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Preface

When it comes to designed experiments, researchers often end up creating complex

designs without having sufficient analytical expertise to handle. Researchers in plant

breeding, animal science, health sciences and so forth, come to statistical consulting

with data from rather very complex designs from time to time. Unfortunately,

statistical courses taken by these researchers may not have covered these

sophisticated designs. To make matters even more severe, there is an alarming

shortage of textbooks covering complex designs. To help alleviate the analytical

challenges of researchers dealing with complex designs, we have decided to write

this book and we do hope that it will be helpful to a lot of researchers. Understanding

and mastery of the designs covered here, assume a prior exposure to the basic

experimental designs such as: one-way completely randomized design, completely

randomized factorial experiment designs, randomized complete blocks with one or

more factors, incomplete blocks, row-column designs, Latin-square designs and so

forth. These basic designs are easy to analyze since one is dealing with one

experimental error given one has a single level of randomization of the treatment

combinations between the levels of various factors to the experimental units.

Nonetheless, this type of randomization might be rather simplistic and inappropriate

depending on the existing experimental conditions along with the constraints

imposed by limited resources. As a result, the experimenter might be forced to have

different randomizations and therefore experimental units of unequal sizes at

different levels of randomization, to overcome logistical and/or technological

constraints of an experiment. This opens up a class of more complex designs called

split plot designs or split block designs with at least two types of experimental errors.

In either case, several variations can occur with a possibility of a further partitioning

of the experimental units, leading to smaller and smaller experimental units

paralleled with more error terms used to test the significance of various factors’

effects. Furthermore, an experiment design might consist of a combination of these

two types of designs, along with treatments arranged following the basic designs for

some of the factors under investigation. A textbook on variations of split plot and

split block designs points in the right direction by addressing the urgent need of

researchers dealing with complex designs for which no reference is available to the

xiii



best of our knowledge. We have encountered a few researchers in this type of

situation through our statistical consulting activities. We are therefore convinced that

this book will be a valuable resource not only to researchers but also to instructors

teaching experiment designs courses. It is also important to adequately equip

graduate students with the important skills in complex designs for a better readiness

to real life situation challenges as far as designed experiments are concerned.

Another important innovation of this textbook consists of tackling the issue of error

reduction through blocking, analysis of covariance, or both. While blocking

relatively homogeneous experimental units into groups might help reduce sub-

stantially the experimental error, there are situations where it is neither sufficient by

itself nor feasible at all. Thus, use of available auxiliary information on the

experimental units has proven to significantly reduce the experimental error through

analysis of covariance. Analysis of covariance enables one to better control the

experimental error when covariates are judiciously chosen. We have added a chapter

on analysis of covariance to specifically provide researchers with helpful analytical

tools needed when dealing with covariates in complex designs.

WALTER T. FEDERER

FREEDOM KING

May 2006
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C H A P T E R 1

The Standard Split Plot Experiment

Design

1.1. INTRODUCTION

Prior to starting the topic of this book, it was deemed advisable to present some

design concepts, definitions, and principles. Comparative experiments involve a

number, v, treatments (factors) where a treatment is an item of interest to the

experimenter. A treatment could be a medical treatment, a drug application, a level

of a factor (amount of a drug, fertilizer, insecticide, etc.), a genotype, an agricultural

practice, a marketing method, a teaching method, or any other item of interest. The

selection of the v treatments for an experiment is known as the treatment design. The

selection of an appropriate treatment design is a major element for the success of an

experiment. It may include checks (standards, placebos) or other points of reference.

The treatments may be all combinations of two or more factors and this is known as

a factorial arrangement or factorial treatment design. A subset of a factorial is

denoted as a fractional replicate of a factorial.

The arrangement of the treatments in an experiment is known as the experiment

design or the design of the experiment. The term experimental design is of fre-

quent use in statistical literature but is not used here. There are many types of

experiment designs including: unblocked designs, blocked designs (complete blocks

and incomplete blocks), row-column experiment designs, row-column designs

within complete blocks, and others. Tables of designs are available in several

statistical publications. However, many more experiment designs are available from

a software package such as GENDEX (2005). This package obtains a randomized

form of an experiment design and the design in variance optimal or near optimal.

There are three types of units to be considered when conducting an experiment.

These are the observational unit, the sample or sampling unit, and the experimental

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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unit (Federer, 1991, Chapter 7). The observational unit is the smallest unit for which

a response or measurement is obtained. A population or distribution is composed of

sample units or sampling units. The experimental unit is the smallest amount of

experimental material to which one treatment is applied. In many experiments, these

three types of units are one and the same. In other cases, they may all be different.

For example, suppose a treatment is a teaching method taught to a group of thirty

students. The experimental unit is the group of thirty students for the period of

time used to evaluate a teaching method. The sampling unit is the student, from

a population of all students, for which inferences are to be made about this teaching

method. Suppose that several examinations are given during the period of time

the method is applied, the result from each examination is an observation or

response and the observational unit is one examination from one student. In some

investigations like sampling for water quality, obtaining a measurement on produce

for a genotype from a plot of land measuring 1 m by 10 m (an experimental unit),

etc., the sampling units are undefined.

Fisher (1966) presented three principles of experiment design. These are local

control (blocking, stratification), replication, and randomization. Owing to random

fluctuations of responses in any experiment or investigation, there is variation. The

variation controlled should not be associated or interacting with treatment responses.

For example, if an animal dies during the course of conducting an experiment and

the death is not caused by the treatment, it should be considered as a missing

observation and not as a zero response. Blocking (stratification) or local control is

used to exclude extraneous variation in an experiment not associated with treatment

effects. The blocking should be such as to have maximum variation among blocks

and minimum variation within blocks. This makes for efficient experimentation and

reduces the number of replicates (replications) needed for a specified degree of

precision for treatment effects.

To reduce the effect of the variation in an experiment on measuring a treatment

effect, the sample size or the number of replicates needs to be increased. Replication

allows for an estimate of the random variation. Replication refers to the number

of experimental units allocated to a particular treatment. The variation among the

experimental units, eliminating treatment and blocking effects, is a measure of

experimental variation or error. The number of replications should not be confused

with the number of observations. For example, in a nutrition study of several regimes

with an experimental unit consisting of one animal, weekly measurements

(observations) may be taken on the weight of the animal over a 6-month period.

These week-by-week measurements do not constitute replications. The number of

replications is determined by the number of experimental units allocated to one

treatment and not by the number of observations obtained.

Randomization is necessary in order to have a valid estimate of an error variance

for comparing differences among treatments in an experiment. Fisher (1966)

has defined a valid estimate of an error variance or mean square as one which

contains all sources of variation affecting treatment effects except those due to the

treatments themselves. This means that the estimated variance should be among

experimental units treated alike and not necessarily among observations.

2 the standard split plot experiment design



An appropriate response model needs to be determined for each experiment. It is

essential to determine the pattern of variation in an experiment or investigation and

not assume that one response model fits all experiments for a given design. With the

availability of computers, exploratory model selection may be utilized to determine

variation patterns in an experiment (Federer, 2003). The nature of the experiment

design selected and the variation imposed during the conduct of an experiment

determine the variation pattern. The conduct of an experiment or investigation is a

part of the design of the experiment or investigation. This fact may be overlooked

when selecting a response model equation for an experiment. For example, a

randomized complete block design may be selected as the design of the experiment.

Then, during the course of conducting the experiment, a part of the replicate of the

experiment is flooded with water. This needs to be considered as a part of the design

of the experiment and may be handled by setting up another block, using a covariate,

or missing experimental units. This would not be the response model envisioned

when the experiment design was selected. Or, it may be that the experimenter

observed an unanticipated gradient in some or all of the blocks. A response model

taking the gradients within blocks into consideration should be used in place of the

model presumed to hold when the experiment was started. More detail on

exploratory model selection may be found in Federer (2003).

For further discussion of the above, the reader is referred to Fisher (1966) and

Federer (1984). The latter reference discusses a number of other principles and

axioms to consider when conducting experiments.

An analysis of variance is considered to be a partitioning of the total variation into

the variation for each of the sources of variation listed in a response model. An F-test

is not considered to be a part of the analysis of variance as originally developed

by Sir Ronald A. Fisher. Statistical publications often consider an F-test as part of

the analysis of variance. We do not, as variance component estimation, multiple

range tests, or other analyses may be used in connection with an analysis of variance.

Some experimenters do consider the term analysis of variance to be a misnomer. A

better term may be a partitioning of the total variation into its component parts or

simply variation or variance partitioning.

1.2. STATISTICAL DESIGN

The standard split plot experiment design (SPED) discussed in several statistics

textbooks has a two-factor factorial arrangement as the treatment design. One

factor, say A with a levels, is designed as a randomized complete block design

with r complete blocks or replicates. The experimental unit, the smallest unit to

which one treatment is applied, for the levels of factor A treatments is called a

whole plot experimental unit (wpeu). Then each wpeu is divided into b split plot

experimental units (speus) for the b levels of the second factor, say B. Note that

either or both factors A and B could be in a factorial arrangement or other

treatment design rather than a single factor. A schematic layout of the standard

SPED is shown below.

statistical design 3



Standard split plot design with r replicates, a levels of factor A, and b levels of

factor B

Replicate 1 2 3 . . . r

Whole plot factor A 1 2 . . . a 1 2 . . . a 1 2 . . . a . . . 1 2 . . . a

Split plot factor B 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

2 2 . . . 2 2 2 . . . 2 2 2 . . . 2 2 2 . . . 2

. . . . . . . . . . . . . . . . . . . . . . . .
b b . . . b b b . . . b b b . . . b b b . . . b

The a levels of factor A are randomly and independently allocated to the a wpeus

within each of the r complete blocks or replicates. Then within each wpeu, the b levels

of factor B are independently randomized. There are r independent randomizations for

the a levels of factor A and ra independently assigned randomizations for b levels of

factor B. The fact that the number of randomizations and the experimental units are

different for the two factors implies that each factor will have a separate error term for

comparing effects of factor A and effects of factor B.

Even though the standard SPED has the whole plot factor A treatments in a

randomized complete block design, any experiment design may be used for the factor A.

For example, a completely randomized experiment design, a Latin square experiment

design, an incomplete block experiment design, or any other experiment design may be

used for the whole plot treatments. These variations are illustrated in Chapter 3.

The three steps in randomizing a plan for a standard or basic split plot experiment

design consisting of r ¼ 5 blocks (replicates), a ¼ 4 levels of whole plot factor A,

and b ¼ 8 levels of split plot factor B are shown below:

Step 1: Divison of the experimental area or material into five blocks

        B
LO

C
K

1 

     

        B
LO

C
K

2 

     

        B
LO

C
K

3 

     

        B
LO

C
K

4 

     

        B
LO

C
K

5 
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Step 2: Randomizaton of four levels of whole plot factor A to each of five blocks

        B
LO

C
K

1 

A3 A2 A1 A4  

        B
LO

C
K

2 

A4 A1 A3 A2  

        B
LO

C
K

3 

A2 A3 A4 A1  

        B
LO

C
K

4 

A4 A2 A3 A1  

        B
LO

C
K

5 

A3 A4 A1 A2 

Step 3: Randomization of eight levels of split plot factor B within each level of

whole plot factor A

B1 B2 B7 B2   
B4 B3 B8 B4   
B5 B4 B4 B7   

B3 B5 B2 B5   

B6 B1 B5 B8   

B8 B6 B3 B1   

B7 B8 B6 B6   

B2 B7 B1 B3 BLOCK1 
A3 A2 A1 A4   

B7 B6 B2 B5   

B2 B1 B3 B4   

B4 B4 B5 B2   

B6 B3 B7 B8   

B3 B7 B8 B3   

B8 B2 B1 B6   

B1 B5 B6 B7   

B5 B8 B4 B1 BLOCK2 
A4 A1 A3 A2   
B4 B7 B1 B6   

B6 B8 B2 B1   

B1 B2 B4 B3   

B8 B6 B3 B5   

B5 B3 B7 B4   

B7 B1 B8 B8   

B3 B5 B6 B7   

B2 B4 B5 B2 BLOCK3 
A2 A3 A4 A1
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B3 B7 B5 B8   

B8 B6 B2 B5   

B5 B2 B3 B4   

B6 B8 B4 B1   
B1 B4 B7 B3   
B7 B5 B6 B6   
B4 B1 B8 B7   

B2 B3 B1 B2 BLOCK4 
A4 A2 A3 A1   
B3 B1 B7 B1   

B1 B6 B2 B7   

B5 B2 B3 B4   

B6 B7 B4 B8   

B8 B4 B5 B3   

B7 B5 B6 B6   

B4 B8 B1 B5   

B2 B3 B8 B2 BLOCK5 
A3 A4 A1 A2   

If an experiment design involving blocking is used for the b split plot treatments,

factor B, should be within each whole-plot-treatment wpeu, as this facilitates the

statistical analysis for an experiment as orthogonality of effects is maintained. If the

experiment design for the split plot factor B treatments is over levels of the whole

plot treatments within one complete block, confounding of effects is introduced and

the statistical analysis becomes more complex (Federer, 1975). This may not be a

computational problem as available statistical software packages can be written to

handle this situation. However, the confounding of effects reduces the precision of

contrasts and estimates of effects.

1.3. EXAMPLES OF SPLIT-PLOT-DESIGNED EXPERIMENTS

Example 1—A seed germination test was conducted in a greenhouse on a ¼ 49

genotypes of guayule, the whole plots (factor A), with four seed treatments (factor B)

applied to each genotype as split plot treatments (Federer, 1946). The wpeu was a

greenhouse flat for one genotype and 100 seeds of each of the four seed treatments

(factor B) were planted in a flat, as more information on seed treatment than on

genotype was desired and this fitted into the layout more easily than any other

arrangement. The speu consisted of 1/4 of a greenhouse flat in which 100 seeds were

planted. The 49 genotypes were arranged in a triple lattice incomplete block

experiment design with r ¼ 6 complete blocks and with an incomplete block size of

k ¼ 7 wpeus. The four seed treatments were randomly allocated to the four speus in

a flat, that is, within each genotype wpeu. The data for eight of the 49 genotypes in

three of the six replicates are given as Example X-1 of Federer (1955) and as

Example 1.2. The whole plot treatments, 49 genotypes, are considered to be a

random sample of genotypes from a population of genotypes, that is, they are

6 the standard split plot experiment design



considered to be random effects whereas the seed treatments are fixed effects as

these are the only ones of interest.

Example 2—Example X-2 of Federer (1955) contains the yield data for b ¼ 6

genotypes which are corn double crosses. The data are from two of the twelve

districts set up for testing corn hybrids in Iowa. The a ¼ 2 districts are the whole

plots, and the six corn double crosses, the split plot treatments, are arranged in a

randomized complete block design within each district. The yield data (pounds of

ear corn) arranged systematically are given below:

District 1, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 34.6 33.4 36.5 33.0 137.5

2-2 34.5 39.1 35.4 35.6 144.6

4-3 30.1 30.8 35.0 33.3 129.2

15-45 31.3 29.3 29.7 33.2 123.5

8-38 32.8 35.7 36.0 34.0 138.5

7-39 30.7 35.5 35.3 30.6 132.1

Total 194.0 203.8 207.9 199.7 805.4

District 2, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 33.1 24.6 33.8 34.6 126.1

2-2 46.4 36.9 36.3 45.3 164.9

4-3 32.3 38.7 37.5 37.6 146.1

15-43 37.5 39.2 39.1 34.1 149.9

8-38 31.2 40.8 46.1 44.1 162.2

7-39 35.8 38.2 38.8 39.6 152.4

Total 216.3 218.4 231.6 235.3 901.6

Example 3—Cochran and Cox (1957), page 300, present the data for an SPED with

a ¼ 3 recipes, the whole plots (factor A), for chocolate cakes baked at b ¼ 6

temperatures, the split plots (factor B). The response was the breaking angle of the

cake. Enough batter for one recipe was prepared for the six cakes to be baked at the

six temperatures. That is, the wpeu was one batter for six cakes. The three recipes

were arranged in a randomized complete block design with r ¼ 15 replicates.

Example 4—Federer (1955), page 26 of the Problem Section, presents the data

for an SPED with a ¼ 2 whole plot treatments (factor A) of alfalfa or no alfalfa

and b ¼ 5 split plot treatments of bromegrass strains. The bromegrass strains

were intercropped (mixed together) with the alfalfa and no alfalfa (See Federer,

examples of split-plot-designed experiments 7



1993, 1999). The whole plot treatments were arranged in a randomized complete

block design with r ¼ 4 replicates. The dry weights (grams) of hay arranged

systematically are:

Replicate 1 Replicate 2 Replicate 3 Replicate 4

Bromegrass Factor A Factor A Factor A Factor A

strain, factor B alfalfa alone alfalfa alone alfalfa alone alfalfa alone

a 730 786 1004 838 871 1033 844 867

b 601 1038 978 1111 1059 1380 1053 1229

c 840 1047 1099 1393 938 1208 1170 1433

d 844 993 990 970 965 1.308 1111 1311

e 768 883 1029 1130 909 1247 1124 1289

Example 5—Das and Giri (1979), page 150, present an example of three varieties

forming the whole plots and b ¼ 4 manurial treatments forming the split plots in an

SPED with r ¼ 4 replications.

Example 6—Gomez and Gomez (1984), page 102, give a numerical example of six

levels of nitrogen applications forming the whole plots and b ¼ 4 rice varieties

forming the split plots in an SPED with r ¼ 3 replications.

Example 7—Raghavarao (1983), page 255, presents a numerical example where the

whole plots were a ¼ 3 nitrogen levels and the b ¼ 4 split plot treatments were

insecticides in an SPED with r ¼ 4 replications.

Example 8—Leonard and Clark (1938), Chapter 21, give a numerical example of a

split plot experiment design with a ¼ 10 maize hybrids as the whole plots of 36 hills

(3 plants per hill). The wpeus were divided into thirds with 12 hills making up the

speu. The b ¼ 3 split plot treatments were seeds from the three generations F1, F2,

and F3. Two replicates were used and the response was the yield of ear corn.

Example 9—In a setting other than agriculture, three types of schools (public,

religious, and private) were the whole plots. Four types of teaching methods formed

the split plots. This arrangement was replicated over r school districts. The response

was the average score on standardized tests.

Example 10—Two types of shelters (barn and outdoor) were the whole plot factor A

treatments and two types of shoes for horses were used as the factor B split plot

treatments. There were to be r ¼ 5 sets (replicates) of four horses used. Two horses,

wpeu, of each set would be kept in a barn and two would be kept outdoors. One

horse, speu, had one type of shoe and the second horse received the other type of

shoe. The response was length of time required before reshoeing a horse was

required.

Example 11—In a micro-array experiment, the two whole plot treatments were

methods one and two. The two split plot treatments were red color-label 1 and green
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color-label 2 for method 1 and were green color-label 1 and red color-label 2 for

method 2. There were r ¼ 10 sets of whole plots. The color by label interaction is

completely confounded with method in the SPED experiment performed.

Example 12—Three types of managements (factor A) constituted the whole plots

that consisted of a litter of six male rats. The b ¼ 6 medical treatments (factor B)

were the split plot treatments with one rat constituting the speu. Three litters, wpeus,

were obtained from each of r ¼ 6 laboratories.

Example 13—A randomized complete block experiment design with a ¼ 5

treatments (factor A) and r¼ 5 replicates was conducted to determine the effect

of the treatments on the yield and the quality of strawberries. The experiment was

laid out in the field in five columns, the blocks or replicates, and five rows. Hence,

this is a row-column design as far as spatial variation is concerned. A 5� 5 Latin

square experiment design should have been used but was not. The strawberries in

each of the 25 wpeus were graded into b ¼ 4 quality grades (factor B) that were the

split plot treatments. Responses were the weight and the number of strawberries in

each of the grades within a wpeu.

Example 14—Jarmasz et al. (2005) used several forms of a split plot experiment

design to study human subject perceptions to various stimuli. The factor sex was not

taken into account when analyzing the data presented in the paper. Taking the factor

sex into account adds to the splitting of units and the complexity of the analysis.

Several variations of the SPED were used. The split-plot-designed experiment is of

frequent occurrence in this type of research investigation.

Numerous literature citations of split plot designs are given by Federer (1955) in

the Problem Section at the end of the book. This type of design appears in many

fields of inquiry and is of frequent occurrence. Kirk (1968) lists ten references as

representative applications of split plot designs in literature involving learning and

other psychological research. The Annual Reports of the Rothamsted Experiment

Station, the International Rice Research Institute (IRRI), and other research

organizations give data sets for split-plot-designed experiments.

1.4. ANALYSIS OF VARIANCE

A partitioning of the degrees of freedom in an analysis of variance table for the

various sources of variation is one method for writing a linear model for a set of

experimental data. Alternatively, writing a linear model in equation form is another

way of presenting the sources of variation for an experiment. A linear response

model for the SPED for fixed effects factors A and B is usually given as

Yhij ¼ mþ rh þ ai þ dhi þ bj þ abij þ ehij, ð1:1Þ

where Yhij is the response of the hijth speu,

m is a general mean effect,
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rh is the hth replicate effect which is identically and independently distributed

with mean zero and variance s2
r,

ai is the effect of the ith whole plot factor A treatment,

dhi is a whole plot random error term which is identically and independently

distributed with mean zero and variance s2
d,

bj is the effect of the jth split plot factor B treatment,

abij is the interaction effect of the ith whole plot treatment with the jth split plot

treatment, and

ehij is a split plot random error effect identically and independently distributed

with mean zero and variance s2
e .

The rh, ehi, and dhij in Equation (1.1) are considered to be mutually independent

variables.

Prior to calculating an analysis of variance, ANOVA table for the above response

model, it is often instructive and enlightening to construct an ANOVA table for each

whole plot as follows:

Whole plot level A1 A2 . . . Aa

Source of variation DF SS DF SS . . . DF SS

Total rb T1 rb T2 . . . rb Ta

Correction for mean 1 C1 1 C2 . . . 1 Ca

Replicate r � 1 R1 r � 1 R2 . . . r � 1 Ra

Split plot factor B b� 1 B1 b� 1 B2 . . . b� 1 Ba

R� B ¼ Error ðr � 1Þðb� 1Þ E1 ðr � 1Þðb� 1Þ E2 . . . ðr � 1Þðb� 1Þ Ea

DF is degrees of freedom and SS is sum of squares. The dot notation is used

which indicates that this is a sum over the subscripts replaced by a dot. The sums of

squares for the ith whole plot treatment, i ¼ 1, 2, . . ., a, are:

Ti ¼
Xr

h¼1

Xb

j¼1

Y2
hij

Ci ¼ Y2
:i:=br

Ri ¼
Xr

h¼1

Y2
hi:=b� Y2

:i:=br ¼ b
Xr

i¼1

ð�yhi: � �y:i:Þ2

Bi ¼
Xb

j¼1

Y2
:ij=r � Y2

:i:=br ¼ r
Xb

j¼1

ð�y:ij � �y:i:Þ2:

These are the usual equations for computing sums of squares for data from a

randomized complete block designed experiment. Ei is obtained by subtraction.
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Data from a split-plot-designed experiment should not be analyzed as a three-

factor factorial of the three factors A, B, and R. This is not correct as can be seen

from the above and noting that the b R� B interactions are nested within whole plot

treatments. This means that this interaction is completely confounded with the

R� A� B interaction. The replicates for different wpeus are not the same even

though they may have the same numbering. They are from different parts of the

experiment. The calculations can be performed but this does not validate the

partition for these two interactions.

A combined ANOVA is easily obtained from the above analyses as indicated in

the table that follows.

Source of variation Degrees of freedom Sum of squares

Total rab T1þ T2þ . . .þ Ta

Correction for mean 1 CFM Compute as usual

Whole plot treatment A a� 1 C1þ C2þ . . .þ Ca� CFM

Replicate within A aðr � 1Þ R1þ R2þ . . .þ Ra

Replicate r � 1 Compute as usual

Error A ¼ R� A ða� 1Þðr � 1Þ Subtraction

Split plot treatment B within A aðb� 1Þ B1þ B2þ . . .þ Ba

Split plot treatment B a� 1 Compute as usual

A� B ða� 1Þðb� 1Þ Subtraction

Error B ¼ R� B within A aðb� 1Þðr � 1Þ E1þ E2þ . . .þ Ea

The Replicate within A sum of squares with aðr � 1Þ degrees of freedom is the

sum R1þ R2þ . . .þ Ra. This is the Replicate sum of squaresþ the Error A sum of

squares. The additional sums of squares required for the above table are obtained

from the following equations:

CFM ¼ Y2
:::=abr

Replicate ¼
Xr

i¼1

Y2
h::=ab� Y2

:::=abr

Split plot treatment B ¼
Xb

i¼1

Y2
::j=ar � Y2

:::=abr:

Using this format for obtaining an ANOVA for an SPED can be enlightening for

information on the nature of the factor B responses at each level of factor A and for

observing the homogeneity of the error mean squares Ei=ðrb� r � b� 1Þ at each

level of factor A.

In the above form, it may be instructive in some situations to partition each of the

Ei sum of squares into Tukey’s one-degree-of-freedom for nonadditivity (see e.g.,

Snedecor and Cochran, 1980, Section 15.8) and a residual sum of squares with

rb� r � b degrees of freedom. Likewise, the R� A sum of squares may be partitioned
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to check for nonadditivity. The formula for computing Tukey’s one-degree-of-

freedom sum of squares for a two-way layout is

TNA ¼

Pr
h¼1

Pb
j¼1

Yhijð�yhi: � �y:i:Þð�y:ij � �y:i:Þ
" #2

Pr
h¼1

ð�yhi: � �y:i:Þ2
Pb
j¼1

ð�y:ij � �y:i:Þ2
: ð1:2Þ

The mean of combination hi is �yhi:. �y:i: is the ith whole plot mean. �y::j is the mean of

the jth split plot treatment, and �y:ij is the mean of treatment combination ij. For the

numerical example, Example 1.2, in Section 1.7 and i ¼ 0, the differences of

replicate means from the overall mean are �5/12, �2/12, and 7/12. The differences

of seed treatment means from the overall mean are 500/12, �156/12, �148/12, and

�196/12. The replicates by seed treatment responses for genotype 0 are:

Seed treatment

Replicate 0 1 2 3 Total �yh0: � �y:0:

1 66 12 13 6 97 �5/12

2 63 10 13 12 98 �2/12

3 70 13 11 7 101 7/12

Total 199 35 37 25 296 —

�y:0j � �y:0: 500/12 �156/12 �148/12 �196/12

Using Equation (1.2) for the above data, TNA is computed as:

½66ð500=12Þð�5=12Þ þ 63ð500=12Þð�2=12Þ þ 70ð500=12Þð7=12Þ
þ . . .þ 7ð�196=12Þð7=12Þ�2=½fð�5=12Þ2 þ . . .þ ð�196=12Þ2g�
¼ ½�1; 145þ 65þ . . .� 79� 67�2=ð2:167=4Þð6; 972=3Þ ¼ 2:80:

1.5. F-TESTS

The replicate effects should always be considered as random effects. Considering

them as fixed effects makes no sense as an experimenter is concerned with

inferences beyond these particular replicates. This means that the Error A mean

square is the appropriate error term for testing significance of whole plot treatment

main effects, that is, factor A effects. Depending on the validity of the assumption

that the Error A effects, dhi, are normally, identically, and independently distributed

with zero mean and common variance s2
d, that is, NIID(0,s2

d), an F-test of the Factor

A mean square divided by the Error A mean square is appropriate for testing the null

hypothesis that the A effects are zero.
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When the whole plot treatment effects are fixed effects and the assumption of

normality of the random error effects is correct, an F-test of the null hypothesis of

zero split plot treatment effects is performed using the Error B mean square.

Likewise, an F-test to test the null hypothesis of zero A� B interaction effects is

obtained using the Error B mean square. Note that the normality assumption is not

crucial in most cases as an F-test is quite robust, especially when the number of

degrees of freedom associated with the denominator mean square is not small.

When the whole plot treatments are random effects, the appropriate error mean

square for testing the null hypothesis of zero split plot treatment effects is the A� B

interaction mean square. The appropriate error term for testing the null hypothesis of

zero A� B interaction effects is the Error B mean square.

When the split plot treatments are random effects and whole plot treatments are

fixed effects, the appropriate error mean square for testing the null hypothesis for

zero split plot treatment effects is the Error B mean square. For the interaction

variance component for factors A and B defined as s2
ab, the error mean square

s2
e þ bs2

d þ
ras2

ab

a� 1

is the appropriate mean square for testing for zero factor A effects. The degrees of

freedom associated with the above mean square are unknown and will need to be

approximated (see, e.g., Snedecor and Cochran, 1980, Section 6.11). The expected

value of the interaction mean square is

s2
e þ

ars2
ab

a� 1
:

The following table presents the expected values of the mean squares in an analysis

of variance table for factors A and B as fixed effects and as random effects:

Source of Degrees of Expected value of mean square

variation freedom Fixed A and B Random A and B

Replicate r � 1 s2
e þ bs2

d þ abs2
r s2

e þ bs2
d þ abs2

r

Factor A a� 1 s2
e þ bs2

d þ f ðaiÞ s2
e þ bs2

d þ rs2
ab þ rbs2

a

Error A ða� 1Þðr � 1Þ s2
e þ bs2

d s2
e þ bs2

d

Factor B b� 1 s2
e þ f ðbjÞ s2

e þ rs2
ab þ ars2

b

A� B ða� 1Þðb� 1Þ s2
e þ f ðabijÞ s2

e þ rs2
ab

Error B aðb� 1Þðr � 1Þ s2
e s2

e

The variance components for factor A effects and factor B effects are s2
a and s2

b,

respectively. The other variance components have been defined previously. The term

f (x) refers to a function of the sum of squares of the parameter x inside the

parentheses.
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A table showing the variance components in each of the mean squares for random

replicate and random whole plot treatment effects and for fixed split plot treatment

effects is given below:

Expected value

Source of variation Degrees of freedom of mean square

Replicate r � 1 s2
e þ bs2

d þ abs2
r

Whole plot factor A a� 1 s2
e þ bs2

d þ rbs2
a

Error A ða� 1Þðr � 1Þ s2
e þ bs2

d

Split plot factor B b� 1 s2
e þ

brs2
ab

b� 1
þ f ðbjÞ

A� B interaction ða� 1Þðb� 1Þ s2
e þ

brs2
ab

b� 1
Error B aðb� 1Þðr � 1Þ s2

e

For a given set of data, the term f ðbjÞ ¼ ar
Pb

i¼1

b2
j

b� 1
is a function of the factor

B effects. When the factor A effects are fixed effects, the variance component s2
ab

drops out of the factor B mean square.

To obtain the above expectations and to be consistent with assumptions for the

fixed effects situation, note the following. The same assumptions for the random

effects case cannot be those for the mixed effects and still be consistent with the

fixed case. Furthermore, note that once a random level of a random factor, say A, has

been selected, all of the interaction terms with factor B are present. There is not a

population of interaction terms but only b of them. This accounts for the term

b=ðb� 1Þ in the expectation of the interaction mean square and in the factor B mean

square.

1.6. STANDARD ERRORS FOR MEANS AND DIFFERENCES
BETWEEN MEANS

The estimated standard error of difference between two factor A effects or means for

fixed factor B effects is the square root of two times the Error A mean square divided

by rb for i 6¼ i0, that is,

SEð�y:i: � �y:i0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error A mean square

rb

r
: ð1:3Þ

The estimated standard error of a difference between two factor B effects or means

for fixed factor A effects is, j 6¼ j0,

SEð�y::j � �y::j0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error B mean square

ra

r
: ð1:4Þ
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The estimated standard error of a difference between two factor B effects or means

for random factor A effects is

SEð�y::j � �y::j0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 A� B interaction mean square

ra

r
: ð1:5Þ

The estimated standard error of difference between two factor B effects or means at

one level of factor A is

SEð�y:ij � �y:ij0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error B mean square

r

r
: ð1:6Þ

This latter standard error of a difference may be seen from the ANOVAs presented

for each whole plot treatment. The estimated standard error of a difference between

two factor A effects or means at one level of factor B is

SEð�y:ij � �y:i0jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðb� 1Þ Error Bþ Error A�

rb

r
: ð1:7Þ

The degrees of freedom for the above standard error of a difference and the

following are unknown and need to be approximated.

The standard error of a mean for a whole plot treatment with random replicate

effects is

SEð�y:i:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Aþ bs2

r

rb

s
: ð1:8Þ

The standard error of a mean for a split plot treatment with random replicate effects

is

SEð�y::jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Bþ a s2

r

ra

s
: ð1:9Þ

The standard error of an A� B interaction mean with random replicate effects is

SEð�y:ijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Bþ s2

r þ s2
d

r

s
: ð1:10Þ

The estimated values for the above standard errors of a mean and for difference

between two means, Equations (1.3)–(1.10), are obtained by substituting the numerical

values for Error A, Error B, and the estimate of the pertinent variance component for

the corresponding ones in the above equations. The estimated values are obtained from

an analysis of the data from an experiment.
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1.7. NUMERICAL EXAMPLES

Example 1.1. A maize yield trial was conducted to determine the effects of four

methods, a ¼ 4, of primary seedbed preparations (A1, A2, A3, and A4), factor A the

whole plot treatments, and four methods, b ¼ 4, of planting the corn kernels (B1,

B2, B3, and B4), factor B the split plot treatments. The basic split plot experiment

design contained r ¼ 4 complete blocks or replicates. The four seedbed preparations

were arranged in a random fashion within each of the four replicates. Then within

each of the 4� 4 ¼ 16 seedbed preparations, the wpeu was divided into four areas or

plots, speus, and the four methods of planting maize seeds were randomly assigned

to the four speus. The object of this experiment was to compare seedbed preparations

and planting methods. In addition, it was desirable to know if there was an

interaction and whether it is necessary to use a particular planting method for each

seedbed preparation. A systematized arrangement of the maize yields from the

experiment in bushels per acre, are given in Table 1.1.

Table 1.1. Bushels per Acre Yield of Maize for Seedbed Preparations and Planting

Methods.

Planting methods

Replicate B1 B2 B3 B4 Total

A1¼ plowed at 7 inches

1 82.8 46.2 78.6 77.7 285.3

2 72.2 51.6 70.9 73.6 268.3

3 72.9 53.6 69.8 70.3 266.6

4 74.6 57.0 69.6 72.3 273.5

Total 302.5 208.4 288.9 293.9 1093.7

A2¼ plowed at 4 inches

1 74.1 49.1 72.0 66.1 261.3

2 76.2 53.8 71.8 65.5 267.3

3 71.1 43.7 67.6 66.2 248.6

4 67.8 58.8 60.6 60.6 247.8

Total 289.2 205.4 272.0 258.4 1025.0

A3¼ blank basin listed

1 68.4 54.5 72.0 70.6 265.5

2 68.2 47.6 76.7 75.4 267.9

3 67.1 46.4 70.7 66.2 250.4

4 65.6 53.3 65.6 69.2 253.7

Total 269.3 201.8 285.0 281.4 1037.5

A4¼ disk-harrowed

1 71.5 50.9 76.4 75.1 273.9

2 70.4 65.0 75.8 75.8 287.0

3 72.5 54.9 67.6 75.2 270.2

4 67.8 50.2 65.6 63.3 246.9

Total 282.2 221.0 285.4 289.4 1078.0

B total 1142.2 836.6 1131.3 1123.1
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The grand total is 4234.2. The replicate totals are 1086.0, 1090.5, 1035.8, and

1021.9 for replicates 1, 2, 3, and 4, respectively. An analysis of variance and

F-statistics for this experiment are given in Table 1.2. An SAS computer program for

computing this analysis of variance table is given in Appendix 1.1.

The sum of squares for the contrast A1þ A4� A2� A3 is computed as

ð1093:7þ 1078:0� 1025:0� 1037:5Þ2

64
¼ 186:32:

The sum of squares for the contrast 3ðB2Þ � B1� B3� B4 is computed as

½3ð836:6Þ � 1143:2� 1131:3� 1123:1�2

16ð32 þ 1þ 1þ 1Þ ¼ ð�887:8Þ2

192
¼ 4105:15:

As may be observed, these two contrasts account for most of the differences among

the planting methods and seedbed preparations. There is a slight indication that some

interaction may be present. Also, since the two ‘‘Rest’’ mean squares are less than

the Error A and Error B mean squares, there appears to be some type of heterogeneity

that is not controlled. The problem of finding it is left as an exercise for the reader as

is the computation for the interaction of the above two contrasts. Figures 1.1 and 1.2

illustrate the variation of planting methods in each of the seedbed preparations with

two different axes.

A computer code for obtaining many of the numerical results including the means

is given in Appendix 1.1.

Example 1.2. An experiment consisting of 49 guayule genotypes as whole plot

treatments was designed as a triple lattice incomplete block experiment design with

r ¼ 6 replicates (see Federer, 1946). The split plot treatment represented four seed

treatments for breaking the dormancy of guayule seeds. The split plot experimental

unit consisted of 100 seeds planted in one-fourth of greenhouse flat. The wpeu was a

greenhouse flat. Eight of the guayule genotypes from three of the six replicates from

Table 1.2. Analysis of Variance and F-Statistics for the Data of Table 1.1.

Source of variation DF Sum of squares Mean square F Prob>F

Total 64 285,505.47

Correction for mean 1 279,991.26

Replicate ¼ R 3 223.81 74.60

Factor A 3 194.56 64.85 3.69 0.06

A1þ A4 vs. A2þ A3 1 186.32 10.60 0.01

Rest 2 8.24 0.47

Error A ¼ R� A 9 158.24 17.58

Planting method¼ B 3 4107.38 1369.13 81.01 0.00

B2 vs. rest 1 4105.15 242.90 0.00

Rest 2 2.23 0.13

A� B interaction 9 221.74 24.64 1.46 0.20

Error B 36 608.48 16.90
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this experiment were selected to illustrate the analysis for a split-plot-designed

example. The selected data are analyzed as if a randomized complete block design

had been used for the eight whole plot treatments. This design is now considered to

be a standard split-plot-designed experiment. The data for the ij combinations of
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Figure 1.1. Planting method by seedbed preparation interaction.
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Figure 1.2. Planting method by seedling preparation interaction.
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genotypes i ¼ 0, 1, . . ., 7 and seed treatments j ¼ 0, 1, 2, 3, for each of the replicates

h ¼ 1, 2, 3 are given in Table 1.3. The top number of a pair is the combination ij and

the bottom number is the number of plants that emerged from 100 seeds. A computer

program for computing the analysis of variance tables and means is given in

Appendix 1.2. The genotype-by-seed treatment totals are given in Table 1.4. The

ANOVAs for seed treatments by replicate for each genotype are presented in

Table 1.5. An ANOVA for this split-plot-designed example is given in Table 1.6.

Table 1.3. Number of Plants Germinating from 100 Seeds for Each of Four Seed

Treatments from Eight Guayule Genotypes in a Split Plot Experiment Design with

Three Replicates.

Replicate 1

01 23 30 52 42 11 73 61

12 10 52 28 9 26 9 12

02 20 33 53 43 12 71 62

13 51 13 14 12 27 14 26

00 21 32 51 40 10 72 63

66 8 19 8 45 77 30 15

03 22 31 50 41 13 70 60

6 20 4 59 20 15 49 56

Total 97 89 88 109 86 145 102 109 825

Replicate 2

32 60 73 41 03 12 51 21

16 38 15 13 12 5 8 16

31 62 70 43 00 10 52 22

15 16 41 12 63 47 32 30

33 61 72 40 02 11 53 20

9 16 28 51 13 11 21 81

30 63 71 42 01 13 50 23

40 8 20 10 10 4 66 14

Total 80 78 104 86 98 67 127 141 781

Replicate 3

63 72 50 42 32 22 01 11

7 36 49 12 7 29 13 18

62 71 52 40 30 21 03 10

24 25 29 52 59 14 7 66

61 70 53 41 31 23 00 12

16 54 16 16 11 10 70 11

00 73 51 43 33 20 02 13

45 12 8 11 7 63 11 15

Total 92 127 102 91 84 116 101 110 823
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From Table 1.5, we note that the residual mean squares vary from 8.417 for

genotype 0 to 55.889 for genotype 3. This may indicate that a square root or arcsine

transformation of the numbers is needed. This was not done as differences in seed

treatment means are large and a more precise analysis may not be necessary. The

F-values for seed treatments varied from 20.74 for genotype 3 to 276.12 for

Table 1.4. Genotype-by-Seed Treatment Totals.

Genotypes

Seed treatment 0 1 2 3 4 5 6 7 Total

0 199 190 195 151 148 174 139 144 1340

1 35 55 38 30 49 24 44 59 334

2 37 43 79 42 31 89 66 54 481

3 25 34 34 29 35 51 30 36 274

Genotype total 296 322 346 252 263 338 279 333 2449

Table 1.5. ANOVAs and F-Values for Replicate and Seed Treatment for Each

Genotype, SS¼ Sum of squares, MS¼Mean Square.

Genotype 0

Source DF SS MS F-value Prob > F

Total 12 14,325.98 — — —

Correction for mean 1 7301.31 — — —

Replicate 2 2.167 1.08 0.13 0.88

Seed treatment 3 6972.00 2324.00 276.12 0.00

Residual 6 50.50 8.42 — —

Genotype 1

Source DF SS MS F-value Prob > F

Total 12 14,955.99 — — —

Correction for mean 1 8640.32 — — —

Replicate 2 763.17 381.58 15.31 0.00

Seed treatment 3 5403.00 1801.00 72.28 0.00

Residual 6 149.50 24.92 — —

Genotype 2

Source DF SS MS F-value Prob > F

Total 12 16,184.00 — — —

Correction for mean 1 9976.33 — — —

Replicate 2 338.17 169.08 4.53 0.06

Seed treatment 3 5645.67 1881.89 50.45 0.00

Residual 6 223.83 37.31 — —
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Table 1.5. (Continued)

Genotype 3

Source DF SS MS F-value Prob > F

Total 12 9112.00 — — —

Correction for mean 1 5292.00 — — —

Replicate 2 8.000 4.00 0.07 0.93

Seed treatment 3 3476.67 1158.89 20.74 0.00

Residual 6 335.33 55.89 — —

Genotype 4

Source DF SS MS F-value Prob > F

Total 12 8889.00 — — —

Correction for mean 1 5764.09 — — —

Replicate 2 4.17 2.08 0.23 0.80

Seed treatment 3 3066.25 1022.08 112.52 0.00

Residual 6 54.50 9.08 — —

Genotype 5

Source DF SS MS F-value Prob > F

Total 12 13,972.00 — — —

Correction for mean 1 9520.34 — — —

Replicate 2 83.167 41.58 2.56 0.16

Seed treatment 3 4271.00 1423.67 87.61 0.00

Residual 6 97.50 16.25 — —

Genotype 6

Source DF SS MS F-value Prob > F

Total 12 9107.00 — — —

Correction for mean 1 6486.75 — — —

Replicate 2 120.50 60.25 2.43 0.17

Seed treatment 3 2350.92 783.64 31.59 0.00

Residual 6 148.83 24.81 — —

Genotype 7

Source DF SS MS F-value Prob > F

Total 12 11,649 — — —

Correction for mean 1 9240.75 — — —

Replicate 2 96.50 48.25 2.82 0.14

Seed treatment 3 2208.92 736.31 42.96 0.00

Residual 6 102.83 17.14 — —
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genotype 0. There was smaller variation among replicate means, as the F-values

varied from 0.07 for genotype 3 to 4.53 for genotype 2.

From the combined analysis in Table 1.6, it is noted that the seed treatment by

genotype interaction is present. To study this in further detail, Figure 1.3 was

prepared. Genotypes 0, 1, 2, and 5 for seed treatment 0 and genotypes 2 and 5 for

Table 1.6. An Analysis of Variance and F-Values for the Data of Table 1.3.

Source of variation DF Sum of squares Mean square F-value Prob > F

Total 96 98195 — — —

Correction for mean 1 61,458.76 — — —

Replicate 2 38.58 19.29 0.20 —

Genotype¼ A 7 763.16 109.02 1.11 —

Error A 14 1377.25 98.38 —

Seed treatment¼ B 3 30,774.28 10,258.09 82.22 0.00

0 vs. 1þ 2þ 3 1 29,829.03 239.07 0.00

1 vs. 2þ 3 1 52.56 0.42

2 vs. 3 1 892.69 7.15 0.02

Seed treatment� genotype 21 2620.13 124.77 5.15 0.00

A� 0 vs 1þ 2þ 3 7 1456.72 208.10 8.59 0.00

A� 1 vs. 2þ 3 7 632.94 90.42 3.73 0.01

A� 2 vs. 3 7 530.48 75.78 3.13 0.01

Error B 48 1162.84 24.23 — —
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Figure 1.3. Genotype by seed treatment interaction.
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seed treatment 2 are the ones contributing most to the interaction sum of squares.

Their responses to seed treatments 0 and 2 were relatively higher than the other

responses.

The various standard errors of a difference of two means are obtained next. The

standard error of a difference between two genotype means is [Equation (1.3)].

SEð�y:i: � �y:i0:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:3967
p

¼ 4:05:

The standard error of a difference of two seed treatment means for random genotype

effects is [Equation (1.4)].

SEð�y::j � �y::j0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:3975
p

¼ 3:22:

The standard error of difference between two seed treatment means for one genotype

is [Equation (1.6)].

SEð�y:ij � �y:ij0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð24:23Þ

3

r
¼ 4:02:

The standard error of difference between two genotype means for one seed treatment

is [Equation (1.7)].

SEð�y:ij � �y:i0jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f3ð24:23Þ þ 98:38g

3ð4Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28:5117
p

¼ 5:34:

Even though a seed treatment by genotype interaction is present (see Figure 1.3.), the

mean for seed treatment 0, threshed seed and untreated, is far above the remaining

three seed treatment means in increasing the germination percentage of guayule seeds,

hence would be preferred for treating guayule seeds. Seed treatment 1 was unthreshed

and untreated, seed treatment 2 was unthreshed and treated 1943 seeds, and seed

treatment 3 was unthreshed and treated 1942 seeds. The seed treatment 3 represented

the seed treatment method prior to this experiment. Seed treatment 0 involved using

threshed and untreated seeds and was quite effective in increasing seed germination.

The threshing removed many empty seeds. There are also genetic differences in a

genotype response to seed treatment 0 but in all cases this treatment was superior to the

other treatments. Some genotypes may have more empty seeds than others. A further

experiment using different lengths of threshing times or other treatments may be

needed when specific genotypes are being considered.

1.8. MULTIPLE COMPARISONS OF MEANS

Federer and McCulloch (1984) presented multiple comparison procedures for an

SPED. They discussed five different multiple comparison procedures, viz., the least
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significant difference procedure (lsd) with a per comparison error rate, Tukey’s

range procedure or honestly significant difference (hsd) with an experiment-wise

error rate for all pairs of two means, the Bonferroni procedure (esd) with a per

experiment error rate for m specified contrasts, Scheffe’s procedure (ssd) with an

error rate for all possible comparisons and contrasts, and Dunnett’s procedure (dsd)

for comparing treatments with a control with an experiment-wise error rate.

Using the data given in Table 1.3, all possible differences between pairs of the

eight guayule genotype (whole plot) means are given in Table 1.7.

All possible differences between pairs of the seed treatment (split plot) means are

presented in Table 1.8.

A two-sided Type I error rate of 5% is used. For genotype mean differences, the

lsd is computed as (df ¼ degrees of freedom associated with error term and Ea is the

Error A mean square),

t:05;14df

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 2:145

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼ 8:69: ð1:11Þ

Using Tukey’s procedure, the hsd is computed as,

q:05;8;14df

ffiffiffiffiffi
Ea

rb

r
¼ 4:99

ffiffiffiffiffiffiffiffiffiffiffi
98:38

3ð4Þ

s
¼ 14:29: ð1:12Þ

Using the Bonferroni procedure, the esd, for m ¼ 8ð8� 1Þ
2

¼ 28, is computed as,

esd ¼ t:05=m;14df

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 3:85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼ 15:57: ð1:13Þ

Table 1.7. All Possible Differences Between Pairs of Eight Guayule Genotype Means,

Number of Seeds Germinated Out of 100.

Genotype

2 5 7 1 0 6 4

Genotype Mean 29 28 28 27 25 23 22

3 21 8 7 7 6 4 2 1

4 22 7 6 6 5 3 1 —

6 23 6 5 5 4 2 — —

0 25 4 3 3 2 — — —

1 27 2 1 1 — — — —

7 28 1 0 — — — — —

5 28 1 — — — — — —
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Using Scheffe’s method, the ssd is computed as (df¼ degrees of freedom for

Error A),

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� 1ÞF:05ða� 1; dfÞðEaÞ

rb

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ð2:77Þð2Þ 98:38

3ð4Þ

� 	s
¼ 17:83: ð1:14Þ

Using the Dunnett method, the dsd is computed with genotype 2, for example,

designated as the control treatment,

dsd ¼ da�1;df;:05

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 3:10ð4:045Þ ¼ 12:54: ð1:15Þ

To compare differences between seed treatment means for random genotype effects,

the lsd is computed as (Eab is the interaction mean square),

lsd ¼ t:05;21df

ffiffiffiffiffiffiffiffiffi
2Eab

ra

r
¼ 2:08

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 6:71: ð1:16Þ

The hsd is computed as,

q:05;4;21

ffiffiffiffiffiffiffi
Eab

ra

r
¼ 3:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
124:77

3ð8Þ

s
¼ 9:03: ð1:17Þ

The esd, for m ¼ 4ð4� 1Þ=2 ¼ 6, is computed as,

esd ¼ t:05=m;21df

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEabÞ

ra

r
¼ 3:82

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 9:13: ð1:18Þ

Table 1.8. All Possible Differences Between Pairs of the four

Seed Treatment Means, Number of Seeds Germinated out of 100.

Seed treatment

0 2 1

Seed treatment Mean 56 20 14

3 11 45 9 3

1 14 42 6 —

2 20 36 — —
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The ssd is computed as (df¼ degrees of freedom for error mean square for seed

treatments),

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� 1ÞF:05ðb� 1; dfÞðEabÞ

ra

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:07Þð2Þ 124:77

3ð8Þ

� 	s
¼ 9:79: ð1:19Þ

The dsd is computed as, where seed treatment 2 is designated as the control treatment,

dsd ¼ db�1;df;:05

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEabÞ

rb

r
¼ 2:56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 2:56ð3:225Þ ¼ 8:25: ð1:20Þ

In order to obtain the values for hsd, esd, and dsd for large values, say ab ¼ 32, more

extensive tables of t, q, and d values are needed. For the 32 genotype by seed

treatment mean differences, the lsd for comparing seed treatment means for a

specific genotype is computed as

lsd ¼ t:05;48df

ffiffiffiffiffiffiffiffi
2Eb

r

r
¼ 2:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð24:23Þ

3

r
¼ 2:01ð4:019Þ ¼ 8:08: ð1:21Þ

The ssd is computed as,

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðab� 1ÞF:05ðab� 1;dfÞðEbÞ

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð31Þð1:76Þ 24:23

3

� 	s
¼ 29:69: ð1:22Þ

The above multiple comparison results were for the genotype and seed treatment

means. If it is desirable to perform multiple comparisons on the 32 genotypes by

seed treatment means, the standard error of means and of differences between two

means given in Equations (1.3)–(1.10) will need to be used. Depending upon which

pair of means and method is under consideration, the appropriate standard error of a

mean or of a difference between two means will need to be selected for each pair.

1.9. ONE REPLICATE OF A SPLIT PLOT EXPERIMENT DESIGN
AND MISSING OBSERVATIONS

In the course of statistical consulting, many types of experiment designs are

encountered. Federer (1975) presents an example wherein only one replicate of a

split plot experiment design was used, and the experimenter wanted advice on the

statistical analysis. Three light intensities were the whole plot treatments and were

used in three different growth chambers. The three plant types were the split plot

treatments. The plant types were tomato, pigweed, and pigweed þ tomato (an

intercropping treatment as described by Federer, 1993, 1999). One greenhouse flat of
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eight plants formed the speu. Eight tomato plants and eight pigweed plants were

used for the tomato and pigweed plant types. Four pigweed and four tomato plants

made up the tomatoþ pigweed treatment. An ANOVA for one light intensity in one

growth chamber is as given below in the tabular form.

Source of variation DF DF general

Total 24 bk

Correction for mean 1 1

Replicates (blocks)¼ R 0 0

Plant types¼ B 2 b� 1

R� B 0 0

Plants within B 21 bðk � 1Þ

The R� B error mean square is the appropriate error term for comparing

plant-type means but there is no estimate of it. The plants within B mean square

are frequently used in place of the R� B interaction mean square. This is

incorrect in that the variance component due to variation from block to block is

not included in the plants within B mean square but it is in the plant-type mean

square. This is a frequent mistake found in published literature. An ANOVA

partitioning of the degrees of freedom for all 72 observations is as given below

in the tabular form.

Source of variation DF DF general

Total 72 abk

Correction for mean 1 1

Replicates (blocks)¼ R 0 0

Light intensity ¼ chamber ¼ A 2 a� 1

Error A ¼ R� A 0 0

Plant types¼ B 2 b� 1

A� B 4 ða� 1Þðb� 1Þ
Error B ¼ R� B within A 0 0

Plants within R;A; and B 63 abðk � 1Þ

If light intensity could be considered to be a random effect, then the A� B mean

square would be used as the error term for comparing the plant-type means but it has

only four degrees of freedom. The fact that there are 63 ¼ abðk � 1Þ degrees of

freedom associated with the plants within R;A; and B mean squares, has tempted

many researchers to use these mean squares to replace the appropriate Error B mean

square. This practice results in using an error mean square that is too small, resulting

in false significance statements.

Occasionally missing observations occur in split-plot-designed experiments.

Anderson (1946) and Khargonkar (1948) present formulas for computing missing

plot values. Computer packages are mostly designed to handle these situations and

hence there is no need for the formulas.
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1.10. NATURE OF EXPERIMENTAL VARIATION

In Section 1.5, several assumptions about the nature of the random error terms were

made to obtain the expected values of the various mean squares. The split plot

random errors ehij were assumed to be identically and independently distributed,

IID(0,s2
e ). It was further assumed that the Error A mean square contained both terms

s2
e and s2

d with the split plot, whole plot random errors being additives. Also, it was

assumed that the split plot and whole plot random error terms were independent.

Simply because this was assumed and because it appears to be a reasonable

assumption, does not mean that the assumption holds for all split-plot-designed

experiments.

Cochran and Cox (1957, Section 7.12) and Kirk (1968, Chapter 8) present

another way of quantifying the experimental variation exhibited by a split-plot-

designed experiment. These authors assume that the split plot random errors ehij are

correlated. For spatially laid out experiments, this correlation may be due to the

proximity of neighboring speus. In baking and industrial experiments, a single batch

may be divided into b speus for the b split plot treatments. Any factor affecting the

batch affects all b speus. They assumed that the following correlation structure

holds:

E½ehikehij� ¼ rs2
e and E½ehijerst� ¼ 0; j 6¼ k; hij 6¼ rst ð1:23Þ

The random split plot error terms in the same whole plot have covariance rs2
e

and those in different whole plots have zero covariance, that is, they are

un-correlated.

Consider the case where factor B has b ¼ 2 levels. Ignoring the random nature of

the replicate or complete block effect, the variance of a whole plot is

E½ðehi1 þ ehi2Þ2� ¼ s2
e þ s2

e þ 2rs2
e ¼ 2s2

e ð1þ rÞ: ð1:24Þ

For b levels of split plot treatments, the whole plot variance is,

E½ðehi1 þ ehi2 þ ehi3 þ � � � þ ehibÞ2� ¼ bs2
e ð1þ ðb� 1ÞrÞ: ð1:25Þ

The split plot main effects are derived from differences of split plot responses. Hence

the variance of a difference of two split plot treatments is,

E½ðehi1 � ehi2Þ2� ¼ s2
e þ s2

e � 2rs2
e ¼ 2s2

e ð1� rÞ; ð1:26Þ

with an effective error variance per speu of s2
e ð1� rÞ whatever the value of b. This

variance also applies to contrasts of interaction effects within the same whole plot.

For comparing two interaction terms from different whole plots the variance is 2s2
e .

The analysis of variance, as described above, gives unbiased and correct estimates of

the above.
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For many situations r will be positive. However, it could be negative for certain

types of experimental variations and materials. In this event, the Error A mean square

could be smaller than the Error B mean square. Also, if competition is present among

the speus within the same whole plot, the Error B mean square would contain a

component of variance due to competition that would not enter into the Error A mean

square. This could make Error B larger than the Error A mean square. Another

situation where this could occur is when there is more genetic variation within whole

plots than among whole plots. It is also possible owing to lack of symmetry of the

distribution of random split plot effects that a transformation of the responses may

be required in order to have Error B less than Error A. Numerical examples can

easily be constructed where Error B is considerably larger than Error A.

1.11. REPEATED MEASURES EXPERIMENTS

Some authors, for example, Kirk (1968, Chapter 8), consider a repeated measures

experiment as a split-plot-designed experiment. There are two kinds of repeated

measures experiments, viz., the same treatment is repeated b times on a single

subject or the b treatments of factor B are applied sequentially to a subject over b

periods. The latter type of experiment is known as a cross-over-designed

experiment. It is this type of repeated measures experiment that has been

confused with split-plot-designed experiments. It is inappropriate to consider the

cross-over-designed experiment as a split plot experiment. One reason is that

there are several kinds of treatment effects in a cross-over experiment, whereas,

there is only one kind of treatment effect for split plot experiments. A cross-over

experiment may have the direct effect of a treatment in the period in which it was

applied, a carryover effect in the periods after it has been applied, a continuing

effect, and/or a permanent effect. A split plot experiment has only the direct

effect of the treatment. Also the treatment design is different for a cross-over

experiment as certain sequences of treatments on a subject are used for a cross-

over design, whereas the treatments in a split plot design appear in a random

order. The complexity of the nature of treatment effects and the statistical design

in a cross-over experiment makes it prudent to consider this class of designs as an

entity in itself. Therefore, this type of designed experiment should not be

confused with split-plot-designed experiments.

1.12. PRECISION OF CONTRASTS

The average overall precision of the contrasts in a standard split plot design is the

same as that for a randomized complete block design of the ab treatment

combinations. The precision of whole plot treatment contrasts, factor A, is usually

less than or equal to what it would be for a randomized complete block design. The

gain in precision is obtained for the split plot treatments, factor B, and for the

interaction effects. Thus, if less precision is required for factor A treatments and
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more for factor B and interaction effects, the split plot design is admirably suited for

this situation. Another reason that a split plot design may be selected is that larger

experimental units are required for factor A treatments than for factor B treatments.

For example, fertilizer and irrigation treatments require larger experimental units

than do treatments like varieties, pesticides, etc.

Federer (1955, page 274) presents a measure of the efficiency for split plot

treatments (Also, see Kempthorne, 1952, Section 19.4). Using this measure, the

precision of the split plot treatments, factor B, and of the A� B interactions is

ða� 1Þðs2
e þ bs2

dÞ þ aðb� 1Þs2
e

ðab� 1Þs2
e

¼ 1þ bða� 1Þs2
d

ðab� 1Þs2
e
; ð1:27Þ

and the precision is estimated by,

ða� 1ÞError Aþ aðb� 1ÞError B

ðab� 1ÞError B
: ð1:28Þ

The precision of the whole plot treatment effects, factor A, is given by,

ða� 1Þðs2
e þ bs2

dÞ þ aðb� 1Þs2
e

ðab� 1Þðs2
e þ bs2

dÞ
¼ ða� 1Þbs2

d þ ðab� 1Þs2
e

ðab� 1Þðs2
e þ bs2

dÞ
; ð1:29Þ

and it is estimated by,

ða� 1ÞError Aþ aðb� 1ÞError B

ðab� 1ÞError A
: ð1:30Þ

If the variance component s2
d is equal to zero, the precision is equal to one in both

cases.

For the numerical example in Section 1.7, Example 1.2 with a ¼ 8 and b ¼ 4, the

estimated precision for the split plot treatments, seed treatments, and interaction

from Equation (1.28) is,

ð8� 1Þð98:38Þ þ 8ð4� 1Þð24:23Þ
f8ð4Þ � 1gð24:23Þ ¼ 1:69;

that is, a 69% increase over conducting the experiment as a randomized complete

block design. The estimated precision for the whole plot treatments, guayule

genotypes, from equation (1.30) is,

ð8� 1Þð98:38Þ þ 8ð4� 1Þð24:23Þ
f8ð4Þ � 1gð98:38Þ ¼ 0:42;

that is, a 58% loss over using a randomized complete block experiment design.
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1.13. PROBLEMS

Problem 1.1. For the data of Example 1.1

(i) Analyze the data and use residual diagnostic plots to assess the equal

variance and normality assumptions.

(ii) Use a multiple comparison procedure to test significance of pairs of means.

(iii) Redo (i) and (ii) for log transformed data.

Problem 1.2. For the data of Example 1.2

(i) Using the square root, transform the data, and perform analysis.

(ii) Use the arcsine transformation and obtain an analysis of the data.

(iii) Are there any differences in interpretation from these analyses?

Problem 1.3. Mazur (2005) presents several data sets for split-plot-designed

experiments. For one of the experiments, four rats, R1, R2, R3, and R4, represented

the four blocks or replicates, two whole plot treatments representing two time levels,

long (20 s) and short (10 s), and four time intervals between stimuli, B1, B2, B3, and B4,

were the split plot treatments. The terminal link entries per hour to the stimuli were:

R1 R2 R3 R4

Condition Long Short Long Short Long Short Long Short

B1 ¼ 60s 42.8 48.5 51.7 60.0 45.7 49.3 56.8 59.7

B2 ¼ 30s 108.8 53.9 97.9 51.9 86.9 50.8 103.9 56.8

B3 ¼ 15s 100.4 43.7 198.3 54.4 161.4 53.5 211.1 55.7

B4 ¼ 2s 59.8 51.3 899.1 1.9 176.1 51.6 614.9 50.1

(i) Give a linear model for an analysis of these data and state assumptions

used.

(ii) Obtain an analysis for these data and interpret the results.

(iii) Use residual diagnostic plots to assess the equal variance and normality

assumptions.

(iv) If the assumptions are violated, find a transformation of the data that is

suitable to obtain more variance homogeneity.

Problem 1.4. The data for this problem were taken from Mazur (2005). A split plot

designed experiment on four pigeons, P1, P2, P3, and P4, as the four blocks was

used. Two delay intervals, long (20 s) and short (10 s) represented the whole plot

treatments. The eight split plot treatments, B1, B2, B3, B4, B5, B6, B7, and B8, were

in a two by four factorial treatment arrangement. The two levels of one factor, say F,

were independent, ind, and dependent, dep, and the four levels of the second factor
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were variations of presenting the four levels of the second factor, T. The levels of T

are those described in Problem 1.3. The terminal entry rates per hour are given in the

table below:

P1 P2 P3 P4

Condition Long Short Long Short Long Short Long Short

B1 ¼ 60sind 31.5 62.3 42.7 52.9 40.4 61.6 5.9 61.8

B2 ¼ 30sind 14.7 67.3 42.1 57.3 19.3 61.2 5.6 57.1

B3 ¼ 15sind 12.2 63.1 42.1 61.2 22.0 56.5 0.8 57.4

B4 ¼ 2sind 8.1 54.8 43.0 60.2 42.0 54.2 8.9 61.1

B5 ¼ 60sdep 38.2 40.0 45.7 46.2 37.6 37.6 25.7 25.3

B6 ¼ 30sdep 62.3 30.4 77.1 39.0 59.1 29.4 31.7 16.4

B7 ¼ 15sdep 104.2 25.2 140.9 34.8 88.6 21.9 28.6 7.5

B8 ¼ 2sdep 124.3 4.1 339.0 11.7 178.8 6.6 69.8 2.4

(i) Obtain an analysis of the data.

(ii) Is variance heterogeneity a problem?

(iii) Obtain an analysis omitting P4 data. Does this change the results?

(iv) Discuss the results of your various analyses and compare the results on rats

in the previous problem with those on pigeons.

Problem 1.5. For the data given as Example 2 in Section 2

(i) Write a SAS/PROC GLM code for obtaining an analysis of variance and

means.

(ii) Prepare a graph of the corn genotype by district interaction. Is there a

significant district by corn genotype interaction?

(iii) Compute the residuals and perform a diagnostic plot to assess the variance

homogeneity and normality assumptions.

Problem 1.6. For the data of Example 4 in Section 2

(i) Perform a multiple comparisons procedure using the lsd, the hsd, and the esd

methods for the 10 combinations of alfalfa and no alfalfa with the five brome-

grass strains. Are there significant differences among the pairs of means?

(ii) Compute Tukey’s one degree of freedom for non-additivity. Is there an

indication of non-additivity?
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APPENDIX 1.1. EXAMPLE 1.1 CODE

The following is the SAS PROC/GLM code for obtaining an analysis of the data for

Example 1.1:

DataData spex1;

input Y R A B; /*Y¼ yield, R¼ block, A¼ planting method,
B¼ cultivation method*/

datalines;

82.8 1 1 1
46.2 1 1 2
78.6 1 1 3

. . .

65.6 4 4 3
63.3 4 4 4

;runrun;

ProcProc GLMGLM;

Class R A B;
Model Y¼ R A R*A B A*B;
Lsmeans A B A*B;
Test H¼ A E¼ A*R;

Run;Run;

The following is an abbreviated form of the output for the above code for

Example 1.1:
Output
Dependent Variable: Y
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Sum of
Source DF Squares Mean Square F Value Pr> F
Model 27 4905.738750 181.694028 10.75 <.0001
Error 36 608.478750 16.902187
Corrected Total 63 5514.217500

R-Square Coeff Var Root MSE Y Mean
0.889653 6.215594 4.111227 66.14375

Source DF Type I SS Mean Square F Value Pr> F
R 3 223.808750 74.602917 4.41 0.0096
A 3 194.561250 64.853750 3.84 0.0176
R*A 9 158.242500 17.582500 1.04 0.4284
B 3 4107.383750 1369.127917 81.00 <.0001
A*B 9 221.742500 24.638056 1.46 0.2012

Source DF Type III SS Mean Square F Value Pr> F
R 3 223.808750 74.602917 4.41 0.0096
A 3 194.561250 64.853750 3.84 0.0176
R*A 9 158.242500 17.582500 1.04 0.4284
B 3 4107.383750 1369.127917 81.00 <.0001
A*B 9 221.742500 24.638056 1.46 0.2012

Least Squares Means

A Y LSMEAN
1 68.2937500
2 64.0625000
3 64.8437500
4 67.3750000

B Y LSMEAN
1 71.3875000
2 52.2875000
3 70.7062500
4 70.1937500

A B Y LSMEAN
1 1 75.3750000
1 2 52.1000000
1 3 72.2250000
1 4 73.4750000
2 1 72.3000000
2 2 51.3500000
2 3 68.0000000
2 4 64.6000000
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3 1 67.3250000
3 2 50.4500000
3 3 71.2500000
3 4 70.3500000
4 1 70.5500000
4 2 55.2500000
4 3 71.3500000
4 4 72.3500000

Dependent Variable: Y

Tests of Hypotheses Using the Type III MS for R*A as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
A 3 194.5612500 64.8537500 3.69 0.0557

APPENDIX 1.2. EXAMPLE 1.2 CODE

A SAS PROC/GLM code for obtaining an analysis for the data of Example 1.2 is

given below. The code for an analysis for each whole plot data set is obtained by

using IF and THEN statements such as ‘‘IF A > 1 THEN DELETE; and IF A < 1

THEN DELETE;’’ to obtain an analysis of the data for genotype 1. An analysis is

obtained for the entire data set using the following code:

DataData spex2;

Input Y R A B; /*Y¼ count, R¼ block, A¼ genotype, B¼ seed
treatment*/

Datalines;

12 1 0 1
13 1 0 2
66 1 0 0

. . .

11 3 1 2
15 3 1 3
;

Proc GLM;Proc GLM;

Class R A B ;
Model Y¼ R A R*A B A*B;
Lsmeans A B A*B;
Test H¼ A E¼ R*A;

run;run;

An abbreviated form of the output from running the above code is given below:
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Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 47 35573.40625 756.88098 31.24 <.0001
Error 48 1162.83333 24.22569
Corrected Total 95 36736.23958

R-Square Coeff Var Root MSE Y Mean
0.968346 19.45279 4.921960 25.30208

Source DF Type I SS Mean Square F Value Pr> F
R 2 38.58333 19.29167 0.80 0.4568
A 7 763.15625 109.02232 4.50 0.0006
R*A 14 1377.25000 98.37500 4.06 0.0001
B 3 30774.28125 10258.09375 423.44 <.0001
A*B 21 2620.13542 124.76835 5.15 <.0001

Source DF Type III SS Mean Square F Value Pr> F
R 2 38.58333 19.29167 0.80 0.4568
A 7 763.15625 109.02232 4.50 0.0006
R*A 14 1377.25000 98.37500 4.06 0.0001
B 3 30774.28125 10258.09375 423.44 <.0001
A*B 21 2620.13542 124.76835 5.15 <.0001

Least Squares Means
A Y LSMEAN
0 24.6666667
1 26.8333333
2 28.8333333
3 21.0000000
4 21.9166667
5 28.1666667
6 23.2500000
7 27.7500000

B Y LSMEAN
0 55.8333333
1 13.9166667
2 20.0416667
3 11.4166667

A B Y LSMEAN
0 0 66.3333333
0 1 11.6666667
0 2 12.3333333
0 3 8.3333333
1 0 63.3333333
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1 1 18.3333333
1 2 14.3333333
1 3 11.3333333
2 0 65.0000000
2 1 12.6666667
2 2 26.3333333
2 3 11.3333333
3 0 50.3333333
3 1 10.0000000
3 2 14.0000000
3 3 9.6666667
4 0 49.3333333
4 1 16.3333333
4 2 10.3333333
4 3 11.6666667
5 0 58.0000000
5 1 8.0000000
5 2 29.6666667
5 3 17.0000000
6 0 46.3333333
6 1 14.6666667
6 2 22.0000000
6 3 10.0000000
7 0 48.0000000
7 1 19.6666667
7 2 31.3333333
7 3 12.0000000

38 the standard split plot experiment design



C H A P T E R 2

Standard Split Block

Experiment Design

2.1. INTRODUCTION

A split block experiment design (Yates, 1933; Federer, 1955, Section X-2; Lentner

and Bishop, 1986, Section 11.5) has also gone under different names including strip

block design (e.g., Gomez and Gomez,1984), a two-way whole plot design, strip-

plot (Nair, 1944; Khargonkar, 1948; Hoshmand, 1994, Section 5.6), sub-treatments

in strips across blocks (Leonard and Clark, 1939; Cochran and Cox, 1950), and a

criss-cross design (e.g., Mead, 1988). A factorial treatment design is usually

involved. Suppose the two factors are A with a levels and B with b levels. Factor A

(or B) may consist of a factorial or other treatment design. In each complete block

(replicate), the a levels of factor A are randomly allotted to the a whole plot

experimental units, wpeusa. Then perpendicular to the A wpeusa, the B experimental

units, wpeusb, are formed and the b levels of factor B are randomly allocated to the

second set of b whole plot units in each of the complete blocks. The levels of factor B

go across all levels of factor A and likewise the levels of factor A go across all levels

of factor B in a criss-cross manner. This arrangement with a different randomization

is repeated in each of the r complete blocks. For this design, there are two whole plot

treatments, A and B, and two whole plot experimental units, wpeua for factor A and

wpeub for factor B. Note that the A� B interaction effects are in a split plot

arrangement to both of the whole plot treatments. A randomized complete block

experiment design is used for factor A treatments. Also, the factor B treatments are

arranged in a randomized complete block experiment design. There are r

randomizations for the levels of factor A and r randomizations for the levels of

factor B. This is the design for a standard split block experiment design although any

other design may be used for the whole plot treatments factors A and/or B.

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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A schematic layout of a split block experiment design consisting of a two-way

array of factors A and B is given below:

Block 1 Block 2 . . .. Block r

The following steps illustrate the randomization procedure and the layout of a

split block design with r ¼ 4 blocks, factor A with a ¼ 3 levels in a randomized

complete block design, and factor B with b ¼ 5 levels in a randomized complete

block design:

Step 1. Group similar experimental units into four blocks.

    
    
    
    

 

 

 

 

 

 

 

 
     Block 1                        Block 2                           Block 3                         Block 4 

Step 2. Randomization of factor A levels to experimental units in each block.

                
                
                
                
                
A1      A3       A2         A2    A1      A3             A3     A1    A2            A2      A3     A1 

Step 3. Randomization of factor B levels to experimental units across factor A

levels.

 
   B1    B3    B4    B5 
   B5    B4    B1    B4 
   B2    B5    B3    B2 
   B4    B1    B2    B3 
   B3    B2    B5    B1 
A1      A3    A2             A2    A1     A3             A3     A1     A2            A2    A3    A1 

To show the effect of this on the statistical analysis of an experiment designed

in this fashion, consider the following analysis of variance table, ANOVA,

A 1 2 . . . a 1 2 . . . a 1 2 . . . a

B 1

2

3

. . .

b
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showing the partitioning of the degrees of freedom for the various sources of

variation:

Since the experimental units are different for factor A, for factor B, and for

the A� B interaction, three different error terms are required in this design. There

are r randomizations for each of the two whole plot treatments but since

their experimental units, eus, are different, they have different error mean squares.

2.2. EXAMPLES

Example 1—Snedecor and Cochran (1980), section 16.15, present the data for an

experiment involving three alfalfa genotypes arranged in a randomized complete

block design with r ¼ 6 replicates. This example brings up a number of

considerations. If the analysis had been performed on the results of the experiment

after the first two cuttings in 1943, it would be for a standard split block design as

shown above. However, what was done is that each alfalfa genotype plot or wpeu

was divided into b ¼ 4 split plot experimental units, speus. A randomly selected

speu was then applied to one of b ¼ 4 treatments as follows: B0 was no third

cutting, B1 was a third cutting on September 1, B2 was a third cutting on September

7, and B3 was a third cutting on September 20. The yields presented are for

first cutting yields in 1944. Without proper explanation of such a designed

experiment, a person could think that periods over time are of a split plot or nested

nature.

Example 2—Snedecor and Cochran (1980), Section 16.16, present data for an

experiment on a ¼ 4 dates of cutting asparagus, factor A. A randomized complete

block experiment design with r ¼ 4 replicates was used. The yields of asparagus

over b ¼ 4 years, factor B, are presented. Note that asparagus is a perennial crop.

They analyze the data using trends over years as for some repeated measures

experiments. However, since there is often an interest in the interaction of

factor A with years, they could have analyzed the results of the experiment as

follows.

Source of variation Degrees of freedom

Total rab ¼ 4ð3Þð5Þ ¼ 60

Correction for mean 1

Replicate¼ R r � 1 ¼ 3

Factor A a� 1 ¼ 2

R� A ¼ error A ðr � 1Þða� 1Þ ¼ 6

Factor B b� 1 ¼ 4

R� B ¼ error B ðr � 1Þðb� 1Þ ¼ 12

A� B ða� 1Þðb� 1Þ ¼ 8

R� A� B ¼ error AB ðr � 1Þða� 1Þðb� 1Þ ¼ 24
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Example 3—Federer et al. (2002) describe a split block experiment design for a ¼ 2

treatments of water, with and without zinc as factor A, and b ¼ 14 time periods as

factor B. There were r ¼ 3 runs of the experiment. The response was number of fish

out of five that migrated to the two levels of the factor A treatments. The time periods

were crossed over the two treatments. This could also be considered as a repeated

measurements experiment and trends studied if the interest is on trends rather than

on interactions.

Example 4—Gomez and Gomez (1984) discuss a split block experiment design with

a ¼ 6 rice varieties, b ¼ 3 levels of nitrogen application, and r ¼ 3 replicates.

Example 5—Mead (1988) presents a split block design for an intercropping

experiment with a ¼ 4 cowpea varieties, b ¼ 5 maize varieties, and r ¼ 3 replicates.

Example 6—Large scale field experiments using an airplane to spread fertilizer and

herbicides require that herbicides be crossed with fertilizers in a field. The fields are

the replicates.

Example 7—In an educational setting, suppose that r groups of 30 students are to be

used. Let a ¼ 5 subjects (mathematics, english, social studies, language, and

gymnastics) and b ¼ 6 sex and social groupings. The order in which the students

take the courses is in a random order for each of the r groups. The sex and social

group is crossed with subjects. The response is a test score, for example. Examples

of this nature often cause considerable confusion as to the nature of the experiment

design and consequently about the statistical analysis. Note that all 30 students in a

group stay the same across all five subjects.

Example 8—Hoshmand (1994) presents data for four levels of rainfall and four

fertilizer treatments with five replicates. The rainfall levels are for two wet years and

two drought years.

Experimenters and statisticians sometimes mistake a split block design for a split

plot design. This is especially true when one of the factors involves time periods, say

factor B, or other forms of repeated measurements through time, which they

Source of variation Degrees of freedom

Total 64 ¼ abr

Correction for mean 1

Replicates ¼ R 3 ¼ r � 1

Years ¼ B 3 ¼ b� 1

R� B ¼ error B 9 ¼ ðb� 1Þðr � 1Þ
Cutting dates ¼ A 3 ¼ a� 1

R� A ¼ error A 9 ¼ ða� 1Þðr � 1Þ
A� B 9 ¼ ða� 1Þðb� 1Þ
R� A� B ¼ error AB 27 ¼ ða� 1Þðb� 1Þðr � 1Þ
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designate as split plot treatments. Whenever the times are calendar or clock times,

the time periods are crossed over the other set of treatments, say A. This means that

they are in a split block arrangement. Such experiments could be considered to be in

a repeated measurement category but in many instances, each of the time periods

and especially the interactions of factor A with time periods B are of interest to an

experimenter, for example, the various pickings of a tomato or bean crop or the

various cuttings of a hay crop.

There are instances when time periods can be split plot treatments. For example,

in a forage crop experiment with alfalfa, say, the time to cut or harvest a crop is

determined for each experimental unit by some characteristic like percent of plants

in bloom. A biological calendar, or clock, is used for each experimental unit, eu, to

determine when to harvest an eu. Not making a distinction between a calendar clock

and a biological clock has made individuals commit the error of analyzing a split

block design as a split plot design. Some of the concepts are illustrated in the

examples listed below.

2.3. ANALYSIS OF VARIANCE

For the standard form of a split block design, the usual response model equa-

tion is

Yhij ¼ mþ rh þ ai þ Zhi þ bj þ dhj þ abij þ ehij; ð2:1Þ

where h ¼ 1,2, . . . , r, i ¼ 1,2, . . . , a; and j ¼ 1,2, . . . , b,

Yhij is the response for the hijth experimental unit,

m is a general mean effect,

rh is the hth block or replicate effect and is identically and independently

distributed with mean zero and variance s2
r, IIDð0, s2

rÞ,
ai is the effect of the ith level of factor A,

Zhi is a random error effect for factor A and Zhi is identically and independently

distributed as IIDð0, s2
ZÞ,

bj is the effect of the jth level of factor B,

dhj is a random error effect for factor B and dhj is identically and independently

distributed IIDð0, s2
dÞ,

abij is the ijth interaction effect of the two factors A and B, and

ehij is a random error effect for the interaction effects and is identically and

independently distributed as IIDð0, s2
e Þ:

The different random effects rh, dhi, and ehij are assumed to be independent.

The expected values of the various mean squares in the ANOVA table as described

above in Section 2.1, for fixed A and B factors, and for the above response model
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equation (2.1) are as follows:

The functions of the A effects, the B effects, and the interaction AB effects are

defined as f ðAÞ ¼ rb
Pa

i¼1 a
2
i =ða� 1Þ, f ðBÞ ¼ ra

Pb
j¼1 b

2
j =ðb� 1Þ, and f ðABÞ ¼

r
Pa

i¼1

Pb
j¼1 ab

2
ij=ða� 1Þðb� 1Þ, respectively.

2.4. F-TESTS

Adding the requirement of normality to the distributions for the random error effects

described for equation (2.1), the following F-tests are appropriate for fixed effects for

both factors. Let Ea equal the Error A mean square, Eb equal the Error B mean square,

Eab equal the interaction error mean square, MSA equal the factor A mean square, MSB

equal the factor B means square, and MSAB equal the interaction mean square. To test

the hypothesis of no factor A effects, the F-test is the ratio of the Factor A mean square

over the error A mean square, F ¼ MSA=Ea. To test the hypothesis of no B effects,

divide the Factor B mean square by the error B mean square to obtain the F-test,

F ¼ MSB=Eb. The F-test for no interaction, F ¼ MSAB=Eab, is obtained by dividing

the interaction mean square by the error AB mean square. Each of the three F-tests

requires a different error term. The experimental units are different for factor A, for

factor B, and for the interaction of factors A and B.

The expected values of the mean squares in an analysis of variance for random factor

A and replicate (block R) effects and for a fixed effect factor B would be as follows:

Expected values of mean squares

Source of variation Degrees of freedom A and R random, B fixed

Block¼ R r� 1 s2
e þ as2

d þ bs2
Z þ abs2

r

Factor A a� 1 s2
e þ bs2

Z þ rbs2
a

A� R ða� 1Þðr � 1Þ s2
e þ bs2

Z

B b� 1 s2
e þ as2

d þ
rbs2

ab

ðb�1Þ þ f ðbÞ
B� R ðb� 1Þðr � 1Þ s2

e þ as2
d

A� B ða� 1Þðb� 1Þ s2
e þ

rbs2
ab

ðb�1Þ
A� B� R ða� 1Þðb� 1Þðr � 1Þ s2

e

Source of variation Degrees of freedom Expected value of mean square

Total rab

Correction for mean 1

Replicates¼ R r� 1 s2
e þ bs2

Z þ as2
d þ abs2

r
Factor B b� 1 s2

ae þ as2
d þ f ðBÞ

R� B¼ error B (r� 1)(b� 1) s2
e þ as2

d
Factor A a� 1 s2

e þ bs2
Z þ f ðAÞ

R� A¼ error A (r� 1)(a� 1) s2
e þ bs2

Z
A� B (a� 1)(b� 1) s2

e þ f ðABÞ
R� A� B¼ error AB (r� 1)(a� 1)(b� 1) s2

e
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As can be seen from the above table of expected values of mean squares, there is no

appropriate error term to test for factor B effects. Therefore, it is necessary to construct

an error term and to determine the approximate number of degrees of freedom for the

constructed error mean square. The remaining tests proceed as described above. The

estimated error mean square for testing significance of the factor B effects is

Eb þMSAB� Eab. The degrees of freedom may be approximated by

ðEb þMSAB � EabÞ2

E2
b=ðb� 1Þðr � 1Þ þMSAB2=ða� 1Þðb� 1Þ þ E2

ab=ða� 1Þðb� 1Þðr � 1Þ : ð2:1Þ

The above is based on the Satterthwaithe method for approximating the degrees of

freedom

2.5. STANDARD ERRORS FOR CONTRASTS OF EFFECTS

Denote the three error mean squares as Ea, Eb, and Eab for factor A, for factor B, and

for their interaction, respectively. The estimated standard error of a difference

between two factor A means or effects, i and i0, is estimated as

SEð�y:i: � �y:i0:Þ ¼
ffiffiffiffiffiffiffiffi
2Ea

rb

r
: ð2:2Þ

The standard error of a difference between two factor B means or effects, j and j0 is

estimated as

SEð�y::j � �y::j0 Þ ¼
ffiffiffiffiffiffiffiffi
2Eb

ra

r
: ð2:3Þ

The standard error of a difference between two means at one level of factor A but

different levels of factor B is estimated as (e.g., see, Mead, 1988)

SEð�y:ij � �y:ij0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fEb þ ða� 1ÞEabg

ar

r
: ð2:4Þ

The standard error of a difference between means at two levels of factor A for the

same level of factor B is estimated as

SEð�y:ij � �y:i0jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fEa þ ðb� 1ÞEabg

br

r
: ð2:5Þ

The standard error of a difference between two means for combinations ij and fg,

where i is not equal to f or g and j is not equal to f or g is estimated by

SEð�y:ij � �y:fgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fa Ea þ b Ea þ ðab� a� bÞEabg

rab

r
: ð2:6Þ
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The variance of a mean for one level of factor A is

Vð�y:i:Þ ¼
s2
e þ bs2

Z þ bs2
r þ s2

d

rb
: ð2:7Þ

The variance of a factor B level mean is

Vð�y::jÞ ¼
s2
e þ as2

d þ as2
r þ s2

Z

ra
: ð2:8Þ

The variance of a mean for combination ij is

Vð�y:ijÞ ¼
s2
e þ s2

d þ s2
Z þ s2

r

r
: ð2:9Þ

Nair (1944) presents a discussion of the above as well as some comments on tests of

significance.

2.6. NUMERICAL EXAMPLES

Example 2.1—An experiment involving ten maize hybrids, numbered 0 to 9, were

arranged in a randomized complete block experiment design with a ¼ 10 hybrids

and r ¼ 2 replicates or complete blocks. Then, b ¼ 3 generations, 1, 2, and 3, of the

hybrids were laid out across the ten hybrids in each block. The experiment design for

the generations was a randomized complete block with b ¼ 3 generations and r ¼ 2

replicates. The data for the response variable yield of ear corn and the field

arrangement are given below (from Leonard and Clark, 1939).

Block 1

Hybrid

Generation 3 8 2 1 6 7 0 9 4 5

1 48 46 46 42 43 47 48 46 46 49

3 46 45 44 46 45 49 45 48 48 49

2 43 42 42 44 44 47 45 47 47 48

Block 2

Hybrid

Generation 4 3 9 5 1 7 2 8 6 0

2 46 45 46 45 43 48 44 44 47 43

3 48 44 46 45 50 51 48 46 48 43

1 42 42 44 43 44 48 47 46 44 42

46 standard split block experiment design



The SAS code and data for this experiment are given in Appendix 2.1. The various

means are as follows:

Hybrid

Generation 0 1 2 3 4 5 6 7 8 9 Mean

1 45.0 43.0 46.5 45.0 44.0 46.0 43.5 47.5 46.0 45.0 45.2

2 44.0 43.5 43.0 44.0 46.5 46.5 45.5 47.5 43.0 46.5 45.0

3 44.0 48.0 46.0 45.0 48.0 47.0 46.5 50.0 45.5 47.0 46.7

Mean 44.3 44.8 45.2 44.7 46.2 46.5 45.2 48.3 44.8 46.2 45.6

An analysis of variance table and associated F-values for the above data set are as

follows:

Source of Degrees of

variation freedom Sum of squares Mean square F-value prob> F

Total 60 125,151

Correction for mean 1 124,852.82

Block (replicate), R 1 2.82 2.82

Hybrid, A 9 77.68 8.63 0.96

A� R, Error A 9 81.02 9.00

Generation, B 2 35.43 17.72 2.18

B� R, Error B 2 16.23 8.12

Generation� hybrid 18 61.57 3.42 2.63 0.02

A� B� R, Error AB 18 23.43 1.30

Based on the above analysis of variance table, the generation by hybrid interaction is

significant at the 2% level. Before drawing any conclusions, it would be wise to

consult with the experimenter to ascertain if interaction was suspected. The

interaction graph is displayed in Figure 2.1. Here we see that hybrids 1, 4, and 7 have

the highest yields for generation 3 but this is not the case for the other generations.

This explains a part of the apparent interaction.

Example 2.2—The example used here is not a standard split block design but is

included to demonstrate some of the analytical considerations needed for an analysis

of the data from such an experiment design. An experiment was conducted using five

apple tree rootstocks, factor A, arranged in a 5� 5 Latin square experiment design.

Four soil treatments, factor B, were arranged in a randomized complete block

experiment design using the five columns of the Latin square as the blocks. The

rows and rootstocks of the Latin square are crossed with soil treatments. The data in

Table 2.1 were obtained via simulation as the original data were not available at the

time the statistical analysis was explained to the experimenter. The third factor

added to this experiment will be explained in a later chapter dealing with extensions

of the split block experiment design. These data are for one level of the third factor.

A SAS code, data format, and output are presented in Appendix 2.2.
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Figure 2.1. Hybrid by generation interaction.

Table 2.1. Simulated Data for Five Apple Tree Rootstocks Laid Out in a Latin Square

Experiment Design with Four Soil Treatments Randomly Arranged in Each of the

Five Columns of the Latin Square. Soil Treatments go Across All Rows.

Soil

treatment Column 1 Column 2 Column 3 Column 4 Column 5

1 R1 1027.85 R2 1004.33 R3 992.57 R4 994.60 R5 1019.89

2 982.74 977.86 993.71 1021.81 1017.48

3 1007.24 999.15 1012.57 995.03 987.82

4 1008.47 990.86 968.25 1002.17 995.63

1 R5 994.81 R3 1021.61 R4 1028.78 R1 996.18 R2 996.61

2 999.91 1014.46 1006.01 981.96 1011.94

3 1010.29 980.03 1015.04 985.63 972.76

4 1018.49 1014.80 1000.72 965.80 1011.99

1 R2 1013.52 R4 1010.08 R5 1004.83 R3 1003.92 R1 985.72

2 1017.40 997.66 983.86 999.33 1012.60

3 996.63 1012.12 1018.60 995.70 984.62

4 989.91 1019.53 1020.95 988.14 973.47

1 R3 990.17 R1 991.79 R2 1004.52 R5 1011.02 R4 1006.13

2 972.21 979.47 996.53 982.79 1005.57

3 1002.17 1004.70 1016.95 1018.23 1003.18

4 1017.56 1032.75 983.79 976.68 992.21

1 R4 985.12 R5 967.39 R1 993.54 R2 985.04 R3 1012.14

2 984.14 1009.78 1006.80 987.54 999.32

3 1010.74 1027.49 1001.24 990.53 1005.51

4 1004.63 1001.61 1010.73 982.68 998.86
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If the row blocking is ignored, the design is a standard split block experiment

design with the columns being the blocks of a randomized complete block

experiment design. The ANOVA for this arrangement is given in Table 2.2. Note that

Type I and Type III sums of squares (SS) are identical as they should be for an

orthogonal arrangement of factors. Also the degrees of freedom (DF) are as they

should be for this design. A SAS PROC GLM code for the appropriate analysis

including the row blocking is not available. Therefore, an additional run needs to be

made to obtain the row sum of squares. Then, one may subtract this sum of squares

from the column � rootstock interaction sum of squares. The result is the error sum

of squares for rootstock. The column by rootstalk interaction sum of squares with 16

degrees of freedom is 2,808.57 (Table 2.2) and the row sum of squares with four

degrees of freedom is 147.44 (Table 2.3). The error for rootstock sum of squares is

2808:57� 147:44 ¼ 2661:13 with 12 degrees of freedom and a mean square of

221.76.

The trouble is that rows run across the soil treatments. This has the effect of

completely confounding the row and row� rootstock effects with the interactions of

rootstock � soil treatment and column � rootstock � soil treatment as shown in

Type III sum of squares in Table 2.3. The SAS/GLM procedure can give the wrong

degrees of freedom as is indicated by interchanging the last two terms in the model

of Table 2.4. The degrees of freedom for the column� rootstock Type I sum of

squares should be 12 and not 16. Other models for this data set produced similar

problems such as indicating 60 degrees of freedom for the three factor interaction

column� rootstock� soil treatment instead of the correct number 48. The reason

for this is unknown.

Table 2.2. ANOVA Obtained from SAS PROC GLM output for Data of Table 2.1.

Source of variation DF Type I SS Mean square

Total corrected for mean 99 22,310.37

Column 4 1318.63 329.66

Rootstock 4 1159.76 289.94

Column� rootstock 16 2808.57 175.54

Soil treatment 3 351.88 117.29

Column� soil treatment 12 3863.28 321.94

Rootstock� soil treatment 12 825.96 68.83

Column� rootstock� soil treatment 48 11,982.28 249.63

Source of variation DF Type III SS Mean square

Column 4 1318.63 329.66

Rootstock 4 1159.76 289.94

Column� rootstock 16 2808.57 175.54

Soil treatment 3 351.88 117.29

Column� soil treatment 12 3863.28 321.94

Rootstock� soil treatment 12 825.96 68.83

Column� rootstock� soil treatment 48 11,982.28 249.63
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Various F-tests may be made using the SAS PROC GLM and different error terms

defined with commands placed after the model statement. These are given in the

code presented in Appendix 2.2. For this data set, the F-statistics are near one as this

is a simulated set of data and no significant effects are expected.

Table 2.3. ANOVA for a Second Model.

Source of variation DF Type I SS Mean square

Total corrected for mean 99 22,310.37

Row 4 147.44 36.86

Rootstock 4 1159.76 289.94

Row� rootstock 16 3979.76 248.74

Soil treatment 3 351.88 117.29

Column� soil treatment 12 3863.28 321.94

Rootstock� soil treatment 12 8275.96 68.83

Column� rootstock� soil treatment 48 11,982.28 249.63

Source of variation DF Type III SS Mean square

Row 0 0.00

Rootstock 4 1159.76 289.94

Row� rootstock 0 0.00

Soil treatment 3 351.88 117.29

Column� soil treatment 12 3863.28 321.94

Rootstock� soil treatment 12 8275.96 68.83

Column� rootstock� soil treatment 48 11,982.28 249.63

Table 2.4. ANOVA for a Third Model.

Source of variation DF Type I SS Mean square

Total corrected for mean 99 22,310.37

Row 4 147.44 36.86

Rootstock 4 1159.76 289.94

Soil treatment 3 351.88 117.29

Rootstock� soil treatment 12 825.96 68.83

Row� rootstock 16 3979.96 248.74

Column� soil treatment 12 3863.28 321.94

Error 48 11,982.28 249.63

Source of variation DF Type III SS Mean square

Row 4 0.00

Rootstock 4 1159.76 289.94

Soil treatment 3 351.88 117.29

Rootstock� soil treatment 12 825.96 68.83

Row� rootstock 12 0.00 0.00

Column� soil treatment 12 3863.28 321.94
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The F-test for testing for significance of rootstock effects is

F ¼ 289:94

221:76
¼ 1:31:

An F-test for testing for significance of soil treatment effects is

F ¼ 117:29

321:94
¼ 0:36:

An F-test for testing significance of the rootstock by soil treatment interaction

effects is

F ¼ 68:83

249:63
¼ 0:28:

A standard error of a difference between two rootstock means, �y::i: � �y::i0:, isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð221:76Þ

4ð5Þ

s
¼ 4:71:

A standard error of a difference between two soil treatment means, �y:::j � �y:::j0 , is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð321:94Þ

5ð5Þ

s
¼ 5:07:

A standard error of a difference between two soil treatment means for one rootstock,

�y::ij � �y::ij0 , {equation (2.4)} isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f321:94þ ð5� 1Þð249:63Þg

5ð5Þ

s
¼ 10:27:

A standard error of a difference between two means for one rootstock and one soil

treatment and a mean from a different rootstock and a different soil treatment,

�y::ij � �y::i0j0 , {equation (2.6)} is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f5ð221:76Þ þ 4ð321:94Þ þ ð5ð4Þ � 5� 4Þð249:63Þg

4ð5Þð5Þ

s
¼ 10:14:

A standard error of a difference between two rootstock means at one level of soil

treatment, �y::ij � �y::i0j0 {equation (2.5)} is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f221:76þ ð4� 1Þð249:63Þg

4ð5Þ

s
¼ 9:85:
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The soil treatment, the rootstock, and the rootstock by soil treatment means are

presented in Table 2.5.

2.7. MULTIPLE COMPARISONS

Federer and McCulloch (1984) describe multiple comparisons for an experiment

designed as a split block. All possible differences among the rootstock means are

given in the top part of Table 2.6. A 95% least significant difference (lsd) is

computed as

t0:05;df¼12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error R

br

r
¼ 2:179

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð221:76Þ

4ð5Þ

s
¼ 2:179ð4:71Þ ¼ 10:26: ð2:10Þ

Error R equal Error A for rootstock means is

column� rootstock� row sums of squares

12
¼ 2808:57� 147:44

12
¼ 221:76: ð2:11Þ

Table 2.5. Soil Treatment, Rootstock, and Soil Treatment by Rootstock Means for the

Data of Table 2.1.

Rootstock

Soil treatment 1 2 3 4 5 mean

1 999.0 1000.8 1004.1 1004.9 999.6 1001.7

2 992.7 998.3 995.8 1003.0 998.8 997.7

3 996.7 995.2 999.2 1007.2 1012.5 1002.2

4 998.2 991.8 997.5 1003.9 1002.7 998.8

mean 996.7 996.5 999.2 1004.8 1003.4 1000.1

Table 2.6. Differences Among Rootstock Means and Among Soil Treatment Means.

Rootstock 4 5 3 1 2

mean 1004.8 1003.4 999.2 996.7 996.5

2 8.3 6.9 2.7 0.2

1 8.1 6.7 2.5

3 5.6 4.2

5 1.4

Soil treatment 3 1 4 2

mean 1002.2 1001.7 998.9 997.7

2 4.5 4.0 1.1

4 3.4 2.9

1 0.5
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All differences are less than the value 10.26 in equation (2.10). A 95% honestly

significant difference or Tukey’s studentized multiple range test is computed as

q0:05; v¼5; df¼12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error R

br

r
¼ 4:51ð3:33Þ ¼ 15:02: ð2:12Þ

Dunnett’s test for comparing all rootstock means with a check, say number 1, at the

95% level is computed as

d0:05; df¼12; a�1¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error R

br

r
¼ 2:88ð4:71Þ ¼ 13:56: ð2:13Þ

It is straightforward to compute these multiple comparison procedures as well as the

esd and ssd (See Chapter 1) for soil treatment means and for the soil treatment

by rootstock means, respectively, using the standard errors presented above in

Section 2.5.

2.8. ONE REPLICATE OF A SPLIT BLOCK DESIGN

If an experimenter uses only one replicate of a split block experiment design, the

following ANOVA table is appropriate:

As can be observed, there are no estimates of error A, error B, or error AB. When the

situation is such, the experimenter often uses the A� B interaction as an error term

for testing the significance of the factor A and factor B effects. For fixed effects A and

B, such a procedure is not valid when the interaction of factor A and factor B is

greater than zero as this would result in using an error mean square that is too large.

2.9. PRECISION

Following the results given in Chapter 1 for precision estimates for a split plot

experiment design, similar formulae may be obtained for a split block experiment

Source of variation Degrees of freedom

Total ab

Correction for mean 1

Replicate¼ R 0

Factor A a� 1

R� A¼ error A 0

Factor B b� 1

R� B¼ error B 0

A� B (a� 1)(b� 1)

R� A� B¼ error AB 0

precision 53



design. The estimated precision for rootstalks means in Example 2.2 is

ða� 1ÞEa þ aðb� 1ÞEab

ðab� 1ÞEa

¼ ð5� 1Þð221:76Þ þ 5ð4� 1Þð249:63Þ
ð5ð4Þ � 1Þð221:76Þ ¼ 1:10: ð2:14Þ

The fact that the precision exceeds one is because the estimated error A is less than

the estimated error AB. The estimated precision for the B or soil treatment means is

ðb� 1ÞEb þ bða� 1ÞEab

ðab� 1ÞEb

¼ ð4� 1Þð321:94Þ þ 4ð5� 1Þð249:63Þ
ð4ð5Þ � 1Þð321:94Þ ¼ 0:81: ð2:15Þ

A measure of the precision for the interaction effects is

ða� 1ÞEa

2
þ ðb� 1ÞEb

2
þ aðb� 1ÞEab

ðab� 1ÞEab

¼

ð5� 1Þð221:76Þ
2

þ ð4� 1Þð321:94Þ
2

þ 5ð4� 1Þð249:63Þ
ð5ð4Þ � 1� 1=2Þð249:63Þ ¼ 1:01:

ð2:16Þ

Note that the sum of the weights for the means squares is ð5� 1Þ=2þ ð4� 1Þ=2þ
5ð4� 1Þ ¼ 18:5 and that the denominator weight is 5ð4Þ � 1� 1=2 ¼ 18:5. These

are equal as they should be. A weighted average of error A and error B mean squares

is used here.

2.10. COMMENTS

Some analysts may desire to use a multiple comparisons procedure for comparing

the factor A by factor B means or the factor A by factor B by factor C means for the

experiment designs discussed in this and the previous chapter. Computer codes for

doing this will be difficult, if not impossible, to write owing to the number of

different standard errors of a difference of two means. For a standard split block

designed experiment, five different standard errors of a difference between two

means were given in equations (2.2)–(2.6). Even when using a multiple comparisons

procedure for factor A and factor B means, it will be a programming problem to use

the correct standard errors of a difference between two means {equations (2.2) and

(2.3)}. A code statement, such as LSMEANS A*B/PDIFF, will make use of the

single mean square listed as ERROR on the output. This is correct for some pairs but

not for others.

In some cases, analysts may consider using PROC MIXED for the random effects

in a model equation. When the effects are all orthogonal in an analysis of variance, i.e.,

Type I and Type III (or IV) sums of squares are identical, no additional information is

obtained by using a fixed effects analysis. SAS GLM and SAS MIXED means are

identical for orthogonal designs. Software using a mixed effects procedure should be
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used with caution as it is not always obvious to the analyst what the results mean or

how they were obtained. It is not too difficult to find the output from a code that is

incorrect for the purposes of the analysis of the data set under consideration, such as

the incorrect number of degrees of freedom, incorrect F-test, and others.

2.11. PROBLEMS

Problem 2.1—For the data in Appendix 2.3 and for P¼ 1, obtain the analyses as

described for Example 2.2 and discuss the results.

Problem 2.2—For the data in Appendix 2.3 and for P¼ 2, obtain the analyses as

described for Example 2.2 and discuss the results.

Problem 2.3—Obtain the residuals for the analyses in Problems 2.1 and 2.2. Perform

a Tukey stem and leaf plot to determine if there are outliers.

Problem 2.4—For the data given by Hoshmand (1994) on pages 174–175, obtain an

analysis of variance for the data set. Write a code for obtaining an analysis of

variance, means, and standard errors of means.
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APPENDIX 2.1. EXAMPLE 2.1 CODE

The SAS PROC GLM code for the data of Example 2.1 on enclosed disk is given

below:

datadata sbex;

input yield rep hyb gen;
datalines;
48 1 3 1
46 1 3 3
43 1 3 2
46 1 8 1

............

44 2 6 1
43 2 0 2
43 2 0 3
42 2 0 1
;
proc glmproc glm data = sbex;

class rep hyb gen;

model yield = rep hyb hyb*rep gen gen*rep gen*hyb;

lsmeans hyb gen gen*hyb;

Test H = hyb E = hyb*rep;

Test H = gen E = gen*rep;
runrun;

APPENDIX 2.2. EXAMPLE 2.2 CODE

The SAS PROC GLM code for the data of Example 2.2 on the enclosed disk is given

below:

datadata sbex2_2;
input row column R S Y;/*R = rootstock; S = soil treatment;
Y = response.*/
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datalines;
1 1 1 1 1027.85
1 1 1 2 982.74
1 1 1 3 1007.24
1 1 1 4 1008.47
1 2 2 1 1004.33

.............

5 2 5 2 1009.78
5 2 5 3 1027.49
5 2 5 4 1001.61
;

proc glmproc glm data = sbex2_2;
class row column R S;
model Y = column R R*column S S*column R*S/solution;
Test H = S E = S*column;
Test H = R*S E = Error;
lsmeans R S R*S/stderr;
runrun;

Proc glmProc glm data = sbex2_2;
class row column R S;
model Y = row R row*R S column*S R*S column*R*S;
runrun;

proc glmproc glm data = sbex2_2;
class row column R S;
model Y = row R S R*S row*R column*S column*R*S;
runrun;

An abbreviated form of the output from running the above code is given

below.

The GLM procedure
Dependent variable: Y

Sum of Mean
Source DF squares square F Value Pr > F
Model 51 10,328.09037 202.51158 0.81 0.76-
88
Error 48 11,982.27509 249.63073
Corrected total 99 22,310.36546

R-Square Coeff var Root MSE Y Mean
0.462928 1.579816 15.79971 1000.098

Source DF Type I SS Mean square F Value Pr > F
Column 4 1318.629654 329.657414 1.32 0.2758
R 4 1159.764454 289.941113 1.16 0.3396
Column*R 16 2808.571226 175.535702 0.70 0.7766
S 3 351.882571 117.294190 0.47 0.7047
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Column*S 12 3863.283714 321.940310 1.29 0.2555
R*S 12 825.958754 68.829896 0.28 0.9906

Source DF Type III SS Mean square F Value Pr > F
Column 4 1318.629654 329.657414 1.32 0.2758
R 4 1159.764454 289.941113 1.16 0.3396
Column*R 16 2808.571226 175.535702 0.70 0.7766
S 3 351.882571 117.294190 0.47 0.7047
Column*S 12 3863.283714 321.940310 1.29 0.2555
R*S 12 825.958754 68.829896 0.28 0.9906

Tests of Hypotheses Using the Type III MS for column*S as an error
term

Source DF Type III SS Mean square F Value Pr > F
S 3 351.8825710 117.2941903 0.36 0.7800

Parameter Estimate Standard error t Value Pr > jtj
. . .

R 1 -13.813000 B 14.13168726 -0.98 0.3332
R 2 -10.850500 B 14.13168726 -0.77 0.4464

. . .

R*S 5 1 0.000000 B
R*S 5 2 0.000000 B
R*S 5 3 0.000000 B
R*S 5 4 0.000000 B

Least squares means

R Y LSMEAN Standard error Pr> |t|
1 996.66500 3.53292 <0.0001
2 996.52700 3.53292 <0.0001
3 999.15150 3.53292 <0.0001
4 1004.76350 3.53292 <0.0001
5 1003.38250 3.53292 <0.0001
S Y LSMEAN Standard error Pr> |t|
1 1001.69040 3.15994 <0.0001
2 997.71520 3.15994 <0.0001
3 1002.15880 3.15994 <0.0001
4 998.82720 3.15994 <0.0001

R S Y LSMEAN Standard error Pr> |t|
1 1 999.01600 7.06584 <0.0001
1 2 992.71400 7.06584 <0.0001
1 3 996.68600 7.06584 <0.0001
1 4 998.24400 7.06584 <0.0001
2 1 1000.80400 7.06584 <0.0001
2 2 998.25400 7.06584 <0.0001
2 3 995.20400 7.06584 <0.0001
2 4 991.84600 7.06584 <0.0001
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3 1 1004.08200 7.06584 <0.0001
3 2 995.80600 7.06584 <0.0001
3 3 999.19600 7.06584 <0.0001
3 4 997.52200 7.06584 <0.0001
4 1 1004.94200 7.06584 <0.0001
4 2 1003.03800 7.06584 <0.0001
4 3 1007.22200 7.06584 <0.0001
4 4 1003.85200 7.06584 <0.0001
5 1 999.60800 7.06584 <0.0001
5 2 998.76400 7.06584 <0.0001
5 3 1012.48600 7.06584 <0.0001
5 4 1002.67200 7.06584 <0.0001

Dependent variable: Y

Sum of
Source DF squares Mean square F Value Pr> F
Model 99 22,310.36546 225.35723
Error 0 0.00000
Corrected total 99 22,310.36546

R-Square Coeff Var Root MSE Y Mean

1.000000 1000.098

Source DF Type I SS Mean square F Value Pr> F

Row 4 147.43859 36.85965
R 4 1159.76445 289.94111
Row*R 16 3979.76229 248.73514
S 3 351.88257 117.29419
Column*S 12 3863.28371 321.94031
R*S 12 825.95875 68.82990
Column*R*S 48 11,982.27509 249.63073

Source DF Type III SS Mean square F Value Pr> F
Row 0 0.00000
R 4 1159.76445 289.94111
Row*R 0 0.00000
S 3 351.88257 117.29419
Column*S 12 3863.28371 321.94031
R*S 12 825.95875 68.82990
Column*R*S 48 11,982.27509 249.63073

Dependent variable: Y

Sum of
Source DF squares Mean square F Value Pr> F
Model 99 22,310.36546 225.35723
Error 0 0.00000
Corrected total 99 22,310.36546

R-Square Coeff var Root MSE Y Mean
1.000000 1000.098
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Source DF Type I SS Mean square F Value Pr> F
Row 4 147.43859 36.85965
R 4 1159.76445 289.94111
S 3 351.88257 117.29419
R*S 12 825.95875 68.82990
Row*R 16 3979.76229 248.73514
Column*S 12 3863.28371 321.94031
Column*R*S 48 11,982.27509 249.63073

Source DF Type III SS Mean square F Value Pr> F
Row 0 0.00000
R 4 1159.76445 289.94111
S 3 351.88257 117.29419
R*S 12 825.95875 68.82990
Row*R 0 0.00000
Column*S 12 3863.28371 321.94031
Column*R*S 48 11,982.27509 249.63073

APPENDIX 2.3. PROBLEMS 2.1 AND 2.2 DATA

For Problems 2.1 and 2.2, the data set for a split block designed experiment is

described below. The complete data set is on the enclosed disk. The combined

analyses for this example will be described later in Chapter 4. The data are presented

here to give two Latin square split block designed examples using P ¼ 1 and P ¼ 2

individually. P stands for previous crop, R denotes rootstock, and S denotes soil

treatment. Height of plant is in centimeters.

datadata example;
input row P column R S height;
datalines;
1 1 1 3 4 103
1 1 1 3 2 98
1 1 1 3 3 101
1 1 1 3 1 101
1 1 2 4 2 100

......

5 2 4 3 4 83
5 2 5 2 1 99
5 2 5 2 2 96
5 2 5 2 3 98
5 2 5 2 4 99
;
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C H A P T E R 3

Variations of the Split Plot

Experiment Design

3.1. INTRODUCTION

There are many variations of a split plot experiment design that arise as a result of

the many goals and practices of an experimenter. The experimenter often appears

not to think of the analysis that will be needed for a variation of the design, but only

of the need or the desire for conducting an experiment in a certain manner.

Difficulties may arise when comes the time to analyze the data. Some of the

variations of the standard split plot experiment design that have been encountered

during the course of consulting with experimenters are presented in the following

sections and other variations in the following chapters.

When the split plot experimental unit is split into c split split plot experimental

units (sspeus) for the c levels of a third factor C, a split split plot experiment design

results. This design is discussed in the Section 3.2. The split split split plot

experiment design results from splitting the sspeus into d split split split plot

experimental units (ssspeus) for the d levels of a fourth factor, say factor D. This

design is presented in Section 3.3. Situations arise in practice when the treatment

design is not in a factorial arrangement. Two such situations are discussed in Section

3.4. As further variations, the split plot treatments may be arranged in an incomplete

block experiment design within each whole plot treatment (Section 3.5) or in a row-

column experiment design within each whole plot treatment or within each complete

block (Section 3.6). In some situations the experimenter does not use randomization

of treatments or feels it is not necessary, resulting in a systematic arrangement of the

treatments in the experiment. The situation for a systematic arrangement of whole

plot treatments is considered in Section 3.7 and for a systematic arrangement of split

plot treatments in Section 3.8. In several instances, an experimenter has data from a
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standard experiment design like a randomized complete block design. Then, for each

experimental unit, the produce is split into the weights of various categories such as

grass, legume, and weed or into categories such as number, grade, and quality. This

results in a split plot design as discussed in Section 3.9. In Section 3.10,

consideration of observational error versus experimental error is given for a

particular split plot designed experiment. Measurements may be obtained for several

time periods such as cuttings of a hay crop and pickings of a vegetable crop. The

time dates may be selected in two ways. An illustration of a method for treating the

two ways of determining time dates is discussed in Section 3.11. Some situations

require an exploratory search for an appropriate model that describes the variation

present in the experiment. Such a situation is discussed in Section 3.12 with a

numerical example. The relationship between complete confounding in factorial

experiments and a split plot design is discussed in Section 3.13. Additional

comments are presented in Section 3.14.

3.2. SPLIT SPLIT PLOT EXPERIMENT DESIGN

A split split plot experiment design is a split plot design with the split plots divided

into c split split plot experimental units to accommodate the c split split plot

treatments of a third factor C. The treatment design is usually a three-factor factorial.

Given that there are a whole plot treatments of factor A designed as a randomized

complete block design in r replicates or complete blocks, b split plot treatments of

factor B randomly allotted to the b split plot experimental units, speus, within each

whole plot experimental unit, and the c split split plot treatments of factor C

randomly allotted to the split split plot experimental units, sspeus, within each speu,

there will be r randomizations for the factor A whole plot treatments, ra

randomizations for the factor B split plot treatments, and rab randomizations for

the factor C split split plot treatments. This means that there will be three different

error terms when the three factors are considered to be fixed effects. The

experimental units for the three factors are different and hence different error terms

are required for each factor. There will be more error terms when one or more of the

factors are considered to be random effects.

To describe the randomization procedure for a particular example of the

experiment design described above, an example is used for r ¼ 3 blocks, a ¼ 2

levels of factor A; b ¼ 3 levels of factor B, and c ¼ 6 levels of factor C. The four

steps in obtaining this plan are described below:

Step 1: Group similar experimental units into three blocks.                      

Block 1 Block 2 Block 3 
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Step 2: Factor A levels randomly assigned to each block. 
 

  

  
  
  
  

  

 

  

 

  

          A1                        A2                           A2                     A1                          A2                  A1 

Step 3: Factor B levels randomly assigned to each level of Factor A and block. 
 
B2 B1 B3 B1 B3 B2  B2 B3 B1 B1 B2 B3  B3 B1 B2 B2 B1 B3 

  
  
  
  
  

      

 

      

 

      

          A1                        A2                           A2                     A1                         A2                  A1 

Step 4: Factor C levels randomly assigned to each level of Factor B, Factor A, and block. 

B2 B1 B3 B1 B3 B2  B2 B3 B1 B1 B2 B3  B3 B1 B2 B2 B1 B3 

C5 C5 C2 C5 C2 C6  C2 C4 C4 C6 C4 C5  C5 C1 C4 C3 C5 C1 

C1 C2 C4 C2 C5 C4  C3 C3 C1 C2 C6 C1  C2 C4 C3 C4 C6 C2 

C6 C4 C6 C1 C1 C5  C5 C1 C2 C4 C1 C2  C6 C6 C6 C6 C2 C3 

C3 C3 C5 C3 C6 C1  C1 C5 C5 C3 C5 C6  C4 C3 C2 C5 C3 C5 

C4 C1 C3 C4 C4 C3  C6 C6 C3 C1 C2 C3  C1 C5 C1 C2 C1 C4 

C2 C6 C1 C6 C3 C2  C4 C2 C6 C5 C3 C4  C3 C2 C5 C1 C4 C6 

          A1                        A2                           A2                     A1                         A2                  A1 

A linear model for the split split plot experiment design described above is

Yhijk ¼ mþ rh þ ai þ dhi þ bj þ abij þ lhij þ gk þ agik þ bgjk þ abgijk þ ehijk ð3:1Þ

h ¼ 1, . . ., r; i ¼ 1, . . ., a; j ¼ 1, . . ., b, and k ¼ 1, . . ., c,

Yhijk is the response (measurement) for the hijkth observation,

m is a general mean effect,

rh is an effect of the hth replicate randomly distributed with mean zero and

variance s2
r,

ai is the effect of the ith treatment (level) of factor A,

dhi is a random error effect distributed with mean zero and common variance s2
d,

bj is the effect of the jth treatment (level) of factor B,

abij is the interaction effect of the ith level of A and the jth level of B,

lhij is a random error effect distributed with mean zero and common variance s2
l,

gk is the effect of the kth level of factor C,
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agik is an interaction effect for factors A and C,

bgjk is an interaction effect for factors B and C,

abgijk is an interaction effect for the three factors A, B, and C, and

ehijk is a random error effect distributed with mean zero and common variance s2
e .

The random effects rh, dhi, lhij, and ehijk are assumed to be mutually independent.

A partitioning of the degrees of freedom in an analysis of variance table for a

split-split-plot-designed experiment, as described above is as follows:

Source of variation Degrees of freedom

Total rabc

Correction for the mean 1

Replicate ¼ R r � 1

Whole plot treatment ¼ A a� 1

Error A ¼ R� A ðr � 1Þða� 1Þ
Split plot treatment ¼ B b� 1

A� B ða� 1Þðb� 1Þ
Error B ¼ R� B within A aðr � 1Þðb� 1Þ
Split split plot treatment ¼ C c� 1

A� C ða� 1Þðc� 1Þ
B� C ðb� 1Þðc� 1Þ
A� B� C ða� 1Þðb� 1Þðc� 1Þ
Error C ¼ R� C within A and B abðr � 1Þðc� 1Þ

Considering only the fixed effects case for all three factors A, B, and C, the

various standard errors of a difference between two means or effects is computed as

follows, where i 6¼ i0, j 6¼ j0, k 6¼ k0, Error A ¼ Ea, Error B ¼ Eb, and Error C ¼ Ec.

The estimated standard error of a difference for comparing two means of factor

A, �y:i:: � �y:i0::, is

SEð�y:i:: � �y:i0::Þ ¼
ffiffiffiffiffiffiffiffi
2Ea

bcr

r
ð3:2Þ

for comparing two means of factor B, �y::j:� �y::j0:, is

SEð�y:: j : � �y:: j0:Þ ¼
ffiffiffiffiffiffiffiffi
2Eb

acr

r
ð3:3Þ

for comparing two means of factor C, �y:::k � �y:::k0 , is

SEð�y:::k � �y:::k0 Þ ¼
ffiffiffiffiffiffiffiffi
2Ec

abr

r
ð3:4Þ
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for comparing two factor B means, �y:ij: � �y:ij0:, at the same level of factor A is

SEð�y:ij: � �y:ij0:Þ ¼
ffiffiffiffiffiffiffiffi
2Eb

cr

r
ð3:5Þ

for comparing two factor A means, �y:ij: � �y:i0j:, at the same level of factor B is

SEð�y:ij: � �y:i0j:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Ebðb� 1Þ þ Ea


bcr

r
ð3:6Þ

for comparing two factor C means at the same level of factor A, �y:i:k � �y:i:k0 , is

SEð�y:i:k � �y:i:k0 Þ ¼
ffiffiffiffiffiffiffiffi
2Ec

rb

r
ð3:7Þ

for comparing two factor A means at the same level of factor C, �y:i:k � �y:i0:k, is

SEð�y:i:k � �y:i0:kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Ecðc� 1Þ þ Ea


bcr

r
ð3:8Þ

for comparing two factor C means at the same level of factor B, �y:: jk��y: jk0 , is

SEð�y:: jk � �y:: jk0 Þ ¼
ffiffiffiffiffiffiffiffi
2Ec

ar

r
ð3:9Þ

for comparing two factor B means at the same level of factor C, �y:: jk��y:: j0k, is

SEð�y:: jk � �y:: j0kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Ecðc� 1Þ þ Eb


acr

r
ð3:10Þ

and for comparing two levels of factor A for the same level of factor B and for the

same level of factor C, �y:ijk ��y:i0jk, is

SEð�y:ijk � �y:i0jkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Eaðb� 1Þ þ Eb þ bðc� 1ÞEa


rbc

r
ð3:11Þ

The number of degrees of freedom for the standard errors of a difference between

two means or effects in equations (3.6), (3.8), (3.10), and (3.11) needs to be

approximated as none of the mean squares in an analysis of variance are of the

correct form for these standard errors.
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Variances of a difference between two means are given below where the various

means are �y:ij:,�y:i:k, and �y:: jk, for i 6¼ i0, j 6¼ j0, and k 6¼ k0.

Varð�y:ij: � �y:i0j0:Þ ¼
2ðcs2

d þ cs2
l þ s2

e Þ
rc

ð3:12Þ

Varð�y:ij: � �y:i0j:Þ ¼
2ðcs2

d þ cs2
l þ s2

e Þ
rc

ð3:13Þ

Varð�y:ij: � �y:ij0:Þ ¼
2ðcs2

l þ s2
e Þ

rc
ð3:14Þ

Varð�y:i:k � �y:i0:k0 Þ ¼
2ðbs2

d þ s2
l þ s2

e Þ
rb

ð3:15Þ

Varð�y:i:k � �y:i0:kÞ ¼
2ðbs2

d þ s2
l þ s2

e Þ
rb

ð3:16Þ

Varð�y:i:k � �y:i:k0 Þ ¼
2ðs2

e Þ
rb

ð3:17Þ

Varð�y:: jk � �y:: j0k0 Þ ¼
2ðs2

l þ s2
e Þ

ra
ð3:18Þ

Varð�y:: jk � �y:: j0kÞ ¼
2ðs2

l þ s2
e Þ

ra
ð3:19Þ

Varð�y:: jk � �y:: jk0 Þ ¼
2ðs2

e Þ
ra

ð3:20Þ

The expected values of the mean squares for the analysis of variance for factors A, B,

and C, as fixed effects, and as random effects, are presented below:

Source Fixed effect Random effect

R s2
e þ cs2

l þ bcs2
d þ abcs2

r s2
e þ cs2

l þ bcs2
d þ abcs2

r

A s2
e þ cs2

l þ bcs2
d þ f ðaÞ s2

e þ cs2
l þ bcs2

d þ rs2
abg þ rbs2

ag þ rcs2
ab þ rbcs2

a

Error A s2
e þ cs2

l þ bcs2
d s2

e þ cs2
l þ bcs2

d

B s2
e þ cs2

l þ f ðbÞ s2
e þ cs2

l þ rs2
abg þ ars2

bg þ rcs2
ab þ racs2

b

A� B s2
e þ cs2

l þ f ðabÞ s2
e þ cs2

l þ rs2
abg þ rcs2

ab

Error B s2
e þ cs2

l s2
e þ cs2

l

C s2
e þ f ðgÞ s2

e þ rs2
abg þ ars2

bg þ rbs2
ag þ rabs2

g

A� C s2
e þ f ðagÞ s2

e þ rs2
abg þ rbs2

ag

B� C s2
e þ f ðbgÞ s2

e þ rs2
abg þ ars2

bg

A� B� C s2
e þ f ðabgÞ s2

e þ rs2
abg

Error C s2
e s2

e

For fixed effect factors A, B, and C, there are three different error terms. Given the

usual assumptions about F-tests in an analysis of variance, Error A, Ea, is used to test

for factor A effects. Error B, Eb, is used to test for factor B effects and for the A� B
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interaction effects. The significance of factor C effects, the A� C, the B� C, and

the A� B� C effects are tested using the Error C mean square, Ec.

If the factor A effects are random and B and C are fixed effects, then the A� B

interaction mean square is used in the F-test for factor B effects. The variance

component s2
bg does not appear in the expected value for the factor B mean square as

the summation over levels of factor C, is zero, that is
P

k bgjk ¼ 0. The A� C

interaction mean square is used in the F-test for factor C effects. The A� B� C

interaction mean square is used in the F-test for testing for A� C and B� C

interaction effects. The Error B mean square is used to test for the A� B interaction

effects, as the variance component for the three factor interaction effects does not

appear in the expected value.

Other situations can arise for a mixed model situation. For example, factor B

could be a random effect and factors A and C fixed effects, factor C could be

random and other effects fixed, factors A and B could be random and C fixed,

factors A and C could be random and B fixed, or factors B and C could be random

and A fixed. Appropriate adjustments in testing will need to be made for these

situations.

3.3. SPLIT SPLIT SPLIT PLOT EXPERIMENT DESIGN

This design involves splitting (dividing) the split split plot experimental units into d

split split split plot experimental units, ssspeus. The resulting design is a split split

split plot experiment design. The d treatments of factor D are randomly allotted to

the split split split plot experimental units within each of the treatment combinations

for factors A, B, and C. Thus, there are rabc randomizations of the factor D

treatments. The treatment design considered here is a four-factor factorial treatment

design. A linear model for this design is as follows:

Yghijk ¼ mþ rg þ ah þ pgh þ bi þ abhi þ lghi þ gj þ aghj þ bgij þ abghij þ Zghij þ dk

þ adhk þ bdik þ abdhik þ gdjk þ agdhjk þ bgdijk þ abgdhijk þ eghijk ð3:21Þ

g ¼ 1, . . ., r; h ¼ 1, . . ., a; i ¼ 1, . . ., b; j ¼ 1, . . ., c, and k ¼ 1, . . ., d,

Yghijk is the response (measurement) for observation ghijk,

m is a general mean effect,

rg is the gth block effect randomly distributed with mean zero and variance s2
r,

ah is the effect of the hth level of factor A,

pgh is a random error effect distributed with mean zero and variance s2
p,

bi is the effect of the ith level of factor B,

abhi is an interaction effect of level h for factor A with level i for factor B,

lghi is a random error effect distributed with mean zero and variance s2
l,

gj is the effect of level j for factor C,

aghj is an interaction effect of level h for factor A and level j for factor C,

blij is an interaction effect of level i for factor B and level j for factor C,
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ablhij is an interaction effect among level h of factor A, level i of factor B, and

level j of factor C,

Zghij is a random error effect distributed with mean zero and variance s2
Z,

dk is the effect of level k for factor D,

adhk is an interaction effect of level h for factor A and level k for factor D,

bdik is an interaction effect of level i for factor B and level k for factor D,

abdhik is an interaction effect among level h for factor A, level i for factor B, and

level k for factor D,

gdjk is an interaction effect of level j for factor C and level k for factor D,

agdhjk is an interaction effect among level h of factor A, level j of factor C, and

level k of factor D,

bgdijk is an interaction effect among level i for factor B, level j for factor C, and

level k for factor D,

abgdhijk is an interaction effect among level h of factor A, level i of factor B, level j

of factor C, and level k for factor D,

eghijk is a random error effect distributed with mean zero and variance s2
e .

The random effects in the above model are assumed to be mutually independent.

A partitioning of the degrees of freedom in an analysis of variance table for this

design follows:

Source of variation Degrees of freedom

Total rabcd

Correction for mean 1

Replicate ¼ R r � 1

Whole plot treatment¼ Factor A a� 1

R� A ¼ Error A ða� 1Þðr � 1Þ
Split plot treatment¼ Factor B b� 1

A� B ða� 1Þðb� 1Þ
R� B within A¼ Error B aðr � 1Þðb� 1Þ
Split split plot treatment¼ Factor C c� 1

A� C ða� 1Þðc� 1Þ
B� C ðb� 1Þðc� 1Þ
A� B� C ða� 1Þðb� 1Þðc� 1Þ
R� C within A and B ¼ Error C abðr � 1Þðc� 1Þ
Split split split plot treatment¼ Factor D d � 1

A� D ða� 1Þðd � 1Þ
B� D ðb� 1Þðd � 1Þ
C � D ðc� 1Þðd � 1Þ
A� B� D ða� 1Þðb� 1Þðd � 1Þ
A� C � D ða� 1Þðc� 1Þðd � 1Þ
B� C � D ðb� 1Þðc� 1Þðd � 1Þ
A� B� C � D ða� 1Þðb� 1Þðc� 1Þðd � 1Þ
R� D within A;B; and C ¼ Error D abcðr � 1Þðd � 1Þ
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There are r randomizations for factor A, ra randomizations for factor B, rab

randomizations for factor C, and rabc randomizations for factor D. Thus, there are

four different error terms Error A, Error B, Error C, and Error D. This leads to

different standard errors for the many kinds of contrasts of means. Various estimates

of standard errors of a difference between means for the fixed effects case are given

below. The estimated standard error of a difference between two factor A means,

�y:h:::��y:h0:::, is given below; h 6¼ h0, i 6¼ i0, j 6¼ j0, and k 6¼ k0,

SEð�y:h::: � �y:h0:::Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error A

rbcd

r
ð3:22Þ

The standard error of a difference between two factor B means, �y::i::��y::i0::, is

SEð�y::i:: � �y::i0::Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error B

racd

r
ð3:23Þ

The standard error of a difference between two factor C means, �y:::j:��y:::j0:, is

SEð�y:::j: � �y:::j0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error C

rabd

r
ð3:24Þ

The standard error of a difference between two factor D means, �y::::k ��y::::k0 , is

SEð�y::::k � �y::::k0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rabc

r
ð3:25Þ

The standard error of a difference between two factor D means, �y:hijk��y:hijk0 , at the

same level of factors A, B, and C, is

SEð�y:hijk � �y:hijk0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

r

r
ð3:26Þ

The standard error of a difference between two factor D means, �y:hi:k ��y:hi:k0 , at the

same level of factors A and B is

SEð�y:hi:k � �y:hi:k0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rc

r
ð3:27Þ

The standard error of a difference between factor D means, �y:h:jk��y:h:jk0 , at the same

level of factors A and C is

SEð�y: h: jk � �y: h: jk0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rb

r
ð3:28Þ
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The standard error of a difference between two factor D means, �y::ijk ��y::ij0k0 , at the

same level of factors B and C is

SEð�y::ijk � �y::ijk0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

ra

r
ð3:29Þ

The standard error of a difference between two factor D means, �y:h::k ��y:h::k0 , at the

same level of factor A is

SEð�y:h::k � �y:h::k0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rbc

r
ð3:30Þ

The standard error of a difference between two factor D means, �y:::jk��y:::jk0 , at the

same level of factor C is

SEð�y:::jk � �y:::jk0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rab

r
ð3:31Þ

The standard error of a difference between two factor D means, �y::i:k ��y::i:k0 , at the

same level of factor B is

SEð�y::i:k � �y::i:k0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error D

rac

r
ð3:32Þ

The standard error of a difference between two factor C means, �y: hij :��y: hij0:, at the

same level of factors A and B is

SEð�y: hij: � �y: hij0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error C

rd

r
ð3:33Þ

The standard error of a difference between two factor C means, �y:h:j:��y:h:j0:, at the

same level of factor A is

SEð�y:h:j: � �y:h:j0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error C

rbd

r
ð3:34Þ

The standard error of a difference between two factor C means, �y::ij:��y::ij0:, at the

same level of factor B is

SEð�y::ij: � �y::ij0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error C

rad

r
ð3:35Þ
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The standard error of a difference between two factor B means, �y:hi::��y:hi0::, at the

same level of factor A is

SEð�y:hi:: � �y:hi0::Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Error B

rcd

r
ð3:36Þ

Some additional variances of the difference between two means are given below. For

comparing levels hi of factors A and B, the variances are as follows:

Varð�y:hi:: � �y:h0i0::Þ ¼
2ðcds2

p þ cds2
l þ ds2

Z þ s2
e Þ

rcd
ð3:37Þ

Varð�y:hi:: � �y:hi0::Þ ¼
2ðcds2

l þ ds2
Z þ s2

e Þ
rcd

ð3:38Þ

Varð�y:hi:: � �y:h0i::Þ ¼
2ðcds2

p þ cds2
l þ ds2

Z þ s2
e Þ

rcd
ð3:39Þ

To compare levels hj of factors A and C, the following variances pertain:

Varð�y: h : j : � �y: h0: j0:Þ ¼
2ðbds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rbd
ð3:40Þ

Varð�y:h:j: � �y:h:j0:Þ ¼
2ðds2

l þ ds2
Z þ s2

e Þ
rbd

ð3:41Þ

Varð�y:h:j: � �y:h0:j:Þ ¼
2ðbds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rbd
ð3:42Þ

For comparing levels hk of factors A and D, use the following variances:

Varð�y:h::k � �y:h0::k0 Þ ¼
2ðbcs2

p þ cs2
l þ s2

Z þ s2
e Þ

rbc
ð3:43Þ

Varð�y:h::k � �y:h::k0 Þ ¼
2ðcs2

l þ s2
Z þ s2

e Þ
rbc

ð3:44Þ

Varð�y:h::k � �y:h0::kÞ ¼
2ðbcs2

p þ cs2
l þ s2

Z þ s2
e Þ

rbc
ð3:45Þ

To compare levels ij of factors B and C, use the following variances:

Varð�y::ij: � �y::i0j0:Þ ¼
2ðds2

l þ ds2
Z þ s2

e Þ
rad

ð3:46Þ

Varð�y::ij: � �y::ij0:Þ ¼
2ðds2

Z þ s2
e Þ

rad
ð3:47Þ

Varð�y::ij: � �y::i0j:Þ ¼
2ðds2

l þ ds2
Z þ s2

e Þ
rad

ð3:48Þ
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The following variances are for comparing ik levels of factors B and D:

Varð�y::i:k � �y::i0:k0 Þ ¼
2ðcs2

l þ s2
Z þ s2

e Þ
rac

ð3:49Þ

Varð�y::i:k � �y::i:k0 Þ ¼
2s2

e

rac
ð3:50Þ

Varð�y::i:k � �y::i0:kÞ ¼
2ðcs2

l þ s2
Z þ s2

e Þ
rac

ð3:51Þ

For comparing levels jk of factors C and D, use the following variances:

Varð�y::: jk � �y::: j0k0 Þ ¼
2ðs2

Z þ s2
e Þ

rab
ð3:52Þ

Varð�y::: jk � �y::: jk0 Þ ¼
2s2

e

rab
ð3:53Þ

Varð�y::: jk � �y::: j0kÞ ¼
2ðs2

Z þ s2
e Þ

rab
ð3:54Þ

To compare levels hij of factors A, B, and C, use the following variances:

Varð�y:hij: � �y:h0i0j0:Þ ¼
2ðds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rd
ð3:55Þ

Varð�y:hij: � �y:hij0:Þ ¼
2ðds2

Z þ s2
e Þ

rd
ð3:56Þ

Varð�y:hij: � �y:hi0j0:Þ ¼
2ðds2

l þ ds2
Z þ s2

e Þ
rd

ð3:57Þ

Varð�y:hij: � �y:hi0j:Þ ¼
2ðds2

l þ ds2
Z þ s2

e Þ
rd

ð3:58Þ

Varð�y:hij: � �y:h0i0j:Þ ¼
2ðds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rd
ð3:59Þ

Varð�y:hij: � �y:h0ij0:Þ ¼
2ðds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rd
ð3:60Þ

Varð�y:hij: � �y:h0ij:Þ ¼
2ðds2

p þ ds2
l þ ds2

Z þ s2
e Þ

rd
ð3:61Þ

Variances similar to equations (3.55) to (3.61) may be developed for comparisons

of levels hik of factors A, B, and D; for comparing levels hjk of factors A, C,
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and D; for comparing levels ijk of factors B, C, and D; and for comparing levels

hijk of factors A, B, C, and D. Most of these variances will need to be constructed

using the solutions from the variance components. The solutions for variance

components may be obtained from an analysis of variance, ANOVA, or from

a mixed model procedure such as may be found in SAS PROC MIXED. The

latter procedure assumes normality assumptions whereas the ANOVA procedure

does not.

3.4. WHOLE PLOTS NOT IN A FACTORIAL ARRANGEMENT

Federer (1955) discusses an example when the treatments are not in a factorial

arrangement. The field design is a split split plot experiment design with three

replicates. Factor A has four rates of planting, factor B has three levels of fertilizer

with one level being no fertilizer, and factor C has two methods of application.

Obviously, there are not two levels of application for no fertilizer. In computing the

B� C interaction the zero level needs to be omitted. If not omitted, an interaction

could be indicated when in fact none exists. Instead of two degrees of freedom for

this interaction, there is only one, the other degree of freedom involves the

comparison of two experimental units with the same treatment and is relegated to the

Error C mean square, as are three of the six degrees of freedom from the A� B� C,

interaction, as shown in the analysis of variance table partitioning of the degrees of

freedom as follows:

Source of variation Degrees of freedom

Total 72 ¼ abcr

Correction for the mean 1

Replicate ¼ R 2 ¼ r � 1

Rate of planting ¼ A 3 ¼ a� 1

Error A ¼ R� A 6 ¼ ða� 1Þðr � 1Þ
Levels of fertilizer ¼ B 2 ¼ b� 1

A� B 6 ¼ ða� 1Þðb� 1Þ
Error B 16 ¼ aðb� 1Þðr � 1Þ
Methods of application ¼ C 1 ¼ c� 1

A� C ð3 ¼ ða� 1Þðc� 1Þ
B� C 1 ¼ ðb� 2Þðc� 1Þ
A� B� C 3 ¼ ða� 1Þðb� 2Þðc� 1Þ
Error C 1þ 3þ 24 ¼ 28 ¼ abðc� 1Þðr � 1Þ þ 1þ 3

Another situation that arises in split plot designs wherein the treatments are not in

a factorial arrangement is as follows. Suppose there are f families of genotypes

with l lines selected from each of the families then the families are the whole plot
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treatments and the lines are the split plot treatments within each family. The

whole plot treatments are replicated r times. A partitioning of the degrees of

freedom in an analysis of variance is as follows:

Source of variation Degrees of freedom

Total rfl

Correction for the mean 1

Replicate ¼ R r � 1

Families ¼ A f � 1

Error A ¼ A� R ðf � 1Þðr � 1Þ
Lines within families f ðl� 1Þ

Lines within family 1 ðl� 1Þ
Lines within family 2 ðl� 1Þ
Lines within family 3 ðl� 1Þ
. . .
Lines within family f ðl� 1Þ

Error B f ðl� 1Þðr � 1Þ

Note that the number of lines within a family need not be equal.

3.5. SPLIT PLOT TREATMENTS IN AN INCOMPLETE BLOCK
EXPERIMENT DESIGN WITHIN EACH WHOLE PLOT

For the second example discussed in Section 3.4, it may be desirable to use an

incomplete block experiment design for the l lines of each family. Suppose that the

incomplete block size is k and the incomplete block design is within each of the

whole plot treatments (families) rather than within each replicate (complete block).

There are b incomplete blocks of size k within a family and within each replicate,

that is, l ¼ bk. The partitioning of the degrees of freedom in an analysis of variance

for each whole plot treatment (family) is

Family 1 2 3 . . . f

Source of variation Degrees of freedom

Total rl rl rl rl

Correction 1 1 1 1

for mean

Replicate ¼ R r � 1 r � 1 r � 1 r � 1

Lines ¼ L l� 1 l� 1 l� 1 l� 1

Blocks within R rðb� 1Þ rðb� 1Þ rðb� 1Þ rðb� 1Þ
Intrablock error rl� rb� lþ 1 rl� rb� lþ 1 rl� rb� lþ 1 rl� rb� lþ 1
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A combined analysis of variance would be as follows:

Source of variation Degrees of freedom

Total rfl

Correction for the mean 1

Replicate ¼ R r � 1

Families ¼ A f � 1

Error A ¼ A� R ðf � 1Þðr � 1Þ
Lines within families f ðl� 1Þ
Blocks within replicates within families frðb� 1Þ
Intrablock error within families f ðrl� rb� lþ 1Þ

Here again the number of lines in a family could vary. It would be a good idea to

keep the incomplete block size k a constant or nearly so, in order to preserve the

homogeneity of the intrablock errors. Furthermore, the incomplete block experiment

design could be laid out within each complete block, but this destroys much of the

orthogonality obtained with the previous arrangement.

3.6. SPLIT PLOT TREATMENTS IN A ROW-COLUMN
ARRANGEMENT WITHIN EACH WHOLE PLOT TREATMENT
AND IN DIFFERENT WHOLE PLOT TREATMENTS

Any appropriate experiment design may be used for the whole plot treatments.

In some situations it may be desirable to design the split plot treatments in a

row-column arrangement within a whole plot treatment. For example, suppose

that there are five whole plots treatments, A1, A2, A3, A4, and A5, and four factor

B split plot treatments, 1, 2, 3, and 4, in r ¼ 3 complete blocks. A systematic

arrangement of a row-column design for the split plot treatments might be as

follows:

Replicate 1 Replicate 2 Replicate 3

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

3 3 3 3 3 4 4 4 4 4 1 1 1 1 1

4 4 4 4 4 1 1 1 1 1 2 2 2 2 2

Note that a four order (row) by three column Youden experiment design of columns

and orders within columns, is used for the split plot treatments within each whole

plot treatment. The whole plots are randomly allocated and then a separate

randomization is used for the orders of each of the five whole plot treatments. An
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analysis of variance table presenting the partitioning of the degrees of freedom for

each whole plot treatment would be:

Whole plot treatment

A1 A2 A3 A4 A5

Source of variation Degrees of freedom

Total 12 12 12 12 12

Correction for mean 1 1 1 1 1

Replicate ¼ R 2 2 2 2 2

Split plot treatments ¼ B 3 3 3 3 3

Orders (eliminating B) 2 2 2 2 2

Error 4 4 4 4 4

A combined analysis of variance table partitioning of the degrees of freedom

would be:

Source of variation Degrees of freedom

Total 60 ¼ rab

Correction for mean 1

Replicate ¼ R 2 ¼ r � 1

Whole plot treatments ¼ A 4 ¼ a� 1

A� R ¼ Error A 8 ¼ ða� 1Þðr � 1Þ
B 3 ¼ b� 1

A� B 12 ¼ ða� 1Þðb� 1Þ
Orders within whole plots 10 ¼ aðo� 1Þ
Residual¼ error within whole plots 20 ¼ aðb� 1Þðr � 1Þ � aðo� 1Þ

For the above arrangement, a balanced block arrangement of effects is maintained. If

a Youden design of four rows and five columns had been used within each of the

three replicates for factor B, an analysis of data from this experimental layout would

still be possible, but precision would decrease due to confounding of effects. The

balanced property for the Youden experiment design would still hold.

3.7. WHOLE PLOTS IN A SYSTEMATIC ARRANGEMENT

In some instances, the experimenter fails or is unable to randomize the whole plot

treatments (Federer, 1955). Randomization is required for valid F-tests of the whole

plot treatment effects. Hence in this case, there is no valid test of the whole plot

treatment effects. Since the error mean square in systematic arrangements tends to

be slightly over-estimated, the F-test will be on the ‘conservative’ side. The whole

plot treatment effects are partially confounded with the whole plot treatment by

replicate interaction effects.
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3.8. SPLIT PLOTS IN A SYSTEMATIC ARRANGEMENT

In some instances, the experimenter fails to randomize the split plot treatments. One

such example is described by Federer (1955), Table X-10. Nine fungicides, factor A,

were arranged in a randomized complete block design with three replications. Three

methods of applying the fungicides, factor B, were used. The experimenter stated

that a split plot experiment design was used. In every one of the 27 whole plot

experimental units, the same order of application was used. The net effect is that the

design resembles a split block design with one set of treatments, methods of

application, systematically arranged within each of the three replicates. It is not a

split block design as the same order of methods of application were applied to each

speu individually and not across all fungicides. A partitioning of the degrees of

freedom in an analysis of variance table for this experiment is

Source of variation Degrees of freedom

Total 81 ¼ rab

Correction for the mean 1

Replicate ¼ R 2 ¼ r � 1

Fungicides ¼ A 8 ¼ a� 1

A� R ¼ Error A 16 ¼ ða� 1Þðr � 1Þ
Methods of application ¼ B 2 ¼ b� 1

A� B 16 ¼ ða� 1Þðb� 1Þ
Residual 36 ¼ aðb� 1Þðr � 1Þ

There is no valid test for method of application effects since B and the A� B

interaction are partially confounded with Residual. The Residual mean square is

biased upward by the systematic arrangement of methods of application.

3.9. CHARACTERS OR RESPONSES AS SPLIT PLOT TREATMENTS

Another variation of split plot designs is the situation wherein the produce is divided

into different grades or when a mixture is divided into several parts. One example

encountered during the course of statistical consulting, involved a randomized

complete-block-designed experiment with factor A consisting of five fertilizer

treatments within each of the five replicates (blocks) of a randomized complete

block experiment design. The experiment was conducted to determine the treatment

effect on yield and quality of strawberries. The experiment was actually laid out in

five rows, the blocks, and five columns. The experimenter should have used a 5� 5

Latin square experiment design. Even though he did not, the design is a five row by

five column design because of the layout of the experiment. The berries in each of

the 25 whole plot experimental units were graded into four quality grades, factor B,

that were the split plot treatments. The response variables of interest were the weight

and the number of strawberries in each of the four quality grades. A partitioning of
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the degrees of freedom in an analysis of variance table follows:

Source of variation Degrees of freedom

Total 100 ¼ rab

Correction for the mean 1

Replicate¼ row ¼ R 4 ¼ r � 1

Column ¼ C 4 ¼ c� 1

Treatment ¼ A 4 ¼ a� 1

Error A 12 ¼ ða� 1Þðr � 1Þ � ðc� 1Þ
Quality grades ¼ B 3 ¼ b� 1

A� B 12 ¼ ða� 1Þðb� 1Þ
Error B 60 ¼ aðb� 1Þðr � 1Þ

The above is for a single picking at one calendar date. Actually, there were eight

calendar picking dates for this experiment. A combined partitioning of the degrees

of freedom in an analysis of variance table would be

Source of variation Degrees of freedom

Total 800 ¼ abdr

Correction for the mean 1

Dates 7 ¼ d � 1

Replicates¼ rows within dates 32 ¼ dðr � 1Þ
Rows 4 ¼ r � 1

Rows� dates 28 ¼ ðd � 1Þðr � 1Þ
Columns within dates 32 ¼ dðc� 1Þ

Columns 4 ¼ c� 1

Columns� dates 28 ¼ ðc� 1Þðd � 1Þ
Treatments within dates 32 ¼ dða� 1Þ

Treatments ¼ A 4 ¼ a� 1

Treatments� dates 28 ¼ ða� 1Þðd � 1Þ
Error A within dates 96 ¼ dða� 1Þðr � 1Þ
Quality grades within dates 24 ¼ dðb� 1Þ

Quality grades ¼ B 3 ¼ b� 1

B� dates 21 ¼ ðb� 1Þðd � 1Þ
A� B within dates 96 ¼ dða� 1Þðb� 1Þ

A� B 12 ¼ ða� 1Þðb� 1Þ
A� B� dates 84 ¼ ða� 1Þðb� 1Þðd � 1Þ

Error B within dates¼ Error B 480 ¼ adðb� 1Þðr � 1Þ

Since calendar dates are not replicated, there is no error to test for date main effects.

The rows stay the same for all eight dates and thus the rows within date sum of

squares may be partitioned into, that for rows and for rows by dates. The same

comment holds for columns. The important picking date information for this type of

experiment is the interaction of dates with factors A and B, on the number of

strawberries and the weight of strawberries. The interaction of quality grade and the

date of picking will be of interest. Other models for data of this type, involving the

repeated nature of picking dates may be of interest to an analyst.
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Another type of experiment that becomes a split plot design is when hay crops

(factor A), say ten, are designed as a randomized complete block experiment design

with six replicates, say then, the hay in each of the 60 whole plot experimental units

is divided into weeds, legume, and grass species (factor B) to form the split plot

treatments. A partitioning of the degrees of freedom in an analysis of variance table

for this situation is

Source of variation Degrees of freedom

Total 180 ¼ rab

Correction for the mean 1

Replicate ¼ R 5 ¼ r � 1

Hay mixture ¼ A 9 ¼ a� 1

Error A ¼ A� R 45 ¼ ða� 1Þðr � 1Þ
Species ¼ B 2 ¼ b� 1

A� B 18 ¼ ða� 1Þðb� 1Þ
Error B ¼ B� R within A 100 ¼ aðb� 1Þðr � 1Þ

The hay mixture effects and the A� B interaction effects would be the items of

interest rather than a test of species effect, the factor B effect.

3.10. OBSERVATIONAL OR EXPERIMENTAL ERROR?

A split plot design was used in a poultry breeding experiment to study the length of

fertility of sperm in the oviduct of two strains of chicken (Federer, 1955, Table X-11).

Two pens representing replicates were used. The whole plot treatments were eight

cocks, four from one strain and four from the other. The eight cocks were placed in both

pens. Each cock was mated with four hens, two hens from one strain and two hens from

the other. This resulted in 32 hens in each of the pens. A breakdown of the degrees of

freedom in an analysis of variance for this experiment is as follows:

Source of variation Degrees of freedom

Total 64 ¼ hnpc

Correction for the mean 1

Pens 1 ¼ p� 1

Cocks 7 ¼ c� 1

Between strains 1 ¼ s� 1

Within strain one 3 ¼ c=2� 1

Within strain two 3 ¼ c=2� 1

Error A ¼ pens� cocks 7 ¼ ðc� 1Þðp� 1Þ
Between strains for hens 1 ¼ h� 1

Strains for hens� strains for cocks 1 ¼ ðh� 1Þðs� 1Þ
Error B 14 ¼ sðh� 1Þðc� 1Þ
Between two strains, one hen on same cock 16 ¼ hpðn� 1Þðc=2Þ
Between two strains, two hens on same cock 16 ¼ hpðn� 1Þðc=2Þ
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A few data analysts may consider pooling the last two sums of squares with

32 degrees of freedom and use this as the error term instead of Error B. This would

be incorrect as the component of variance for hens� pens is not included in this

mean square which is observational or sampling error. This type of error occurs

frequently as analysts use sampling or observational error mean squares when the

experimental error mean square is required. The hens� pens variance component is

included in Error B, between strains for hens, and the interaction of strains

hens� strains cocks mean squares. Hence, Error B is the correct error mean square

to use in testing for the hen strain effect and for the hen strain� cock strain

interaction effect.

3.11. TIME AS A DISCRETE FACTOR RATHER THAN
AS A CONTINUOUS FACTOR

A number of investigations involve the recording of response variables over time.

Two ways of handling the time factor is first to compute trend, curvature of trend,

and so forth, with time as the independent continuous factor, and secondly to treat

time as discrete levels of a factor. The first method would allow calculation of

interactions both with trend and with curvature. The latter method allows for

interactions of time periods with other factors in the investigation. This latter use is

the consideration of this section. Investigations on hay crops involve several cuttings

over a season. Experiments involving vegetables often have several pickings or

harvestings. The decision related to the treatment of time levels in an experiment, is

determined by what determines the time periods. Many investigations set the time at

specific calendar dates such as June 15, July 15, August 15, and so forth, that is, the

time intervals are calendar clock times. For such investigations, there is no

replication of time periods or dates. Suppose a randomized complete-block-

designed experiment with b hay crops in r replicates is harvested on a calendar dates

over a season, a partitioning of the degrees of freedom in an analysis of variance

table is as follows:

Source of variation Degrees of freedom

Total arb

Correction for the mean 1

Time levels a� 1

Replicates or complete blocks r � 1

Time� replicate ða� 1Þðr � 1Þ
Hay crops b� 1

Time� hay crop ðb� 1Þða� 1Þ
Hay crop� replicate within time aðb� 1Þðr � 1Þ

Because the calendar time levels are un-replicated, there is no error term to test for

time period effects. Ordinarily such a test would not be desired. To test for effects of

80 variations of the split plot experiment design



hay crop and hay crop� time interaction, the hay crop� replicates within time

period mean square is the appropriate error term.

Now consider the same setup but let the time intervals be determined for each

experimental unit of the factors replicate and hay crop. For example, if a legume is

present in the hay crop, the time to harvest an experimental unit is determined by

when three-fourths, say, of the legume plants are in bloom. Thus, a biological clock

time is used to determine when to harvest a particular hay-crop-replicate

experimental unit. This has the effect of randomizing time levels, biological clock

times, within each of these experimental units. The effect of this procedure is

illustrated in the following partitioning of the degrees of freedom in an analysis of

variance:

Source of variation Degrees of freedom

Total rab

Correction for the mean 1

Replicate or complete block r � 1

Hay crop b� 1

Hay crop� replicate ðb� 1Þðr � 1Þ
Time a� 1

Hay crop� time ða� 1Þðb� 1Þ
Time� replicate within hay crop bðr � 1Þða� 1Þ

The hay crop� replicate mean square is used to test for hay crop effects. The

time� replicate within hay crop mean square is used to test for the presence of time

and hay crop� time interaction effects. For this arrangement, biological clock times

become the split plot treatments whereas calendar times are the whole plot

treatments in the previous arrangement. The distinction between calendar clock

times and biological clock times illustrates one of the many subtleties encountered in

designing split plot experiments.

To illustrate analyses when time is involved in a split split plot experiment

design, the following example was encountered during a statistical consulting

session. Three methods of cultivation for potato plants were arranged in a

randomized complete block experiment design with r ¼ 4 blocks. Methods of

cultivation were the whole plot treatments. Four varieties of potatoes represented the

split plot treatments. The split plot experimental unit consisted of three rows of

potato plants with two feet between plants in a row. The response variable was weed

count at three stages of growth of the plants and the counts were made in the spaces

between the plants. Stage 1 was when the potato plants were ‘‘touching’’. Stage 2

was when the plants began to vine, ‘‘vining’’. Stage 3 was when the plants were

‘‘mature’’. The stages were determined for the experiment, and not for each

individual speu. Thus, ‘‘clock time’’ or ‘‘calendar time’’ was used. ‘‘Biological

clock time’’ would have been used if the stage was determined for each speu. A

standard split plot design analysis could be performed for the weed counts at each of

the three stages. Also, this analysis could be performed on the differences in weed
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counts at two stages, say stage 2 – stage 1. A partitioning of the total degrees of

freedom for the experiment in an analysis of variance table is as follows:

Source of variation Degrees of freedom

Total 144 ¼ bcsv

Correction for the mean 1

Blocks ¼ B 3 ¼ b� 1

Stages ¼ S 2 ¼ s� 1

B� S ¼ Error S 4 ¼ ðb� 1Þðs� 1Þ
Cultivation method ¼ C 2 ¼ c� 1

C� S 4 ¼ ðc� 1Þðs� 1Þ
B� C within S ¼ Error C 18 ¼ sðb� 1Þðc� 1Þ
Varieties ¼ V 3 ¼ v� 1

V� S 6 ¼ ðs� 1Þðv� 1Þ
V� C 6 ¼ ðc� 1Þðv� 1Þ
V� C� S 12 ¼ ðc� 1Þðs� 1Þðv� 1Þ
V � B within S and C ¼ Error V 81 ¼ csðb� 1Þðv� 1Þ

Note that if ‘‘biological clock time’’ had been used, then stage would have been the

split split plot.

The above examples and the following example were obtained when a researcher

required statistical assistance for the analysis of data from an experiment conducted

as described. An experiment on pheasants was conducted according to the following

layout:

Treatment 1 Treatment 2 Treatment 3

Method Method Method

I II I II I II

Bird 1 Bird 5 Bird 9

Stage 1 x x Stage 1 x x Stage 1 x x

Stage 2 x x Stage 2 x x Stage 2 x x

Stage 3 x x Stage 3 x x Stage 3 x x

Stage 4 x x Stage 4 x x Stage 4 x x

Mature x x Mature x x Mature x x

Bird 2 Bird 6 Bird 10

Stage 1 x x Stage 1 x x Stage 1 x x

Stage 2 x x Stage 2 x x Stage 2 x x

Stage 3 x x Stage 3 x x Stage 3 x x

Stage 4 x x Stage 4 x x Stage 4 x x

Mature x x Mature x x Mature x x

Bird 3 Bird 7 Bird 11

Mature x x Mature x x Mature x x

Bird 4 Bird 8 Bird 12

Mature x x Mature x x Mature x x
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The symbol x denotes where an observation was obtained. The stage was determined

for each of the 12 birds, that is, ‘‘biological clock time’’ was used. Four birds were

randomly assigned to each treatment. Methods I and II were used in a random order

for each stage and each bird. To obtain a partitioning of the degrees of freedom, first

consider only the responses for birds 1, 2, 5, 6, 9, and 10, as the data for all five stages

were obtained for these birds. This results in the following partitioning of the total

degrees of freedom:

Source of variation Degrees of freedom

Total 60 ¼ bmst

Correction for the mean 1

Treatments ¼ T 2 ¼ t � 1

Birds within T ¼ Error T 3 ¼ tðb� 1Þ
Stages ¼ S 4 ¼ s� 1

S� T 8 ¼ ðs� 1Þðt � 1Þ
S� B within T¼ Error S 12 ¼ tðb� 1Þðs� 1Þ
Method¼M 1 ¼ m� 1

M� T 2 ¼ ðm� 1Þðt � 1Þ
M� S 4 ¼ ðm� 1Þðs� 1Þ
M� T� S 8 ¼ ðm� 1Þðt � 1Þðs� 1Þ
M� Birds within T and S¼ Error M 15 ¼ stðb� 1Þðm� 1Þ

The additional 12 degrees of freedom from Birds 3, 4, 7, 8, 11, and 12 go into an

analysis of variance table as follows:

Source of variation Degrees of freedom

Total 72

Correction for the mean 1

Treatments ¼ T 2

Birds within T¼ Error T 9

Stages¼ S 4

S� T 8

S� B within T¼ Error S 12

Method¼M 1

M� T 2

M� S 4

M� T� S 8

M� Birds within T and S¼ Error M 21

Birds within treatments now have nine instead of three degrees of freedom. The

other six degrees of freedom end up in Error M.

The following is a description of an experiment conducted on fish. The goal of

the experiment was to determine if fish could detect an odor, that is, do they have
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a sense of smell. The fish were from two stocks but the stocks were of different

ages and therefore stock and age effects were completely confounded. The fish of

one of the stocks used in this experiment were originally grown in an

environment where the odor was present. The fish of the other stock were

grown in water without the odor. A container with four un-partitioned chambers

in a two by two arrangement was used. Two water streams entered one side of the

container, flowing through the container, and out from the opposite side. One of

the water streams contained the odor and the other did not. Thus, the whole plot

treatments were in a two by two factorial arrangement of the two factors, odor

and stock-age, that is, t ¼ 4. The split plot treatments were the four chambers.

Twenty runs of the experiment were conducted. The whole plot treatments were

in a completely randomized design with an unequal number of fish per whole plot

treatment. Around seven to eleven fish were used in each run. The response

measured was the number of fish observed in each of the four chambers, c ¼ 4, at

any given time. Counts were made every minute for 250 minutes. The odor was

introduced into the water so the heaviest concentration of the odor was in that

chamber. The next chamber beyond and toward the outlet had considerably less

of the odor. The chamber, where the water without any odor was introduced, had

no odor and the next chamber beyond that, next to the outlet, had very little of the

odor that diffused into it.

One question that arises is why the chambers are considered to be split plot

treatments. Note that there were 20 ¼ cr runs. For each run, a different group of fish

and one combination of the factors, odor and stock-age, was used to obtain the

responses of the number of fish in any given chamber. In general, it is always

essential to understand the exact and precise way in which an experiment was

conducted in order to determine the appropriate statistical analysis.

The experimenter stated that she wanted to know the results at the end of the

250 observations taken at one minute intervals. However, there is additional

information in the data. The first item to be considered is what to do with the 80

sets of 250 minute observations. A plot of the number of fish in a chamber against

time for some of these 80 sets should indicate whether fish were randomly

distributing themselves in a chamber over time or whether a point of stability in

number of fish in a chamber was reached. It was thought that fish would

congregate in the chamber with the most odor if they had a sense of being able to

detect an odor. This means that the number of fish in a chamber should stabilize

at some point in time, that is, the response curve should reach an asymptote. If

interest centered on the nature of the response curve over time, then some

appropriate model should be selected and the parameters of this model estimated

in a statistical analysis.

Alternatively, the average number of fish in five 50 minutes time periods, say,

could be used. Then, the r ¼ 5 time periods could be used as split split plot

treatments. On the contrary, a statistical analysis could be made for an average

of the responses from minutes 201 to 250, or any other time interval. The

partitioning of the degrees of freedom for one such set of observations could be

as follows:
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The ‘‘runs within odor and stock-age’’ degrees of freedom and sum of squares may

be partitioned into runs within each of the four whole plot treatments. The ‘‘Error’’

degrees of freedom and sum of squares may be partitioned into chambers� runs

within each of the four whole plot treatments.

The question now arises as to what to do with the response ‘‘number of fish in a

chamber’’. Remember that the number of fish used in any run varied from seven to

eleven. One could use the proportion of number of fish in a chamber and perhaps an

arcsine or a square root transformation of the proportions. Alternatively, one could

use number of fish used in a run as a covariate. Neither of these procedures will

completely take care of the problem of unequal numbers of fish, but they will

alleviate it.

If five, say, time classes were used, a partitioning of the degrees of freedom in an

analysis of variance table would be as follows:

Source of variation Degrees of freedom

Total 400 ¼ cprt

Correction for mean 1

Whole plot treatments 3 ¼ t � 1

Odor 1 ¼ o� 1

Stock-age 1 ¼ s� 1

Odor� stock-age 1 ¼ ðo� 1Þðs� 1Þ
Runs within odor and stock-age 16 ¼ tðr � 1Þ
Chamber 3 ¼ c� 1

Chamber� odor 3 ¼ ðc� 1Þðo� 1Þ
Chamber� stock-age 3 ¼ ðc� 1Þðs� 1Þ
Chamber� odor� stock-age 3 ¼ ðc� 1Þðo� 1Þðs� 1Þ
Error chamber 48 ¼ tðc� 1Þðr � 1Þ
Time periods 4 ¼ p� 1

Time� odor 4 ¼ ðp� 1Þðo� 1Þ
(Continued)

Source of variation Degrees of freedom

Total 80 ¼ crt

Correction for mean 1

Whole plot treatments 3 ¼ t � 1

Odor 1 ¼ o� 1

Stock-age 1 ¼ s� 1

Odor� stock-age 1 ¼ ðo� 1Þðs� 1Þ
Runs within odor and stock-age 16 ¼ osðr � 1Þ
Chamber 3 ¼ c� 1

Chamber� odor 3 ¼ ðc� 1Þðo� 1Þ
Chamber� stock-age 3 ¼ ðc� 1Þðs� 1Þ
Chamber� odor� stock-age 3 ¼ ðc� 1Þðo� 1Þðs� 1Þ
Error 48 ¼ tðc� 1Þðr � 1Þ
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Time� stock-age 4 ¼ ðp� 1Þðs� 1Þ
Time� odor� stock-age 4 ¼ ðp� 1Þðo� 1Þðs� 1Þ
Time� chamber 12 ¼ ðc� 1Þðp� 1Þ
Time� chamber� odor 12 ¼ ðc� 1Þðo� 1Þðp� 1Þ
Time� chamber� stock-age 12 ¼ ðc� 1Þðs� 1Þðp� 1Þ
Time� chamber� odor� stock-age 12 ¼ ðc� 1Þðo� 1Þðs� 1Þðp� 1Þ
Error time 256 ¼ ctðr � 1Þðt � 1Þ

Instead of using five time periods, the nature of the response curve may indicate

another partitioning of the 250 minute responses. For example, it may be found that

for a given whole plot treatment, the number of fish in a chamber becomes stable at

t minute. Then two time classes could be used, the average number from one min up

to the point of the stability minute, t, and the average of the remaining responses

from t þ 1 minute up to the 250 minute mark. It is worth mentioning that the point of

stability may vary from whole plot to whole plot treatment.

3.12. INAPPROPRIATE MODEL?

A split plot designed experiment involving three varieties of oats, the whole plots v1,

v2, and v3, and four manurial treatments, the split plots n0, n1, n2, and n3, in six

replicates, r1 to r6, is described by Yates (1937). The plan of the presumed layout of

the experiment and the yields in 1/4 pounds from the experiment are given in

Table 3.1 and a standard analysis of variance is given in Table 3.2. It is stated that

this is the plan and it is assumed to be the layout in the field. The layout appears to be

an eighteen row by four column arrangement. The split plot sizes were 1/80 of an

acre and this size should be large enough to minimize competition between split plot

experimental units.

There are two things that are bothersome about the standard split plot model.

Note that the coefficient of variation for split plot units is 12.8% that is rather high

for oats experiments. Secondly, the variety by nitrogen mean square is much smaller

than the nitrogen� replicate within variety mean square. Using the greater mean

square rule as described by Robson (1953), we compute F ¼ 177:08
53:63

¼ 3:30. This

would indicate significance at about the 12% level. Perhaps other models would be

appropriate.

An alternate model could be to use logarithms of the yields as shown in Table 3.3.

The log transformation of the data reduced the coefficient of variation, but did little

to improve the discrepancy between the variety-nitrogen interaction and the error

mean square. The F-value was increased to 0.40 from 0.30. The square root

transformation did less than the log transformation in accounting for the items of

concern about this experiment.

(Continued)

Source of variation Degrees of freedom
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Table 3.2. Analysis of Variance for Standard Split Plot Experiment Design and

F-Tests for Data of Table 3.1.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total 72 830,322

Correction for mean 1 778,336.06

Replicate 5 15,875.28 3175.06

Variety 2 1786.36 893.18 1.49

Replicate� variety 10 6013.31 601.33

Nitrogen (manure) 3 20,020.50 6673.50 37.69

Variety� nitrogen 6 321.75 53.63 0.30

Rep.� nit. within var. 45 7968.75 177.08

Table 3.1. Yields in 1/4 Pounds for an Oat Variety, Whole Plot, and Manurial

(Nitrogen), Split Plot, and Trial Designed as a Split Plot Experiment Design in Six

Complete Blocks (Replicates).

r1 v3 n3 156 n2 118 n2 109 n3 99 v3 r4

n1 140 n0 105 n0 63 n1 70

v1 n0 111 n1 130 n0 80 n2 94 v2

n3 174 n2 157 n3 126 n1 82

v2 n0 117 n1 114 n1 90 n2 100 v1

n2 161 n3 141 n3 116 n0 62

r2 v3 n2 104 n0 70 n3 96 n0 60 v2 r5

n1 89 n3 117 n2 89 n1 102

v1 n3 122 n0 74 n2 112 n3 86 v1

n1 89 n2 81 n0 68 n1 64

v2 n1 103 n0 64 n2 132 n3 124 v3

n2 132 n3 133 n1 129 n0 89

r3 v2 n1 108 n2 126 n2 118 n0 53 v1 r6

n3 149 n0 70 n3 113 n1 74

v3 n3 144 n1 124 n3 104 n2 86 v2

n2 121 n0 96 n0 89 n1 82

v1 n0 61 n3 100 n0 97 n1 99 v3

n1 91 n2 97 n2 119 n3 121

Table 3.3. Analysis of Variance and F-Values for Log(Yield) Values of the Data
in Table 3.1.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total (corrected) 71 5.1458

Replicate 5 1.3318 0.2664

Variety 2 0.2274 0.1137 2.01

Variety� replicate 10 0.5661 0.0566

Nitrogen 3 2.1351 0.7117 38.11

Variety� nitrogen 6 0.0451 0.0075 0.40

Rep.� nit. within var. 45 0.8404 0.0187
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A model taking into account the 18-row by 4-column layout of the experiment

should do better than the above models in accounting for the spatial variation

present, Table 3.4. A possible model in SAS POC GLM format is

Yield¼ replicate variety replicate� variety nitrogen variety� nitrogen row column:

There will be a high degree of confounding of effects in this model and hence a

Type III analysis will be appropriate. For example, the contrast columns 1þ 2 versus

columns 3þ 4 will be completely confounded with replicate effect. This accounts

for the fact that the Type III analysis for columns indicates only 2 rather than

3 degrees of freedom for columns. The coefficient of variation is now 10.3%, but still

rather high. The F-value for the variety by nitrogen interaction has increased to 0.69

which is approaching the expected value of one, if the null hypothesis of zero

interaction is true. Using a number of other models, as suggested by Federer (2003),

did not improve on the above model. Note that the above model indicates a

significant difference among varieties at about the 7% level. F.10ð2; 4Þ ¼ 4:32 and

F.05ð2; 4Þ ¼ 6:94. It may be possible that the plan given by Yates (1937) is not the

actual layout of the experiment and this could be the reason why a more appropriate

model could not be found.

It may be that there is variation in the variety by replicate interaction that should

be taken into account. A linear replicate by linear variety effect was somewhat

helpful in reducing this mean square from 601.33 to 513.80, Table 3.5. A study of the

variety by replicate display in Figure 3.1 indicates great disparity of varietal yields

from replicate to replicate. This appears to be unsuspected since the variety whole

plots are 1/20 acre in size.

Table 3.4. Another Model for the Data of Table 3.1.

Source of Degrees of Type I Degrees of Type III

variation freedom Mean square freedom Mean square F-value

Replicate 5 3175.06 2 2971.26

Variety 2 893.18 2 1399.90 5.61

Replicate� variety 10 601.33 4 249.45

Nitrogen 3 6673.50 3 3992.62 34.84

Nitrogen� variety 6 53.63 6 79. 64 0.69

Row 9 100.10 9 105.00

Column 2 1585.75 2 1585.75 13.84

Residual 34 114.60 34 114.60

Table 3.5. Another Model for the Whole Plot Analysis for the Data of Table 3.1.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Replicate 5 15,875.28 3175.06

Variety 2 1786.36 893.18 1.74

Non-additivity 1 1389.15 1385.15 2.70

Residual 9 4624.16 513.80
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A study of the display in Figure 3.1 indicates that there are apparent outliers in

replicates 3, 5, and perhaps 6. At this point the analyst of these data should contact

the experimenter to determine what happened to make the variety yields fluctuate so

wildly from replicate to replicate. This is in contrast to the display in Figure 3.2,
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which is an almost perfect zero interaction graph. If a mean rank sum test is

conducted on these 12 means, a significant difference among varieties at the 2%

level is indicated (See, e.g., Federer, 2004). The intercepts are different and this,

rather than trends, may account for the apparent interaction indicated by the rank

sum test.

Although models that improve the analysis of these data have been found, the

original problems are not completely resolved. Discussions with the experimenter

are in order prior to drawing any conclusions about the effects, other than about the

nitrogen treatments, or for investigating other models. A SAS computer code and

output of the code are given in Appendix 3.1.

3.13. COMPLETE CONFOUNDING OF SOME EFFECTS
AND SPLIT PLOT EXPERIMENT DESIGNS

There is a direct relationship between complete confounding of effects from a

factorial treatment design and a split plot design. To illustrate, let the three-

factor interaction in a 23 factorial be completely confounded, that is, the levels of the

three-factor interaction ABC0 and ABC1 become whole plot treatments (Federer,

1955). A systematic plan is as follows:

Replicate 1 2 3 . . . r

ABC0 ABC1 ABC0 ABC1 ABC0 ABC1 ABC0 ABC1�
000 100 000 100 000 100 000 100

110 010 110 010 011 010 110 010

101 001 101 001 101 001 101 001

011 111 011 111 011 111 011 111

The split plot treatments are the factorial combinations making up the combinations

in ABC0 and ABC1. A key-out of the degrees of freedom in an analysis of variance is

as follows:

Source of variation Degrees of freedom

Total 8r

Correction for mean 1

Replicate r � 1

A� B� C 1

Replicate� A� B� C (Error A) r � 1

A 1

B 1

C 1

A� B 1

A� C 1

B� C 1

Error B 6ðr � 1Þ
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The completely confounded effects take on the role of whole plot treatments, and the

combinations making up the levels of these effects are the split plot treatments. Further

discussion of this type of design may be found in Federer (1955) and Singh (1950).

Bingham et al. (2004) have developed a systematic method to generate treatment

designs that have a fractional factorial design structure in split plot arrangements.

3.14. COMMENTS

Although many variations of a split plot designed experiment are described in this

chapter, there are many more that arise in the course of experimentation and in

statistical consulting. The number and variety presented herein should offer a guide

toward handling other situations. As in the examples given in previous sections, the

design is not always obvious but requires some thought. Spatially designed

experiments are easier to comprehend than those found in animal, human,

educational, ecological, and other experiments. In some of the statistics courses,

split plot designed experiments are treated as if everything fits into the Chapter 1

framework. Consideration of all types of split plot designed experiments indicate

that the philosophy and theoretical considerations are not trivial. Further discussion

of types of design variation that occurs in split plot designed experiments may be

found in Federer (1975, 1977).

For the first example in Section 3.9, computer software does not readily give the

row-column error mean square, Error A. One way to obtain this error mean square is

to use the following two SAS/GLM MODEL statements:

Response ¼ row column A B A�B;

Response ¼ column A A�column B A�B

The Error A term may be obtained as the difference between A*column and row

sums of squares or between the residual mean squares for the first model and the

second one.

In using SAS software for analyses involving confounding, it has been found that

the degrees of freedom and sums of squares may not be what is expected. Several

situations have been found where one expects one thing from the model used, but

SAS output does not agree with what is known to be true.

3.15. PROBLEMS

Problem 3.1. Obtain the residuals for the models described in Tables 3.2 to 3.5.

Obtain stem and leaf plots to determine outliers and/or patterns.

Problem 3.2. A seed germination experiment on a ¼ 49 strains of guayule with

b ¼ 4 seed treatments in r ¼ 6 replicates was conducted to determine the

germination percentage and the average number of days before plant emergence
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following seeding (Federer, 1946). The original experiment design was two

repetitions of a triple lattice incomplete block experiment design for the 49 guayule

strains with split plots of size four for the b ¼ 4 seed treatments. The incomplete

block design was for a ¼ v ¼ 49, r ¼ 6 with incomplete blocks of size k ¼ 7. The

original data were unavailable. Using the actual means and standard errors given by

Federer (1946), data for average number of days to emergence were simulated for

the experiment. The data for replicates 1 and 2 only are given in the accompanying

disk, as the data for all six replicates was considered to be too lengthy for a problem.

Data for all six replicates are available upon request. Such an experiment of this size

is not unusual in plant breeding investigations. Many are much larger. Obtain an

analysis of the data for both intrablock analysis and for recovery of interblock

information analysis. Also, write a code for ranking the strain means and the

strain*treatment means from earliest time of emergence to latest.

/*row.names Replicate Strain Treatment Block TimeDays*/

1 Rep1 S1 T1 Block5 6.01
2 Rep1 S1 T2 Block5 7.16
3 Rep1 S1 T3 Block5 8.65
4 Rep1 S1 T4 Block5 7.45
5 Rep1 S2 T1 Block2 5.91
6 Rep1 S2 T2 Block2 7.17
7 Rep1 S2 T3 Block2 7.7

. . ..

389 Rep2 S49 T1 Block4 6.36
390 Rep2 S49 T2 Block4 9.06
391 Rep2 S49 T3 Block4 6.49
392 Rep2 S49 T4 Block4 11.5 ;

Problem 3.3. A split split plot design was used to investigate the effect of the

following factors on planting method (main/whole plot factor, P: 3 levels), stage of

fertilizer application (split plot factor, S: 3 levels), and on the yield of soybean

varieties (split split plot factor, V: 7 levels). The design layout on the main plots was

a randomized complete block design (Block, R: 4 levels). The layout for this split

split plot design was done as follows:

Step #1: The experimental field was divided into four blocks. Each block (18 m by

14 m each) was divided into 3 plots to which the 3 levels of factor P were randomly

assigned. Thus P was the whole plot factor. The whole plot experimental unit per

level of P was 6 m by 14 m.

Step #2: Within each block, each whole plot experimental unit was further divided

into 3 plots to which the three levels of factor S were randomly assigned. Thus S was

the split plot factor. The split plot experimental unit per level of S was 2 m by 14 m.

Step #3: Finally, within each block, each split plot experimental unit for each level of

S was further divided into seven split split plots to which the seven levels of factor V
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were randomly assigned. Thus V was the split split plot factor. The split split plot

experimental unit was 2 m by 2 m.

The data for this problem given on the accompanying disk are as follows (four

significant figures are ample for statistical analyses, i.e., the two decimal digits may

be dropped.):

(i) Give a linear model for analyzing the data for this design, and show the

required statistical assumptions.

(ii) Conduct an analysis of variance for the data in this study using SAS PROC

GLM and give an interpretation of your results.

(iii) Estimate the variance of the mean for the ith level of factor P (planting

method), �y:i::.

(iv) Give a formula for the variance of the difference between two means

�y:ij:and �y:lm:, i.e. varð�y:ij: � �y:lm:Þ, where i and l are the levels of the whole

plot factor P and j and m are levels of the split plot factor S.

(v) Estimate the standard error for the difference between two variety means.

(vi) What is the standard error of the difference between two planting method

means?

(viii) What is the standard error of the difference between two stage of fertilizer

application means?

(ix) Find a 95% confidence interval for the difference between two means of

factor P.

(x) Estimate the variance of the mean for one level of factor S.

(xi) Estimate the standard error of the difference between two means

�y:ij:and �y:lm:, that is varð�y:ij: � �y:lm:Þ, where i and l are the levels of the

whole plot factor P and j and m are levels of the split plot factor S.

3.16. REFERENCES

Bingham, D. R., E. D. Schoen, and R. R. Sitter (2004). Designing fractional factorial split-plot

experiments with few whole-plot factors. Applied Statistics 53(2):325–339.

Federer, W. T. (1946). Variability of certain seed, seeding, and young-plant characters of

guayule. USDA, Technical Bulletin No. 919, August, Washington, D. C.

Federer (1955). Experimental Design: Theory and Application. Macmillan, New York

(Reprinted by Oxford and IBH Publishing Company, New Delhi, 1962 and 1974),

Chapter X, pp. 271–306.

Federer, W. T. (1975). The misunderstood split plot. In Applied Statistics (Proceedings

of a Conference at Dalhousie University, Halifax, Nova Scotia, May 2–4, 1974; Editor:

R. P. Gupta), North-Holland Publishing Company, Amsterdam, Oxford, pp. 145–153.

Federer, W. T. (1977). Sampling, model, and blocking considerations for split plot and split

block designs. Biometrische Zeitschrift (Biometrical Journal) 19:181–200.

Federer, W. T. (2003). Exploratory model selection for spatially designed experiments–Some

examples. Journal of Data Science 1(3):231–248.

references 93



Federer, W. T. (2004). Non-parametric procedures for comparing a set of response curves.

BU-1655-M in the Technical Report Series of the Department of Biological Statistics and

Computational Biology, Cornell University, Ithaca, NY 14853, July.

Robson, D. S. (1953). A common misconception concerning the ‘‘greater mean square rule’’.

BU-38-M in the Technical Report Series of the Biometrics Unit (now the Department of

Biological Statistics and Computational Biology), Cornell University, Ithaca, New York

14853.

Singh, M. (1950). Confounding in split-plot designs with restricted randomization of sub-plot

treatments. Empire Journal of Agriculture 18:190–202.

Yates, F. (1937). The design and analysis of factorial experiments. Technical Communication

No. 35, Imperial Bureau of Soil Science, Harpenden, England.

APPENDIX 3.1. TABLE 3.1 CODE AND DATA

The data for Table 3.1 are given on the accompanying disk.

DataData spexvar3;spexvar3;
Input row col rep var nit set reps yield;
Datalines;

1 1 1 3 3 1 1 156
1 2 1 3 2 1 1 118
1 3 4 3 2 2 1 109

. . ..

18 1 3 1 1 1 3 91
18 2 3 1 2 1 3 97
18 3 6 3 2 2 3 119
18 4 6 3 3 2 3 121
;

ProcProc GLM dataGLM data¼ spexvar3;spexvar3;

Class rep var nit;
Model yield¼ rep var rep*var nit var*nit;
lsmeans var nit var*nit;

run;run;

Proc GLM data¼ spexvar3;
Class rep var nit row col;
Model yield¼ rep var rep*var nit var*nit row col;
run;run;

An abbreviated form of the output from running the above code and data set is

presented below:
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The GLM Procedure

Dependent Variable: yield

Sum of

Source DF Squares Mean Square F Value Pr > F
Model 26 44017.19444 1692.96902 9.56 <.0001
Error 45 7968.75000 177.08333
Corrected Total 71 51985.94444

R-Square Coeff Var Root MSE yield Mean
0.846713 12.79887 13.30727 103.9722

Source DF Type I SS Mean Square F Value Pr > F
rep 5 15875.27778 3175.05556 17.93 <.0001
var 2 1786.36111 893.18056 5.04 0.0106
rep*var 10 6013.30556 601.33056 3.40 0.0023
nit 3 20020.50000 6673.50000 37.69 <.0001
var*nit 6 321.75000 53.62500 0.30 0.9322

Least Squares Means
var yield LSMEAN

1 97.625000
2 104.500000
3 109.791667

nit yield LSMEAN
1 98.888889
2 114.222222
3 123.388889
4 79.388889

var nit yield LSMEAN

1 1 89.666667
1 2 110.833333
1 3 118.500000
1 4 71.500000
2 1 98.500000
2 2 114.666667
2 3 124.833333
2 4 80.000000
3 1 108.500000
3 2 117.166667
3 3 126.833333
3 4 86.666667

Dependent Variable: yield
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Sum of
Source DF Squares Mean Square F Value Pr > F
Model 37 48089.54984 1299.71756 11.34 <.0001
Error 34 3896.39461 114.59984
Corrected Total 71 51985.94444

R-Square Coeff Var Root MSE yield Mean
0.925049 10.29615 10.70513 103.9722

Source DF Type I SS Mean Square F Value Pr > F
rep 5 15875.27778 3175.05556 27.71 <.0001
var 2 1786.36111 893.18056 7.79 0.0016
rep*var 10 6013.30556 601.33056 5.25 0.0001
nit 3 20020.50000 6673.50000 58.23 <.0001
var*nit 6 321.75000 53.62500 0.47 0.8271
row 9 900.85852 100.09539 0.87 0.5576
col 2 3171.49687 1585.74844 13.84 <.0001

Source DF Type III SS Mean Square F Value Pr > F
rep 2 5942.52778 2971.26389 25.93 <.0001
var 2 2799.80000 1399.90000 12.22 0.0001
rep*var 4 997.78333 249.44583 2.18 0.0926
nit 3 11977.85911 3992.61970 34.84 <.0001
var*nit 6 477.82134 79.63689 0.69 0.6553
row 9 945.00685 105.00076 0.92 0.5230
col 2 3171.49687 1585.74844 13.84 <.0001
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C H A P T E R 4

Variations of the Split Block

Experiment Design

4.1. INTRODUCTION

There are many ways to vary a split block experiment design, just as there are

for the split plot experiment design. These variations arise owing to the need

or desire of the experimenter to conduct an experiment in a certain manner. For

the statistical consultant, it is always wise to have the experimenter describe

in detail how the experiment was laid out and conducted. A clear understanding

of this allows one to present an appropriate statistical analysis for the data from

the experiment. It is not sufficient to ask the experimenter to name the design that

was thought to have been used. The conduct and layout of the experiment are

important factors in determining the actual design of the experiment. Several

variations of the split block experiment design are described in the following

sections.

In Section 4.2, a statistical analysis is presented for a split-block-designed

experiment with one set of treatments, factor A, in a randomized complete block

design and the second set of treatments, factor B, in a row-column design. In

Section 4.3, both of the factors are designed as row-column experiment designs.

In Section 4.4, a split block split-block-designed experiment for three factors

is described. Factor A with five treatments is designed as a 5� 5 Latin square

design. A second set of four treatments, factor B, uses the columns as the blocks

of a randomized complete block design. The third set of treatments, factor C, is in

a randomized complete block design with the rows as blocks for this design.

A numerical example is used to describe the statistical analysis of the design and

the SAS code for the analysis provided.

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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The analysis of a split block design with one set of treatments in an incomp-

lete block design and the second set in a randomized complete block design is

presented in Section 4.5. In Section 4.6, a statistical analysis is described for

the arrangement where one set of treatments is designed in a randomized

complete block design and the second set of treatments is laid out over all

treatments of factor A and over all blocks. That is, there is no replication on

the second set of treatments and only one arrangement or randomization. The

concept of confounding interactions of a factorial treatment arrangement as

the whole plot treatments is discussed in Section 4.7. In Section 4.8, designs

with one or more controls common to both factors are discussed. The examples

and illustrations described herein arose during the course of offering statistical

advice to an experimenter. Finally, some general comments are presented in

Section 4.9.

4.2. ONE SET OF TREATMENTS IN A RANDOMIZED
COMPLETE BLOCK AND THE OTHER IN A LATIN
SQUARE EXPERIMENT DESIGN

Consider the split block experiment design where one set of treatment, factor A,

is designed as a Latin square and a second set of treatments, factor B, is designed

as a randomized complete block with either the rows or the columns being the

blocks (See Example 2.2). An experiment designed in this fashion had five

rootstocks, R1, R2, R3, R4, and R5, for apple trees arranged in a k � k ¼ 5� 5

Latin square design and four soil treatments, 1, 2, 3, and 4, split blocked over

the five rootstocks and over the five rows, and arranged in a randomized complete

block design with the columns of the Latin square being the blocks. The layout

of the experiment is shown below:

The soil treatments were in a 2� 2 factorial arrangement with no fumigation and

fumigation and no composting and composting as the two factors. One response

measured was height of apple trees grafted onto the five rootstocks. A partitioning of

Column

1 2 3 4 5

Soil treatment 4 2 3 1 2 3 1 4 4 3 1 2 4 2 1 3 1 2 3 4

Row 1 R3 R4 R5 R2 R1

Row 2 R2 R3 R1 R4 R5

Row 3 R4 R5 R2 R1 R3

Row 4 R1 R2 R3 R5 R4

Row 5 R5 R1 R4 R3 R2

98 variations of the split block experiment design



the degrees of freedom for the example, and in general for the above designed

experiment is presented below:

For the above analysis of variance table, soil treatments and rootstocks are consi-

dered to be fixed effects. SAS PROC GLM MODEL statement for the above

ANOVA would be:

Response ¼ row column rootstock soil soil � column rootstock � soil

column � rootstock � soil

The ‘‘Error for rootstocks’’ is listed as the ‘‘Error’’ in the computer output. The

term ‘‘Error for rootstocks� soil treatments’’ is obtained from ‘‘column �
rootstock � soil’’ output. This is the error term for the interaction rootstock� soil

interaction. The MODEL statement when composting C and fumigation F are

added, is:

Response ¼ row column rootstock C F C � F soil � column rootstock � C

rootstock � F rootstock � C � F column � rootstock � soil

Note that either the ANOVA or the MODEL statement defines the para-

meters in a linear model used for obtaining an analysis of variance and the

means.

Degrees of Degrees of

Source of variation freedom ex. freedom general

Total 100 sk2

Correction for the mean 1 1

Rows 4 k � 1

Columns 4 k � 1

Rootstocks 4 k � 1

Error for rootstocks 12 ðk � 1Þðk � 2Þ
Soil treatments 3 s� 1

Composting 1 c� 1

Fumigation 1 f � 1

Composting� fumigation 1 ðc� 1Þðf � 1Þ
Error for soil treatments¼
columns� soil treatments 12 ðk � 1Þðs� 1Þ
Rootstocks� soil treatments 12 ðk � 1Þðs� 1Þ

Rootstocks� composting 4 ðc� 1Þðk � 1Þ
Rootstocks� fumigation 4 ð f � 1Þðk � 1Þ
Rootstocks� composting� fumigation 4 ðc� 1Þðk � 1Þð f � 1Þ

Error for rootstocks� soil treatments 48 ðk � 1Þðk � 1Þðs� 1Þ
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4.3. BOTH SETS OF TREATMENTS IN SPLIT BLOCK
ARRANGEMENTS

If the soil treatments had been designed to consider orders in the columns in

orderings such as 4231, 2314, 1423, 3142, and 1234 to form a four order (row)

and five column Youden design, the analysis of variance table would take the

form:

Source of variation Degrees of freedom

Total 100 ¼ sk2

Correction for the mean 1

Rows 4 ¼ k � 1

Columns 4 ¼ k � 1

Rootstocks 4 ¼ k � 1

Error for rootstocks 12 ¼ ðk � 1Þðk � 2Þ
Soil treatments 3 ¼ s� 1

Composting 1 ¼ c� 1

Fumigation 1 ¼ f � 1

Composting� fumigation 1 ¼ ðc� 1Þðf � 1Þ
Orders 3 ¼ o� 1

Error for soil treatments 9 ¼ ðk � 1Þðs� 1Þ � ðo� 1Þ
Rootstocks� soil treatments 12 ¼ ðs� 2Þðk � 1Þ

Rootstocks� composting 4 ¼ ðk � 1Þðc� 1Þ
Rootstocks� fumigation 4 ¼ ðk � 1Þðf � 1Þ
Rootstocks� composting� fumigation 4 ¼ ðk � 1Þðc� 1Þðf � 1Þ

Error for rootstocks� soil treatments 48 ¼ ðs� 1Þðk � 1Þ2

Note that a five column by four order experiment design is formed by adding any

row of the 4� 4 Latin square to the Latin square. This forms what is known as a

Youden design, where the orders and soil treatments are in a balanced block

arrangement.

4.4. SPLIT BLOCK SPLIT BLOCK OR STRIP STRIP BLOCK
EXPERIMENT DESIGN

The experiment discussed in Section 4.2 was not the one used but had an

additional set of treatments split blocked in the rows of the Latin square. One

could call such an arrangement a split block split block experiment design or

a strip strip block experiment design. The third set of treatments involved

whether there had been an old apple tree occupying the area initially, or there

was grass in the area. The arrangement of grass and old tree was systematic

in every row of the Latin square; that is, the systematic arrangement was

necessitated by the area available for the experiment. The plan of the experiment

was:
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A linear model for this layout of an experiment is

Yfghij ¼mþ rf þ pg þ ah þ Zfgh þ bi þ bpgi þ abhi þ oghi þ gj þ grfj þ gpgj

þ aghj þ lfhj þ bgij þ jfij þ abghij þ efghij;

where m is a general mean effect,

rf is the fth random row effect distributed with mean zero and variance s2
r,

pg is the gth random column effect identically and independently distributed

with mean zero and variance s2
p,

ah is the effect of the hth rootstalk,

Zfgh is a random error effect identically and independently distributed (IID) with

mean zero and variance s2
r ,

bi is the effect of the ith soil treatment,

bpgi is a random error effect IID with mean zero and variance s2
s ,

abhi is an interaction effect of the hth rootstalk and the ith soil treatment,

oghi is a random error effect IID with mean zero and variance s2
$,

gj is the effect of the jth previous treatment,

grfj is a random error effect IID with mean zero and variance s2
gr,

gpgj is a random error effect of the jth previous treatment with the gth column

IID with mean zero and variance s2
gp,

aghj is an interaction effect of rootstalk h with previous treatment j,

lfhj is a random error effect IID with mean zero and variance s2
l,

bgij is an interaction effect of soil treatment i and previous treatment j,

jfij is a random error effect IID with mean zero and variance s2
j,

Column

1 2 3 4 5

Soil treatment 4 2 3 1 2 3 1 4 4 3 1 2 4 2 1 3 1 2 3 4

Row 1 Grass R3 R4 R5 R2 R1

Old tree

Row 2 Grass R2 R3 R1 R4 R5

Old tree

Row 3 Grass R4 R5 R2 R1 R3

Old tree

Row 4 Grass R1 R2 R3 R5 R4

Old tree

Row 5 Grass R5 R1 R4 R3 R2

Old tree
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abghij is a three factor interaction effect of the hth rootstalk with the ith soil

treatment and jth previous treatment,

efghij is a random error effect IID with mean zero and variance s2
e .

The random effect terms are assumed to be mutually independent.

Given the above linear model, a partitioning of the degrees of freedom in an

analysis of variance table is shown below:

Source of variation Degrees of freedom

Total 200 ¼ spk2

Correction for the mean 1

Rows 4 ¼ k � 1

Columns 4 ¼ k � 1

Rootstocks¼ R 4 ¼ k � 1

Error for rootstocks 12 ¼ ðk � 1Þðk � 2Þ
Soil treatments ¼ S 3 ¼ s� 1

Composting 1 ¼ c� 1

Fumigation 1 ¼ f � 1

Composting� fumigation 1 ¼ ðc� 1Þðf � 1Þ
Error for soil treatments¼ columns� soil treatments 12 ¼ ðk � 1Þðs� 1Þ
Rootstocks� soil treatments 12 ¼ ðk � 1Þðs� 1Þ

Rootstocks� composting 4 ¼ ðk � 1Þðc� 1Þ
Rootstocks� fumigation 4 ¼ ðk � 1Þðf � 1Þ
Rootstocks� composting� fumigation 4 ¼ ðk � 1Þðc� 1Þðf � 1Þ

Error for rootstocks� soil treatments 48 ¼ ðs� 1Þðk � 1Þ2
Grass versus old tree ¼ P 1 ¼ p� 1

Row� P¼ error for P 4 ¼ ðk � 1Þðp� 1Þ
Columns� P 4 ¼ ðk � 1Þðp� 1Þ
R� P 4 ¼ ðk � 1Þðp� 1Þ
Error R� P 12 ¼ ðk � 1Þðk � 2Þðp� 1Þ
S� P 3 ¼ ðs� 1Þðp� 1Þ
Error S� P 12 ¼ ðs� 1Þðk � 1Þðp� 1Þ
S� R� P 12 ¼ ðs� 1Þðk � 1Þðp� 1Þ
Error for S� R� P 48 ¼ ðs� 1Þðp� 1Þðk � 1Þ2

When presented with the above key-out of the degrees of freedom, the experimenter

wondered about the rationale for the above analysis. In order to comprehend a

complete breakdown of the degrees of freedom in an analysis of variance, it is useful

to break down the analysis for separate parts of the experiment. One way to do this is

to consider the responses from the grass alone part of the experiment (See

Chapter 2). This plus the other half of the experiment on the responses from the old

tree part of the experiment are given below. For grass alone, the experiment is

designed as a split block with one set of treatment in a randomized complete block

design and the other set in a Latin square design. The same design holds for the old

tree part of the experiment. These partitionings of the degrees of freedom for an

analysis of variance were explained to the analyst as follows:
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Source of variation Degrees of freedom

Grass Old tree

Total 100 100

Correction for the mean 1 1

Rows 4 4

Columns 4 4

Rootstocks 4 4

Error for rootstocks 12 12

Soil treatments 3 3

Error for soil treatments¼ columns� soil treatments 12 12

Rootstocks� soil treatments 12 12

Error for rootstocks� soil treatments 48 48

The Error for rootstock� soil treatment may be computed as the rootstock� soil

treatment� column interaction. When the above analyses are understood, one is in a

position to prepare a combined analysis. Let the symbol P denote the previous land

use factor-grass and old tree. From combining the above analyses, the partitioning of

degrees of freedom for the combined experiment is outlined below:

Source of variation Degrees of freedom

Total 200

Correction for the mean within P 2

Correction for mean 1

P 1

Rows within P 8

Columns within P 8

Columns 4

Columns� P 4

Rootstocks within P 8

Rootstocks¼ R 4

R� P 4

Error R within P 24

Error for rootstocks 12

Error for R� P 12

Soil treatments within P 6

Soil treatments¼ S 3

S� P 3

Error for S within P 24

Error for soil treatments 12

Error for S� P 12

R� S within P 24

R� S 12

R� S� P 12

Error for R� S within P 96

Error for R� S¼ R� S� column 48

Error for R� S� P¼ R� S� P� col. 48
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There are six different error terms in the above analysis of variance table. There

would have been seven if grass and old tree had been randomized. There were

three different error terms each, for grass and old tree responses alone. Even

though this was a logical way to lay out the experiment, such arrangements

add to the complexity of statistical analysis and decisions on appropriate error

terms, for the various effects. The benefit is the additional amount of information

that is available.

Example 4.1—A numerical example using artificial data for the above described

experiment is given in Table 4.1 for grass data only (see appendix 4.1). The symbol

P stands for previous treatment, the symbol R for rootstock, and the symbol S for soil

treatment.

For the data from both the grass and old tree parts of the experiment, the SAS

code for obtaining an analysis of variance and the treatment means is given in

Appendix 4.1. The analysis of variance tables for the two SAS PROC GLM runs are

given in Tables 4.2 and 4.3.

The error sum of squares for rootstocks, Error R, is obtained by subtracting

the row sum of squares, 309.430, with 4 degrees of freedom, from the column*R

sum of squares, 467.920, with 16 degrees of freedom, and is equal to 158.490 with

12 degrees of freedom. Thus, the Error R mean square is equal to 158.490 / 12¼
13.207.

Table 4.1. Data for a Split Block Split Block Designed Experiment with Five

Rootstocks, R, in a 5� 5 Latin Square Design, Four Soil Treatments, S, in a

Randomized Complete Block Design with Columns as Replicates, and Two

Previous Managements, P is for grass data only.

S S S S S

4 2 3 1 2 3 1 4 3 1 2 4 2 1 3 4 1 2 3 4 P

R3 R4 R5 R2 R1

13 8 11 11 10 8 10 9 9 9 10 7 9 12 9 10 12 17 8 9 Grass

R2 R3 R1 R4 R5

9 7 8 5 9 8 6 3 7 9 5 8 7 5 9 4 8 3 8 6 Grass

R4 R5 R2 R1 R3

9 8 8 6 8 9 2 8 8 5 8 5 7 7 6 8 8 5 8 8 Grass

R1 R2 R3 R5 R4

0 1 4 0 0 0 0 0 9 8 7 9 5 5 5 6 9 5 8 8 Grass

R5 R1 R4 R3 R2

8 8 9 7 8 7 8 9 8 7 8 8 8 5 7 9 8 8 5 9 Grass
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To make some of the desired F-tests in an analysis of variance, the following

statements may be inserted after the SAS code MODEL statement that is presented

in Appendix 4.1:

Test H ¼ S�R�P E ¼ S�R�P�column;

Test H ¼ S�P E ¼ S�P�column;

Test H ¼ R�P E ¼ row�R�P;

Test H ¼ S�R E ¼ R�S�column;

Test H ¼ S E ¼ column�S;

The F-test for rootstock effects, F ¼ 7:758 / 13.207, will have to be made manually.

Table 4.2. Type I (Also Type III) ANOVA and Associated F-Values for the First Model.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total, corrected 199 1710.155

P 1 28.125 28.125 1.23

Column 4 34.330 8.582

Column� P 4 91.450 22.862

R 4 31.030 7.758 0.59

P� R 4 48.950 12.238 0.56

Column� R 16 467.920 29.245

Column� P� R 16 350.100 21.881

S 3 3.775 1.258 0.20

P� S 3 3.295 1.098 0.28

Column� S 12 74.550 6.212

Column� P� S 12 47.030 3.919

R� S 12 36.650 3.054 0.74

Column� R� S 48 197.400 4.112

P� R� S 12 26.330 2.194 0.39

Column� P� R� S 48 269.220 5.609

Table 4.3. Type I and Type III ANOVA and Associated F-Values for the Second Model.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total, corrected 199 1710.155

Row 4 309.430 77.358

R 4 31.030 7.758

P 1 28.125 28.125 0.86

S 3 3.775 1.258

R� S 12 36.650 3.054 0.23

Row� P 4 130.250 32.562

P� R 4 48.950 12.238 0.78

Row� P� R 32 504.120 15.754

P� S 3 3.295 1.098 0.15

Row� P� S 24 171.280 7.137

P� R� S 12 26.330 2.194 0.51

Row� P� R� S 96 419.920 4 343
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The means for rootstock, previous treatment, and soil treatment means, and

means for combinations of these treatments are given in the abbreviated SAS output

presented in Appendix 4.1.

4.5. ONE SET OF TREATMENTS IN AN INCOMPLETE BLOCK
DESIGN AND THE SECOND SET IN A RANDOMIZED
COMPLETE BLOCK DESIGN

In some instances, it is desirable to split block an experiment designed as an

incomplete block experiment design. Suppose there are 12 genotypes, factor A,

treatments designed as an incomplete block design in s¼ 4 incomplete blocks

of size k¼ 3, and that there are r¼ 4 complete blocks or replicates of the a¼ sk ¼
12 genotypes. And suppose that a second set of b¼ 3 herbicides, factor B

treatments, are to be used in a split block arrangement. These would be across

the 12 genotype experimental units in the four incomplete blocks of each

complete block. A schematic layout of such an experiment is given below. The

genotype numbers listed inside the parentheses indicate the incomplete blocks

and the genotypes appearing in each incomplete block of the incomplete block

experiment design.

Replicate 1

(1 2 3) (4 5 6) (7 8 9) (10 11 12)

B1

B2

B3

Replicate 2

(1 5 9) (4 8 12) (7 11 3) (10 2 6)

B1

B2

B3

Replicate 3

(1 8 6) (4 11 9) (7 2 12) (10 5 3)

B1

B2

B3

Replicate 4

(1 4 7) (5 8 11) (3 6 9) (2 10 12)

B1

B2

B3
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A partitioning of the degrees of freedom in an analysis of variance is shown in the

following table:

Source of variation Degrees of freedom

Total abr ¼ rbsk ¼ 144

Correction for the mean 1

Replicate r � 1 ¼ 3

Genotype ¼ A a� 1 ¼ 11

Incomplete blocks within replicate rðs� 1Þ ¼ 12

Intrablock error or residual ðr � 1Þða� 1Þ � rðk � 1Þ ¼ 33� 8 ¼ 25

Herbicide ¼ B b� 1 ¼ 2

Error B¼ B� replicate ðb� 1Þðr � 1Þ ¼ 6

A� B ða� 1Þðb� 1Þ ¼ 22

Error A� B¼ A� B� replicate ða� 1Þðb� 1Þðr � 1Þ ¼ 66

Incomplete block information would ordinarily be recovered in such an experiment as

this. To do this, use may be made of SAS PROC MIXED or other comparable software.

Standard errors of a difference between two genotype means adjusted for recovery of

interblock information would be used for comparisons of genotype effects. The

herbicide effect would be tested using Error B, and the genotype� herbicide

interaction effect would be tested making use of the Error A� B mean square. A SAS

PROC GLM MODEL statement for the above ANOVA table would be

Response ¼ replicate A blockðreplicateÞ B B
�
replicate A�B A�B�replicate

The ‘‘Error’’ term in the SAS PROC GLM output for the above model would be the

Intrablock error or residual for factor A.

4.6. AN EXPERIMENT DESIGN SPLIT BLOCKED ACROSS THE
ENTIRE EXPERIMENT

Suppose an experimenter is planning to conduct an experiment in an area where

there had been b¼ 4 previous crops, factor B. It is desired to determine the effect on

a ¼ 12 genotypes, factor A, of the previous cropping use on genotype response.

Suppose the schematic arrangement of the incomplete block experiment design was

that of the previous section but was laid out as follows:

Replicate 1 Replicate 2 Replicate 3 Replicate 4 B

1 2 3 1 5 9 1 8 3 1 4 7 B1

4 5 6 4 8 12 4 11 6 5 8 11 B2

7 8 9 7 11 3 7 2 9 3 6 9 B3

10 11 12 10 2 6 10 5 12 2 10 12 B4
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This would not be a desirable experiment design. The first one of the incomplete

blocks falls on one previous cropping area and likewise for the three remaining

rows of incomplete blocks. This leads to confounding between the previous cropping

systems and the incomplete blocks. Also, there is no orthogonality between

genotypes and previous crops. In running an analysis on the 48 genotype by replicate

responses over previous crops, the main effect of the previous crop would be taken

care of by the incomplete blocks, but the previous crop by genotype interaction

would not.

Suppose, however, the following schematic layout of an experiment was used for

a¼ 4 levels of factor A arranged in a randomized complete block design with r¼ 3

replicates. Furthermore, suppose that b¼ 4 levels of factor B, were split blocked

over the entire experiment as follows:

Replicate 1 Replicate 2 Replicate 3 B

1 2 3 4 1 2 3 4 1 2 3 4 B1

1 2 3 4 1 2 3 4 1 2 3 4 B2

1 2 3 4 1 2 3 4 1 2 3 4 B3

1 2 3 4 1 2 3 4 1 2 3 4 B4

A partitioning of the degrees of freedom in an analysis of variance for this layout

would be:

Source of variation Degrees of freedom

Total 48

Correction for the mean 1

Factor B 3

Replicate 2

Replicate� factor B 6

Factor A 3

Replicate� Factor A¼ Error A 6

Factor A� factor B 9

Replicate� A� B¼ Error A� B 18

Since the factor B treatments are unreplicated, there is no error term for comparing

these effects. The error terms for factor A and its interaction with factor B are the

usual ones.

4.7. CONFOUNDING IN A FACTORIAL TREATMENT DESIGN
AND IN A SPLIT BLOCK EXPERIMENT DESIGN

Instead of having the main effects of a factorial treatment design as the whole

plots of a split block experiment design, one may use interactions as the whole plots.

This is illustrated using the following three examples. As a first example, suppose
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one desires to conduct a 23 factorial experiment of factors A, B, and C, with the

interactions AB and AC as the whole plot treatments. It may be that the experimenter

has little interest in the interactions AB and AC or may believe that they are negli-

gible or nonexistent. A schematic layout of one of r replicates of this arrangement

would be:

AC0 AC1

AB0 000 111 101 110

AB1 101 010 011 100

AB would be in a randomized complete block design as would AC. The two

combinations within each intersection of the levels of the interactions would

be randomly allocated to the two experimental units. For r replications of this

plan, an analysis of variance key-out of the degrees of freedom would be as

follows:

Source of variation Degrees of freedom

Total 8r

Correction for mean 1

Replicates¼ R r � 1

A� B 1

A� B� R r � 1

A�C 1

A�C� R r � 1

A 1

B 1

C 1

B� C 1

A� B� C 1

Error 5ðr � 1Þ

The A� B� R mean square is the error term for testing for an A� B interaction.

The A�C� R mean square would be used as the error term for the A�C inter-

action. The Error mean square would be the appropriate one for comparing the

remaining factorial effects.

As a second example, consider a 2� 2� 3 factorial treatment design for factors

A, B, and C, respectively, and consider that interactions A� B and A�C are not as

important as the other factorial effects. The following is a schematic plan for one

replicate:

AC0 AC1 AC2

AB0 000 112 001 110 002 111

AB1 010 102 011 100 012 101
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A key-out of the degrees of freedom in an analysis of variance table for r replicates

is presented below:

Source of variation Degrees of freedom

Total 12r

Correction for mean 1

Replicate r � 1

A� B 1

A� B� R¼ error AB r � 1

A�C 2

A�C� R¼ error AC 2ðr � 1Þ
A 1

B 1

C 2

B� C 2

A� B� C 2

Error 8ðr � 1Þ

The ‘‘Error’’ mean square is the appropriate error term for the last five effects in the

above table.

As a third illustration of using interaction effects as whole plot treat-

ments in a split block designed experiment, consider the 2 � 3 � 3 factorial

treatment design for the factors A, B, and C, respectively. Suppose that the

experimenter believes that the B � C interaction is not as important as the

other effects in this factorial arrangement. The levels of the geometrical

components of the B � C interaction, that is, BC and BC2 (See e.g., Federer,

1955, Chapter VII; Kempthorne, 1952; for a description and construction

of geometrical components of an interaction), would form the two whole

plot treatments. A schematic arrangement for this plan for one replicate

would be:

BC0 BC1 BC2

BC2
0 000 022 011

100 122 111

BC2
1 021 010 002

121 110 102

BC2
2 012 001 020

112 101 120

A key-out of the degrees of freedom in an analysis of variance for r replicates of a

split block experiment design would be:
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Source of variation Degrees of freedom

Total 18r

Correction for mean 1

Replicate¼ R r � 1

BC 2

BC� R¼ error BC 2ðr � 1Þ
BC2 2

BC2� R¼ error BC2 2ðr � 1Þ
A 1

B 2

A� B 2

C 2

A�C 2

A� B� C 4

Error 13ðr � 1Þ

The ‘‘Error’’ mean square is the appropriate error mean square for the last six

factorial effects in the above table. Note that the levels of the geometric components

of the three factor interaction A� B� C could have been used as the whole plot

treatments.

The usual randomization procedures for a split block experiment design apply

equally well for arrangements such as those discussed above.

4.8. SPLIT BLOCK EXPERIMENT DESIGN WITH A CONTROL

Mejza (1998) has presented a class of split block experiment designs wherein a

control treatment represents one of the treatments for either or both of the two

factors involved. That is, factor A may include a control treatment in every split

block experimental unit, sbeu, but the sbeu treatments change from block to block.

Likewise, a control treatment may be included in every sbeu for factor B. The

following example with data is given by Mejza (1998), as an illustration of a member

of this class of experiment designs where A1 is the control treatment:

Block 1 Block 2 Block 3 Block 4

A1 A2 A3 A1 A4 A1 A1 A5

B2 5.37 21.04 B1 19.26 1.92 B1 18.22 1.15 B1 2.10 9.86

B1 1.01 14.87 B2 26.46 9.97 B2 22.23 6.01 B2 14.00 27.78

Block 5 Block 6 Block 7 Block 8

A2 A1 A3 A1 A1 A4 A5 A1

B2 27.29 5.97 B1 16.48 2.20 B1 1.18 17.98 B2 24.50 6.14

B1 24.30 1.29 B2 26.22 14.66 B2 8.09 25.15 B1 14.24 1.10
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The control A1 is replicated eight times whereas A2 to A5 are only replicated twice.

B1 and B2 treatments are in a standard split block arrangement of eight blocks. A

Type I analysis of variance for this data set is given below:

Source of variation Degrees of freedom Sum of squares Mean square

Total 32 8,216.72

Correction for mean 1 5,461.17

Block 7 72.00 10.29

A 4 2,042.27 510.57

A� block 4 47.80 11.95

B 1 478.33 478.33

B� block 7 95.51 13.64

A� B 4 17.43 4.36

A� B� block 4 2.20 0.55

A Type III analysis of variance is the same as given above. The A� block mean

square is used as the error term for factor A, the B� block mean square is the error

for factor B, and the A� B� block mean square is the error term for the A� B

interaction. A SAS MODEL statement to obtain the above analysis is:

Yield ¼ block A A�block B B�block A�B A�B�block;

Using only blocks 1 to 4 or 5 to 8 would not result in a solution for all of the effects.

However, adding more levels of factor A to each of the blocks in a fashion similar to

the following does result in solutions for effects:

Block 1 Block 2

A1 A2 A3 A3 A1 A4

B2 5.37 21.04 27.29 B1 19.26 1.92 5.97

B1 1.01 14.87 24.30 B2 26.46 9.97 1.29

Block 3 Block 4

A4 A1 A5 A1 A5 A2

B1 18.22 1.15 2.10 B1 2.10 9.86 24.50

B2 22.23 6.01 14.00 B2 14.00 27.78 14.24

A Type III analysis of variance for the above data set is:

Source of variation Degrees of freedom Sum of squares Mean square

Block 3 164.56 54.85

A 4 1,159.49 289.87

Error A 4 268.13 67.03

B 1 147.39 147.39

B� block, Error B 3 3.10 1.03

A� B 4 177.28 44.32

Error AB 4 114.92 28.73
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The same error terms and SAS model statements apply here as for the previous

data set.

This design has some similarities to augmented experiment designs (See Federer,

1993, 2002, and related references therein). Usually the ‘‘new’’ treatments are

only included once in an augmented experiment design. In Mejza’s (1998) design,

A2 to A5 were included twice while the control, A1, was replicated eight times. One

could use the above ideas to construct an augmented split block experiment design

as described in Chapter 8. For example, suppose an experimenter used four stan-

dard or control genotypes and 64 new genotypes as the A factor and two levels of

fertilizers with two types of soil preparation as the B factor. It was desired to test

or screen the new treatments on the four B treatments. Further, suppose that the

design for the B factor was a randomized complete block experiment design and

that an incomplete block design with four incomplete blocks of size two was used for

the A control treatments. A plan before randomization for this would be:

Block 1 Block 2 Block 3 Block 4

A1 A2 A2 A3 A3 A4 A4 A1

B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3 B3

B4 B4 B4 B4

In each of the above incomplete blocks, the incomplete block size would be expanded

and sixteen of the 64 new treatments would be included. A set of sixteen new and two

controls would be randomly allotted to the eighteen experimental units for factor A

experimental units, in each of the four incomplete blocks. The B treatments would run

across these eighteen factor A treatments in each incomplete block. The experiment

design for factor B would be a randomized complete block. If more new treatments

were to be tested, the number of blocks could be increased and/or more new

treatments could be included with the factor A experimental units in a block.

A partitioning of the degrees of freedom in an analysis of variance table for the

above designed experiment would be as follows:

Source of variation Degrees of freedom

Total 288

Correction for mean 1

Block 3

A treatments 67

Control or standard 3

Control versus new 1

New 63

Error A 1

B 3

(Continued)
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(Continued)

Source of variation Degrees of freedom

B� block, Error B 9

A� B 201

B� control 9

B� control versus new 3

B� new 189

Error AB 3

Though the above design is connected, there are insufficient degrees of freedom

associated with the error terms. Hence, additional blocks and/or controls will be

required in order to obtain the desired degrees of freedom for the various error terms.

4.9. COMMENTS

From the above examples on the variations of split block designs, the analyst

should be able to determine an appropriate key-out of the degrees of freedom

for other variations. There are many more variations that have been and will be

used by experimenters. For the rootstock by soil treatment by previous treatment

example, described before, the design used is a perfectly reasonable one as far

as the experimenter was concerned. Federer (1984) stated an axiom of experi-

mentation as

Design for the experiment, do not experiment for the design.

The experiment should be conducted and designed to meet the goals of the

experimenter, and not to obtain a simple and easy statistical analysis or to fit into

some design with which a statistician or an experimenter is familiar.

4.10. PROBLEMS

Problem 4.1. For the numerical example in Section 4.8, obtain a stem and leaf

diagram of the residuals. Does this suggest another model?

Problem 4.2. Obtain the residuals for the data of Example 4.1. Does a study of the

residuals suggest another model?

Problem 4.3. Compare the results obtained for the problems in Chapter 2 with

those obtained in Problem 4.2.

Problem 4.4. Artificial data were obtained for the first two replicates of the experi-

ment design described in Section 4.5. The data are presented in the following table:
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Replicate 1

(1 2 3) (4 5 6) (7 8 9) (10 11 12)

28 34 24 20 22 37 20 29 29 23 25 23 B1

25 23 33 33 26 27 33 34 26 27 28 35 B2

35 29 32 26 40 20 20 32 29 22 35 24 B3

Replicate 2

(1 5 9) (4 8 12) (7 11 3) (10 2 6)

24 36 32 26 21 39 36 32 26 21 39 40 B1

25 20 21 26 36 28 37 29 30 30 27 23 B2

34 35 31 21 34 37 40 37 40 28 20 24 B3

(i) Write a computer code for obtaining an analysis of the above data.

(ii) Obtain the factor A means both with and without recovery of interblock

information.
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APPENDIX 4.1. EXAMPLE 4.1 CODE

The data format and computer code for Example 4.1 are given below. The complete

data set is given on the accompanying disk.

datadata example;
input row P column R S height;
datalines;
1 1 1 3 4 13
1 1 1 3 2 8
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1 1 1 3 3 11
1 1 1 3 1 11

. . .

5 2 5 2 2 6
5 2 5 2 3 8
5 2 5 2 4 9
;
RUN;RUN;
PROC GLMPROC GLM DATA¼ example;
CLASS row column P R S;
MODEL height¼ P column column*P R P*R column*R column*R*P S

P*S column*S column*S*P
R*S R*S*column R*S*P R*S*P*column;
LSMEANS R S P R*S R*P P*S;
RUN;RUN;
PROC GLMPROC GLM data¼ example;
CLASS row column P R S;
MODEL height¼ row R P S S*R row*P R*P row*R*P S*P
S*P*row S*R*P R*S*P*row;
LSMEANS R S P;
RUN;RUN;

An abbreviated form of the output of the above code and data set is given below:

Dependent Variable: height
Sum of

Source DF Squares Mean Square F Value Pr> F
Model 199 1710.155000 8.593744 . .
Error 0 0.000000 .
Corrected Total 199 1710.155000

R-Square Coeff Var Root MSE height Mean
1.000000 . . 6.815000

Source DF Type I SS Mean Square F Value Pr> F
P 1 28.1250000 28.1250000 . .
column 4 34.3300000 8.5825000 . .
column*P 4 91.4500000 22.8625000 . .
R 4 31.0300000 7.7575000 . .
P*R 4 48.9500000 12.2375000 . .
column*R 16 467.9200000 29.2450000 . .
column*P*R 16 350.1000000 21.8812500 . .
S 3 3.7750000 1.2583333 . .
P*S 3 3.2950000 1.0983333 . .
column*S 12 74.5500000 6.2125000 . .
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column*P*S 12 47.0300000 3.9191667 . .
R*S 12 36.6500000 3.0541667 . .
column*R*S 48 197.4000000 4.1125000 . .
P*R*S 12 26.3300000 2.1941667 . .
column*P*R*S 48 269.2200000 5.6087500 . .

Least Squares Means

height

R LSMEAN

1 7.20000000
2 6.07500000
3 7.00000000
4 6.77500000
5 7.02500000

height

S LSMEAN

1 6.58000000
2 6.92000000
3 6.86000000
4 6.90000000

height

P LSMEAN

1 7.19000000
2 6.44000000

height

R S LSMEAN

1 1 7.60000000
1 2 8.10000000
1 3 6.50000000
1 4 6.60000000
2 1 5.20000000
2 2 6.20000000
2 3 6.20000000
2 4 6.70000000
3 1 6.80000000
3 2 7.10000000
3 3 7.10000000
3 4 7.00000000
4 1 6.40000000
4 2 6.80000000
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4 3 6.90000000
4 4 7.00000000
5 1 6.90000000
5 2 6.40000000
5 3 7.60000000
5 4 7.20000000

Least Squares Means

Height

P R LSMEAN

1 1 7.00000000
1 2 6.25000000
1 3 8.00000000
1 4 7.70000000
1 5 7.00000000
2 1 7.40000000
2 2 5.90000000
2 3 6.00000000
2 4 5.85000000
2 5 7.05000000

height

P S LSMEAN

1 1 6.88000000
1 2 7.16000000
1 3 7.44000000
1 4 7.28000000
2 1 6.28000000
2 2 6.68000000
2 3 6.28000000
2 4 6.52000000

Dependent Variable: height Sum of
Source DF Squares Mean Square F Value Pr> F
Model 199 1710.155000 8.593744 . .
Error 0 0.000000 .
Corrected Total 199 1710.155000

R-Square Coeff Var Root MSE height Mean
1.000000 . . 6.815000

Source DF Type I SS Mean Square F Value Pr> F
row 4 309.4300000 77.3575000 . .
R 4 31.0300000 7.7575000 . .
P 1 28.1250000 28.1250000 . .
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S 3 3.7750000 1.2583333 . .
R*S 12 36.6500000 3.0541667 . .
row*P 4 130.2500000 32.5625000 . .
P*R 4 48.9500000 12.2375000 . .
row*P*R 32 504.1200000 15.7537500 . .
P*S 3 3.2950000 1.0983333 . .
row*P*S 24 171.2800000 7.1366667 . .
P*R*S 12 26.3300000 2.1941667 . .
row*P*R*S 96 416.9200000 4.3429167 . .

Least Squares Means

height

R LSMEAN

1 7.20000000
2 6.07500000
3 7.00000000
4 6.77500000
5 7.02500000

height

S LSMEAN

1 6.58000000
2 6.92000000
3 6.86000000
4 6.90000000

height

P LSMEAN

1 7.19000000
2 6.44000000
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C H A P T E R 5

Combinations of SPEDs and SBEDs

5.1 INTRODUCTION

There are situations where it is necessary and/or desirable to use combinations of split

plot and split block experiment designs (SBEDs). Such a designed experiment presents

challenges to the analyst in producing an appropriate statistical analysis of the data from

the experiment. Some of these challenges are described in this and the next chapter. The

first such combination of these two designs is described in Section 5.2. Here, a standard

split block experiment design is used for factors A and B and then the factor C is in a split

plot arrangement to these factors. In Section 5.3, factor A constitutes the whole plot

treatment; factors B and C are the split plot treatments but are in a split block arrangement

within each whole plot treatment. In Section 5.4, factors A and B are in a standard split

plot arrangement and factor C is in a split block arrangement to the split and whole plots

of factors A and B. There are six different error terms in the statistical analysis of an

experiment designed in this fashion. In Section 5.5, 55 rows by 40 vines of a vineyard

were used to run a five factor experiment involving types of root, nitrogen fertilization,

method of management, method of pruning, and method of thinning. This complexly

designed experiment produced a challenge in finding an appropriate statistical analysis

of the data. Some rules are set forth in Section 5.6 as an aid in finding appropriate

statistical analyses for complexly designed experiments. Some additional comments on

the topic of this chapter are presented in Section 5.7.

5.2 FACTORS A AND B IN A SPLIT BLOCK EXPERIMENT DESIGN AND
FACTOR C IN A SPLIT PLOT ARRANGEMENT TO FACTORS A AND B

Let factors A and B be in a split block arrangement in each of the r replicates of a ran-

domized complete block design. This was called a standard split block experiment

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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design in Chapter 2. Then divide each combination of factors A and B into c split plot

experimental units. The c levels of factor C are randomly allotted to the c speus

within each of the ab combinations of factors A and B in each of the replicates. There

are r randomizations of the levels of factor A and also r randomizations of the levels

of the B factor. There are rab randomizations of the factor C treatments. The

treatment design is usually a three-factor factorial. A linear model for this

experiment design is

Yhij ¼ mþ rg þ ah þ dgh þ bi þ pgi þ abhi þ Zghi þ gj þ aghj þ bgij þ abghij þ eghij

where g ¼ 1, 2, . . ., r, h ¼ 1, 2, . . ., a, i ¼ 1, 2, . . ., b, and j ¼ 1, 2, . . ., c,

m¼ general overall mean effect,

rg ¼ gth replicate or block effect identically and independently distributed

with mean zero and variance s2
r,

ah ¼ effect of hth level of factor A,

dgh ¼ ghth random error effect identically and independently distributed, IID,

with mean zero and variance s2
d,

bi ¼ effect of ith level of factor B,

pgi ¼ gith random error effect IID with mean zero and variance s2
p,

abhi ¼ interaction effect hith combination of factors A and B,

Zghi ¼ ghith randon error effect IID with zero mean and variance s2
Z,

gj ¼ effect of jth level of factor C,

aghj ¼ interaction effect of hjth combination of factors A and C,

bgij ¼ interaction effect of ijth combination of factors B and C,

abghij ¼ interaction effect of hijth combination of factors A, B, and C, and

eghij ¼ ghijth random error effect IID with zero mean and variance s2
e .

The random effects rg, dgh, pgi, and eghij are assumed to be mutually independent.

Let r ¼ 4 replicates, a ¼ 4 levels of factor A, b ¼ 3 levels of factor B, and c ¼ 4

levels of factor C. Then a systematic layout of one replicate of this design would be

as follows:

A1 A2 A3 A4

B1 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

B2 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

B3 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

The levels of factor A would be randomized within each of the r blocks. The levels of

factor B would be independently randomized within each of the r blocks. The levels

of factor C would be randomized within each combination of levels of factors A and

B and within each of the r blocks.
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An analysis of variance partitioning of the degrees of freedom for this experiment

design for the general case and for the example is

Degrees of freedom

Source of variation General Example

Total abcr 192¼ 4(4)(3)(4)

Correction for mean 1 1

Replicate or complete block¼ R r � 1 3

Factor A ¼ A a� 1 3

A� R ¼ error A ða� 1Þðr � 1Þ 9

Factor B ¼ B b� 1 2

B� R ¼ error B ðb� 1Þðr � 1Þ 6

A� B ða� 1Þðb� 1Þ 6

A� B� R ¼ error AB ða� 1Þðb� 1Þðr � 1Þ 18

Factor C ¼ C c� 1 3

A� C ða� 1Þðc� 1Þ 9

B� C ðb� 1Þðc� 1Þ 6

A� B� C ða� 1Þðb� 1Þðc� 1Þ 18

C � R within A and B ¼ error C abðc� 1Þðr � 1Þ 108

There are four error terms in this analysis. The different experimental units and

randomizations for factors A, B, and C differ, hence, giving rise to the four error

terms-error A, error B, error AB, and error C. The experimental units for the

interaction of factors A and B are different from those for the levels of factors A and

B, giving rise to error AB. The experimental units for the levels of factor C are in a

split plot arrangement for a combination of levels of factors A and B, giving rise to

error C.

A further variant of this type of experiment design is discussed by Yates (1933).

This classic and fundamental paper contains much more than a discussion of the

design and the example presented below. For example, he gives the following

definition of orthogonality. Orthogonality is that property of the design which

ensures that the different classes of effects to which the experimental material is

subject shall be capable of direct and separate estimation without any entanglement.

This definition is from the estimation of effects viewpoint. Federer (1984, 1991)

gives a combinatorial definition of orthogonality as follows: If the proportions

of levels, L1:L2:L3: . . ., of a factor remain the same for all levels of a second factor,

the factors are said to form an orthogonal arrangement. For n factors, the

arrangement must be pairwise orthogonal. The combinatorial definition was found

to be intelligible to first year college students, and the definition of estimation was

not as they had no knowledge or grasp of the estimability concept. Also, the

combinatorial definition runs parallel to that of a balanced incomplete block

experiment design.

One of the designs discussed by Yates (1933) is to use the rows and columns as

the whole plot experimental units (wpeus) rather than splitting the rows and/or
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columns into wpeus as was done for Example 2.2 and Problem 2.3. An example of a

schematically arranged design with rows as whole plots and with the split plot

treatments in a 6� 6 Latin square arrangement is given below for six rows forming

three pairs, R1, R2, and R3, of rows and with two whole plot treatments, A1 and A2.

There are six split plot treatments, T1, T2, T3, T4, T5, and T6 that are in a 6� 6

Latin square arrangement.

This design could have appeared in Chapter 3 but it is presented here as an

introduction to the more complicated design in Example 5.1.

A key-out of the degrees of freedom for such an arrangement is

Source of variation Degrees of freedom, example Degrees of freedom, general

Total 36 k2

Correction for mean 1 1

Columns 5 k � 1

R, pairs of rows 2 k=a� 1

A 1 a� 1

A� R 2 ða� 1Þðk=a� 1Þ
T 5 k � 1

A� T 5 ða� 1Þðk � 1Þ
Residual¼ error 15 ðk � 1Þðk � 2� aþ 1Þ

To form a split block design with split plots as described above, use the columns as

well as the rows as whole plots. Such a design is given in the following example.

Example 5.1. To construct a split block experiment design with split plots for the

above arrangement, form pairs of columns in the same manner as was done for rows

for a second set of whole plot factor B treatments, B1 and B2. The pairs of columns

are numbered as C1, C2, and C3. The following is a randomized plan of a split block

C1 C2 C3 C4 C5 C6

R1 A1 T1 T2 T3 T4 T5 T6

R1 A2 T2 T3 T4 T5 T6 T1

R2 A1 T3 T4 T5 T6 T1 T2

R2 A2 T4 T5 T6 T1 T2 T3

R3 A1 T5 T6 T1 T2 T3 T4

R3 A2 T6 T1 T2 T3 T4 T5
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experiment design with the columns and rows being used as wpeus and with the

factor T split plot treatments arranged in a 6� 6 Latin square design.

An analysis of variance for the above artificial data set is presented in Table 5.1. By

interchanging terms in the model, a Type I analysis often shows the confounding

structure better than a Type III analysis does.

To obtain an analysis of the data in Table 5.1, four models are included in the code

in Appendix 5.1. These are

Y ¼ R A A � R C B B � C T A � T,

Y ¼ R A A � R C B B � C T B � T,

Y ¼ R A A � R C B B � C T A � T B � T, and

Y ¼ R A A � R C B B � C T A � T B � T A � B � T:

C1 B2 C1 B1 C2 B2 C2 B1 C3 B1 C3 B2

R1 A1 T1 2 T2 5 T4 6 T3 9 T6 8 T5 5

R1 A2 T4 9 T3 7 T6 8 T5 4 T1 3 T2 5

R2 A2 T6 8 T5 5 T1 3 T2 5 T4 9 T3 7

R2 A1 T3 3 T6 4 T5 3 T1 0 T2 1 T4 2

R3 A1 T5 5 T1 5 T2 5 T4 9 T3 7 T6 8

R3 A2 T2 6 T4 8 T3 7 T6 8 T5 6 T1 3

Table 5.1. Type I Analysis of Variance.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total 36 1298

Correction for mean 1 1089

Rows 5 81.67

R 2 33.50 16.75 1.04

A 1 16.00 16.00 1.00

A� R ¼ Error A 2 32.17 16.08

Columns 5 2.67

C 2 0.50 0.25 1.32

B 1 1.78 1.78 9.37

B� C ¼ Error B 2 0.39 0.19

Treatments, T 5 103.33 20.67 29.96

A� T 5 6.52 1.30 1.88

B� T 4 2.05 0.51 0.74

A� B� T 4 7.96 1.99 2.88

Residual¼ Error T 7 4.80 0.69
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Type I and Type III sums of squares are equal for the first model demonstrating that

the effects in this model are orthogonal. The least square means are estimable. The

second model was used to obtain the B*T interaction sum of squares and means.

Here again the Type I and Type III sums of squares are the same indicating

orthogonality of the effects in the model. For the third model, there are only four

degrees of freedom for the B*T interaction instead of five. That is, the A*T and B*T

interactions are partially confounded. The least square means are not estimable for

this model when using SAS PROC GLM. Additional confounding is introduced in

the fourth model as shown in a Type III analysis. Using a series of models such as the

above and interchanging the terms in a model is useful to determine which effects

are partially or completely confounded with each other. The means and/or solutions

for effects may be obtained from the SAS PROC GLM codes given in Appendix 5.1.

There are three error terms in the above analysis of variance when the effects of

factors A, B, and T are considered to be fixed effects. The A effects are tested with the

Error A, the B effects with Error B, and the T and interactions with T effects, with

Error C. A fourth error term would be required for testing for the presence of the

A� B interaction.

Yates (1933) presents a numerical example for 12 treatments arranged in a

12� 12 Latin square experiment design. These 12 treatments are formed from

combinations of various fertilizer treatments. Two varieties were placed in six pairs

of rows in a randomized complete block arrangement. Then, two phosphate treat-

ments were applied to the six pairs of columns to form a randomized complete block

arrangement. He discusses various analyses for this split block design with split

plots-designed experiments. A design such as this would be useful in investigating a

variety of factors, such as density, time of planting, herbicides, fungicides, and so on.

5.3. FACTOR A TREATMENTS ARE THE WHOLE PLOT
TREATMENTS AND FACTORS B AND C TREATMENTS ARE IN A
SPLIT BLOCK ARRANGEMENT WITHIN EACH WHOLE PLOT

An experiment was laid out with a ¼ 4 fertilizer treatments as factor A. A

randomized complete block experiment design was used for factor A. Then in each

whole plot experimental unit of factor A, b ¼ 8 genotypes, factor B, were laid out

perpendicular to c ¼ 4 herbicide treatments, factor C. There were r ¼ 5 complete

blocks and hence five randomizations of the four fertilizer treatments, factor A. This

results in a three-factor factorial treatment design. There were ar ¼ 4ð5Þ ¼ 20

randomizations of the factor B treatments and 20 of the factor C treatments. Note

that the speu for factor B is different from the speu for factor C. This design should

not be confused with the one in the previous section. A linear model for this

experiment design is

Yghij ¼ mþ rgþ ahþ dghþ biþ abhiþ pghiþ gjþ aghjþ Zghjþ bgij þ abghijþ eghij

where g ¼ 1, . . . , r, h ¼ 1, . . . , a, i ¼ 1, . . . , b, and j ¼ 1, . . . , c,
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m¼ general overall mean effect,

rg ¼ gth replicate or block effect identically and independently distributed

with mean zero and variance s2
r,

ah ¼ effect of hth level of factor A,

dgh ¼ ghth random error effect identically and independently distributed, IID,

with mean zero and variance s2
d,

bi ¼ effect of ith level of factor B,

abhi ¼ interaction effect hith combination of factors A and B,

pghi ¼ ghith random error effect IID with mean zero and variance s2
p,

gj ¼ effect of jth level of factor C,

aghj ¼ interaction effect of hjth combination of factors A and C,

Zghj ¼ ghjth random error effect IID with zero mean and variance s2
Z,

bgij ¼ interaction effect of ijth combination of factors B and C,

abghij ¼ interaction effect of hijth combination of factors A, B, and C, and

eghij ¼ ghijth random error effect IID with zero mean and variance s2
e .

The random effects rh, dhi, pghi, Zghj, and eghij in the above model are assumed to

be mutually independent.

A schematic layout for one replicate of this experiment design would be as shown

below:

A1 A2 A3 A4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3 B3

B4 B4 B4 B4

B5 B5 B5 B5

B6 B6 B6 B6

B7 B7 B7 B7

B8 B8 B8 B8

A partitioning of the degrees of freedom for the above in an analysis of variance

table for the general case and for r ¼ 5, a ¼ 4, b ¼ 8, and c ¼ 4 is presented below:

Degrees of freedom

Source of variation General Example

Total abcr 640¼ 4(8)(4)(5)

Correction for mean 1 1

Replicate¼ R r � 1 4

Factor A, fertilizer,¼ A a� 1 3

A� R ¼ error A ða� 1Þðr � 1Þ 12

Factor B, genotype,¼ B b� 1 7
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There are four different error terms as there were for the design in the previous section.

However, some of the effects have different error terms than for the previous case. Factor

B and the A� B interaction have the same error term for this design. Factor C and the

A� C interaction use another error term, error C, as they have experimental units

different from that of factor B. The B� C and A� B� C interactions have the same

error term, error ABC. Note that the B� C interaction is obtained from within each level

of factor A and hence will have the same error term as the A� B� C interaction.

5.4. FACTORS A AND B IN A STANDARD SPLIT PLOT EXPERIMENT
DESIGN AND FACTOR C IN A SPLIT BLOCK ARRANGEMENT
OVER BOTH FACTORS A AND B

This type of experiment design has been encountered several times in the course of

statistical consulting. The first one of these consisted of a ¼ 3 levels of fertilizer for

factor A and b ¼ 7 genotypes for factor B. Factor C represented three methods of

preparing the soil or preconditioning the soil that was done prior to the application of

factors A and B. Factor A, the whole plot treatments, and factor B, the split plot

treatments, were arranged in a standard split plot experiment design. For r ¼ 4

replicates of a randomized complete block design, there were r ¼ 4 randomizations

of the fertilizer treatments, factor A (F), and ar ¼ 12 randomizations of the geno-

types, factor B (G). Factor C was in a split block arrangement across the ab ¼ 21

speus within each block. There were four randomizations of the three pre-

conditioning treatments, factor C (P). The treatment design structure is a three factor

factorial arrangement, denoting the fertilizer treatments as F1, F2, and F3, the

genotypes as G1, G2, . . . , G7, and the preconditioning soil treatments as P1, P3, and

P3. A schematic layout for one replicate of this experiment design is given below:

F1 F2 F3

P1 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7

P2 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7

P3 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7

(Continued)

Degrees of freedom

Source of variation General Example

A� B ða� 1Þðb� 1Þ 21

B� R within A ¼ error B aðb� 1Þðr � 1Þ 112

Factor C, herbicide,¼ C c� 1 3

A� C ða� 1Þðc� 1Þ 9

C � R within A ¼ error C aðc� 1Þðr � 1Þ 48

B� C ðb� 1Þðc� 1Þ 21

A� B� C ða� 1Þðb� 1Þðc� 1Þ 63

B� C � R within A¼ error ABC aðb� 1Þðc� 1Þðr � 1Þ 336
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A linear model for the above designed experiment is

Yghij ¼ mþ rg þ ah þ dgh þ bi þ abhi þ pghi þ gj þ jgj þ aghj þ Zgij þ bgij

þ ogij þ abghij þ eghij

where g ¼ 1, . . ., r ¼ 4, h ¼ 1, . . ., a ¼ 3, i ¼ 1, . . ., b ¼ 7, and j ¼ 1, . . ., c ¼ 3,

m¼ general overall mean effect,

rg ¼ gth random replicate or block effect identically and independently

distributed with mean zero and variance s2
r,

ah ¼ effect of hth level of factor A,

dgh ¼ ghth random error effect identically and independently distributed, IID,

with mean zero and variance s2
d,

bi ¼ effect of ith level of factor B,

abhi ¼ interaction effect hith combination of factors A and B,

pghi ¼ ghith random error effect IID with mean zero and variance s2
p,

gj ¼ effect of jth level of factor C,

jgj ¼ gjth random error effect IID with zero mean and variance s2
j,

aghj ¼ interaction effect of hjth combination of factors A and C,

Zghj ¼ ghjth random error effect IID with zero mean and variance s2
Z,

bgij ¼ interaction effect of ijth combination of factors B and C,

ogij ¼ gijth random error effect IID with zero mean and variance s2
o,

abghij ¼ interaction effect of hijth combination of factors A, B, and C, and

eghij ¼ ghijth random error effect IID with zero mean and variance s2
e ,

The random effects rg, dgh, pghi, jgj, Zghj, ogij, and eghij are assumed to be mutually

independent.

A partitioning of the degrees of freedom in an analysis of variance is given below:

Degrees of freedom

Source of variation General Example

Total abcr 252

Correction for mean 1 1

Replicate¼ R r � 1 3

Factor A ¼ A a� 1 2

A�R ¼ error A ða� 1Þðr � 1Þ 6

Factor B ¼ B b� 1 6

A�B ða� 1Þðb� 1Þ 12

B�R within A ¼ error B aðb� 1Þðr � 1Þ 54

Factor C ¼ C c� 1 2

C�R ¼ error C ðc� 1Þðr � 1Þ 6

A�C ða� 1Þðc� 1Þ 4
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(Continued)

Degrees of freedom

Source of variation General Example

A�C�R ¼ error AC ða� 1Þðc� 1Þðr � 1Þ 12

B� C ðb� 1Þðc� 1Þ 12

B� C � R ¼ error BC ðb� 1Þðc� 1Þðr � 1Þ 36

A� B� C ða� 1Þðb� 1Þðc� 1Þ 24

A� B� C � R ¼ error ABC ða� 1Þðb� 1Þðc� 1Þðr � 1Þ 72

There are six error terms in the above analysis of variance table. The design of the

experiment is a reasonable one but such a design adds to the complexity of the

statistical analysis of the data from the experiment. A design such as the above is

useful for obtaining information on more factors and their interactions.

Example 5.2. A numerical example for the above experiment design was cons-

tructed using randomly generated numbers. Only two replicates are used rather than

four to illustrate the computations and outputs. A SAS PROC GLM code, the data

set, and the output are presented in Appendix 5.2. An analysis of variance table and

the associated F-tests are given in Table 5.2. From the output, note that Type I and

Type III sums of squares are the same, indicating orthogonality of the various effects

in the model described above.

From the SAS code given in Appendix 5.2, the six F-statistics given in Table 5.2

were calculated. Least squares means are also obtained for P, F, and G. Means for

combinations of P, F, and G may be obtained by inserting the combinations desired

in the LSMEANS command.

Table 5.2. Analysis of Variance and Associated F-Statistics for the Data in Appendix 5.2.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Total 126 4202

Correction for mean 1 2933.84

Replicate¼ R 1 0.79 0.79

P 2 27.63 13.82 0.69

P� R 2 40.02 20.01

F 2 31.35 15.67 0.39

F � R 2 80.21 40.10

F � P 4 46.17 11.54 4.50

F � P� R 4 10.27 2.57

G 6 70.38 11.73 1.15

G� F 12 188.76 15.73 1.55

G� R within F 18 181.33 10.07

G� P 12 122.48 10.21 1.14

G� P� R 12 107.65 8.97

G� F � P 24 183.38 7.64 1.03

G� F � P� R 24 177.73 7.41
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5.5. A COMPLEXLY DESIGNED EXPERIMENT

A researcher designed an experiment using an area consisting of 55 rows with

40 vines per row in a vineyard that was available for experimentation. The

following was his description of the experiment. The vineyard was laid out in such

a way that there were three rows of vines with their own roots, O, and then two

row of vines grafted onto phyllonera resistant roots, P. This arrangement for each

set of five rows was repeated 11 times, making a systematic arrangement of the

two types of roots. Denote the set of five rows of vines, OOOPP, as a column and

number the columns from 1 to 11. The first five rows, the middle five rows of

vines, and the last five rows (columns 1, 6, and 11) were not used for the factors

being investigated. Vines 1, 14, 27, and 40 were not used. The first row of the own

rooted vines, O, also was not used. These were considered to be guard rows and

vines. A plot consisting of two rows of vines by six vines was the smallest plot

size, there being 96 plots in all. Three nitrogen treatments, N1, N2, and N3, were

applied to experimental units of size four columns, 2–5 or 7–10, by 12 vines. The

three levels of nitrogen were randomly and independently assigned within

columns 2–5 and again within columns 7–10. A third factor type of cover had an

experimental unit of size two columns by twelve vines. The two types of cover, C1

and C2, are maximum control of weeds and cover crop (minimum competition)

and semi-sod cover (maximum competition).The two types of cover were

randomly allotted within each nitrogen experimental unit. The fourth factor was

pruning severity, P1 and P2. The experimental unit size for the pruning treatments

was six vines by two columns. These two treatments were randomly allotted

within each type of cover experimental unit. The fifth factor was type of thinning

used in the grape clusters, T1¼ not thinned and T2¼ thinned. The experimental

unit for this factor was 12 vines by one column. The two thinning treatments were

randomized within the type of cover plots.

A statistical consultant was contacted to determine an appropriate analysis for

data from this experiment. A first step for the consultant is to draw a schematic

layout for this experiment. Since the layout is somewhat complex, consider only the

nitrogen and type of root layout of six experimental units as a first step. Then add the

type of cover treatments to obtain the following schematic plan:

Block 1 Block 2

Column Column

2 3 4 5 7 8 9 10

Vine OOPP OOPP OOPP OOPP OOPP OOPP OOPP OOPP

_______________________________ ___________________________

2

3 N1 C1 N1 C2 N1 C1 N1 C2

4

5

130 combinations of SPEDs and SBEDs



6 _______________________________ ___________________________

7

8

9 N1 C1 N1 C2 N1 C1 N1 C2

10

11

12

13 _______________________________ ___________________________

_______________________________ ___________________________

15

16

17 N2 C1 N2 C2 N2 C1 N2 C2

18

19

20 ______________________________ ___________________________

21

22

23 N2 C1 N2 C2 N2 C1 N2 C2

24

25

26 ______________________________ ___________________________

______________________________ ___________________________

28

29

30 N3 C1 N3 C2 N3 C1 N3 C2

31

32

33 _______________________________ ___________________________

34

35

36 N3 C1 N3 C2 N3 C1 N3 C2

37

38

39 _______________________________ ___________________________

Without delving further into the design structure for this experiment, what

is the statistical analysis so far? Note that nitrogen and root type are in a split

block arrangement and that cover type is in a split plot arrangement with

nitrogen as the whole plot. The experiment design is similar to the one in the

previous section. The response variable was yield of grapes. Considering only
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the two types of roots and using all eleven columns, the following parti-

tioning of degrees of freedom is obtained for an analysis of variance table:

Source of variation Degrees of freedom

Total 22

Correction for the mean 1

Columns 10

Root type, O vs. P 1

Root type� column 10

Since the root type treatments were not randomized, no error term is available.

However, we know that the systematic arrangement tends to bias the Root type�
column error mean square upward, and thus an F-test may still be made keeping

in mind that the Type I error is biased upward.

For the schematic arrangement given above, a partitioning of the degrees of

freedom in an analysis of variance is:

Source of variation Degrees of freedom

Total 24¼ 2(3)(2)(2)

Correction for the mean 1

Block (columns 2–5 vs. 7–10) 1

Root (O vs. P) 1

Root� block 1 error mean square

for root

Nitrogen 2

Nitrogen� block 2 error mean square

for nitrogen

Root� nitrogen 2

Root� nitrogen� block 2 error mean square

for interaction

Cover (C1 vs. C2) 1

Cover� nitrogen 2

Cover� block within nitrogen 3 error for cover and

cover� nitrogen

Cover� root 1

Cover� root� block 1 error for cover� root

Cover� nitrogen� root 2

Cover� nitrogen� root� block 2 error for cover�
nitrogen� root

This analysis of variance is similar to the one in the previous section. The num-

ber of degrees of freedom associated with the various error terms is only 1 or 2.
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The analyst needs to consider pooling some of the error mean squares and per-

haps even the root� column mean square from the 11 columns. One of the

pooling procedures described by Bozivich et al. (1956) may be of use here.

Another procedure would be to partition the nitrogen sum of squares into single

degree of freedom contrasts and likewise for all interactions with nitrogen. A

half normal probability plot of the 23 (omitting the one degree of freedom for

the correction for the mean) single degree of freedom contrasts could then be

made and a search for outlying observations made. An error mean square from

the remaining observations could then be obtained. When there is a paucity of

degrees of freedom for an error term, the analyst must resort to other means,

perhaps even obtaining an estimate of the error mean square from other experi-

ments or analyses.

A schematic layout for the pruning and thinning treatments for columns 2 to 5 and

vines 2 to 13 is presented below:

Column

——————————————————

2 3 4 5

Vine O O P P O O P P O O P P O O P P

—————————————————————

2 N1 C1 N1 C1 N1 C2 N1 C2

3

4 P1 TI P2 T1 P1 T1 P2 T1

5

6

7 ____________________________________

8 N1 C1 N1 C1 N1 C2 N1 C2

9

10 P1 T2 P2 T2 P1 T2 P2 T2

11

12

13 ____________________________________

The pruning treatments, P1 and P2, and the thinning treatments, T1 and T2, are in

a split block arrangement with each other and both are in a split plot arrangement

to cover type. There are 12 randomizations for thinning treatments. Also, there are

12 randomizations for pruning treatments. The experimental units for these two

types of treatments are different and hence they have different error terms. The error

term for their interaction and the terms involving this interaction are also different

owing to the split block arrangement of the thinning and the pruning treatments.

Thus, the partitioning of degrees of freedom in an analysis of variance table is as

follows:
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Source of variation Degrees of freedom

Total 96

Correction for the mean 1

Block (columns 2–5 vs. 7–10) 1

Root (O vs. P) 1

Root� block 1 error for root

Nitrogen 2

Nitrogen� block 2 error for nitrogen

Nitrogen� root 2

Nitrogen� root� block 2 error for nitrogen� root

Cover (C1 vs.C2) 1

Cover� nitrogen 2

Cover� block within nitrogen 2 error for cover and cover� nitrogen

Cover� root 1

Cover� root� block 1 error for cover� root

Cover� root� nitrogen 2

Cover� root� nitrogen� block 2 error for cover� root� nitrogen

Pruning (P1 vs. P2) 1

Pruning� cover 1

Pruning� nitrogen 2

Pruning� cover� nitrogen 2

Pruning� root 1

Pruning� root� cover 1

Pruning� root� nitrogen 2

Pruning� root� cover� nitrogen 2

Pruning� block within cover, root, 12 error for pruning and interactions

and nitrogen with pruning

Thinning (T1 vs. T2) 1

Thinning� root 1

Thinning� nitrogen 2

Thinning� cover 1

Thinning� nitrogen� root 2

Thinning� cover� root 1

Thinning� nitrogen� cover 2

Thinning� nitrogen� cover� root 2

Thinning� block within root, nitrogen, 12 error for thinning and interactions

and cover with thinning

Thinning� pruning 1

Thinning� pruning� root 1

Thinning� pruning� nitrogen 2

Thinning� pruning� cover 1

Thinning� pruning� root� cover 1

Thinning� pruning� root� nitrogen 2

Thinning� pruning� nitrogen� cover 2

Thinning� pruning� root� nitrogen� cover 2

Thinning� pruning� block within root, 12 error for thinning� pruning and

nitrogen, and cover other interactions with this interaction
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There are nine different error terms in the above analysis of variance. Laying out

experiments the way its been done in this chapter makes perfectly good sense to

an experimenter and uses the experimental material available for an experiment,

even if the analysis presents somewhat of a nightmare for the analyst.

5.6. SOME RULES TO FOLLOW FOR FINDING AN ANALYSIS FOR
COMPLEXLY DESIGNED EXPERIMENTS

The following set of rules and algorithms were set forth by Federer (1975, 1977) as

aids for the statistical analyst facing the task of determining an appropriate statistical

analysis for complexly designed experiments.

Rule I: Make no assumptions about the form of the statistical design; always

determine the exact experimental procedure, not the stated one. (The experimenter

stated that the design in the previous section was a five factor factorial treatment

design laid out as a randomized complete block experiment design.)

Rule II: Determine the experimental unit for levels of each category (factor, block,

etc.), then determine any common experimental units for combinations for all

possible pairs of categories, then for all possible triplets, etc.

Rule III: Count the number of randomizations for each category (factor, block, etc.)

in the experiment, then count number of randomizations for combinations of all

possible pairs of categories, then for all possible triplets of categories, etc.

Rule IV: Determine which category levels are nested within another category level

and which are crossed.

Rule V: Ignore complexity of design in first keying out of degrees of freedom; relate

key-out to nearest known design.

Algorithm I: Keying out degrees of freedom in the ANOVA.

1. At every step, perform the simplest key-out of degrees of freedom that is

possible.

2. First determine total degrees of freedom and partition into one for the

correction term and the rest for the remainder of the sum of squares corrected

for the mean.

3. Key-out degrees of freedom for the category or categories offering the least

difficulty.

4. Key-out degrees of freedom for all possible pairs of categories, then all possible

triplets, and so on, excluding any pairs, triplets, and so on, not needed.
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5. Isolate all degrees of freedom in the ANOVA for which the partitioning is not

understood.

6. Defer the partitioning of degrees of freedom that are not completely

understood.

7. Approach the partitioning in step 6 from different directions in order to

reduce steps 5 and 6 to the null set. Note that further partitioning may be

impossible until more information is available.

Rule VI: No computations of sums of squares should be performed until the

correctness of the degrees of freedom key-out in the ANOVA has been ascertained

and the appropriate error variances have been designated.

Rule VII: With almost probability one, experiments and surveys involving humans

and animals will have effects completely or partially confounded and one will need

to follow rules I through V in order to ascertain this.

Rule VIII: Be prepared to spend a considerable amount of time and effort in

unraveling the confounding schemes in any human or animal experiment as planned

by the researcher (and perhaps even by a statistician).

Algorithm II. Computing sums of squares in the ANOVA.

1. At every step compute the simplest ANOVA sums of squares, that is, sums of

squares assuming nesting even though there was no nesting.

2. Compute sums of squares for degrees of freedom key-outs in steps 2, 3, and

4 of algorithm I. For many investigations this may be a desk calculator job.

3. For partially confounded effects, it may be necessary to solve a set of normal

equations prior to computing the sums of squares if needed software is

unavailable.

4. If steps 5 and 6 of algorithm I have not been reduced to the null set, nothing

should be done about a further partitioning of the sums of squares.

Algorithm III: Determining error variances for F-tests.

1. Factors with the same type of experimental units may have the same error

variances.

2. Factors with different experimental units almost always have different error

variances.

3. In order to check the validity of the error variance, determine the appropriate

error variance assuming other effects are absent from the experiment for

single factors, then for pairs of factors, etc.

4. Check to determine if partially confounded effects can be estimated from two

sources and with two different error variances.

5. Check your decisions with known situations if possible.
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Some rules for partitioning out the degrees of freedom in an analysis of variance for

complexly designed experiments have been presented by Federer (1977). These are

given below.

Rule 1: It is essential to determine precisely the experimental unit for each treatment

(factor) and to define the sampling structure of the experimental unit for each factor

separately as well as jointly.

One way of implementing this rule is by drawing a schematic sketch of the

experiment as laid out and by determining if anything occurred during the course of

the experiment that is part of the design of the experiment and the response model.

Just like the example in the previous section, it may be necessary to draw more than

one sketch of the experimental layout. For spatially or temporally designed

experiments, this usually presents little difficulty. It is much more difficult to do this

with experiments on animals, humans, and other situations such as may be

encountered in ecological experiments.

Rule 2: It is essential to determine precisely what the sampling and experimental

procedure actually is rather than what it is purported to be.

During the course of statistical consulting, the consultee has often stated that

they used a randomized complete block design when in fact the design was a split

split plot, a split block, or other design. Also, many consultees are unclear as to

the meaning of replication and often confuse observational and sampling units

with experimental units. The actual layout and conduct of the experiment must

be known before one can determine the type of design used. This is why the

experimental unit sizes were obtained from the experimenter for the example in the

previous section.

Rule 3: It is essential to know the number of randomizations used for each factor

singly, for pairs of factors, for triplets of factors, and so forth. If the number of

randomizations differs, one can expect different sizes of experimental units and

perhaps some confounding of factor effects. The number of randomizations used for

each factor needs to be known. If the number of randomizations differs, the size of

the experimental units will differ and different error mean squares will be required

for testing effects.

Rule 4: It is essential to determine if levels of factors are crossed or nested within

levels of other factors.

Rule 5: An error variance for a treatment contrast of levels of a factor is determined

from the variance among experimental units treated alike (i.e., same treatment)

where the experimental units are those of the factor involved. Note that there may be

several error variances in an experiment.

Rule 6: It is essential to have a complete and meaningful key-out of the degrees of

freedom in an analysis of variance table prior to any statistical calculations.
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Rule 7: It is desirable to recheck all assumptions involved in the statistical analysis

such as independence of observations, additivity of effects, equality of components

of a mean square, and normality of residuals, to ascertain that they are satisfactory

for the material used in the experiment under consideration.

Rule 8: After computing means and effects, it is highly desirable to study residuals

prior to considering the sums of squares and mean squares.

Rule 9: It is very useful to prepare graphical displays of the data, the means, and the

residuals.

Rule 10: When fully satisfied with the preceding nine considerations, compute the

sums of squares and the mean squares and complete the statistical calculations

including tests of significance.

5.7. COMMENTS

As may be observed from the above, experiment designs can become rather

complex and this may call for a complex statistical analysis of the data from such

an experiment. If the analyst follows the rules and suggestions outlined in the

previous section, it should be possible to obtain an appropriate statistical analysis

for the data from an experiment. The following chapter presents an even more

complex situation than the one above. Such experiments tax the creativity and

ingenuity of the analyst.

Most books and courses on statistical methods for the analysis of data from

experiments never get beyond one error term per experiment. The above examples

demonstrate the need for more than one error term per experiment. When

presented with the above analyses, the experimenters were surprised if not shocked

at the nature of the analysis for their experiments. For the reader, the above

examples came from real experiments that add reality to the need for discussing

such situations.

An analyst may consider using SAS PROC MIXED to take the random effects

into account. If the effects in the model are orthogonal, nothing is to be gained

using this code as the means will be identical. Owing to the nature and subtleties

of using mixed effects analyses, it may be wise to forgo using this procedure

for data from experiments designed in the fashion of this chapter. The analyst

may also consider using a multiple comparisons procedure for comparing pairs of

means. For such experiment designs as discussed in this chapter and in Chapters 3

and 4, there will be numerous standard errors of a difference between pairs

of means. This means there will be numerous values of the lsd, the hsd, and others.

If the analyst wishes to compare a pair of means using a particular multiple com-

parisons procedure, it will be necessary to first find the appropriate standard error

of the difference of the pair of means involved and then compute the appropriate

value of the lsd, hsd, and so forth.
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5.8. PROBLEMS

Problem 5.1. Use the command ‘‘/solution’’ in the model statement for the models

with two and three factor interactions in Example 5.1. Determine which means and

differences of effects are estimable. (Note that SAS subtracts the highest numbered

effect from all effects of a variable to make the highest numbered effect equal to

zero. The standard errors given are standard errors of a difference between two

effects, the effect and the highest numbered effect.)

Problem 5.2. For the data given by Yates (1933, page 22) for the split block

experiment design with split plot treatments in a 12� 12 Latin square arrangement,

obtain the analyses for the four models given by the code in Appendix 5.1. Are all

means and differences of effects estimable for each of the models?

Problem 5.3. What type of confounding results are appropriate for obtaining the

results in Table 5.1 when the A� B interaction term is added to the model?

Problem 5.4. Write an appropriate SAS code for obtaining the A*B interaction and

the associated F-test for the data presented in Example 5.1.
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APPENDIX 5.1. EXAMPLE 5.1 CODE

An abbreviated data set, the code, and output from running the code for Example 5.1

are presented below. The complete data set is given on the enclosed disk.

datadata sbsp;
input R A C B T Y;
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/*R is row pair, A if factor A, C is column pair, B is factor B, T is
factor T as described in Example 5.1, Y is the response*/
datalines;
1 1 1 2 1 2
1 1 1 1 2 5
1 1 2 2 4 6

. . .

3 2 3 1 5 6
3 2 3 2 1 3
;
Proc glmProc glm data¼ sbsp;
class R A C B T;
model Y¼ R A R*A C B C*B T B*T;
lsmeans A B T B*T;
run;run;
Proc glmProc glm data¼ sbsp;
class R A C B T;
model Y¼ R A A*R C B C*B T A*T;
lsmeans A B T A*T;
run;run;
Proc glmProc glm data¼ sbsp;
class R A C B T;
model Y¼ R A A*R C B B*C T A*T B*T;
run;run;
Proc glmProc glm data¼ sbsp;
class R A C B T;
model Y¼ R A A*R C B C*B T A*T B*T A*B*T;
run;run;

An abbreviated form of the output for the above code and data set is given below:

The GLM Procedure
Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 20 193.5833333 9.6791667 9.42 <.0001
Error 15 15.4166667 1.0277778
Corrected 35 209.0000000
Total

R-Square Coeff Var Root MSE Y Mean
0.926236 18.43261 1.013794 5.500000

Source DF Type I SS Mean Square F Value Pr> F
R 2 33.5000000 16.7500000 16.30 0.0002
A 1 16.0000000 16.0000000 15.57 0.0013
R*A 2 32.1666667 16.0833333 15.65 0.0002
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C 2 0.5000000 0.2500000 0.24 0.7871
B 1 1.7777778 1.7777778 1.73 0.2082
C*B 2 0.3888889 0.1944444 0.19 0.8296
T 5 103.3333333 20.6666667 20.11 <.0001
B*T 5 5.9166667 1.1833333 1.15 0.3770

Source DF Type III SS Mean Square F Value Pr> F
R 2 22.4508547 11.2254274 10.92 0.0012
A 1 15.0012626 15.0012626 14.60 0.0017
R*A 2 27.1638138 13.5819069 13.21 0.0005
C 2 0.5000000 0.2500000 0.24 0.7871
B 1 1.7777778 1.7777778 1.73 0.2082
C*B 2 0.3888889 0.1944444 0.19 0.8296
T 5 103.3333333 20.6666667 20.11 <.0001
B*T 5 5.9166667 1.1833333 1.15 0.3770

Least Squares Means

A Y LSMEAN
1 4.74305556
2 6.25694444

B Y LSMEAN
1 5.72222222
2 5.27777778

T Y LSMEAN
1 2.66666667
2 4.50000000
3 6.66666667
4 7.16666667
5 4.66666667
6 7.33333333

B T Y LSMEAN

1 1 3.43055556
1 2 4.32638889
1 3 7.18055556
1 4 7.86805556
1 5 4.24305556
1 6 7.28472222
2 1 1.90277778
2 2 4.67361111
2 3 6.15277778
2 4 6.46527778
2 5 5.09027778
2 6 7.38194444
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The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 20 194.1875000 9.7093750 9.83 <.0001
Error 15 14.8125000 0.9875000
Corrected 35 209.0000000
Total

R-Square Coeff Var Root MSE Y Mean
0.929127 18.06782 0.993730 5.500000

Source DF Type I SS Mean Square F Value Pr> F
R 2 33.5000000 16.7500000 16.96 0.0001
A 1 16.0000000 16.0000000 16.20 0.0011
R*A 2 32.1666667 16.0833333 16.29 0.0002
C 2 0.5000000 0.2500000 0.25 0.7796
B 1 1.7777778 1.7777778 1.80 0.1996
C*B 2 0.3888889 0.1944444 0.20 0.8234
T 5 103.3333333 20.6666667 20.93 <.0001
A*T 5 6.5208333 1.3041667 1.32 0.3079

Type III sums of squares are the same as for Type I.

Least Squares Means

A Y LSMEAN
1 4.83333333
2 6.16666667

B Y LSMEAN
1 5.76041667
2 5.23958333

T Y LSMEAN
1 2.66666667
2 4.50000000
3 6.66666667
4 7.16666667
5 4.66666667
6 7.33333333

A T Y LSMEAN
1 1 2.25000000
1 2 3.55208333
1 3 6.25000000
1 4 5.65625000
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1 5 4.59375000
1 6 6.69791667
2 1 3.08333333
2 2 5.44791667
2 3 7.08333333
2 4 8.67708333
2 5 4.73958333
2 6 7.96875000

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 24 196.2378788 8.1765783 7.05 0.0009
Error 11 12.7621212 1.1601928
Corrected Total 35 209.0000000

R-Square Coeff Var Root MSE Y Mean
0.938937 19.58405 1.077122 5.500000

Source DF Type I SS Mean Square F Value Pr> F
R 2 33.5000000 16.7500000 14.44 0.0008
A 1 16.0000000 16.0000000 13.79 0.0034
R*A 2 32.1666667 16.0833333 13.86 0.0010
C 2 0.5000000 0.2500000 0.22 0.8095
B 1 1.7777778 1.7777778 1.53 0.2415
C*B 2 0.3888889 0.1944444 0.17 0.8478
T 5 103.3333333 20.6666667 17.81 <.0001
A*T 5 6.5208333 1.3041667 1.12 0.4027
B*T 4 2.0503788 0.5125947 0.44 0.7762

Source DF Type III SS Mean Square F Value Pr> F

R 2 22.1855291 11.0927646 9.56 0.0039
A 1 15.1853369 15.1853369 13.09 0.0040
R*A 2 27.4263657 13.7131829 11.82 0.0018
C 2 1.0097187 0.5048594 0.44 0.6578
B 1 1.7922201 1.7922201 1.54 0.2398
C*B 2 0.0848694 0.0424347 0.04 0.9642
T 5 103.3333333 20.6666667 17.81 <.0001
A*T 4 2.6545455 0.6636364 0.57 0.6887
B*T 4 2.0503788 0.5125947 0.44 0.7762

The GLM Procedure

Dependent Variable: Y Sum of

Source DF Squares Mean Square F Value Pr> F
Model 28 204.2000000 7.2928571 10.64 0.0017
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Error 7 4.8000000 0.6857143
Corrected Total 35 209.0000000

R-Square Coeff Var Root MSE Y Mean
0.977033 15.05598 0.828079 5.500000

Source DF Type I SS Mean Square F Value Pr> F
R 2 33.5000000 16.7500000 24.43 0.0007
A 1 16.0000000 16.0000000 23.33 0.0019
R*A 2 32.1666667 16.0833333 23.45 0.0008
C 2 0.5000000 0.2500000 0.36 0.7069
B 1 1.7777778 1.7777778 2.59 0.1514
C*B 2 0.3888889 0.1944444 0.28 0.7613
T 5 103.3333333 20.6666667 30.14 0.0001
A*T 5 6.5208333 1.3041667 1.90 0.2123
B*T 4 2.0503788 0.5125947 0.75 0.5896
A*B*T 4 7.9621212 1.9905303 2.90 0.1039

Source DF Type III SS Mean Square F Value Pr> F

R 2 28.1123834 14.0561917 20.50 0.0012
A 1 14.6550611 14.6550611 21.37 0.0024
R*A 1 2.0173729 2.0173729 2.94 0.1300
C 2 0.4711620 0.2355810 0.34 0.7206
B 1 1.7693846 1.7693846 2.58 0.1522
C*B 1 0.6444915 0.6444915 0.94 0.3646
T 5 103.8149128 20.7629826 30.28 0.0001
A*T 4 2.9513491 0.7378373 1.08 0.4359
B*T 4 3.5529621 0.8882405 1.30 0.3580
A*B*T 4 7.9621212 1.9905303 2.90 0.1039

APPENDIX 5.2. EXAMPLE 5.2 DATA SET, CODE, AND OUTPUT

The complete data set is given on the enclosed disk.

datadata example;
input R P F G Y;
/*R is replicate, P is factor A, F is factor B, G is genotype, Y is the
response*/
datalines;
1 1 1 1 5

1 1 1 2 9
1 1 1 3 3
1 1 1 4 9
1 1 1 5 1
1 1 1 6 5
1 1 1 7 8

. . .

2 3 3 5 4
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2 3 3 6 3
2 3 3 7 9
;
proc glmproc glm data¼ example;
class R P F G;
model Y¼ R P R*P F F*R P*F P*F*R G F*G G*R(F) G*P G*P*R G*F*P G*F*P*R;
test H¼ P E¼ R*P;test H¼ F E¼ F*R;
test H¼ P*F E¼ P*F*R; test H¼ G E¼ G*R(F);
test H¼ F*G E¼ G*R(F);test H¼ G*P E¼ G*P*R;
test H¼ G*F*P E¼ G*F*P*R;
lsmeans P F G;
RUN;RUN;

The abbreviated output for the above code is presented below:

Dependent Variable: Y

Sum of

Source DF Squares Mean Square F Value Pr> F
Model 125 1268.158730 10.145270 . .
Error 0 0.000000 .
Corrected Total 125 1268.158730

R-Square Coeff Var Root MSE Y Mean
1.000000 . . 4.825397

Source DF Type I SS Mean Square F Value Pr> F
R 1 0.7936508 0.7936508 . .
P 2 27.6349206 13.8174603 . .
R*P 2 40.0158730 20.0079365 . .
F 2 31.3492063 15.6746032 . .
R*F 2 80.2063492 40.1031746 . .
P*F 4 46.1746032 11.5436508 . .
R*P*F 4 10.2698413 2.5674603 . .
G 6 70.3809524 11.7301587 . .
F*G 12 188.7619048 15.7301587 . .
R*G(F) 18 181.3333333 10.0740741 . .
P*G 12 122.4761905 10.2063492 . .
R*P*G 12 107.6507937 8.9708995 . .
P*F*G 24 183.3809524 7.6408730 . .
R*P*F*G 24 177.7301587 7.4054233 . .

Dependent Variable: Y

Tests of Hypotheses Using the Type III MS for R*P as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
P 2 27.63492063 13.81746032 0.69 0.5915
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Tests of Hypotheses Using the Type III MS for R*F as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
F 2 31.34920635 15.67460317 0.39 0.7190

Tests of Hypotheses Using the Type III MS for R*P*F as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
P*F 4 46.17460317 11.54365079 4.50 0.0873

Tests of Hypotheses Using the Type III MS for R*G(F) as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
G 6 70.3809524 11.7301587 1.15 0.3912
F*G 12 188.7619048 15.7301587 1.55 0.2309

Tests of Hypotheses Using the Type III MS for R*P*G as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
P*G 12 122.4761905 10.2063492 1.14 0.4134

Tests of Hypotheses Using the Type III MS for R*P*F*G as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
P*F*G 24 183.3809524 7.6408730 1.03 0.4698

Least Squares Means

P Y LSMEAN
1 4.16666667
2 5.21428571
3 5.09523810

F Y LSMEAN
1 4.30952381
2 4.66666667
3 5.50000000

G Y LSMEAN
1 4.77777778
2 5.94444444
3 3.94444444
4 5.11111111
5 3.66666667
6 4.83333333
7 5.50000000
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C H A P T E R 6

World Records for the Largest

Analysis of Variance Table (259

Lines) and for the Most Error Terms

(62) in One Analysis of Variance

6.1. INTRODUCTION

The experiment described in this section produced data that resulted in the largest

analysis of variance table ever encountered in practice or seen in published literature.

Hence, it is claimed that this is a world record for the largest analysis of variance

table. There are 259 lines in the analysis of variance table developed for data from

the experiment. This was been submitted to Guinness Worlds Records for a world

record. Accompanying this table are 62 error terms for the various effects in the

experiment. This is claimed to be a record for the number of error terms in one

analysis of variance table. This claim has also been submitted to Guinness Worlds

Records as a world record. The records were not granted as Guinness did not have a

category for items of this nature as they are not general enough and too specific for

their more general records.

In Chapters 3, 4, and 5, variations of split plot and split block experiment designs

have been discussed. The desires and goals of the experimenter often dictate the

experiment design used for each experiment. Some designs may need to be

unorthodox in order to attain the goals. In this chapter, a very complexly designed

experiment was conducted in the early 1950s in Hawaii. Several departments of the

Pineapple Research Institute were involved. Owing to the size and complexity of the

experiment, it was dubbed their ‘‘Manhattan Project.’’ Federer and Farden (1955)

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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presented one analysis for the data from the experiment. The analysis presented

herein differs in some respects from theirs, in that several approaches are possible.

To obtain an analysis of data from such an experiment, the procedures described in

Chapter 5 have been used.

The design and the field layout of the experiment are described in Section 6.2.

In Section 6.3, some preliminary analyses are performed to obtain a starting point

for obtaining an analysis of the data from this experiment. Owing to the complexity

of the design of the experiment, several approaches are used as guides to the final

analysis as given in Section 6.4.

6.2. DESCRIPTION OF THE EXPERIMENT

The continuous production of a single crop on a piece of land for a long period of

time might be expected to produce changes in the soil peculiar to the crop grown.

Two adjacent pieces of land, one of which was farmed for many years to pineapple

and the other to sugar cane, might be appreciably different in soil properties and

hence require different management practices for pineapple production. Changes in

soil pH and pest levels might be expected. Two adjacent pieces of land with these

conditions became available for use by the Pineapple Research Institute (PRI). It

was expected that the experiment would continue for several cycles of pineapple

production.

The objectives of the experiment were to study long-term effects on soil

properties, on pineapple growth, and fruit production, resulting from previous

cropping to sugar cane as compared to pineapple. It was designed to study relative

responses to fumigation and fertilizer variables as they occur at present and after

adjustment for pH, and to investigate the best agronomic practices for pineapple

production on lands previously cropped to sugar cane.

Preexperiment fumigation and paper laying were started on 10/24/52 and

completed on 11/11/52 (Federer and Farden, 1955). Planting of pineapple slips

started in the field on 11/1/52 and was completed on 11/11/52. The plant slips were

planted fourteen inches apart. The plots were each one hundred feet long and three

field blocks wide. A description of the treatments used follows. As shown in

Figure 6.1 in Appendix 6.1, the two pieces of land or types of soil were initially

subdivided into eight plots on old sugar cane land and eight plots on old pineapple

land. The symbols C, A, P, and L are defined as:

C – old sugar cane land, pH unadjusted

A – old sugar cane land, pH adjusted, sulfur added so that the pH is approxi-

mately the same as in P,

P – old pineapple land, pH unadjusted

L – old pineapple land, pH adjusted, and limed so that the pH is approximately

the same as in C.
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The preplanting fumigation treatments (See Figure 6.2 for layout) were as follows:

I – 800 pounds of DD

II – 400 pounds of DD

III – no preplanting fumigant.

The postplanting fumigation treatments (See Figure 6.3 for layout) were as follows:

Y – 40 gallons of 10% EDB

Z – no postplanting fumigant.

The postplanting fertilizer treatments (See Figure 6.4 for layout) were as follows:

S – Ammonium sulfate

U – Urea.

The preplanting fertilizer treatments (See Figure 6.5 for layout) were as follows:

1. Major nutrients (N, P, K, Mg)

2. Major nutrients plus minor nutrients ( Cu, B, Mo)

3. Micro nutrients (Cu, B, Mo) alone

4. No plant fertilizer.

N was applied at the rate of 100 pounds per acre as ammonium sulfate, P at the rate

of 200 pounds per acre as super phosphate, K at 100 pounds per acre as potassium

sulfate, Mg at 1/20th of the available calcium as sulfate, Cu at 15 pounds per acre as

CuSO4, B at 20 pounds per acre as borax, and Mo at one pound per acre as molybdic

acid. Treatments 1 and 4 were named as major element treatments, and treatments 2

and 3 were called minor element treatments.

The field design of the experiment is given in Table 6.1 and in Figures 6.1–6.6.

The last figure combined with Figure 6.1 gives the layout of the experiment.

Considering old sugar cane land and old pineapple land as whole plots, C

and A are split plot treatments to the former and P and L are split plot treat-

ments to old pineapple land. Considering the treatment variables applied to

rows, preplanting fumigation is a whole plot treatment, postplanting fumiga-

tion is a split plot treatment, and postplanting fertilizer treatments is a split

split plot with rows as the blocks. Preplanting fertilizer treatments 1 and 4 (major

elements) and 2 and 3 (minor elements) are in a split plot arrangement to soils but

a split block arrangement with respect to C and A and also P and L, and 1 and 4

are split split plots as are 2 and 3 to soils but split block to C and A and also P

and L. The latter design in rows is in a split block arrangement to the experiment

design in columns. The rules for unraveling the degrees of freedom in an analysis
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Table 6.1. Field Plan for Sugar Cane Land, C and A, and Pineapple Land, P and L

Experiment.

Replicate 1 or row 1 (last number in a cell)

Old cane land Old pineapple land

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Y1 Y4 Y2 Y3 Y2 Y3 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Y1 Y4 Y2 Y3 Y2 Y3 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Z1 Z4 Z2 Z3 Z2 Z3 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Z1 Z4 Z2 Z3 Z2 Z3 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Z4 Z1 Z3 Z2 Z2 Z3 Z1 Z4 Z4 Z1 Z2 Z3 Z3 Z2 Z4 Z1

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Z4 Z1 Z3 Z2 Z2 Z3 Z1 Z4 Z4 Z1 Z2 Z3 Z3 Z2 Z4 Z1

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Y4 Y1 Y3 Y2 Y2 Y3 Y1 Y4 Y4 Y1 Y2 Y3 Y3 Y2 Y4 Y1

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Y4 Y1 Y3 Y2 Y2 Y3 Y1 Y4 Y4 Y1 Y2 Y3 Y3 Y2 Y4 Y1

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Y4 Y1 Y2 Y3 Y3 Y2 Y1 Y4 Y1 Y4 Y3 Y2 Y3 Y2 Y4 Y1

U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Y4 Y1 Y2 Y3 Y3 Y2 Y1 Y4 Y1 Y4 Y3 Y2 Y3 Y2 Y4 Y1

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Z4 Z1 Z2 Z3 Z3 Z2 Z1 Z4 Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Z4 Z1 Z2 Z3 Z3 Z2 Z1 Z4 Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1
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of variance were discussed in Chapter 5. Additional discussion of these rules and

their use may be found in Federer (1975, 1977, and 1984). As may be surmised,

the partitioning of the degrees of freedom for an experiment as complex as this

one will be a tedious and thought provoking task.

Table 6.1. (Continued )

Replicate 2 or row 2

Old cane land Old pineapple land

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Y1 Y4 Y3 Y2 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y2 Y3 Y1 Y4

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Y1 Y4 Y3 Y2 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y2 Y3 Y1 Y4

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1 Z4 Z1 Z3 Z2 Z2 Z3 Z1 Z4

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1 Z4 Z1 Z3 Z2 Z2 Z3 Z1 Z4

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Y1 Y4 Y3 Y2 Y3 Y2 Y4 Y1 Y4 Y1 Y2 Y3 Y2 Y3 Y4 Y1

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Y4 Y1 Y2 Y3 Y3 Y2 Y4 Y1 Y4 Y1 Y2 Y3 Y2 Y3 Y4 Y1

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Z4 Z1 Z2 Z3 Z3 Z2 Z4 Z1 IZ4 Z1 Z2 Z3 Z2 Z3 Z4 Z1

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Z4 Z1 Z2 Z3 Z3 Z2 Z4 Z1 Z4 Z1 Z2 Z3 Z2 Z3 Z4 Z1

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Z1 Z4 Z3 Z2 Z2 Z3 Z4 Z1 Z1 Z4 Z3 Z2 Z3 Z2 Z1 Z4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Z1 Z4 Z3 Z2 Z2 Z3 Z4 Z1 Z1 Z4 Z3 Z2 Z3 Z2 Z1 Z4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Y1 Y4 Y3 Y2 Y2 Y3 Y4 Y1 Y1 Y4 Y3 Y2 Y3 Y2 Y1 Y4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Y1 Y4 Y3 Y2 Y2 Y3 Y4 Y1 Y1 Y4 Y3 Y2 Y3 Y2 Y1 Y4
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6.3. PRELIMINARY ANALYSES FOR THE EXPERIMENT

As a first step in unraveling the total degrees of freedom into its component

parts, consider only the four row by four column arrangement with the four

treatments C, A, P, and L as given in Figure 6.1. This four-row by four-column

Table 6.1. (Continued )

Replicate 3 or row 3

Old cane land Old pineapple land

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Z4 Z1 Z2 Z3 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Z4 Z1 Z2 Z3 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Y4 Y1 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CIII CIII CIII CIII AIII AIII AIII AIII LIII LIII LIII LIII PIII PIII PIII PIII

Y4 Y1 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Y4 Y1 Y3 Y2 Y2 Y3 Y4 Y1 Y1 Y4 Y2 Y3 Y2 Y3 Y4 Y1

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Y4 Y1 Y3 Y2 Y2 Y3 Y4 Y1 Y1 Y4 Y2 Y3 Y2 Y3 Y4 Y1

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Z4 Z1 Z3 Z2 Z2 Z3 Z4 Z1 Z1 Z4 Z2 Z3 Z2 Z3 Z4 Z1

CI CI CI CI AI AI AI AI LI LI LI LI PI PI PI PI

Z4 Z1 Z3 Z2 Z2 Z3 Z4 Z1 Z1 Z4 Z2 Z3 Z2 Z3 Z4 Z1

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Y1 Y4 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Y1 Y4 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Z1 Z4 Z2 Z3 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

CII CII CII CII AII AII AII AII LII LII LII LII PII PII PII PII

Z1 Z4 Z2 Z3 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4
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arrangement is not a Latin square design even if it appears so. There are several

ways of partitioning the 16 degrees of freedom into component parts. Two of

these are given in Tables 6.2 and 6.3 and a third in Table 6.4. The contrasts of

CþA versus Pþ L and columns 1þ 2 versus columns 3þ 4 are completely

confounded.

Table 6.1. (Continued )

Replicate 4 or row 4

Old cane land Old pineapple land

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Z4 Z1 Z2 Z3 Z2 Z3 Z4 Z1 Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Z4 Z1 Z2 Z3 Z2 Z3 Z4 Z1 Z1 Z4 Z3 Z2 Z3 Z2 Z4 Z1

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Y4 Y1 Y2 Y3 Y2 Y3 Y4 Y1 Y1 Y4 Y3 Y2 Y3 Y2 Y4 Y1

AII AII AII AII CII CII CII CII PII PII PII PII LII LII LII LII

Y4 Y1 Y2 Y3 Y2 Y3 Y4 Y1 Y1 Y4 Y3 Y2 Y3 Y2 Y4 Y1

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Y1 Y4 Y3 Y2 Y2 Y3 Y1 Y4 Y1 Y4 Y2 Y3 Y2 Y3 Y1 Y4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Y1 Y4 Y3 Y2 Y2 Y3 Y1 Y4 Y1 Y4 Y2 Y3 Y2 Y3 Y1 Y4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Z1 Z4 Z3 Z2 Z2 Z3 Z1 Z4 Z1 Z4 Z2 Z3 Z2 Z3 Z1 Z4

AI AI AI AI CI CI CI CI PI PI PI PI LI LI LI LI

Z1 Z4 Z3 Z2 Z2 Z3 Z1 Z4 Z1 Z4 Z2 Z3 Z2 Z3 Z1 Z4

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Y1 Y4 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Y1 Y4 Y2 Y3 Y3 Y2 Y1 Y4 Y4 Y1 Y3 Y2 Y3 Y2 Y1 Y4

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Z1 Z4 Z2 Z3 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4

AIII AIII AIII AIII CIII CIII CIII CIII PIII PIII PIII PIII LIII LIII LIII LIII

Z1 Z4 Z2 Z1 Z3 Z2 Z1 Z4 Z4 Z1 Z3 Z2 Z3 Z2 Z1 Z4
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Table 6.2. Partitioning of Degrees of Freedom in an

Analysis of Variance.

Source of variation Degrees of freedom

Total 16

Correction for the mean 1

Soils (Columns 1þ 2 versus 1

3þ 4¼ CþA versus Pþ L)¼ S

Columns within soils¼ error S 2

Rows¼ R 3

Treatments on cane land 1

(C versus A)¼ CA

Treatments on pineapple land 1

(P versus L)¼ PL

Residual¼ error CA and PL 7

Table 6.3. Partitioning of Degrees of Freedom in an Analysis of Variance.

Source of variation Degrees of freedom

Total 16

Correction for the mean 1

Soils (Columns 1þ 2 versus 3þ 4¼ CþA versus Pþ L)¼ S 1

Columns within soils¼ error S 2

Treatments on cane land (C versus A)¼ CA 1

Treatments on pineapple land (P versus L)¼ PL 1

Between duplicates for C in columns 1 and 2 2

Between duplicates for A in columns 1 and 2 2

Between duplicates for P in columns 3 and 4 2

Between duplicates for L in columns 3 and 4 2

CA� columns on sugar cane land 1

PL� columns on pineapple land 1

Table 6.4. Partitioning the 16 Degrees of Freedom for the

Two Four Rows by Two Columns Experiment Designs.

Source of variation Degrees of freedom

Total 16

Correction for the mean 1

Soils¼ columns 1þ 2 versus 1

3þ 4¼ CþA versus Pþ L¼ S

Error S¼ columns within S 2

C versus A¼CA 1

Rows within sugar cane land¼ R/C 3

Error CA 2

P versus L¼ PL 1

Rows within pineapple land¼ R/P 3

Error PL 2
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Owing to the nature of the layout of these 16 plots, a split plot arrangement

is obtained with soils being the whole plot treatments and C and A are split plot

treatments within sugar cane land and P and L are split plot treatments within

pineapple land. Hence, there are two error terms, error S and error CA and PL.

The seven residual degrees of freedom are composed of CA� rows within

sugar cane land with three degrees of freedom (error CA), PL� rows within

pineapple land with three degrees of freedom (error PL), and one degree of

freedom owing to the fact that there is complete confounding of CþA versus

Pþ L and columns 1þ 2 versus columns 3þ 4. This single degree of freedom

represents the contrast between the four columns on sugar cane land and the four

columns on pineapple land.

A second partitioning of degrees of freedom is presented in Table 6.3. Note that

other partitions, such as 16 single degrees of freedom contrasts, may be reasonable.

Although a rationale can be formed for each of the analysis, the most appropriate

breakdown of these 16 degrees of freedom is to consider that a four row by two

column design with two treatments was laid out on each of the two types of land or

soil. Then a combined analysis is made for the two experiment designs. Such a

partitioning is given in Table 6.4. We shall use this partitioning for the combined

analysis.

Since one degree of freedom for columns is subtracted from the CA� R/C

and from PL � R/P degrees of freedom, there are only two degrees of freedom

left for the error terms for CA and PL. For the contrast of sugar cane soil versus

pineapple soil, S, the comparison of columns within S is used for Error S.

Ignoring the factors preplanting fumigation (I, II, III), postplanting fumigation

(Y, Z), and postplanting fertilization (S, U), an analysis of variance partitioning of

the degrees of freedom for the remaining factors (Figure 6.5) is given in Table 6.5.

There are 15 different error terms in this partitioning of the 64 degrees of freedom.

From Figure 6.5, it can be seen that the replicates for the contrast of major

elements versus minor elements M are the columns, cols, and not the rows R. For mi

there are four columns. For treatment 1 versus 4, ma, there are four columns. The

same holds true for the contrast of treatment 2 versus treatment 3, mi.

Ignoring the treatment factors in Table 6.5, the factors preplanting fumigation

(I, II, III), postplanting fumigation (Y, Z), and postplanting fertilization (S, U) are

in a standard split split plot experiment design arrangement where the rows form

the replicates. An analysis of variance for this part of the experiment is given in

Table 6.6. As for a standard split split plot experiment design, there are three

different error terms in this partitioning. There are a total of 48 observations in this

breakdown of the degrees of freedom. The rows form the replicates for these three

sets of treatments.

Other partitions of parts of the experiment may be useful before proceeding to the

combined analysis of variance for partitioning the degrees of freedom for the 768

observations. For example, it may be useful to consider an analysis for the original

sixteen plots together with the three preplanting fumigation treatments and ignoring

all other factors. This consideration involves a form of a split block experiment

design.
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Table 6.5. Partitioning of the Degrees of Freedom in an

Analysis of Variance Table for Soils, Treatments 1 to 4, Rows,

Major versus Minor Elements, Major Elements, and

Minor Elements.

Degrees of

Source of variation freedom Subtotal

Total 64

Correction for the mean 1

Soils (Columns 1þ 2 versus 1

3þ 4¼ CþA versus

Pþ L)¼ S

Columns within soils¼ error S 2

Rows on sugar cane land¼ R/C 3

Treatments on cane land 1

(C versus A)¼ CA

Error CA 2

Rows on pineapple land 3

Treatments on pineapple land 1

(P versus L)¼ PL

Error PL 2 16

Major versus minor¼ 1þ 4 1

versus 2þ 3¼M

Error M¼M� cols 3

M� CA 1

Error M� CA¼M� CA� R 3

M� PL 1

Error M� PL¼M� PL� R 3

M� S 1

Error M� S¼M� S� cols 3 32

Major¼ma¼ 1 versus 4 1

Error ma¼ma� cols 3

ma� CA 1

Error ma� CA¼ma� CA� R 3

ma� PL 1

Error ma� PL¼ma� PL� R 3

ma� S 1

Error ma� S¼ma� S� cols 3

Minor¼mi¼ 2 versus 3 1

Error mi¼mi� cols 3

mi� CA 1

Error mi� R 3

mi� PL 1

Error mi� PL¼mi� PL� R 3

mi� S 1

Error mi� S¼mi� S� cols 3 64
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The rules and procedures used above to obtain statistical analyses have been

explained in detail by Federer (1975, 1977) and in Chapter 5.

6.4. A COMBINED ANALYSIS OF VARIANCE PARTITIONING OF
THE DEGREES OF FREEDOM

Note that the factors in Table 6.6 are in a split block arrangement with those in

Table 6.5. There are a total of 12� 64¼ 768 observations. A combined analysis of

variance partitioning of the degrees of freedom is presented in Table 6.7. We first

enter the analysis of variance table in Table 6.5 with the partitioning of the 64

degrees of freedom. Then, the partitioning of the degrees of freedom in Table 6.6 is

added. To this point 108 degrees of freedom have been taken into account. There are

64 coming from Table 6.5 and 44 from Table 6. Four of the degrees of freedom in

Table 6.6 have been included in Table 6.5. These are three degrees of freedom for

rows and one degree of freedom for the correction for the mean. Rows are taken to be

the replicates for factors CA, PL, F, PF, and U. Columns form the replicates for the

other factors.

Note that the factor preplanting fumigation was first combined with the factors

in Table 6.5. Then the factor postplanting fumigation was added, and finally the

factor postplanting fertilization was added to complete the partitioning. There are

Table 6.6. Partitioning the Degrees of Freedom in an Analysis

of Variance for the Treatment Factors Preplanting Fumigation

(I, II, III), Postplanting Fumigation (Y, Z), and Postplanting

Fertilization (S and U).

Degrees of

Source of variation freedom Subtotal

Total 48

Correction for the mean 1

Rows¼ replicates¼ R 3

Preplanting fumigation¼ F 2

Error F¼ F� R 6 12

Postplanting fumigation¼ 1

Y versus Z¼ PF

F� PF 2

Error PF¼ PF� R within F 9 24

Postplanting fertilization¼ 1

U versus S¼U

U� F 2

U� PF 1

U� F� PF 2

Error U¼U� R within F and PF 18 48
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Table 6.7. A Partitioning of the 768 Degrees of Freedom for the Experiment.

Degree of

Source of variation freedom Obser. Error term Line

Total 768 1

Correction for the mean 1 2

Soils (Columns 1þ 2 versus 1 3

3þ 4¼ CþA versus Pþ L)¼ S

Columns within soils¼ error S 2 4

Rows¼ R/sugar cane¼ R/C 3 5

Treatments on cane land 1 6

(C versus A)¼ CA

Error CA 2 E1 7

Treatments on pineapple land 1 8

(P versus L)¼ PL

Rows on pineapple land¼ R/P 3 9

Error PL 2 16 E2 10

Major versus minor¼ 1þ 4 1 11

versus 2þ 3¼M

Error M¼M� cols 3 E3 12

M� CA 1 13

Error M� CA¼M� CA� R 3 E4 14

M� PL 1 15

Error M� PL¼M� PL� R 3 E5 16

M� S 1 17

Error M� S¼M� S� cols 3 32 E6 18

Major¼ma¼ 1 versus 4 1 19

Error ma¼ma� cols 3 E7 20

ma� CA 1 21

Error ma� CA¼ma� CA� R 3 E8 22

ma� PL 1 23

Error ma� PL¼ma� PL� R 3 E9 24

ma� S 1 25

Error ma� S¼ma� S� cols 3 E10 26

Minor¼mi¼ 2 versus 3 1 27

Error mi¼mi� cols 3 E11 28

mi� CA 1 29

Error mi� R 3 E12 30

mi� PL 1 31

Error mi� PL¼mi� PL� R 3 E13 32

mi� S 1 33

Error mi� S¼mi� S� cols 3 64 E14 34

Preplanting fumigation¼ F 2 35

Error F¼ F� R 6 72 E15 36

Postplanting fumigation¼ 1 37

Y versus Z¼ PF
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Table 6.7. (Continued )

Degree of

Source of variation freedom Obser. Error term Line

F� PF 2 38

Error PF¼ PF� R within F 9 84 E16 39

Postplanting fertilization¼ 1 40

U versus S¼U

U� F 2 41

U� PF 1 42

U� F� PF 2 43

Error U¼U� R within F and PF 18 108 E17 44

F� S 2 45

Error FS¼ F� S� R 6 E18 46

F� CA 2 47

Error F� CA¼ F� CA� R/C 6 E19 48

F� PL 2 49

Error F� PL¼ F� PL� R/P 6 E20 50

F�M 2 51

Error F�M¼ F�M� R 6 E21 52

F�M� CA 2 53

Error F�M� CA¼ 6 E22 54

F�M� CA� R

F�M� PL 2 55

Error F�M� PL¼ 6 E23 56

F�M� PL� R

F�M� S 2 57

Error F�M� S¼ F�M� S� R 6 E24 58

F�ma 2 59

Error F�ma¼ F�ma� R 6 E25 60

F�ma� CA 2 61

Error F�ma� CA¼ F�ma� CA� R 6 E26 62

F�ma� PL 2 63

Error¼ F�ma� PL� R 6 E27 64

F�ma� S 2 65

Error¼ F�ma� S� R 6 E28 66

F�mi 2 67

Error¼ F�mi� R 6 E29 68

F�mi� CA 2 69

Error¼ F�mi� CA� R 6 E30 70

F�mi� PL 2 71

Error¼ F�mi� PL� R 6 E31 72

F�mi� S 2 73

Error¼ F�mi� S� R 6 228 E32 74

PF� S 1 75

PF� F� S 2 76

Error¼ PF� S� R within F 9 E33 77
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Table 6.7. (Continued )

Degree of

Source of variation freedom Obser. Error term Line

PF� CA 1 78

PF� F� CA 2 79

Error¼ PF� CA� R within F 9 E34 80

PF� PL 1 81

PF� F� PL 2 82

Error¼ PF� PL� R within F 9 E35 83

PF�M 1 84

PF� F�M 2 85

Error¼ PF�M� R within F 9 E36 86

PF�M� S 1 87

PF� F�M� S 2 88

Error¼ PF�M� S within F 9 E37 89

PF�M� CA 1 90

PF� F�M� CA 2 91

Error¼ PF�M� CA� R within F 9 E38 92

PF�M� PL 1 93

PF� F�M� PL 2 94

Error¼ PF�M� PL� R within F 9 E39 95

PF�ma 1 96

PF� F�ma 2 97

Error¼ PF�ma� R within F 9 E40 98

PF�ma� S 1 99

PF� F�ma� S 2 100

Error¼ PF�ma� R within F 9 E41 101

PF�ma� CA 1 102

PF� F�ma� CA 2 103

Error¼ PF�ma� CA� R within F 9 E42 104

PF�ma� PL 1 105

PF� F�ma� PL 2 106

Error¼ PF�ma� PL� R within F 9 E43 107

PF�mi 1 108

PF� F�mi 2 109

Error¼ PF�mi� R within F 9 E44 110

PF�mi� S 1 111

PF� F�mi� S 2 112

Error¼ PF�mi� R within F 9 E45 113

PF�mi� CA 1 114

PF� F�mi� CA 2 115

Error¼ PF�mi� CA� R within F 9 E46 116

PF�mi� PL 1 117

PF� F�mi� PL 2 118

Error¼ PF�mi� CA� R within F 9 408 E47 119

U� S 1 120

U� F� S 2 121
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Table 6.7. (Continued )

Degree of

Source of variation freedom Obser. Error term Line

U� PF� S 1 122

U� F� PF� S 2 123

Error¼U� S� R within F and PF 18 E48 124

U� CA 1 125

U� F� CA 2 126

U� PF� CA 1 127

U� F� PF� CA 2 128

Error¼U� CA� R within F and PF 18 E49 129

U� PL 1 130

U� F� PL 2 131

U� PF� PL 1 132

U� F� PF� PL 2 133

Error¼U� PL� R 18 E50 134

U�M 1 135

U� F�M 2 136

U� PF�M 1 137

U� F� PF�M 2 138

Error¼U�M� R within F and PF 18 E51 139

U�M� S 1 140

U� F�M� S 2 141

U� PF�M� S 1 142

U� F� PF�M� S 2 143

Error¼U�M� S� R within 18 E52 144

F and PF

U�M� CA 1 145

U� F�M� CA 2 146

U� PF�M� CA 1 147

U� F� PF�M� CA 2 148

Error¼U�M� CA� R within 18 E53 149

F and PF

U�M� PL 1 150

U� F�M� PL 2 151

U� PF�M� PL 1 152

U� F� PF�M� PL 2 153

Error¼U�M� PL� R within 18 E54 154

F and PF

U�ma 1 155

U� F�ma 2 156

U� PF�ma 1 157

U� F� PF�ma 2 158

Error¼U�ma� R within 18 E55 159

F and PF

U�ma� S 1 160

U� F�ma� S 2 161

U� PF�ma� S 1 162
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62 error terms in the above partitioning of the 768 degrees of freedom. Note that

65 lines are easily added to this table by using the contrast for F of none versus

the mean of the 400 and 800 pound applications and the contrast of 400 versus 800

and all interactions involving these contrasts. This would have produced an analysis

of variance table with 194þ 65¼ 259 lines.

Table 6.7. (Continued )

Degree of

Source of variation freedom Obser. Error term Line

U� F� PF�ma� S 2 163

Error¼U�ma� S� R within 18 E56 164

F and PF

U�ma� CA 1 165

U� F�ma� CA 2 166

U� PF� CA 1 167

U� F� PF� CA 2 168

Error¼U�ma� CA� R within 18 E57 169

F and PF

U�ma� PL 1 170

U� F�ma� PL 2 171

U� PF�ma� PL 1 172

U� F� PF�ma� PL 2 173

Error¼U�ma� PL� R within 18 E58 174

F and PF

U�mi 1 175

U� F�mi 2 176

U� PF�mi 1 177

U� F� PF�mi 2 178

Error¼U�mi� R within 18 E59 179

F and PF

U�mi� S 1 180

U� F�mi� S 2 181

U� PF�mi� S 1 182

U� F� PF�mi� S 2 183

Error¼U�mi� S� R within 18 E60 184

F and PF

U�mi� CA 1 185

U� F�mi� CA 2 186

U� PF�mi� CA 1 187

U� F� PF�mi� CA 2 188

Error¼U�mi� CA� R 18 E61 189

U�mi� PL 1 190

U� F�mi� PL 2 191

U� PF�mi� PL 1 192

U� F� PF�mi� PL 2 193

Error¼U�mi� PL� R

within F and PF 18 768 E62 194

162 world records for the largest analysis



6.5. SOME COMMENTS

Since such analyses, as presented above, involve a considerable amount of creative

thinking and effort on the part of the statistical analyst, joint authorship on

publication of results from the experiment should be the rule. Most experimenters

would be unable to produce analyses such as those described in this and the previous

three chapters. This is not standard textbook material. Hence, the aid of a statistician

is crucial in summarizing the results from such experiments.

6.6. PROBLEMS

Problem 6.1. Ignore all row treatment applications and obtain a partitioning of the

degrees of freedom in the analysis of variance using the results in Table 6.2. Describe

the type of design for this analysis.

Problem 6.2. Ignore all column treatment applications and obtain a partitioning of

the degrees of freedom in the analysis of variance using the results in Table 6.3.

Describe the design of the experiment for this analysis.

Problem 6.3. Using the analysis of variance given in Table 6.2, obtain a partitioning

of the degrees of freedom in an analysis of variance. How many lines are there in this

analysis of variance? How many error terms are there?
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APPENDIX 6.1. FIGURE 6.1 TO FIGURE 6.6

C A  L P 
A C  P L 
C A  L P 
A C  P L 

Old sugarcane land Roadway Old pineapple land

Figure 6.1. Original 16 experimental units.
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II 
I 
III 

A C  P L 

Figure 6.2. Adding preplanting fumigation as a split block treatment.
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Figure 6.3. Adding postplanting fumigation as a split plot to preplanting fumigation.
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Figure 6.4. Adding fertilizer (split split plot) treatments to the layout in Figure 6.3.
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Pre-           
Plant Old cane land     Old pineapple land  Post plant 
fumig. major minor elem. major Roadway major minor elem. major fumig. 
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Figure 6.5. Design of experiment in columns illustrating the layout of the experiment with major and

minor elements added and S and U omitted. Treatments 1 and 4 appear as major and 2 and 3 appear as

minor treatments.
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Figure 6.6. Layout of the experiment with all treatments added except C, A, P, and L. Treatments 1 and

4 appear randomly as major, and 2 and 3 appear as minor treatments.
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C H A P T E R 7

Augmented Split Plot Experiment

Design

7.1. INTRODUCTION

A number of different augmented experiment designs have been described in the

literature. Starting with the paper by Federer (1956), augmented experiment designs

were created for screening large number of genotypes or other treatments such as

herbicides, fungicides, and others. An augmented experiment design is obtained by

starting with any standard experiment design plan and then increasing the block size,

the number of rows and/or columns, and others, in order to include n new or

augmented treatments, which are usually included only once in an experiment. The

large number of new treatments and scarcity of material preclude the new treatments

from being replicated. Augmented complete and incomplete block experiment

designs were described by Federer (1961). Augmented Latin square designs were

presented by Federer and Raghavarao (1975), Federer et al. (1975), and Federer

(1998). A presentation of augmented designs is given in Chapter 10 of the Federer

(1993) book on intercropping experiments. The class of augmented lattice square

experiment designs has been presented by Federer (2002). SAS codes for analyzing

data from augmented experiment designs have been described by Wolfinger et al.

(1997), Federer (2003), and Federer and Wolfinger (2003). Federer (2005) has

described a class of augmented split block designs and has described analyses for

these designs and presented a SAS code for the associated analyses.

The contents of this chapter have been given by Federer and Arguillas

(2005a,b), where they have shown how to construct and analyze data from the

class of augmented split plot experiment designs (ASPEDs) and to present some

variations for this class of designs. In the following section, Section 7.2, a

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.

169



description of an augmented randomized experiment design with split plots is

given. The augmented and related check treatments, genotypes, form the whole

plots. The statistical analysis is presented and is illustrated with a numerical

example.

In Section 7.3, the genotype treatments form the split plot treatments in an

ASPED. The statistical analysis is discussed and a numerical example is presented to

illustrate the procedure. In Section 7.4, the design of Section 7.3 with split split plot

treatments is discussed and a statistical analysis illustrated with a numerical example

is presented. Other variations are described in Section 7.5. Computer codes, data,

and output for each of the three numerical examples are given in the three

appendices.

7.2. AUGMENTED GENOTYPES AS THE WHOLE PLOTS

ASPEDs may be used for any type of treatment for screening purposes. We use

genotype as the treatment and do not infer that an ASPED is useful only for

genotypes as treatments. To illustrate an experiment with augmented genotypes as

whole plots, suppose n new genotypes are to be screened for their performance

using varying levels of density, irrigation, insecticides, herbicides, date of

planting, or other variables that are used in the growing of a cultivar. These

genotypes may have been screened in a previous cycle or cycles and have been

reduced in number. At this stage of selection, it may be desirable to consider all

genotypes in an experiment as fixed effects. Consider an augmented randomized

complete block experiment design with r replicates, c standards or checks, and

n new genotypes with n/r new genotypes per replicate. Each of the new genotypes

appears only once in the experiment.

Using a form of parsimonious experiment design as described by Federer and

Scully (1993) and Federer (1993), a whole plot experimental unit (wpeu) would be

planted in such a manner that the split plot treatment has decreasing values

throughout the wpeu. For example, suppose that the wpeu is 30 feet long. Then the

split plot treatment could be applied in decreasing amounts throughout the wpeu. Or,

one could partition the wpeu into five, say, split plot experimental units each

measuring six feet in length with either decreasing amounts or by randomizing the

levels of the split plot treatment. Certain treatments, say date of planting, density,

irrigation, herbicide, and fertilizer, lend themselves better to a continuous decrease.

For such cases, there should be no natural gradients within the wpeus. If there is only

random variation within a whole plot experimental unit, a systematic application of

the split plot treatments from one end of the experimental unit to the other would not

affect the statistical analysis and a regression response equation may suffice. It

would not be advisable to have a high level of fertilizer adjacent to a low level unless

the plots are reasonably far apart—about the height of the plant—to avoid inter-plot

competition.

Without partitioning the genotype degrees of freedom into check and new, a

standard split plot linear model holds, as can be seen from the following table.
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An analysis of variance table for the above-described experiment may be of the

form:

Source of variation Degrees of freedom

Total f (rcþ n)

Correction for mean 1

Replicates, R r� 1

Genotypes, whole plot treatments G cþ n� 1

Checks C c� 1

New N n� 1

C versus N 1

G� R¼ checks� R¼ C� R (c� 1)(r� 1)

Date of planting D d� 1

D�G (d� 1)(cþ n� 1)

D� C (d� 1)(c� 1)

D� N (d� 1)(n� 1)

D� C versus N d� 1

D � R within G c(d� 1)(r� 1)

More information is obtained on the date of planting D and on the date of planting by

genotype interaction D�G than on genotypes in a design such as this.

Example 7.1. A numerical example is presented to illustrate an analysis for an

ASPED with genotypes as the whole plot treatments in an augmented

randomized complete block experiment design and with fertilizer as the split

plot treatments. For the genotypes, let the number of check genotypes be c¼ 4

(numbered 25–28), the number of new genotypes be n¼ 24 (numbered 1–24), the

number of fertilizers be f¼ 3 (F1, F2, and F3), and the number of replicates or

blocks be r¼ 4. Owing to the fact that the SAS PROC GLM procedure (SAS

Institute, 1999–2001) sets the highest numbered effect equal to zero, it is a good

idea to use the highest number for a check genotype as all the estimated effects

have the highest numbered effect subtracted from all other effects. The effects

obtained in the SAS output are differences of an effect minus the highest

numbered effect. The standard error given is a standard error of a difference

between two effects and not a standard error of an effect or of a mean, as

indicated on the output.

Artificial data for an ASPED with four check genotypes, 24 new genotypes, three

fertilizer levels, and with four replicates are presented in Table 7.1.

The SAS code for the above data is given in Appendix 7.1. An analysis of

variance table, ANOVA, for the responses in Table 7.1 is presented in Table 7.2.

Type III sums of squares and mean squares are reported. Also presented in Table 7.2

is an ANOVA for checks only and for new treatments only. The sources of variation

in the ANOVA tables are based on and describe the linear model utilized for
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the analyses. To obtain the last two ANOVAs, the SAS code is altered by putting an

IF – THEN statement immediately following the INPUT statement. The SAS

statement required when only checks are being considered, is

IF G< 25 THEN DELETE;

Table 7.1. Responses (Data) for an ASPED with f¼ 3, c¼ 4, n¼ 24, and r¼ 4.

Replicate 1 Replicate 2

Genotype Genotype

F* 25 26 27 28 1 2 3 4 5 6 F* 25 26 27 28 7 8 9 10 11 12

F1 2 1 9 9 2 3 4 5 6 7 F1 3 2 8 7 1 2 3 4 8 3

F2 4 3 9 9 5 6 7 8 8 8 F2 3 2 8 8 2 3 4 4 8 5

F3 6 5 8 7 7 5 6 4 8 7 F3 7 4 8 9 3 5 4 5 8 7

Replicate 3 Replicate 4

Genotype Genotype

F* 25 26 27 28 13 14 15 16 17 18 F* 25 26 27 28 19 20 21 22 23 24

F1 4 2 8 7 7 5 3 7 6 5 F1 4 5 9 9 5 6 7 8 9 9

F2 6 5 7 7 7 6 5 7 8 7 F2 5 2 9 8 8 6 4 7 8 8

F3 8 7 9 9 9 8 6 9 8 8 F2 6 5 9 7 9 8 8 9 9 9

F* is fertilizer with three levels F1, F2, and F3.

Table 7.2. ANOVA for Example 7.1, Type III Sums of Squares.

Source of variation Degrees of freedom Sum of squares Mean square

Total 120 5181 —

Correction for mean 1 4575.675 —

Replicate R 3 5.750 1.917

Genotype G 27 343.483 12.722

G� R 9 11.750 1.306

F 2 50.505 25.252

F�G 54 77.983 1.444

F� R wn G 24 27.500 1.146

Checks only — — —

Replicate R 3 5.750 1.917

Check 3 202.417 67.472

Check� R 9 11.750 1.306

F 2 21.292 10.646

F� check 6 21.208 3.535

F� R within check 24 27.500 1.146

New only — — —

New 23 219.986 9.565

F 2 40.444 20.222

New� F 46 54.889 1.193
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The SAS statement needed for only new genotypes is

IF G> 24 THEN DELETE;

The MODEL statement for new genotypes needs to be changed to

MODEL Y¼ F G F*G.

Some of the contrasts for new treatment effects are confounded with the replicate

effects. This is the reason replicate was omitted in the above MODEL statement.

The code in Appendix 7.1 for SAS PROC GLM gives solutions for the parameters

in the MODEL statement and the least squares means are arranged in descending

order of magnitude. The SAS PROC MIXED code results in solutions for the fixed

effects in the model statement, the solutions for the random effects, the least

squares means for the fixed effects in the order given in the lsmeans statement, the

random effect solutions arranged in descending order, and the least squares means

for fixed effects arranged in descending order. If the augmented genotypes are

nearing final testing, the experimenter may wish to consider them as fixed effects

rather than as random effects. In the early stages of testing, new genotypes should

be considered as random effects. As they approach final testing, the selected

genotypes become fixed effects with each genotype being identified by a name or

number/letter designation.

Since only the check least squares means and the fertilizer by check least squares

means, Table 7.3, are estimable by SAS PROC GLM, the estimated effects are

presented in Table 7.4.

In the above analyses, the genotype effects have been treated as fixed effects. If

the analyst wishes to consider them as random effects and uses the SAS PROC

MIXED procedure, reference may be made to the codes given in Appendix 7.1, by

Federer (1998, 2003), by Federer and Wolfinger (2003), and by Wolfinger et al.

(1997). If the number of new genotypes becomes large, the analyst may wish to

order their responses in descending order (see above references) as is done with the

computer code given for this example. Both SAS PROC GLM and PROC MIXED

analyses are given by the code in Appendix 7.1.

Table 7.3. Least Squares Means for Checks and Fertilizers

for Example 7.1.

Genotype F1 F2 F3 Genotype

25 3.25 4.50 6.75 4.83

26 2.50 3.00 5.25 3.58

27 8.50 8.25 8.50 8.42

28 8.00 8.00 8.00 8.00

Fertilizer 5.56 5.94 7.06 6.18
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7.3. AUGMENTED GENOTYPES AS THE SPLIT PLOTS

The genotypes may be used as split plot treatments with whole plot treatments

consisting of other factors such as tillage, fertilizer, irrigation, etc. Consider an

experiment with t tillage whole plot treatments, c check or standard treatments,

n new genotypes, and r replicates. The checks and new genotypes are the split plot

treatments. An analysis of variance partitioning of the degrees of freedom is given in

Table 7.5. There will be n/r new genotypes in each replicate if n is divisible by r.

Otherwise, the number of new genotypes in a replicate will vary. A new genotype in

a replicate appears in each of the t tillage whole plot treatments, but only in one of

the replicates. This makes the new genotypes replicated over the t whole plot

treatments.

Table 7.4. Estimated Effects Using SAS GLM for Example 7.1.

Genotype F1 F2 F3 Genotype

1 �5.00 �2.00 0.00 �1.33

2 �2.00 þ1.00 0.00 �3.33

3 �2.00 þ1.00 0.00 �2.33

4 þ1.00 þ4.00 0.00 �4.33

5 �2.00 0.00 0.00 �0.33

6 0.00 þ1.00 0.00 �1.33

7 �2.00 �1.00 0.00 �5.00

8 �3.00 �2.00 0.00 �3.00

9 �1.00 0.00 0.00 �4.00

10 �1.00 �1.00 0.00 �3.00

11 þ0.00 0.00 0.00 0.00

12 �4.00 �2.00 0.00 �1.00

13 �2.00 �2.00 0.00 1.33

14 �3.00 �2.00 0.00 0.33

15 �3.00 �1.00 0.00 �1.67

16 �2.00 �2.00 0.00 1.33

17 �2.00 0.00 0.00 0.33

18 �3.00 �1.00 0.00 0.33

19 �4.00 �1.00 0.00 1.00

20 �2.00 �2.00 0.00 0.00

21 �1.00 �4.00 0.00 0.00

22 �1.00 �2.00 0.00 1.00

23 �0.00 �1.00 0.00 1.00

24 0.00 �1.00 0.00 1.00

25 �3.50 �2.25 0.00 �1.08

26 �2.75 �2.25 0.00 �2.33

27 0.00 �0.25 0.00 1.08

28 0.00 0.00 0.00 0.00

Fertilizer 0.00 0.00 0.00 0.00
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In the above table, Ni represents the new genotypes in each level of whole plot

treatment T in replicate Ri, i¼ 1, . . ., r. c denotes check treatments.

Example 7.2. To illustrate the analysis for an ASPED in which the genotypes are the

split plot treatments, let t¼ 4 tillage whole plot treatments, c¼ 3 check genotypes

numbered 20, 21, and 22, n¼ 19 new genotypes numbered 1–19, and r¼ 4

replicates. Since 19 is not divisible by 4, five new genotypes are allocated to three of

the four replicates and four to the fourth replicate. There will be a total of 124 split

plot experimental units, speus, and responses. There will be t replications of the

particular new genotypes in each replicate as the new genotypes in a replicate appear

with each of the t¼ 4 tillage whole plot treatments. Since an experiment of this type

has most likely never been conducted, artificial data for this example are given in

Table 7.6.

An analysis of variance for the data in Table 7.6 is given in Table 7.7. The

computer code is given in Appendix 7.2. For this example, least squares means

are available for tillage, genotype, and the tillage by genotype combinations. Using

the SAS PROC GLM code in Appendix 7.2, the least squares means are arranged in

descending order from highest to lowest. The means given in Table 7.8 are not

ordered. The individual analyses of variance for checks alone and for new alone are

not given, but may be obtained as described for Example 7.1. The analyses follow

those for nonaugmented experiment designs.

If the new genotypes are considered to be random effects, use may be made of the

PROC MIXED part of the code in Appendix 7.2. Solutions for the fixed effects in the

MODEL statement, solutions for the random effects in the RANDOM statement,

Table 7.5. Analysis of Variance Table for t Tillage Treatments,
c Check Treatments, n New Genotypes, and r Replicates with
Genotypes and Checks as Split Plot Treatments.

Source of variation Degrees of freedom

Total t(rcþ n)

Correction for mean 1

Replicates R r� 1

Tillage T t� 1

R� T, Error T (r� 1)(t� 1)

Genotypes G cþ n� 1

G� T (t� 1)(cþ n� 1)

C� T (c� 1)(t� 1)

N1� T within rep. 1 (n/r� 1)(t� 1)

N2� T within rep. 2 (n/r – 1)(t� 1)

. . .
Nr� T within rep. r (n/r� 1)(t� 1)

C versus N� T t� 1

C� R within T, Error G t(r� 1)(c� 1)
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least squares means for the fixed effects in the MODEL statement, a descending

order for the fixed effects, a descending order for the random effects, and a

descending order for the fixed effect least squares means are obtained by the code.

7.4. AUGMENTED SPLIT SPLIT PLOT EXPERIMENT DESIGN

One of the many variations possible for ASPEDs is an augmented split split plot

experiment design (ASSPED). To illustrate an ASSPED, suppose there are t

treatments representing the whole plot treatments, v¼ c checksþ n new genotypes

representing the split plot treatments, f split split plot treatments, and r replicates of

the t whole plot treatments. That is, the ASPED in Section 7.3 has a further

Table 7.6. Responses (Data) for an ASPED with t¼ 4 Whole Plot Tillage Treatments,

r¼ 4 Complete Blocks, and c¼ 3 Check Genotypes (20, 21, and 22), and n¼ 19 New

Genotypes (1–19) as the Split Plot Treatments.

Replicate 1 Replicate 2

Genotype Genotype

Tillage 20 21 22 1 2 3 4 5 Tillage 20 21 22 6 7 8 9 10

1 6 4 7 8 7 6 5 9 1 8 7 6 3 3 4 4 9

2 8 5 9 9 8 5 5 8 2 9 6 7 3 2 2 5 7

3 7 6 9 5 6 7 4 6 3 7 4 5 3 3 3 6 7

4 5 4 7 3 4 5 2 4 4 6 4 7 5 4 5 7 7

Replicate 3 Replicate 4

Genotype Genotype

Tillage 20 21 22 11 12 13 14 15 Tillage 20 21 22 16 17 18 19

1 7 5 8 9 9 1 2 9 1 7 7 7 9 9 9 9

2 8 3 9 9 7 2 1 9 2 9 6 8 8 9 7 6

3 6 4 7 7 7 3 2 8 3 6 6 7 7 7 9 9

4 5 3 6 6 6 4 2 7 4 6 6 6 6 6 7 8

Table 7.7. Type III Analysis of Variance for Responses of Example 7.2.

Source of variation Degrees of freedom Sum of squares Mean square

Total 124 5076.000 —

Correction for mean 1 4512.129 —

Replicate R 3 4.229 1.410

Tillage T 3 22.668 7.556

R� T¼ error A 9 10.854 1.206

Genotype G 21 309.908 14.758

G� T 63 95.140 1.510

C� R within T 24 25.167 1.049
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partitioning of the split plot experimental units into split split plot experimental units

to which the split split plot treatments are applied. There are n/r new genotypes in

each replicate. A partitioning of the degrees of freedom in an analysis of variance

table for such an experiment design is

Source of variation Degrees of freedom

Total rtcfþ tfn

Correction for mean 1

Replicate R r� 1

Whole plot treatments W t� 1

R�W¼ error W (r� 1)(t� 1)

Split plot treatments S v� 1

W� S (t� 1)(v� 1)

W� checks C (t� 1)(c� 1)

W� new, N (t� 1)(n� 1)

W� C versus N t� 1

S� R within W t(c� 1)(r� 1)

Split split plot treatments SS f� 1

Table 7.8. Least Squares Means for Tillage and Genotype.

Genotype T1 T2 T3 T4 Genotype

1 8.92 8.92 3.83 3.08 6.19

2 7.92 7.92 4.83 4.08 6.19

3 6.92 4.92 5.83 5.08 5.69

4 5.92 4.92 2.83 2.08 3.94

5 9.92 7.92 4.83 4.08 6.69

6 2.58 2.92 3.83 4.75 3.52

7 2.58 1.92 3.83 3.75 3.02

8 3.58 1.91 3.83 4.75 3.52

9 3.38 4.92 6.83 6.75 5.52

10 8.58 6.92 7.83 6.75 7.52

11 8.92 9.58 7.50 6.75 8.19

12 8.92 7.58 7.50 6.75 7.69

13 0.92 2.58 3.50 4.75 2.94

14 1.92 1.58 2.50 2.75 2.19

15 8.92 9.58 8.50 7.75 8.69

16 8.58 7.58 6.83 5.42 7.10

17 8.58 8.58 6.83 5.42 7.35

18 8.58 6.58 8.83 6.41 7.60

19 8.58 5.58 8.83 7.42 7.60

20 7.00 8.50 6.50 5.50 6.88

21 5.75 5.00 5.00 4.25 5.00

22 7.00 8.25 7.00 6.50 7.19

Tillage 6.55 6.10 5.80 5.22 6.03

(Continued)
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SS�W (t� 1)(f� 1)

SS� S (f� 1)(v� 1)

SS�W� S (f� 1)(v� 1)(t� 1)

SS� R within W & S tc(f� 1)(r� 1)

If desired, the interactions of S and SS for two factors may be partitioned in a similar

manner as for the W� S interaction.

(Continued)

Source of variation Degrees of freedom

Table 7.9. Responses for the ASSPED.

Replicate 1

T1 T2

Genotype Genotype

Fertilizer 1 2 3 4 5 21 22 23 Fertilizer 1 2 3 4 5 21 22 23

F1 2 3 7 8 8 2 4 6 F1 3 4 7 9 7 3 5 6

F2 4 5 7 8 8 5 6 7 F2 4 6 8 8 9 6 7 7

F3 6 7 9 9 9 7 7 8 F3 5 8 9 9 9 7 8 8

Replicate 2

T1 T2

Genotype Genotype

Fertilizer 6 7 8 9 10 21 22 23 Fertilizer 6 7 8 9 10 21 22 23

F1 4 6 7 7 3 3 5 6 F1 5 6 7 7 4 2 6 6

F2 5 7 8 8 5 5 5 7 F2 6 7 9 7 5 4 7 7

F3 6 8 9 9 6 7 7 9 F3 7 7 8 9 7 5 8 8

Replicate 3

T1 T2

Genotype Genotype

Fertilizer 11 12 13 14 15 21 22 23 Fertilizer 11 12 13 14 15 21 22 23

F1 4 7 6 7 2 4 6 7 F1 5 8 7 7 4 3 7 7

F2 5 8 7 7 3 5 7 8 F2 5 8 7 8 5 6 7 8

F3 6 8 7 9 4 5 8 8 F3 6 9 9 8 7 6 9 9

Replicate 4

T1 T2

Genotype Genotype

Fertilizer 16 17 18 19 20 21 22 23 Fertilizer 16 17 18 19 20 21 22 23

F1 1 2 3 4 5 5 5 6 F1 2 3 4 5 6 4 7 7

F2 3 4 4 5 5 6 7 8 F2 2 5 6 7 7 6 8 8

F3 5 5 6 7 7 8 7 9 F3 4 6 7 7 8 7 8 9
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Example 7.3. To illustrate the analysis for the above experiment design, let the

number of replicates or complete blocks be r¼ 4, let the number of whole plot

treatments, tillage, be t¼ 2, let the number of split plot treatments, genotypes, in

each whole plot be (c¼ 3 checks)þ (n/r¼ 20/4¼ 5 new genotypes)¼ 3þ 5¼ 8,

and let the number of split split plot treatments, fertilizer, be f¼ 3. The fertilizer

treatments may be applied as described for Example 7.1. The new treatments are

numbered from 1 to 20 and the checks are numbered 21, 22, and 23. Hypothetical

data for an experiment designed as an ASSPED are given in Table 7.9.

An analysis of variance table for the data in Table 7.9 is given in Table 7.10.

Further partitioning of the degrees of freedom and sums of squares as described

above and for Example 7.1 may be made here as well. F-test statistics may be added

to the following table if desired.

Table 7.10. Type III Analysis of Variance for Responses in Table 7.9.

Source of variation Degrees of freedom Sum of squares Mean square

Total 192 8205.000 —

Correction for mean 1 7537.547 —

Replicate R 3 12.486 4.162

Tillage T 1 11.158 11.158

T� R 3 1.153 0.384

Genotype G 22 389.007 17.682

G� T 22 18.424 0.837

G� R within T 12 8.778 0.731

Fertilizer F — 120.563 60.282

F� T 2 0.822 0.411

F�G 44 23.459 0.533

F�G� T 44 10.740 0.244

F� R within G & T 36 11.333 0.315

Table 7.11. Estimable Least Squares Means for Data of Table 7.9.

Three factor means

T1 T2

Check F1 F2 F3 Check F1 F2 F3

21 3.50 5.25 7.75 21 3.00 5.50 6.25

22 5.00 6.25 7.25 22 6.25 7.25 8.25

23 6.25 7.25 8.50 23 6.50 7.50 8.50

Check by fertilizer means Check by tillage means

Check F1 F2 F3 Check T1 T2 Check mean

21 3.25 5.37 6.50 21 5.17 4.92 5.04

22 5.62 6.75 7.75 22 6.17 7.25 6.71

23 6.37 7.50 8.50 23 7.42 7.50 7.46
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Only least squares check means are given by SAS. Since least squares means are

not estimable, solutions for the effects are obtained and are given by the computer

code in Appendix 7.3. There are a large number of solutions involving all of the

effects. They may be found in Federer and Arguillas (2005a). The least squares

means that are estimable are given in Table 7.11.

7.5. DISCUSSION

As previously indicated, there are many variations of the ASPED. A combination

of split plot and split block experiment designs may be required by the

experimental conditions. For example, an augmented split block design for two

factors like tillage T and fertilizer F could be combined with genotypes G as split

plots to either T or F or T and F. Factors F and G could be in a split block

arrangement (Federer, 2005) with T as a split plot treatment. Another variation

would be to have a split split split plot experiment design for T, G, F, and a fourth

factor, say herbicides H. Instead of using augmented randomized complete block

designs, use may be made of other augmented designs such as an augmented

Latin square or rectangle design, an augmented incomplete block design, an

augmented lattice square design (Federer, 2002), and others. These designs could

be used in combination with split block and split plot arrangements, should the

experimenter prefer such arrangements.

The randomization procedure for these experiment designs follows that for the

nonaugmented experiment designs. An exception would be for the parsimonious

designs presented by Federer and Scully (1993). This is discussed in Section 7.2. It

would not be advisable to have adjacent levels largely different for some factors, say

fertilizer treatments, adjacent to each other because of inter-plot competition.

That is, quantitative levels would be placed adjacent to each other but in decreasing

values of the level of a factor. Spacing or bordering the different levels reasonably

far apart, about the height of the plant, may avoid inter-plot competition. The density

within a plot could be increased to have constant density per hectare for different

plant or row spacing treatments.

More detailed SAS computer outputs for the three numerical examples presented

here may be found in Federer and Arguillas (2005a).

7.6. PROBLEMS

Problem 7.1. Suppose that the experimenter eliminated genotypes 4, 7, and 9 from

consideration in Example 7.1. Obtain the analysis as described in Section 7.2 for the

remainder of the experiment. Compare your results with those presented for

Example 7.1.

Problem 7.2. Suppose that the experimenter decided not to obtain responses for

genotypes 15, 16, and 17 in Example 7.3 because of their poor performance and
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appearance in the field. Perform an analysis for the remainder of the data. Compare

your results with those given for Example 7.3.

7.7 REFERENCES

Federer, W. T. (1956). Augmented (or hoonuiaku) designs. Hawaiian Planters’ Record

55:195–208.

Federer, W. T. (1961). Augmented designs with one-way elimination of heterogeneity.

Biometrics 17:447–473.

Federer, W. T. (1993). Statistical Design and Analysis for Intercropping Experiments,

Volume I: Two Crops. Springer-Verlag, New York, Berlin, Heidelburg, London, Paris,

Tokyo, Hong Kong, Barcelona, Budapest, Chapter 10.

Federer, W. T. (1998). Recovery of interblock, intergradient, and intervariety information in

incomplete block and lattice rectangle designed experiments. Biometrics 54:471–481.

Federer, W. T. (2002). Construction and analysis for an augmented lattice square experiment

design. Biometrics J 44:261–257.

Federer, W. T. (2003). Analysis for an experiment designed as an augmented lattice

square design. In Handbook of Formulas and Software for Plant Geneticists and

Breeders (M. S. Kang, Editor), Food Products Press, Binghamton, New York, Chapter

27, pp. 283–289.

Federer, W. T. (2005). Augmented split block experiment design. Agronomy J 97:578–586.

Federer, W. T. and F. O. Arguillas, Jr. (2005a). Augmented split plot experiment design. BU-

1658-M in the Technical Report Series of the Department of Biological Statistics and

Computational Biology (BSCB), Cornell University, Ithaca, NY 14853, June.

Federer, W. T. and F. O. Arguillas, Jr. (2005b). Augmented split plot experiment design. J Crop

Improvement 15(1):81–96.

Federer, W. T., R. C. Nair, and D. Raghavarao. (1975). Some augmented row-column designs.

Biometrics 31:361–373.

Federer, W. T. and D. Raghavarao. (1975). On augmented designs. Biometrics 31:29–35.

Federer, W. T. and B. T. Scully. (1993). A parsimonious statistical design and breeding

procedure for evaluating and selecting desirable characteristics over environments. Theor

App Genet 86:612–620.

Federer, W. T. and R. D. Wolfinger. (2003). Augmented row-column designs and trend

analyses. In Handbook of Formulas and Software for Plant Geneticists and Breeders

(M. S. Kang, Editor), Food Products Press, Binghamton, New York, Chapter 28,

pp. 291–295.

SAS Institute, Inc. (1999–2001). Release 8.02, copyright, Cary, NC.

Wolfinger, R. D., W. T. Federer, and O. Cordero-Brana. (1997). Recovering information in

augmented designs, using SAS PROC GLM and PROC MIXED. Agronomy J

89:856–859.

references 181



APPENDIX 7.1. SAS CODE FOR ASPED, GENOTYPES AS WHOLE
PLOTS, EXAMPLE 7.1

A computer code for an analysis of the data in Table 7.1 is presented below. The data

set is given in an unabbreviated form in order to demonstrate the data entry into the

data file. These data also appear on the accompanying disk.

data asped;
input Y R G F;
if (G > 24) then new¼ 0; else new¼ 1;
if (new) then Gn¼ 999; else Gn¼ G;
datalines;

2 1 25 1
4 1 25 2
6 1 25 3
1 1 26 1
3 1 26 2
5 1 26 3
9 1 27 1
9 1 27 2
8 1 27 3
9 1 28 1
9 1 28 2
7 1 28 3
2 1 1 1
5 1 1 2
7 1 1 3
3 1 2 1
6 1 2 2
5 1 2 3
4 1 3 1
7 1 3 2
6 1 3 3
5 1 4 1
8 1 4 2
4 1 4 3
6 1 5 1
8 1 5 2
8 1 5 3
7 1 6 1
8 1 6 2
7 1 6 3
3 2 25 1
3 2 25 2
7 2 25 3
2 2 26 1
2 2 26 2
4 2 26 3
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8 2 27 1
8 2 27 2
8 2 27 3
7 2 28 1
8 2 28 2
9 2 28 3
1 2 7 1
2 2 7 2
3 2 7 3
2 2 8 1
3 2 8 2
5 2 8 3
3 2 9 1
4 2 9 2
4 2 9 3
4 2 10 1
4 2 10 2
5 2 10 3
8 2 11 1
8 2 11 2
8 2 11 3
3 2 12 1
5 2 12 2
7 2 12 3
4 3 25 1
6 3 25 2
8 3 25 3
2 3 26 1
5 3 26 2
7 3 26 3
8 3 27 1
7 3 27 2
9 3 27 3
7 3 28 1
7 3 28 2
9 3 28 3
7 3 13 1
7 3 13 2
9 3 13 3
5 3 14 1
6 3 14 2
8 3 14 3
3 3 15 1
5 3 15 2
6 3 15 3
7 3 16 1
7 3 16 2
9 3 16 3
6 3 17 1
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8 3 17 2
8 3 17 3
5 3 18 1
7 3 18 2
8 3 18 3
4 4 25 1
5 4 25 2
6 4 25 3
5 4 26 1
2 4 26 2
5 4 26 3
9 4 27 1
9 4 27 2
9 4 27 3
9 4 28 1
8 4 28 2
7 4 28 3
5 4 19 1
8 4 19 2
9 4 19 3
6 4 20 1
6 4 20 2
8 4 20 3
7 4 21 1
4 4 21 2
8 4 21 3
8 4 22 1
7 4 22 2
9 4 22 3
9 4 23 1
8 4 23 2
9 4 23 3
9 4 24 1
8 4 24 2
9 4 24 3
;

ods trace on;
proc glm data¼ asped;
class R G F;
model Y¼ R G R*G F F*G/solution ;
lsmeans F G F*G/ out¼ solution noprint;
ods output parameterestimates¼ aspedparameterestimates;
run;
/*Only G check means and check by F means are estimable*/
ods trace off;
proc sort data¼ aspedparameterestimates;
By descending Estimate ;

proc print; run;
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odslistingclose; /*Allows unordered solutions to not be printed.*/
ods trace on;
proc mixed data¼ asped;
class R F G Gn;

model Y¼ F Gn F*Gn/solution;

random R R*Gn G*new/solution;

lsmeans Gn F F*Gn;
ods output solutionr¼ solutionforrandomeffects;
ods output lsmeans¼ leastsquaresmeans;
run;
ods trace off;
ods listing; /* End of no printing statement of solutions.*/
proc sort data¼ solutionforrandomeffects;
By descending Estimate;

Proc print; run;
proc sort data¼ leastsquaresmeans;
By descending Estimate;

proc print; run;

APPENDIX 7.2. SAS CODE FOR ASPEDT, GENOTYPES AS SPLIT
PLOTS, EXAMPLE 7.2

The code for Example 7.2 is presented below. The code allows for the least squares

means, lsmeans, to be ranked in descending order of the response variable Y. For this

experiment design, all means are estimable for fixed effects. The complete data set is

given on the accompanying disk.

datadata aspedt;

input Y R T G;
If (G> 1919) then new¼ 0;0; else new¼ 1;1;
If (G< 2020) then Gn¼ 999;999; else Gn¼ G;
datalines;

6 1 1 20
4 1 1 21

. . .. . . .

7 4 4 18
8 4 4 19
;

proc glmproc glm data¼ aspedt;
class R T G;
model Y¼ R T R*T G G*T;
lsmeans T G T*G/out¼ lsmeans noprint;
/*All means estimable in Example 3.2.*/
run;run;
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proc sortproc sort data¼ lsmeans;
By descending LSMEAN;

proc print; Run;proc print; Run;
ods trace on;
proc mixedproc mixed data¼ aspedt;
class R G T Gn;

model Y¼ T Gn Gn*T/solution;

random R R*T G*new/solution;

lsmeans Gn T Gn*T;
ods output solutionf¼ solutionforfixedeffects;
ods output solutionr¼ solutionforrandomeffects;
ods output lsmeans¼ leastsquaresmeans;
run;run;

ods trace off;
proc sortproc sort data¼ solutionforfixedeffects;;
By descending Estimate;

proc print; run;proc print; run;
proc sortproc sort data¼ solutionforrandomeffects;
By descending Estimate;

proc print; run;proc print; run;
proc sortproc sort data¼ leastsquaresmeans;
By descending Estimate;

proc print; run;proc print; run;

APPENDIX 7.3. SAS CODE FOR ASSPED, EXAMPLE 7.3

The code for Example 7.3 is given below. The least squares means for other than

checks and interactions of T and F with checks, are nonestimable. The complete data

set is given on the accompanying disk.

datadata assped;
input Y R T G F;
if (G> 2020) then new¼ 0;0; else new¼ 1;1;
if (new) then Gn¼ 999;999; else Gn¼ G;
datalines;

2 1 1 1 1

4 1 1 1 2

. . .
8 4 2 23 2

9 4 2 23 3

;

ods trace on;
proc glmproc glm data¼ assped;
class R T G F;
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model Y¼ R T R*T G G*T R*G(T) F F*T F*G F*G*T/solution;

/*only means estimable are check G means*/
lsmeans T G T*G F F*T F*G F*G*T/out¼ solution;
ods output parameterestimates¼ asspedparameterestimates;
ods trace off;
proc sortproc sort data¼ asspedparameterestimates;
by descending Estimate;

proc print; run;proc print; run;
ods listing close; /*Unordered solutions not printed.*/
ods trace on;
proc mixedproc mixed data¼ assped;
class R T G F Gn;

model Y¼ T Gn Gn*T F F*T F*Gn F*Gn*T/solution;

random R R*T Gn*R(T) G*new/solution;

lsmeans T Gn Gn*T F F*Gn F*T F*Gn*T;
ods output solutionf¼ solutionforfixedeffects;
ods output solutionr¼ solutionforrandomeffects;
ods output lsmeans¼ leastsquaresmeans;
run;run;

ods trace off;
ods listing; /*End of no printing statement.*/
proc sortproc sort data¼ solutionforfixedeffects;
by descending Estimate;

proc print; run;proc print; run;
proc sortproc sort data¼ solutionforrandomeffects;
by descending Estimate;

proc print; run;proc print; run;
proc sortproc sort data¼ leastsquaresmeans;
by descending Estimate;

proc print; run;proc print; run;
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C H A P T E R 8

Augmented Split Block Experiment

Design

8.1. INTRODUCTION

A new class of augmented experiment designs as described by Federer (2005) is

presented herein. This class of experiment designs will allow screening

treatments from each of two or more factors simultaneously, or screening the

elements of one factor, for example genotypes, under a variety of conditions.

This class demonstrates another aspect of the flexibility available to an

experimenter as compared to the classes of augmented experiment designs

available before this paper (see references in Chapter 7). This class of experiment

designs bears some similarities to the parsimonious designs discussed by Federer

and Scully (1993) and Federer (1993), and the class of split block designs with

controls presented by Mejza (1998). Some members of the class of augmented

split block experiment designs are presented in the next section using examples

to illustrate the construction of these designs. In Section 8.3, the use of these

designs in the context of intercropping experiments is discussed. A numerical

example is presented in Section 8.4 to demonstrate the types of analyses that

accompany these designs. A few comments on these designs are presented in the

last section.

8.2. AUGMENTED SPLIT BLOCK EXPERIMENT DESIGNS

The ideas in the above references are used to construct augmented split block

experiment designs. A linear model for each of the augmented experiment designs is

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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given by the sources of variation listed in the partitioning of the total degrees of

freedom in the ANOVA table. Illustrations are used to demonstrate the construction

and analysis of this class of designs. For example, suppose that an experimenter used

ac¼ 4 standard or control genotypes and an¼ 64 new genotypes as the A factor and

two levels of fertilizers in combination with two types of soil preparation as the B

factor. Likewise, it may be that this experiment is to be conducted at several sites or

locations that have certain characteristics. It is desired to test or screen the new

treatments on the b¼ 4 factor B treatments, B1, B2, B3, and B4. Further suppose

that the experiment designs for the factor A and for the factor B were an augmented

randomized complete block design and a randomized complete block experiment

design, respectively. The four factor B treatments are in a split block arrangement to

the eight factor A treatments in each block. Given that eight complete blocks,

replicates, are to be used and that eight of the 64 new factor A treatments are to be

included in each of the eight blocks as the augmented treatments, an analysis of

variance table with a partitioning of the degrees of freedom is given below:

As a second example, suppose that the conditions of the above arrangement hold

except that an incomplete block design with r incomplete blocks of size k¼ 2 is used

for the ac¼ 4 factor A check treatments, A1, A2, A3, and A4. A plan before

randomization and before including the augmented treatments for this example is of

the form:

Degrees of freedom

Source of variation Example General

Total 384 rb (acþ an / r)

Correction for the mean 1 1

Replicate¼ R 7 r� 1

A treatments 67 acþ an� 1¼ v� 1

Control, C 3 ac� 1

Control versus new 1 1

New 63 an� 1

C� R¼ error A 21 (ac� 1)(r� 1)

B 3 b� 1

Soil 1 s� 1

Fertilizer 1 f� 1

Soil� fertilizer 1 (s� 1)(f� 1)

B� R 21 (b� 1)(r� 1)

A� B 201 (a� 1)(b� 1)

Control� B 9 (ac� 1)(b� 1)

Control vs. new� B 3 (1)(b� 1)

New� B 189 (an� 1)(b� 1)

C� B� R 63 (ac� 1)(b� 1)(r� 1)
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Block 1 Block 2 Block 3 Block 4

A1 A2 A2 A3 A3 A4 A4 A1

B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3 B3

B4 B4 B4 B4

In the above incomplete block arrangement for factor A check treatments, increase

the block size to eighteen experimental units. Sixteen of the 64 new factor A

treatments would be included in each of the four blocks. A set of sixteen new and

two controls or checks would be randomly allotted to the eighteen experimental

units for factor A in each of the four incomplete blocks. The B treatments would run

across these eighteen factor A treatments in a split block manner in each of the r¼ 4

blocks. The B treatments are in a randomized complete block design arrangement.

A linear model may be obtained from the partitioning of the degrees of freedom

for the above designed experiment as follows:

Degrees of freedom

Source of variation Example General

Total 288 anbþ rbac

Correction for mean 1 1

Block 3 r� 1

A treatments 67 acþ an� 1¼ a� 1

Control or check, C 3 ac� 1

Control versus new 1 1

New 63 an� 1

C� block¼ intrablock error for A 1 rk� ac� rþ 1

B 3 b� 1

B� block¼ error for B 9 (b� 1)(r� 1)

A� B 201 (a� 1)(b� 1)

B� control 9 (ac� 1)(b� 1)

B� control versus new 3 b� 1

B� new 189 (b� 1)(an� 1)

C� B� block¼ error for A� B 3 (rk� ac� rþ 1)(b� 1)

Note that the C� block, the error term for factor A, has only one degree of

freedom as the block sum of squares eliminating checks is partitioned into the

incomplete blocks within replicate with two degrees of freedom, and the

remaining one for the Error A which is the intrablock error from an incomplete

block experiment design.

Though the above design is connected, there are insufficient degrees of freedom

associated with the error terms. Hence, additional blocks and/or additional checks in

a block will be required. The three interactions with block mean squares would form
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the error terms for this augmented split block experiment design. If more new

treatments are to be tested, the number of blocks could be increased and more new

treatments could be included in the blocks of the factor A experimental units.

As a further variation of an augmented split block experiment design, consider

the following arrangement where both factors are designed as augmented

randomized complete blocks:

Block 1 Block 2 Block 3

Factor A Factor A Factor A

Factor B 1 2 3 4 5 6 7 Factor B 1 2 3 4 8 9 10 Factor B 1 2 3 4 11 12 13

1 1 1

2 2 2

3 3 3

4 6 8

5 7 9

The control treatments for factor A are 1, 2, 3, and 4 and the new or augmented factor

A treatments are numbered 5 to 13. The number of check or control factor A

treatments is defined as ac¼ 4 and the number of new factor A treatments as an¼ 9.

The augmented or new treatments are included only once in the experiment. For the

B factor, numbers 1, 2, and 3, are the control treatments and bc¼ 3 is defined to be

the number of checks. Numbers 4 to 9 are the new factor B treatments and we let

bn¼ 6 be the number of new factor B treatments. An analysis of variance

partitioning of the 105 degrees of freedom follows:

Degrees of freedom

Source of variation Example General

Total 3(5)(7)¼ 105 r(acþ an/r)(bcþ bn/r)

Correction for the mean 1 1

Block¼ R 2 r� 1

A 12 acþ an� 1

Control¼ AC 3 ac� 1

New¼ AN 8 an� 1

AC versus AN 1 1

AC� R¼ error A 2(3)¼ 6 (ac� 1)(r� 1)

B 8 bcþ bn� 1

Control¼ BC 2 bc� 1

New¼ BN 5 bn� 1

BC versus BN¼ BCN 1 1

BC� R¼ error B 2(2)¼ 4 (bc� 1)(r� 1)

A� B 60 ac(bcþ bn� 1)

þ (an� 1)(bc� 1)þ bn(an/r� 1)

AC� BC 3(2)¼ 6 (ac� 1)(bc� 1)

AC� BN 3(5)¼ 15 (ac� 1)(bn� 1)

(Continued)
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AC� BC vs. AN 3(1)¼ 3 (ac� 1)(1)

AN� BC 8(2)¼ 16 (an� 1)(bc� 1)

AN� BN/block 2(1)(3)¼ 6 r(an/r� 1)(bn/r� 1)

AN� BC vs. BN within block 2(1)(3)¼ 6 r(1)(an/r� 1)

AC vs. AN� BC 1(2)¼ 2 1(bc� 1)

AC vs. AN� BN within block 1(1)(3)¼ 3 1(bn/r� 1)(r)

AC vs. AN� BC vs. BN 1(1)(3)¼ 3 r

within block

AC� BC� R¼ error AB 3(2)(2)¼ 12 (ac� 1)(bc� 1)(r� 1)

Note that not all interactions of new treatments are obtained. The interactions of new

treatments in the same block are obtainable as there are two new B treatments and

three new A treatments in any one block. For some of the interactions, the contrasts

vary from block to block and will be different. This is why some of the degrees of

freedom were partitioned by a block.

Suppose the blocks for factor A were located in adjacent positions, that is, side by

side. If the nine B treatments were to go across all three blocks of the previous

example and the A treatments stayed the same, then there would be a total

9(4þ 3)(3)¼ 189 experimental units. The linear model is obtained from the

partitioning of the degrees of freedom given below:

(Continued)

Degrees of freedom

Source of variation Example General

Source of variation Degrees of freedom

Total 189

Correction for the mean 1

Block¼ R 2

Factor A¼ error A 12

Control¼ AC 3

New¼ AN 8

AC versus AN 1

AC� R¼ Error A 2(3)¼ 6

Factor B 8

BC 2

BN 5

BC vs. BN 1

B� R (not an error term) 8(2)¼ 16

B� A 8(12)¼ 96

B� AC 8(3)¼ 24

B� AN 8(8)¼ 64

B� AC vs. AN 8(1)¼ 8

A� B� R¼ AC� B� R¼ error AB 3(8)(2)¼ 48
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For the above arrangement, all A� B interaction terms are available. There is no

error term for factor B as there is only one layout (randomization) for this factor.

8.3. AUGMENTED SPLIT BLOCKS FOR INTERCROPPING
EXPERIMENTS

Consider the penultimate arrangement in the previous section. Here the treatments 1,

2, 3, and 4 of factor A could be four standard maize cultivars and factor A treatments

5 to 13 could be nine promising new genotypes of maize. Factor B treatments 1, 2,

and 3 could be three standard bean cultivars and treatments 4 to 9 could be six

promising new bean genotypes. The goal could be to determine how these mixtures

of maize and beans perform as an intercrop. The maize could be planted in rows and

the rows of beans could be planted perpendicular to the maize rows, in each block.

However, not all possible mixtures result here. If this is desired, then the last

example of the previous section could be used.

In intercropping and other mixture experiments, responses may be available for

the mixture or for individual components of the mixture. If the latter responses are

available, analyses may be conducted for each of the components. For example in

intercropping experiments with maize and beans, responses for maize and for beans

may be obtained. These responses may also be combined and an analysis conducted

on the combined responses. When responses are available for each crop in the

mixture, it is possible to estimate the various mixing effects for each component of

the mixture (See Federer, 1993, 1999).

Suppose that an experimenter desired to screen one set of new genotypes, say

beans, and another set of new genotypes, say maize, to determine their suitability for

intercropping systems. The treatments for the A factor could be the controls and new

genotypes of maize and the treatments for factor B could be the controls and new

genotypes for beans. Further, suppose that an augmented randomized complete

block experiment design was used for both the A and B factors with r¼ 8 blocks. Let

the number of new maize genotypes be 100 and the number of new bean genotypes

be 96. Twelve new bean genotypes with the four bean controls are randomly allotted

to the 16 factor B experimental units in each of the r¼ 8 blocks, replicates. Given

that five maize genotypes are the controls, there will be 5þ 12¼ 17 factor A

experimental units in four of the blocks and 5þ 13¼ 18 experimental units in the

other four blocks to accommodate the 100 new maize genotypes. These would be

randomly allotted to each of the eight blocks. There is a total of

4(16)(17)þ 4(16)(18)¼ 2,240 experimental units. A partitioning of the degrees of

freedom in an analysis of variance for this situation is:

Source of variation Degrees of freedom

Total [4(5þ 12)þ 4(5þ 13)][4þ 12]¼ 2,240

Correction for mean 1

Replicate¼ R 7

(Continued)
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Maize genotypes¼ A 104

Maize control¼MC 4

MC versus new¼MCN 1

New¼MN 99

MC� R 4(7)¼ 28

Bean genotypes 99

Bean control¼ BC 3

BC versus new¼ BCN 1

New¼ BN 95

BC� R 3(7)¼ 21

A� B 1896

BC�MC 3(4)¼ 12

BCN�MC 1(4)¼ 4

BN�MC 95(4)¼ 380

BC�MCN 3(1)¼ 3

BN�MCN within block 11(1)(8)¼ 88

BCN�MCN within block 1(1)(8)¼ 8

BC�MN 3(99)¼ 297

BCN�MN within block 4(1)(11)þ 4(1)(12)¼ 92

BN�MN within block 4(11)(11)þ 4(11)(12)¼ 1,012

AC� BC� R 84

8.4. NUMERICAL EXAMPLE 8.1

To illustrate the type of effects that are estimable from an augmented split block

experiment design, a hypothetical numerical example was constructed. The number

of factor A treatments is acþ an¼ 13¼ 4 controlsþ9 new treatments. The checks

are numbered A1, A2, A3, and A4 and the new treatments are numbered A5 to A13.

The number of factor B treatments is bcþ bn¼ 9¼ 3 controlsþ6 new treatments.

The controls are numbered B1, B2, and B3 and the new are numbered B4 to B9. An

augmented randomized complete block design with r¼ 3 blocks is used for each of

the factor A and factor B treatments. A systematic layout of the design and the

responses (data) is given in Table 8.1.

An analysis of variance along with F-values is presented in Table 8.2. The sums of

squares for the new treatments and the contrast of the new treatments versus the

control treatments were pooled in the table. It is possible to obtain the sums of squares

for each of the effects as given above, but that was not done for the example.

To obtain the analysis of variance table, three runs of SAS PROC GLM and one

run of SAS PROC MIXED were conducted. These four runs were for the A controls

and the B treatments, the B controls and the A treatments, for all 105 observations,

and for random new genotype effects. It is possible to obtain a further partitioning of

the sums of squares and degrees of freedom. This partitioning was described in the

previous section.

(Continued)

Source of variation Degrees of freedom
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Using the following SAS PROC GLM MODEL statement

Response¼ R A R*A B B*R A*B/solution;

it is possible to obtain solutions for all effects that are present in the model. These

solutions for the effects are useful as the LSMEANS statement does not produce

means for the new treatments. The effects obtained are presented in Table 8.3. No

solutions are available for the empty spaces in the table. The sum of squares for new

versus checks is pooled with the new sum of squares for six degrees of freedom. This

is because there are combinations of new treatments that do not appear in a block.

Solutions are possible only for combinations that appear in the design. When

interpreting these values, the procedure used to obtain them must be well

Table 8.1. Systematic Layout and Artificial Responses for an ASBED.

Block 1 Block2 Block3

B1 B2 B3 B4 B5 B1 B2 B3 B6 B7 B1 B2 B3 B8 B9

A1 9 7 5 9 1 A1 9 7 5 9 11 A1 11 10 10 15 9

A2 3 5 4 9 7 A2 13 5 4 9 7 A2 13 15 14 9 17

A3 8 7 5 9 2 A3 8 7 5 9 12 A3 8 17 15 9 12

A4 3 5 4 9 7 A4 13 5 4 9 7 A4 13 15 14 9 17

A5 8 7 5 9 2 A8 13 8 8 9 7 A11 13 15 14 19 17

A6 3 5 4 9 7 A9 8 7 8 9 12 A12 18 17 15 19 12

A7 8 7 5 9 2 A10 13 9 12 9 7 A13 13 15 14 19 17

Table 8.2. Type III Analysis of Variance for the Data in Table 8.1.

Source of variation Degrees of freedom Sum of squares Mean square F-value

Block¼ R 2 372.22 186.11

Factor A 12 93.00 7.75 0.93

Control¼ AC 3 2.75 0.92 0.11

New¼ ANþ 9 90.25 10.03 1.20

AC vs. AN¼ ACN

A� R 6 50.00 8.33

B 8 123.79 15.47 0.71

Control¼ BC 2 21.56 10.78 0.49

New¼ BNþ 6 102.23 17.04 0.78

BC vs. BN¼ BCN

B� R 4 87.44 21.86

A� B 60 380.83 6.35 1.56

AC� BC 6 18.00 3.00 0.74

AC� BNþ AC�BCN 18 150.80 8.38 2.05

AN� BCþ ACN� BC 18 42.33 2.35 0.58

Other interactions 18 169.70 9.43 2.31

AC� BC� R 12 49.00 4.08

numerical example 8.1 195



understood. The SAS PROC GLM procedure does not use the constraint that the sum

of the effects for a factor is zero. Instead, the procedure uses the constraint that

the highest numbered effect is set equal to zero. The consequence of this is that the

highest numbered effect for factor A (and for factor B) is subtracted from each of the

other factor A effects. For interactions, the effects in the last row and in the last

column are set to zero. That is, the last row effect is subtracted from each of the other

effects in a row and likewise for columns.

The SAS PROC GLM codes for the above analyses are given in Appendix 8.1.

The least squares means that appear in the SAS output are given in Table 8.4.

The means for the new treatments are obtained as the response for a new

treatment minus the block effect in which the new treatment occurred. The block

Table 8.3. SAS Solutions for Effects of the Responses of Table.8.1.

B treatments

A treatments 1 2 3 4 5 6 7 8 9 A effect

1 4.44 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �8.00

2 �0.22 �0.05 0.28 2.25 7.25 7.58 7.58 �10.00 0.00 �0.00

3 2.00 5.83 5.17 3.92 3.92 12.58 17.58 �5.00 0.00 �5.00

4 �0.22 �0.06 0.28 2.25 7.25 7.58 7.58 �10.00 0.00 �0.00

5 0.75 0.50 �0.00 �0.00 0.00 2.25

6 �9.25 �6.50 �6.00 �5.00 0.00 7.25

7 0.75 0.50 0.00 0.00 0.00 2.25

8 �6.25 �5.50 �4.00 0.00 0.00 7.58

9 �16.25 �11.50 �9.00 �5.00 0.00 12.58

10 �6.25 �4.50 0.00 0.00 0.00 7.58

11 0.00 0.00 �0.00 0.00 0.00 �0.00

12 10.00 7.00 6.00 0.00 0.00 �5.00

13 0.00 0.00 0.00 0.00 0.00 0.00

B tr. Effect �4.00 �2.00 �3.00 0.00 0.00 0.00 0.00 2.00 0.00

Table 8.4. Least Squares Means for the A and B
Control Treatments.

B controls

A controls 1 2 3 Mean

1 9.67 8.00 6.67 8.11

2 9.67 8.33 7.33 8.44

3 8.00 10.33 8.33 8.89

4 9.67 8.33 7.33 8.44

Mean 9.25 8.75 7.42 8.47
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effects may be obtained from an analysis of the control data only. The new

treatments do not contribute to estimating the block effects as they appear only once

in the experiment (Federer and Raghavarao, 1975).

8.5. COMMENTS

Any experiment design may be augmented to accommodate a set of new treatments

that are to be replicated one or more times, but usually once. The class of augmented

experiment designs is large and varied. Lack of material may be a factor in deciding

to use only one replicate. Or, it may be that the experimenter has so many new

lines that makes it undesirable or unrealistic to use more than one replicate of each

of the new treatments. For example, plant breeders of some crops may want to

screen up to 30,000 new entries each year. Others screen up to 8000 new entries

each year. Producers of fungicides, herbicides, and others may have hundreds of

new entries for screening. Since some of these treatments may kill all the plants in

an experimental unit, it is not desirable to undertake screening on more than one

experimental unit.

In field experiments involving intercrops, it is possible to first plant one crop in

the field and then, perpendicular to the planting of crop one, a second crop is planted

across the first crop in each of the blocks, or possibly across the entire experiment.

Such plans as the arrangements discussed above, allow the experimenter to put the

new treatments of two crops in each of the blocks in the desired arrangement to

obtain two crop mixing or combining effects for the selected combinations. For three

crops in a mixture, an experimenter could use one crop as the whole plot of a split

plot design and then use an augmented split block design, as described above, for the

other two factors or crops as the split plot treatments.

As stated, the use of an augmented split block experiment design allows the

experimenter to screen new treatments for various cultural or management practices.

The new treatments used in this situation would more often be new treatments that

have survived previous stages of screening and may be considered to be fixed rather

than random effects. Cultural practices such as soil preparation would be ideal for

this design. Spraying fungicides or herbicide treatments would also fit into this

design as would fertilizer levels, density, time of planting, spacing of plants, time of

spraying, and so forth. These designs are useful for any type of experiment that

involves the screening of material, where one or more conditions for screening are

desired.

8.6. PROBLEMS

Problem 8.1. For the data in Table 8.1, omit the results for B6 and B7. Obtain an

analysis of the data for this set. Compare your results with those obtained in the text

for the complete data set.
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Problem 8.2. For the data in Table 8.1, omit the results for A7 and A10. Obtain an

analysis for the remaining data and compare results with those obtained in the text

for the entire data set.
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APPENDIX 8.1. CODES FOR NUMERICAL EXAMPLE 8.1

The following SAS codes give the statistical analyses for PROC GLM and PROC

MIXED for all 105 observations in the numerical example described above. The

second part of the program gives the analysis for A controls and the sum of the new

treatment effects with the B factor entries.

data asbed;
input Y R A B;
IF (A>9) THEN NEWA¼ 0; ELSE NEWA¼ 1;
IF (NEWA) THEN AN¼ 99; ELSE AN¼ A;
IF (B>6) THEN NEWB¼ 0; ELSE NEWB¼ 1;
IF (NEWB) THEN BN¼ 999; ELSE BN¼ B;
/*This part treats the new treatments as random effects.*/
/*The data set was not abbreviated as it was desired to show the
entries in the data file. R is replicate, A is factor A treatment, B is
factor B treatment, Y is response*/
datalines;

9 1 1 1
2 1 1 2
8 1 1 7
7 1 1 8
5 1 1 9
9 1 2 1
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7 1 2 2
3 1 2 7
5 1 2 8
4 1 2 9
9 1 3 1
2 1 3 2
8 1 3 7
7 1 3 8
5 1 3 9
9 1 10 1
1 1 10 2
9 1 10 7
7 1 10 8
5 1 10 9
9 1 11 1
7 1 11 2
3 1 11 7
5 1 11 8
4 1 11 9
9 1 12 1
2 1 12 2
8 1 12 7
7 1 12 8
5 1 12 9
9 1 13 1
7 1 13 2
3 1 13 7
5 1 13 8
4 1 13 9
9 2 4 3
7 2 4 4
13 2 4 7
8 2 4 8
8 2 4 9
9 2 5 3
12 2 5 4
8 2 5 7
7 2 5 8
8 2 5 9
9 2 6 3
7 2 6 4
13 2 6 7
9 2 6 8
12 2 6 9
9 2 10 3
11 2 10 4
9 2 10 7
7 2 10 8
5 2 10 9
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9 2 11 3
7 2 11 4
13 2 11 7
5 2 11 8
4 2 11 9
9 2 12 3
12 2 12 4
8 2 12 7
7 2 12 8
5 2 12 9
9 2 13 3
7 2 13 4
13 2 13 7
5 2 13 8
4 2 13 9
19 3 7 5
17 3 7 6
13 3 7 7
15 3 7 8
14 3 7 9
19 3 8 5
12 3 8 6
18 3 8 7
17 3 8 8
45 3 8 9
19 3 9 5
17 3 9 6
13 3 9 7
25 3 9 8
34 3 9 9
15 3 10 5
9 3 10 6
11 3 10 7
10 3 10 8
10 3 10 9
9 3 11 5
17 3 11 6
13 3 11 7
15 3 11 8
14 3 11 9
9 3 12 5
12 3 12 6
8 3 12 7
17 3 12 8
15 3 12 9
9 3 13 5
17 3 13 6
13 3 13 7
15 3 13 8
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14 3 13 9
;

/*ANOVA AND LSMEANS FOR DATA ASBED*/
PROC GLMPROC GLM DATA¼ asbed;
CLASS R A B;
MODEL Y¼ R A R*A B B*R A*B A*B*R;
LSMEANS A B;

RUN;RUN;

/*ANOVA AND LSMEANS FOR CHECKS ONLY*/
PROC GLMPROC GLM DATA¼ work.asbed;
CLASS R A B AN BN;
MODEL Y¼ R AN AN*R BN BN*R AN*BN AN*BN*R;
LSMEANS AN BN AN*BN;
RUN;RUN;

/*This part of the code is for the analysis of all 105 observa-
tions.*/
PROC MIXEDPROC MIXED DATA¼ work.asbed;
CLASS R A B BN AN ;
MODEL Y¼ AN BN AN*BN/SOLUTION;
RANDOM R A*NEWA B*NEWB/SOLUTION;
LSMEANS AN BN AN*BN;
MAKE ‘SOLUTIONR’ OUT¼ sr;
RUN;RUN;
PROC SORTPROC SORT DATA¼ sr;
BY DESCENDING estimate;

RUN;RUN;
PROC PRINT; RUN;PROC PRINT; RUN;

To obtain the analysis for A checks and the B check treatments, use the following

statement after the INPUT statement in PROC GLM:

IF B< 7 THEN DELETE;

The above statement deletes entries 1 to 6. The following statement is used to

obtain the analysis of B checks and A check treatments in PROC GLM:

IF A< 10 THEN DELETE;

This statement deletes entries 1 to 9 of the A treatments. Following the above

code, PROC MIXED codes could be included in the last two runs. Note that entries

99 and 999 are not included in the above two analyses, as they were in the first two

after the data.
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C H A P T E R 9

Missing Observations in Split Plot and

Split Block Experiment Designs

9.1. INTRODUCTION

Missing observations can occur as a result of many causes during the conduct of an

experiment. Animals can invade and destroy some experimental units. Floods or

fires can occur and damage a part of the experiment. On some occasions workers

have been known to unintentionally leave out some of the experimental units when

setting up the experiment. The problem of obtaining a statistical analysis of the

results from an experiment with missing or damaged experimental units is

resolvable. Several available statistical computer software packages handle this

situation. Data analysis with missing observations is not more difficult than when

there are no missing observations. SAS PROC GLM (SAS Institute, 1999–2001) is

used for the numerical examples illustrating the data analysis with missing

observations.

A split plot designed experiment with missing observations is presented in the

next section. A split block designed experiment with missing observations is shown

in Section 9.3. Whole plot, split plot, split block whole plot, or subplot experimental

units can be missing. The SAS PROC GLM codes handle all these situations with a

correct adjustment for the degrees of freedom associated with the missing

observations in most cases. A discussion of missing observations for variations of

the split plot and split block experiment designs is given. The SAS codes and outputs

for the numerical examples are given in the two appendices, 9.1 and 9.2.

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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9.2. MISSING OBSERVATIONS IN A SPLIT PLOT
EXPERIMENT DESIGN

To illustrate the computations for a split plot experiment design, we use a numerical

example and the SAS PROC GLM procedure (SAS Institute, Inc., 1999-2001).

Using the data of Example 1.1 in Chapter 1, omit two observations in replicate 4,

planting method 4, and the responses for seedbed preparations 3 and 4, that is, data

values 65.6 and 63.3. There are now 62 observations rather than 64. Using the SAS

PROC GLM code as shown in Appendix 9.1, an analysis of variance table with Type

III sums of squares is obtained and is presented below:

Source of variation Degrees of freedom Sum of squares Mean square

Replicate ¼ R 3 173.87 57.96

Seedbed preparation ¼ A 3 214.02 71.34

Error A ¼ A� R 9 97.38 10.82

Planting method ¼ B 3 4100.79 1366.93

A� B 9 236.99 26.33

Error B ¼ B� R=A 34 592.74 17.43

The Type I sums of squares and the estimable least squares means, lsmeans, are given

in the output for Example 9.1 in Appendix 9.1. The F-tests proceed as for the equal

numbers case, that is, the error term for factor A is Error A and the error term for factor

B and the interaction of factors A and B is Error B. Several computer packages are able

to handle this case where there are an unequal number of observations.

Instead of having missing observations in the split plot experimental units, whole

plot experimental units may be missing. To illustrate this case, suppose that the disk-

harrowed plots A4 in replicates 3 and 4 were missing. There would be two missing

whole plots and eight missing split plot experimental units resulting in 56 data values.

A partitioning of the degrees of freedom in an analysis table would be as follows:

Source of variation Degrees of freedom

Total 56

Correction for the mean 1

Replicate ¼ R 3

Seedbed preparation ¼ A 3

Error A ¼ A� R 7

Planting method ¼ B 3

A� B 9

Error B ¼ B� R=A 30

There were two missing whole plots and the two degrees of freedom for these

are taken out of the Error A degrees of freedom. The B� R sum of squares

within whole plots A has 9þ 9þ 9þ 3 ¼ 30 degrees of freedom. SAS PROC

GLM provides the sums of squares and mean squares for the above partitioning
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of the degrees of freedom. The F-statistics may be obtained just as for no

missing values.

9.3. MISSING OBSERVATIONS IN A SPLIT BLOCK
EXPERIMENT DESIGN

Following the same steps as in the previous section, a numerical example is used to

illustrate the computations for a split-block-designed experiment with missing

observations. Using the data for Example 2.1 of Chapter 2, omit the last three

observations for the example. These are for hybrid 10 in replicate 2 and are equal to 43,

43, and 42 for generations b, c, and a, respectively. The number of observations is

reduced to 57 from 60, as present in the example in Chapter 2. From the computer output

for Example 9.2, Appendix 9.2, the following Type III analysis of variance is obtained:

Source of variation Degrees of freedom Sum of squares Mean square

Replicate ¼ R 1 0.17 0.17

Hybrid ¼ H 9 66.80 7.42

Error H ¼ H � R 8 67.00 8.38

Generation ¼ G 2 30.67 15.34

Error G ¼ G� R 2 12.11 6.06

G� H 18 60.50 3.36

Error GH ¼ G� H � R 16 22.22 1.39

One degree of freedom is lost from Error A and two from the three factor interaction

G� H � R. As may be seen when using available software, missing observations

present no difficulties in analyzing data.

9.4. COMMENTS

As demonstrated in Chapters 3, 4, 5, and 6, there are many variations of split plot and

split block experiment designs. When missing observations occur, use of the same

computer codes as for no missing observations provide the statistical analysis in the

same forms. Since orthogonality is disturbed by the missing observations, Type III or

Type IV analyses should be used. Statistical analyses without the use of computer

software can become cumbersome. A note of caution in using software packages is

to always check on the number of degrees of freedom to ascertain that they are

correct. F-test statistics may be computed as described previously.

9.5. PROBLEMS

Problem 9.1. Omit another observation (e.g., replicate 1, planting method B1, and

seedbed preparation A1) for the example discussed in Section 9.2 and perform an

analysis of the remaining data.
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Problem 9.2. Omit another observation (e.g., replicate 1, hybrid 7, and generation

a) for the example discussed in Section 9.3 and perform an analysis of the remain-

ing data.

Problem 9.3. A study was conducted to investigate the effect of gender (whole plot

factor), age group (split plot factor), dieting (split split plot factor), and exercise

regimen (split split split plot factor) on weight loss. A random sample of 300 males

and 300 females was selected as the experimental subjects. The number of subjects

per combination of the four factors is presented in the table that follows. Note that

the numbers are unequal.

Age group Diet Exercise Female Male

Young No 0 8 10

Young No 1 8 10

Young No 2 8 10

Young No 3 8 10

Young No 4 8 10

Young Yes 0 8 10

Young Yes 1 8 10

Young Yes 2 8 10

Young Yes 3 8 10

Young Yes 4 8 10

Middle age No 0 12 12

Middle age No 1 12 12

Middle age No 2 12 12

Middle age No 3 12 12

Middle age No 4 12 12

Middle age Yes 0 12 12

Middle age Yes 1 12 12

Middle age Yes 2 12 12

Middle age Yes 3 12 12

Middle age Yes 4 12 12

Old No 0 10 8

Old No 1 10 8

Old No 2 10 8

Old No 3 10 8

Old No 4 10 8

Old Yes 0 10 8

Old Yes 1 10 8

Old Yes 2 10 8

Old Yes 3 10 8

Old Yes 4 10 8

Total 300 300

(i) Obtain a partitioning of the 600 degrees of freedom into the degrees of

freedom for each source of variation in an analysis of variance table.
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(ii) Write a SAS PROC GLM code for obtaining an analysis of variance table,

F-tests, and means for all combinations and their standard errors.

(iii) Are Type I sums of squares equal to Type III sums of squares? Why or why

not?

(iv) Simulate 600 numbers using random normal deviates plus 5 to form a data

set and use your code to analyze the data set.

9.6. REFERENCE

SAS Institute, Inc. (1999–2001). Release 8.02, copyright. Cary, NC.

APPENDIX 9.1. SAS CODE FOR NUMERICAL EXAMPLE IN
SECTION 9.2.

A computer code and data for the numerical example in Section 9.2 is given below:

Data spex1;
inputYRAB;/*Y¼yield,R¼ block,A¼ planting method,B¼ cultivation
method*/datalines;

82.8 1 1 1
46.2 1 1 2
78.6 1 1 3
77.7 1 1 4
72.2 2 1 1
51.6 2 1 2
70.9 2 1 3
73.6 2 1 4
72.9 3 1 1
53.6 3 1 2
69.8 3 1 3
70.3 3 1 4
74.6 4 1 1
57.0 4 1 2
69.6 4 1 3
72.3 4 1 4
74.1 1 2 1
49.1 1 2 2
72.0 1 2 3
66.1 1 2 4
76.2 2 2 1
53.8 2 2 2
71.8 2 2 3
65.5 2 2 4
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71.1 3 2 1
43.7 3 2 2
67.6 3 2 3
66.2 3 2 4
67.8 4 2 1
58.8 4 2 2
60.6 4 2 3
60.6 4 2 4
68.4 1 3 1
54.5 1 3 2
72.0 1 3 3
70.6 1 3 4
68.2 2 3 1
47.6 2 3 2
76.7 2 3 3
75.4 2 3 4
67.1 3 3 1
46.4 3 3 2
70.7 3 3 3
66.2 3 3 4
65.6 4 3 1
53.3 4 3 2
65.6 4 3 3
69.2 4 3 4
71.5 1 4 1
50.9 1 4 2
76.4 1 4 3
75.1 1 4 4
70.4 2 4 1
65.0 2 4 2
75.8 2 4 3
75.8 2 4 4
72.5 3 4 1
54.9 3 4 2
67.6 3 4 3
75.2 3 4 4
67.8 4 4 1
50.2 4 4 2 /*last 2 observations of Example 1.1 omitted*/

;

Proc GLM;

Class R A B;
Model Y¼ R A R*A B A*B;
Lsmeans A B A*B;
Run;
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The computer output from the above code and data set is presented below:

The GLM Procedure

Dependent Variable: Y
Sum of

Source DF Squares Mean Square F Value Pr> F
Model 27 4945.101519 183.151908 10.51 < .0001
Error 34 592.735417 17.433395
Corrected Total 61 5537.836935

R-Square Coeff Var Root MSE Y Mean
0.892966 6.305765 4.175332 66.21452

Source DF Type I SS Mean Square F Value Pr> F
R 3 221.932918 73.977639 4.24 0.0119
A 3 199.166118 66.388706 3.81 0.0187
R*A 9 189.280400 21.031156 1.21 0.3232
B 3 4097.733083 1365.911028 78.35 < 0001
A*B 9 236.989000 26.332111 1.51 0.1840

Source DF Type III SS Mean Square F Value Pr> F
R 3 173.866083 57.955361 3.32 0.0311
A 3 214.023083 71.341028 4.09 0.0139
R*A 9 97.381190 10.820132 0.62 0.7710
B 3 4100.789391 1366.929797 78.41 < 0001
A*B 9 236.989000 26.332111 1.51 0.1840

Least Squares Means

A Y LSMEAN
1 68.3562500
2 64.0625000
3 64.8437500
4 67.9583333

B Y LSMEAN
1 71.4500000
2 52.2875000
3 70.8604167
4 70.6229167

A B Y LSMEAN
1 1 75.6250000
1 2 52.1000000
1 3 72.2250000
1 4 73.4750000
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2 1 72.3000000
2 2 51.3500000
2 3 68.0000000
2 4 64.6000000
3 1 67.3250000
3 2 50.4500000
3 3 71.2500000
3 4 70.3500000
4 1 70.5500000
4 2 55.2500000
4 3 71.9666667
4 4 74.0666667

APPENDIX 9.2. SAS CODE FOR NUMERICAL EXAMPLE
IN SECTION 9.3.

The computer code for the data of the example in Section 9.3 is presented below:

data sbex;
input yield rep hyb gen;
datalines;

48 1 3 1
46 1 3 3
43 1 3 2
46 1 8 1
45 1 8 3
42 1 8 2
46 1 2 1
44 1 2 3
42 1 2 2
42 1 1 1
46 1 1 3
44 1 1 2
43 1 6 1
45 1 6 3
44 1 6 2
47 1 7 1
49 1 7 3
47 1 7 2
48 1 0 1
45 1 0 3
45 1 0 2
46 1 9 1
48 1 9 3
47 1 9 2
46 1 4 1
48 1 4 3
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47 1 4 2
49 1 5 1
49 1 5 3
48 1 5 2
46 2 4 2
48 2 4 3
42 2 4 1
45 2 3 2
44 2 3 3
42 2 3 1
46 2 9 2
46 2 9 3
44 2 9 1
45 2 5 2
45 2 5 3
43 2 5 1
43 2 1 2
50 2 1 3
44 2 1 1
48 2 7 2
51 2 7 3
48 2 7 1
44 2 2 2
48 2 2 3
47 2 2 1
44 2 8 2
46 2 8 3
46 2 8 1
47 2 6 2
48 2 6 3
44 2 6 1 /*last3observationsforExample2.1wereomittedforthisexample.*/

;

proc glm data¼ sbex;
class rep hyb gen;
model yield¼ rep hyb hyb*rep gen gen*rep gen*hyb;
lsmeans hyb gen gen*hyb;

run;

The output of the above code and data set is presented below in an abbreviated form:

Class Level Information
Class Levels Values

rep 2 1 2
hyb 10 0 1 2 3 4 5 6 7 8 9
gen 3 1 2 3
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Number of observations 57
Dependent Variable: yield

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 40 247.8128655 6.1953216 4.46 0.0011
Error 16 22.2222222 1.3888889
Corrected Total 56 270.0350877

R-Square Coeff Var Root MSE yield Mean
0.917706 2.574747 1.178511 45.77193

Source DF Type I SS Mean Square F Value Pr> F
rep 1 0.23879142 0.23879142 0.17 0.6839
hyb 9 66.79629630 7.42181070 5.34 0.0018
rep*hyb 8 67.00000000 8.37500000 6.03 0.0012
gen 2 36.35087719 18.17543860 13.09 0.0004
rep*gen 2 16.92319688 8.46159844 6.09 0.0108
hyb*gen 18 60.50370370 3.36131687 2.42 0.0409

Source DF Type III SS Mean Square F Value Pr> F
rep 1 0.16666667 0.16666667 0.12 0.7335
hyb 9 66.79629630 7.42181070 5.34 0.0018
rep*hyb 8 67.00000000 8.37500000 6.03 0.0012
gen 2 30.67111111 15.33555556 11.04 0.0010
rep*gen 2 12.11111111 6.05555556 4.36 0.0308
hyb*gen 18 60.50370370 3.36131687 2.42 0.0409

Least Squares Means
hyb yield LSMEAN
0 Non-est
1 44.8333333
2 45.1666667
3 44.6666667
4 46.1666667
5 46.5000000
6 45.1666667
7 48.3333333
8 44.8333333
9 46.1666667

gen yield LSMEAN
1 Non-est
2 Non-est
3 Non-est

hyb gen yield LSMEAN
0 1 Non-est
0 2 Non-est
0 3 Non-est
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1 1 43.0000000
1 2 43.5000000
1 3 48.0000000
2 1 46.5000000
2 2 43.0000000
2 3 46.0000000
3 1 45.0000000
3 2 44.0000000
3 3 45.0000000
4 1 44.0000000
4 2 46.5000000
4 3 48.0000000
5 1 46.0000000
5 2 46.5000000
5 3 47.0000000
6 1 43.5000000
6 2 45.5000000
6 3 46.5000000
7 1 47.5000000
7 2 47.5000000
7 3 50.0000000
8 1 46.0000000
8 2 43.0000000
8 3 45.5000000
9 1 45.0000000
9 2 46.5000000
9 3 47.0000000
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C H A P T E R 1 0

Combining Split Plot or Split Block

Designed Experiments over Sites

10.1. INTRODUCTION

Explicit procedures for combining results from a group of split plot designed

experiments and a group of split block designed experiments are given in Sections

10.2 and 10.3. Numerical examples are used to illustrate the use of SAS PROC GLM

and SAS PROC MIXED codes in obtaining the analyses for the data. A Tukey

studentized range multiple comparisons procedure is also illustrated. As will be

seen, the procedures given are straightforward and do not increase the difficulty to

any extent. Some comments about combining other types of split plot and/or split

block designed experiments are presented in Section 10.4.

10.2. COMBINING SPLIT PLOT DESIGNED EXPERIMENTS
OVER SITES

When a standard split plot designed experiment is conducted at several sites, in

several years, or repeated in some other fashion, the researcher may want to combine

the results from the individual experiments. The results of the individual

experiments will need to be obtained and interpreted as well. Suppose that a

standard split plot design as described in Chapter 1 is used at s different sites. There

are r replicates, a whole plot treatments, factor A, and b split plot treatments, factor

B, at each site. The analyses of variance tables at each site are of the following form

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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where the linear model at each site is that for the standard split plot experiment

design:

Sum of squares at each site

Source of variation Degrees of freedom Site 1 Site 2 Site 3 . . . Site s

Total rab T1 T2 T3 Ts

Correction for mean 1 C1 C2 C3 Cs

Replicate, R r � 1 R1 R2 R3 Rs

Factor A a� 1 A1 A2 A3 As

Error¼ R � A (r � 1)(a� 1) EA1 EA2 EA3 EAs

Factor B b� 1 B1 B2 B3 Bs

A� B (a� 1)(b� 1) AB1 AB2 AB3 ABs

Error B ¼ R� B=A aðb� 1Þðr � 1Þ EB1 EB2 EB3 EBs

The sums of squares for the analysis of variance at any site are the usual ones for a

standard split plot experiment design. From the above, it is noted that the sum of squares

for the Error B ¼ R� B=A, R� B within levels of factor A, is the R� B sum of squares

summed over the a whole plot treatments, factor A. In this form, it becomes obvious what

the ‘‘Error B’’sum of squares is. Likewise, as presented in the above form, the individual

experiment results can be studied and interpreted at each site.

A linear model for combining split plot experiment designs over sites is obtained

from the sources of variation given in the following ANOVA table or from the SAS

PROC GLM code in Appendix 10.1. A combined partitioning of the degrees of

freedom and sums of squares in an analysis of variance table for the s experiments

may be of the following form:

Source of variation Degrees of freedom Sum of squares

Total srab
Ps

i¼1 Ti

Correction terms within sites s
Ps

i¼1 Ci

Overall correction term 1 G

Sites, S s� 1
Ps

i¼1 Ci � G

R within sites sðr � 1Þ
Ps

i¼1 Ri

A within sites sða� 1Þ
Ps

i¼1 Ai

A a� 1 Compute

A� S ða� 1Þðs� 1Þ by subtraction

EA within sites sða� 1Þðr � 1Þ
Ps

i¼1 EAi

B within sites sðb� 1Þ
Ps

i¼1 Bi

B b� 1 Compute

B� S ðb� 1Þðs� 1Þ by subtraction

A� B within sites sða� 1Þðb� 1Þ
Ps

i¼1 ABi

A� B ða� 1Þðb� 1Þ Compute

A� B� S ða� 1Þðb� 1Þðs� 1Þ by subtraction

EB within sites saðb� 1Þðr � 1Þ
Ps

i¼1 EBi
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A SAS PROC GLM MODEL statement for obtaining the above analysis of variance

table would be:

Y ¼ S RðSÞ A A�S A�RðSÞ B B�S A�B A�B�S;

One should not partition the replicate within site sum of squares into a replicate sum

of squares and a replicate by site interaction. Doing this is incorrect owing to the fact

that the numbering of the replicates at each site is arbitrary. Replicate 1 at site 1 has

nothing to do with replicate 1 at site 2, as this replicate could have been numbered 3

or any other number. The replicates numbered 1, for example, have nothing in

common, except the number 1. There is no such item as a replicate 1 effect over

sites. The replicate effect is a nested within site effect.

The above configuration of an analysis of variance table helps to clarify what the

various within site sums of squares contain. A two-factor interaction sums of

squares, A� B, nested within sites contains the two-factor interaction A� B and the

three-factor interaction A� B� S.

Several items need to be investigated when combining results of experiments

over sites. The Error B variances may vary from site to site resulting in variance

heterogeneity. This would be a form of the Behrens-Fisher situation. The procedures

presented by Grimes and Federer (1984) may be used when variance heterogeneity is

present. Alternatively, one may use a variance stabilizing transformation of the data

such as logarithms or square roots. Another transformation is to obtain the A� B

interaction means, to divide the ab means by the standard error of a mean at site i,

and to run the analysis on the abs transformed means for the three factors A, B, and S.

This transformation tends to make the means have a unit normal distribution with

variance equal to one. A partitioning of the degrees of freedom for the last

transformation in an analysis of variance table is presented below:

Source of variation Degrees of freedom

Sites, S s� 1

Factor A a� 1

A� S ða� 1Þðs� 1Þ
Factor B b� 1

A� B ða� 1Þðb� 1Þ
B� S ðb� 1Þðs� 1Þ
A� B� S ða� 1Þðb� 1Þðs� 1Þ
Error infinite as the variance is known to be one

This transformation is a standardization of the data and was one of the procedures

used by Federer et al. (2001) to combine results from experiments with different

experiment designs and unequal error variances at the different sites.

Example 10.1—A numerical example illustrating the analysis for a split plot

designed experiment repeated over s sites is described here. Suppose the whole plot

treatments are a factor A by factor B factorial with a ¼ 5 factor A levels and with

b ¼ 2 factor B levels arranged in a randomized complete block experiment design
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with r ¼ 3 replicates (blocks). Furthermore, suppose the number of factor C split

plot treatments is c ¼ 4 and the number of sites is s ¼ 3. A simulated data set of the

480 observations for the design described here is given in Appendix 10.1. Since the

number of combinations is large, an analyst might wish to use multiple comparisons

such as Tukey’s studentized range test. This procedure is demonstrated for the SAS

PROC GLM for factor A, B, and C means. The GLM code in written form does not

allow multiple comparisons procedures of means for combinations of factors.

However, SAS PROC MIXED does provide such pairwise comparisons, as

demonstrated with the output given in Appendix 10.1.

The factor site was considered to be a fixed effect as some experimenters often

select a group of sites with the desired characteristics and use these sites for

comparing various other factors. This puts the factor site in the fixed effect category.

This is the manner used to write the codes. If the analyst desires to consider site as a

random effect, the codes should be altered accordingly.

An analysis of variance table for the data from this example is given in

Table 10.1. Note that this is an orthogonal arrangement for all factors and hence the

Type I and III analyses are identical.

The different F-statistics and the probability of obtaining a larger value of F were

obtained using the code in Appendix 10.1. Note that the degrees of freedom for the

AB� RðSÞ sum of squares is sðab� 1Þðr � 1Þ ¼ 4f½5ð2Þ � 1	½3� 1	g ¼ 72. SAS

uses the notation A*B*R(S) to obtain this term.

Table 10.1. Analysis of Variance for the Data of Example 10.1 with Associated F-Tests.

Degrees of

Source of variation freedom Sum of squares Mean square F-value P> F

Total (corr.) 479 1640323006 — — —

Site, S 3 552717 184239 0.21 0.8876

Block(site), R(S) 8 7062320 882790 — —

A 4 1387680917 346920229 133637 <.0001

A� S 12 34068 2839 1.09 0.3787

B 1 100939695 100939695 38883 <.0001

B� S 3 1618 539 0.21 0.8908

A� B 4 31444008 7861002 3028 <.0001

A� B� S 12 33737 2811 1.08 0.3872

AB� R(S) 72 186911 2596 — —

C 3 19356264 6452088 2033.43 <.0001

A�C 12 26075792 2172983 684.83 <.0001

B� C 3 23901388 7967129 2510.91 <.0001

A� B� C 12 41996729 3499727 1102.97 <.0001

C� S 9 47625 5292 1.67 0.0975

A�C� S 36 104110 2892 0.91 0.6177

B� C� S 9 61111 6790 2.14 0.0270

A� B� C� S 36 82475 2291 0.72 0.8792

Error C 240 761522 3173 — —
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10.3. COMBINING SPLIT BLOCK DESIGNED EXPERIMENTS
OVER SITES

A similar procedure as described in the previous section is used for combining the

results from split block designed experiments over several sites or conditions.

Suppose that there are s sites over which a split block designed experiment with r

replicates, a levels of factor A, and b levels of factor B, has been conducted. The

linear model used for each site is that for a standard split block experiment design as

given in Chapter 2. A partitioning of the degrees of freedom and sums of squares in

analysis of variance tables at each of the s sites is given below:

In this format, the mean squares may be obtained and the results for each site may be

studied and interpreted for each of the individual experiments.

A linear model for the analysis of data from experiments designed as a standard

split block experiment design at s sites, is given by the sources of variation in the

following ANOVA table. A combined analysis of variance table would have the

following partitioning of the rabs degrees of freedom and sums of squares:

Source of variation Degrees of freedom Sum of squares

Total rabs
Ps

i¼1 Ti

Correction for mean within sites s
Ps

i¼1 Ci

Correction for mean 1 compute

Sites¼ S s� 1 by subtraction

Replicate within sites sðr � 1Þ
Ps

i¼1 Ri

Factor A within sites sða� 1Þ
Ps

i¼1 Ai

Factor A a� 1 compute

A� S ða� 1Þðs� 1Þ by subtraction

A� R within sites sða� 1Þðr � 1Þ
Ps

i¼1 EAi

Factor B within sites sðb� 1Þ
Ps

i¼1 Bi

Sums of squares at each site

Source of variation Degrees of freedom 1 2 3 . . . s

Total rab T1 T2 T3 Ts

Correction for mean 1 C1 C2 C3 Cs

Replicate ¼ R r � 1 R1 R2 R3 Rs

Factor A a� 1 A1 A2 A3 As

Error A ¼ A� R ða� 1Þðr � 1Þ EA1 EA2 EA3 EAs

Factor B b� 1 B1 B2 B3 Bs

Error B ¼ B� R ðb� 1Þðr � 1Þ EB1 EB2 EB3 EBs

A� B ða� 1Þðb� 1Þ AB1 AB2 AB3 ABs

Error AB ¼ A� B� R ða� 1Þðb� 1Þðr � 1Þ EAB1 EAB2 EAB3 EABs

(Continued)
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B b� 1 compute

B� S ðb� 1Þðs� 1Þ by subtraction

B� R within sites sðb� 1Þðr � 1Þ
Ps

i¼1 EBi

A� B within sites sða� 1Þðb� 1Þ
Ps

i¼1 ABi

A� B ða� 1Þðb� 1Þ compute

A� B� S ða� 1Þðb� 1Þðs� 1Þ by subtraction

A� B� R within sites sða� 1Þðb� 1Þðr � 1Þ
Ps

i¼1 EABi

The same comments about variance heterogeneity and transformation of data given

in the previous section apply here as well. F-tests are carried out as usual. For

example the A� R within site mean square, is used as the error mean square for

testing hypotheses about factor A effects and the A� S interaction effects.

Computer software such as SAS is available for obtaining the above analysis of

variance table and for computing F-statistics. The statements for computing F-statistics

in the SAS code were described in Chapter 1 and are obtained with the code presented

in Appendix 10.2. A SAS PROC GLM MODEL statement for the above analysis is

Y ¼ S RðSÞ A A�S A�RðSÞ B B�S B�RðSÞ A�B A�B�S;

Example 10.2—To illustrate the statistical analysis for a split block designed

experiment repeated over sites, data were simulated and appear in Appendix 10.2.

For the split block experiment design, let the number of factor A levels be a ¼ 5 and

the number of factor B levels be b ¼ 8 with each factor arranged in a randomized

complete block experiment design with r ¼ 4 replicates. Furthermore, suppose this

experiment is repeated over s ¼ 3 sites. An analysis of variance table with associated

F-statistics is given in Table 10.2. Note that this is an orthogonal arrangement and

Type I and Type III sums of squares are identical.

Table 10.2. Analysis of Variance and Associated F-Tests for the Data of Example 10.2.

Degrees of

Source of variation freedom Sum of squares Mean square F-value P> F

Total (corr.) 479 6371649132 — — —

Site, S 2 523573968 261786984 0.63 0.5559

Block (S), R(S) 9 3756646710 417405190 — —

A 4 29288163 7322041 147.80 <.0001

A� S 8 247899 30987 0.63 0.7508

A� RðSÞ 36 1783391 49539 — —

B 7 1937592291 276798899 164.94 <.0001

B� S 14 15903698 1135978 0.68 0.7878

B� RðSÞ 63 105727288 1678211 — —

A� B 28 91141 3255 1.25 0.1838

A� B� S 56 140534 2510 0.97 0.5461

Error 252 654049 2595 — —

(Continued)

Source of variation Degrees of freedom Sum of squares
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10.4. DISCUSSION

The same procedures as described above apply equally well to sets of any of the

variations of split plot experiment designs and split block experiment designs. All of

the results from a group of experiments such as described above may be entered in a

single data file. Statistical analyses for each of the experiments may be obtained by

using SAS IF-THEN statements. Or for example, suppose the analysis at site three is

desired. To do this, use the following statements after the INPUT statement:

IF S < 3 THEN OMIT;

IF S > 3 THEN OMIT;

10.5. PROBLEMS

Problem 10.1. Suppose the standard split plot design of Example 1.1 was repeated

over s ¼ 3 sites. Simulate similar data for the two additional sites and obtain the

analysis over the three sites as described above.

Problem 10.2. Delete site 1 data and obtain an analysis of the data for the remaining

data of Example 10.1. Obtain the Tukey studentized range test for the A*B

combinations.

Problem 10.3. Using the data of Example 2.1, simulate three additional data sets and

obtain the combined analysis of data for the four data sets (sites).

Problem 10.4. Delete the data for site 3 and obtain an analysis for the remaining data

in Example 10.2. Perform the lsd multiple comparisons procedure for the A*B*S

means.
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APPENDIX 10.1. EXAMPLE 10.1

The data set for this example is presented on the enclosed disk. The SAS GLM and

MIXED codes and a subset of the data are presented below.

/*Simulated data: split plot across sites
whole plot factors: A and B are in a randomized complete block design
split plot factor: C
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number of sites¼ 4
number of blocks at each site¼ 3*/

options ls¼ 7979 nocenter nodate pageno¼ 11;
datadata New;
input Obs Site Block $ A $ B $ C $ Yield;
datalines;

1 1 R1 A1 B1 C1 6979
2 1 R1 A1 B1 C2 7272
3 1 R1 A1 B1 C3 7565
4 1 R1 A1 B1 C4 7827
5 1 R1 A1 B2 C1 8113
6 1 R1 A1 B2 C2 7025
7 1 R1 A1 B2 C3 7340
8 1 R1 A1 B2 C4 7637
9 1 R1 A2 B1 C1 7910

.

.

.
476 4 R3 A5 B1 C4 12300
477 4 R3 A5 B2 C1 12500
478 4 R3 A5 B2 C2 12900
479 4 R3 A5 B2 C3 13000
480 4 R3 A5 B2 C4 13700

proc glmproc glm data¼ new;
class Site Block C B A;
model Yield = Site Block(Site)A A*site B B*site A*B A*B*site
A*B*Block(site) C
A*C B*C A*B*C C*site A*C*site B*C*site A*B*C*site/ss3;
random Site Block(site) A*B*Block(site)/test;
lsmeans A B C;
/*lsmeans A*site; /*Means not computed*/
lsmeans A*B A*C B*C A*B*C;
lsmeans A*site B*site A*B*site;
lsmeans C*site A*C*site B*C*site A*B*C*site; */

/*multiple comparisons using Tukey*/

means A B /tukey alpha¼ 0.050.05 e¼ A*B*Block(site);
means C /tukey alpha¼ 0.050.05;
runrun;

/* Using proc mixed for multiple comparisons using Tukey*/

proc mixedproc mixed data¼ new;
class Site A B C Block;
model Yield¼ site A A*site B B*site A*B A*B*site C A*C B*C A*B*C
C*site A*C*site B*C*site A*B*C*site;
random Block(Site) A*B*Block(Site);
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* LS means per factor;

lsmeans A B;
lsmeans A*site;
/*lsmeans A*B; /*These means are of use to the researcher,
lsmeans B*site; but were not computed*/
lsmeans C;
lsmeans A*B;
lsmeans A*B*site;
lsmeans B*C;
lsmeans A*C;
lsmeans A*B*C;*/
lsmeans A/adjust¼ tukey alpha¼ 0.050.05;
lsmeans B/adjust¼ tukey alpha¼ 0.050.05;
lsmeans A*site/adjust¼ tukey alpha¼ 0.050.05;
runrun;

The output for the above code and data set, in a drastically abbreviated form, is

presented below

The SAS System 1
The GLM Procedure

Class Level Information
Class Levels Values
Site 4 1 2 3 4
Block 3 R1 R2 R3
C 4 C1 C2 C3 C4
B 2 B1 B2
A 5 A1 A2 A3 A4 A5
Number of observations 480

Dependent Variable: Yield
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 239 1639561484 6860090 2162.01 <.0001
Error 240 761522 3173
Corrected Total 479 1640323006

R-Square Coeff Var Root MSE Yield Mean
0.999536 0.565140 56.32947 9967.354

Source DF Type III SS Mean Square F Value Pr > F
Site 3 552717 184239 58.06 <.0001
Block(Site) 8 7062320 882790 278.22 <.0001
A 4 1387680917 346920229 109335 <.0001
Site*A 12 34068 2839 0.89 0.5530
B 1 100939695 100939695 31812.0 <.0001
Site*B 3 1618 539 0.17 0.9166
B*A 4 31444008 7861002 2477.46 <.0001
Site*B*A 12 33737 2811 0.89 0.5618
Block*B*A(Site) 72 186911 2596 0.82 0.8415
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C 3 19356264 6452088 2033.43 <.0001
C*A 12 26075792 2172983 684.83 <.0001
C*B 3 23901388 7967129 2510.91 <.0001
C*B*A 12 41996729 3499727 1102.97 <.0001
Site*C 9 47625 5292 1.67 0.0975
Site*C*A 36 104110 2892 0.91 0.6177
Site*C*B 9 61111 6790 2.14 0.0270
Site*C*B*A 36 82475 2291 0.72 0.8794

The GLM Procedure
Source Type III Expected Mean Square
Site Var(Error)þ 4 Var(Block*B*A(Site))þ 40 Var(Block(Site))

þ 120 Var(Site)þ
Q(Site*A,Site*B,Site*B*A,Site*C,Site*C*A,Site*C*B,
Site*C*B*A)

Block Var(Error)þ 4 Var(Block*B*A(Site))þ 40 Var(Block(Site))
(Site)

A Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(A,Site*A,B*A,Site*B*A,C*A,C*B*A,Site*C*A,Site*C*B*A)

Site*A Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(Site*A,Site*B*A,Site*C*A,Site*C*B*A)

B Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(B,Site*B,B*A,Site*B*A,C*B,C*B*A,Site*C*B,Site*C*B*A)

Site*B Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(Site*B,Site*B*A,Site*C*B,Site*C*B*A)

B*A Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(B*A,Site*B*A,C*B*A,Site*C*B*A)

Site*B*A Var(Error)þ 4 Var(Block*B*A(Site))þ
Q(Site*B*A,Site*C*B*A)

Block*B* Var(Error)þ 4 Var(Block*B*A(Site))
A(Site)

C Var(Error)þ
Q(C,C*A,C*B,C*B*A,Site*C,Site*C*A,Site*C*B,Site*C*B*A)

C*A Var(Error)þ Q(C*A,C*B*A,Site*C*A,Site*C*B*A)
C*B Var(Error)þ Q(C*B,C*B*A,Site*C*B,Site*C*B*A)
C*B*A Var(Error)þ Q(C*B*A,Site*C*B*A)
Site*C Var(Error)þ Q(Site*C,Site*C*A,Site*C*B,Site*C*B*A)
Site*C*A Var(Error)þ Q(Site*C*A,Site*C*B*A)
Site*C*B Var(Error)þ Q(Site*C*B,Site*C*B*A)
Site*C* Var(Error)þ Q(Site*C*B*A)
B*A

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance
Dependent Variable: Yield

Source DF Type III SS Mean Square F Value Pr > F
* Site 3 552717 184239 0.21 0.8876
Error 8 7062320 882790

Error: MS(Block(Site))
* This test assumes one or more other fixed effects are zero.
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Source DF Type III SS Mean Square F Value Pr > F
Block(Site) 8 7062320 882790 340.06 <.0001

* A 4 1387680917 346920229 133637 <.0001
* Site*A 12 34068 2838.991319 1.09 0.3787
* B 1 100939695 100939695 38882.9 <.0001
* Site*B 3 1617.616667 539.205556 0.21 0.8908
* B*A 4 31444008 7861002 3028.13 <.0001
* Site*B*A 12 33737 2811.432986 1.08 0.3872
Error 72 186911 2595.991667

Error: MS(Block*B*A(Site))
* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr > F
Block*B*A(Site) 72 186911 2595.991667 0.82 0.8415

* C 3 19356264 6452088 2033.43 <.0001
* C*A 12 26075792 2172983 684.83 <.0001
* C*B 3 23901388 7967129 2510.91 <.0001
* C*B*A 12 41996729 3499727 1102.97 <.0001
* Site*C 9 47625 5291.691667 1.67 0.0975
* Site*C*A 36 104110 2891.932986 0.91 0.6177
* Site*C*B 9 61111 6790.146296 2.14 0.0270
Site*C*B*A 36 82475 2290.966319 0.72 0.8794
Error: MS(Error) 240 761522 3173.009028
* This test assumes one or more other fixed effects are zero.

Least Squares Means
A Yield LSMEAN
A1 7498.9792
A2 8810.6563
A3 10017.3854
A4 11193.0833
A5 12316.6667

B Yield LSMEAN
B1 9508.7792
B2 10425.9292

C Yield LSMEAN
C1 9706.2667
C2 9874.5500
C3 10039.6500
C4 10248.9500

Tukey’s Studentized Range (HSD) Test for Yield
NOTE: This test controls the Type I experimentwise error rate, but
it generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 2595.992
Critical Value of Studentized Range 3.95712
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Minimum Significant Difference 20.578

Means with the same letter are not significantly different.
T
u
k
.
.
.
n
g Mean N A
A 12316.667 96 A5
B 11193.083 96 A4
C 10017.385 96 A3
D 8810.656 96 A2
E 7498.979 96 A1

Tukey’s Studentized Range (HSD) Test for Yield
NOTE: This test controls the Type I experimentwise error rate, but
it generally has a higher Type II error rate than REGWQ.
Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 2595.992
Critical Value of Studentized Range 2.81929
Minimum Significant Difference 9.2723
Means with the same letter are not significantly different.
T
u
k
.
.
.
.
g Mean N B
A 10425.929 240 B2
B 9508.779 240 B1

Tukey’s Studentized Range (HSD) Test for Yield
NOTE: This test controls the Type I experimentwise error rate, but
it generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 240
Error Mean Square 3173.009
Critical Value of Studentized Range 3.65877
Minimum Significant Difference 18.814

Means with the same letter are not significantly different.
T
u
k
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.

.

.
n
g Mean N C
A 10248.950 120 C4
B 10039.650 120 C3
C 9874.550 120 C2
D 9706.267 120 C1

The Mixed Procedure
Class Level Information

Class Levels Values
Site 4 1 2 3 4
A 5 A1 A2 A3 A4 A5
B 2 B1 B2
C 4 C1 C2 C3 C4
Block 3 R1 R2 R3

Total Observations 480
.
.
.

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate
Block(Site) 21993
A*B*Block(Site) 0
Residual 3039.85
.
.
.

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
Site 3 8 0.21 0.8876
A 4 72 114124 <.0001
Site*A 12 72 0.93 0.5187
B 1 72 33205.5 <.0001
Site*B 3 72 0.18 0.9114
A*B 4 72 2585.98 <.0001
Site*A*B 12 72 0.92 0.5273
C 3 240 2122.50 <.0001
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A*C 12 240 714.83 <.0001
B*C 3 240 2620.89 <.0001
A*B*C 12 240 1151.28 <.0001
Site*C 9 240 1.74 0.0806
Site*A*C 36 240 0.95 0.5530
Site*B*C 9 240 2.23 0.0207
Site*A*B*C 36 240 0.75 0.8450

Least Squares Means
Standard

Effect A B Site Estimate Error DF t Value Pr>|t| Alpha
A A1 7498.98 43.1792 72 173.67 <.0001 .
A A2 8810.66 43.1792 72 204.05 <.0001 .
A A3 10017 43.1792 72 232.00 <.0001 .
A A4 11193 43.1792 72 259.22 <.0001 .
A A5 12317 43.1792 72 285.25 <.0001 .
B B1 9508.78 42.9586 72 221.35 <.0001 .
B B2 10426 42.9586 72 242.70 <.0001 .
Site*A A1 1 7460.92 86.3583 72 86.39 <.0001 .
Site*A A2 1 8764.12 86.3583 72 101.49 <.0001 .
Site*A A3 1 9965.12 86.3583 72 115.39 <.0001 .
Site*A A4 1 11165 86.3583 72 129.29 <.0001 .
Site*A A5 1 12279 86.3583 72 142.19 <.0001 .
Site*A A1 2 7485.46 86.3583 72 86.68 <.0001 .
Site*A A2 2 8785.83 86.3583 72 101.74 <.0001 .
Site*A A3 2 9994.62 86.3583 72 115.73 <.0001 .
Site*A A4 2 11158 86.3583 72 129.21 <.0001 .
Site*A A5 2 12279 86.3583 72 142.19 <.0001 .
Site*A A1 3 7528.33 86.3583 72 87.18 <.0001 .
Site*A A2 3 8857.37 86.3583 72 102.57 <.0001 .
Site*A A3 3 10062 86.3583 72 116.51 <.0001 .
Site*A A4 3 11215 86.3583 72 129.86 <.0001 .
Site*A A5 3 12354 86.3583 72 143.06 <.0001 .
Site*A A1 4 7521.21 86.3583 72 87.09 <.0001 .
Site*A A2 4 8835.29 86.3583 72 102.31 <.0001 .
Site*A A3 4 10048 86.3583 72 116.35 <.0001 .
Site*A A4 4 11234 86.3583 72 130.09 <.0001 .
Site*A A5 4 12354 86.3583 72 143.06 <.0001 .
A A1 7498.98 43.1792 72 173.67 <.00010.05
A A2 8810.66 43.1792 72 204.05 <.00010.05
A A3 10017 43.1792 72 232.00 <.00010.05
A A4 11193 43.1792 72 259.22 <.00010.05
A A5 12317 43.1792 72 285.25 <.00010.05
B B1 9508.78 42.9586 72 221.35 <.00010.05
B B2 10426 42.9586 72 242.70 <.00010.05
Site*A A1 1 7460.92 86.3583 72 86.39 <.00010.05
Site*A A2 1 8764.12 86.3583 72 101.49 <.00010.05
Site*A A3 1 9965.12 86.3583 72 115.39 <.00010.05
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Site*A A4 1 11165 86.3583 72 129.29 <.00010.05
Site*A A5 1 12279 86.3583 72 142.19 <.00010.05
Site*A A1 2 7485.46 86.3583 72 86.68 <.00010.05
Site*A A2 2 8785.83 86.3583 72 101.74 <.00010.05
Site*A A3 2 9994.62 86.3583 72 115.73 <.00010.05
Site*A A4 2 11158 86.3583 72 129.21 <.00010.05
Site*A A5 2 12279 86.3583 72 142.19 <.00010.05
Site*A A1 3 7528.33 86.3583 72 87.18 <.00010.05
Site*A A2 3 8857.37 86.3583 72 102.57 <.00010.05
Site*A A3 3 10062 86.3583 72 116.51 <.00010.05
Site*A A4 3 11215 86.3583 72 129.86 <.00010.05
Site*A A5 3 12354 86.3583 72 143.06 <.00010.05
Site*A A1 4 7521.21 86.3583 72 87.09 <.00010.05
Site*A A2 4 8835.29 86.3583 72 102.31 <.00010.05
Site*A A3 4 10048 86.3583 72 116.35 <.00010.05
Site*A A4 4 11234 86.3583 72 130.09 <.00010.05
Site*A A5 4 12354 86.3583 72 143.06 <.00010.05

Least Squares Means

Effect A B Site Lower Upper
A A1 7412.90 7585.06
A A2 8724.58 8896.73
A A3 9931.31 10103
A A4 11107 11279
A A5 12231 12403
B B1 9423.14 9594.42
B B2 10340 10512
Site*A A1 1 7288.76 7633.07
Site*A A2 1 8591.97 8936.28
Site*A A3 1 9792.97 10137
Site*A A4 1 10993 11337
Site*A A5 1 12107 12451
Site*A A1 2 7313.31 7657.61
Site*A A2 2 8613.68 8957.99
Site*A A3 2 9822.47 10167
Site*A A4 2 10986 11331
Site*A A5 2 12107 12451
Site*A A1 3 7356.18 7700.49
Site*A A2 3 8685.22 9029.53
Site*A A3 3 9889.43 10234
Site*A A4 3 11042 11387
Site*A A5 3 12182 12526
Site*A A1 4 7349.06 7693.36
Site*A A2 4 8663.14 9007.44
Site*A A3 4 9876.06 10220
Site*A A4 4 11062 11406
Site*A A5 4 12182 12526
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Differences of Least Squares Means
Standard

Effect A B Site _A _B _Site Estimate Error DF t Value
A A1 A2 �1311.68 7.9580 72 �164.82
A A1 A3 �2518.41 7.9580 72 �316.46
A A1 A4 �3694.10 7.9580 72 �464.20
A A1 A5 �4817.69 7.9580 72 �605.39

Differences of Least Squares Means
Effect A B Site _A _B _Site Pr>|t| Adjustment Adj P Alpha
A A1 A2 <.0001 Tukey-Kramer <.0001 0.05
A A1 A3 <.0001 Tukey-Kramer <.0001 0.05
A A1 A4 <.0001 Tukey-Kramer <.0001 0.05
A A1 A5 <.0001 Tukey-Kramer <.0001 0.05

Differences of Least Squares Means
Adj Adj

Effect A B Site _A _B _Site Lower Upper Lower Upper
A A1 A2 �1327.54 �1295.81 . .
A A1 A3 �2534.27 �2502.54 . .
A A1 A4 �3709.97 �3678.24 . .
A A1 A5 �4833.55 �4801.82 . .

Differences of Least Squares Means
Standard

Effect A B Site _A _B _Site Estimate Error DF t Value
A A2 A3 �1206.73 7.9580 72 �151.64
A A2 A4 �2382.43 7.9580 72 �299.37
A A2 A5 �3506.01 7.9580 72 �440.56
A A3 A4 �1175.70 7.9580 72 �147.74
A A3 A5 �2299.28 7.9580 72 �288.93
A A4 A5 �1123.58 7.9580 72 �141.19
B B1 B2 �917.15 5.0331 72 �182.22
Site*A A1 1 A2 1 �1303.21 15.9161 72 �81.88
Site*A A1 1 A3 1 �2504.21 15.9161 72 �157.34
Site*A A1 1 A4 1 �3704.33 15.9161 72 �232.74
Site*A A1 1 A5 1 �4818.25 15.9161 72 �302.73
Site*A A1 1 A1 2 �24.5417 122.13 72 �0.20
.
.
.

The Mixed Procedure
Differences of Least Squares Means

Effect A B Site _A _B _Site Pr>|t| Adjustment Adj P Alpha
A A2 A3 <.0001 Tukey-Kramer <.0001 0.05
A A2 A4 <.0001 Tukey-Kramer <.0001 0.05
A A2 A5 <.0001 Tukey-Kramer <.0001 0.05
A A3 A4 <.0001 Tukey-Kramer <.0001 0.05
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A A3 A5 <.0001 Tukey-Kramer <.0001 0.05
A A4 A5 <.0001 Tukey-Kramer <.0001 0.05
B B1 B2 <.0001 Tukey-Kramer <.0001 0.05
Site*A A1 1 A2 1 <.0001 Tukey-Kramer <.0001 0.05
Site*A A1 1 A3 1 <.0001 Tukey-Kramer <.0001 0.05
Site*A A1 1 A4 1 <.0001 Tukey-Kramer <.0001 0.05
Site*A A1 1 A5 1 <.0001 Tukey-Kramer <.0001 0.05
Site*A A1 1 A1 2 0.8413 Tukey-Kramer 1.0000 0.05
Site*A A1 1 A2 2 <.0001 Tukey-Kramer <.0001 0.05
.
.
.
Site*A A2 4 A4 4 <.0001 Tukey-Kramer <.0001 0.05
Site*A A2 4 A5 4 <.0001 Tukey-Kramer <.0001 0.05
Site*A A3 4 A4 4 <.0001 Tukey-Kramer <.0001 0.05
Site*A A3 4 A5 4 <.0001 Tukey-Kramer <.0001 0.05
Site*A A4 4 A5 4 <.0001 Tukey-Kramer <.0001 0.05

Differences of Least Squares Means
Adj Adj

Effect A B Site _A _B _Site Lower Upper Lower Upper
Site*A A2 4 A4 4 �2430.48 �2367.02 . .
Site*A A2 4 A5 4 �3550.60 �3487.15 . .
Site*A A3 4 A4 4 �1217.56 �1154.11 . .
Site*A A3 4 A5 4 �2337.69 �2274.23 . .
Site*A A4 4 A5 4 �1151.85 �1088.40 . .

APPENDIX 10.2. EXAMPLE 10.2.

Factors A (5 levels) and B (8 levels) are in a split block arrangement in four blocks

(replicates) at three sites. The complete data set is included on the accompanying

disk and a SAS program for the data is presented below:

/*
Simulated data: split block across sites
whole plot factor: A (5 levels) is in a randomized complete block
design
split block factor: B (8 levels) is in a randomized complete
block design across levels of A per block.
number of sites¼ 3
number of blocks¼ 4
Numerical example: Section 10.3
*/

options ls¼ 79 nocenter nodate pageno¼ 1;
data spbsite;
input Obs Site A $ B $ Block $ Yield;
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datalines;

1 1 A1 B1 R1 8038
2 1 A2 B1 R1 8231
3 1 A3 B1 R1 8475
4 1 A4 B1 R1 8606
5 1 A5 B1 R1 8774
6 1 A1 B2 R1 9031
.
.
.

476 3 A1 B8 R413382
477 3 A2 B8 R413542
478 3 A3 B8 R413748
479 3 A4 B8 R413834
480 3 A5 B8 R413980

proc glm data¼ spbsite;
class Site A B Block;
model Yield¼ Site Block(Site)A A*site A*Block(Site) B B*site
B*Block(Site) A*B A*B*site;
random Site Block(Site) A*Block(Site) B*Block(Site)/test;
lsmeans A;
lsmeans B;
lmeans A*B A*site;

* multiple comparisons of means using tukey;
means A/tukey alpha¼ 0.05 e¼ A*Block(Site);
means B/tukey alpha¼ 0.05 e¼ B*Block(Site);
run;

* Using proc mixed;
proc mixed data¼ spbsite;
class Site A B Block;
model Yield¼ site A A*site B B*site A*B A*B*site;
random Block(Site) A*Block(Site) B*Block(site);

* LS means per factor;
lsmeans A;
lsmeans B;

* multiple comparisons of means using tukey;
lsmeans A/adjust¼ tukey alpha¼ 0.05;
lsmeans B/adjust¼ tukey alpha¼ 0.05;
lsmeans A*B/adjust¼ tukey alpha¼ 0.05;
run;
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The output for the above code and data in a drastically abbreviated form is presented

below. Type I and III sums of squares are identical and the Type III ANOVA is

omitted.

The GLM Procedure

Class Level Information
Class Levels Values
Site 3 1 2 3
A 5 A1 A2 A3 A4 A5
B 8 B1 B2 B3 B4 B5 B6 B7 B8
Block 4 R1 R2 R3 R4
Number of observations 480

Dependent Variable: Yield
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 227 6370995084 28066058 10813.6 <.0001
Error 252 654049 2595
Corrected Total 479 6371649132

R-Square Coeff Var Root MSE Yield Mean
0.999897 0.459669 50.94537 11083.06

Source DF Type I SS Mean Square F Value Pr > F
Site 2 523573968 261786984 100865 <.0001
Block(Site) 9 3756646710 417405190 160823 <.0001
A 4 29288163 7322041 2821.13 <.0001
Site*A 8 247899 30987 11.94 <.0001
A*Block(Site) 36 1783391 49539 19.09 <.0001
B 7 1937592291 276798899 106649 <.0001
Site*B 14 15903698 1135978 437.68 <.0001
B*Block(Site) 63 105727288 1678211 646.60 <.0001
A*B 28 91141 3255 1.25 0.1838
Site*A*B 56 140534 2510 0.97 0.5461

Source Type III Expected Mean Square
Site Var(Error)þ 5 Var(B*Block(Site))þ 8 Var(A*Block(Site))

þ 40 Var(Block(Site))þ 160 Var(Site)þ
Q(Site*A,Site*B,Site*A*B)

Block Var(Error)þ 5 Var(B*Block(Site))þ 8 Var(A*Block(Site))
(Site) þ 40 Var(Block(Site))

A Var(Error)þ 8 Var(A*Block(Site))þ
Q(A,Site*A,A*B,Site*A*B)

Site*A Var(Error)þ 8 Var(A*Block(Site))þ Q(Site*A,Site*A*B)
A*Block Var(Error)þ 8 Var(A*Block(Site))
(Site)

B Var(Error)þ 5 Var(B*Block(Site))þ
Q(B,Site*B,A*B,Site*A*B)
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Site*B Var(Error)þ 5 Var(B*Block(Site))þ Q(Site*B,Site*A*B)
B*Block Var(Error)þ 5 Var(B*Block(Site))
(Site)

A*B Var(Error)þ Q(A*B,Site*A*B)
Site*A*B Var(Error)þ Q(Site*A*B)

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Yield
Source DF Type III SS Mean Square F Value Pr>F

* Site 2 523573968 261786984 0.63 0.5559
Error 9 3756646710 417405190

Error: MS(Block(Site))
* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr>F
Block(Site) 9 3756646710 417405190 241.95 <.0001
Error 66.472 114675113 1725154
Error: MS(A*Block(Site))þ MS(B*Block(Site))� MS(Error)

Source DF Type III SS Mean Square F Value Pr>F
* A 4 29288163 7322041 147.80 <.0001
* Site*A 8 247899 30987 0.63 0.7508
Error 36 1783391 49539

Error: MS(A*Block(Site))
* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr > F
A*Block(Site) 36 1783391 49539 19.09 <.0001
B*Block(Site) 63 105727288 1678211 646.60 <.0001

* A*B 28 91141 3255.042113 1.25 0.1838
Site*A*B 56 140534 2509.541667 0.97 0.5461
Error: MS(Error) 252 654049 2595.430704

* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr > F
* B 7 1937592291 276798899 164.94 <.0001
* Site*B 14 15903698 1135978 0.68 0.7878
Error 63 105727288 1678211

Error: MS(B*Block(Site))
* This test assumes one or more other fixed effects are zero.

Least Squares Means
A Yield LSMEAN
A1 10740.1979
A2 10901.1250
A3 11081.9167
A4 11256.2708
A5 11435.8021
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Least Squares Means
B Yield LSMEAN
B1 8016.6333
B2 8887.5833
B3 9773.5000
B4 10640.3500
B5 11520.6333
B6 12391.4500
B7 13282.0333
B8 14152.3167

Least Squares Means
A B Yield LSMEAN
A1 B1 7672.7500
A1 B2 8539.2500
A1 B3 9429.5833
A1 B4 10288.2500
A1 B5 11177.8333
A1 B6 12051.3333
A1 B7 12939.5000
A1 B8 13823.0833
A2 B1 7833.9167
.
.
.
A5 B6 12754.3333
A5 B7 13630.0000
A5 B8 14479.3333

SiteA Yield LSMEAN
1 A1 10369.9688
1 A2 10575.9688
1 A3 10755.5625
1 A4 10941.1875
1 A5 11129.6563
2 A1 9707.5313
2 A2 9826.9375
2 A3 10002.4688
2 A4 10151.5000
2 A5 10313.0000
3 A1 12143.0938
3 A2 12300.4688
3 A3 12487.7188
3 A4 12676.1250
3 A5 12864.7500

Tukey’s Studentized Range (HSD) Test for Yield
Alpha 0.05
Error Degrees of Freedom 36
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Error Mean Square 49538.65
Critical Value of Studentized Range 4.05997
Minimum Significant Difference 92.227

Means with the same letter are not significantly different.

T
u
k
.
.
.
g Mean N A
A 11435.80 96 A5
B 11256.27 96 A4
C 11081.92 96 A3
D 10901.13 96 A2
E 10740.20 96 A1

Tukey’s Studentized Range (HSD) Test for Yield

Alpha 0.05
Error Degrees of Freedom 63
Error Mean Square 1678211
Critical Value of Studentized Range 4.43360
Minimum Significant Difference 741.49

Means with the same letter are not significantly different.

Mean N B
A 14152.3 60 B8
B 13282.0 60 B7
C 12391.5 60 B6
D 11520.6 60 B5
E 10640.4 60 B4
F 9773.5 60 B3
G 8887.6 60 B2
H 8016.6 60 B1

The Mixed Procedure
Covariance Parameter

Estimates
Cov Parm Estimate
Site 0
Block(Site) 10391884
A*Block(Site) 5867.83
B*Block(Site) 335119
Residual 2595.44
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Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr>F
A 4 36 147.81 <.0001
Site*A 8 36 0.63 0.7508
B 7 63 164.94 <.0001
Site*B 14 63 0.68 0.7878
A*B 28 252 1.25 0.1838
Site*A*B 56 252 0.97 0.5461

Least Squares Means
Standard

Effect A B Estimate Error DF t Value Pr>|t| Alpha
A A1 10740 932.74 36 11.51 <.0001 0.05
A A2 10901 932.74 36 11.69 <.0001 0.05
A A3 11082 932.74 36 11.88 <.0001 0.05
A A4 11256 932.74 36 12.07 <.0001 0.05
A A5 11436 932.74 36 12.26 <.0001 0.05
B B1 8016.63 945.55 63 8.48 <.0001 0.05
B B2 8887.58 945.55 63 9.40 <.0001 0.05
B B3 9773.50 945.55 63 10.34 <.0001 0.05
B B4 10640 945.55 63 11.25 <.0001 0.05
B B5 11521 945.55 63 12.18 <.0001 0.05
B B6 12391 945.55 63 13.11 <.0001 0.05
B B7 13282 945.55 63 14.05 <.0001 0.05
B B8 14152 945.55 63 14.97 <.0001 0.05
A*B A1 B1 7672.75 945.84 252 8.11 <.0001 0.05
A*B A1 B2 8539.25 945.84 252 9.03 <.0001 0.05
A*B A1 B3 9429.58 945.84 252 9.97 <.0001 0.05
A*B A1 B4 10288 945.84 252 10.88 <.0001 0.05
A*B A1 B5 11178 945.84 252 11.82 <.0001 0.05
A*B A1 B6 12051 945.84 252 12.74 <.0001 0.05
A*B A1 B7 12939 945.84 252 13.68 <.0001 0.05
A*B A1 B8 13823 945.84 252 14.61 <.0001 0.05
A*B A2 B1 7833.92 945.84 252 8.28 <.0001 0.05
A*B A2 B2 8706.42 945.84 252 9.20 <.0001 0.05
A*B A2 B3 9574.50 945.84 252 10.12 <.0001 0.05
A*B A2 B4 10488 945.84 252 11.09 <.0001 0.05
A*B A2 B5 11321 945.84 252 11.97 <.0001 0.05
A*B A2 B6 12197 945.84 252 12.90 <.0001 0.05
A*B A2 B7 13100 945.84 252 13.85 <.0001 0.05
A*B A2 B8 13988 945.84 252 14.79 <.0001 0.05
A*B A3 B1 8032.67 945.84 252 8.49 <.0001 0.05
A*B A3 B2 8877.67 945.84 252 9.39 <.0001 0.05
A*B A3 B3 9761.00 945.84 252 10.32 <.0001 0.05
A*B A3 B4 10605 945.84 252 11.21 <.0001 0.05
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A*B A3 B5 11548 945.84 252 12.21 <.0001 0.05
A*B A3 B6 12394 945.84 252 13.10 <.0001 0.05
A*B A3 B7 13284 945.84 252 14.04 <.0001 0.05

Least Squares Means
Effect A B Lower Upper
A A1 8848.52 12632
A A2 9009.45 12793
A A3 9190.24 12974
A A4 9364.59 13148
A A5 9544.13 13327
B B1 6127.11 9906.16
B B2 6998.06 10777
B B3 7883.98 11663
B B4 8750.83 12530
B B5 9631.11 13410
B B6 10502 14281
B B7 11393 15172
B B8 12263 16042
A*B A1 B1 5809.98 9535.52
A*B A1 B2 6676.48 10402
A*B A1 B3 7566.82 11292
A*B A1 B4 8425.48 12151
A*B A1 B5 9315.07 13041
A*B A1 B6 10189 13914
A*B A1 B7 11077 14802
A*B A1 B8 11960 15686
.
.
.
A*B A5 B7 11767 15493
A*B A5 B8 12617 16342

Differences of Least Squares Means
Standard

Effect A B _A _B Estimate Error DF t Value Pr>|t|
A A1 A2 �160.93 32.1254 36 �5.01 <.0001
A A1 A3 �341.72 32.1254 36 �10.64 <.0001
A A1 A4 �516.07 32.1254 36 �16.06 <.0001
A A1 A5 �695.60 32.1254 36 �21.65 <.0001
A A2 A3 �180.79 32.1254 36 �5.63 <.0001
A A2 A4 �355.15 32.1254 36 �11.05 <.0001
A A2 A5 �534.68 32.1254 36 �16.64 <.0001
A A3 A4 �174.35 32.1254 36 �5.43 <.0001
A A3 A5 �353.89 32.1254 36 �11.02 <.0001
A A4 A5 �179.53 32.1254 36 �5.59 <.0001
B B1 B2 �870.95 236.52 63 �3.68 0.0005
B B1 B3 �1756.87 236.52 63 �7.43 <.0001
B B1 B4 �2623.72 236.52 63 �11.09 <.0001
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B B1 B5 �3504.00 236.52 63 �14.82 <.0001
B B1 B6 �4374.82 236.52 63 �18.50 <.0001
B B1 B7 �5265.40 236.52 63 �22.26 <.0001
B B1 B8 �6135.68 236.52 63 �25.94 <.0001
B B2 B3 �885.92 236.52 63 �3.75 0.0004
B B2 B4 �1752.77 236.52 63 �7.41 <.0001
B B2 B5 �2633.05 236.52 63 �11.13 <.0001
B B2 B6 �3503.87 236.52 63 �14.81 <.0001
B B2 B7 �4394.45 236.52 63 �18.58 <.0001
B B2 B8 �5264.73 236.52 63 �22.26 <.0001
B B3 B4 �866.85 236.52 63 �3.67 0.0005
B B3 B5 �1747.13 236.52 63 �7.39 <.0001
B B3 B6 �2617.95 236.52 63 �11.07 <.0001
B B3 B7 �3508.53 236.52 63 �14.83 <.0001
B B3 B8 �4378.82 236.52 63 �18.51 <.0001
B B4 B5 �880.28 236.52 63 �3.72 0.0004
B B4 B6 �1751.10 236.52 63 �7.40 <.0001
B B4 B7 �2641.68 236.52 63 �11.17 <.0001
B B4 B8 �3511.97 236.52 63 �14.85 <.0001
B B5 B6 �870.82 236.52 63 �3.68 0.0005
B B5 B7 �1761.40 236.52 63 �7.45 <.0001
B B5 B8 �2631.68 236.52 63 �11.13 <.0001
B B6 B7 �890.58 236.52 63 �3.77 0.0004
B B6 B8 �1760.87 236.52 63 �7.45 <.0001
B B7 B8 �870.28 236.52 63 �3.68 0.0005
A*B A1 B1 A1 B2 �866.50 237.25 252 �3.65 0.0003
A*B A1 B1 A1 B3 �1756.83 237.25 252 �7.41 <.0001
A*B A1 B1 A1 B4 �2615.50 237.25 252 �11.02 <.0001
A*B A1 B1 A1 B5 �3505.08 237.25 252 �14.77 <.0001
A*B A1 B1 A1 B6 �4378.58 237.25 252 �18.46 <.0001
A*B A1 B1 A1 B7 �5266.75 237.25 252 �22.20 <.0001
A*B A1 B1 A1 B8 �6150.33 237.25 252 �25.92 <.0001
A*B A1 B1 A2 B1 �161.17 37.5572 252 �4.29 <.0001
A A1 A2 Tukey-Kramer 0.0001 0.05 �226.08�95.7737
A A1 A3 Tukey-Kramer <.0001 0.05 �406.87 �276.57
A A1 A4 Tukey-Kramer <.0001 0.05 �581.23 �450.92
A A1 A5 Tukey-Kramer <.0001 0.05 �760.76 �630.45
A A2 A3 Tukey-Kramer <.0001 0.05 �245.95 �115.64
A A2 A4 Tukey-Kramer <.0001 0.05 �420.30 �289.99
A A2 A5 Tukey-Kramer <.0001 0.05 �599.83 �469.52
A A3 A4 Tukey-Kramer <.0001 0.05 �239.51 �109.20
A A3 A5 Tukey-Kramer <.0001 0.05 �419.04 �288.73
A A4 A5 Tukey-Kramer <.0001 0.05 �244.68 �114.38
B B1 B2 Tukey-Kramer 0.0107 0.05�1343.59 �398.31
B B1 B3 Tukey-Kramer <.0001 0.05�2229.51�1284.23
B B1 B4 Tukey-Kramer <.0001 0.05�3096.36�2151.08
B B1 B5 Tukey-Kramer <.0001 0.05�3976.64�3031.36
B B1 B6 Tukey-Kramer <.0001 0.05�4847.46�3902.18
B B1 B7 Tukey-Kramer <.0001 0.05�5738.04�4792.76
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B B1 B8 Tukey-Kramer <.0001 0.05�6608.32�5663.04
B B2 B3 Tukey-Kramer 0.0088 0.05�1358.56 �413.28
B B2 B4 Tukey-Kramer <.0001 0.05�2225.41�1280.13
B B2 B5 Tukey-Kramer <.0001 0.05�3105.69�2160.41
B B2 B6 Tukey-Kramer <.0001 0.05�3976.51�3031.23
B B2 B7 Tukey-Kramer <.0001 0.05�4867.09�3921.81
B B2 B8 Tukey-Kramer <.0001 0.05�5737.37�4792.09
B B3 B4 Tukey-Kramer 0.0113 0.05�1339.49 �394.21
B B3 B5 Tukey-Kramer <.0001 0.05�2219.77�1274.49
B B3 B6 Tukey-Kramer <.0001 0.05�3090.59�2145.31
B B3 B7 Tukey-Kramer <.0001 0.05�3981.17�3035.89
B B3 B8 Tukey-Kramer <.0001 0.05�4851.46�3906.18
B B4 B5 Tukey-Kramer 0.0095 0.05�1352.92 �407.64
B B4 B6 Tukey-Kramer <.0001 0.05�2223.74�1278.46
B B4 B7 Tukey-Kramer <.0001 0.05�3114.32�2169.04
B B4 B8 Tukey-Kramer <.0001 0.05�3984.61�3039.33
B B5 B6 Tukey-Kramer 0.0107 0.05�1343.46 �398.18
B B5 B7 Tukey-Kramer <.0001 0.05�2234.04�1288.76
B B5 B8 Tukey-Kramer <.0001 0.05�3104.32�2159.04
B B6 B7 Tukey-Kramer 0.0083 0.05�1363.22 �417.94
B B6 B8 Tukey-Kramer <.0001 0.05�2233.51�1288.23
B B7 B8 Tukey-Kramer 0.0108 0.05�1342.92 �397.64
A*B A1 B1 A1 B2 Tukey-Kramer 0.1204 0.05�1333.74 �399.26
A*B A1 B1 A1 B3 Tukey-Kramer <.0001 0.05�2224.07�1289.60
A*B A1 B1 A1 B4 Tukey-Kramer <.0001 0.05�3082.74�2148.26
A*B A1 B1 A1 B5 Tukey-Kramer <.0001 0.05�3972.32�3037.85
A*B A1 B1 A1 B6 Tukey-Kramer <.0001 0.05�4845.82�3911.35
A*B A1 B1 A1 B7 Tukey-Kramer <.0001 0.05�5733.99�4799.51
A*B A1 B1 A1 B8 Tukey-Kramer <.0001 0.05�6617.57�5683.10
A*B A1 B1 A2 B1 Tukey-Kramer 0.0142 0.05 �235.13�87.2006

Most of the 40(39)/2¼ 780 pairwise comparisons have been deleted as has much of

the additional output.

A*B A5 B5 A5 B8 Tukey-Kramer <.0001 0.05�3077.49�2143.01
A*B A5 B6 A5 B7 Tukey-Kramer 0.1077 0.05�1342.90 �408.43
A*B A5 B6 A5 B8 Tukey-Kramer <.0001 0.05�2192.24�1257.76
A*B A5 B7 A5 B8 Tukey-Kramer 0.1475 0.05�1316.57 �382.10
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C H A P T E R 1 1

Covariance Analyses for Split Plot

and Split Block Experiment Designs

11.1. INTRODUCTION

In our discussion of covariance analyses for split plot and split block experiment

designs, the presentation given by Federer and Meredith (1989, 1992) is followed

herein. The concepts, population structure, philosophical nature, analyses, and

usage of multiple error terms for the general families of split plot, split block,

and variations of these as explained in previous chapters are not well explained

or documented in statistical literature and statistical software (Federer, 1977).

The standard split plot experiment design as discussed by Yates (1937) is described

in Chapter 1. The subject of covariance for the experiment designs discussed in

this text is quite limited in statistical literature. Exceptions are the discussions

by Kempthorne (1952), Chapter 16 of Federer (1955), and Federer and Meredith

(1989, 1992). The information available here was not used for a number of

software packages as is indicated in Federer and Henderson (1978, 1979);

Federer et al. (1987); Federer et al. (1987a, 1987b); Meredith et al. (1988); and

Miles-McDermott et al. (1988). An exception is the GENSTAT software package.

There are several ways in which a covariate may be used as a treatment variable.

For example, use a polynomial regression model to estimate linear, quadratic, and so

forth trends for the various quantitative levels of a factor. A multivariate analysis

could be performed such as presented by Steele and Federer (1955). Estimates of

slope and curvature regressions could be obtained for each treatment and each

treatment combination in an experiment. Milliken and Johnson (2002) treat a

covariate as a treatment predictor variable. In Section 15.3, they consider a covariate

measured on the whole plot and obtain linear regression coefficients for each

combination of whole plot and split treatments. In Section 15.4, they do something
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similar but with the covariate measured on the split plot. In Section 15.5, they

present similar considerations for the case where one covariate is measured on the

whole plot and a second covariate is measured on the split plot. These are

investigations of the interaction of the treatments with the covariate. Simple linear

(or higher order) regression models for one covariate are obtained for treatment

variables only. They rule out consideration of multiple regressions with the blocking

variables in their considerations as stated in Section 15.2.

The references in the first paragraph above use a covariate as a blocking variable

and this is the approach presented in this chapter. Steele and Federer (1955) and

Milliken and Johnson (2002) use a covariate as a treatment predictor variable. Either

approach or a combination of the two approaches may be desirable in an analysis of

data from experiments. There are several ways to use a covariate with blocking

variables. For example, trends and curvatures in rows, in columns, in blocks, and

interactions of trends have been used in trend analysis of data (See Federer, 2003).

Spatial location or order within the experiment has been used as a covariate in trend

analysis.

In an analysis of covariance, ANCOVA, there are as many blocking variable

regression coefficients as there are error terms in an analysis of variance, ANOVA.

Multiple error terms and multiple regression coefficients add complexity and

difficulty to the statistical analysis and computer programming. Formulae for

obtaining treatment means adjusted for a covariate and the variances of a difference

between two such means are more complex and numerous. For the more complex

experiment designs discussed in this text, it may be advisable to avoid using

covariates as formulae for the means as their variances are mostly unavailable. If

necessary to use a covariate, an alternative procedure would be to perform a

covariance analysis for different subsets of the data that fit into one of the settings

described in this chapter.

11.2. COVARIANCE ANALYSIS FOR A STANDARD SPLIT PLOT
DESIGN

As described in Chapter 1, the almost universal split plot experiment design

discussed in statistical textbooks consists of the whole plot treatments arranged in a

randomized complete block experiment design and the split plot treatments

randomly assigned to each of the whole plots. This is the standard split plot

experiment design (Federer, 1955, 1975, 1977; Yates, 1937). As demonstrated

herein, there exist many variations of split plot experiment designs used in practice.

There are many different design structures for the whole plot treatments and for the

split plot treatments.

ANCOVA will be described for the standard split plot experiment design.

Depending upon the particular experimental situation, there are many models

available for analyzing the responses from split plot designed experiments. We shall

use the model described by Yates (1937) and Federer (1955). Let the hijth

observation be denoted by the Yhij observation and the Zhij covariate. A response
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model equation with a covariate may be of the form (Kempthorne, 1952; Federer,

1955; Federer and Meredith, 1992):

Yhij ¼ mþ rhþ ar þ dhiþ bwðzhi: � z���Þ þ gjþ agij þ bsðZhij� zhi:Þ þ ehij; ð11:1Þ

where

m is a general mean effect,

rh is the hth random block effect and is IID(0, s2
r),

ai is the ith whole plot treatment effect, factor A,

gj is the jth split plot treatment effect, factor B,

dhi is the hith random whole plot error effect, and is IID(0, s2
d),

agij is the ijth interaction effect of factors A and B,

ehij is the hijth random split plot error effect, and is IID(0, s2
e ),

h ¼ 1; 2; . . . ; r; i ¼ 1; 2;: . . . ; a; and j ¼ 1; 2; . . . ; b; and

zhi is the mean of Zhij for the hith whole plot.

The dot summation means summed over the subscript replaced by the dot.

The random effects in the model, rh, dhi, and ehij, are assumed to be mutually

independent.

The covariate value Zhij in equation (11.1) is for the hijth split plot experimental

unit, bs is the split plot regression coefficient, and bw is the whole plot regression

coefficient. In some cases, covariates are for whole plot experimental units in

which case the covariate in (11.1) is written as Zhi The product of the estimated

residual effects ehij, for split plot experimental units and the Zhij values of the

covariate are used to obtain the split plot linear regression coefficient bs. The product

of the residual effects for whole plots dhi, and the sum of the covariate values

summed over j Zhi: form the linear whole plot regression coefficient bw. There are

two regressions in a split plot ANCOVA needed for adjusting the means of the

response Y for values of the covariate Zhij. As a word of caution, some computer

software packages use the split plot regression coefficient for adjusting all the

means (see above references.). In general, there will be as many regression terms

as there are error terms in the ANCOVA. For example, if there are six error terms in

an ANCOVA, there will be six regression coefficients. Some means may require the

use of all six in order to adjust for a covariate while others would use only one

regression coefficient. Owing to the algebraic complexity involved, analysts may

forego the use of covariates for some mean combinations in the case of many error

terms.

An ANCOVA table of the sums of squares and cross-products is presented in

Table 11.1. If F-statistics are desired, they may be computed using the adjusted mean

squares as follows:

A0yy=ða� 1Þ
D0yy=ðar � a� rÞ ¼

A0yy=ða� 1Þ
Ea

; ð11:2Þ
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B0yy=ðb� 1Þ
E0yy=faðb� 1Þðr � 1Þ � 1g ¼

B0yy=ðb� 1Þ
Eb

, ð11:3Þ

and

I0yy=ða� 1Þðb� 1Þ
E0yy=faðb� 1Þðr � 1Þ � 1g ¼

I0yy=ða� 1Þðb� 1Þ
Eb

. ð11:4Þ

Other F-statistics may involve the use of the A
 B interaction as an error mean

square. In that case, I0yy is used in place of E0yy. This means that there are three instead

of two regressions to be considered.

The various sums of cross-products are obtained as given below:

Tyz ¼
Xr

h¼1

Xa

i¼1

Xb

j¼1

YhijZhij ð11:5Þ

Myz ¼
Y...Z...

rab
ð11:6Þ

Ryz ¼
Pr

h¼1 Yh::Zh::

ab
�Myz ð11:7Þ

Ayz ¼
Pa

i¼1 Y:i:Z:i:

rb
�Myz ð11:8Þ

Table 11.1. ANCOVA for a Standard Split Plot Experiment Design with a Covariate.

Sums of products

Source of Degrees of Adjusted

variation freedom (DF) yy yz zz DF sums of squares

Total rab Tyy Tyz Tzz

Mean 1 Myy Myz Mzz

Block, R r � 1 Ryy Ryz Rzz

Factor A a� 1 Ayy Ayz Azz

Error A (a� 1)(r � 1) Dyy Dyz Dzz ra� r � a Dyy �
D2

yz

Dzz

¼ D0yy

Factor B b� 1 Byy Byz Bzz

A
 B (a� 1)(b� 1) Iyy Iyz Izz ab� a� b Iyy �
I2
yz

Izz

¼ I0yy

Error B a(b� 1)(r � 1) Eyy Eyz Ezz a(b� 1)(r � 1)�1 Eyy �
E2

yz

Ezz

¼ E0yy

A (adj. for bw) a� 1 Ayy �
ðAyz þ DyzÞ2

Azz þ Dzz

þ
D2

yz

Dzz

¼ A0yy

B (adj. for bs) b� 1 Byy �
ðByz þ EyzÞ2

Bzz þ Ezz

þ
E2

yz

Ezz

¼ B0yy

A
 B (a� 1)(b� 1) Iyy �
ðIyz þ EyzÞ2

Izz þ Ezz

þ
E2

yz

Ezz

¼ I0yy

(adjusted for bs)
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Dyz ¼
Pr

h¼1

Pa
i¼1 Yhi:Zhi:

b
� Ryz � Ayz þMyz ð11:9Þ

Byz ¼
Pb

j¼1 Y:: jZ:: j

ar
�Myz ð11:10Þ

Iyz ¼
Pa

i¼1

Pb
j¼1 Y:ijZ:ij

r
� Ayz � Byz þMyz: ð11:11Þ

The Error B sum of cross-products is obtained by subtraction. The computations in

equations (11.5) to (11.11) with adjustments for unequal numbers hold for

non-orthogonal or unbalanced data sets as well. The mean squares in an ANCOVA

are obtained by dividing with the appropriate degrees of freedom. The ANCOVA

case discussed here is for one covariate and a common slope, but the extension to

more that one covariate or for regressions other than linear is straightforward.

The various Y means are adjusted (adj.) for the covariate Z as follows:

y:ijðadj:Þ ¼ y:ij � b̂sðz:ij � z:i:Þ � b̂wðz:i: � z...Þ ¼ y0:ij; ð11:12Þ

y::jðadj:Þ ¼ y::j � b̂sðz::j � z...Þ ¼ y0::j; ð11:13Þ

and

y:i:ðadj:Þ ¼ y:i: � b̂wðz:i: � z...Þ ¼ y0:i:: ð11:14Þ

Estimates of bw and bs, b̂w ¼ Dyz=Dzz and b̂s ¼ Eyz=Ezz, respectively, are used in

the above formulae when adjusting the means for the covariate.

Estimated variances of a difference between two estimated adjusted means for

i 6¼ i0 and j 6¼ j0 are as follows:

Variance of a difference between two adjusted whole plot means:

Vðy0:i: � y0:i0:Þ ¼ Ea

2

br
þ ðz:i: � z:i0:Þ2

Dzz

" #
: ð11:15Þ

Variance of a difference between two adjusted split plot means:

Vðy0::j � y0::j0 Þ ¼ Eb

2

ar
þ ðz::j � z::j0 Þ2

Ezz

" #
: ð11:16Þ

Variance of a difference between two adjusted split plot means for the same whole

plot:

Vðy0:ij � y0:ij0 Þ ¼ Eb

2

r
þ ðz:ij � z:ij0 Þ2

Ezz

" #
: ð11:17Þ
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Variance of a difference between two adjusted whole plot means for the same split

plot:

Vðy0:ij � y0:i0jÞ ¼
2ðEb þ s2

dÞ
r

þ Eaðz:i: � z:i0:Þ2

Dzz

þ Ebðz:ij � z:i0j � z:i: þ z:i0:Þ2

Ezz

:

ð11:18Þ

The estimated variance of a difference between two different split plot means from

two different whole plot treatments is the same as the last variance. In the above

formulae,

Ea ¼ ŝ2
e þ bŝ2

d ¼
D0yy

ar� r� a
, ð11:19Þ

ŝ2
e ¼

E0yy

aðb� 1Þðr � 1Þ � 1
¼ Eb, ð11:20Þ

and

ŝ2
d ¼
ðEa � EbÞ

b
: ð11:21Þ

The hat indicates an estimated quantity. Ea is associated with ar � a� r degrees of

freedom and Eb is associated with aðb� 1Þðr � 1Þ � 1 degrees of freedom. The

degrees of freedom, f*, for the variance Eb þ s2�
d ¼ ½ðb� 1ÞEb þ Ea�=b needs to be

approximated using the formula given below:

taðf�Þ ¼
ðEata;ar�a�r¼ df þ ðb� 1ÞEbta;aðb�1Þðr�1Þ�1¼ df Þ

ðb� 1ÞEb þ Ea

; ð11:22Þ

where ta(f*) is the tabulated value of the t statistic at the a percentage level for f*

degrees of freedom. This approximation generally underestimates the degrees of

freedom for variances constructed in this manner (See Cochran and Cox, 1957 and

Grimes and Federer, 1984). Other methods for approximating the degrees of

freedom for constructed variances and variance components are available in the

literature.

Example 11.1: Covariate varies with split plots—Hypothetical data are used to

illustrate the statistical analysis for ANCOVA for a split plot experiment design. The

data set size is kept small in order to allow manual calculations for the analysis.

Factor W, whole plot, has two levels, W1 and W2, and is in a randomized complete

block arrangement in the three blocks. Factor S, split plot, has four levels, S1, S2, S3,

and S4, and is randomized within each whole plot W. A SAS code for most of the

analysis is given in Appendix 11.1. A comparison of the analysis herein and the

output from the code will demonstrate what is available from the code output for

ANCOVA. The data are given in Table 11.2. Various totals for the Y and Z variables
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are given in Table 11.2. Other totals that are required in an analysis of covariance are

given in Table 11.3. The sums of squares for variables Y and Z are obtained as

described in Chapter 1. The detailed computations for the cross products of variables

Y and Z are given by equations (11.5) to (11.11) and computed as indicated below.

The format of the ANCOVA table, Table 11.4, follows that given for Table 11.1.

Total sum of cross-products, equation (11.5) is as follows:

3ð1Þ þ 4ð2Þ þ 7ð1Þ þ 6ð2Þ þ . . .þ 10ð3Þ þ 8ð2Þ þ 9ð4Þ þ 13ð7Þ ¼ 537:

Correction for the mean cross-products, equation (11.6):

168ð60Þ=24 ¼ 420:

Block sum of cross-products, equation (11.7):

½40ð14Þ þ 64ð20Þ þ 64ð26Þ�=½4ð2Þ ¼ 8� � 168ð60Þ=24 ¼ 18

W sum of cross-products, equation (11.8):

½72ð24Þ þ 96ð36Þ�=½4ð3Þ ¼ 12� � 168ð60Þ=24 ¼ 12:

R
W sum of cross-products, equation (11.9):

½20ð6Þþ28ð8Þþ24ð10Þþ20ð8Þþ36ð12Þþ40ð16Þ�=4�168ð60Þ=24�18�12¼ 4:

Table 11.2. Hypothetical Data Y from a Split Plot Experiment Design with a

Covariate Z (Second Item in Each Pair).

Whole plot 1¼W1 Whole plot 2¼W2

Split plot |S1 S2 S3 S4 |Total |S1 S2 S3 S4 |Total

Block B1 |3 1 4 2 7 1 6 2 |20 6 |3 2 2 0 1 2 14 4 |20 8

B2 |6 2 10 2 1 0 11 4 |28 8 |8 4 8 1 2 3 18 4 |36 12

B3 |6 3 10 5 4 2 4 0 |24 10 |10 3 8 2 9 4 13 7 |40 16

Total |15 6 24 9 12 3 21 6 |72 24 |21 9 18 3 12 9 45 15 |96 36

Table 11.3. Other Totals Used in ANCOVA.

W1 W2 Total Totals

Variable Y Z Y Z Y Z S1 S2 S3 S4

Block B1 20 6 20 8 40 14 Y Z Y Z Y Z Y Z

B2 28 8 36 12 64 20 36 15 42 12 24 12 66 21

B3 24 10 40 16 64 26

Total 72 24 96 36 168 60
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S sum of cross-products, equation (11.10):

½36ð15Þ þ 42ð12Þ þ 24ð12Þ þ 66ð21Þ�=½2ð3Þ ¼ 6� � 168ð60Þ=24 ¼ 33:

S
W interaction sum of cross-products, equations (11.11):

½15ð6Þ þ 24ð9Þ þ 12ð3Þ þ 21ð6Þ þ 21ð9Þ þ 18ð3Þ þ 12ð9Þ þ 45ð15Þ�=3

� 168ð60Þ=24� 33� 12 ¼ 33:

S
 R : W sum of cross-products:

f3ð1Þ þ 6ð2Þ þ 6ð3Þ þ . . .þ 6ð2Þ þ 11ð4Þ þ 4ð0Þ � ½20ð6Þ þ 28ð8Þ þ 24ð10Þ�=4

� ½15ð6Þ þ 24ð9Þ þ 12ð3Þ þ 21ð6Þ�=3þ 72ð24Þ=12g þ 3ð2Þ þ 8ð4Þ þ 10ð3Þ

þ . . .þ 14ð4Þ þ 18ð4Þ þ 13ð7Þ � ½20ð8Þ þ 36ð12Þ þ 40ð16Þ�=4� ½21ð9Þ

þ 18ð3Þ þ 12ð9Þ þ 45ð15Þ�=3þ 96ð36Þ=12 ¼ 17:

Wþ R
W adjusted for whole plot regression with 1þ 2� 1 ¼ 2 degrees of

freedom:

24þ 16� ð12þ 4Þ2=ð6þ 1Þ ¼ 40� 256=7 ¼ 3:43:

R
W adjusted for whole plot regression with 2� 1 ¼ 1 degree of freedom:

16� 42=1 ¼ 0:

W adjusted for whole plot regression is the difference of the above two:

3:43� 0 ¼ 3:43:

Table 11.4. ANCOVA for the Data in Table 11.2.

Sums of products

Source of Degrees of Adj. sums

variation freedom (DF) yy yz zz DF of squares Mean square

Total 24 1,616 537 216

Mean 1 1,176 420 150

Block, R 2 48 18 9

W 1 24 12 6

W
 R 2 16 4 1 1 0 0

S 3 156 33 9

S
W 3 84 33 21

S
 R: W 12 112 17 20 11 97.55 8.87

W (adj. for bw) 1 W 0yy ¼ 3:43 3.43

S (adj. for bs) 3 S0yy ¼ 84:24 28.08

S
W (adj. for bs) 3 I0yy ¼ 37:47 12.49
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Sþ S
 R : W adjusted for split plot regression with 12þ 3� 1 ¼ 14 degrees of

freedom:

156þ 112� ð33þ 17Þ2=ð9þ 20Þ ¼ 181:79:

S
W þ S
 R : W adjusted for split plot regression with 12þ 3� 1 ¼ 14 degrees

of freedom:

84þ 112� ð33þ 17Þ2=ð21þ 20Þ ¼ 135:02:

S
 R : W adjusted for split plot regression with 12� 1 ¼ 11 degrees of freedom:

112� 172=20 ¼ 97:55:

S adjusted for split plot regression is the difference of two adjusted sums of squares:

181:79� 97:95 ¼ 84:24:

S
W adjusted for split plot regression is a difference of two adjusted sums of

squares:

135:02� 97:55 ¼ 37:47:

A table of means before adjustment for the covariate appears as Table 11.5. The

various means adjusted for regression are given below.

Whole plot means of Y, bw ¼ 4=1 ¼ 4 :

y:1:ðadj:Þ ¼ 6� 4ð2� 2:5Þ=1 ¼ 8

y:2:ðadj:Þ ¼ 8� 4ð3� 2:5Þ=1 ¼ 6:

Split plot means of Y, bs ¼ 17=20 ¼ 0:85:

y::1ðadj:Þ ¼ 6� 17ð2:5� 2:5Þ=20 ¼ 6:00

y::2ðadj:Þ ¼ 7� 17ð2� 2:5Þ=20 ¼ 7:425

y::3ðadj:Þ ¼ 4� 17ð2� 2:5Þ=20 ¼ 4:425

y::4ðadj:Þ ¼ 11� 17ð3:5� 2:5Þ=20 ¼ 10:15:

Table 11.5. Whole Plot, Split Plot, and Split Plot by Whole Plot Means.

S1 S2 S3 S4 Mean

Y Z Y Z Y Z Y Z Y Z

W1 5 2 8 3 4 1 7 2 6 2

W2 7 3 6 1 4 3 15 5 8 3

Mean 6 2.5 7 2 4 2 11 3.5 7 2.5
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Interaction means y:ij adjusted for both whole plot and split plot regressions:

y:11ðadj:Þ ¼ 5� 4ð2� 2:5Þ � 0:85ð2� 2Þ ¼ 7:00

y:12ðadj:Þ ¼ 8� 4ð2� 2:5Þ � 0:85ð3� 2Þ ¼ 9:15

y:13ðadj:Þ ¼ 4� 4ð2� 2:5Þ � 0:85ð1� 2Þ ¼ 6:85

y:14ðadj:Þ ¼ 7� 4ð2� 2:5Þ � 0:85ð2� 2Þ ¼ 9:00

y:21ðadj:Þ ¼ 7� 4ð3� 2:5Þ � 0:85ð3� 3Þ ¼ 5:00

y:22ðadj:Þ ¼ 6� 4ð3� 2:5Þ � 0:85ð1� 3Þ ¼ 5:70

y:23ðadj:Þ ¼ 4� 4ð3� 2:5Þ � 0:85ð3� 3Þ ¼ 2:00

y:24ðadj:Þ ¼ 15� 4ð3� 2:5Þ � 0:85ð5� 3Þ ¼ 11:30:

The variance of a difference between two adjusted whole plot means (11.15) is

Vðy:1:ðadj:Þ � y:2:ðadj:ÞÞ ¼ 0½2=3ð4Þ þ ð2� 3Þ2=1� ¼ 0, as Ea was zero for this

example. The variance of a difference between two adjusted split plot means (11.16)

is Vðy::1ðadj:Þ � y::2ðadj:ÞÞ ¼ 8:87½2=2ð3Þ þ ð2:5� 2Þ2=20� ¼ 3:07. The variance

of a difference between two adjusted split plot means at the same level of a whole

plot (11.17) is Vðy:11ðadj:Þ � y:12ðadj:ÞÞ ¼ 8:87½2=3þ ð2� 3Þ2=20� ¼ 6:36. The

variance of a difference for two adjusted split plot means for the same level of the

split plot treatment (11.18) is Vðy:11ðadj:Þ � y:21ðadj:ÞÞ ¼ 2ð8:87þ 0Þ=2ð3Þþ
0ð2� 3Þ2=1þ 8:87ð2� 3� 2þ 3Þ2=20 ¼ 2:96:

A computer code in SAS GLM is given in Appendix 11.1. Not all the com-

putations given above are obtainable by the code, for example some of the adjusted

means.

Example 11.2: Covariate constant over split plots—The data for this example are

those given by Miles-McDermott et al. (1988). The example was selected to be small

so that the reader may perform the computations manually. A SAS code for these

data is given in Appendix 11.2. The two whole plot treatments, W1 and W2, are

arranged in a completely randomized design with four subjects per whole plot

treatment. The two split plot treatments were randomized within each whole plot,

resulting in a total of 16 observations. The data are presented in Table 11.6. The

unadjusted whole plot means, split plot means, and split plot by whole plot totals

appear in Table 11.7. An ANCOVA table is given in Table 11.8. Note that the sums

of squares for Z and the cross products of Y and Z for factor S, split plot treatments,

the S
W interaction, and Error S are all zero. This is because the covariate values

are constant over all values of split plot treatments. This means that the split plot

regression coefficient will be zero and will not enter into the adjustments of the split

plot treatment means for this data set. Thus, only the whole plot regression

coefficient is used in the adjustment of means. Likewise, the variances of differences

between means will need to be changed to account for the zero split plot regression.

Error A sum of squares of Y, adjusted for the covariate with 5 degrees of freedom:

227:88� ð163:00Þ2=159:50 ¼ 227:88� 166:58 ¼ 61:30:
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W sum of squares of Y, adjusted for the covariate with 1 degree of freedom:

ð227:88þ 68:06Þ � ð12:38þ 163:00Þ2=ð2:25þ 159:50Þ � 61:30 ¼ 44:48:

Whole plot regression coefficient:

163:00=159:50 ¼ 1:022:

Note that the unadjusted means for split plot means and split plot by whole plot

interaction means are the same as the adjusted means since the adjustments are zero.

The various means adjusted for the covariate are:

y:1:ðadj:Þ ¼ 12:12� 1:022ð4:50� 4:88Þ ¼ 12:51:

y:2:ðadj:Þ ¼ 16:25� 1:022ð5:25� 4:88Þ ¼ 15:87:

Table 11.6. Split Plot Experiment Design for Two Whole Plot Treatments, W1 and

W2, in a Completely Randomized Design with r Replicates and with Two Split Plot

Treatments, S1 and S2, Where the Covariate is Constant Over Split Plots.

Split plot

S1 S2 Total

Whole plot Subject Y Y Z Y Z

W1 1 10 8 3 18 6

2 15 12 5 27 10

3 20 14 8 34 16

4 12 6 2 18 4

W2 5 15 10 1 25 2

6 25 20 8 45 16

7 20 15 10 35 20

8 15 10 2 25 4

Total 132 95 39 227 78

Mean 16.5 11.9 4.88 14.19 4.88

Table 11.7 Totals and Means for the Data in Table 11.6.

Split Plot

S1 S2 Total Mean

Variable Y Z Y Z Y Z Y Z

W1 57 18 40 18 97 36 12.12 4.50

W2 75 21 55 21 130 42 16.25 5.25

Total 132 39 95 39 227 78 14.19 4.88

Mean 16.50 4.88 11.88 4.88 14.19 4.88
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y::1ðadj:Þ ¼ 16:50� 0ð4:88� 4:88Þ ¼ 16:50:

y::2ðadj:Þ ¼ 11:88� 0ð4:88� 4:88Þ ¼ 11:88:

y:11ðadj:Þ ¼ 14:25� 1:022ð4:50� 4:88Þ � 0ð4:50� 4:50Þ ¼ 14:64:

y:12ðadj:Þ ¼ 10:00� 1:022ð4:50� 4:88Þ � 0ð4:50� 4:50Þ ¼ 10:38:

y:21ðadj:Þ ¼ 18:75� 1:022ð5:25� 4:88Þ � 0ð5:25� 5:25Þ ¼ 18:38:

y:22ðadj:Þ ¼ 13:75� 1:022ð5:25� 4:88Þ � 0ð5:25� 5:25Þ ¼ 13:38:

The estimated variances of a difference of two adjusted means are:

Vðy:1:ðadj:Þ � y:2:ðadj:ÞÞ ¼ Ea½2=rbþ ðz:1: � z:2:Þ2=Dzz�
¼ 12:26½1=4þ ð4:50� 5:25Þ2=159:50� ¼ 3:06:

Vðy::1ðadj:Þ � y::2ðadj:ÞÞ ¼ 2Eb=ra ¼ 2ð1:06Þ=4ð2Þ ¼ 0:26:

Vðy:11ðadj:Þ � y:12ðadj:ÞÞ ¼ 2Eb=r ¼ 2ð1:06Þ=4 ¼ 0:53:

Vðy:11ðadj:Þ � y:21ðadj:ÞÞ ¼ 2½ðb� 1ÞEb þ Ea�=rbþ Eaðz:1: � z:2:Þ2=Dzz

¼ 2ð1:06þ 12:26Þ=4ð2Þ þ 12:26ð4:50� 5:25Þ2=159:50 ¼ 3:37

A SAS code and output of the program for aid in obtaining the above analyses are

given in Appendix 11.2. Not all the desired computations are obtainable using this

code. Some need to be computed manually.

11.3. COVARIANCE ANALYSIS FOR A SPLIT BLOCK
EXPERIMENT DESIGN

The covariance analysis of variance described here is for a standard split block

experiment design. There are three error terms in this design and hence three

regression coefficients. Some means only require one regression for the covariate

Table 11.8. ANCOVA for the Data in Table 11.6.

Sums of products

Source of Degrees of Adjusted sums Mean

variation freedom (DF) yy yz zz DF of squares square

Total 16 3609 1282 542

Mean 1 3220.6 1106.6 380.2

W 1 68.06 12.38 2.25

Error A 6 227.88 163.00 159.50 5 61.30 12.26

S 1 85.56 0 0

S
W 1 0.56 0 0

S
 R : W 6 6.38 0 0 6 6.38 1.06

W (adj. for bw) 1 W 0yy ¼ 44:48 44.48

S (adj. for bs) 1 S0yy ¼ 85:56 85.56

S
W (adj. for bs) 1 I0yy ¼ 0:56 0.56
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adjustment, but others require all three coefficients. Five different variances of a

difference between two adjusted means are required. The general situation is

discussed first and this is followed by a numerical example illustrating the

computational procedures. An ANCOVA table partitioning the degrees of freedom

and sums of products appears in Table 11.9. The sums of squares for the variate Y

adjusted for a covariate are also given in the table.

A liner model for data from a split block designed experiment with a covariate is

as follows: (Federer, 1955, Federer and Meredith, 1992)

Yhij ¼ mþ rh þ ai þ dhi þ baðzhi: � z...Þ þ bj þ phj þ bbðzh:j � z...Þ
þ abij þ babðZhij � zhi: � zh:j þ z...Þ þ ehij; ð11:23Þ

where h ¼ 1; . . .; r; i ¼ 1; . . .; a; j ¼ 1; . . .; b
Yhij is the response for the hijth observation,

m is a general mean,

rh is the hth replicate random effect and is IID(0, s2
r),

ai is the ith factor A effect,

dhi is the random error effect of the hith observation and is IID(0, s2
d),

bj is the jth factor B effect,

phj is a random error effect of the hjth response and is IID(0, s2
p),

abij is the interaction effect of the ith level of factor A and the jth level of factor

B, and ehij is the random error effect of the hijth response and is IID(0, s2
e ).

The random effects, rh; dhi; phj; ehij, are assumed to be mutually independent.

ba, bb, and bab are the regression coefficients for factor A, factor B, and the

Table 11.9. ANCOVA for a Standard Split Block Experiment Design.

Adjusted sum

Source DF Sum of products DF of squares

Total rab Tyy Tyz Tzz

Mean 1 Myy Myz Mzz

Replicate, R r � 1 Ryy Ryz Rzz

Factor A a� 1 Wyy Wyz Wzz

Error A (a� 1Þð�1Þ Ayy Ayz Azz ar � a� r Ayy �
A2

yz

Azz
Factor B b� 1 Uyy Uyz Uzz

Error B (b� 1)(r � 1) Byy Byz Bzz br � b� r Byy �
B2

yz

Bzz
A
 B (a� 1)(b� 1) Iyy Iyz Izz

Error AB (a� 1)(b� 1)(r � 1) Cyy Cyz Czz (a� 1)(b� 1)(r � 1)�1 Cyy �
C2

yz

Czz

Factor A adjusted for ba ¼ Ayz=Azz a� 1 Wyy �
ðWyz þ AyzÞ2

Wzz þ Azz

þ
A2

yz

Azz

Factor B adjusted for bb ¼ Byz=Bzz b� 1 Uyy �
ðUyz þ ByzÞ2

Uzz þ Bzz

þ
B2

yz

Bzz

A
 B adjusted for bab ¼ Cyz=Czz (a� 1)(b� 1) Iyy �
ðIyz þ CyzÞ2

Izz þ Czz

þ
C2

yz

Czz
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interaction of A and B factors, respectively. Zhij is the value of the covariate

associated with the hijth experimental unit.

The formulae for computing the sums of cross-products have been presented

above. Formulae for adjusting the means for the covariate are given in the discussion

of the computational procedures for Example 11.3, as it is easier to see how the

formulae are applied. Likewise, the general formulae for the variances of

a difference between two means adjusted for a covariate are presented in the

discussion of the numerical example. The expected value of Error A is taken to be

s2
e þ bs2

d, the expected value of Error B is s2
e þ as2

p, and the expected value of Error

AB is s2
e .

As is apparent from this example for a standard split block design, any variation

that adds additional error terms will add additional regression coefficients and more

complexity to the adjustment of means and the calculation of the variance of a

difference between two adjusted means. These cases are not discussed herein but a

straightforward extension of the methods discussed above should allow the analyst

to obtain an ANCOVA for these situations.

Example 11.3: Covariate varies with smallest experimental unit—To illustrate the

computational procedures for a standard split block experiment design with a

covariate, a set of hypothetical data as given in Table 11.10 is used. The split block

factors with factor A having two levels and factor B having three levels are each

arranged in a randomized complete block experiment design. There are four

complete blocks and thus r ¼ 4 replicates.

Table 11.11 contains unadjusted totals and means needed to construct an

analysis of covariance table. The ANCOVA table for the data of Table 11.10 is

presented in Table 11.12. Following this table, it is shown how to adjust the

means for factors A and B and the A
 B interaction means. Then the variances

of a difference between two means are presented. There are a total of five

different variances that are required for comparing pairs of means. This

demonstrates one of the complexities added when covariates are included in the

statistical analyses.

Table 11.10. Responses for a Split Block Experiment Design with a ¼ 2 Levels, A1 and

A2, of Factor A, with b ¼ 3 Levels, B1, B2, and B3, of Factor B, and with r ¼ 4
Replicates for Levels of Factor A and for Factor B. Y is the Response Value and Z
is the Value of the Covariate.

Replicate 1 Replicate 2 Replicate 3 Replicate 4

A1 A2 A1 A2 A1 A2 A1 A2

Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z

B1 1 0 2 0 2 1 3 2 3 1 3 1 2 0 4 3

B2 2 1 2 2 3 2 3 3 3 1 2 1 2 0 3 2

B3 3 2 3 3 4 3 4 5 3 2 5 3 4 2 4 2
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The values for the estimated regression coefficients are ba ¼ 0:67=1:67 ¼ 0:401,

bb ¼ 1:50=3:67 ¼ 0:409, bab ¼ 1:83=3:33 ¼ 0:550. The adjusted means for factor

A treatments are:

y:1:ðadj:Þ ¼ y:1: � baðz:1: � z...Þ ¼ 2:667� 0:401ð1:25� 1:75Þ ¼ 2:87:

y:2:ðadj:Þ ¼ y:2: � baðz:2: � z...Þ ¼ 3:167� 0:401ð2:25� 1:75Þ ¼ 2:97:

The adjusted means for factor B treatments are:

y::1ðadj;Þ ¼ y::1 � bbðz::1 � z...Þ ¼ 2:50� 0:409ð1:00� 1:75Þ ¼ 2:81:

y::2ðadj:Þ ¼ y::2 � bbðz::2 � z...Þ ¼ 2:50� 0:409ð1:50� 1:75Þ ¼ 2:60:

y::3ðadj:Þ ¼ y::3 � bbðz::3 � z...Þ ¼ 3:75� 0:409ð2:75� 1:75Þ ¼ 3:34:

The adjusted means for the A by B treatment combinations are:

y:11ðadj:Þ ¼ y:11 � baðz:1: � z...Þ � bbðz::1 � z...Þ � babðz:11 � z:1: � z::1 þ z...Þ
¼ 2:00� 0:401ð1:25� 1:75Þ � 0:409ð1:00� 1:75Þ � 0:550ð0:50� 1:25

� 1:00þ 1:75Þ ¼ 2:51:

y:12ðadj:Þ ¼ y:12 � baðz:1: � z...Þ � bbðz::2 � z...Þ � babðz:11 � z:1: � z::2 þ z...Þ
¼ 2:50� 0:401ð1:25� 1:75Þ � 0:409ð1:50� 1:75Þ � 0:550ð1:00� 1:25

� 1:50þ 1:75Þ ¼ 2:80:

Table 11.11 Totals and Means for the Data of Table 11.10.

A1 A2 Total A1 A2 Total Mean

Y Z Y Z Y Z Y Z Y Z Y Z Y Z

R1 6 3 7 5 13 8 B1 8 2 12 6 20 8 2.50 1.00

R2 9 6 10 10 19 16 B2 10 4 10 8 20 12 2.50 1.50

R3 9 4 10 5 19 9 B3 14 9 16 13 30 22 3.75 2.75

R4 8 2 11 7 19 9 Total 32 13 38 27 70 42 2.92 1.75

Total 32 15 38 27 70 42

B1 B2 B3 Total Mean

Y Z Y Z Y Z Y Z Y Z

A1 8 2 10 4 14 9 32 15 2.67 1.25

A2 12 6 10 8 16 13 38 22 3.17 2.25

Means

B1 B2 B3

Y Z Y Z Y Z

A1 2.00 0.50 2.50 1.00 3.50 2.25

A2 3.00 1.50 2.50 2.00 4.00 3.25
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y:13ðadj:Þ ¼ y:13 � baðz:1: � z...Þ � bbðz::3 � z...Þ � babðz:11 � z:1: � z::3 þ z...Þ
¼ 3:50� 0:401ð1:25� 1:75Þ � 0:409ð2:75� 1:75Þ � 0:550ð2:25

� 1:25� 2:75þ 1:75Þ ¼ 3:29:

y:21ðadj:Þ ¼ y:21 � baðz:2: � z...Þ � bbðz::1 � z...Þ � babðz:11 � z:2: � z::1 þ z...Þ
¼ 3:00� 0:401ð2:25� 1:75Þ � 0:409ð1:00� 1:75Þ � 0:550ð1:50� 2:25

� 1:00þ 1:75Þ ¼ 3:11:

y:22ðadj:Þ ¼ y:22 � baðz:2: � z...Þ � bbðz::2 � z...Þ � babðz:22 � z:2: � z::2 þ z...Þ
¼ 2:50� 0:401ð2:25� 1:75Þ � 0:409ð1:50� 1:75Þ � 0:550ð2:00

� 2:25� 1:500þ 1:75Þ ¼ 2:40:

y:23ðadj:Þ ¼ y:23 � baðz:2: � z...Þ � bbðz::3 � z...Þ � babðz:23 � z:2: � z::3 þ z...Þ
¼ 4:00� 0:401ð2:25� 1:75Þ � 0:409ð2:75� 1:75Þ � 0:550ð3:25

� 2:25� 2:75þ 1:75Þ ¼ 3:39:

Let the adjusted Error A mean squares be designated by Ea ¼ 0:48=2 ¼ 0:24, the

adjusted Error B mean squares by Eb ¼ 0:39=5 ¼ 0:08, and the adjusted Error AB

mean square by Eab ¼ 3:00=5 ¼ 0:60.

The variance of a difference between two factor A means adjusted for a covariate is:

Vðy:1:ðadj:Þ � y:2:ðadj:ÞÞ ¼ Ea

2

br
þ ðz:1: � z:2:Þ2

Azz

" #
¼ 0:24½2=3ð4Þ

þ ð1:25� 2:25Þ2=1:67� ¼ 0:184:

Table 11.12. ANCOVA for the Data of Table 11.10 with r ¼ 4, a ¼ 2, and b ¼ 3.

Sum of products

Source of

variation DF YY YZ ZZ DF Adjusted sum of squares

Total 24 224 142 108

Mean 1 204.17 122.50 73.50

Replicate, R 3 4.50 2.50 6.83

Factor A 1 1.50 3.00 6.00

Error A 3 0.50 0.67 1.67 2 0:50� 0:672=1:67 ¼ 0:48

Factor B 2 8.33 10.00 13.00

Error B 6 1.00 1.50 3.67 5 1:00� 1:502=3:67 ¼ 0:39

A
 B 2 1.00 0.00 0.00

Error AB 6 3.00 1.83 3.33 5 3:00� 1:832=3:33 ¼ 1:99

Factor A adj. for ba ¼ 0:67=1:67 ¼ 0:401 1 1:50� ð3:00þ 0:67Þ2=ð6:00þ 1:67Þ
þ 0:672=1:67 ¼ 0:013

Factor B adj. for bb ¼ 0:50=3:67 ¼ 0:409 2 8:33� ð10:00þ 1:50Þ2=ð13:00þ 3:67Þ
þ1:502=3:67 ¼ 1:01

Interaction adj. for bab ¼ 1:83=3:33 ¼ 0:550 6 1:00� ð0:00þ 1:83Þ2=ð0:00þ 3:33Þ
þ1:832=3:33 ¼ 1:00
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The variance of a difference between two adjusted means for factor B is:

Vðy::1ðadj:Þ � y::2ðadj:ÞÞ ¼ Eb

2

ar
þ ðz::1 � z::2Þ2

Bzz

" #

¼ 0:08½2=2ð4Þ þ ð1:00� 1:50Þ2=3:67� ¼ 0:021:

The variances of a difference between two adjusted means for combinations of

factors A and B are:

Vðy:11ðadj:Þ � y:12ðadj:ÞÞ ¼ 2 ða� 1ÞEab þ Eb½ �
ar

þ Eb

ðz::1 � z::2Þ2

Bzz

þ Eab

ðz:11 � z:12 � z::1 þ z::2Þ2

Czz

¼ 2½0:60þ 0:08�=8þ 0:08ð1:00� 1:50Þ2=3:67

þ 0:60ð0:50� 1:00� 1:00þ 1:50Þ2=3:33 ¼ 0:170þ 0:001þ 0 ¼ 0:171:

Vðy:11ðadj:Þ � y:21ðadj:ÞÞ ¼ 2 ðb� 1ÞEab þ Ea½ �
br

þ Eaðz:1: � z:2:Þ2

Azz

þ Eabðz:11 � z:21 � z:1: þ z:2:Þ2

Czz

¼ 2½2ð0:60Þ þ 0:24�=12þ 0:24ð1Þ2=1:67

þ 0:60ð0:50� 1:50� 1:25þ 2:25Þ2=3:33 ¼ 0:284:

Vðy:11ðadj:Þ � y:22ðadj:ÞÞ ¼ 2½ða� 1ÞEab þ Eb

ar
þ ðEa � EabÞ

br
� þ Eaðz:1: � z:2:Þ2

Azz

þ Ebðz::1 � z::2Þ2

Bzz

þ Eabðz:11 � z:22 � z:1: þ z:2: � z::1 þ z::2Þ2

Czz

¼ 2½f2ð0:60Þ þ 0:08Þg=8þ ð0:24� 0:60Þ=12� þ 0:24ð1:25� 2:25Þ2=1:67

þ 0:08ð0:50� 2:00� 1:25þ 2:25� 1:00þ 1:50Þ2=3:33

¼ 0:170� 0:030þ 0:144þ 0 ¼ 0:284:

Note that the estimates of the variance components s2
d and s2

p are negative and one

would usually set them equal to zero, and the sums of squares are pooled to obtain

single error variance. This was not done in the above variance computations as it was

desired to show all the steps in computing the variances. The negative estimates

account for the minus sign, �0.030, in the last variance above. Also, it is noted that

some misprints occur in the variance formulae given by Federer and Meredith

(1992). A SAS code for obtaining many of the above computations is given in

Appendix 11.3.

11.4. COVARIANCE ANALYSIS FOR A SPLIT SPLIT PLOT
EXPERIMENT DESIGN

In an ANCOVA for a standard split split plot designed experiment, there are three

error variances and hence there will be three regression coefficients. A linear model
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for this type of design with a covariate is

Yhijk¼mþrhþaiþdhiþbaðzhi�z::::Þþtjþatijþehijþbbðzhij:�zhi::Þ
þgkþagikþgtjkþagtijkþphijkþbcðZhijk�zhij:Þ;

ð11:25Þ

where h ¼ 1; . . .; r; i ¼ 1; . . .; a; j ¼ 1; . . .; b; and k ¼ 1; . . .; c,

Yhijk is the hijkth response,

m is a general mean effect,

rh is the hth replicate effect and is IID(0, s2
r),

ai is the ith whole plot effect,

dhi is a random error effect associated with the hith whole plot and is IID(0, s2
d),

ba is the whole plot regression coefficient,

tj is the jth split plot effect,

atij is the ijth whole plot-split plot interaction effect,

ehij is a random error effect associated with the hijth split plot and is IID(0, s2
e ),

bb is the split plot regression coefficient,

gk is the kth split split plot effect,

agik is the ikth whole plot-split split plot interaction effect,

gtjjk is the jkth split plot-split split plot interaction effect,

agtijk is the ijkth three factor interaction effect,

phijk is a random error effect associated with the split split plot experimental unit

and is IID(0, s2
p), and

bc is the split split plot regression coefficient.

The random effects, rh; dhi; phijk; ehij; are assumed to be mutually independent.

An ANCOVA for the above-mentioned response model is given in Table 11.13.

The adjusted means are (Federer and Meredith, 1992) as follows:

y:i::ðadj:Þ ¼ y:i:: � baðz:i:: � z::::Þ ð11:26Þ

y::j:ðadj:Þ ¼ y::j: � bbðz::j: � z::::Þ ð11:27Þ

y:::kðadj:Þ ¼ y:::k � bcðz:::k � z::::Þ ð11:28Þ

y:ij:ðadj:Þ ¼ y:ij: � baðz:i:: � z::::Þ � bbðz:ij: � z:i::Þ ð11:29Þ

y:i:kðadj:Þ ¼ y:i:k � baðz:i:: � z::::Þ � bcðz:i:k � z:i::Þ ð11:30Þ

y::jkðadj:Þ ¼ y::jk � bbðz::j: � z::::Þ � bcðz::jk � z::j:Þ ð11:31Þ

y:ijkðadj:Þ ¼ y:ijk � baðz:i:: � z::::Þ � bbðz:ij: � z:i::Þ � bcðz:ijk � z:ij:Þ: ð11:32Þ

The estimated variances of a difference between two adjusted means for i 6¼ i0,
j 6¼ j0, and k 6¼ k0 are given below:

Ea ¼
A0yy

ar� a� r
; Eb ¼

B0yy

aðr� 1Þðb� 1Þ � 1
; and Ec ¼

C0yy

asðp� 1Þðr� 1Þ � 1
:
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The various variances are (Federer and Meredith, 1992) as follows:

Estimated variance of a difference between two whole plot means adjusted for a

covariate

Vðy:i::ðadj:Þ � y:i0::ðadj:ÞÞ ¼ Ea

2

rsp
þ ðz:i:: � z:i0::Þ2

Azz

" #
: ð11:33Þ

Estimated variance of a difference between two split plot means adjusted for a

covariate

Vðy::j: � y::j0:Þ ¼ Eb

2

apr
þ ðz::j: � z::j0:Þ2

Bzz

" #
: ð11:34Þ

Estimated variance of a difference for two split split plot means adjusted for a

covariate

Vðy:::kðadj:Þ � y:::k0 ðadj:ÞÞ ¼ Ec

2

ars
þ ðz:::k � z:::k0 Þ2

Czz

" #
: ð11:35Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ij and ij0

Vðy:ij:ðadj:Þ � y:ij0:ðadj:ÞÞ ¼ Eb

2

rp
þ ðz:ij: � z:ij0:Þ2

Bzz

" #
: ð11:36Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ij and i0j

Vðy:ij:ðadj:Þ � y:i0j:ðadj:ÞÞ ¼ 2ðŝ2
e þ ŝ2

dÞ
rp

þ Eaðz:i:: � z:i0::Þ2

Azz

þ Ebðz:ij: � z:i:: � z:i0j: þ z:i0::Þ2

Bzz

: ð11:37Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ik and ik0

Vðy:i:kðadj:Þ � y:i:k0 ðadj:ÞÞ ¼ Ec

2

rs
þ ðz:i:k � z:i:k0 Þ2

Czz

" #
: ð11:38Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ik and i0k

Vðy:i:kðadj:Þ � y:i0:kðadj:ÞÞ ¼
2 sŝ2

d þ ŝ2
e þ ŝ2

p

� �
rs

þ Eaðz:i:: � z:i0::Þ2

Azz

þ Ecðz:i:k � z:i:: � z:i0:k þ z:i0::Þ2

Czz

: ð11:39Þ
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Estimated variance of a difference between two means adjusted for a covariate for

combinations ijk and ijk0

Vðy:ijkðadj:Þ � y:ijk0 ðadj:ÞÞ ¼ Ec

2

r
þ ðz:ijk � z:ijk0 Þ2

Czz

" #
: ð11:40Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ijk and ij0k

Vðy:ijkðadj:Þ � y:ij0kðadj:ÞÞ ¼
2 ŝ2

e þ ŝ2
p

� �
r

þ Ebðz:ij: � z:ij0:Þ2

Bzz

þ Ecðz:ijk � z:ij: � z:ij0k þ z:ij0:Þ2

Czz

: ð11:41Þ

Estimated variance of a difference between two means adjusted for a covariate for

combinations ijk and i0jk

Vðy:ijkðadj:Þ � y:i0jkðadj:ÞÞ ¼
2 ŝ2

e þ ŝ2
p þ ŝ2

d

� �
r

þ Eaðz:i:: � z:i0::Þ2

Azz

þ Ebðz:ij: � z:i:: � z:i0j: þ z:i0::Þ2

Bzz

þ Ecðz:ijk � z:ij: � z:i0jk þ z:i0j:Þ2

Czz

: ð11:42Þ

Under a fixed effects model, the expected value of Ea is s2
e þ ps2

p þ sps2
d, the

expected value of Eb is s2
e þ ps2

p, and the expected value of Ec is s2
e . Also,

Vðy:ijkðadj:Þ � y:i0jkðadj:ÞÞ ¼ Vðy:ijkðadj:Þ � y:i0j0kðadj:ÞÞ ¼
Vðy:ijkðadj:Þ � y:i0jk0 ðadj:ÞÞ ¼ Vðy:ijkðadj:Þ � y:i0j0k0 ðadj:ÞÞ;

and

Vðy:ijkðadj:Þ � y:ij0kðadj:ÞÞ ¼ Vðy:ijkðadj:Þ � y:ij0k0 ðadj:ÞÞ:

Some of the above variances use the estimated variance components. In these cases,

the number of degrees of freedom will need to be approximated as explained

previously. Most of the above variances without the covariate were given by Federer

(1955) and in Chapter 3.

11.5. COVARIANCE ANALYSIS FOR VARIATIONS OF DESIGNS

As highlighted above, the analytical complexity of data from SPEDs and SBEDs

increases when a covariate is added. Several formulae for obtaining the adjusted

means were presented in the last section. Also, several different variances require

computation when comparing the various means. The degrees of freedom for several
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of the variances are unknown and need to be approximated. For the experiment

designs presented in Chapter 3 and the subsequent chapters, many formulae for

computing the means adjusted for a covariate and for computing variances of a

difference between two adjusted means will need to be obtained as they are not

presently available. One approximate method to reduce the complexity is to use a

series of simpler analyses.

11.6. DISCUSSION

In many situations, a covariance analysis is required in order to take care of the

extraneous variation that can be controlled by covariates. For example, in running

experiments on cultivars, the number of plants in an experimental unit may vary

considerably owing to random differences in germination, weather conditions, and

so forth. Random variation in the number of plants can be handled by covariance and

should be used in comparing yield comparisons for various cultivars. If the

experimenter expects to encounter this type of variation, it may be desirable to

conduct a less complex experiment than some discussed in this book. More than one

covariate may need to be considered in controlling extraneous variation. These are

straightforward extensions of the results given in this chapter. The formulae for

adjusting the means and computing the variances will need to be changed to

accommodate situations as they arise in practice.

11.7. PROBLEMS

Problem 11.1. Factor A, a ¼ 5 levels, is the whole plot factor, factor B, b ¼ 2 levels,

is the split plot factor and the design structure on the whole plot is a randomized

complete block design with r ¼ 3 blocks. The response variable of interest is Y, and

Z is the covariate measured on the split plot experimental unit. The data are also

included on the enclosed disk.

Block

R1 R2 R3

Factor A Factor B Y Z Y Z Y Z

A1 B1 113 15 105 16 123 12

A1 B2 82 3 108 15 143 13

A2 B1 115 19 65 6 142 17

A2 B2 119 19 81 5 117 6

A3 B1 129 11 123 15 151 13

A3 B2 132 8 107 4 186 20

A4 B1 89 1 115 20 154 20

A4 B2 101 2 86 4 140 12

A5 B1 118 10 120 15 148 8

A5 B2 126 6 143 13 183 15
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Conduct an analysis of covariance, obtain the adjusted means for Y, as well as the

variances of a difference between two adjusted means using the data above.

Problem 11.2. Factor A with a ¼ 3 levels, is the whole plot factor, factor B with

b ¼ 5 levels is the split block factor and the design structure on the whole plot is a

randomized complete block design with r ¼ 4 blocks. The response variable of

interest is Y, and Z is the covariate Z measured on the smallest experimental unit.

The data are included on the enclosed disk.

Obtain an analysis of covariance, the adjusted treatment means, and the variances

of a difference between two adjusted means using the data above.

Problem 11.3. The data for this problem are given on the accompanying disk. Write

any additional code you need to obtain the means for A, B, and A*B treatments and

variances of a difference between two means. A portion of the data and code are

given below:

DataData spex11_3;
input Y R A B Z W; /*Y¼yield, R¼ block, A¼ planting method,
B¼ cultivation method, Z is the covariate, W is the covariate ijth
combination mean*/
X ¼ Z� W;
datalines;
81.8 1 1 1 5 5.75
46.2 1 1 2 9 5.75
78.6 1 1 3 1 5.75
77.7 1 1 4 8 5.75

Block

R1 R2 R3 R4

A B Y Z Y Z Y Z Y Z

A1 B1 246 19 220 13 186 4 246 19

A1 B2 207 14 172 5 174 6 157 2

A1 B3 133 11 118 7 99 2 122 8

A1 B4 173 16 178 17 128 4 140 8

A1 B5 153 6 158 7 177 12 165 9

A2 B1 218 7 247 14 201 3 248 14

A2 B2 225 14 198 7 179 2 226 14

A2 B3 138 7 149 10 147 9 123 3

A2 B4 171 11 162 8 196 16 193 16

A2 B5 230 20 203 13 192 11 179 7

A3 B1 200 10 180 5 196 9 187 7

A3 B2 157 4 170 7 197 14 177 9

A3 B3 86 2 133 13 115 9 142 15

A3 B4 133 8 132 8 174 18 171 18

A3 B5 163 11 127 2 172 13 184 16
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72.2 2 1 1 1 4.00
. . . . . .
75.2 3 4 4 3 2.25
67.8 4 4 1 4 1.75
50.2 4 4 2 1 1.75
65.6 4 4 3 1 1.75
63.3 4 4 4 1 1.75
;

Proc glmProc glm data¼ spex11_3;
Class A B R;
model Y Z¼ R A A*R B A*B;
manova h¼ _all_/printh printe;
Lsmeans R A B A*B A*R;
quit;

Proc GLMProc GLM data¼ spex11_3;
Class R A B;
Model Y¼ R A W A*R B A*B X/solution;
Run;Run;

Problem 11.4. For the data of Example 11.3, insert a second covariate and obtain the

analysis.
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APPENDIX 11.1. SAS CODE FOR EXAMPLE 11.1.

datadata cov; /*Data and code for Example 11.1*/
length R T S Y Z 33;
input R T S Y Z Ztotal;
cards;
1 1 1 3 1 6
1 1 2 4 2 6
1 1 3 7 1 6
1 1 4 6 2 6
1 2 1 3 2 8
1 2 2 2 0 8
1 2 3 1 2 8
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1 2 4 14 4 8
2 1 1 6 2 8
2 1 2 10 2 8
2 1 3 1 0 8
2 1 4 11 4 8
2 2 1 8 4 12
2 2 2 8 1 12
2 2 3 2 3 12
2 2 4 18 4 12
3 1 1 6 3 10
3 1 2 10 5 10
3 1 3 4 2 10
3 1 4 4 0 10
3 2 1 10 3 16
3 2 2 8 2 16
3 2 3 9 4 16
3 2 4 13 7 16
;

proc glmproc glm data¼ cov; /*Sums of squares, crossproducts, and means*/
class R T S;
model Y Z¼ R T R*T S S*T;
manova h¼_all_/printh printe;
lsmeans R T R*T S S*T;
quit;

proc glmproc glm data¼ cov;
class R T S;
model Y¼ R T R*T S S*T Z/solution;
lsmeans S ; /*Other means adjusted manually*/
run;run;

APPENDIX 11.2. SAS CODE FOR EXAMPLE 11.2.

datadata spcov2; /*Example 11.2*/
input block whole split Y Z;
cards;
1 1 1 3 2
1 1 2 4 2
1 1 3 7 2
1 1 4 6 2
1 2 1 3 2
1 2 2 2 2
1 2 3 1 2
1 2 4 14 2
2 1 1 6 3
2 1 2 10 3
2 1 3 1 3
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2 1 4 11 3
2 2 1 8 4
2 2 2 8 4
2 2 3 2 4
2 2 4 18 4
3 1 1 6 5
3 1 2 10 5
3 1 3 4 5
3 1 4 4 5
3 2 1 10 5
3 2 2 8 5
3 2 3 9 5
3 2 4 13 5
;

title ’Example 11.2’;

proc glmproc glm data¼ spcov2;
class block whole split;
model Y Z¼ block whole block*whole split split*whole;
manova h¼ _all_/printh printe;
lsmeans block whole block*whole split split*whole;
quit;

proc glmproc glm data¼ spcov2;
class block whole split;
model Y¼ block whole block*whole split split*whole Z/solution;
lsmeans whole split split*whole;
run;run;

APPENDIX 11.3. SAS CODE FOR EXAMPLE 11.3.

datadata sbcov; /*sbcoc11.3*/
input block A B Y Z;
datalines;
1 1 1 1 0
1 1 2 2 1
1 1 3 3 2
1 2 1 2 0
1 2 2 2 2
1 2 3 3 3
2 1 1 2 1
2 1 2 3 2
2 1 3 4 3
2 2 1 3 2
2 2 2 3 3
2 2 3 4 5
3 1 1 3 1
3 1 2 3 1
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3 1 3 3 2
3 2 1 3 1
3 2 2 2 1
3 2 3 5 3
4 1 1 2 0
4 1 2 2 0
4 1 3 4 2
4 2 1 4 3
4 2 2 3 2
4 2 3 4 2
;

proc glmproc glm data¼ sbcov;
class block A B;
model Y Z¼ block A block*A B block*B A*B;
manova h¼ _all_/printh printe;
lsmeans block A block*A B block*B A*B;
quit;

proc glmproc glm data¼ sbcov;
class block A B;
model Y¼ block A block*A B block*B A*B Z/solution;
lsmeans A B A*B;
run;run;
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