundary condition far from submerged objects that sin’ @ is the appropriate
Legendre polynomial for the E? operator in spherical coordinates. The methodol-
ogy presented on pages 186 through 188 is employed to postulate the functional
form for :

WV (r,0) = F(r)sin>6 (8-244)

and calculate its radial dependence via

2 2 -2 -2 d? 2
E“Y =E°[F(r)sin“f]l=sin"0|———=)F@#) =0 (8-245)
dr?  r?
A power function is appropriate [i.e., F(r) ~r"], and upon substitution
into (8-245),

sin?0ln(n — 1) = 2r""2=0 (8-246)

The two roots are n = —1, 2, which represent a subset of the four roots for
the radial function for two-dimensional axisymmetric creeping viscous flow in
spherical coordinates (i.e., n = —1, 1, 2, 4). One of the roots for the potential
flow problem (i.e., n = 2) is consistent with the functional form of i far from
submerged objects. The potential flow solution is

) A
V(r,0) = sin’0 <7 + Br2> (8-247)

Since the coefficient of %r sin?6 in (8-247) for the stream function is zero,
because E2[F(r)sin?6] =0 with F(r) ~ r" is not satisfied for n = 1, there
is no dynamic force exerted by the fluid on the bubble across the gas—liquid
interface. This claim agrees with calculations of the interfacial vector force from
the preceding section. The boundary conditions required to determine A and B
in (8-247) are

Y (r = 00,0) = — 1 Vipproaenr” sin” 0 (8-248a)
Y(r=R,0)=0, because there is no flow through the bubble (8-248b)
v.(r=R,0) =0, for a nondeformable bubble (8-248¢)
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Condition (8-248a) is satisfied when B = —%Vappmach. Conditions (8-248b) and
(8-248c) are redundant because both yield the following value for the integration
constant A = —BR?. The final expression for the stream function is

Y (r,0) = L Vapproacn RZsin? 0 (™" — ) (8-249)

where n = r/R. As expected, the stream function vanishes at all positions on the
surface of the bubble because there is no flow through this stationary submerged
object. It is left as an exercise for the student to verify that v, and vy, calculated
from (8-249) for ¢, are exactly the same as those based on the scalar velocity
potential from the preceding section (i.e., see equations 8-229).

Potential Flow Solutions for Gas Bubbles Which Rise through Incompressible
Fluids That Are Stagnant Far from the Submerged Objects. A nondeformable
bubble of radius R rises through an ideal fluid such that

Voubble = 8z Vbubble (8-250)

This motion of the bubble induces axisymmetric two-dimensional flow in the lig-
uid phase. In the potential flow regime, one calculates the scalar velocity potential
®(r, 0) via Laplace’s equation. The general solution in spherical coordinates is

B
®(r, ) = cos (Ar + —2) (8-251)
r

and the two nontrivial components of the fluid velocity vector are

oD 2B

v,(r,0) = — =cosf | A — — (8-252a)
or r3
100 . B

v(r,0) = —— = —sinf (A + — (8-252b)
r 06 r3

The upward motion of the bubble achieves terminal velocity, and one determines
the integration constants A and B when the center of the bubble coincides with
the origin of a stationary orthogonal coordinate system. The appropriate boundary
conditions are described as follows:

1. The fluid is quiescent far from the bubble, which implies that
v(r > 00,0)=0 ve(r - 00,0) =0
2. The bubble is nondeformable, which implies that its shape does not change
and its radius R remains constant. Hence, the radial component of the

bubble rise velocity must match v, of the liquid at the gas—liquid interface:

v (r =R, 0) =8, + Vouble = Voubble COS 0
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Condition 1 implies that A = 0. Now, integration constant B is calculated from
condition 2, which yields —2B = R>Vypie. The final results are

®(r,0) = — 3 Voubole RN~ cOs 60
v, (7, 0) = Viubblen > €08 0 (8-253)

vy (r, 0) = 5 Voubblen) > sin 6
where n =r/R.

Potential Flow Transverse to a Long Cylinder Via the Scalar Velocity
Potential. The same methodology from earlier sections is employed here when
a long cylindrical object of radius R is placed within the flow field of an incom-
pressible ideal fluid. The presence of the cylinder induces v, and vy within
its vicinity, but there is no axis of symmetry. The scalar velocity potential for
this two-dimensional planar flow problem in cylindrical coordinates must satisfy
Laplace’s equation in the following form:

vove— L0 () 1P (8-254)
. = —— | r—— - = -
or r2 962

The cylindrical axis coincides with the z axis of a rectangular Cartesian coordinate
system, and fluid approaches the cylinder with constant velocity along the x axis:

V=2, Vapproach atr — oo (8-255)

This condition far from the submerged object is used to determine the functional
form of the scalar velocity potential. For example, in cylindrical coordinates,

ad
U = 8r V= (5r . 8X)Vappr0ach = Vapproach cosf = (Vq))r-component = 5

(8-256)

Integration of (8-256) with respect to r at constant 0 yields an expression for ®
at large r, realizing, once again, that the constant of integration can be a function
of 0:

q>(r — 00,0) = Vapproachr cos 6 + f(@) (8'257)
Now, consider the tangential velocity component and evaluate f(6):

Vg =8+ V=(Jp - Sx)vapproach = — Vapproach sin 6

19¢ . 1df
=(V cI))9-comp0nent = - - Vapproach sinf + ; %

— = 8-258
r 00 ( )
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Comparison of these two expressions for vg suggests that it is acceptable to
neglect f(0) (i.e., f = 0) and calculate the scalar velocity potential far from the
cylinder as follows:

@ (r — 00, 0) = Vapproach?” €0s 0 (8-259)

Hence, cos6f is a good function that satisfies the angular part of Laplace’s
equation for ®(r, 8) via separation of variables for axisymmetric flow in spher-
ical coordinates, and two-dimensional planar flow transverse to a long cylinder.
At any position with the incompressible liquid, one postulates that

O (r,0) = F(r)cosf (8-260)
where F(r) is calculated from Laplace’s equation:
cosf d [ dF F(r) d?
= — | r— —
rodr \ dr r2 do?

The fact that cos 6 is a good function for the angular part of the scalar velocity
potential is obvious because both terms in Laplace’s equation reveal the same
angular dependence. Once again, F(r) =~ r" is appropriate:

) cos6 [ d d 1
VZ[F(r)cosf] = . [ ( )——]F(V)

Sl Pl
dr \ dr r

=cosO(n*> = r" 2 =0 (8-262)

Vi

(cosf) =0 (8-261)

Equation (8-262) exhibits roots at n = £1. The general solution for ® is
B
O(r,0) =cosb <Ar + —) (8-263)
r

The solution for n =1 is consistent with the boundary condition far from the
cylinder, because at large r,

O(r — 00,0) = Arcos6 (8-264)

This boundary condition, given by (8-259), reveals that A = Vyppr0ach. The non-
deformable nature of the interface requires that v, must vanish at r = R. Hence,

od B
v,r=R,0)=(— =cosf|A—— ) =0 (8-265)
or J._gr R?
which is satisfied when B = R2Vappmach. The final results for the scalar velocity
potential and both components of the velocity vector are
D(r,0) = Vapproach R cost(n + 7771)
od 5
Ur(}", 9) = W = Vapproach cosf(1 — n ) (8'266)

10
'Ug(r,@) ==

r % = _Vapproach sinf(1 + )7*2)
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where n = r/R. Once again, slip occurs at the interface because vy does not
vanish at r = R, except for 8 =0, 7.

Potential Flow Transverse to a Long Cylinder Via the Stream Function. For
two-dimensional planar flow in cylindrical coordinates, the radial and polar veloc-
ity components are related to the stream function ¢ via the following expressions:

19 9
v, (r, 0) = —;% vp(r,0) = 3—? (8-267)

It is left as an exercise for the student to verify that these relations between the
two nonzero velocity components and i conserve overall fluid mass, and that
streamlines intersect equipotentials at right angles in cylindrical coordinates. The
stream function is obtained by invoking no vorticity at the microscopic level.
Only the z-component of the fluid vorticity vector yields nontrivial information
about . For example,

19Grvg) 1,

(V x V)z—componem =

r or r 00

10 oy 10 /10y 2

- (2= —— [ )=V*¢y =0 (8-268
r8r<r8r>+r80<r89) v ( )

In summary, Laplace’s equation must be satisfied by the scalar velocity potential
and the stream function for all two-dimensional planar flows that lack an axis
of symmetry. The Laplacian operator is replaced by the E? operator to calculate
the stream function for two-dimensional axisymmetric flows. For potential flow
transverse to a long cylinder, vector algebra is required to determine the functional
form of the stream function far from the submerged object. This is accomplished
from a consideration of v, and vy via equation (8-255):

10y
U =& + V= 1(8 - 8x) Vapproach = Vapproach €0S 6 = Y (3-269)

Integration of (8-269) with respect to 6 at constant r yields an expression for ¥
at large r. Now, the constant of integration can be a function of r:

Y (r — 00,0) = —Vipproach? sinf + f(r) (8-270)
Evaluate f(r) via consideration of the tangential velocity component:
vg =389+ V=15 ‘Sx)vapproach = _Vapproach sin@
_ af

= ar = _Vapproach Sin@ + W (8—271)
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Hence, d f/dr = 0. Once again, the integration constant can be neglected without
loss of generality, and the stream function far from the cylinder is

Y (r — 00,0) = —Vipproaenr $in 0 (8-272)

One concludes that sinf is a good function which represents the solution to the
angular part of Laplace’s equation for the stream function in cylindrical coor-
dinates for two-dimensional flow transverse to a long cylinder. This conclusion
is verified by postulating the functional form for ¢ at any position within the
incompressible liquid:

Y (r,0) = F(r)sinf (8-273)

and demonstrating that both terms in Laplace’s equation reveal the same angular
dependence. Hence,

vy sin@ d [ dF N F(r) d? (sin6)
= —r— —~>——(sin
rodr ra’r r2 de?
sinf [ d d 1
= —|r—)=—=|F@) = =274
r |:dr <rdr> ri| r)=0 (8-274)

Except for the difference between sin6 and cos 6, notice the similarity between
this form of Laplace’s equation and (8-262) for the scalar velocity potential ®.
In fact, the general solution for the radial part of the stream function is exactly
the same as that for ® from the preceding section. This is expected because P
and i satisfy the same equation for two-dimensional ideal flows that lack an
axis of symmetry. The general solution for v is

Y(r,0) =sinf <Ar + g) (8-275)

Consistency with the boundary condition far from the cylinder, given by (8-272),
is obtained when A = —Vpr0ach, and the nondeformable nature of the interface
requires that

(r=R,0) = L (v - 1 P ) (8-276)
v (r=R,0) = 7\ 3g r:R_ cos )= -

which is satisfied when B = RzVappmaCh. The final results for the stream function
and both nonzero components of the velocity vector are

W(ra 0) = _VappmachR Sin@(n - rlil)

10y 2
v(r0)=——— = Vapproach cosf(1 —n"") (8-277)
r a6
oy . )
ve(r,0) = — = _Vapproach sinf(1+n"")

or
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where 1 = r/R. Notice that (1) both approaches, via ® or i, yield the same
results for v, and vy; (2) the stream function vanishes at the cylindrical interface,
where r = R, because this is a zero-flux boundary in the absence of gas—liquid
mass transfer; and (3) the scalar velocity potential is nonzero along the interface.

PROBLEMS

8-1. (a) Derive the equation of continuity in vector form:

ap

—+V.pv=0

o1 P
via conservation of overall fluid mass within an arbitrary control vol-
ume V (¢) that moves at the local fluid velocity at each point on its
surface S(r).

Answer: The total mass of fluid within an arbitrarily chosen control

volume V is
/ pdV
1%

This is written semi-intensively in terms of the fluid density p, but
total mass depends on system size via the integration limits which
encompass the entire control volume. The final form of the microscopic
equation of continuity is intensive because one divides by system vol-
ume and simultaneously takes the limit as each coordinate dimension
approaches zero. This limiting procedure is not performed explicitly
below, but the general methodology can be interpreted in that manner.
The rate of accumulation of overall fluid mass within V is expressed
in terms of a total time derivative, as follows;

d o)
- dV = —dV surface * ds
ar ), ” /‘/81‘ +/S,0(Vrf n) (a)

where n is an outward-directed unit normal vector on surface S that
completely surrounds control volume V, and Vg, is the local veloc-
ity of the surface. Equation (a) is facilitated by the Leibnitz rule for
differentiating a three-dimensional integral, where both the integrand
and the limits of integration are functions of time. This equation rep-
resents the left-hand side of the generalized equation of continuity for
any type of fluid, and it is equated to the net rate at which overall
fluid mass enters the control volume due to mass flux acting across
moving surface S. Now, it is necessary to (1) express the total mass
flux vector of the fluid with respect to the moving surface, (2) identify
the component of this “relative” flux in the direction of the inward unit
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normal vector to the surface, —n, and (3) average the normal compo-
nent of this relative flux over the entire surface S which bounds fluid
in control volume V. The results for (1), (2) and (3) are

- / n- p(Vﬂuid - Vsurface) ds (b)
S

The balance on overall fluid mass is obtained by equating equations
(a) and (b) for an arbitrary control volume that moves independently
with respect to the local fluid velocity:

d 00
- dV = —dV surface * ds
ar ), * /Vat +/S,0(Vrf n)

= — / N - p(Vauid — Vsurface) ds (©)
S

It should be obvious that this integral form of the mass balance, with no
sources or sinks, adopts the same form for the following three cases:

(a1)  Vsurface = 0 net rate of input due to mass flux # 0, open system
(a2)  Vsurface 7 Viuia Det rate of input due to mass flux # 0, open system

(a3)  Vsuface = Vauia et rate of input due to mass flux = 0, closed system

In each case, equation (c) reduces to

0
/—pdV=—/n-pvﬂuiddS (d)
v 0t s

Application of Gauss’s law, or the divergence theorem, transforms the
surface integral on the right side of equation (d) to an integral over
the entire control volume:

0
—”dV=—/ V. oV dV ©
y ot v

Since there are several choices for this arbitrarily chosen control
volume within the fluid, one can change the limits of each three-
dimensional integral to coincide with the boundaries of the system.
Equation (e) must be satisfied for each choice of integration limits.
This is possible only if one equates the integrands, which yields the
microscopic or differential form of the equation of continuity.

Does V (¢) in part (a) represent an open system or a closed system?

Answer: If vauiq = Vsurrace, then the system is closed because there is
no net flux of overall fluid mass that enters or leaves the control volume
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across surface S. Otherwise, the system is open and there is a net rate
of input or output due to n + p(Vauid — Vsurface)-

Identify the important dimensionless numbers that appear in the dimen-
sionless equation of continuity for a compressible fluid where the density

p=px,y,21).

Evaluate the following tensor double-dot operation explicitly for two-
dimensional creeping viscous flow of an incompressible Newtonian fluid
around a gas bubble: [Vv] : §, where § = Zi 8;8; 1s the unit tensor.

Begin with the equation of motion in vector-tensor notation for a general-
ized fluid and briefly describe a strategy to obtain the angular momentum
balance. Hint: angular momentum is a first-rank tensor.

. Perform vector-tensor manipulation of the equation of motion:

0
(i;)tv)z—V-,ovv—V-r—Vp—l—pg

and derive the analog of the Navier—Stokes equation, which must be solved
to calculate the velocity vector for laminar viscous flow of a compressible
gas that obeys Newton’s law of viscosity. Since the flow is compressible,
V . v # 0. The viscous stress tensor should not appear in your final result.
It is not necessary to prove any vector identities using summation notation.
It is sufficient to state these identities, use them in the equation of motion,
and arrive at the final result in only seven lines of work. Hint: Newton’s
law of viscosity for compressible fluids is

T=—u[Vv+ (VW' + Gu—x)(V V)8
Some helpful vector-tensor identities are

V.- (V0T =Vv(V.v)
V.(V-V)§=V(V-v)

The following poem was written by R. B. Bird for W. E. Stewart on the
occasion of Stewart’s sixtieth birthday. “A student came in to see Warren,
and said in a voice quite forlorn, I can’t find a path through this quagmire
math, these nablas [nablas are del operators] to me are quite foreign. So
Warren, who’s also called Earl, decided to help this young girl. Without
using a book, he unflinchingly took the Laplacian of grad div curl curl.”

(a) Consider the Laplacian of grad div curl curl of the velocity vector
v. Write this operation using condensed vector-tensor notation and
determine whether the result yields a vector, a tensor, or a scalar.
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Obtain an explicit answer for this vector-tensor operation from part (a)
that is appropriate to irrotational (i.e., potential) flow past a stationary
gas bubble.

Prove the following vector-tensor identity:
v.Vv= %V(V-V) —vx(V xv)

Use the identity in part (a) to evaluate v+ (v Vv)
Write the 6 component of v - Vv in cylindrical coordinates.

Write the & component of v - Vv in spherical coordinates, where 6 is
the polar angle.

Which term in the 8 component of v - Vv in spherical coordinates
represents a centrifugal force in the 6 direction? 6 is the polar angle.

Write the z component of V - 7 in cylindrical coordinates.

The velocity vector for rigid-body rotation of a solid that spins at constant
angular velocity is v = £ x r, where € is the angular velocity vector and
r is the position vector from the axis of rotation. Obtain an expression for
the vorticity vector %V x v for rigid-body rotation in terms of €2.

Consider three viscometers described briefly below where slow rotation of
a solid surface produces one-dimensional fluid flow in which the nonzero
velocity component depends on two spatial coordinates.

4Y)

2

For a rotating sphere viscometer, the tangential velocity v, on the
surface of the sphere is Q2R sin 6. This reveals the angular dependence
of vs at any radial position, because if one moves into the fluid at
larger r and constant 6, and a separation of variables solution to the ¢-
component of the equation of motion is valid, then the sin 6 dependence
shouldn’t change. Hence,

vy = f(r)g®) = f(r)sinf
f(r)=QR atr = R

fr)y—0 as r — 00

For a parallel disk viscometer (i.e., cylindrical coordinates), the tan-
gential velocity vy on the rotating plate is Qr. This reveals the radial
dependence of vy at any axial position z between the rotating and sta-
tionary plates, because if one moves into the fluid in the z direction
from the moving plate at constant » and a separation of variables solu-
tion to the 6-component of the equation of motion is valid, then the r



226 APPLICATIONS OF THE EQUATIONS OF CHANGE IN FLUID DYNAMICS

3

8-11. (a)

(b)

()

8-12. (a)

dependence shouldn’t change. Hence,

vy = f(r)g(z) =rg(2)
@) = 2 on the rotating plate
sl = 0 on the stationary plate

For a cone-and-plate viscometer (i.e., spherical coordinates), the tan-
gential velocity vy on the rotating cone is Qr sin 6. This reveals the
radial dependence of v, at any angle 6 between the rotating cone at
6, and the stationary plate at & = 7/2, because if one moves into the
fluid in the 6 direction from the rotating cone toward the stationary
plate at constant radial position », and a separation of variables solu-
tion to the ¢-component of the equation of motion is valid, then the r
dependence shouldn’t change. Hence,

vy = f(r)g®) =rg(®)
o) — Qsinf; atf =0,
g()_{o at o = /2

(a) For each viscometer described above, use the constitutive equations
tabulated by Bird er al. (2002, p. 844) for incompressible Newto-
nian fluids to calculate all nonzero components of the viscous stress
tensor t and present your results in matrix form.

(b) Describe qualitatively how the postulated separation-of-variables
form of the velocity profile, which conforms to the boundary con-
dition on the rotating surface, simplifies the state of viscous stress
in the fluid.

Consider a parallel disk viscometer as described in Problem 8-10 and
write an expression for the vector viscous force per unit area exerted
by the rotating plate on a generalized fluid that contacts this plate. Be
sure that your answer contains unit vectors.

If the fluid is incompressible and Newtonian, and the profile in Prob-
lem 8-10(2) is reasonable [i.e., vy = rg(z)], then simplify your expres-
sion from part (a) for the vector viscous force per unit area exerted by
the rotating plate on the fluid in contact with this plate. Include some
unit vectors in your final answer.

Classify your answer in part (b) as a normal force, a shear force, or
some combination thereof.

Use vector notation and express the vector viscous force per unit area
exerted by an incompressible Newtonian fluid on the stationary solid
plate at & = /2 in the cone-and-plate viscometer. The flow configura-
tion for this problem in spherical coordinates is illustrated in Bird et al.
(2002, p. 67). A one-line answer is required. Include unit vectors.
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Which term in part (a) provides the most important contribution to the
vector viscous force per unit area exerted by the fluid on the stationary
plate?

Identify the nontrivial component or components of the low-Reynolds-
number equation of change for fluid vorticity which must be analyzed
to solve this flow problem via the curl of the equation of motion. A
one-line answer is required.

Use vector notation and express the vector viscous force per unit area
exerted by a generalized fluid on the stationary wall of a straight
tube (i.e., at »r = R) with circular cross section. A one-line answer
is required. Include unit vectors.

Consider one-dimensional flow of an incompressible Newtonian fluid,
v,(r), and identify the term in part (a) that provides the most important
contribution to the vector viscous force per unit area exerted by the
fluid on the stationary wall at » = R. Classify your answer as (1) a
normal stress, (2) a shear stress, or (3) some combination of normal
and shear stresses.

Consider one-dimensional flow of a non-Newtonian fluid in the z direc-
tion through a straight tube with radius R and circular cross section.
Use vector notation and express the vector force per unit area due to
bulk fluid flow that is exerted across the exit plane at the tube outlet,
where z = L. The surface area of interest has magnitude 7 R?, but this
is not a solid surface. A one-line answer is required, here. Be sure to
include unit vectors in your answer. Classify each term as (1) a normal
stress, (2) a shear stress, or (3) some combination of normal and shear
stresses.

In the rotating sphere viscometer, a solid sphere of radius R is suspended
from a wire and rotates slowly at constant angular velocity €2 about the
long axis of the wire in an incompressible Newtonian fluid. The fluid is
quiescent far from the sphere.

(a)

Use the no-slip boundary condition on the surface of the rotating sphere
to postulate the functional form of the fluid velocity profile when rota-
tion is slow enough and centrifugal forces can be neglected.

Answer: Consider rigid-body rotation of a solid sphere about the z
axis of a Cartesian coordinate system and calculate the velocity vector
at the fluid—solid interface by invoking the no-slip condition

V= (R Xr)_p

The angular velocity vector is oriented in the z direction (i.e., 2 =
26,), and the position vector from the axis of rotation (i.e., along the
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wire) to any point on the surface of the solid sphere is
r = RsinA(5, sinf + &g cosH)

where 6 is the polar angle measured from the z axis. Upon taking the
cross product, one obtains

v=QRsinf[(5,%6,)sind + (8, %x8y) cos ]

Trigonometric relations between unit vectors in rectangular and spher-
ical coordinates yield the following expression for §, (see Bird et al.,
2002, p. 828). Hence,

8, = 8,cos — § sinf 8: x5, = 84 sin6 8: %89 = 84 cos O

If the sphere rotates slowly and centrifugal forces do not induce flow
in the radial direction, then one calculates the fluid velocity at the
fluid—solid interface via the solid body formalism summarized above.
Vector algebra reveals that this problem is described by one-dimen-
sional flow in the ¢ direction, because

V= QRsinf(8,sin? @ + 55 cos’0) = 8sQR sinf = S4v4

This result for vg at r = R was presented in part (1) of Problem 8-
10. At any position within the fluid, a separation-of-variables argu-
ment yields the following functional form for the important velocity
component, vy (r, 8) = f(r)sin6, where f(r) = QR at the fluid—solid
interface.

(b) How many nontrivial components of the equation of change for fluid
vorticity must be analyzed to solve this fluid dynamics problem under
slow rotation?

Answer: Consult the three scalar components of the vorticity vector
shown in Bird et al. (2002, p. 836). For one-dimensional flow in the
¢ direction, as described in part (a), one obtains the following result:

0
rsin@ 06

r-component: (Vxv),= (vgsinf) #0

10
6-component: (Vxv)y = ——a—(rv¢,) #0
r or

P ¢ v ) 10 (rve) 10v,
-component: XV)y = —— __
P ¢ ror e r 00

=0

Since there are two nonzero components of the vorticity vector, the r
and 6 components of the Laplacian of the vorticity vector will yield
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nontrivial information about vy, and both of these expressions must
be considered.

Is it better to use (1) the stream function approach via the vorticity
equation, or (2) the equation of motion as tabulated in Appendix B of
Bird et al. (2002, p. 848)?

Answer: Two nontrivial components of the low-Reynolds-number
equation of change for fluid vorticity must be analyzed, based on the
results in part (b). However, only the ¢-component of the equation
of motion contains useful information to calculate vg, as illustrated in
part (d), and this is the preferred approach.

Calculate the important nonzero components of the fluid velocity vector.

Answer: Use the postulated form of the one-dimensional velocity pro-
file developed in part (a) and neglect the entire left side of the equation
of motion for creeping flow conditions at low rotational speeds of the
solid sphere. The fact that vs does not depend on ¢, via symmetry, is
consistent with the equation of continuity for an incompressible fluid.
The r and 6 components of the equation of motion for incompress-
ible Newtonian fluids reveal that dynamic pressure is independent of
r and 6, respectively, when centrifugal forces are negligible. Symme-
try implies that  does not depend on ¢, and steady state suggests
no time dependence. Hence, dynamic pressure is constant, similar to
a hydrostatic situation. Fluid flow is induced by rotation of the solid
and the fact that viscous shear is transmitted across the solid—liquid
interface. As expected, the ¢-component of the force balance yields
useful information to calculate vs. The only terms that survive in the
¢-component of the equation of motion are

19 (590 13 1 0 .

-7 Y% 1o 9 ol o

2 or (r ar ) t 250 [(me) ag (Vo Sin )}
Now, one calculates f(r) from the preceding equation by letting vy =
f(r)sin6. For example:

]
8—0(v¢ sinf) = 2 f(r)sinf cos 6

1 0
sinf 00

(vgsin®) =2 f(r)cosO

0 1 9
oy a9 . _ _
00 [sine 90 Wy Smg)} f(r)sin6

The ¢-component of the equation of motion reduces to

sinf [ d [ ,df B
@ (7)) =0
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(e)

®

If one adopts a trial solution of the form f(r) ~ r", or r" Inr if two
values of n are the same, then both terms in brackets in the preceding
equation are proportional to r”. Substitution yields

sinf[n(n+1)—=21r"""2=0

and the roots are n = —2, 1. The general solution for the ¢-component
of the fluid velocity vector is

B
,0) =sinf | A —
Vg (r,0) = sin (r—i—rz)

The solution for n = 1 must be discarded because the fluid is stagnant
at large r. Hence, A = 0. The boundary condition at the fluid—solid
interface yields B = QR?>. The creeping viscous flow solution is

*.9) QR3sin6
vy(r,0) = ——
¢ 2
Calculate the differential vector force dFqjiq on fuia €xerted by the solid
on the fluid across the spherical surface at r = R.

Answer: Begin by identifying the unit normal vector from the solid
to the fluid across the surface at » = R; n = §,. Then (1) take the dot
product of n with the total momentum flux tensor, (2) evaluate this
vector-tensor operation at the fluid—solid interface, and (3) multiply
the result by the differential surface element, d S = R%sin0dod ¢, to
generate a differential vector force. Hence,

dFsolid on fluid =M ¢ (IOVV + T+ p8)r=R ds

where § is the unit tensor. Forces due to convective momentum flux
vanish because

(n- pVV)r:R ds = (/Ovrv)r:R d§S=0

since there is no radial flow when the sphere rotates slowly. The final
result is

dFsoid on fuid = [8,(Trr + P) + 86Tr0 + 83Trg1r—r R* sin 6 dO dp

Notice how normal viscous stress 7, acts in the same coordinate direc-
tion as the pressure force. A force transducer implanted within the
solid sphere cannot separate the effects due to each type of stress in
the radial direction.

What is the normal component of dFgjig on fiuia due to?
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Answer: Based on the final result in part (e) for dFsig on fluid, the
normal stress is due to 7, and fluid pressure. In the absence of centrifu-
gal forces, one calculates fluid pressure from the hydrostatic situation
where dynamic pressure is constant throughout the fluid. Hence,

p(r =R,0) = psc — pgRcost

where the xy-plane is the reference for potential energy and po, is
the fluid pressure in this reference plane at z = 0. Newton’s law of
viscosity for an incompressible fluid reveals that normal viscous stress
vanishes everywhere in the fluid, because

v,
or

=0

Trr = _2:“

What is/are the shear component(s) of dF g on fluia due to?

Answer: Based on the final result in part (e) for dFig on fluid, the
shear stresses that must be considered are 7,9 and 7,4. Newton’s law
of viscosity for this one-dimensional flow problem reveals that only

7,4 1S important, because
d /Uy 10v,
_ — (= — =0
M|:r3r(r)+r 89:|

Trg =
d Vg .
T9(r =R, 0) = —u [VE (7)]r=R =3u2sinb

Calculate the differential vector torque dT that arises from dFjig on fiuid
acting across the fluid—solid interface at r = R.

Answer: The answers to parts (e), (f) and (g) allow one to simplify
the differential vector force exerted by the solid sphere on the fluid:

dFsoiid on fuid = [8,p(r = R, 0) + 84T,4(r = R, 0)IR*sin0 d0 d¢
The corresponding differential torque is
dT = r x dFid on fluid
where r is the position vector defined in part (a). Hence,

dT = Rsin6(6, sinf + 8y cosO) x (8, p + 8¢r,¢)r=RR2 sinf do d¢
= (8,7 COSO — 9T, SINO — Sy p COS@),«=RR3 sin® 0 do d¢

Rewrite the three spherical coordinate unit vectors in terms of constant
unit vectors in rectangular coordinates, and integrate your expression
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1)

(k)

from part (h) to calculate the macroscopic torque/angular velocity rela-
tion from which the Newtonian viscosity p can be determined from
measurements of torque vs. 2.

Answer: Before the preceding equation can be integrated to obtain an
expression for the macroscopic torque, it is necessary to use trigonom-
etry and re-express the spherical coordinate unit vectors in terms of the
set of constant unit vectors in Cartesian coordinates. This information
can be found in Bird ef al. (2002, p. 828). For example:

8, =8, sinf cosp + &, sinf sin¢ + &, cos &
89 = 8 cos B cos @ + 8, cos O sinp — §, sin 6
8y = —d;sing + 5, cos ¢
Now the differential torque expression is rewritten in terms of dy, d,,

and &, using explicit results for 7,4 and fluid pressure at the fluid—solid
interface:

dT = [5,3uS2sin 6 cos @ — 8y3usin’ O
— 8¢ (Poo — pgR cosb) cosO1R> sin?> 0 d6 d¢

Macroscopic torque T is obtained via integration of the preceding
equation over the surface of the solid sphere, where, for example,
6 ranges from O to 7, and ¢ ranges from O to 2m. There are no
contributions to T in the x- and y-coordinate directions because, in all
cases, one integrates either sin¢ or cos ¢ over the complete period of
these trigonometric functions. Hence, fluid pressure does not contribute
to the relation between torque and angular velocity. It is only necessary
to consider terms in the z direction due to §, and 5. These are:

T =68.67uR> /(sin@ cos® 0 + sin’ 0) sin” 6 d6
= 86w uQR? / sinf0df 0<6O<m

The final result is
T=35, 87uQR> = 8nuR’Q

In which coordinate direction does the macroscopic torque vector act?

Answer: Based on the development in part (i), macroscopic torque is
colinear with the angular velocity vector of the solid sphere, and both
of these vectors act in the z direction.

Which scalar components of the viscous stress tensor contribute to the
macroscopic torque/angular velocity relation?
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Answer: Results in part (h) and (i) reveal that 7,4 is solely responsible
for this macroscopic momentum transfer relation.

Does fluid pressure contribute to the macroscopic torque/angular veloc-
ity relation?

Answer: No. See the discussion in part (i).

Determine the parameters a, b, and c in the following scaling relation
for the macroscopic torque:

magnitude of the torque ~ u®Q’R¢

Answer: Based on the answer to part (i), a =1, b =1, and ¢ = 3.

How do your answers in part (m) for a and b relate to the fact that
the constitutive relation between viscous stress and velocity gradients
is linear via Newton’s law of viscosity?

Answer: The values for @ and b in this scaling law from part (m) are
a direct consequence of the fact that torque is linearly proportional to
viscous shear stress, and Newton’s law of viscosity is a linear consti-
tutive relation between viscous stress and viscosity (i.e., @ = 1), and
viscous stress and velocity gradients (i.e., b = 1), the latter of which
can be approximated by the angular velocity €2 of the solid sphere.

Estimate the scaling parameter b in part (m) if the fluid were non-
Newtonian with power-law index # in the classic Ostwald—de Waele
model as described in Bird ez al. (2002, p. 241).

Answer: For power-law fluids, viscous stress is proportional to the nth
power of the shear rate, which represents the magnitude of the rate-
of-strain tensor. Since torque scales linearly with viscous shear stress
and shear rate scales linearly with angular velocity, it follows directly
that torque scales as the nth power of 2. Hence, b = n.

Calculate the vorticity vector of the fluid, %V x v, at the fluid—solid
interface and demonstrate that the fluid vorticity at »r = R is different
from the vorticity vector of the solid sphere, which undergoes solid
body rotation at constant angular velocity 2.

Use vector notation and express the vector viscous force per unit area
exerted by the rotating solid sphere on an incompressible Newtonian
fluid at the fluid—solid interface (i.e., at ¥ = R) for a rotating sphere
viscometer. A one-line answer is required here. Be sure to include unit
vectors in your answer.

Answer: Identify the unit normal vector from the solid sphere to the
fluid at the fluid—solid interface (i.e., n = §,). Now, construct the dot
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(b)

()

(d)

product of this unit normal vector with the viscous stress tensor and
evaluate the result at » = R. For example,

n-7=rt = ((Srfrr + 80fr0 + 8¢tr¢)r=R

Use the postulated form of the velocity profile for this incompressible
Newtonian fluid from part (1) of Problem 8-10 and summarize the
state of viscous stress in matrix form. It is not necessary to obtain
the exact analytical solution for the velocity profile at low Reynolds
numbers to solve this problem.

Answer: The following functional form of the low-Reynolds-number
one-dimensional fluid velocity profile is based on solid-body rota-
tion at r = R and conforms to the no-slip boundary condition at the
fluid—solid interface:

vg(r,0) = f(r)sinf

Consequently, Newton’s law of viscosity reveals that the only nonvan-
ishing components of the viscous stress tensor are the symmetric pair
given below:

o =t = —nras () = —prsing - [f(’)}

or \'r dr r

Is it easier to calculate vs (1) using the equation of motion, (2) using
the stream function approach with the equation of change for fluid
vorticity, or (3) are both approaches equally difficult? Choose one of
these answers for low Reynolds number flow.

Answer: Approach (i) requires that one must solve the ¢-component
of the equation of motion. Since vy is a function of both r and 6, there
are two nonzero components of V x v (i.e., the r and 6 components are
nontrivial). Hence, approach (ii) requires that one must consider the r
and 6 components of the Laplacian of the vorticity vector to obtain
an expression for the stream function via the low-Reynolds-number
equation of change for fluid vorticity. The preferred approach is (1).

At low Reynolds numbers, the solution for one-dimensional flow of an
incompressible Newtonian fluid in the rotating sphere viscometer is

B
,0) =sinf | A —
Vg (r,0) = sin (r+r2>

Calculate the integration constants A and B.

Answer: The fluid velocity is maximum at the fluid—solid interface
and decreases at larger values of . In particular, vy tends toward zero
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as r approaches infinity. Hence, A = 0. Solid-body rotation at r = R
yields the following result for integration constant B:

B
Vg(r = R,0) = QRsinf = Y sin 6

Therefore, B = QR?>.

8-16. A cylindrical fiber is subjected to elongational flow along the fiber axis
such that the z-component of the velocity vector is v, = Az, where A is
a positive constant that defines the rate of elongational flow. The fiber
is isotropic with a Poisson ratio of 0.5, which means that there is no
volume change during extensional flow. Newton’s law of viscosity is valid
to describe this phenomenon.

(a)

(b)

If the fiber contracts laterally upon extension, then calculate the other
important nonzero velocity component.

Answer: Invoke incompressibility because extensional flow occurs at
constant volume when Poisson’s ratio is % In cylindrical coordinates
with no flow in the 0 direction, the steady-state equation of continuity
reduces to

10 ov
V.v=——(@v, 2 =0
v rar(rv)+8z

Since dv,/dz = A, integration of the preceding equation at constant 8

and z yields
/d(rv,) = —/Ardr

rv, = —%Ar2 + g0, 2)

Hence,

Integration constant g, which in principle could be a function of 6 and
z, vanishes when the preceding equation is evaluated at r = 0. The
radial velocity profile is

v (r) = —%Ar

Since radial flow is negative, or inward, this is consistent with lateral
contraction to maintain constant volume when a cylindrical fiber is
stretched along its z axis.

Calculate the viscous stress tensor T and display your results in matrix
form.
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Answer: Apply Newton’s law of viscosity to the following fluid veloc-
ity vector field;

v,(r):—%Ar vy =0 v,(z) = Az V.v=0

There are no nonzero off-diagonal shear components of t. The rr and
Zz components are

oV, v,
T = =21 = uA T, = —2,“8— = —2uA
Z

or

(¢) The elongational viscosity 1 is defined by the following equation:

v,
7 0z

Tog = TUr = —
What is the relation between the elongation viscosity n and the New-
tonian viscosity ©?

Answer: Use the results from part (b) for 7, and 7., in the defining
equation for elongational viscosity, with dv,/dz = A:

T — T = —3nA = —nA

Hence, n = 3.

8-17. Consider the following scalar components of the velocity vector for a
viscoelastic liquid in rectangular coordinates:

vy = ax a>0
v, = by
v, = bz

(a) Calculate V -v, V x v, and the rate-of-strain tensor [i.e., dy/dt =
Vv + (Vv)T].

(b) What is the relation between the constants ¢ and b?

Answer: Assume that the liquid is incompressible and apply the equa-
tion of continuity to this three-dimensional flow field. In rectangular
coordinates,

v, v, 9
Vev= 2 S B b =0
ox ay 9z

1
Hence, b = —Ea < 0.
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Describe this viscoelastic flow field in words.

Answer: This fluid flow description is consistent with elongational flow
in the x direction, and simultaneous lateral contraction in the y and

z directions, transverse to the primary flow. The process occurs at

constant volume and constant density such that Poisson’s ratio is %

Consider one-dimensional laminar viscous flow through a straight tube with
circular cross section [i.e., v.(r)] and obtain an expression for the axisym-
metric stream function i at the tube wall, where » = R. The average
velocity through the tube is (v;).

Consider one-dimensional viscous flow of an incompressible Newtonian
fluid axially (i.e., only v,) through a straight tube of length L with circular
cross section and radius R. The Reynolds number is 500, based on the
tube diameter.

(a)

(b)

Is it possible to use the stream function approach to analyze this flow
problem by solving only one nontrivial component of the equation of
change for fluid vorticity?

Answer: Even though the flow regime is laminar, not creeping, there
are no surviving terms due to the accumulation rate process or convec-
tive momentum flux on the left side of any component of the equation
of motion. This is a consequence of the fact that there is flow in only
one direction, and steady-state analysis of the equation of continuity
reveals that v, is not a function of independent variable z. Hence, the
equation of motion is exactly the same for steady-state one-dimensional
laminar or creeping flow through a tube, because there is a balance
among viscous, pressure, and gravity forces. This problem is a sub-
set of the following class of axisymmetric two-dimensional flows in
cylindrical coordinates:

v, (7, z) and v, (7, 2) with vy = 0

where the z axis represents the axis of symmetry and 6 is the symmetry
variable. It is possible to analyze this laminar flow problem via the
stream function, because it is necessary to solve only one nontrivial
component of the equation of change for fluid vorticity.

Which nontrivial component(s) of the vorticity equation must be solved
to calculate the stream function?

Answer: The 6 component. Consider all three components of the vor-
ticity vector in cylindrical coordinates when the velocity vector field
is v,(r);

10v, vy
r 06 0z

r-component: =0 (trivial)
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(0

(d)

(e)

av,  dv,
6-component: ——#0
0z or
10 10
Z-component: - (rvs) _ 2% 0 (trivial)
ar r 90

On which variables does the stream function ¥ depend?

Answer: Since the nonzero velocity component v, depends on radial
position r, so does the stream function y. This can be verified by
considering the relation between v, and :

Hence, ¥ = ¥ (r).

What equation must be solved to calculate ¥ ?

Answer: One must solve the following fourth-order ordinary differen-
tial equation for ¥ (r):

E'Y = E*(E*Y) =0

where the E? operator for this axisymmetric flow problem in cylindri-
cal coordinates is

, 4> 1d

dr?  rdr

Recall that the V? operator must be replaced by the corresponding E?
operator for axisymmetric flows in cylindrical and spherical coordi-
nates.

If the solution to part (d) is
v =A+ Br’+Cr’lnr + Dr*

then write all the boundary conditions that are required to calculate the
integration constants A, B, C, and D. It is not necessary to evaluate
these integration constants explicitly.

Answer:

(1) There is no flow through a point on the symmetry axis at r = 0.
Therefore, ¥ (r = 0) = 0.

(2) There is no slip at the wall at r = R. Therefore, v,(r = R) =
(1/R)(dY/dr),—g = 0.
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(3) If one end of a vector is pinned on the symmetry axis at r = 0 and
the other end lies somewhere on the lateral surface of the tube at
r = R, then this vector maps out a circular cross section of 7 R?
when it is rotated by 2w radians around the symmetry axis. The
volumetric flow rate through this circle is 7 R?(v.), where (v.)
is the average fluid velocity through the tube. The axisymmetric
stream function at » = R is defined by

TR*(v,) 1

= _R2<Uz>

vr=R=—r"=3

These three conditions are sufficient to determine all four integration con-
stants. The symmetry condition on v, at r = 0, namely (dv,/dr),—¢9 = 0, is
satisfied by the functional form of ¥ () and provides no new information
to calculate any of the integration constants.

®

(2

Use one of the boundary conditions at » = 0 (i.e., along the centerline
of the tube) to simplify the general solution for ¥ in part (e).

Answer: Boundary condition (1) in the solution to part (e) indicates
that there is no flow through a point on the symmetry axis at » = 0.
In other words, if both ends of a vector lie on this centerline, then no
cross-sectional surface area results from a 360° rotation of this vector
around the symmetry axis. Hence, the volumetric flow rate Q and the
stream function ¢ vanish at r = 0. One concludes that A = C = 0 and

Y(r) = Br? + Dr*

Calculate the velocity profile without performing any tedious algebra
to evaluate the integration constants.

Answer: Use the result from part (f) and the relation between v, and
Y to obtain the velocity profile: for example,

1d
v,(r)y=—-——=2B +4Dr?
rd

This is the classic parabolic or quadratic velocity profile for one-
dimensional laminar flow of an incompressible Newtonian fluid through
a straight tube. The no-slip boundary condition (2) at r = R yields

1 /B
D=—|—
> (w)
Boundary condition (3) yields

Y (r=R)=BR*+ DR*=1BR> = 1R*(v,)
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Hence, B = (v,) and

v (r) = 2(vz) [1 = (%)2}

Calculate the stream function for axisymmetric fully developed creeping
viscous flow of an incompressible Newtonian fluid in the annular region
between two concentric tubes. This problem is analogous to axial flow on
the shell side of a double-pipe heat exchanger. It is not necessary to solve
algebraically for all the integration constants. However, you must include
all the boundary conditions that allow one to determine a unique solution
for . Express your answer for the stream function in terms of:

(1) The appropriate independent variables.

(2) The volumetric flow rate in the direction of flow, Q.

(3) The radius of the outer tube, R.

(4) The radius ratio of the inner tube to the outer tube, 0 < k < 1.
Sketch the streamlines.

(a) Sketch three fluid streamlines for creeping viscous flow around a sta-
tionary solid sphere. Estimate the value of the stream function v on
each streamline.

(b) Sketch three fluid streamlines within the incompressible liquid phase
as a gas bubble rises through an otherwise stationary viscous fluid in
the creeping flow regime. Estimate the value of the stream function
on each streamline.

(c) Sketch the radial () dependence of the fluid pressure distribution at
a polar angle 6 = 7 radians for creeping viscous flow of an incom-
pressible Newtonian fluid moving upward past (i) a solid sphere, and
(ii) a gas bubble, both of which are stationary. Include both sketches
on one set of axes so that they can be compared qualitatively.

A solid sphere of radius R falls very slowly with velocity Vg in the
negative z direction (i.e., —§;) through an incompressible Newtonian liquid
that is quiescent far from the sphere.

(a) Calculate the stream function ¥ (r, 0).

Answer: For axisymmetric creeping flow in spherical coordinates, the
general solution to the low-Reynolds-number equation of change for
fluid vorticity (i.e., E*y = 0) is

A
¥ (r,0) = sin®6 <— +Br+Cr*+ Dr4>
r
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where integration constants A, B, C, and D are determined from the
boundary conditions. Since the fluid is stationary far from the sub-
merged object, the fluid velocity vector must vanish as r tends toward
infinity. Hence,

(r,0) 1 W 2cosf A+B+C+D2 0
v (r,0) =————— =—-2cosO | -+ — re) =
’ r2sin6 96 r3r
1 9 A B
o 0) = —— Y _Gno (-2 1+ 8 yactapt) =0
rsin® dar r3 o r

when r — oo. The no-flow condition at large r requires that C =0
and D = 0. Now, the two-dimensional velocity profile is

A B
v, = —2cos0 (—3 + —)
r r

Vg = sinf -+
r r

From the viewpoint of an observer in a stationary reference frame,
one invokes the no-slip condition at the fluid—solid interface when
the center of the solid sphere coincides with the center of an xyz
coordinate system. Hence, at r = R,

A B
U = & [Viotia(—8;)] = —Visotig c0s 0 = —2cos 0 (F + E)

. . A B
Vg = 8 * [Vsolid(—8:)] = Vsolig $in 6 = sin 6 <_F + E)

These two equations yield the following results for integration con-
stants A and B:

A= 1RV B = 2 RViq

The final results for the stream function and the two nonzero velocity
components are

A 3 1
¥ (r,0) = sin? 0 (7 + Br) = Vioa R sin® @ <Zn - —n“)

4
. 0) 5 P A n B 0 3 ., 1 4
v-(r,0) = —2cos — + — ) = —Vioia coOs — —=n"
}’3 r solid 277 277
. A B . 3 ., 1 4
vo(r,0) =sinf | —— + — | = Vioiasinf ( —n~ + =1
73 r 4 4

where n = r/R.
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(b) Calculate the hydrodynamic drag force exerted by the fluid on the solid
across the spherical interface at r = R.

Answer: The coefficient of %r sin’@ in the expression for ¥ from
part (a) is %RVSOM. Hence, the hydrodynamic force exerted by the
fluid on the solid sphere across the fluid—solid interface at r = R is
given by the following expression:

hydrodynamic force = 47 pgyiq(coefficient of %r sin 6 inyr)

= 67 Lfuid R Violid

which is Stokes’s law. This macroscopic relation in fluid dynamics is
the same for incompressible Newtonian fluids impinging on stationary
solid spheres, or solid spheres falling through stagnant liquids. How-
ever, microscopic results for these two problems (i.e., ¥, v,, and vy)
are different.

(¢) In which direction does this force act?

Answer: Since the answer to part (b) is positive, the hydrodynamic
force exerted by the fluid on the solid sphere acts upward in the positive
z direction. When the submerged object is stationary and the fluid
moves, the hydrodynamic force exerted by the fluid on the solid acts
in the primary direction of fluid flow. When the fluid is stationary and
the submerged object moves, the hydrodynamic force exerted by the
fluid on the solid acts in the opposite direction of the motion of the
solid. Hence, the solid sphere falls in the negative z direction, and the
hydrodynamic force exerted by the fluid on the solid acts upward.

8-23. Consider creeping viscous flow of an incompressible Newtonian fluid past

a stationary gas bubble that is located at the origin of a spherical coordinate
system. Do not derive, but write an expression for the tangential velocity
component (i.e., vy) and then linearize this function with respect to the
normal coordinate r within a thin mass transfer boundary layer in the
liquid phase adjacent to the gas—liquid interface. Hint: Consider the »r—6
component of the rate-of-strain tensor:

(ay) d /vy 1 dv,
wy Dyl

at /¢ ar \r r 06
evaluated at the gas—liquid interface for the coefficient of the first-order
term in the Taylor series that is linear in radial position r.

8-24. (a) A gas bubble of radius R rises through a stagnant incompressible

Newtonian fluid. The bubble-rise velocity Vj is constant, and the
Reynolds number, pVy(2R)/u, is approximately 0.15. What bound-
ary conditions are required to calculate the stream function i for
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axisymmetric two-dimensional flow within the liquid phase when the
center of the rising bubble is at the origin of a stationary spherical
coordinate system?

(b) Repeat part (a) if a solid sphere of radius R falls vertically at constant
velocity Violig through a quiescent liquid.

(c) Calculate the dynamic force exerted by the fluid on the bubble in part
(a) and the solid in part (b) across the spherical boundary at r = R,
and identify the direction in which these forces act.

8-25. A solid sphere of radius Rgppere and density pgphere falls through an incom-
pressible Newtonian fluid which is quiescent far from the sphere. The
viscosity and density of the fluid are pguiq and pguig, respectively. The
Reynolds number is 50, based on the physical properties of the fluid, the
diameter of the sphere, and its terminal velocity. The following scaling
law characterizes the terminal velocity of the sphere in terms of geometric
parameters and physical properties of the fluid and solid:

10g Uterminal ~ 10g Rsphere + ,3 log(psphere - pﬂuid)

+ v log pauia + 8 10g pruid

(a) Calculate the scaling law parameters «, 8, ¥, and & in the equation
above. Four numerical answers are required here.

Answer: Since there is no longer any acceleration when submerged
objects achieve terminal velocity, the sum of all forces acting on the
object must be zero. Hence, there is a balance between buoyancy,
gravity, and hydrodynamic drag. The gravity force acts downward,
and the buoyant and drag forces act in the opposite direction. Each
force is calculated as follows:

Gravitational force: %JT R:pherepsolidg
. 4_p3
Buoyant force: 37 R here Puid8

: .1 2 2
Hydrodynamic drag force: 5 ofiuidVierminal (77 Rsphere) f
For flow around spheres in any regime, the dimensionless momentum
transfer correlation adopts the following form:

C Re — Pfluid Vterminal (2 Rsphere)

Re“ Mtluid

f=

Now, the hydrodynamic drag force can be expressed explicitly in terms
of physical properties of the fluid and solid:

. 7 Cy _ _
hydrodynamlc drag force = 2lﬁ(ﬂvﬂuid)a (/Oﬁuid)l a(Rsphercvtcrminal)2 “
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(b)

()

(d)

Rearrangement of the above-mentioned force balance yields the fol-
lowing solution for vierminal:

_ (23+u/3cl)(Rsphere)l+a (,Osolid - pﬂuid)g
(f10ia) (Pfuia) '~

2—
(Utermina]) “

Therefore, the scaling law parameters are

14+a 5 1 —a 5 l1—a
o = = = — —
2—a 2—a 4 2—a

where a = % in the intermediate (i.e., laminar) flow regime. With ref-

erence to a creeping flow falling sphere viscometer, one measures the
terminal velocity of a solid sphere that falls slowly through an incom-
pressible Newtonian fluid. In the creeping flow regime, the dimension-
less momentum transfer correlation for solid spheres is f = 24/Re,
which corresponds to C; = 24 and a = 1. Hence,

% R zphere (Osolid — Pfiuid) &

Uterminal =
Hfluid
One estimates the fluid viscosity by rearranging this equation. This
prediction is accurate if the Reynolds number is smaller than 0.5.

A different sphere of the same density with radius 2 Ryppere falls through
the same incompressible Newtonian fluid. Now, the Reynolds number
is greater than 50 but less than 500, because the diameter of the sphere
has increased by a factor of 2. Does the terminal velocity of the sphere
increase, decrease, or remain unchanged?

Answer: Since the scaling law exponent « > 0 (i.e., ¢ = % when a =
%), one achieves larger terminal velocity if the size of the sphere
increases.

By how much, or by what factor, does viermina change in part (b)? For
example, if the terminal velocity of the sphere remains unchanged,
then it changes by a factor of 1.

Answer: The scaling law in part (a) can provide both qualitative and
quantitative results. If the sphere radius increases by a factor of 2, then
Vierminal increases by (2)(1+9/C2=4) "which corresponds to (2)%/7.

How does the scaling law for terminal velocity change if a nonde-
formable bubble of radius Ryl rises with constant velocity through
the same incompressible Newtonian fluid in the same flow regime (i.e.,
50 < Re < 500)?

Answer: First, one must replace Rphere bY Rpubble, but this is a minor
change. Second and most important, the hydrodynamic drag force



PROBLEMS 245

acts downward when bubbles rise. Now, the upward buoyant force
is counterbalanced by gravity and hydrodynamic drag. Consequently,
one must replace (osolid — Pfiuid) Y (Ofuid — Pbubble) 1N the scaling law
for Vierminal, as presented in part (a).

8-26. We apply here hydrodynamic drag forces via f vs. the Reynolds number
to calibrate a rotameter for a test fluid which is different from the original
fluid that was used to calibrate the rotameter. A rotameter consists of a
vertical conical tube that contains a float of higher density than that of
the fluid passing through the meter. The tube diameter is not constant, but
it increases linearly as the float moves to higher positions in the conical
tube. This feature allows the rotameter to measure a wide range of mass
flow rates. When the rotameter is calibrated for a particular fluid, it is
very straightforward to measure mass flow rates for that fluid in terms
of the height of the float under steady-state conditions. You are given a
rotameter calibration curve for water which illustrates that mass flow rate is
linearly proportional to float height. However, experiments on a distillation
column require that you measure the mass flow rates of alcohols using the
rotameter that was calibrated for water.

(a) Devise a strategy and use that strategy to modify the rotameter cali-
bration curve for water so that one can measure the mass flow rate of
an alcohol using the same rotameter. Your final answer should include
strategies when a log-log plot of friction factor vs. Reynolds number
for flow through a conical tube that contains a submerged object (i.e,
the float) (1) is a straight line with a slope of —1.0, (2) is a straight
line with a slope of —0.5, (3) is a straight line with zero slope.

Answer: Results from Problem 8-25 provide a generalized expression
for the terminal velocity of solids or bubbles in stationary fluids. The
same results describe the average fluid velocity in the vicinity of a
stationary submerged object such as the rotameter float. Of course, the
shear area and volume of a solid sphere or gas bubble are well defined
in terms of the radius of the submerged object. The corresponding shear
area and volume of the rotameter float can be measured, but they cannot
be expressed in terms of one simple geometric parameter. Fortunately,
these quantities don’t change when a different fluid passes through the
rotameter. The strategy below, which focuses on the following scaling
law for the average fluid velocity in the vicinity of the float,

(Psolid — Pruia) /™9
[(fiiad)? @D (pyig) 1 —0/@~a)]

(V) fluig ~

reveals that the shear area, float volume, and gravitational acceleration
constant do not affect the rotameter correction factor. One obtains the
corresponding mass flow rate from the previous scaling law via mul-
tiplication by the fluid density and the cross-sectional area. Since the
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(b)

rotameter correction factor compares mass flow rates for two different
fluids when the float height is the same, the flow cross section does
not appear in the final result. Hence, it is only necessary to multiply
(V) fiuid bY pauia- Therefore, when the float is at the same position, the
mass flow rate of any fluid through the same rotameter scales as

__ [puia(psoia — pauia)]"/

pﬂuid(v>ﬂuid ~ (Mﬂuid)a/(2_a)

The quantity on the right side of this equation must be evaluated for the
test fluid and the calibration fluid. This ratio (i.e., test fluid/calibration
fluid) represents the calibration factor, which one must multiply by the
mass flow rate of the calibration fluid at a given rotameter float height
to obtain the mass flow rate of the test fluid when the float is in the
same position.

For part (1), a = 1 and the mass flow rate for each fluid scales as

Ofiuid (Osolid — Pfluid)
Mfluid

mass flow rate ~

For part (2), a = 0.5 and the mass flow rate for each fluid scales as

[Puid (Psotia — Puia) 17>
mass flow rate ~ 73
(tauia) '/

For part (3), a = 0 and the mass flow rate for each fluid scales as

mass flow rate 2 [ pguid (Psolid — Pfuia)]"/>

At 20°C, the density of water is 1.00 g/cm? and the density of methanol
is 0.79 g/cm?. The float density is 3.95 g/cm?®. Compare the mass flow
rates of water and methanol through the same rotameter at 20°C when
the float rests at the same position in the rotameter. In both cases, the
dimensionless momentum transport correlation is f & constant in the
high-Reynolds-number regime.

Answer: Evaluate the mass flow rate scaling factor for water and
methanol via the prescription from part (3) above, because a = 0.
Then, construct the ratio of these scaling factors to compare the mass
flow rates of the two fluids. For example:

(1) Mass flow rate of water ~ [pyater (Ofoar — Pwater)]'/>

(2) Mass flow rate of methanol ~ [pmethanol (pﬂoat - )Omethanol)]]/2

The ratio of (1) to (2) is 1.09, which indicates that the mass flow rate
of water is 9% larger than that of methanol.
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(c) How does your comparison of the mass flow rates of water and metha-
nol at 20°C from part (b) change if the float density is only 1.35 g/cm??

Answer: Use the scaling laws in part (b) for water and methanol, but
reduce the float density from 3.95 g/cm? to 1.35 g/cm?. Now, the ratio
of (1) to (2) is 0.89, which indicates that the mass flow rate of water
is about 11% less than that of methanol.

(d) In the highly turbulent regime, the mass flow rates of water and
methanol will be the same at 20°C when a particular float rests at
the same position in the rotameter. What float density is required for
this statement to be true?

Answer: Equate the scaling laws in part (b) for water and methanol
and solve for pgoa:

[pwater(pﬂoat - pwater)]1/2 = [pmethano] (/Oﬂoat - :Omethanol)]l/2

Pfloat = 1.8 g/cmS-

It should be obvious that the terminal velocity of a bowling ball in air
is much larger than the terminal velocity of a feather in air. However,
in both cases, a steady-state force balance on the object that accounts
for buoyancy, gravity, and hydrodynamic drag reveals that 10g(Vierminal) ~
Blog(psoliad — Pair), Where pgolig corresponds to either the bowling ball or
the feather.

(a) What is the value of B if Repowting ban & 200,000?
(b) What is the value of B8 if Refeather = 0.017

(a) By what factor do viscous shear forces at the tube wall increase when
the volumetric flow rate through a straight tube is four-fold larger for:

(i) Incompressible Newtonian fluids.

(ii) Incompressible non-Newtonian power-law fluids, with a power-law
exponent of 0.5.

In both cases, the flow regime is laminar.

(b) By what factor do normal convective forces increase when the volu-
metric flow rate through a straight tube is four-fold larger for:

(i) Incompressible Newtonian fluids.

(ii) Incompressible non-Newtonian power-law fluids, with a power-law
exponent of 0.5.

In both cases, the flow regime is laminar.

Laminar flow of an incompressible Newtonian fluid through a straight
tube with radius R and length L corresponds to f = 16/ Re and log Q ~
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log AP, where f is the friction factor, Re the Reynolds number based
on the tube diameter, Q the volumetric flow rate, and ¥ the dynamic
pressure. Determine the scaling law exponent « for turbulent flow of an
incompressible Newtonian fluid through the same tube:

log O ~ alog(AD)

where f = 0.0791/Re!/*. Hint: The z-component of the dynamic force
exerted by the fluid on the wall at » = R is w RZAP.

Answer: Prior to solving this problem, it is instructive to consider the
underlying fundamentals related to the hint provided above. In terms of
the total momentum flux tensor, the total differential vector force exerted
by the fluid on the tube wall is

dFfuid on solid =M+ (oVV + 7 + pB),:R dsS

where n = §, and the differential lateral surface element is dS = Rd6 dz.
Forces due to convective momentum flux vanish because

(- pvv),—rdS = (pv,),=gdS =0
Both v, and the total velocity vector vanish at the stationary wall. Now, the

differential vector force can be expressed in terms of cylindrical coordinate
unit vectors;

dFfuid on solid = [8,(Tr + p) +8¢Tr0 +6,7;1,=rR dodz (@)

The z-component of dFgyiq on solig 1S Obvious from expression (a). Rigor-
ously, it is obtained via the following scalar dot-product operation;

(Sz « dFquid on solid = [t:(r = R)]R dodz (b)

Integration of equation (b) over the complete lateral surface (i.e., 0 <6 <
27, 0 < z < L) for incompressible Newtonian fluids yields

(Fﬂuid on solid)z-component = /(82 * dFﬂuid on solid)

), e

For one-dimensional flow in the z direction, where v_(r) is a function of
radial position only, the final expression for the macroscopic dynamic force
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simplifies considerably because 7,, is independent of the lateral surface
coordinates. Hence,

dv,

(Ffiuid on solid)z—cornponent = |:_,U/ ( dr

) }ZnRLzrrRzAiB (c)
r=R

This result is verified rather easily for laminar flow in terms of the
microscopic fluid velocity gradient at the tube wall. For steady-state one-
dimensional flow through a straight tube in any regime, the macroscopic
mass and momentum balances yield the same result, as given by equation
(c). The solution to this problem begins by employing the macroscopic
momentum transfer correlation, which includes the definition of the friction
factor, to evaluate the z-component of the dynamic force exerted by the
fluid on the tube wall, with shear area given by 2w RL: for example,

(de“amiC)z-component = 7 R? AP = % P (v2>2 (27 RL) f

Now, use the dimensionless correlation for f vs. Re, where the Reynolds
number is defined in terms of the tube diameter:

_ p{vz)2R
I

Re

In terms of the scaling law for dynamic force,

2 ~ 1- 2-

(denamiC)z-component =T R°AR =~ pfp " ()1

where a = % in the turbulent flow regime. For tube flow, average velocity

(v,) and volumetric flow rate Q are related by the cross-sectional area for

flow (i.e.,  R?). Hence, the dynamic pressure drop AP scales as Q taken
to the (2 — a) power. In other words,

AiB ~ sza

Therefore, the scaling law exponent that relates Q to AP is o =1/
(2 —a) =4/7. The complete result for laminar or turbulent flow of an
incompressible Newtonian fluid through a straight tube of radius R and
length L is

2an2—a RS—a Aiﬁ

d
Clplfa'u/aL ( )

QZ—a

when the dimensionless momentum transfer correlation is f = C;/Re“. In
the laminar flow regime, where C; = 16 and a = 1, equation (d) reduces to
the classic Hagen—Poiseuille law (i.e., Q = m R*AP/8uL). The solution
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8-30.

8-31.
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to this problem reveals that QO and AP do not follow a linear relation for
turbulent flow of an incompressible Newtonian fluid through a tube.

(a) An incompressible Newtonian fluid undergoes forced-convection lam-
inar flow axially (i.e., in the z direction) through a straight horizontal
tube with circular cross section. The tube has radius R and length L.
Obtain an expression for the z-component of the dynamic force exerted
by the fluid on the stationary inner wall of the tube when Re = 500.
Express your answer in terms of fluid properties (i.e., n and/or p),
tube dimensions (i.e., R and/or L) and average fluid velocity (v,).

Answer: Use the generalized expression for dynamic force from Prob-
lem 8-29:
(denamiC)z—componem = %,0 (Uz>2(27'[ RL) f

with f = C;/Re“, shear area given by 2w RL, and tube diameter 2R
as the characteristic length in the definition of the Reynolds number.
One obtains

(denamic)z—component = (%)a 7TC1 Rl_a Lpl_a Ma (vz>2_a

In the laminar flow regime, C; = 16 and a = 1. Hence,

(denamic ) z-component — 8m L w (vz )

(b) By what factor does the dynamic force in part (a) change when the
volumetric flow rate is three-fold larger?

Answer: Since volumetric flow rate Q is linearly related to average
velocity (v,), a three-fold increase in Q produces a three-fold increase
in the dynamic force exerted by the fluid on the tube wall.

Obtain an expression for the z-component of the dynamic force exerted by
the fluid on the stationary inner wall of a hydraulically smooth tube when
Re is between 10* and 10°. Express your answer in terms of fluid properties
(i.e., u and/or p), tube dimensions (i.e., R and/or L), and average fluid
velocity (v;).

Answer: Use the generalized result from part (a) of Problem 8-30:
(denamiC)z—component = (%)d 7 Cy Rl_a Lpl_a Ma (vz>2_a
For turbulent flow in smooth tubes, C; = 0.0791 and a = %. Hence,

(denamiC)z—component =0.21 R3/4L:03/4M A (v >7/4
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Qualitatively rank the magnitudes (i.e., in increasing order) of the z-
component of the dynamic force exerted by an incompressible Newtonian
fluid on the stationary inner wall of a tube for the following flow conditions:

(a) Re = 10* in a hydraulically smooth tube

(b) Re = 10?
(¢) Re = 107 in a hydraulically smooth tube
(d) Re = 10°

(e) Re = 10* in a “rough” tube with k/D ~ 1073, where k/D is a dimen-
sionless “roughness” factor

Consider one-dimensional creeping viscous flow of an incompressible New-
tonian fluid in the z direction through a straight horizontal channel that has
a square cross section. In rectangular coordinates, x and y represent the
independent spatial variables that are perpendicular to the flow direction.
Fluid flow is generated by a known pressure drop (i.e., Ap/L), which is
analogous to a pressure gradient in the z direction. Write the nontrivial
scalar component or components of the appropriate vector equation that
allows one to solve for the nonzero component of the velocity vector.
Do not include terms in the equation(s) that are trivially zero. Be sure to
include all the necessary boundary conditions.

Axisymmetric irrotational (i.e., potential) flow of an incompressible ideal
fluid past a stationary gas bubble exhibits no vorticity. Hence, V x v = 0.
This problem can be solved using the stream function approach rather than
the scalar velocity potential method. Develop the appropriate equation that
governs the solution to the stream function i for two-dimensional axisym-
metric potential flow in spherical coordinates. Which Legendre polynomial
describes the angular dependence of the stream function?

(a) Consider two-dimensional axisymmetric potential flow of an incom-
pressible fluid around a nondeformable stationary gas bubble of radius
R, as described in Problem 8-34, and calculate the dynamic force
exerted by the fluid on the bubble, across the gas—liquid interface,
in the primary flow direction. The approach velocity of the fluid far
from the bubble is §; Vapproach (i.€., upward).

(b) Write an expression for the total vector force exerted by the fluid on
the bubble in the potential flow regime. Classify your answer as a
normal force, a shear force, or some combination thereof. Be sure to
include unit vectors in your final answer.

(c) Use vector notation and simplify your answer from part (b). In other
words, what is the final expression for Fguid on bubble?

Why doesn’t the Froude number appear in the dimensionless equation of
motion, given by equation (8-42)? Use one or two sentences to answer
this question.



252 APPLICATIONS OF THE EQUATIONS OF CHANGE IN FLUID DYNAMICS

8-37. Indicate whether each statement below is true or false.

(a)

(b)

()

(d)

(e)

In the turbulent flow regime, the terminal velocity of a solid sphere
falling through an incompressible Newtonian fluid is larger when the
fluid viscosity is lower.

In the turbulent flow regime, the viscous shear force exerted by an
incompressible Newtonian fluid on the wall of a straight tube increases
four-fold when the volumetric flow rate doubles.

In the creeping flow regime, torque is not linearly proportional to
angular velocity in the cone-and-plate viscometer for a power-law fluid
with power-law exponent n = (.7.

The scalar velocity potential @ is an exact differential, which guaran-
tees that the equation of continuity is satisfied for incompressible fluids.

The stream function y is an exact differential, which guarantees that
the ¢-component of V x v=0 for two-dimensional axisymmetric
potential flow of an incompressible fluid around a stationary gas bubble
[i.e., v, (r, 0) and vy (r, 60)].
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DERIVATION OF THE MASS
TRANSFER EQUATION

The following discussion represents a detailed description of the mass balance
for any species in a reactive mixture. In general, there are four mass transfer
rate processes that must be considered; accumulation, convection, diffusion, and
sources or sinks due to chemical reactions. The units of each term in the integral
form of the mass transfer equation are moles of component i per time. In differ-
ential form, the units of each term are moles of component i per volume per time.
This is achieved when the mass balance is divided by the finite control volume,
which shrinks to a point within the region of interest in the limit when all dimen-
sions of the control volume become infinitesimally small. In this development,
the size of the control volume V(¢) is time dependent because, at each point
on the surface of this volume element, the control volume moves with velocity
Vsurface, Which could be different from the local fluid velocity of component i,
v;. Since there are several choices for this control volume within the region of
interest, it is appropriate to consider an arbitrary volume element with the char-
acteristics described above. For specific problems, it is advantageous to use a
control volume that matches the symmetry of the macroscopic boundaries. This
is illustrated in subsequent chapters for catalysts with rectangular, cylindrical,
and spherical symmetry.

9-1 ACCUMULATION RATE PROCESS

Accumulation of the mass of component i within the control volume is written
as a time derivative of a volume integral of the density of component i. In other
words, the accumulation rate process is volumetric because it occurs throughout
the entire contents of the system. The exact form for the time derivative depends

253
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on the characteristics of the control volume (see Table 8-1 on page 160). For
example, if V(¢) is stationary with constant spatial coordinates that define its
boundaries, then a partial time derivative operator is required. If the control vol-
ume is in motion such that at every point on its surface, Vgyface 1S the same as the
local mass-averaged fluid velocity v, then a substantial time derivative operator
is needed. When Ve 1S different from the mass-averaged fluid velocity of the
mixture, a total time derivative operator allows one to represent the accumulation
rate process as (d/dt) [ p; dV, where the integration is performed over the entire
control volume V(¢). It should be emphasized that when the control volume is
not stationary, the accumulation rate process involves the total time derivative
of an integral in which both the integrand p; and the limits V (¢) are functions
of time. This expression can be manipulated by invoking the Leibnitz rule for
differentiating a three-dimensional integral with variable limits:

d 9p;
[ pav= / dv + / P (0~ Veurtace) S (9-1)
dt Jyq v 0t ()

where the first two integrals are performed over the entire control volume V (¢);
the last integral on the right-hand side of (9-1) is performed over the time-
varying surface S(¢), which completely surrounds the control volume; and n is
the outward-directed unit normal vector at each point on surface S(¢). Obvi-
ously, the most general form for the control volume has been chosen. If one
sets Vgyrface = O for a stationary control volume, then the total time derivative
operator reduces to the partial derivative operator, as mentioned above. When
Vaurface = V, the Leibnitz rule for the total time derivative operator is equivalent
to the substantial time derivative operator. The final form for the microscopic
mass transfer equation is independent of the nature of the control volume. It is
reassuring to know that our conservation law and the corresponding mathemati-
cal description produce the same final result for all three possible choices for the
characteristics of the control volume. If the control volume is differentially thick
in each coordinate direction, then the mass balance becomes a three-dimensional
partial differential equation in any orthogonal coordinate system.

9-2 RATE PROCESSES DUE TO MASS FLUX ACROSS
THE SURFACE THAT BOUNDS THE CONTROL VOLUME

This is a surface-related phenomenon based on the mass flux vector of compo-
nent i and the surface area across which this flux acts. Relative to a stationary
reference frame, p;v; is the mass flux vector of component i with units of mass
of species i per area per time. It is extremely important to emphasize that p;v;
contains contributions from convective mass transfer and molecular mass trans-
fer. The latter process is due to diffusion. When one considers the mass of
component i that crosses the surface of the control volume due to mass flux,
the species velocity and the surface velocity must be considered. For example,
0i (Vi — Vaurface) 1S the mass flux vector of component i with respect to the surface



RATE PROCESSES DUE TO MULTIPLE CHEMICAL REACTIONS 255

of the control volume that moves with velocity vector Vgyfce- If the differential
surface vector at each point on the surface that bounds the control volume is
nd S, which is directed outward based on the definition of the unit normal vec-
tor n, then the net rate at which the mass of component i enters V(¢) due
to mass flux is — f 0i (Vi — Vaurface) + 1d S. The negative sign is required because
n is an outward-directed unit normal vector and the integral expression repre-
sents a net input. The scalar product of the mass flux vector with the differential
surface vector is a convenient way of identifying the component of mass flux
in the direction of the unit normal vector at each point on the surface. Only the
normal component of p;(V; — Vauface) 18 responsible for input or output of the
mass of species i across the surface of the control volume. Gauss’s law or the
divergence theorem is used to relate the surface and volume integrals that appear
in the mass transfer equation.

9-3 RATE PROCESSES DUE TO MULTIPLE
CHEMICAL REACTIONS

In the most general situation, there are N species in a multicomponent mixture
that participate in r chemical reactions. The presence of chemical reaction terms
in the mass transfer equation ruin any attempt to invoke analogies between heat
transfer and mass transfer, particularly when the chemical kinetics are different
from zeroth or first order. In the description below, components are identified by
subscript i, and reactions are labeled by subscript j. The stoichiometrically bal-
anced jth chemical reaction is represented generically as ), v;;A; = 0, where
A; is a molecular species that participates in the reaction and v;; is the stoi-
chiometric coefficient of species i in the jth chemical reaction. Stoichiometric
coefficients are negative for reactants, positive for products, and zero for inerts.
Within the framework of multiple reactions, it is very possible that a particular
component could be a product in one reaction and a reactant in a subsequent step.
The kinetic rate law for the jth chemical reaction, with units of moles per volume
per time, is given by &, and the rate of production of the mass of component i
in the jth chemical reaction is v;; (MW;)X ;, where MW; is the molecular weight
of the ith component. When one accounts for all of the chemical reactions that
occur volumetrically or pseudo-volumetrically within the control volume, the
rate of production of the mass of component i with units of mass i per time is
f D i Vij (MW ;]dV, where the summation includes all the chemical reactions
(i.e., 1 < j <r) and the integration is performed over the entire contents of the
control volume. Homogeneous kinetics correspond to a volumetric rate process
in the mass transfer equation. Heterogeneous surface-catalyzed kinetics belong in
the boundary conditions for a rigorous description of any mass transfer/chemical
reaction problem. However, this level of description within a catalytic pellet
is too complex to solve. A simplified procedure involves the assumption of
homogeneous diffusion within a porous catalyst, where the rate law is written
pseudo-volumetrically in the mass transfer equation. The rigorous description of
convective diffusion in catalytic reactors, where heterogeneous kinetic rate laws



256 DERIVATION OF THE MASS TRANSFER EQUATION

appear in the boundary conditions for a mathematically well-defined catalytic
surface, is reserved for tube-wall reactors in Chapter 23.

9-4 CONSTRUCTING INTEGRAL AND MICROSCOPIC
DESCRIPTIONS OF THE MASS TRANSFER EQUATION

The open-system mass balance for component i with units of mass per time is
stated qualitatively as 1 = 2 + 3 where 1 is the accumulation rate process or the
unsteady-state contribution, 2 is the net rate of input due to mass flux acting across
the surface that surrounds the control volume, and 3 is the rate of production of
component i due to multiple chemical reactions. In mathematical terms;

d 0p0;
_/ pidv=/ —ldv+/ Pi (M Vurface) d S
dt Jya v Ot S
= _/ Pi (Vi - Vsurface) ‘ndS + / Z Vij (MW,‘)RJ' av (9‘2)
S@) v | 5
J

This is the integral form of the mass transfer equation within an arbitrary control
volume V (¢). Notice that there is a term of the form f i (N« Vgyrace) dS in the
accumulation rate process and in the net rate of input due to mass flux acting
across the time-varying surface S(¢). These terms are present because the surface
that bounds the control volume is in motion. The fact that they cancel provides
quantitative support for the claim that the final form of the mass transfer equation
is independent of the characteristics of the control volume. All surviving terms
in the mass balance,

9pi
—dV=— [ pi(vi-n)dS+ D v (MW)R, [ dV (9-3)
v 01 S vy | 5

exhibit no dependence on vgyge. In fact, these surviving terms in the mass
balance represent the initial quantitative statement based on 1 =2+ 3, for a
stationary control volume. Notice that the accumulation rate process and the rate
of production due to homogeneous or pseudo-homogeneous chemical reactions
give rise to volume integrals, whereas the net input due to mass flux is expressed
as a surface integral. Gauss’s law is used to rewrite

f pvi-mydS= [ m-pv)ds (9-4)
S(t) S(t)

in terms of the divergence of the mass flux vector of component i with respect
to a stationary reference frame:

(n.piv,-)ds=f (V- pvi)dV (9-5)

S() V)
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Now, all terms in the mass balance are expressed as volume integrals. When
these three terms are moved to the left-hand side of the mass balance, given by
(9-3), the following result is obtained:

0p;
[ 3 pw = S weawox, [av =0 @6
V(t) at ;

The microscopic mass transfer equation is obtained by setting the integrand to
zero because there are no severe restrictions on the choice of the volume element,
which was placed arbitrarily in a region of interest within the fluid. In other
words, if a different volume element is chosen, then the integration limits in
the mass balance change but the right-hand side of equation (9-6) is always
zero. As a simple illustrative example, [xdx = 0 if the sum of the upper and
lower integration limits is zero. Hence, the integral will vanish even though the
integrand [i.e., f(x) = x]is not zero. However, if [ x dx = 0 for any set of upper
and lower limits that do not necessarily sum to zero, then this will be true only
when the integrand f(x) = x — 0. The mass transfer equation for component i
in a multicomponent mixture with multiple chemical reactions is

0p;

o H (Vv =D v (MWoR, (9-7)
J

No assumptions have been invoked to obtain this result. As illustrated below,
the mass flux term with respect to a stationary reference frame, V . p;v;, con-
tains contributions from bulk fluid flow (i.e., convection) and molecular mass
transfer via diffusion. In fact, whenever the divergence of a flux appears in a
microscopic balance expression, its origin was a dot product of that flux with
the outward-directed unit normal vector on the surface of the control volume,
accounting for input and output due to flux across the surface that bounds V (¢).
The divergence of a flux actually represents a surface-related phenomenon that
has been transformed into a volume integral via Gauss’s law.

9-5 DIFFUSIONAL FLUXES IN MULTICOMPONENT MIXTURES

Diffusion is defined as the relative motion of a species in a mixture with respect
to an average fluid velocity. The average fluid velocity can be chosen as the
mass-averaged velocity, molar-averaged velocity, or volume-averaged velocity.
The average velocity of the mixture identifies the reference frame for diffusive
fluxes. If v; is the velocity vector of component i in the mixture, then an aver-
age velocity is calculated by summing products of each v; and an appropriate
normalized weighting factor. The weighting factors are normalized because they
sum to unity when the summation includes all components in the mixture. For
example, the mass-averaged velocity is obtained when mass fractions or weight
fractions represent the weighting factors. Obviously, the molar-averaged velocity
is based on mole fraction weighting factors, and the volume-averaged velocity
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employs volume fraction weighting factors. The mass-averaged velocity vector
of a mixture v is a good choice to include in the mass transfer equation because
v is the velocity vector that appears in the equation of continuity (i.e., the overall
mass balance) and the equation of motion (i.e., the momentum balance). Hence,
fluid dynamics is typically employed to calculate v for a pure fluid and the results
are used in the mass transfer equation when the convective mass transfer rate
process is important. Diffusion can also be defined as the additive correction
factor in the following expression for the mass flux of component i:

Pivi = iV + i 9-8)

where j; represents the diffusional mass flux of component i with respect to the
mass-average velocity of the mixture. There is a simple relation between the dif-
fusional fluxes of all components in the mixture, particularly when one considers
(1) diffusional mass fluxes in the mass-averaged reference frame, (2) diffusional
molar fluxes in the molar-averaged reference frame, or (3) diffusional volume
fluxes in the volume-averaged reference frame. This concept is illustrated with dif-
fusional mass fluxes in the mass-averaged reference frame, where j; is defined by
equation (9-8). If p;v; = p;v + j; is summed over all components in the mixture,

then:
DoPvi=VY b (9-9)

based on definitions of the mass-averaged velocity v, mass fraction w;, and the
total mass density of the mixture p,

V=Zini w; = % ,0=Z/0i (9-10)

Hence, >, j; = 0, which suggests that the sum of all diffusional mass fluxes in
the mixture with respect to the mass-averaged frame is zero. For binary mixtures,
this statement is known as equimolar counterdiffusion.
With the foregoing definitions of diffusional fluxes in a multicomponent mix-
ture, it is possible to manipulate the mass transfer equation,
p;

StV epivi) = ;viﬂMwimj (9-11)

without invoking any assumptions for use in Chapter 25. It is convenient to write
the mass density of component i (i.e., p;) in terms of the mass fraction of com-
ponent i and the overall mass density of the mixture. Hence, p; = w;p. Now, the
accumulation rate process in (9-11) can be expanded as a product of two terms:
00 dw; dp

or  Par T ¢-12)
The net input due to mass flux acting across the surface of the control volume
is split into contributions from convection and diffusion via (9-8):

Vepivi=V.pwv+V.j (9-13)
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The convective mass flux term; V - pw;v, is expanded using the product rule for
the V operator, which is similar to the product rule for the derivative operator,
except for the fact that one must exercise caution in placing the dot between two
vectors. It makes no sense to calculate the scalar (i.e., dot) product of a vector
and a scalar. If pw;v is viewed as a product of w; and pv, then:

Vepw,v=V --wjpv=pv-Vu;, +w;V - pv (9-14)
The mass transfer equation for component i is

dw; ap
ar 9%

0 +pv-Vo +o;V:pv+V.j =Zvij(MWi)3Kj (9-15)
J

The second and fourth terms on the left-hand side of (9-15) can be combined to
reveal the equation of continuity (i.e., the overall mass balance) for the mixture:

9
N (8—’;+V-pv> —0 (9-16)

No approximations have been invoked to eliminate these two terms from the
mass transfer equation because

ap
5 TV pv=0 (9-17)

is a microscopic representation of the overall mass balance for pure fluids and
multicomponent mixtures provided that there is no generation of overall mass.
The final form of the mass transfer equation for component i in a multicomponent
mixture with several chemical reactions is

36&)1' .
0 < o +v- Vwi) =-V.j+ Zvij(MWi)iﬁj (9-18)
J

This equation is not restricted to liquids with constant density, as one might
suspect from the fact that the overall mass density p appears to the left of the
substantial derivative of the mass fraction of component i. Since v in the mass
transfer equation represents the mass-averaged velocity of the mixture,

00 |y Yy = 22 (9-19)
Ve V; = -
ot Dt

is the substantial derivative of w;, written as Dw; /Dt. It is a measure of the time
rate of change of the mass fraction of component i that one would calculate in
a control volume which moves along with the mass-averaged velocity at every
point on the surface that surrounds V(¢). Hence, a concise form for the mass
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transfer equation of component i in a multicomponent mixture with multiple
chemical reactions is

Da),- .
pp ==V it Xj:uij(Mw,-)aa, (9-20)

The only implicit assumption in (9-20) is that overall fluid mass is neither created
nor destroyed.

9-6 DIFFUSIONAL FLUXES AND LINEAR TRANSPORT LAWS
IN BINARY AND PSEUDO-BINARY MIXTURES

When there are only two components in the mixture, diffusional fluxes are written
in terms of a driving force and a binary molecular diffusion coefficient via Fick’s
first law. For example, if the diffusional mass flux with respect to a reference
frame that translates at the mass-averaged velocity of the mixture is based on a
mass fraction driving force, then Fick’s first law for component A is

Ja = pa(va — V) = —pBapVwa 9-21)

where Dp is the binary molecular diffusion coefficient. This expression for ja
neglects contributions from temperature gradients (i.e., Soret diffusion), pres-
sure gradients, and external forces. It is necessary to consider entropy generation
within the framework of irreversible thermodynamics to appreciate all the con-
tributions to diffusional mass flux. This is discussed in Chapter 25. In fact, when
there are n components in the mixture, the diffusional mass flux of species A
exhibits contributions from (n — 1) concentration gradients, including Vwa. This
complexity is circumvented, to some extent, by writing the diffusional mass flux
of component i solely in terms of Vw; and the molecular diffusion coefficient
of species i in a multicomponent mixture. This is not rigorously correct, but the
concept of treating a multicomponent mixture as a pseudo-binary mixture allows
one to solve the mass transfer equation, either analytically or numerically, and
analyze physicochemical phenomena within the internal pores of a catalytic pel-
let. Hence, this pseudo-binary assumption permits one to write the diffusional
mass flux of component i as follows:

Ji=pivi = V) = —p B nix Vo (9-22)

The actual diffusion coefficient in equation (9-22) depends on (1) whether the
equation is written for diffusional mass flux or diffusional molar flux, (2) the ref-
erence frame (i.e., with respect to v, for example), and (3) the driving force (i.e.,
mass fraction gradient or mole fraction gradient). Obviously, there are several
combinations of factors 1, 2, and 3, and each requires a different proportionality
constant between flux and gradient. Interestingly enough for binary mixtures, the
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diffusivity for diffusional mass flux in the mass-averaged reference frame with
a mass fraction gradient is the same as the diffusivity for diffusional molar flux
in the molar-averaged reference frame with a mole fraction gradient. Further-
more, the molecular diffusion coefficient is a function of temperature, pressure,
and composition, as discussed in Chapter 21. When diffusion occurs within the
internal pores of a catalytic pellet, it is necessary to consider the pore structure
of the catalyst in the final expression for the “effective” diffusion coefficient.
In other words, one must include a tortuosity factor because diffusion occurs
through tortuous pathways that do not conform to a homogeneous medium, and
a porosity factor which is equivalent to a void fraction. Tortuosity and porosity
are discussed within the framework of the parallel-pore model in Chapter 21.

9-7 SIMPLIFICATION OF THE MASS TRANSFER EQUATION
FOR PSEUDO-BINARY INCOMPRESSIBLE MIXTURES
WITH CONSTANT PHYSICAL PROPERTIES

The generalized form of the mass transfer equation,

9pi
w (Vo) = ; vij (MW)R (9-23)

is combined with an expression for the total mass flux of component i with respect
to a stationary reference frame that includes Fick’s first law of diffusion. The
overall objective is to manipulate the microscopic mass balance for multicompo-
nent incompressible mixtures and generate the classic form of the mass transfer
equation that allows one to calculate molar density profiles for reactants and
products. The multicomponent mixture is treated as a pseudo-binary mixture and
the total mass flux of component i with respect to a stationary reference frame is

PiVi X piV — p B mix Vo (9-24)

where the diffusional mass flux is expressed with respect to the mass-averaged
velocity of the mixture, v. This is convenient because the microscopic form
of the overall mass balance (i.e., equation of continuity) for an incompressible
mixture is

Vepv=pV.vy=0 or V.v=0 (9-25)

when the overall fluid density p is constant. The incompressibility assumption for
diffusion and chemical reaction within the pores of a catalytic pellet is reasonable
for isothermal operation when reactants and products are not subjected to large
changes in pressure. The diffusional mass flux of component i in the mass-
averaged reference frame with a mass fraction gradient can be written as

Ji = Bimix Vi (9-26)
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when the overall density is constant. The divergence of the total mass flux of
component i with respect to a stationary reference frame is

Vepivi=Vepiv+ Ve (—BnixVoi) (9-27)

The product rule for the divergence operator is applied to both terms on the right-
hand side of equation (9-27). In any coordinate system, the divergence of the
product of a scalar and a vector is expanded as a product of the scalar and
the divergence of the vector plus the scalar (i.e., dot) product of the vector and
the gradient of the scalar. This vector identity was employed in equation (9-14).
The pseudo-binary mass transfer equation for component i is

30;
% +oiVev+veVp =B mixV Vo + Vi o VB, mix + Z vij (MW)R;

(9-28)

in the presence of multiple chemical reactions. For incompressible mixtures with
constant physical properties,

V:v=0 and VB,nix=0 (9-29)

Hence, one term each on the left- and right-hand sides of equation (9-29) is zero.
Since the mass density of component i, p;, and the molar density of component
i, C;, are related by molecular weight, division by MW, produces the final form
of the mass transfer equation for incompressible pseudo-binary mixtures with
constant physical properties:

aC;
at

+V- VG =Dimi VG + Y vk, (9-30)
J

where the Laplacian operator V2 = V . V| the rate law for the jth homogeneous
or pseudo-homogeneous chemical reaction has units of moles per volume per
time, and R®; is expressed most conveniently in terms of molar densities. The
first term on the left-hand side of the mass transfer equation, dC;/d¢, is the accu-
mulation or unsteady-state rate process, characterized by a first derivative with
respect to time. This term is neglected for steady-state simulations. The second
term on the left-hand side of the mass transfer equation, v - VC;, represents con-
vective mass transfer, characterized by first spatial derivatives of molar density
multiplied by the appropriate component of the mass-averaged velocity of the
mixture. In general, convective mass transfer occurs in all three coordinate direc-
tions. However, for simple one-dimensional flow problems, the only important
contribution to convective mass transfer occurs in the primary direction of bulk
fluid flow. The first term on the right-hand side of the mass transfer equation,
ZBi,miXVzCi corresponds to molecular mass transfer via diffusion, characterized
by second spatial derivatives of molar density and the presence of a molecular
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transport property (B; mix) When the balance is written in dimensional form. Be
careful when radial diffusion in cylindrical or spherical coordinates is written
in dimensionless form and the product rule for differentiation is employed to
expand the diffusion term, as illustrated below in these coordinate systems;

Cylindrical coordinates:

1d ( d\I/i> a?v;, 1dv;
n - Z

ndn \" dn dn®> ~ n dn

1 d dy; a?v;,  2dvy;

Spherical coordinates: - (n2—> =—+-—
n*dn \" dn dn®  ndn

where W; is the dimensionless molar density of component i and 7 is a dimen-
sionless independent variable in the radial direction (i.e., n = r/R). A first spatial
derivative appears in the second term on the right-hand side of both equations,
and in dimensionless form, the diffusion coefficient does not appear explicitly
because it is contained in either the mass transfer Peclet number or the Damkohler
number. However, molecular mass transfer via radial diffusion is the rate process
that generates all four of these terms, and one must not confuse (1/n)dW¥;/dn
or (2/n) dW¥;/dn with radial convection. In general, diffusion occurs in all three
coordinate directions. However, the contribution from molecular mass transfer in
the primary flow direction is usually small in comparison with convective mass
transfer in the same direction when the product of the Reynolds and Schmidt
numbers is large. When mass transfer rate processes due to chemical reactions
are operative, the mass transfer equation contains a linear or nonlinear function
of molar densities for the various species in the mixture, without derivatives.
Linear functions represent zeroth- or first-order chemical kinetics and nonlinear
functions correspond to apparent nth-order kinetics or complex rate laws which
could exhibit molar densities in the denominator of the reaction rate, similar to
the Hougen—Watson models. Hence, one should be able to identify the important
mass transfer rate processes for a particular problem by visual inspection of the
governing mass transfer equation.
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DIMENSIONAL ANALYSIS
OF THE MASS TRANSFER
EQUATION

10-1 DIMENSIONAL SCALING FACTORS FOR THE MASS
TRANSFER RATE PROCESSES

The objective of this section is to identify the characteristic quantities for a
generic mass transfer problem and the physical properties of the fluid (i.e., p
and B; mix), which can be combined to represent the dimensions and an order-of-
magnitude estimate of each term in the mass transfer equation. The characteristic
scalar quantities are the average fluid velocity (v), a length scale L, and the inlet
molar density of reactant A, Cayp.

The molar density of each component in the mixture is dimensionalized via
division by Cpug. The length scale is well defined for a particular problem. For
example, L is the radius of spherical catalytic pellets, the radius of long cylindri-
cal catalysts, or one-half of the thickness of porous wafer catalysts, measured in
the thinnest dimension. For the purposes of dimensional analysis in this and the
following sections, L represents a generic length scale. Two of the characteristic
quantities, (v) and L, can be used to construct a characteristic time scale similar
to the average residence time for flow reactors (i.e., L/(v)). The dimensional
scaling factor for the accumulation rate process (i.e., dC;/dt) is constructed by
combining the characteristic molar density of key limiting reactant A and the
characteristic time scale. Hence,

9C;i __ (v)Cao
at L

(10-1)

represents an order-of-magnitude estimate for, and contains all the dimensions
of (i.e., moles per volume per time), the unsteady-state term. The dimensional

265
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scaling factor for the convective mass transfer rate process (i.e., v+ VC;) is
constructed by combining the average fluid velocity and a simple representation of
the concentration gradient. Since this gradient implies a spatial rate of change, the
units of V are L~! and the concentration gradient is estimated by Cxo/L. Hence,

C
VeVC ~ (v)Cao
L

(10-2)

also represents an order-of-magnitude estimate for, and contains all the dimen-
sions of, the convective mass transfer rate process. The dimensional scaling factor
for the accumulation rate process is the same as the one for convective mass trans-
fer. Consequently, both of these terms are grouped together on the left-hand side
of the mass transfer equation. The dimensional scaling factor for diffusion in the
mass transfer equation (i.e., B;, mix V2C;) is constructed by combining the diffu-
sion coefficient of component i and a simple representation of the Laplacian of
molar density. Since the Laplacian operator denotes second spatial derivatives,
the units of V2 =V . V are L=2 and V2C; is estimated by Cao/L>. Hence,

Ei, miszCi ~ W (10-3)
represents an order-of-magnitude estimate for, and contains all the dimensions
of, the diffusion rate process in the mass transfer equation. Finally, the dimen-
sional scaling factors for rate processes due to multiple chemical reactions (i.e.,
X ;v;jR;) are constructed by writing a simple nth-order rate law for the jth
independent chemical reaction as follows: k;(Cao)"/, where k; is the nth-order
kinetic rate constant when the rate law for reaction j is expressed on a volumetric
basis using molar densities. Hence, an order-of-magnitude estimate of the rate
law for each independent chemical reaction R ; contains the apparent kinetic rate
constant k; and the apparent reaction order 7 ; that are specific to the jth chemical
reaction. If a multicomponent mixture contains N components that participate in
r independent chemical reactions, then it is possible to calculate r 4+ 2 dimen-
sional scaling factors in the mass transfer equation for component i: one for the
accumulation rate process and convective mass transfer, one for diffusion, and
one for each independent chemical reaction, 1 < j < r. As illustrated in the next
section, r + 1 dimensionless numbers can be constructed from r + 2 dimensional
scaling factors when all the scaling factors have the same dimensions (i.e., moles
per volume per time).

10-2 DIMENSIONLESS FORM OF THE GENERALIZED MASS
TRANSFER EQUATION WITH UNSTEADY-STATE CONVECTION,
DIFFUSION, AND CHEMICAL REACTION

The objective of this section is to identify the dimensionless transport numbers
that appear in the mass transfer equation for component i. Order-of-magnitude
estimates of the importance of one mass transfer rate process relative to another
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mass transfer rate process are obtained by calculating these dimensionless num-
bers. Since dimensionless numbers are generated by dividing two different dimen-
sional scaling factors, order-of-magnitude estimates can be obtained from the
characteristic quantities of a particular mass transfer problem and the physical
properties of the fluid of interest. Furthermore, these order-of-magnitude cal-
culations can be performed at the beginning of a mass transfer problem. It is
not necessary to conquer mathematical details and obtain analytical or numer-
ical solutions prior to estimating the relative importance of two different mass
transfer rate processes. Obviously, the mathematics can be simplified if order-
of-magnitude calculations at the outset reveal that it is reasonable to neglect a
particular mass transfer rate process before proceeding to obtain the solution.

The strategy for obtaining the dimensionless mass transfer equation is
as follows:

1. Begin with the dimensional form of the mass transfer equation for compo-
nent i, where all variables have dimensions:

aact‘l +ve. VC,' = ZBLmiXVZC,' + Z vl-ji?sj (10—4)
J
2. Introduce dimensionless variables (i.e., C; = CaoV;, etc.) and write each
mass transfer rate process in terms of these dimensionless variables and
the corresponding dimensional scaling factor. This scaling factor contains
all the dimensions of, as well as an order-of-magnitude estimate for, the
particular mass transfer rate process. For example, the left-hand side of
equation (10-4) is written as follows, where all the variables are dimen-

sionless:
(V)Cao (Y
- Vi 10-5
7 o TV Vi (10-5)
The diffusion term is expressed as
B;, mixCao
— Vi (10-6)

where the Laplacian operator and the molar density of component i are
dimensionless. The rate of production of the moles of component i via
multiple chemical reactions is written as

D vk (T)(Cao) & (10-7)
J

where k; (T) is the kinetic rate constant for reaction j with units of (volume/
mole)"i~!/time, n; is the simplified order of the jth reaction even though
the rate law might be rather complex, and i&’; is the dimensionless rate
law for the jth reaction, written on a volumetric or pseudo-volumetric
basis using molar densities. For example, if #; gw is the Hougen—Watson
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model for reaction j on the interior surface of a catalytic pellet with units of
moles per area per time, S,, is the internal surface area per mass of catalyst,
and p.pp is the apparent mass density of the pellet, then the dimensionless
Hougen—Watson rate law is defined as

-

| A0)"
where the numerator is a pseudo-volumetric representation of the rate law
for surface-catalyzed chemical reactions.

3. Divide the entire mass transfer equation by the scaling factor for diffusion
(i.e., B; mixCao/L?). This is an arbitrary but convenient choice. Any of the
r + 2 dimensional scaling factors can be chosen for this purpose. When
the scaling factor for the diffusion term in the dimensional mass transfer
equation is divided by B; mixCao/ L?, the Laplacian of the molar density
contains a coefficient of unity. When the remaining r 4 1 scaling factors in
the dimensional mass transfer equation are divided by B; mixCao/ L2, the
dimensionless mass transfer equation is obtained. Most important, r + 1
dimensionless transport numbers appear in this equation as coefficients of
each of the dimensionless mass transfer rate processes, except diffusion.
Remember that the same dimensionless number appears as a coefficient
for the accumulation and convective mass transfer rate processes on the
left-hand side of the equation.

As mentioned above, the dimensionless transport numbers in the mass transfer
equation are generated from ratios of dimensional scaling factors. If one divides
the scaling factor for convective mass transfer by the scaling factor for diffusion,
the result is

(W)Cao/L L)
B mixCao/L> B mix
L
_ L) #/p pese = Peyr (10-9)
,bl,/,O Ei,mix

The product of the Reynolds and Schmidt numbers, which counts as one dimen-
sionless number, is equivalent to the Peclet number for mass transfer, Peyr. The
Peclet number represents the ratio of the convective mass transfer rate process
to the diffusion rate process of component i, and it appears on the left-hand side
of the dimensionless mass transfer equation for component i. The remaining r
dimensionless transport numbers can be treated simultaneously because they rep-
resent ratios of scaling factors for the reactant—product conversion rate due to the
jth independent chemical reaction relative to the rate of diffusion of component
i. Hence,

ki (T)(Cao)™ _ ki (T)L*(Cpp)"i ™!
B;, mixCao/L? B, mix

= A}, (10-10)
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where Aiz/' is the Damkohler number for component i in the jth chemical reaction.
The Damkohler number represents the ratio of the rate of chemical reaction to
the rate of mass transfer via diffusion. Obviously, the Damkohler number is
chemical-reaction-specific because the kinetic rate constant k;(7") depends on the
particular reaction under consideration. The Damkohler number is also species
specific because the rate of mass transfer by diffusion depends on the diffusion
coefficient for component i. The latter concept is particularly important when
there are several reactants and products diffusing through the pores of a catalytic
pellet. Under these conditions, it is necessary to calculate an effective diffusion
coefficient and an intrapellet Damkohler number for each component in the reac-
tive mixture. Theoretical details based on this concept are described in Chapter 19
when it is necessary to relate the molar densities of all species in the mixture to
the molar density of the key-limiting reactant. This procedure is required only
when the rate law is expressed in terms of the molar density of more than one
component. Detailed calculations of the effective intrapellet diffusion coefficient
of component i are described in Chapter 21. The Damkohler number for compo-
nent i is always calculated based on the characteristic molar density of reactant
A. Cyp is defined either on the external surface of a catalytic pellet, or in the
feed stream to a flow reactor. The final form of the dimensionless mass trans-
fer equation for component i in pseudo-binary mixtures with constant physical
properties is

Y a
Re-Sc( v w;,) =1V%y; + ;u,-jz\fjaaj (10-11)

For unsteady-state diffusion into a quiescent medium with no chemical reac-
tion, the mass transfer Peclet number does not appear in the dimensionless mass
transfer equation for species i because it is not appropriate to make variable
time ¢ dimensionless via division by L/(v) if there is no bulk fluid flow (i.e.,
(v) = 0). In this case, the first term on each side of equation (10-11) survives,
which corresponds to the unsteady-state diffusion equation. However, the charac-
teristic time for diffusion of species i over a length scale L, given by L?/®; mix,
replaces L/(v) to make variable time ¢ dimensionless. Now, the accumulation
and diffusional rate processes scale as CaoB;, mix/ L2, with dimensions of moles
per volume per time. Since both surviving mass transfer rate processes exhibit
the same dimensional scaling factor, there are no dimensionless numbers in the
mass transfer equation which describes unsteady-state diffusion for species i in
nonreactive systems.

10-3 FUNCTIONAL DEPENDENCE OF THE MOLAR DENSITY
OF SPECIES i VIA DIMENSIONAL ANALYSIS

Consider several overlapping subsets of the dimensionless mass transfer equation
from Section 10-2 which correspond to various combinations of convection, dif-
fusion, and chemical reaction that may or may not exhibit transient behavior.
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If one constructs the appropriate dimensionless equation that governs the molar
density profile y; for component i, then i; depends on all the dimensionless
independent variables and parameters in the governing equation and its support-
ing boundary conditions. Geometry also plays a role in the final expression for
Y; in each case via the coordinate system that best exploits the summetry of the
macroscopic boundaries, but this effect is not as important as the dependence of
Y; on the dimensionless numbers in the mass transfer equation and its bound-
ary conditions. For example, if convection, diffusion, and chemical reaction are
important rate processes that must be considered, then the governing equation
for transient analysis

oY 2 2
Re-Sc( TV le-) = Vi + zj:vijA,.jii.’; (10-12)
suggests that
yi = f(t.r;ReSc, A @ ) (10-13)

where ¢ is dimensionless time and r represents the set of dimensionless spatial
coordinates. Steady-state convection, diffusion, and chemical reaction in packed
catalytic tubular reactors are described by

Re-Sc(v- Vi) = V2 + Y vy AL B (10-14)
J

and one concludes that the functional dependence of ; is given by
Y = f@riRe:Sc, A} ;) (10-15)
where time dependence is absent. For convection and diffusion in nonreac-

tive problems, one does not expect functional dependence of ; on any of the
Damkohler numbers because the governing equations:

0
Unsteady state: Re-Sc < alé +v- V1//,<> = Vzw,- Y; = f(t,r; Re-Sc)
(10-16a)
Steady state: Re-Sc (v Vi) = Vzw,- Y; = f(r; Re-Sc)
(10-16b)

do not require any information about rates of conversion of reactants to prod-
ucts or the corresponding Al-2j. In each of these two examples for nonreactive
problems, which include laminar mass transfer boundary layer theory, the mass
transfer Peclet number is the only dimensionless number that appears in the
final expressions for ¥;. As mentioned above, the accumulation rate process and
molecular mass transfer via diffusion are described by the same dimensional
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scaling factor when convective mass transfer is absent. For reactive systems, the
governing equations and functional dependencies of ; are provided below for
transient and steady-state analyses, without convection:

Unsteady state: 88? =V, + Z vijAl-zjinf Vi = f(t,r; Aizj @l j))
’ (10-17a)
Steady state: 0=V + > v AT R Vi = frs Af i j)
! (10-17b)

Obviously, the Damkohler numbers are important when chemical reaction
occurs, as illustrated by these two examples, which include diffusion and pseudo-
homogeneous chemical reaction in porous catalytic pellets. Details of the diffu-
sion equation without convection in nonreactive systems are summarized below
for transient and steady-state analyses:

aa‘f" = V?y; vi = f(t,r) (10-18a)

Steady state: 0= Vzw,- Y = f(r) (10-18b)

Unsteady state:

Notice that the molar density profiles for these problems are not affected by
any dimensionless numbers because either there is only one mass transfer rate
process for steady-state analysis, or both rate processes are described by the same
dimensional scaling factor. These qualitative trends should be considered before
one seeks quantitative information about a particular mass transfer problem.

10-4 MAXIMUM NUMBER OF DIMENSIONLESS GROUPS
THAT CAN BE CALCULATED FOR A GENERIC MASS
TRANSFER PROBLEM

If N components (1 <i < N) participate in r independent chemical reactions
(1 < j <), then the previous discussion illustrates the methodology to generate
r + 1 dimensionless numbers from r + 2 dimensional scaling factors in the mass
balance for component i. This process is repeated by analyzing the mass balance
for each component in the mixture. The characteristic molar density of key-
limiting reactant A, Cyg, is employed to make all molar densities in the reactive
mixture dimensionless, as follows:

Cao

Hence, the dimensional scaling factor for convective mass transfer is the same
in each mass balance. Similarly, dimensional scaling factors for all of the inde-
pendent chemical reactions do not change from one mass balance to the next.
However, when the r 4+ 2 dimensional scaling factors in the mass balance for
component i are divided by the dimensional scaling factor for component i’s
rate of diffusion (i.e., B; mixCao/ L?), one obtains r + 1 dimensionless numbers

Vi (10-19)
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that are species specific because division was performed using a species-specific
diffusion coefficient. This analysis yields » + 1 unique dimensionless numbers
in each dimensionless mass balance; a mass transfer Peclet number based on the
rate of diffusion of component i, and a Damkohler number for component i in
each independent chemical reaction. It should be mentioned that Af/. is not very
useful if component i does not participate in the jth independent chemical reac-
tion. In summary, there are a total of N(r + 1) unique dimensionless numbers
that can be calculated, where r 4+ 1 dimensionless numbers appear in each mass
balance. There are N different Peclet numbers, where each is based on a rate of
molecular mass transfer for component i, and there are Nr different Damkohler
numbers, where each characterizes the reactant—product conversion rate for the
Jjth independent chemical reaction relative to the rate of diffusion for component
i. Ratios of diffusivities have not been considered in this analysis, but they are
necessary to analyze multicomponent adsorption, diffusion, and heterogeneous
chemical reaction within the pores of a catalytic pellet.

PROBLEMS

10-1. Consider a non-Newtonian fluid with power-law index n and consistency

index m. Construct appropriate dimensionless representations for the
Reynolds, Schmidt, and mass transfer Peclet numbers.
Answer: The product of Re and Sc is the mass transfer Peclet number,
Peyir, where the important mass transfer rate processes are convection and
diffusion. Since the dimensional scaling factors for both of these rate pro-
cesses do not contain information about the constitutive relation between
viscous stress and velocity gradients, one concludes that Peyr is the same
for Newtonian and non-Newtonian fluids. Hence, the mass transfer Peclet
number for species i in a multicomponent mixture is

L{v)

i, mix

Peyir = Re-Sc =

in terms of characteristic length L and average velocity (v). Since the
Reynolds number represents a ratio of dimensional scaling factors for con-
vective momentum flux relative to viscous momentum flux, Re should
contain information about the power-law parameters. The dimensional
scaling factors (i.e., DSF) for both types of momentum flux and the cor-
responding terms in the equation of motion (i.e., EOM) are summarized
below for power-law fluids.

Momentum Transfer Rate Process DSF DSF in EOM

Convective momentum flux, pvv o(v)? V. pvw = p(v)?/L
Viscous momentum flux, t m({v)/L)" V.1~ mv)*/L"!
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Division of the dimensional scaling factors for these two momentum trans-
fer rate processes, or the corresponding scaling factors in the equation of
motion, yields an expression for the Reynolds number. Hence,

_ P p)L"
m({v)/L)" m

Since the mass transfer Peclet number is insensitive to the power-law
parameters, the Schmidt number must reflect a dependence on m and n to
offset these corresponding quantities in Re, such that the product of Re
and Sc yields Peyr. In other words,

p(v)*"L" _ L(v)

Sc =
m ZBi, mix

Classically, the Schmidt number represents a ratio of diffusivities
for momentum transfer and mass transfer. The preceding equation
suggests that

m((v)/L)""!
pEi, mix

Sc =

where m((v)/L)"~! is the dimensional scaling factor, or order-of-
magnitude estimate, for non-Newtonian fluid viscosities via the power-
law model.

What important dimensionless number(s) appear in the dimensionless par-
tial differential mass transfer equation for laminar flow through a blood
capillary when the important rate processes are axial convection and radial
diffusion?

Consider two-dimensional steady-state mass transfer in the liquid phase
external to a solid sphere at high Schmidt numbers. The particle, which
contains mobile reactant A, dissolves into the passing fluid stream, where
A undergoes nth-order irreversible homogeneous chemical reaction with
another reactant in the liquid phase. The flow regime is laminar, and heat
effects associated with the reaction are very weak. Boundary layer approx-
imations are invoked to obtain a locally flat description of this problem.

(a) What mass transfer rate processes must be considered to describe this
problem?

(b) What dimensionless numbers appear in the dimensionless mass transfer
equation?

The set of independent variables and dimensionless parameters for the
functional dependencies in parts (c), (d), and (e) should be chosen from
the following:
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(d)

(e)
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t* = dimensionless time variable
x* = dimensionless spatial coordinate measured parallel to the
interface
y* = dimensionless spatial coordinate measured perpendicular to the
interface
n = order of the irreversible chemical reaction
all of the dimensionless numbers from part (b)

What is the functional dependence of the dimensionless molar density
of mobile component A in solution, ¥y = f(?7)?

What is the functional dependence of the local Sherwood number
Shyoca = g(7), which is given by the dimensionless concentration gra-
dient with respect to normal coordinate y* evaluated at the solid—liquid

interface?
oy
Shlocal = - <—f>
3y y*=0

What is the functional dependence of the surface-averaged Sherwood
number Shyyerage = 1(?), defined by

d
Shaverage = _//< 1//A> dx*dz*
ay* ) yezo

where z* is the other dimensionless independent variable measured in
the plane of the solid-liquid interface, and integration is performed
over macroscopic limits on x* and z*?

Compare the mass transfer boundary layer thickness of mobile reactant
A in solution, adjacent to the fluid—solid interface, with and with-
out chemical reaction. In other words, how does (8¢)with chemical reaction
compare With (8¢)no chemical reaction fOI Species A at the same point along
the interface?
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LAMINAR BOUNDARY LAYER
MASS TRANSFER AROUND

SOLID SPHERES, GAS BUBBLES,
AND OTHER SUBMERGED OBJECTS

11-1 BOUNDARY LAYER MASS TRANSFER ANALYSIS

As an incompressible fluid of infinite extent approaches and flows past either a
spherical solid pellet or a gas bubble, a mobile component undergoes interphase
mass transfer via convection and diffusion from the sphere to the fluid phase. The
overall objective is to calculate the mass transfer coefficient and the Sherwood
number at any point along the interface (i.e., the local transfer coefficients),
as well as surface-averaged transfer coefficients. The results are applicable in
the laminar flow regime (1) when the sphere is stationary and the fluid moves,
(2) when solid spheres fall or gas bubbles rise through a quiescent medium, and
(3) when both the sphere and fluid move in opposite directions. The detailed
nature of the solution procedure requires that only one sphere be present, but
the final results can be extended to describe interphase mass transfer in packed
beds. One of the classic applications of these results is interphase transfer of
oxygen from gas bubbles to a well-stirred liquid as the bubbles rise through the
continuous fluid phase in a mixed-flow apparatus.

11-1.1 Mass Transfer Equation

Steady-state analysis in the absence of any chemical reactions produces the fol-
lowing mass balance for mobile component A in an incompressible fluid when
the control volume is differentially thick in all coordinate directions:

V'VCA =ZBA,miXV -VCA (11-1)
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The only assumption is that the physical properties of the fluid (i.e., p and
Ba, mix) are constant. The left-hand side of equation (11-1) represents convec-
tive mass transfer in three coordinate directions, and diffusion is accounted for
via three terms on the right side. If the mass balance is written in dimension-
less form, then the mass transfer Peclet number appears as a coefficient on the
left-hand side. Basic information for dimensional molar density C, will be devel-
oped before dimensionless quantities are introduced. In spherical coordinates, the
concentration profile Ca(r, 8, ¢) must satisfy the following partial differential
equation (PDE):

vy

8CA Vg BCA Vg 8CA |:1 d ( 23CA>
+ — A, mix ro—

=D —_
or r 90 rsind 9¢ r2 or or

1 3 (. dCa 1 9%Ca
9 (ano 112
t 2sing 90 (Sm 36 ) T sinte 992 -2

This is a horrendous equation that requires simplification via reasonable engi-
neering approximations before one can derive any meaningful results from an
analytical solution. The origin of 