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ABSTRACT

Optimal Arbitrage under Constraints

Subhankar Sadhukhan

In this thesis, we investigate the existence of relative arbitrage opportunities in a

Markovian model of a financial market, which consists of a bond and stocks, whose

prices evolve like Itô processes. We consider markets where investors are constrained

to choose from among a restricted set of investment strategies. We show that the

upper hedging price of (i.e. the minimum amount of wealth needed to superreplicate)

a given contingent claim in a constrained market can be expressed as the supremum

of the fair price of the given contingent claim under certain unconstrained auxiliary

Markovian markets. Under suitable assumptions, we further characterize the upper

hedging price as viscosity solution to certain variational inequalities. We, then,

use this viscosity solution characterization to study how the imposition of stricter

constraints on the market affect the upper hedging price. In particular, if relative

arbitrage opportunities exist with respect to a given strategy, we study how stricter

constraints can make such arbitrage opportunities disappear.



Contents

Contents

Acknowledgments iii

Chapter 1: Introduction 1

1.0.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Market Model and Pricing of Contingent Claims 14

2.1 General market model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Markovian market model . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Market price of risk and strict local martingales . . . . . . . . . . . . 19

2.4 Strategies and portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Relative arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Hedging European contingent claims . . . . . . . . . . . . . . . . . . 22

2.6.1 Complete markets . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3: Upper Hedging Price under Constraints: Stochastic Rep-

resentation 28

3.1 Constraint set K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Dual processes and upper hedging price . . . . . . . . . . . . . . . . . 33

3.3 Upper hedging price under constraints . . . . . . . . . . . . . . . . . 36

3.4 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

i



Contents

3.5 Proof of Lemma 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4: Upper Hedging Price under Constraints: Viscosity Solu-

tions Characterization 54

4.1 Dynamic programming principle . . . . . . . . . . . . . . . . . . . . . 56

4.2 Viscosity solution characterization . . . . . . . . . . . . . . . . . . . . 58

4.3 Viscosity supersolution property . . . . . . . . . . . . . . . . . . . . . 64

4.4 Viscosity subsolution property . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Terminal condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Estimates of moments . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Sufficient condition for lower-semicontinuity of z(·, ·) . . . . . . . . . . 79

Chapter 5: Relative Arbitrage under Constraints 82

5.1 Comparison principles and relative arbitrage . . . . . . . . . . . . . . 82

5.2 Constraint set and relative arbitrage . . . . . . . . . . . . . . . . . . 90

5.3 Convex polyhedral constraint set . . . . . . . . . . . . . . . . . . . . 103

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 119

ii



Acknowledgments

Acknowledgments

I would like to take this opportunity to thank my advisor, Prof. Ioannis Karatzas,

for the knowledge, guidance and motivation that I received from him throughout

my PhD years. He has been an outstanding researcher in his area; our numerous

discussions during research meetings as well as his lectures in class have always

greatly inspired me. His enthusiasm for the subject is infectious.

Prof. Karatzas introduced me to the problem that I have addressed in this

thesis. I received further insight into the problem and, broadly speaking, into the

subject of Mathematical Finance and Stochastic Portfolio Theory, during our re-

search meetings at Intech or in Columbia University. These meetings were partici-

pated by Johannes Ruf, Radka Pickova, Tomoyuki Ichiba, Adrian Banner, Vasilios

Papathanikolos, Daniel Fernholz, Robert Fernholz and Philip Whitman. I would

like to thank each of them for the numerous insights that I received by listening

to them. Special thanks is due to Johannes Ruf and Philip Whitman for sharing

insightful perspectives regarding the problem. I am indebted to Robert Fernholz,

whose fundamental research in Stochastic Portfolio Theory, first published in 2002,

has inspired numerous scholars and motivated my thesis.

I am grateful to Professors Marcel Nutz, Victor de la Pena, Philip Protter and

Johannes Ruf for agreeing to serve on my dissertation committee and give numerous

iii



Acknowledgments

suggestions.

I am deeply indebted to my friends in New York. Their company and support

has been vital in taking me through all these years.

I express my deepest gratitude to Ivy Ng, for supporting me in all possible

ways over the last few years.

No thanks are enough for my parents and sister. They have always been by

my side. I dedicate this thesis to them.

iv



To my parents and sister

v



Chapter 1. Introduction 1

Chapter 1

Introduction

We place ourselves in a market with stocks and a bond. The market participants are

rational investors who prefer more wealth to less. An interesting problem would be

to find out whether it is possible to have guaranteed profit starting with zero initial

wealth, loosely referred to as “arbitrage”, probably in allusion to the judicious

investments that have to be made to achieve it; the French word “arbitrage” derives

from the Latin word “arbitrari” which means “to give judgement”. If arbitrage

is possible, it would be interesting to find out the optimum way to achieve it, if

an optimum exists, where the criterion for optimization depends on the investor’s

preferences. In this thesis, the criterion for optimization would be the amount of

wealth generated by the investment.

Consider a self-financing investment strategy π which starts with $1 and

dynamically trades in stocks and bond. Suppose that there exists another self-

financing strategy ρ which also starts with $1 and dynamically trades in stocks

and bond, but gives higher pay-off than π. We will call ρ a “relative arbitrage”

opportunity with respect to π. If π invests only in the bond, then ρ is a classical

arbitrage opportunity. Investing in π cannot be considered a judicious decision in
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this case, unless market constraints restrict investment in ρ, and it would be of

interest to investors to be aware of the existence of such “relative arbitrage” oppor-

tunities. Market constraints could arise, for example, in the form of prohibition of

short-selling of stocks or prohibition of borrowing more than a certain amount of

money and such, one or more of which an investment in ρ might necessitate.

Suppose that agent A wants to have the same pay-off as that of π at a given

time point T , but suppose that market constraints do not allow him to invest in ρ.

Suppose also that agent B is allowed to invest in ρ. In that case B can offer to pay

A the same pay-off as that of π at time T in exchange for $1 at the beginning and

make guaranteed profit by investing in ρ.

More generally, suppose agent A wants to guarantee a certain pay-off at

time T . For example, agent A could be an airlines company who wants to have

an arrangement so that it does not have to pay more than $D (say) per gallon

of jet fuel at the end of one year. It might then want to buy a call option on

jet fuel with strike price of $D per gallon, which would guarantee, as pay-off,

the positive part of the difference between the price of jet fuel per gallon at the

end of one year and $D. Suppose now that there exists a self-financing strategy

by which agent A can replicate or super-replicate the claim by trading in stocks

and the bond, starting with an initial wealth w and all the while obeying the

constraints imposed on him. The minimum initial wealth for which such a strategy

exists is called the upper hedging price (UHPA) of the claim for agent A under

his given set of constraints. Agent A, if judicious, would definitely not be willing

to pay any more than UHPA for an agreement which would pay him the claim

at time T . Consider another agent B, who operates under a different set of

constraints and for whom the upper hedging price for the claim under his set
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of constraints is UHPB which is less than UHPA. Then, agents A and B could

enter into an agreement by which A pays UHPA to B at the beginning and B

pays the claim to A at the terminal time T , thus resulting in guaranteed profit for B.

The problem of determining whether arbitrage possibilities exist in the

market, with the generality with which it has been posed in the first paragraph,

is difficult to solve. We will instead, in this thesis, fix an investment strategy π

and determine whether there exists an investment strategy which satisfies a given

set of market constraints and is a relative arbitrage opportunity with respect to π.

We will also study how with increasingly stringent constraints, relative arbitrage

opportunities with respect to π first cease to exist in the constrained market and

then how the upper hedging price in the constrained market blows up. As a

by-product we will also get the fair price of a claim, if it exists, under a given set of

constraints. This will enable investors to understand how arbitrage opportunities

might arise out of different constraints being imposed on different players in the

market. At the same time, it will give us a better understanding of certain aspects

of an investment strategy which make relative arbitrage with respect to it possible.

Performance of fund managers are often measured in relative terms, which makes

the study of relative arbitrage all the more important. Performance of mutual

funds is compared to a relevant index such as the S&P 500 index or to other mutual

funds in their sector. Performance of hedge fund managers are generally measured

in absolute terms, i.e. relative to a strategy which invests only in bonds.

Suppose that all the agents in the market have to obey the same set of

market constraints. Consider a contingent claim which is exactly replicable under

such constraints, and suppose that there does not exist any relative arbitrage

opportunity with respect to this replicating strategy. Then the initial wealth of the
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replicatng strategy is the “fair price” of the claim under the given set of constraints,

i.e. a price at which neither the seller nor the buyer makes a risk free profit. Given

a set of constraints, a claim may not be replicable. In that case, the concept of fair

price will not exist, and we will have to resort to the concept of upper hedging price.

In fact for a particular set of constraints, a claim may not even be super-replicable

starting with any finite initial wealth.

Most of the classical work in mathematical finance has been directed towards

finding the fair price of contingent claims which can be replicated by trading

dynamically in stocks and the bond. They model the stock prices as semimartingale

processes and impose mathematical assumptions on the market which essentially

rule out “arbitrage” and at the same time are equivalent to the existence of an

equivalent probability measure under which the discounted stock prices (the ratio

of the stock price and the bond price) are local martingales. This equivalence is

the content of the First Fundamental Theorem of Asset Pricing. If the replicating

strategy satisfies some suitable square-integrability condition, then the initial

wealth of the replicating strategy turns out to be the expectation of the discounted

contingent claim under the equivalent probability measure. If all investment strate-

gies are constrained to satisfy the afore-mentioned square-integrability condition,

then this is also the fair price of the contingent claim. Such an approach dates back

to the fundamental and seminal work of J.M. Harrison and H.R. Pliska from the

late 1970s, which was first published as Harrison and Pliska (1981). There they

analysed a finite sample space and assumed that the market satisfies the condition

of No Arbitrage (NA). Harrison and Kreps (1979) and Kreps (1981) introduced

the condition of No Free Lunch (NFL) for infinite probability spaces. Though

this was a significant improvement, NFL was not amenable to intuition. Delbaen

and Schachermayer (1994) and Delbaen and Schachermayer (1998) introduced
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the condition of No Free Lunch with Vanishing Risk (NFLVR), which is much

more intuitive and economically justifiable. We refer the reader to Delbaen and

Schachermayer (2006) for a thorough introduction to NA, NFLVR and other

notions of arbitrage.

On the other hand, Stochastic Portfolio Theory (SPT), is not predicated

upon the absence of arbitrage in the market. Instead of imposing conditions on

the market to make it free of arbitrage, it tries to characterize market conditions

which make arbitrage possible. It was introduced by Robert Fernholz in the

seminal paper Fernholz and Shay (1982) and built upon in the monograph Fernholz

(2002). The interested reader can also see the survey paper Fernholz and Karatzas

(2009). SPT studies the construction of portfolios with controlled behavior and in

particular those which can take advantage of certain market conditions in order

to create arbitrage opportunities. Fernholz and Karatzas (2010) model the stock

price processes as Itô processes and characterize the existence of relative arbitrage

with respect to the market portfolio by the smallest non-negative solution of a

parabolic partial differential equation. In the case that relative arbitrage exists with

respect to the market portfolio, it also determines the investment strategy which

super-replicates the market portfolio starting with the minimum wealth required

for such super-replication.

Fernholz and Karatzas (2009) show that the existence of the equivalent

martingale measure is not essential for the calculation of the fair price of a

contingent claim. They model the stock prices as Itô processes. Under the

assumption that there exists a square-integrable market price of risk, they define a

stochastic discount factor process. Note here that the assumption of the existence

of a square-integrable market price of risk, implicitly imposes the condition that
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NFLVR fails if and only if NA fails; see Proposition 3.2 of Karatzas and Kardaras

(2007). They also assume that the market is “complete” and show that the fair

price of a contingent claim is the expectation of the contingent claim weighted

by the stochastic discount factor at the terminal time. If the fair price of the

wealth generated at time T by an investment strategy is less than the initial

wealth, then there exists relative arbitrage with respect to this strategy. For

a Markovian market, and under certain fairly general conditions, Fernholz and

Karatzas (2010) determine the optimal portfolio to make arbitrage profit if there

exists relative arbitrage with respect to the “market portfolio”. Ruf (2011) does

not assume market completeness, but shows, under certain conditions, that a

contingent claim which depends only on the final stock price, can be replicable

by an investment strategy. In this case, the fair price of the claim is again the

expectation of the contingent claim weighted by the stochastic discount factor.

When an equivalent martingale measure exists, the stochastic discount factor

becomes its Radon-Nikodým derivative with respect to the original probability

measure, and we get back to the situation of classical Mathematical Finance.

Cvitanić and Karatzas (1993) determine the upper hedging price, i.e. the

minimum wealth needed to super-replicate a given contingent claim, when market

constraints restrict investment in certain investment strategies. They show that the

upper hedging price of the contingent claim can be expressed as the supremum of

the fair price of the contingent claim in certain unconstrained auxilliary markets,

in which the contingent claim is replicable.

In this thesis, we will not impose conditions in the market which will rule

out arbitrage opportunities. Instead, we will consider a market where relative

arbitrage opportunities with respect to a given investment strategy might exist.
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Given an investment strategy we will consider different sets of constraints and

determine how stringent we need to be so that none of the investment strategies

satisfying the constraints present relative arbitrage opportunity with respect to

the given strategy. Note here, that in a market, where all the investors have the

same constraints imposed on them, assumption of no arbitrage has the economic

justification that if there is arbitrage, investors will immediately take advantage of

it and arbitrage will disappear. However, arbitage opportunities that arise out of

different constraints being imposed on different investors, continue to exist.

An investor may be subject to constraints on his choice of investment

strategies because of several reasons. We will discuss some commonly occurring

constraints. However, our work in the thesis will address only a specific type of

constraints, viz. those in which the vector of proportion of wealth invested in the

stocks is constrained to lie in a given closed convex set at all times and the wealth

process is positive at all times. We will leave other types of constraints for future

research.

One of the most important market constraints is that of prohibition of short

selling. Short selling comes with a huge downside potential. As an InvestorGuide

article puts it, “most short sellers put a limit to how much they are willing to lose,

but as stock prices rise they can become vulnerable to a short ’squeeze’, in which

long investors buy stocks and demand delivery. As short sellers buy to cover their

losses, the price continues to rise, triggering more short sellers to cover their losses,

etc”. Hedge funds are allowed to engage in short selling, but they are only open to

particular types of investors specified by regulators. These investors are typically

institutions, such as pension funds, university endowments and foundations, or high

net worth individuals. Mutual funds, on the other hand, are open to the general
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public and are not allowed to engage in any risky investments. Most mutual funds

are not allowed to short sell unless they satisfy several conditions. Short selling

is difficult also for individual investors. Thus this is an example of a constraint

which some investors have to obey while others do not. This same prohibition

of short selling will apply to all investors if the restriction is market-wide. For

example, many emerging markets do not allow short selling out of the fear that it

would disrupt orderly markets by causing panic selling, high volatility, and market

crashes. Prohibition of short selling in a stock can be fit into our framework through

constraining the proportion of wealth invested in the stock to be non-negative at

all times.

Another interesting constraint is the uptick rule, which was eliminated in

2007 but has been up for consideration again. As per the rule, every short sale

transaction is required to be entered at a price that is higher than the price of the

previous trade. This rule was in effect to prevent traders known as “pool operators”

from driving down a stock price through heavy short selling, then buying the shares

for a large profit. Such a constraint does not fit into our framework.

Leverage constraints are those in which the extent of the total short position

of an investor is limited to a fixed fraction of his wealth. They can be fit into our

framework by requiring that the proportion of wealth invested in shorting is greater

than a given constant. Liquidity constraints, which limit the investments in the

stock market to a fixed proportion of the total wealth and require the rest to be

maintained as capital reserve, are also amenable to our framework. The decline of

Bear Stearns and Lehman Brothers have proved the importance of such constraints.

Some fund managers restrict their investments to stocks which belong to their
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field of expertise. This can be seen as a constraint which prohibits trading in certain

stocks.

1.0.1 Preview

We start by reviewing some background material in Chapter 2. In Section 2.1 we

present the market model for the stock prices and the bond. In Section 2.2 we

specialize this to the Markovian market model, i.e. one, in which the dynamics

of the stock prices and the bond price depend only on time and the current stock

prices. In Section 2.3 we discuss the market price of risk and the associated

stochastic discount factor. Section 2.4 introduces the definition of strategies and

portfolios. For us, a strategy is a specification of the proportion of wealth to be

invested in each stock. A portfolio is a strategy which invests the entire wealth

in the stock market. Section 2.5 presents the concept of strong and weak relative

arbitrage with respect to strategies. In Section 2.6 we discuss the notion of upper

hedging price process for European contingent claims. These contingent claims

need not be the terminal wealth generated by strategies. However, in complete

markets, any strictly positive contingent claim can be replicated by a strategy, i.e.,

can be expressed as the terminal wealth generated by a strategy, and in this case

we compute the fair price of the contingent claim. For Markovian markets and

when the replicating strategy is Markovian, this fair price is a function of time and

the current stock price and can be characterized as being the smallest non-negative

solution to a certain partial differential equation. This section is a restatement of

some of the results from Fernholz and Karatzas (2010).

In Chapter 3, we approach the problem of finding the upper hedging price

of a contingent claim under market constraints. The vector of proportions of

wealth invested in each stock is constrained to lie in a given closed convex set at
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each time point. Our approach here is similar to that of Cvitanić and Karatzas

(1993). They showed that the upper hedging price of the contingent claim under

market constraints can be evaluated as the supremum of the fair price in certain

unconstrained auxiliary markets. These auxiliary markets are constructed using

dual processes, which essentially act like Lagrange multipliers. In Section 3.1 we

present some of the tools from convex analysis that we use in the exposition, and

also derive some useful results. We consider more general constraint sets than those

in Cvitanić and Karatzas (1993). For example, market constraints which prohibit

short selling of stocks and investments in the bond market do not satisfy the

conditions imposed by Cvitanić and Karatzas (1993), but satisfy our conditions. In

Section 3.2, we introduce the class of dual processes mentioned above and use them

to construct auxiliary processes which, in turn, define auxiliary discount factors.

The upper hedging price of the contingent claim under the given constraints, is

then shown to be the supremum, over the auxiliary processes, of the expectation of

the contingent claim discounted by the auxiliary discount factors. Under slightly

more restrictive conditions on the market model and the constraint set, which allow

the interpretation of auxiliary markets, this result has been proved in Cvitanić

and Karatzas (1993). Our contribution and the main result of this chapter is that

in the special case of Markovian markets, the dual processes can be taken to be

Markovian. However, for this result, we have to impose some conditions on the

contingent claims. We suppose that the contingent claim Y is the terminal wealth

generated by the Markovian stratgey π starting with initial wealth $w, and that

π(·, ·) is locally bounded as a function of stock prices. It is clear, that Y will be a

multiple of the wealth generated by π starting with $1 at time t, the multiplicative

factor being the wealth generated by π up to time t starting with initial wealth $w.

We define the arbitrage coefficient of π at time t under a given set of constraints to

be the upper hedging price at time t of the terminal wealth generated by π starting
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with $1 at time t. The value of the upper hedging price process of Y at time t,

will then be a multiple of the arbitrage coefficient of π at time t, the multiplicative

factor being the wealth generated by π up to time t starting with initial wealth $w.

When the market and the strategy π are Markovian, the arbitrage coefficient of π

at a time t will be a function of time and the current stock price. Relative arbitrage

with respect to π exists over the time horizon [t, T ], if and only if the value of the

arbitrage coefficient of π at time t is less than 1.

In Chapter 4, we put ourselves in the Markovian market framework and

restrict attention to contingent claims which can be expressed as being the terminal

wealth generated by Markovian trading strategies; but shift the focus from the

contingent claims and their upper hedging price to the replicating strategies

and their arbitrage coefficient. In Section 4.1, we present dynamic programming

principles followed by the upper hedging price process and the arbitrage coefficient

process. In Section 4.2, we characterize the arbitrage coefficient of a strategy in

terms of the viscosity subsolution and supersolution of certain partial differential

equations. The result, proved in Section 3.2, that the dual processes can be taken

to be Markovian is essential over here. Our viscosity solutions approach follows the

exposition of Pham (2009) and of Soner and Touzi (2003). Soner and Touzi (2003)

develop a similar viscosity solution characterization for contingent claims which

are functions of the final stock price, under more restrictive assumptions on the

market model. Sections 4.3, 4.4 and 4.5 contain the technical proofs of the results

presented in Section 4.2. Sections 4.6 and 4.7 contain some auxiliary technical

results.

In Section 5.1, we present some comparison results for these viscosity so-

lutions and discuss their relevance in the discussion of relative arbitrage. Section
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5.2 contains a very important part of the thesis, where we use the viscosity solu-

tions characterization to study how the constraints affect the value of the arbitrage

coefficient and thus govern the existence or absence of relative arbitrage. Convex

polyhedral constraint sets are particularly amenable to our analysis and most of our

examples involve such constraint sets. In Section 5.3, we discuss polyhedral convex

sets. Section 5.4 contains some examples.

1.1 Notation

Vectors and matrices

We will write 1 to denote the vector with all elements equal to 1, 0 to denote the

vector with all elements equal to 0, and ei to denote the vector with all elements

0 except for the i-th element being 1. The dimensions of the respective vectors

will be clear from the context. Given a set A of vectors in Rk, we will denote the

vector space generated by A as vect(A). Given x, y ∈ Rk, we will write x ≥ y

to mean xi ≥ yi, i = 1, 2, . . . , k. The ordered elements of x will be denoted by

x(i), i = 1, 2, . . . , k with x(1) ≤ x(2) ≤ · · · ≤ x(k). We will denote by diag(x) a k × k

diagonal matrix with x as its diagonal. For any matrix σ = ((σij)), we will denote

its i-th row and j-th column by σi∗ and σ∗j respectively.

We will denote the Euclidean norm by ‖ · ‖. For any k ∈ N, δ > 0 and

x ∈ Rk, Bk(x, δ) will denote the open ball of radius δ around x, i.e. Bk(x, δ) =
{
y ∈ Rk : ‖y − x‖ < δ

}
. We denote by S(n), the set of all symmetric n× n matri-

ces. Given matrices X, Y ∈ S(n), we say X ≥ Y if X − Y is nonnegative definite

and X > Y if X − Y is positive definite. For a square matrix A, we will denote by

tr(A) the trace of the matrix A.
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Functions

Given any function f : R → R and x ∈ Rk, we will write f(x) to de-

note the vector (f(x1), . . . , f(xk)). For example, we will write log(x) to denote

(log(x1), . . . , log(xk)). For a vector field g : Rm × Rn → R, we will denote

∇xg(x, y) :=
(
∂g
∂x1
, . . . , ∂g

∂xm

)
(x, y). The function sgn: R → {−1, 1} is defined as

sgn(x) =





1 if x ≥ 0

−1 if x < 0

(1.1)

Sets

The closure of a set A will be denoted by Ā, its boundary by ∂A, its interior by Ao

and its relative interior by ri(A). Given a set C = [a, b] × Bk(x, δ) ⊂ R+ × Rk, we

will denote its parabolic boundary by ∂pC =
(
(a, b]× ∂Bk(x, δ)

)
∪
(
{b} ×Bk(x, δ)

)
.

Probability spaces

Given a probability space (Ω,F ,P), we will drop the argument ω from the random

variable X(ω), and denote it by X. If the random variable X is a function of another

random variable Y , then we will denote the function again by X; the meaning will

be clear from the context.
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Chapter 2

Market Model and Pricing of

Contingent Claims

2.1 General market model

We place ourselves in a modelM for a financial market consisting of a money market

dB(t) = B(t)r(t)dt, B(0) = 1, (2.1)

and of n stocks with capitalizations Xi(·) > 0 that satisfy

dXi(t) = Xi(t)

(
bi(t)dt+

d∑

ν=1

siν(t)dWν(t)

)
,

Xi(0) = xi > 0, i = 1, 2, . . . , n.

(2.2)

These are defined on a probability space (Ω,F ,P) and are driven by the d-

dimensional Brownian motion W (·) = (W1(·), . . . ,Wd(·))′ with d ≥ n. The fil-

tration F = {F(t)}0≤t<∞, which represents the flow of information in the market,

is assumed to be right-continuous with F(0) = {0,Ω}, mod. P. We shall assume

that the vector-valued process X (·) = (X1(·), . . . , Xn(·))′ of capitalizations, the non-

negative interest rate process r(·), the vector valued process b(·) = (b1(·), . . . , bn(·))′
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of mean rates of return for the various stocks, and the (n×d)−matrix-valued process

s(·) = (siν(·))1≤i≤n,1≤ν≤d of stock-price volatilities , are all F-progressively measur-

able. Finally, we denote by

aij(t) =
d∑

ν=1

siν(t)sjν(t) = (s(t)s′(t)))ij,

the (i, j)-th element of the non-negative definite matrix-valued covariance process

a(·) = (aij(·))1≤i,j≤n of the stocks in the market.

Consider the following assumption:

Assumption 2.1.1. For every T ∈ (0,∞)

∫ T

0

(
r(t) +

n∑

i=1

|bi(t)|+
n∑

i=1

aii(t)

)
dt <∞, a.s. (2.3)

If Assumption 2.1.1 holds, then with

γi(t) = bi(t)−
1

2
aii(t),

we can define

Yi(t) = Yi(0) +

∫ t

0

γi(s)ds+
d∑

ν=1

∫ t

0

siν(s)dWν(s)ds, i = 1, . . . , n. (2.4)

By Itô’s lemma, we can see that

Xi(t) = eYi(t), 0 ≤ t <∞, (2.5)

has the dynamics of (2.2). Progressive measurability of b(·) and s(·) and the

integrability condition (2.3) guarantee that Yi(·) is a continuous F(t)-adapted

process, and hence Xi(·), defined in (2.5), is a strictly positive continuous adapted

process for each i = 1, 2, . . . , n.
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In this setting, the Brownian motion W (·) need not be adapted to the

filtration F. However, it is adapted to the P-augmentation G = {G(t)}0≤t<∞ of the

filtration F, provided that d = n and s is invertible.

2.2 Markovian market model

As a special case of the market model specified in the previous section, sometimes

we will consider a Markovian market model where the interest rate process and the

mean rates of return and volatility coefficients of the stock price processes Xi(·)

depend only on time and on the current market configuration i.e. b(t) = b(t,X (t)),

s(t) = σ(t,X (t)) and r(t) = r(t,X (t)), and hence aij(t) = aij(t,X (t)), where

r(·, ·), bi(·, ·), σij(·, ·) and aij(·, ·) are Borel measurable functions from [0,∞) × Rn

into R for 1 ≤ i ≤ n, 1 ≤ j ≤ d. That is, the stock price processes satisfy the

stochastic differential equation,

dXi(t) = Xi(t)

(
bi(t,X (t))dt+

d∑

ν=1

σiν(t,X (t))dWν(t)

)
,

Xi(0) = xi > 0, i = 1, 2, . . . , n.

(2.6)

We will assume that

Assumption 2.2.1. There exists a unique-in-distribution weak solution to the SDE

(2.6).1

Remark 2.2.1. From the proof of Theorem 1.1 in Athreya et al. (2002)(pg 31), we

see that sufficient conditions for the existence of weak solution to (2.6) is that the

functions xibi(t, x) and xiσij(t, x) are continuous functions of x and |xibi(t, x)| ≤
1As pointed out by Ioannis Karatzas in a personal communication (2012), Assumption 2.2.1

may not be needed for our work. If there are multiple solutions to the SDE (2.6), we might be
able to use the techniques for selecting Markov solutions as in Krylov (1973) and Chapter 12 of
Stroock and Varadhan (1979). See also page 15 of Ruf (2011). This remains to be worked upon.
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C(1 + |x|) for all x ∈ [0,∞)d, i = 1, 2, . . . , n. The proof has been given in the

time homogeneous case but it works also for the time dependent case. Stroock

and Varadhan (1979) gives uniqueness of solutions up until the first hitting time

of ∂([0,∞)d). Now if we assume that xibi(t, x), xiσij(t, x) are locally Lipschitz

and satisfy the linear growth condition in the space variable, then by Theorem

9.4.1 in Friedman (2006), we can conclude that Xi takes values in (0,∞)n for all

t ≥ 0, and hence uniqueness in distribution holds for the weak solution of (2.6).

The other required conditions involving the degeneracy of the diffusion matrix on

the boundary of the positive orthant and the Fichera drift are trivially satisfied.

Being locally Lipschitz implies continuity and boundedness on compact subsets of

Rd. Thus, all we need to assume for the existence of a unique-in-distribution weak

solution is that xibi(t, x) and xiσij(t, x) are locally Lipschitz and satisfy the linear

growth condition in the space variable for i = 1, 2, . . . , n.

Remark 2.2.2. Remark 5.4.31 in Karatzas and Shreve (1991) suggests that if

xixjaij(t, x) is twice continuously differentiable in the state variable, or less re-

strictively if xiσij(t, x) is locally Lipschitz in the state variable, and if xibi(t, x) is

continuously differentiable in the state variable, then there exists at most one so-

lution. Having assumed so, we need only linear growth of xibi(t, x) in the space

variable in order to guarantee existence of a solution. Thus another sufficient condi-

tion for the existence of a unique solution is that xiσij(t, x) is locally Lipschitz in x,

and xibi(t, x) is continuously differentiable in x and satisfies the linear growth con-

dition in x. The linear growth condition on xiσij(t, x) in x as mentioned in Remark

2.2.1 is replaced here by the existence of a continuous space derivative of xibi(t, x).

Also, Xi takes values in (0,∞) iff its reciprocal Ξi = 1/Xi takes values in

(0,∞). Therefore, conditions which guarantee non-explosive solutions for the SDE

for Ξ (which can be written down using Itô’s lemma), guarantee that Xi takes

values in (0,∞).



Chapter 2. Market Model and Pricing of Contingent Claims 18

Consider the functions

b̃(t, x) := b (t, ex) , σ̃(t, x) := σ (t, ex) , ã(t, x) = a (t, ex) , x ∈ Rn, (2.7)

γ̃i(t, x) = b̃i(t, x)− 1

2
ãii(t, x), i = 1, 2, . . . , n, x ∈ Rn, (2.8)

where for Rn 3 x = (x1, . . . , xn) we write ex = (ex1 , . . . , exn). Suppose Y(·) =

(Y1(·), Y2(·), . . . , Yn(·)) is a solution to the SDE

dYi(t) = γ̃i(t,Y(t))dt+
d∑

ν=1

σ̃iν(t,Y(t))dWν(t),

Yi(0) = ln xi, i = 1, 2, . . . , n.

(2.9)

An application of Itô’s lemma shows that

Xi(t) := eYi(t), i = 1, 2, . . . , n, (2.10)

is a solution to (2.6). Now, for any solution X (·) of (2.6), let ζ denote the first

time that X (·) hits ∂[0,∞)n. By an application of Itô’s lemma, we see that up

until the stopping time ζ, Yi(t) := lnXi(t), i = 1, 2, . . . , n, solves the SDE (2.9).

Therefore, conditions which imply uniqueness-in-distribution of solutions of (2.9),

also imply uniqueness-in-distribution of solutions of (2.6) up until the first hitting

time of ∂[0,∞)n.

Remark 2.2.3. It follows from Remark 2.2.1, that sufficient condition for the exis-

tence of a unique-in-distribution weak solution of (2.9) is that bi(t, x), σij(t, x) are

locally Lipschitz and satisfy the linear growth condition in the space variable. This

condition is much less stringent than requiring that xibi(t, x), xiσij(t, x) are locally

Lipschitz and satisfy the linear growth condition in the space variable.
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2.3 Market price of risk and strict local martin-

gales

We shall assume from now on that

Assumption 2.3.1. There exists a market price of risk Θ : [0,∞) × Ω → Rd, an

F-progressively measurable process that satisfies

s(t, ω)Θ(t, ω) = b(t, ω)− r(t, ω)1,∀(t, ω) ∈ [0,∞)× Ω; (2.11)

and, P
(∫ T

0

‖Θ(t, ω)‖2dt <∞,∀T ∈ (0,∞)

)
= 1. (2.12)

The existence of market-price-of-risk process Θ(·) allows us to introduce an associ-

ated exponential local martingale

ZΘ(t) := exp

{
−
∫ t

0

Θ′(s)dW (s)− 1

2
‖Θ(s)‖2ds

}
, 0 ≤ t <∞. (2.13)

This process is also a supermartingale; it is a martingale, if and only if E(ZΘ(T )) = 1

holds for all T ∈ (0,∞). For the purpose of this work it is important to allow

such exponential processes to be strict local martingales; that is, not to exclude the

possibility E(ZΘ(T )) < 1 for some T ∈ (0,∞).

The quantity ZΘ(t)/B(t) will arise repeatedly in our calculations. To alleviate

notation we will denote

H0,Θ(t) := ZΘ(t)/B(t). (2.14)

For 0 ≤ t ≤ s ≤ T , we will denote

H̃0,Θ(t, s) := H0,Θ(s)/H0,Θ(t). (2.15)

The role of the superscript 0 in H0,Θ will become clear after we introduce a class of

dual processes in Section 3.2.
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2.4 Strategies and portfolios

Consider now a small investor who decides at each time t, which proportion pi(t)

of current wealth to invest in the i-th stock, i = 1, 2, . . . , n; the proportion 1 −
∑n

i=1 pi(t) =: p0(t) gets invested in the money market. We define an investment

strategy on the bounded interval I ⊂ [0,∞) to be such a G-progressively measurable

process p : I × Ω→ Rn such that

∫

I

(|p′(t, ω)b(t, ω)|+ p′(t, ω)a(t, ω)p(t, ω))dt <∞, for P− a.e. ω ∈ Ω. (2.16)

We denote by V v,p(s, t) the wealth generated by an investment strategy p in the time

interval [s, t] starting with capital v at time s. Also note that V v,p(s, t) = vV 1,p(s, t).

Thus for any fixed s, the wealth process V v,p(s, ·) satisfies the initial condition

V v,p(s, s) = v and for t > s, the dynamics

dV v,p(s, t) =
n∑

i=1

pi(t)V
v,p(s, t)

dXi(t)

Xi(t)
+ p0(t)V v,p(s, t)r(t)dt

= V v,p(s, t)

(
[p′(t)b(t) + p0(t)r(t)]dt+ p′(t)s(t)dW (t)

)
. (2.17)

The condition (2.16) implies that the wealth process V v,p(·, ·) is strictly positive.

Let K be a non-empty closed convex subset of Rn. Suppose that the market

is so constrained that the investor can only choose strategies p(·) that satisfy

p(t) ∈ K for Lebesgue a.e. t ∈ I a.s.. (2.18)

We will denote such a market model by M(K). Strategies which satisfy (2.18) will

be called admissible on the time interval I and the constraint set K; their collection

will be denoted H(I,K).

A strategy p(·) ∈ H(I,K) with
∑n

i=1 pi(s, ω) = 1 for all (s, ω) ∈ I×Ω will be

called a portfolio on I with constraint set K. A portfolio never invests in the money

market, and never borrows from it. Note that a portfolio can be seen as a strategy
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p(·) constrained so that p(s) ∈ K0, s ∈ I, where K0 is the closed convex set

K0 :=

{
p ∈ Rn

∣∣
n∑

i=1

pi = 1

}
. (2.19)

A strategy which prohibits short-selling, i.e., for which pi(·) ≥ 0, i =

1, 2, . . . , n, is called a long-only strategy. A long-only portfolio of particular in-

terest is the market portfolio; this invests in all stocks in proportion to their relative

weights

µi(t) :=
Xi(t)

X(t)
, i = 1, 2, . . . , n, where X(t) := X1(t) + . . .+Xn(t). (2.20)

If the strategy depends only on time and the current market configuration,

we will call it a Markovian strategy.

2.5 Relative arbitrage

The following notion was introduced in Fernholz (2002): given 0 ≤ t < T <∞ and

any two investment strategies p(·) and q(·) in H([t, T ],Rn), we call p(·) an arbitrage

relative to q(·) over [t, T ], if

P(V 1,p(t, T ) ≥ V 1,q(t, T )) = 1,

and P(V 1,p(t, T ) > V 1,q(t, T )) > 0.
(2.21)

We call such relative arbitrage strong, if

P
(
V 1,p(t, T ) > V 1,q(t, T )

)
= 1.

Consider the situation where the following assumption holds.

Assumption 2.5.1. All eigenvalues of the covariance matrix process a(·) are uni-

formly bounded away from infinity; that is

ξ′a(t)ξ = ξ′s(t)s′(t)ξ ≤ K‖ξ‖2, ∀t ∈ [0,∞) and ξ ∈ Rn. (2.22)
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We shall refer to Assumption 2.5.1 as the uniform boundedness condition on the

covariance structure of M.

Proposition 6.1 and (6.12) in Fernholz and Karatzas (2009) then asserts the

following:

Proposition 2.5.1. Suppose Assumption 2.3.1 and Assumption 2.5.1 hold in our

market modelM. Let p(·) and q(·) be two portfolios which are uniformly bounded in

(t, ω). Suppose that for some real number T > 0, p(·) is an arbitrage relative to q(·)

on the time horizon [0, T ]. Then, the process H0,Θ(t)V v,q(t), 0 ≤ t ≤ T is a strict

local martingale and a strict supermartingale, namely E(H0,Θ(T )V v,q(T )) < v.

The process ZΘ(·) of (2.13) is also a strict local martingale on [0, T ], i.e.

E(ZΘ(T )) < 1.

2.6 Hedging European contingent claims

We will now broach the issue of hedging strictly positive European contingent claims

in our market model M(K) and over a time horizon [0, T ] with a real number

T > 0. Consider a contingent claim which is an F(T )-measurable random variable

Y : Ω→ (0,∞) with

0 < y := E
(
Y H0,Θ(T )

)
<∞.

From the point of view of the seller of the contingent claim, this random amount

represents a liability that has to be covered with the right amount of initial funds

uY (0, T,K) at time t = 0 and the right trading strategy during the interval [0, T ],

so that at the end of the time-horizon (time t = T ) the initial funds have grown

enough to cover the liability without risk. Suppose now the seller of the contingent

claim can at time t pass on the liability of the contingent claim to another person,
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who in exchange should want the right amount of money uY (t, T,K) from the seller,

so that with that amount and the right trading strategy during the interval [t, T ],

the fund uY (t, T,K) should have grown enough to cover the liability without risk.

Thus we are interested in the so-called upper hedging price

uY (t, T,K) := inf {w > 0|∃p(·) ∈ H([t, T ], K) s.t. V w,p(t, T ) ≥ Y, a.s.} (2.23)

the smallest amount of capital needed at time t that makes such riskless hedging

possible in the constrained market. From equation (2.13), by an application of Itô’s

formula, we have,

dH0,Θ(s) = −H0,Θ(s)

(
r(s)ds+ Θ′(s)dW (s).

)
(2.24)

It follows that for p(·) ∈ H([t, T ], K) and any w > 0 and any t ≤ s ≤ T ,

d(H0,Θ(s)V w,p(t, s)) = H0,Θ(s)V w,p(t, s)

(
p′(s)s(s)−Θ′(s)

)
dW (s), (2.25)

so that H0,Θ(·)V w,p(t, ·) is a non-negative local martingale and a supermartingale

on [t, T ]. If the set on the right-hand side of (2.23) is not empty, then for any w > 0

in this set and for any p(·) ∈ H([t, T ], K), it follows from V w,p(t, T ) = wV 1,p(t, T )

that,

E
[
H0,Θ(T )V w,p(t, T )

∣∣Ft
]
−H0,Θ(t)w ≤ 0

i.e. w ≥ E
[
H̃0,Θ(t, T )V w,p(t, T )

∣∣Ft
]
≥ E

[
H̃0,Θ(t, T )Y

∣∣Ft
]

(2.26)

and because w > 0 is arbitrary we deduce that

uY (t, T,K) ≥ E
[
H̃0,Θ(t, T )Y

∣∣Ft
]
. (2.27)

This inequality holds trivially if the set on the right-hand side of (2.23) is empty,

since then we have uY (t, T,K) =∞. Note here that the market price of risk Θ need

not be unique, but uY (t, T,K) ≥ E
[
H̃0,Θ(t, T )Y

∣∣Ft
]

holds for all progressively

measurable processes Θ(·) that satisfy (2.11).
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2.6.1 Complete markets

Now consider the non-negative martingale

MΘ(t, s) := E
[
H̃0,Θ(t, T )Y

∣∣Fs
]
, t ≤ s ≤ T.

Suppose that we can impose the following structural assumption on the filtration

F = {F(t)}0≤t<∞, the “flow of information” in the market.

Assumption 2.6.1. Every local martingale of the filtration F can be represented

as a stochastic integral, with respect to the driving Brownian motion W (·), of some

G-progressively measurable integrand.

Assumption 2.6.2. We have d = n and s(s) is invertible, ∀ s ∈ [t, T ].

Under Assumption 2.6.2 there is a unique marke price of risk, viz.

Θ(·) = s−1(·)
(
b(·)− r(·)1

)
.

Under Assumption 2.6.1, one can represent the non-negative martingale MΘ(t, s) as

a stochastic integral

MΘ(t, s) = MΘ(t, t) +

∫ s

t

ψ′(u)dW (u), t ≤ s ≤ T

for some G-progressively measurable and a.s. square-integrable process ψ : [t, T ]×

Ω→ Rd. With

wYt := MΘ(t, t) = E
[
H̃0,Θ(t, T )Y

∣∣Ft
]

V ∗(t, ·) := MΘ(t, ·)/
(
wYt H̃

0,Θ(t, ·)
)

pY (·) :=
a−1(·)s(·)

H̃0,Θ(t, ·)wYt V ∗(t, ·)
[
ψ(·) +MΘ(t, ·)Θ(·)

]
(2.28)

we have

wYt V
pY (t, T ) = Y a.s.
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Therefore, the investment strategy pY is in H([t, T ],Rn) and replicates the contin-

gent claim Y . This implies that MΘ(t, t) belongs to the set on the right-hand side

of (2.23), and so

MΘ(t, t) ≥ uY (t, T,Rn).

But we have already proved in (2.27) the reverse inequality, which gives us the

Black-Scholes-type formula

uY (t, T,Rn) = E
[
H̃0,Θ(t, T )Y

∣∣Ft
]

(2.29)

for the unconstrained upper hedging price of (2.23), under Assumptions (2.6.1) and

(2.6.2).

The above thus shows that, for any FT -measurable strictly positive contingent

claim Y with E
(
Y H0,Θ(T )

)
< ∞, and for any t ∈ [0, T ], there exists a strategy

p ∈ H([t, T ],Rn) such that

Y = wYt V
p(t, T ) a.s.

where wYt = E
[
H̃0,Θ(t, T )Y

∣∣Ft
]
. Therefore, given any contingent claim Y > 0, we

can assume without loss of generality that it is the terminal wealth generated by a

strategy p starting with some wealth w > 0.

The process
{
N0,Θ(t)

}
0≤t≤T , defined by

N0,Θ(t) = H̃0,Θ(0, t)uY (t, T,Rn) = E
[
H̃0,Θ(0, T )Y

∣∣Ft
]

is a martingale. Define,

zRn(t) = E[H̃0,Θ(t, T )V p(t, T )
∣∣Ft].

In the following chapters we will consider situations where the investment strategy

is constrained to take values in a given closed convex set K. The subscript Rn in
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zRn alludes to the unconstrained situation under consideration.

Note that, by (2.29)

uY (t, T,Rn) = wV p(0, t)zRn(t). (2.30)

In order to replicate the contingent claim Y = wV p(0, T ), we can start with wealth

wV p(0, t) at time t and use the investment strategy p in the interval [t, T ]. Instead,

from (2.30) and the definition of upper hedging price as in (2.23), we see that we

can super-replicate Y by starting even with wealth wV p(0, t)zRn(t), and following

the investment strategy pY as defined in (2.28). wV p(0, t)zRn(t) is also the minimum

amount of wealth needed at time t to super-replicate Y . Therefore,

0 < zRn(t) ≤ 1, 0 ≤ t ≤ T.

Thus, zRn(t) has the interpretation of being the minimum amount of wealth needed

at time t to be able to super-replicate, by time T , the terminal wealth generated by

the investment strategy p starting with 1$ at time t. When zRn(t) < 1, (2.30) implies

that Y can be super-replicated using the strategy pY starting with less wealth at

time t, than the investment strategy p would necessitate. In other words, zRn(t) < 1

implies there exists strong arbitrage relative to p on the time horizon [t, T ].

When the market and the strategy are both Markovian, i.e., the stock price processes

satisfy the stochastic differential equation (2.6) and the strategy p(·) is of the form

p(·) = π(·,X (·)) then zRn(t) is of the form

zRn(t) = zRn(t,X (t)) := E[H̃0,Θ(t, T )V p(t, T )
∣∣X (t)], (2.31)

for a suitable function zRn(·, ·) on (0, T )× (0,∞)n.

Assumption 2.6.3. zRn(·, ·) is locally C1,2, the market is Markovian and π is

Markovian.

Under this assumption, an application of Itô’s lemma and the martingale property

of N0,Θ(·) show that for each (t, x) ∈ [0, T ]×Rn
+ there exists a neighborhood Ut,x of
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(t, x) in which zRn(·, ·) satisfies the partial differential equation

∂w

∂t
(t, x) +

∑
xi
∂w

∂xi
(t, x) (ai∗(t, x)π(t, x) + r(t, x)) +

+
1

2

∑
xixjaij(t, x)

∂2w

∂xi∂xj
(t, x) = 0, (t, x) ∈ (0, T )× Rn

+, (2.32)

w(T, x) = 1, x ∈ Rn
+.

It is easy to see that w(·, ·) ≡ 1 is a trivial solution to (2.32). In fact, (2.32) can have

multiple solutions. The same argument as in Theorem 1 in Fernholz and Karatzas

(2010) and Proposition 2 in Ruf (2011), shows that the function zRn(·, ·) is the

smallest nonnegative function of class C1,2 on [0, T ]×Rn
+ that satisfies (2.32). Thus,

as discussed in Section 9.2 in Fernholz and Karatzas (2010), under Assumption

2.6.3, the existence of strong arbitrage relative to π over the time interval [0, T ] is

equivalent to failure of uniqueness on the part of the Cauchy problem (2.32) over

the strip [0, T ]× Rn
+.
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Chapter 3

Upper Hedging Price under

Constraints: Stochastic

Representation

We saw in (2.27), that for any constraint set K ⊆ Rn, uY (t, T,K) ≥

E[H̃0,Θ(t, T )Y |Ft]. If K = Rn, the reverse inequality holds under Assumptions

(2.6.1) and (2.6.2) or under conditions presented in Theorems 4.1 and 4.2 in Ruf

(2012), thus giving the Black-Scholes type formula uY (t, T,Rn) = E[H̃0,Θ(t, T )Y |Ft].

When K ( Rn, Cvitanić and Karatzas (1993) showed that the upper hedging price

uY (t, T,K) can be represented as the essential supremum of the unconstrained

upper hedging prices (i.e., with K = Rn) in certain auxiliary markets. These

auxiliary markets are constructed using certain dual processes, which play a vital

role similar to Lagrange multipliers.

In the special case of Markovian markets, we show that the auxiliary markets

can be taken to be Markovian, for which we will only need to consider dual processes

which depend on time and the current stock price. We also observe that the dual
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processes can be taken to be uniformly bounded. The last observation allows us

to choose a broader class of constraints than that in Cvitanić and Karatzas (1993).

This enlargement of the class of constraints will prove useful in studying how the

possibility for relative arbitrage disappears as the constraints become stricter and

stricter.

3.1 Constraint set K

For a given closed, convex subset K 6= ∅ of Rn, let us define ζK : Rn → R ∪ {+∞}

by

ζK(κ)
∆
= sup

π∈K
(−π′κ), κ ∈ Rn. (3.1)

This is the support function of the convex set −K. It is a closed (i.e., lower semi-

continuous), proper (i.e., not identically +∞) convex function, which is finite on its

effective domain

K̃
∆
= {κ ∈ Rn; ζK(κ) <∞} . (3.2)

The effective domain, K̃, is a convex cone, called the barrier cone of −K. In

particular,

0 ∈ K̃ and ζK(0) = 0.

Henceforth, we will drop the subscript K from ζK . We will use the subscript only

when dealing with several constraint sets, in order to distinguish the respective ζ’s.

The function ζ is positively homogeneous,

ζ(ακ) = αζ(κ), ∀κ ∈ Rn, α ≥ 0,

and subadditive,

ζ(κ1 + κ2) ≤ ζ(κ1) + ζ(κ2), ∀κ1, κ2 ∈ Rn.

According to Rockafellar (1970), Theorem 13.1, pg 112,

π ∈ K ⇔ ζ(κ) + π′κ ≥ 0, ∀κ ∈ K̃.
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Lemma 3.1.1. If K is a closed convex cone, then ζ(κ) ≤ 0 for all κ ∈ K̃.

Proof. Suppose there exists π̃ ∈ K, κ ∈ K̃ such that −π̃′κ = δ > 0. Since απ̃ ∈

K for all α > 0, hence supπ∈K(−π′κ) = ∞, contradicting the fact that κ ∈ K̃.

Therefore, −π′κ ≤ 0 for all κ ∈ K̃, π ∈ K, which proves our claim.

We will assume that

Assumption 3.1.1. The function ζ(·) of (3.1) is locally bounded on K̃.

Assumption 3.1.1 holds in particular when ζ is a continuous function on K̃.

Theorem 10.2 in Rockafellar (1970) guarantees that ζ is a continuous function

on K̃, if K̃ is locally simplical; see also Remark 5.1 in Cvitanić and Karatzas (1993).

Unlike Cvitanić and Karatzas (1993), we do not assume that ζ is bounded

from below on Rn, i.e.

ζ(κ) ≥ ζ0, ∀κ ∈ Rn, for some ζ0 ∈ R. (3.3)

We will see in Lemma 3.1.2 that ζ is bounded from below on Rn if and only if the

constraint set K contains points arbitrarily close to 0. Corollary 3.1.2 shows that

in that case ζ will take only non-negative values on K̃. This observation will make

some computations immediate, whenever K contains points arbitrarily close to 0.

Lemma 3.1.2. The function ζ(·) of (3.1) is bounded from below on Rn iff K ∩

B̄(0, δ) 6= ∅ for any δ > 0.

Proof. Suppose ζ is bounded from below by ζ0. Since ζ(0) = 0, without loss of

generality we can assume that ζ0 ≤ 0. Suppose also that there exists δ > 0 such

that

K ∩ B̄(0, δ) = ∅.
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Then by Corollary 11.4.2 in Rockafellar (1970), we get that there exists a hyperplane

separating K and B̄(0, δ) strongly. Thus there exists a vector b and a real number

β such that

bTx > β, ∀x ∈ K

and

bTx < β, ∀x ∈ B̄(0, δ).

Since 0 ∈ B̄(0, δ), hence β > 0. Let

κ =
1

β
(ζ0 − 1) < 0, ν = −κb.

Then for any π ∈ K, we have

−π′ν = κπ′b < κβ = ζ0 − 1.

Hence

ζ(ν) = sup
π∈K

(−π′ν) < ζ0 − 1,

which contradicts the assumption that ζ is bounded from below by ζ0. Hence

K ∩ B̄(0, δ) 6= ∅ for all δ > 0.

To prove sufficiency, suppose that

K ∩ B̄(0, δ) 6= ∅ for all δ > 0.

Then we will show that there exists π ∈ K such that απ ∈ K for all α ∈ [0, 1]. Take

any δ > 0. Choose π0 ∈ K ∩ B̄(0, δ), such a choice being possible by assumption.

For each integer n ≥ 1, choose

πn ∈ K ∩ B̄(0, δ/n).

Since K is convex,

απ0 + (1− α)πn ∈ K.
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Now,

lim
n→∞

απ0 + (1− α)πn = απ0,

and since K is closed, απ0 ∈ K. Since α was chosen arbitrarily between [0, 1], this

holds for all α ∈ [0, 1]. Now take any ν ∈ K̃. Suppose πT0 ν = ε0. If ε0 > 0, then

{απT0 ν : α ∈ [0, 1]} = [0, ε0].

Therefore, we have, {−απT0 ν : α ∈ [0, 1]} = [−ε0, 0], which implies that

ζ(ν) = sup
π∈K

(−πTν) ≥ 0.

If ε0 < 0, then

{απT0 ν : α ∈ [0, 1]} = [ε0, 0].

Therefore, {−απT0 ν : α ∈ [0, 1]} = [0, ε0], which implies that

ζ(ν) = sup
π∈K

(−πTν) ≥ 0.

The following corollaries follow from the proof of Lemma 3.3.

Corollary 3.1.1. If K ∩ B̄(0, δ) 6= ∅ for any δ > 0, then there exists π ∈ K such

that απ ∈ K for all α ∈ [0, 1].

Corollary 3.1.2. If K ∩ B̄(0, δ) 6= ∅ for any δ > 0, then ζ(κ) ≥ 0 for all κ ∈ K̃.

For example, if K = [0,∞)n, then K̃ = [0,∞)n and ζ(κ) = 0 for all κ ∈ K̃.

On the other hand, if K = [c,∞)n, for some c > 0, then K̃ = [0,∞)n and

ζ(κ) = −c(
∑

i κi), as shown in (5.79). Thus ζ(·) is locally bounded in this case,

but not bounded from below.

We will see afterwards, that having negative values of ζ(·) will be useful in

eliminating relative arbitrage opportunities. Thus, getting rid of the assumption of



Chapter 3. Upper Hedging Price under Constraints: Stochastic Representation 33

boundedness from below of ζ(·) helps us significantly. Also, from Lemma 3.1.2 and

(2.19) it is clear that if we assume ζ(·) to be bounded from below, then we cannot

study the case where investment strategies are constrained to be portfolios.

The set K̃ is the dual cone to the recession cone 0+K (see Section 8 of

Rockafellar (1970) for a definition of recession cones) of K, i.e.

K̃ = {κ ∈ Rn : ∀ w ∈ 0+K,κTw ≥ 0}. (3.4)

0 ∈ K̃ and for κ 6= 0, κ ∈ K̃ iff −κ makes an angle of more than 90o with any

direction of recession of K. Figure 3.1 illustrates this in the case when K is a cone

and thus itself is its own recession cone.

K̃ K

0+K

The following lemma follows immediately from (3.4).

Lemma 3.1.3. Both κ,−κ ∈ Rn are in K̃ if and only if κ⊥ vect (0+K).

3.2 Dual processes and upper hedging price

We introduce now the dual processes, mentioned before. They act as Lagrange

multipliers penalising strategies which do not remain constrained in K at all times.

Cvitanić and Karatzas (1993) constructed auxilliary markets based on these dual
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processes and showed that the upper hedging price of a contingent claim in the

constrained market can be expressed as the supremum of the upper hedging prices

of the contingent claim in the unconstrained auxiliary markets. We will follow their

approach with suitable twists. We will restrict ourselves to Markovian markets and

show that the dual processes can be restricted to be Markovian. This will come

at a price though. We will have to restrict the contingent claims to satisfy certain

conditions.

For I ∈ I, let HI denote the Hilbert space of {Ft}-progressively measurable

processes

V : I × Ω→ Rn such that ∃ φV : I × Ω→ Rn

which satisfies sφV = V and

∫

I

‖φV‖2dt <∞,
(3.5)

with norm [[V]] given by

[[V]]2I
∆
= E

[∫

I

‖V(t)‖2dt

]
<∞.

We define the inner product

〈V1,V2〉I = E
[∫

I

V′1(t)V2(t)dt

]

on this space, and define

DI(K) := the subset of HI consisting of processes V : I × Ω→ K̃

with E
∫

I

ζ(V(t))dt <∞. (3.6)

D(b)
I (K) := the set of uniformly bounded processes in DI(K). (3.7)

DMI (K) := the set of processes in D(b)
I (K) which are of the form V(t) ≡ ν(t,X (t)).

(3.8)
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For each V ∈ DI(K), consider an auxiliary interest rate process

rV(t)
∆
= r(t) + ζ(V(t)), t ∈ I, (3.9)

as well as an auxiliary mean rate of return vector process

bV(t)
∆
= b(t) + V(t) + ζ(V(t))1, t ∈ I. (3.10)

Having introduced these auxiliary processes, Cvitanić and Karatzas (1993) construct

a new auxilliary market

MV = (rV(·), bV(·), s(·), S(0)).

Though we will make use of these auxiliary processes, we will stop short of con-

structing auxiliary markets because in a Markovian framework, this will introduce

the unnecessary hassle of making assumptions that unique-in-distribution weak

solutions exist for the corresponding stochastic differential equations for the stock

prices in the auxiliary markets. The price we have to pay is not having a nice

characterization. 1

The assumption of the existence of a square-integrable market-price-of-risk

implies the existence of a square-integrable process ΘV for each V, such that

sΘV = bV − rV1.

In particular, we can take

ΘV = Θ + φV,

1As pointed out by Ioannis Karatzas in a personal communication (2012), the assumption of
uniqueness in distribution may not be needed for our work. In the case of multitude of solutions,
we might be able to use the techniques for selecting Markov solutions as in Krylov (1973) and
Chapter 12 of Stroock and Varadhan (1979). See also page 15 of Ruf (2011). This remains to be
worked upon.
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where φV is as defined in (3.5).

For each V ∈ DI(K), consider now the process SV
0 (·), ZΘV(·), HΘV(·) defined as

SV
0 (t) = S0(t) exp

[∫ t

0

ζ(V(s))ds

]
,

ZΘV(t) = exp

[
−
∫ t

0

Θ′V(s)dW (s)− 1

2

∫ t

0

‖ΘV(s)‖2ds

]
,

HV,ΘV(t) = ZΘV(t)/SV
0 (t) (3.11)

By assumption (2.6.2), s is invertible. Hence for each V ∈ D, ΘV is uniquely defined

as

ΘV(t) = (s(t))−1(bV(t)− rV(t)1).

Hence, here we will drop ΘV from the superscript and denote

HV(t) := HV,ΘV(t); H̃V(t, s) := HV,ΘV(s)/HV,ΘV(t), 0 ≤ t ≤ s ≤ T. (3.12)

For an investment strategy p, the quantity H̃V(t, T )V p(t, T ) will be of interest often.

For it, we introduce the notation,

UV,p(t, s) := H̃V(t, s)V p(t, s), 0 ≤ t ≤ s ≤ T. (3.13)

3.3 Upper hedging price under constraints

Under assumptions (2.6.1) and (2.6.2), we know that for K = Rn,

uY (t, T,Rn) = E[H̃0,Θ(t, T )Y
∣∣Ft].

For any closed convex set K ⊆ Rn, Theorem 6.4 of Cvitanić and Karatzas (1993)

shows that the upper hedging price uY (t, T,K), defined in (2.23), satisfies

uY (t, T,K) = esssupV∈D(t,T ](K)E
[
H̃V(t, T )Y

∣∣Ft
]
.
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If this random variable is a.s. finite, then there exists a strategy p ∈ H((t, T ], K)

satisfying

uY (t, T,K)V p(t, T ) ≥ Y ; (3.14)

we say then that p(·) is a “super-replicating strategy”; if equality holds in (3.14),

we say that Y is “K-attainable”, and that p(·) is a “replicating strategy”.

Now assume that the market model is Markovian, i.e., it is of the form

b(t) = b(t,X (t)), s(t) = σ(t,X (t)), r(t) = r(t,X (t)). (3.15)

Assumption 3.3.1. For a Markovian market, suppose that the eigenvalues of σ are

locally bounded away from zero and infinity uniformly on [t, T ], and also the interest

rate process r and the drift parameter b are locally bounded uniformly on [t, T ], i.e.

for each compact set C ⊂ Rn
+, there exists kc > 0, such that

1

kC
I ≤ σ(s, x) ≤ kCI, r(s, x) + |b(s, x)| ≤ kC ∀ s ∈ [t, T ], x ∈ C. (3.16)

Assumption 3.3.2. The contingent claim Y is the terminal wealth generated by a

Markovian strategy π(·, ·) which is locally bounded as a function of the stock price

uniformly on [0, T ], i.e. for each compact set C ⊂ Rn
+, there exists a constant

kC > 0, such that |π(t, x)| ≤ kC if x ∈ C and t ∈ [0, T ].

We state now the main theorem of this chapter.

Theorem 3.3.1. Suppose that the market model is Markovian (i.e, of the form

(3.15)) and satisfies Assumptions 2.6.1, 2.6.2 and 3.3.1. Suppose that the stock

price process takes values in (0,∞)n. Suppose also that the contingent claim Y

satisfies Assumption 3.3.2, and the constraint set is such that Assumption 3.1.1

holds. Then,

uY (t, T,K) = esssup
V∈D(b)

(t,T ]
(K)

E
[
H̃V(t, T )Y

∣∣Ft
]
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= esssupν∈DM
(t,T ]

(K)E
[
H̃ν(t, T )Y

∣∣Ft
]

∆
= ûM(t, T,K), (3.17)

where uY (t, T,K) is the upper hedging price defined in (2.23) and the class of pro-

cesses D(b)
(t,T ](K) and D(M)

(t,T ](K) are as defined in (3.7) and (3.8), respectively.

If ûM(t, T,K) is a.s. finite, then there exists a Markovian strategy p̂ (·, ·) ∈

H((t, T ], K) such that ûM(t, T,K)V p̂(t, T ) ≥ Y a.s.

Proof. See Section 3.4.

Remark 3.3.1. In the framework of stochastic control theory, we can frame our prob-

lem as maximizing the reward E
[
H̃ν(t, T )Y

∣∣Ft
]

over control process ν(·, ·), which

take values in an “action space” A. When b(·, ·), σ(·, ·), r(·, ·), π(·, ·) are bounded

and continuous, and the action space A is compact, it follows from El Karoui et al.

(1987) that there exists an optimal Markovian “relaxed control”, i.e. a control which

takes values in the space of probability measures on the compact action space A.

If we further assume that the drift and dispersion of H̃ν(t, T )Y , under any values

of the control process, take values in a fixed convex set, then it would follow from

Haussmann (1986) that there exists an optimal Markovian control. In both these

papers, the authors use the compactness of the action space to argue the compact-

ness of the space of laws of the controlled processes H̃ν(t, T )Y . Under assumptions

which lead to upper-semicontinuity of the reward function, Haussmann (1986) shows

the existence of optimal laws, and then uses Markovian selection techniques as in

Krylov (1973) and Chapter 12 of Stroock and Varadhan (1979) to select an opti-

mal strong Markov process, which is shown to correspond to a Markovian control.

However, in our case, the action space K̃ is not necessarily compact. Even then, if

we could assume that b(·, ·), σ(·, ·), r(·, ·), π(·, ·) are bounded and continuous, then

we could have used these results to conclude that the optimum reward function is

the supremum of the reward functions over Markovian controls. Soner and Touzi

(2003) has used this line of argument for their problem. We do not make these
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assumptions, and use completely different argument and the special structure of our

problem, to prove our claim.

Using Theorem 3.3.1, we can write,

uY (t, T,K) = wV π(0, t) esssupν∈DME[H̃ν(t, T )V π(t, T )|Ft]

= wV π(0, t) esssupν∈DME[Uν,π(t, T )|Ft], (3.18)

where Uν,π(·, ·) is as defined in (3.13). In the following, we will work with a fixed

strategy π, and hence, unless there is scope for confusion, we will write

Uν(·, ·) ≡ Uν,π(·, ·). (3.19)

We now define,

zK(t, T ) := esssupν∈DM (K)E[Uν(t, T )
∣∣X (t)], (3.20)

zνK(t, T ) := E[Uν(t, T )
∣∣X (t)], ν ∈ DM(K). (3.21)

When the constraint set K is clear from the context, we will drop the subscript K

and denote zK simply by z.

We note that

uY (t, T,K) = wV π(0, t)zK(t, T ), a.s. (3.22)

We can replicate the claim Y by starting with wV π(0, t) dollars at time t and follow-

ing the investment strategy π on the time interval [t, T ]. However, this need not be

the minimum amount of wealth needed to super-replicate Y . If the super-replicating

strategies are constrained to take values in K, then the minimum amount of wealth

needed for super-replication at time t is wV π(0, t)zK(t, T ). The random variable

zK(·, T ) takes values in (0,∞]. It is clear that if π(s, x) ∈ K, (s, x) ∈ [t, T ] × Rn
+,

then 0 < zK(·, T ) ≤ 1 on [t, T ]. On the other hand, if K is such that Y cannot

be super-replicated by any strategy constrained to take values in K starting with
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any finite amount of initial wealth, then zK = ∞. This would happen, for ex-

ample, if the stock market consists of two stocks with the price processes X1, X2

being independent geometric Brownian motions, the contingent claim is Y = X1(T )

and K = {0} × R, i.e. only the second stock can be traded. On the other hand,

zK(t, T ) < 1 would imply that if X (t) = x, then there exists a strategy constrained

to take values in K, which starts with less than wV π(0, t) dollars at time t and

super-replicates Y , while the strategy π starts with wV π(0, t) dollars at time t and

replicates Y , i.e. there exists a strategy constrained to take values in K which

presents a relative arbitrage opportunity with respect to π over the time horizon

[t, T ].

It is clear intuitively, as also from (3.20), that if K2 ⊂ K1 ⊂ Rn
+ are two closed

convex sets, then zRn(·, T ) ≤ zK1(·, T ) ≤ zK2(·, T ). Suppose now that zRn(t, T ) < 1,

i.e. there exists relative arbitrage with respect to the strategy π. We would then

be interested in knowing for what constraint sets K1 do we still have zK1(t, T ) < 1.

And then for what kind of constraint sets K2 do we have zK2(t, T ) ≥ 1.

Thus, given a closed convex set K, the random variable zK(·, T ) will be our litmus

test for the existence of arbitrage opportunities relative to π among strategies con-

strained to take values in K. We call zK(·, T ) the arbitrage coefficient of π under

K.

3.4 Proof of Theorem 3.3.1

We prove the theorem along the lines of the proof of Theorem 5.6.2 of Karatzas and

Shreve (1998) but with suitable modifications. We have elaborated upon the parts

which are different and have referred the reader to Karatzas and Shreve (1998) for

the details of the parts which are similar.

To alleviate the notation we will write DM for DM(t,T ](K) in the proof with the
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understanding that throughout the proof t, T and K remain fixed.

We call the non-negative process

X̂(s) = esssupν∈DM
(t,T ]

(K)E
[
H̃ν(s, T )Y |Fs

]
(3.23)

the upper hedging value process for the contingent claim Y. Before starting the proof

of Theorem 3.3.1 we will study a few properties of the hedging value process.

For k ∈ N, k ≥ 1, denote

TXk := inf{t ≤ s ≤ T : Xs /∈ [
1

k
, k]n},

T ϑk := inf{t ≤ s ≤ T :

∫ s

t

‖ϑ‖2 > k},

Tk := TXk ∧ T ϑk .

The square-integrability of ϑ and the continuity of the stock price process ensures

that Tk ↑ ∞ a.s.

For t ≤ s ≤ T , denote

X̂k(s) = esssupν∈DM
(t,T ]

(K)E
[
H̃ν(s, T )Y 1T<Tk |Fs

]
,

Jν(s) = E[H̃ν(s, T )Y |Fs],

Jkν (s) = E[H̃ν(s, T )Y 1T<Tk |Fs].

so that

X̂k(s) = esssupν∈DMJ
k
ν (s) (3.24)

With ν ∈ DM fixed, we denote by DMs,ν the set of all processes µ(·) ∈ DM that agree

with ν(·) on [t, s]×Ω. Since H̃µ(s, T ) depends only on the values of µ(v) of µ(·) for

s ≤ v ≤ T , we may rewrite (3.24) as

X̂k(s) = esssupµ∈DMs,νJ
k
µ(s).

We then have the following lemma.
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Lemma 3.4.1. For any t ≤ s ≤ T and any integer k ≥ 1, the collection

{Jkµ(s)}µ∈DMs,ν is such that for any µ1, µ2 ∈ DMs,ν, there exists µk ∈ DMs,ν such that

Jk
µk

(s) ≥ Jkµ1(s) ∨ J
k
µ2

(s).

Proof. See Section 3.5.

We also have the following technical result.

Proposition 3.4.1. Under the assumption ûM(t, T,K) < ∞, the upper hedging

value process X̂(·) of (3.23) is finite and satisfies the dynamic programming equation

X̂(s) = esssupν∈DM
(t,T ]

(K)E
[
H̃ν(s, s′)X̂(s′)|Fs

]
, t ≤ s ≤ s′ ≤ T (3.25)

Furthermore, X̂(·) has an RCLL modification; choosing this modification, we have

that the process H̃ν(t, ·)X̂(·) is an RCLL supermartingale for every ν(·) ∈ DM(t,T ](K).

Proof. For any arbitrary but fixed process ν ∈ DM we will first show that

X̂(s) ≥ E[H̃ν(s, s′)X̂(s′)|Fs] a.s. (3.26)

This is the supermartingale property for Hν(s)X̂(s), t ≤ s ≤ T .

With very slight change in the proof of Theorem A.3, Appendix A Karatzas

and Shreve (1998) we can prove the slightly more general statement: Let X be

a nonempty family of nonnegative random variables. Then X ∗ = esssupX exists.

Furthermore if X is such that X, Y ∈ X implies that there exists Z ∈ X with

Z ≥ X∨Y a.s., then there is a non-decreasing sequence {Zn}∞n=1 of random variables

in X satisfying X ∗ = limn→∞ Zn a.s.

It follows from the above statement and Lemma 3.4.1 that for each integer

k ≥ 1, there is a sequence {µkn(·)}∞n=1 in DMs,ν such that {Jk
µkn

(s′)}∞n=1 is nondecreasing

and X̂k(s′) = limn→∞ J
k
µkn

(s′). The monotone convergence theorem now implies

E
[
H̃ν(s, s′)X̂(s′)|Fs

]
= lim

k→∞
E
[
H̃ν(s, s′)X̂k(s′)|Fs

]
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= lim
k→∞

lim
n→∞

E
[
H̃ν(s, s′)Jkµkn(s′)|Fs

]

= lim
k→∞

lim
n→∞

E
[
H̃µkn(s, T )Y 1T<Tk |Fs

]

≤ lim
k→∞

lim
n→∞

E
[
H̃µkn(s, T )Y |Fs

]
≤ X̂(s)

and (3.26) is established.

The rest of the proof follows as in the proof of Proposition 5.6.5 in Karatzas and

Shreve (1998).

Remark 3.4.1. The supermartingale property for the nonnegative RCLL process

H̃ν(t, ·)X̂(·) implies that we have

X̂(s) = 0,∀s ∈ [τ̂ , T ]

almost surely on {τ̂ < T}, where

τ̂
∆
= inf

{
s ∈ [t, T ) : X̂(s) = 0

}
∨ T (3.27)

and X̂(·) is as defined in (3.23). Since we consider only strictly positive contingent

claim Y , X̂(·) is strictly positive in [t, T ] and τ̂ = T almost surely.

Lemma 3.4.2. For any {Ft}-stopping time τ taking values in [t, T ], the collection

{Jkµ(τ)}µ∈DMτ,ν is such that for any two given processes µ1(·) and µ2(·) in DMτ,ν, there

exists µk(·) ∈ DMτ,ν such that Jk
µk

(τ) ≥ Jkµ1(τ) ∨ Jkµ2(τ).

Proof. See Section 3.6.

Remark 3.4.2. For the contingent claim Y , and for each {Ft}-stopping time τ taking

values in [t, T ], let us define

X̃(τ)
∆
= esssupν∈DM

E
[
H̃ν(t, T )Y |Fτ

]

H̃ν(t, τ)
.

It follows from the discussion in Remark 5.6.7 in Karatzas and Shreve (1998) and

Lemma 3.4.2 that, when we take a right-continuous modification of X̂(·), we have

X̂(τ) = X̃(τ), a.s.
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Henceforth, we shall always take the RCLL modification of X̂(·).

Proof of Theorem 3.3.1. We start with the proof of the inequality uY (t, T,K) ≥

ûM(t, T,K) which is obvious if uY (t, T,K) = ∞. Now assume uY (t, T,K) < ∞,

and consider an arbitrary Ft-measurable random variable Xt taking values in [0,∞)

for which there exists a strategy π ∈ H((t, T ], K) whose associated wealth process

satisfies XtV
π(t, T ) ≥ Y a.s. Let ν ∈ DM(t,T ](K) be given. For t ≤ s ≤ T, x ∈ Rn

+,

we denote

Bν(s, x) = −π′(s, x)ν(s, x)− ζ (ν(s, x)) , (3.28)

Sν(s, x) = σ′(s, x)π(s, x)− ϑ(s, x)− σ−1(s, x)ν(s, x). (3.29)

Then,

H̃ν(t, T )V π(t, T ) = 1 +

∫ T

t

H̃ν(t, s)V π(t, s)S ′ν(s,X (s))dWs

+

∫ T

t

H̃ν(t, s)V π(t, s)Bν(s,X (s))ds.

(3.30)

Denote, for t ≤ s ≤ T ,

M(s) =

∫ s

t

H̃ν(t, u)V π(t, u)S ′ν(u,X (u))dWu, (3.31)

A(s) =

∫ s

t

H̃ν(t, u)V π(t, u)Bν(u,X (u))du. (3.32)

The process {M(s)}t≤s≤T is a continuous local martingale. Then there exists a

sequence of stopping times Tn, n ∈ N, such that Tn ↑ ∞ and MTn is a martingale

for each n. By optional sampling theorem, we see that E (M(Tn ∧ T )) = M(t) = 0.

π′ν + ζ(ν) ≥ 0 since π(s) ∈ K. Hence A(s), t ≤ s ≤ T is an increasing nonnegative

process. Therefore,

E
[
H̃ν(t, Tn ∧ T )V π(t, Tn ∧ T )

]
= 1− E [A(Tn ∧ T )] ≤ 1. (3.33)
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By an application of Fatou’s lemma, we get from (3.33), that

E
[
H̃ν(t, T )V π(t, T )

]
≤ lim inf

n→∞
E
[
H̃ν(t, Tn ∧ T )V π(t, Tn ∧ T )

]
≤ 1. (3.34)

and hence,

E[H̃ν(t, T )Y |Ft] ≤ XtE[H̃ν(t, T )V π(t, T )] ≤ Xt.

Thus if Xt is such that there exists a strategy π ∈ H((t, T ], K) with XtV
π(t, T ) ≥ Y ,

then for any ν ∈ DM(t,T ](K), we have

Xt ≥ E[H̃ν(t, T )Y |Ft]. (3.35)

Taking the essential supremum over all ν ∈ DM(t,T ](K) of the right hand side of (3.35),

we get

uY (t, T,K) ≥ ûM(t, T,K). (3.36)

We turn to the reverse inequality uY (t, T,K) ≤ ûM(t, T,K) which is obvious

if ûM(t, T,K) =∞. So we will assume for the remainder that ûM(t, T,K) <∞ and

show that there exists a strategy π̂ ∈ H([t, T ], K) such that ûM(t, T,K)V π̂(t, T ) ≥

X̂(T ). We will mention some of the important steps that prove our claim. The left-

out details follow exactly as in the proof of Theorem 5.6.2 in Karatzas and Shreve

(1998), even though we have restricted the class of dual processes to DM . All

that is needed is the supermartingale property of H̃ν(t, ·)X̂(·) for any ν ∈ DM . We

proceed as follows. Fix ν(·) ∈ DM . It follows that the non-negative supermartingale

H̃ν(t, ·)X̂(·) has a unique Doob-Meyer decomposition

H̃ν(t, s)X̂(s) = ûM(t, T,K) +

∫ s

t

ψ′ν,t(u)dW (u)− Aν,t(s), t ≤ s ≤ T (3.37)

almost surely, where,

i. Aν,t(·) is an adapted, natural process with nondecreasing, right-continuous paths

almost surely, E[Aν,t(T )] <∞, A(0) = 0;



Chapter 3. Upper Hedging Price under Constraints: Stochastic Representation 46

ii. ψν,t(·) is a progressively measurable, Rn-valued process satisfying the square-

integrability condition
∫ T
t
‖ψν,t(u)‖2du <∞ almost surely.

We denote

ϕ(t, s)
∆
=

ψν,t(s)

H̃ν(t, s)
+ X̂(s)ϑν(s), (3.38)

Ĉ(t, s)
∆
=

∫

(t,s]

dAν,t(s)

H̃ν(t, s)
−
∫ s

t

[
X̂(u)ζ(ν(u)) + ϕ′(t, u)σ−1(u)ν(u)

]
du (3.39)

It turns out that the processes ϕ(t, ·) and Ĉ(t, ·) defined in (3.38) and (3.39) do not

depend on ν(·) ∈ DM . We also have
∫ T
t
‖ϕ(t, s)‖2ds <∞ almost surely.

The process Ĉ(t, ·) of (3.39) is adapted, with RCLL paths. Writing (3.39)

with ν(·) ≡ 0, we obtain

Ĉ(t, s) =

∫

(t,s]

dA0,t(s)

H̃0(t, s)
(3.40)

which shows that Ĉ(·) is nondecreasing. Consider the portfolio process

p̂(s)
∆
=





1

X̂(s)
(σ′(s))−1 ϕ(s), if X̂(s) 6= 0,

p∗, if X̂(s) = 0,

(3.41)

where p∗ is an arbitrary but fixed vector in K. From (3.37), (3.38), (3.41) and (3.40)

with ν ≡ 0, we have

H̃0(t, s)X̂(s) = û+

∫ s

t

ψ′(s)dW (s)− A(s)

= û+

∫ s

t

H̃0(t, u)X̂(u)
[
σ′(u)p̂(u)− ϑ(u)

]′
dW (u)−

∫

(t,s]

H̃0(t, s)dĈ(t, u)

Comparing this with (2.25) we can see û(t, T,K)V p̂(t, T ) ≥ X̂(T ).

In order to conclude the proof of Theorem 3.3.1 we need to show that

p̂(s) ∈ K for Lebesgue a.e. s ∈ [t, T ] (3.42)
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holds almost surely.

We denote

R(s) = esssupν∈DM
(t,T ]

(K)E
[
H̃ν(s, T )V π(s, T )|Fs

]
=

X̂(s)

wV π(0, s)
. (3.43)

It follows from (3.37) and (??), that for any ν ∈ DM and t ∈ [0, T ],

dR(s)

R(s)
= −

[
Bν(s,X (s)) +

(
ψ′ν,t(s)

H̃ν(t, s)X̂(s)
− S ′ν(s,X (s))

)
Sν(s)

]
ds

+

(
ψ′ν,t(s)

H̃ν(t, s)X̂(s)
− S ′ν(s,X (s))

)
dW (s)− dAν,t(s)

H̃ν(t, s)X̂(s)
, t ≤ s ≤ T.

(3.44)

Since the dynamics of R(·) satisfies (3.44) for any t ∈ [0, T ], it is clear that

ψ′ν,t(s)

H̃ν(t, s)X̂(s)
− S ′ν(s,X (s)) =

φ′(t, s)

X̂(s)
− σ′(s,X (s))π(s,X (s) (3.45)

is independent of t and ν ∈ DM . It is also clear from (3.43) that for any s ∈

[0, T ], ω ∈ Ω, R(s, ω) is a function of s and X (s, ω); and from (3.44) we see that

logR(·) is an additive semimartingale. It now follows from Theorem 6.27 in Çinlar

et al. (1980) and (3.45) that p̂(·) defined in (3.41) satisfies

p̂(s) = p̂(s,X (s)), s ∈ [0, T ], (3.46)

for some Borel measurable function p̂ : [0, T ] × Rn
+ → Rn. Following the proof of

Lemma 5.4.2 in Karatzas and Shreve (1998), we can then find a Borel measurable

function ν : [0, T ]× Rn
+ → K̃, such that ν ∈ DM ,

∥∥ν(t,X (t))
∥∥ ≤ 1,

∣∣ζ(ν(t,X (t)))
∣∣ ≤ 1, 0 ≤ t ≤ T,

almost surely, and for all t ∈ [0, T ] we have

p̂ (t,X (t)) ∈ K ⇔ ν (t,X (t)) = 0, (3.47)

p̂ (t,X (t)) /∈ K ⇔ ζ (ν(t,X (t))) + p̂′ (t,X (t)) ν (t,X (t)) < 0 (3.48)
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almost surely. The important point to note here is that the arguments and the

construction presented in the proof of Lemma 5.4.2 in Karatzas and Shreve (1998)

continue to hold even when ζ(·) is only assumed to be locally bounded on K̃ instead

of being bounded from below as in Cvitanić and Karatzas (1993).

For any positive integer k, the process kν(·) must also be in DM , and (??) gives,

0 ≤
∫

(t,τ̂ ]

dAkν(s)

H̃kν(t, s)
= Ĉ(t, τ̂) + k

∫ τ̂

t

[
X̂(u)ζ(ν(u)) + π̂′(u)ν(u)

]
du

almost surely. Because ν(·) satisfy (3.47) and (3.48), the integrand on the right-

hand side of this inequality is nonpositive, and by choosing k sufficiently large the

right-hand side can be made negative with positive probability, unless

ζ (ν(s)) + π′(s)ν(s) = 0 for Lebesgue-a.e. s ∈ [t, τ̂ ] (3.49)

holds almost surely. Thus (3.49) must hold, and with it, (2.18) must hold as well.

This completes the proof of Theorem 3.3.1.

3.5 Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. For each integer n ≥ 0, we define

tni = s+ i
T − s

2n
, i = 0, 1, 2, . . . , 2n, (3.50)

thus dividing the time interval [s, T ] into 2n intervals of equal length. Define the

family of binary operators {⊗ni }n∈N, ⊗ni : DMs,ν ×DMs,ν → DMs,ν as

(µ1 ⊗ni µ2) (u) = µ1(u)1u<tni + µ2(u)1u≥tni , s ≤ u ≤ T, µ1, µ2 ∈ DMs,ν . (3.51)

Now, fix any two processes µ1(·) and µ2(·) in DMs,ν . Define

An,ki =
{
Jkµ1(t

n
i ) > Jkµ2(t

n
i )
}
, i = 0, 1, 2, . . . , 2n. (3.52)
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Define the process νkn on [t, T ] as

νkn(u) = ν(u)1t≤u<s +
2n−1∑

i=0

{
µ1(u)1An,ki

+ µ2(u)1(An,ki )
c

}
1tni ≤u<tni+1

. (3.53)

For any n ∈ N, for i = 2n − 1, we see that,

Jkνkn(s) = E
[
H̃νkn⊗ni µ1(s, T )Y 1An,ki

+ H̃νkn⊗ni µ2Y 1(An,ki )
c

∣∣Fs
]

(3.54)

= E
[
H̃νkn(s, tni )

(
Jkµ1(t

n
i )1An,ki

+ Jkµ2(t
n
i )1(An,ki )

c

) ∣∣Fs
]

(3.55)

≥ Jkνkn⊗ni µ1
(s) ∨ Jkνkn⊗ni µ2(s) (3.56)

Suppose that we have shown that for some i ∈ {1, 2, 2n − 1},

Jkνkn(s) ≥ E
[
H̃νkn(s, tni )

(
Jkµ1(t

n
i )1An,ki

+ Jkµ2(t
n
i )1(An,ki )

c

) ∣∣∣∣Fs
]
. (3.57)

Then we can write,

Jkνkn(s) ≥ E
[
H̃νkn(s, tni )

(
Jkµ1(t

n
i )1An,ki

+ Jkµ2(t
n
i )1(An,ki )

c

) ∣∣Fs
]

(3.58)

= E
[
H̃νkn(s, tni−1)

(
Jkµ1(t

n
i−1)1An,ki−1

1An,ki
+ Jkµ2⊗ni µ1(t

n
i−1)1(An,ki−1)

c1An,ki

+ Jkµ1⊗ni µ2(t
n
i−1)1An,ki−1

1(An,ki )
c + Jkµ2(t

n
i−1)1(An,ki−1)

c1(An,ki )
c

) ∣∣∣∣Fs
]

(3.59)

But,

Jkµ2⊗ni µ1(t
n
i−1)1(An,ki−1)

c1An,ki
≥ Jkµ2(t

n
i−1)1(An,ki−1)

c1An,ki
,

and

Jkµ1⊗ni µ2(t
n
i−1)1An,ki−1

1(An,ki )
c ≥ Jkµ1(t

n
i−1)1An,ki−1

1(An,ki )
c .

Plugging them into (3.59) gives,

Jkνkn(s) ≥ E
[
H̃νkn(s, tni−1)

(
Jkµ1(t

n
i−1)1An,ki−1

+ Jkµ2(t
n
i−1)1(An,ki−1)

c

) ∣∣∣∣Fs
]
. (3.60)

By induction, this shows that,

Jkνkn(s) ≥
(
Jkµ1(s)1An,k0

+ Jkµ2(s)1(An,k0 )
c

)
= Jkµ1(s) ∨ J

k
µ2

(s). (3.61)
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We define the function pn : [s, T ]→ [s, T ],

pn(u) =
2n−1∑

i=0

i1tni ≤u<tni+1
.

Then, from (3.53), we see that,

νkn(u) = ν(u)1u<s +

(
µ1(u)1An,k

pn(u)
+ µ2(u)1(

An,k
pn(u)

)c
)

1u≥s.

On the other hand,

tnpn(u) ↑ u, as n ↑ ∞.

Therefore,

Jkµ1
(
tnpn(u)

)
=

E
[
H̃µ1(t, T )Y 1T<Tk

∣∣Ftn
pn(u)

]

H̃µ1

(
t, tnpn(u)

) →
E
[
H̃µ1(t, T )Y 1T<Tk

∣∣Fu−
]

H̃µ1 (t, u−)
= Jkµ1(u),

since F, being the filtration generated by the stock price process X is left-continuous.

Similarly,

Jkµ2
(
tnpn(u)

)
→ Jkµ2(u).

Therefore,

νkn(u)→ ν(u)1u<s +
(
µ1(u)1Jkµ1 (u)>Jkµ2 (u) + µ2(u)1Jkµ1 (u)≤Jkµ2 (u)

)
1u≥s =: µk(u).

(3.62)

With µk as defined in (3.62), we see that µk ∈ DMν,s. Also, since µ1 and µ2 are

uniformly bounded on [t, T ], so are νkn and µk.

For any µ ∈ DM , we have

dHµ = −Hµ
(
rµdt+ ϑ′µdW

)
,

where

rµ = r + ζ(µ), ϑµ = ϑ+ σ−1µ.
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Therefore,

d logHµ = −
(
rµ −

1

2
ϑ′µϑµ

)
dt− ϑ′µdW, (3.63)

and hence

log
H̃νkn(s, Tk)

H̃µk(s, Tk)
=

∫ Tk

s

(
ζ(µk)− ζ(νkn) +

1

2

∥∥ϑµk
∥∥2 − 1

2

∥∥ϑνkn
∥∥2
)

du+

∫ Tk

s

(
ϑµk − ϑνkn

)′
dWu

From assumption 3.3.1, assumption 3.1.1 and (3.62), it follows by an application of

DCT, that

log H̃νkn(s, Tk)− log H̃µk(s, Tk)
P−→ 0 (3.64)

(3.64) implies that there is a subsequence of {νkn}n∈N again denoted by {νkn}n∈N,

such that

log H̃νkn(s, Tk)
n→∞
−−−−→ log H̃µk(s, Tk), a.s.,

or, in other words,

H̃νkn(s, Tk)Y
n→∞
−−−−→ H̃µk(s, Tk)Y, a.s. (3.65)

By Assumption 3.3.2, the contingent claim Y is the wealth generated by a strategy

π. It follows from (3.30) that

H̃νkn(s, Tk)V
π(s, Tk) = exp

{∫ Tk

s

(
Bνkn
− 1

2
S ′νknSνkn

)
dt+

∫ Tk

s

S ′νkndW

}
(3.66)

Therefore,

(
H̃νkn(s, Tk)V

π(s, Tk)
)2

= exp

{∫ Tk

s

(
2Bνkn

+ S ′νknSνkn

)
dt

}
exp

{∫ Tk

s

2S ′νkndW −
∫ Tk

s

2S ′νknSνkndt

}

≤ C exp

{∫ Tk

s

2S ′νkndW −
∫ Tk

s

2S ′νknSνkndt

}
(3.67)

and hence,

E
[(
H̃νkn(s, Tk)V

π(s, Tk)
)2
]
≤ C, (3.68)
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which implies that the family
{
H̃νkn(s, Tk)V

π(s, Tk)
}
n∈N

is uniformly integrable.

Along with (3.65), this implies that

Es,x
[
H̃νkn(s, T )V π(0, T )

]
→ Es,x

[
H̃µk(s, T )V π(0, T )

]
. (3.69)

(3.61) and (3.69) implies that

Jkµk(s) ≥ Jkµ1(s) ∨ J
k
µ2

(s).

3.6 Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. Define

µk(s) = ν(s)1{s<τ} +
[
µ1(s)1{Jkµ1 (s)≥Jkµ2 (s)} + µ2(s)1{Jkµ1 (s)<Jkµ2 (s)}

]
1{s≥τ}, (3.70)

It is easy to see that µk ∈ DMτ,ν .

For any deterministic time s ∈ [t, T ], it follows from Lemma 3.4.1 that

Jk
µk

(s) ≥ Jkµ1(s) ∨ J
k
µ2

(s) a.s. for each s. Since this holds for any deterministic

time s ∈ [t, T ], hence it holds for any stopping time τ taking finitely many values in

[t, T ].

Let τ be an arbitrary stopping time taking values in [t, T ]. Define

τn(ω) =





j
2n
T if τ(ω) ∈

(
j−1
2n
T, j

2n
T
]

0 o.w.

Then τn(ω) ↓ τ(ω) a.s., τn are stopping times for all n.

Consider any µ ∈ DMτ,ν . Since, H̃µ(t, s)Jµ(s) = E[H̃µ(t, T )Y |Fs], hence

{H̃µ(t, s)Jµ(s)}s∈[t,T ] is a martingale. Therefore, by optional sampling theorem

H̃µ(t, τ)Jµ(τ) = E[H̃µ(t, T )Jµ(T )|Fτ ] = E[H̃µ(t, T )Y |Fτ ].
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Therefore,

H̃µ(t, τ)Jµ(τ) = E[H̃µ(t, T )Y |Fτ ] = lim
n→∞

E[H̃µ(t, T )Y |Fτn ]

= lim
n→∞

H̃µ(t, τn)Jµ(τn) = H̃µ(t, τ) lim
n→∞

Jµ(τn)

The second equality holds by Levy’s convergence result for backward martingales.

The last equality holds because H̃ µ̂(t, ·) is continuous a.s.

Therefore, for any µ ∈ DMτ,ν , we have Jµ(τ) = limn→∞ Jµ(τn). In particular,

Jµk(τ) = lim
n→∞

Jµk(τn) ≥ lim
n→∞

Jµ1(τn) ∨ Jµ2(τn) ≥
(

lim
n→∞

Jµ1(τn)
)
∨
(

lim
n→∞

Jµ2(τn)
)

= Jµ1(τ) ∨ Jµ2(τ)

Hence, Jµk(τ) ≥ Jµ1(τ) ∨ Jµ2(τ) a.s.
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Chapter 4

Upper Hedging Price under

Constraints: Viscosity Solutions

Characterization

We recall first, an observation made in Subsection 2.6.1. We saw that if the

market is Markovian, the contingent claim Y is the terminal wealth generated

by a Markovian strategy π and if zRn(·, ·) (defined in (2.31)) is locally C1,2, then

zRn(·, ·) satisfies the partial differential equation (2.32). The interested reader can

see Janson and Tysk (2006) for a nice discussion on similar Feynman-Kac type

theorems and their converse. This connection with partial differential equations

is extremely useful as under suitable conditions one can use the standard theory

of parabolic partial differential equations to come to interesting conclusions. For

example, Proposition 2 and its corollary in Section 9 of Fernholz and Karatzas

(2010), use the maximum principle for parabolic equations to conclude that under

certain conditions on the volatility matrix, “short-term arbitrage” with respect

to the market portfolio implies “long-term arbitrage” with respect to it. This

motivates us to get a similar PDE characterization for ûM(t, T,K) defined in
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(3.17). However, it would be too much to expect ûM(t, T,K) to be in C1,2. We

will therefore, take a much more general approach, viz. that of viscosity solutions,

which was introduced in the early 1980s by Pierre-Louis Lions and Michael Crandall

as a generalization of the classical concept of what is meant by a “solution” to a

partial differential equation. The survey paper Crandall et al. (1992) is an excellent

resource for the study of viscosity solutions.

Throughout this chapter, we will assume that the conditions in Theorem 3.3.1

hold.

In a Markovian market and for contingent claims which depend only on the

final stock price, Soner and Touzi (2003) used the dynamic programming principle

followed by the upper hedging price process to characterize it in terms of viscosity

solution of certain variational inequalities. We will follow an approach similar to

theirs, but for a class of contingent claims, which can be replicated by Markovian

investment strategies. We will also work under more general market conditions.

For example, unlike Soner and Touzi (2003), we do not assume b(·, ·) and σ(·, ·)

to be bounded and continuous. Nevertheless, we will use our results to study how

relative arbitrage opportunities disappear as the constraints become stricter.

In Section 4.1 we will present a dynamic programming principle for the pro-

cess zK(·,X (·)), defined in (4.3), and in Section 4.2 we will use this dynamic pro-

gramming principle to characterize the function zK(·, ·) in terms of viscosity solutions

to some partial differential equations. Sections 4.3, 4.4 and 4.5 contain the technical

proofs of the results presented in Section 4.2. Section 4.6 contains an auxiliary result

about estimates of moments of the stock price process and the discounted wealth

process. Section 4.2, and hence the related sections following it, stand upon the

assumption that the function zK(·, ·) is lower-semicontinuous. Section 4.7 presents
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sufficient conditions for lower-semicontinuity of zK(·, ·).

4.1 Dynamic programming principle

We recall from Theorem 3.3.1 that for a contingent claim Y = V π(0, T ), the upper

hedging price uY (t, T,K) (defined in (2.23)) can be expressed as

uY (t, T,K) = V π(0, t)esssupν∈DM
(t,T ]

(K)E
[
Uν(t, T )

∣∣Ft
]
.

The following dynamic programming principle (which is the pivot on which this

Chapter rests) follows from the proof of Theorem 3.3.1.

Theorem 4.1.1. For {Ft}-stopping times ρ and τ satisfying t ≤ ρ ≤ τ ≤ T a.s.,

and under the conditions of Theorem 3.3.1, the following dynamic programming

principle holds.

uY (ρ, T,K) = esssupν∈DM
(t,T ]

(K)E
[
H̃ν(ρ, τ)uY (τ, T,K)

∣∣Fρ
]
.

zK(ρ) = esssupν∈DM
(t,T ]

(K)E
[
Uν(ρ, τ)zK(τ)

∣∣Fρ
]
.

We will now assume that

Assumption 4.1.1. For every initial condition x ∈ (0,∞)n, there exists a unique-

in-distribution weak solution to the SDE (2.6).

We will denote by (X s,x(u))u∈[s,∞) the solution to the stochatic differential equation

dXi(t) = Xi(t)

(
bi(t,X (t))dt+

d∑

ν=1

σiν(t,X (t))dWν(t)

)
, t ≥ s

Xi(s) = xi > 0, i = 1, 2, . . . , n.

(4.1)

H̃ν,s,x(·, ·), V π,s,x(·, ·) , Uν,s,x(·, ·) and uY,s,x(·, T,K) will denote the corresponding

processes when the stock price process X (·) satisfies (4.1).
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We will, henceforth, restrict attention to the case where (Ω,F) is a sepa-

rable standard Borel space; this will be the case if, for example, (Ω,F ,P) is the

canonical probability space with Ω = C ([0,∞)n) and F is the sigma algebra gen-

erated by all continuous functions on [0,∞)n. It then follows from Theorem V.8.1

in Parthasarathy (1967) that there exists a regular conditional probability measure

Ps,x, defined to be the conditional probability

Ps,x(B) = P
[
B
∣∣X (s) = x

]
, B ∈ F .

For B ∈ B(C ([0,∞)n)), we can now write

P
[
X (s+ ·) ∈ B

∣∣X (s) = x
]

= Ps,x [X (s+ ·) ∈ B] = P [X s,x(s+ ·) ∈ B] .

Under Assumption 3.3.1, Theorem 5.4.20 in Karatzas and Shreve (1991) gives us the

strong Markov property, that for any stopping time τ ≥ s and B ∈ B(C ([0,∞)n)),

Ps,x
[
X (τ + ·) ∈ B

∣∣X (τ)
]

= Pτ,X (τ) [X (τ + ·) ∈ B] .

We will denote by Es,x the expectation with respect to the probability measure

Ps,x. We can now write,

zK(t) = esssupν∈DM
(t,T ]

(K)E
[
Uν(t, T )

∣∣X (t)
]

= esssupν∈DM
(t,T ]

(K)Et,X (t) [Uν(t, T )] .

(4.2)

We now define,

zK(t, x) := sup
ν∈DM (K)

Et,x[Uν(t, T )] = sup
ν∈DM (K)

E[Uν,t,x(t, T )], (4.3)

When the constraint set K is clear from the context, we will drop the subscript K

and denote zK simply by z.

For the rest of this chapter we will assume the following:

Assumption 4.1.2. z(·, ·) is lower-semicontinuous on [0, T )× Rn
+.
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Sufficient conditions for the lower-semicontinuity of z(·, ·) will be presented in

Section 4.7.

For any s ∈ [t, T ], the dynamic programming principle from Theorem 4.1.1

now allows us to write

zK(t, x) = sup
ν∈DM

(t,T ]
(K)

E
[
Uν(t, s)zK(s,Xs)

∣∣Xt = x
]
. (4.4)

4.2 Viscosity solution characterization

In this section we will use the dynamic programming principle of Theorem 4.1.1

to characterize the function zK : [0, T ] × Rn
+ → R as a viscosity solution to certain

variational inequalities. We will present the results here and immediately move on

to its implications in the next section, leaving the technical proofs for later sections.

For the convenience of the reader, we start by presenting the definition of

viscosity solutions. We denote by S(n), the set of all symmetric n × n matrices.

Consider a function G : [0,∞)× Rn × R× R× Rn × S(n) → R which satisfies the

monotonicity condition

G(t, x, r, q, p,X) ≤ G(t, x, s, q, p, Y ) whenever r ≤ s and Y ≤ X; (4.5)

where (t, x, q, p) ∈ (0,∞)×Rn×R×Rn, r, s ∈ R, X, Y ∈ S(n) and S(n) is equipped

with its usual order.

Given an open set V ⊂ [0,∞)× Rn, we say that an upper semicontinuous function

u : V → R is a viscosity subsolution of

G

(
t, x, u(t, x),

∂u

∂t
(t, x),∇xu(t, x), D2u(t, x)

)
= 0, (t, x) ∈ V, (4.6)

if, for any (t̄, x̄) ∈ V and any function φ ∈ C1,2(V ) satisfying

0 = (φ− u)(t̄, x̄) = min
(t,x)∈V

(φ− u)(t, x),
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we have

G

(
t̄, x̄, φ(t̄, x̄),

∂φ

∂t
(t̄, x̄),∇xφ(t̄, x̄), D2φ(t̄, x̄)

)
≤ 0.

We say that a lower semicontinuous function v : V → R is a viscosity supersolution

of

G

(
t, x, v(t, x),

∂v

∂t
(t, x),∇xv(t, x), D2v(t, x)

)
= 0, (t, x) ∈ V,

if, for any (t̄, x̄) ∈ V and any function φ ∈ C1,2(V ) satisfying

0 = (v − φ)(t̄, x̄) = min
(t,x)∈V

(v − φ)(t, x),

we have

G

(
t̄, x̄, φ(t̄, x̄),

∂φ

∂t
(t̄, x̄),∇xφ(t̄, x̄), D2φ(t̄, x̄)

)
≥ 0.

We say that a continuous function w : V → R is a viscosity solution to (4.6) if it is

both a supersolution and a subsolution to (4.6).

We now give an equivalent definition of viscosity solutions which will be useful

in some cases. Given (q, p,X) ∈ R×Rn × S(n), we say that (q, p,X) ∈ J 2,+
V u(t̄, x̄)

(the “superjet” of u at (t̄, x̄)) if

u(t, x) ≤ u(t̄, x̄)+q(t− t̄)+〈p, x− x̄〉+ 1

2
〈X(x− x̄), x− x̄〉+o

(
|t− t̄|+ |x− x̄|2

)
,

as V 3 (t, x)→ (t̄, x̄).

We say that (q, p,X) ∈ J 2,−
V v(t̄, x̄) (the “subjet” of v at (t̄, x̄)) if

v(t, x) ≥ v(t̄, x̄)+q(t− t̄)+〈p, x− x̄〉+ 1

2
〈X(x− x̄), x− x̄〉+o

(
|t− t̄|+ |x− x̄|2

)
,

as V 3 (t, x)→ (t̄, x̄).

u is said to be a viscosity subsolution of (4.6) if

G(t, x, u(t, x), q, p,X) ≤ 0, for all (t, x) ∈ V and (q, p,X) ∈ J 2,+
V u(t, x).
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Similarly, v is said to be a viscosity supersolution of (4.6) if

G(t, x, v(t, x), q, p,X) ≥ 0, for all (t, x) ∈ V and (q, p,X) ∈ J 2,−
V v(t, x).

We introduce some more notations now. We denote

OK :=





the set of all points (t, x) ∈ (0, T )× Rn
+, such that there exists

an open neighborhood V(t,x) of (t, x) on which z(·, ·) is bounded.

(4.7)

As usual, we will drop the subscript K, and use it only when there is scope for

confusion.

Even though the set OK has been introduced for technical reasons, it has some

economic significance also. Suppose (t, x) /∈ OK for some (t, x) ∈ (0, T ) × Rn
+.

Suppose that the stock price process takes values in any arbitrary open neighborhood

of x in any arbitrary open time interval containing t, with positive probability. If

an investor plans to start investing in strategies constrained to take values in K, at

some undetermined time close to t, then he should be aware that he might need any

arbitrarily large multiple of the wealth generated by π up to that time, in order to

be able to super-replicate the claim Y = V π(0, T ) at time T .

On the closure O of the set of (4.7), we define the upper-semicontinuous envelope

z∗ and lower-semicontinuous envelope z∗ of z by

z∗(t̄, x̄) = lim sup
O3(t′,x′)→(t̄,x̄)

z(t′, x′), z∗(t̄, x̄) = lim inf
O3(t′,x′)→(t̄,x̄)

z(t′, x′). (4.8)

Note that by Assumption 4.1.2

z∗(t̄, x̄) = z(t̄, x̄), (t̄, x̄) ∈ O.

Let L, M and Mν be the operators defined by

Lw =
∂w

∂t
+

1

2

∑

i

xi
∂w

∂xi
(ai∗π + r) +

1

2

∑

i,j

xixjaij
∂2w

∂xi∂xj
, (4.9)

Mw = inf
ν∈K̃

[
w (π′ν + ζ(ν)) +

∑
νixi

∂w

∂xi

]
, (4.10)
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Mνw = w (π′ν + ζ(ν)) +
∑

νixi
∂w

∂xi
, (4.11)

for w ∈ C1,2
(
(0, T )× Rn

+

)
.

We now have the following theorem.

Theorem 4.2.1. Under the conditions of Theorem 3.3.1 and Assumption 4.1.2, z

is a viscosity supersolution to the equation

−Lz(s, x) +Mz(s, x) = 0, (s, x) ∈ O. (4.12)

We will present the proof of Theorem 4.2.1 in Section 4.3.

Since 0 ∈ K̃, hence for any w ∈ C1,2,

Mw(s, x) ≤ 0, s ∈ [t, T ], x ∈ Rn
+.

On the other hand, if there exists ν ∈ K̃, x ∈ Rn
+ such that

w(s, x) (π′(s, x)ν + ζ(ν)) +
∑

νixi
∂w

∂xi
(s, x) < 0,

then from the linear homogeneity of ζ it follows that

Mw(s, x) = −∞.

Thus, for any w ∈ C1,2

Mw(s, x) =




−∞, if π′(s, x)ν + ζ(ν) < 0 for some ν ∈ K̃,

0, o.w.

(4.13)

Hence, for a fixed (t̄, x̄) ∈ O, if φ ∈ C1,2 is such that

0 = (z − φ) (t̄, x̄) = min
(s,x)∈O

(z − φ) (s, x),

then, by Theorem 4.2.1 and (4.13), we have

−Lφ(t̄, x̄) ≥ 0, Mφ(t̄, x̄) = 0. (4.14)
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Thus, we see that properties of viscosity supersolutions to the partial differential

equation in (4.12) can be studied by studying the two separate partial differential

equations,

−Lφ(t, x) = 0, (t, x) ∈ O, (4.15)

Mφ(t̄, x̄) = 0, (t, x) ∈ O. (4.16)

The parabolic PDE (4.15) does not depend on the constraint set K, and comparison

principles can be easily written down for its supersolutions. It can have multiple

supersolutions. In fact, it has all constant functions as trivial solutions. The

choice of the right supersolution is dictated by (4.16), the terminal conditions to be

derived soon and by z∗(·, ·), since z ≤ z∗.

We now derive a subsolution property of z∗. Let M1 be the operator defined by

M1w = inf
ν∈K̃1

[
w (π′ν + ζ(ν)) +

1

2

∑
νixi

∂w

∂xi

]
, w ∈ C1,2, (4.17)

where,

K̃1 := K̃ ∩ {|ν| = 1 and ζ(ν) + ζ(−ν) 6= 0} .

A known result of convex analysis is that

x ∈ ri(K) if and only if x ∈ K and inf
y∈K̃1

(x′y + ζ(y)) > 0. (4.18)

Let P be the operator defined by

Pw(s, x) = lim sup
δ↓0

sup
η∈(vect(K))⊥

{η′w(t, y) : (t, y) ∈ (s− δ, s+ δ)×B(x, δ)} . (4.19)

It is easy to see that

Pw(s, x) = 0 ⇐⇒ w(t, y) ∈ vect(K) ∀ (t, y) sufficiently close to (s, x).
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Theorem 4.2.2. Under the conditions of Theorem 4.2.1, z∗ defined in (4.8) is a

viscosity subsolution of the equation

min {−Lz∗(s, x),M1z
∗(s, x)}1Pπ(s,x)=0 +Mz∗(s, x) = 0, (s, x) ∈ O. (4.20)

If π(s, x) = diag(x)∇Π(s, x), for some Π : [0, T ]× Rn
+ → Rn which is differentiable

w.r.t the space variable, then z∗ is a viscosity subsolution to the equation

min {−Lz∗(s, x),M1z
∗(s, x)}+Mz∗(s, x) = 0, (s, x) ∈ O. (4.21)

We will present the proof of Theorem 4.2.2 in Section 4.4

Remark 4.2.1. Unless (diag(x))−1 π(t, x) is a conservative vector field, Theorem 4.2.2

gives us useful information about the value of z(·, ·) at (t, x) only if the investment

strategy π takes values in K in a neighborhood of (t, x).

We denote

OT :=
{
x ∈ Rn

+ : (T, x) ∈ O
}
. (4.22)

Theorem 4.2.3. Under the conditions of Theorem 4.2.1, z∗(T, ·) is a viscosity su-

persolution in OT of

z∗(T, x)− 1 +Mz∗(T, x) = 0, x ∈ OT ,

or, min {z∗(T, x)− 1,Mz∗(T, x)} = 0, x ∈ OT .

We denote

Õ :=





the set of points x ∈ Rn
+ such that z(·, ·) is

bounded on (T − δ, T ]×B(x, δ) for some δ > 0.

(4.23)

We also denote,

Q̃ :=





the set of points y ∈ Rn
+ for which there exists a δ > 0, such that

sup[T−δ,T ]×B(y,δ)

(
z(t, x)− supν∈D,‖ν‖≤m Et,x [Uν(t, T )]

)
→ 0, as m ↑ ∞

(4.24)



Chapter 4. Upper Hedging Price under Constraints: Viscosity Solutions
Characterization 64

Equivalently,

Q̃ :=





the set of points y ∈ Rn
+ for which there exists a δ > 0,

such that given any ε > 0, we can find a M such that

z(t, x)− supν∈D,‖ν‖≤M Et,x [Uν(t, T )] < ε, ∀ (t, x) ∈ [T − δ, T ]×B(y, δ).

(4.25)

Theorem 4.2.4. Under the conditions of Theorem 4.2.1, z∗(T, ·) is a viscosity

subsolution of the equation

min {z∗(T, x)− 1,M1z
∗(T, x)}1Pπ(T,x)=0 +Mz∗(T, x) = 0, x ∈ Q̃ ∩ Õ. (4.26)

Remark 4.2.2. Theorem 4.2.2 gives us useful information about the value of z(T−, x)

only if the investment strategy π takes values in K in a neighborhood of x and at

times close to the terminal time T . However, x ∈ Õ is not an easily tractable

condition. Thus, the usefulness of Theorem 4.2.2 is questionable.

4.3 Viscosity supersolution property

Proof of Theorem 4.2.1. For a fixed (t̄, x̄) ∈ O, let φ ∈ C1,2 be such that

0 = (z − φ) (t̄, x̄) = min
(s,x)∈O

(z − φ) (s, x). (4.27)

Fix any ν ∈ DM[t̄,T ]. It follows from (4.4) and (4.27) that, for any {Ft}-stopping time

θ, taking values in [t̄, T ],

z(t̄, x̄) ≥ E [Uν(t, θ)z(θ,Xθ)|Xt̄ = x̄] ,

=⇒ φ(t̄, x̄) ≥ E [Uν(t, θ)φ(θ,Xθ)|Xt̄ = x̄] (4.28)
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From (3.30) and by an application of Itô’s lemma, we get

dUνφ = Uν

[(
∂φ

∂t
+

n∑

i=1

∂φ

∂xi
Xibi +

1

2

∑

i,j

∂2φ

∂xi∂xj
XiXjaij

)
dt+

n∑

i=1

∂φ

∂xi
Xiσi∗dW

]

+ φUν (Bνdt+ S ′νdW ) +
n∑

i=1

∂φ

∂xi
UνXiσi∗Sνdt

= Uν

[
∂φ

∂t
+

n∑

i=1

∂φ

∂xi
Xi (bi + σi∗Sν) +

1

2

∑

i,j

∂2φ

∂xi∂xj
XiXjaij + φBν

]
dt

+ Uν

[
n∑

i=1

∂φ

∂xi
Xiσi∗ + φS ′ν

]
dW

(4.29)

Then (4.29) can be written as

dUνφ = Uν [Lφ−Mνφ] dt+ Uν

[
n∑

i=1

∂φ

∂xi
Xiσi∗ + φ

(
σ′π − ϑ− σ−1ν

)′
]

dW (4.30)

For some constants η > 0, Q > 0, let

τ ν := inf {s ≥ t : |Xs − x| > η or Uν(t, s) > Q or Uν(t, s) < 1/Q} .

Let {hm}m∈N be a sequence of positive numbers such that hm → 0. Consider the

stopping times

θνm := τ ν ∧ (t+ hm) .

From (4.28), it follows that

0 ≥ E
[
Uν(t, θνm)φ(θνm,Xθνm)− φ(t, x)

∣∣∣∣ Xt = x

]

=⇒ 0 ≥ E
[∫ θνm

t

Uν(t, s) (Lφ−Mνφ) (s,Xs)ds
∣∣∣∣ Xt = x

]
(4.31)

The continuity of the paths of X and Uν imply that for a.e. ω ∈ Ω, θνm = t+hm for

large enough m. If we take ν to be a constant process, then for a.e. ω, we have

Uν(t, s) (Lφ−Mνφ) (s,Xs)1t≤s≤θνm≤t+hm − (Lφ−Mνφ) (t̄, x̄)1t≤s≤t+hm → 0.



Chapter 4. Upper Hedging Price under Constraints: Viscosity Solutions
Characterization 66

Applying the DCT twice, we get

E
[

1

hm

∫ θνm

t

Uν(t, s) (Lφ−Mνφ) (s,Xs)ds
∣∣∣∣ Xt̄ = x̄

]
→ (Lφ−Mνφ) (t̄, x̄).

(4.31) gives us

(Lφ−Mνφ) (t̄, x̄) ≤ 0.

Since the above holds for every ν ∈ K̃, hence

sup
ν∈K̃

(Lφ−Mνφ) (t̄, x̄) ≤ 0,

i.e. Lφ(t̄, x̄)−Mφ(t̄, x̄) ≤ 0

Thus, z is seen to be a viscosity supersolution to the equation

−Lz(s, x) +Mz(s, x) = 0, (s, x) ∈ O. (4.32)

4.4 Viscosity subsolution property

We denote

Osub :=
{

(s, x) ∈ O
∣∣z∗(·, ·) is a subsolution to − Lz∗(s, x) = 0

}
. (4.33)

Remark 4.4.1. Note that if (t, x) ∈ O, is such that Pπ(s, y) = 0, Mz∗(s, y) =

0, M1z
∗(s, y) > 0, for all (s, y) in a neighborhood of (t, x), then from the proof of

Theorem 5.2.1 it follows that strict inequality holds in (5.16) with z(·, ·) replaced

by z∗(·, ·). Similarly strict inequality holds in (5.32) with z(·, ·) replaced by z∗(·, ·).

Remark 4.4.2. Unless (diag(x))−1 π(t, x) is a conservative vector field, Theorem 4.2.2

gives us useful information about the value of z(·, ·) at (t, x) only if the investment

strategy π takes values in K in a neighborhood of (t, x).
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Proof of Theorem 4.2.2. When w > 0, we can rewrite (4.17) as

M1w = inf
ν∈K̃1

w
[
(π + diag(x)∇ logw)′ ν + ζ(ν)

]
, w ∈ C1,2,

Therefore, if w > 0, then

M(w) = 0,M1(w) > 0 ⇐⇒ π + diag(x)∇ logw ∈ ri(K). (4.34)

For a fixed (t̄, x̄) ∈ O, let φ ∈ C1,2 be such that

0 = (z∗ − φ) (t̄, x̄) = max
(s,x)∈O

(z∗ − φ) (s, x). (4.35)

As we have seen earlier,Mφ(t̄, x̄) can be either 0 or −∞. If it takes the value −∞,

then it trivially follows that

min {−Lφ(t̄, x̄),M1φ(t̄, x̄)}1Pπ(s,x)=0 +Mφ(t̄, x̄) ≤ 0.

So let us suppose that

Mφ(t̄, x̄) = 0. (4.36)

We will prove our claim by contradiction. Suppose that

min {−Lφ(t̄, x̄),M1φ(t̄, x̄)}1Pπ(t̄,x̄)=0 > 0. (4.37)

(4.36) and (4.37) together imply that

(
π + diag(x)∇ log φ

)
(t̄, x̄) ∈ ri(K).

1Pπ(t̄,x̄)=0 implies that for (s, x) in a neighbourhood of (t̄, x̄), π(s, x) ∈ vect(K).

Theorem 5.2.1 then implies that for any ν ∈ (vect(K))⊥, z (t̄, x̄erν) is constant for r

in a neighbourhood of 0. Hence, we can also take φ (t̄, x̄erν) to be constant for r in

a neighbourhood of 0 and ν ∈ (vect(K))⊥. It follows that diag(x)∇ log φ and hence

(π + diag(x)∇ log φ) (s, x) lies in vect(K) for (s, x) in a neighbourhood of (t̄, x̄).

Therefore, there exists δ > 0 such that

(π + diag(x)∇ log φ) (s, x) ∈ ri(K), (s, x) ∈ B ((t̄, x̄), δ) ⊂ [t, T ]× Rn
+
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and hence that there exist δ > 0, ε > 0, such that

Mφ(s, y) ≥ 0, −Lφ(s, y) +M1φ(s, y) > ε,∀ (s, y) ∈ B ((t̄, x̄), δ) ⊂ [t, T ]× Rn
+.

(4.38)

By definition of z∗, there exists a sequence {(tm, xm)}m∈N in B ((t̄, x̄), δ) such that

(tm, xm)→ (t̄, x̄), z(tm, xm) <∞, z(tm, xm)→ z∗(t̄, x̄).

If we define

γm := z(tm, xm)− φ(tm, xm),

then by the continuity of φ and (4.35), it follows that

γm → 0, as m→∞.

Let {hm}m∈N be a sequence of strictly positive numbers such that

hm → 0,
γm
hm
→ 0.

Let

ρm := inf {T ≥ s ≥ tm : Xs /∈ B ((t̄, x̄), δ)} ∧ (tm + hm) .

From (4.4), we know that there exists νm ∈ DM[t,T ] such that

z(tm, xm) ≤ E [Uνm(tm, ρm)z(ρm,Xρm)|Xtm = xm] +
εhm

4
.

Let

ρm,νm := inf

{
T ≥ s ≥ tm : Uνm(tm, s) /∈

(
1

2
, 2

)}
∧ ρm.

It is easy to see that, then,

z(tm, xm) ≤ E
[
Uνm(tm, ρm,νm)z(ρm,νm ,Xρm,νm )|Xtm = xm

]
+
εhm

4
.

Hence,

φ(tm, xm) + γm −
εhm

4
≤ E

[
Uνm(tm, ρm,νm)φ(ρm,νm ,Xρm,νm )|Xtm = xm

]
.
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An application of Ito’s lemma gives us,

γm −
εhm

4
≤ E

[∫ ρm,νm

tm

Uνm(tm, s) (Lφ−Mνmφ) (s,Xs)ds
∣∣∣∣ Xtm = xm

]

≤ −ε E
[∫ ρm,νm

tm

Uνm(tm, s)ds

∣∣∣∣ Xtm = xm

]

≤ − ε
2
E
[
ρm,νm − tm

∣∣∣∣ Xtm = xm

]
. (4.39)

Now,

P [ρm,νm − tm ≤ hm] ≤ P

[
sup

s∈[tm,ρm,νm ]

|Xs − xm| ∨ |Uνm(tm, s)− 1| ≥ δ ∧ 1

2

]

≤
(
δ ∧ 1

2

)−2

E

[
sup

s∈[tm,ρm,νm ]

|Xs − xm|2 + |Uνm(tm, s)− 1|2
]

(4.40)

−→ 0, as m→∞. (4.41)

The second inequality follows from Tchebyshev’s inequality. The convergence to

zero of the expectation in (4.40) follows from Lemma 4.6.1.

Moreover, since

P [ρm,νm − tm > hm] ≤ 1

hm
E [ρm,νm − tm] ≤ 1,

(4.41) implies that

1

hm
E
[
ρm,νm − tm

∣∣∣∣ Xtm = xm

]
→ 1, as hm → 0.

Dividing both sides of (4.39) by hm, we get

γm
hm
− ε

4
≤ − ε

2hm
E
[
ρm,νm − tm

∣∣∣∣ Xtm = xm

]
.

By letting m ↑ ∞, we get,

− ε
4
≤ − ε

2
→←
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This proves our first claim.

In the special case when π = diag(x)∇Π, instead of (4.37), we suppose that

min {−Lφ(t̄, x̄),M1φ(t̄, x̄)} > 0. (4.37′)

and will show that such a supposition leads to contradiction. Corollary 5.2.4 tells

us that for any ν ∈ (vect(K))⊥,

Π (t̄, x̄erν) + ln z (t̄, x̄erν) = Π (t̄, x̄) + ln z (t̄, x̄) , ∀r ∈ R.

Therefore, without loss of generality, we can take φ defined in (4.35) to satisfy the

condition

Π (t̄, x̄erν) + lnφ (t̄, x̄erν) = Π (t̄, x̄) + lnφ (t̄, x̄) , ∀r ∈ R.

This implies that

(
π + diag(x)∇ log φ

)
(s, x) ∈ vect(K), ∀(s, x) ∈ (0, T )× Rn

+,

and hence there exists δ > 0 such that

(
π + diag(x)∇ log φ

)
(s, x) ∈ K, ∀(s, x) ∈ B ((t̄, x̄), δ) ∩ [t, T ]× Rn

+

and hence that there exist δ > 0, ε > 0, such that (4.38) holds. The same arguments

that we made after (4.38), proves our second claim.

4.5 Terminal condition

Proof of Theorem 4.2.3. Suppose (T, x̄) ∈ OT . Then by definition of z∗, there exists

a sequence {(tm, xm)}m∈N in O such that

(tm, xm)→ (T, x̄), tm < T, z(tm, xm) <∞, z(tm, xm)→ z∗(T, x̄).
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For any ν ∈ D(b)
(t,T ](K), by Lemma 4.7.1,

Uν(tm, xm)→ 1, as m→∞.

Hence, by Fatou’s lemma,

z∗(T, x̄) = lim inf
m→∞

z(tm, xm) ≥ lim inf
m→∞

sup
ν∈DM

(t,T ]
(K)

Etm,xm [Uν(tm, T )]

≥ sup
ν∈DM

(t,T ]
(K)

lim inf
m→∞

Etm,xm [Uν(tm, T )] ≥ 1.

It follows exactly as in the proof of Proposition 4.3 in Soner and Touzi (2003), that

z∗(T, ·) is a viscosity supersolution of Mz∗(T, ·) = 0.

Proof of Theorem 4.2.4. Let x̄ ∈ Õ. By definition of Õ, there exists δ1 > 0, such

that z(·, ·) is bounded on (T − δ1, T ]×B(x̄, δ1).

Let ψ be a smooth function on Rn such that

0 = (z∗(T, ·)− ψ) (x̄) = max
Rn+

(z∗(T, ·)− ψ) (x). (4.42)

As we have seen in (4.13), Mψ(x̄) ∈ {0,−∞}.

If Mψ(x̄) = −∞, or if Pπ(T, x̄) 6= 0, it follows trivially that

min {ψ(x̄)− 1,M1ψ(x̄)}1Pπ(T,x̄)=0 +Mψ(x̄) ≤ 0.

So let us suppose that Mψ(x̄) = 0 and Pπ(T, x̄) = 0. The latter implies that for

some δ1 > δ > 0,

π(s, y) ∈ vect(K), for all (s, y) ∈ (T − δ, T ]×B(x̄, δ). (4.43)

Therefore, it follows from Theorem 5.2.1, that for any ν ∈ (vect(K))⊥,

z (s, xerν) = z(s, x), for s > T − δ, {x, xerν} ⊂ B(x̄, δ).
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Without loss of generality, we can assume that for any ν ∈ (vect(K))⊥,

ψ (xerν) = ψ(x), for {x, xerν} ⊂ B(x̄, δ). (4.44)

(4.44) implies that

diag(x)∇ logψ(x) ∈ vect(K), x ∈ B(x̄, δ). (4.45)

To prove the theorem, we need to show that if ψ(x̄) > 1 thenM1ψ(x̄) ≤ 0. We will

prove this by contradiction.

We assume that

ψ(x̄) > 1, M1ψ(x̄) > 0. (4.46)

Mψ(x̄) = 0,M1ψ(x̄) > 0 together imply that

(π(T, ·) + diag(x)∇ logψ) (x̄) ∈ ri(K). (4.47)

Let PK denote the projection operator such that for any x ∈ Rn, PK(x) is the

orthogonal projection of x onto vect(K).

For m ∈ N, define

φm(t, x) = ψ(x) + ‖PK(log x− log x̄)‖4 +m(T − t).

It is easy to see that

diag(x)∇ log φm(t, x) = diag(x)∇ logψ(x)+4 ‖PK(log x− log x̄)‖2 PK(log x− log x̄).

(4.48)

(4.43), (4.45), (4.47) and (4.48) imply that

π(t, x) + diag(x)∇ log φm(t, x) ∈ ri(K), (t, x) ∈ (T − δ, T ]×B(x̄, δ).

and hence

Mφm(t, x) = 0,M1φm(t, x) > 0, (t, x) ∈ (T − δ, T ]×B(x̄, δ) (4.49)
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Since by definition, z∗(T, ·) ≥ z∗(T, ·), we have

z∗(T, ·) ≥ 1.

Hence, for all x ∈ Rn
+,

(z − φm)(T, x) = 1− ψ(x)− ‖PK(log x− log x̄)‖4

≤ (z∗(T, ·)− ψ) (x)− ‖PK(log x− log x̄)‖4

≤ −‖PK(log x− log x̄)‖4 ≤ 0 (4.50)

Now, we take

0 < δ0 < δ/2.

We define

C(x̄, δ0) :=
{
x̄eνK+ν

K⊥ : ‖νK‖ ∨ ‖νK⊥‖ ≤ δ0, νK ∈ vect(K), νK⊥ ∈ (vect(K))⊥
}

E(x̄, δ0) :=
{
x̄eνK+ν

K⊥ : ‖νK‖ = ‖νK⊥‖ = δ0, νK ∈ vect(K), νK⊥ ∈ (vect(K))⊥
}

D(x̄) :=
{
x̄eνK⊥ : νK⊥ ∈ (vect(K))⊥

}

(4.50) implies that

sup
C(x̄,δ0)

(z − φm)(T, ·) ≤ 0.

We claim that

lim sup
m→∞

sup
C(x̄,δ0)

(z − φm)(T, ·) < 0. (4.51)

On the contrary, there exists a subsequence of (φm) still denoted (φm), such that

lim
m→∞

sup
C(x̄,δ0)

(z − φm)(T, ·) = 0.

For each m, let
(
xkm
)
k

be a maximizing sequence of (z − φm)(T, ·) on C(x̄, δ0), i.e.,

lim
m→∞

lim
k→∞

(z − φm)(T, xkm) = 0,
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which combined with (4.50) implies

lim
m→∞

lim
k→∞

xkm ∈ D(x̄).

Hence,

0 = lim
m→∞

lim
k→∞

(z − φm)(T, xkm) = 1− ψ(x̄) < (z∗(T, ·)− ψ) (x̄). (4.52)

(4.52) contradicts (4.42), and thus verifies (4.51). Suppose that

lim sup
m→∞

sup
C(x̄,δ0)

(z − φm)(T, ·) ≤ −κ (δ0) < 0. (4.53)

Obviously, κ (δ0) is a decreasing function of δ0.

Next, we take a sequence (sm) converging to T with s0 ≤ sm < T . Let us consider

a maximizing sequence (tm, xm) of z∗ − φm on [sm, T ]× E(x̄, δ0). Then,

lim sup
m→∞

sup
[sm,T ]×E(x̄,δ0)

(z∗ − φm) ≤ lim sup
m→∞

(z∗(tm, xm)− ψ(xm))− δ4
0.

Since, tm converges to T , and xm upto a subsequence converges to some x0 ∈

E(x̄, δ0), we have by definition of z∗,

lim sup
m→∞

sup
[sm,T ]×E(x̄,δ0)

(z∗ − φm) ≤ (z∗(T, ·)− ψ) (x0)− δ4
0.

Also,

(z∗ − φm)(T, x̄) = (z∗(T, ·)− ψ) (x̄) = 0.

Therefore, for m large enough,

sup
[sm,T ]×E(x̄,δ0)

(z − φm) ≤ −δ4
0 < 0 = (z∗ − φm) (T, x̄) ≤ max

[sm,T ]×C(x̄,δ0)
(z∗ − φm). (4.54)

(4.53) and (4.54) together imply that for m large enough,

sup
∂p([sm,T ]×C(x̄,δ0))

(z − φm) ≤ −4β(δ0) < 0 ≤ max
[sm,T ]×C(x̄,δ0)

(z∗ − φm). (4.55)

where

4β(δ0) = κ(δ0) ∧ δ4
0 > 0.
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Since, κ(δ0) is a decreasing function of δ0, hence for small enough δ0, we will have

4β(δ0) = δ4
0.

We can choose (um, vm) ∈ (sm, T )× C(x̄, δ0), such that ,

(z − φm)(um, vm) ≥ −2β(δ0) + max
[sm,T ]×C(x̄,δ0)

(z∗ − φm). (4.56)

Hence, by (4.55),

(z − φm)(um, vm) ≥ 2β(δ0) + sup
∂p([sm,T ]×C(x̄,δ0))

(z − φm).

We define the stopping time

θm := inf {s ≥ um : (s,X (s)) ∈ ∂p ([um, T ]× C(x̄, δ0))} .

We can find νm(δ0) ∈ DM, such that

z(um, vm)− β(δ0) ≤ Eum,vm
[
Uνm(δ0) (um, θm) z

(
θm,X (um,vm)

θm

)]
(4.57)

By continuity of X um,vm , we have
(
θm,X um,vm

θm

)
∈ ∂p ([um, T ]× C(x̄, δ0)). Therefore,

from (??), it follows that

z(θm,X um,vm
θm

) ≤ φm(θm,X um,vm
θm

) + (z − φm) (um, vm)− 2β(δ0).

Lφm =
∂φm
∂t

+
1

2

∑

i

xi
∂φm
∂xi

(ai∗π + r) +
1

2

∑

i,j

xixjaij
∂2φm
∂xi∂xj

= −m+
(
a locally bounded function of time and space, independent of m

)

Thus, for any compact set A ⊂ [0, T ]× Rn
+,

Lφm(t, x) < 0, ∀ (t, x) ∈ A,m large enough. (4.58)

From (4.57), we see that

−β(δ0) ≤ Eum,vm
[
Uνm(δ0) (um, θm) z

(
θm,X um,vm

θm

)
− z(um, vm)

]
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≤ Eum,vm
[
Uνm(δ0) (um, θm)

(
φm(θm,X um,vm

θm
) +

+ (z − φm) (um, vm)− 2β(δ0))− z(um, vm)]

= Eum,vm
[(
Uνm(δ0) (um, θm)− 1

)
(z(um, vm)− φm(um, vm)− 2β(δ0))

]

+ Eum,vm
[
Uνm(δ0)(um, θm)φm(θm,X um,vm

θm
)− φm(um, vm)

]
− 2β(δ0)

= |z(um, vm)− φm(um, vm)− 2β(δ0)|Eum,vm
[∣∣Uνm(δ0) (um, θm)− 1

∣∣]

+ Eum,vm
[∫ θm

um

(
Lφm −Mνm(δ0)φm

)
dt

]
− 2β(δ0). (4.59)

By (4.49) and (4.58), it follows that

(
Lφm −Mνm(δ0)φm

)
(t, x) < 0, (t, x) ∈ [um, T ]× C(x̄, δ0).

Hence, from (4.59), it follows that,

−β(δ0) ≤ |z(um, vm)− φm(um, vm)− 2β(δ0)|Eum,vm
[∣∣Uνm(δ0) (um, θm)− 1

∣∣]−2β(δ0).

By Lemma 4.6.1, for some function N : R+ → R+, we have

Eum,vm
[∣∣Uνm(δ0) (um, θm)− 1

∣∣]

≤ N (‖νm(δ0)‖∞) (T − um)1/2e(T−um)N(‖νm(δ0)‖∞) (2 + ‖x̄‖+ δ)

=: ε (‖νm(δ0)‖∞, um)

where pK is as defined in (4.64). From (4.56) we have that

max
[sm,T ]×C(x̄,δ0)

(z∗ − φm) ≥ z(um, vm)− φm(um, vm)− 2β(δ0)

≥ −4β(δ0) + max
[sm,T ]×C(x̄,δ0)

(z∗ − φm)

Since max[sm,T ]×C(x̄,δ0)(z
∗ − φm) ≥ 0 by (4.55), hence,

|z(um, vm)− φm(um, vm)− 2β(δ0)| ≤ max

{
4β(δ0), max

[sm,T ]×C(x̄,δ0)
(z∗ − φm)

}
(4.60)

(4.59) and (4.60) imply that there will be contradiction if

ε (‖νm(δ0)‖∞, um)×max

{
4β(δ0), max

[sm,T ]×C(x̄,δ0)
(z∗ − φm)

}
<

1

2
β(δ0) (4.61)
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Let us now assume that x̄ ∈ Q̃. Then, there exists a finite M > 0, such that for any

m, we can find νm(δ0) satisfying (4.57) and ‖νm(δ0)‖ < M . Thus, from (4.59), we

see that ε (‖νm(δ0)‖∞, um) → 0, as m → ∞, and hence for large enough m, (4.61)

holds, giving us,

−β(δ0) < −3

2
β(δ0). →←

This proves that the supposition made in (4.46) is wrong, and this proves the theo-

rem.

4.6 Estimates of moments

We will derive the moment estimates of X (·) and Uν,π(0, ·) at one go, viz. we will

denote Y (·) = (X (·), Uν,π(0, ·)), and derive estimates for the moments of Y . To that

end, we will resort to Section 2.5 in Krylov (2009) and in particular its Corollary

2.5.12. The following lemma follows from there. Its proof is simple and only involves

a straightforward casting of our problem in the proper framework and checking the

conditions of the cited corollary.

Lemma 4.6.1. Suppose Assumptions 3.1.1 and 3.3.1 hold. Suppose also that π(·, ·)

is a Markovian strategy which is locally bounded in the space variable as in Assump-

tion 3.3.2. Then for any compact set A ⊂ Rn
+, any q ≥ 0 and ν ∈ DM, there exists

a constant N(q, A, ‖ν‖∞), such that

E
[

sup
0≤s≤θ

‖(X (s), Uν,π(0, s))− (X (0), 1)‖q
]
≤ Ntq/2eNt (2 + ‖X (0)‖)q , X (0) ∈ A

where

θ := inf {0 ≤ s ≤ t : X (θ) /∈ A} ∧ t.

Proof. Y satisfies the system of SDEs

dYi (t) = Bi (Y (t)) dt+ Si∗ (Y (t)) dW (t) , i = 1, . . . , n+ 1
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where, B is a n+ 1 dimensional vector and S is an (n+ 1)× n dimensional matrix,

with

Bi (Y (t)) = Xi (t) bi (t,X (t)) , i = 1, 2, . . . , n,

Bn+1 (Y (t)) = −Uν,π (0, t) [π′ν + ζ (ν)] (t,X (t)) ,

Si∗ (Y (t)) = Xi(t)σi∗ (t,X (t)) , i = 1, . . . , n,

Sn+1,∗ (Y (t)) = Uν,π (0, t)
(
σ′π − ϑ− σ−1ν

)′
(t,X (t)) ,

It follows that

‖B(y)‖ ≤ ‖y‖
(
‖b(t, x)‖+ ‖ν‖

(
‖π‖+

∣∣∣∣ζ
(

ν

‖ν‖

)∣∣∣∣
))

, (4.62)

‖S(y)‖ ≤ ‖y‖
(
‖σ(t, x)‖ (1 + ‖π‖) + ‖ϑ‖+ λ−1

(1)‖ν‖
)
, (4.63)

where λ(1) denotes the smallest eigenvalue of σ.

We denote

pK := sup
ν∈K̃

∣∣∣∣ζ
(

ν

‖ν‖

)∣∣∣∣ = sup
ν∈K̃,‖ν‖=1

|ζ (ν)| . (4.64)

The equality in (4.64) holds because ζ is linearly homogeneous.

Then (4.62) and (4.63) imply

‖B(y)‖+ ‖S(y)‖ ≤ f(t, x)‖y‖,

where

f(t, x) :=
[
‖b‖+ ‖σ‖ (1 + ‖π‖) + ‖ϑ‖+ ‖ν‖

(
‖π‖+ λ−1

(1) + pK

)]
(t, x).

Now, for some set D ⊂ Rn
+, if X (s) ∈ D for all 0 ≤ s ≤ t and if

f(s, x) ≤ K1, x ∈ D, 0 ≤ s ≤ t, (4.65)

then by Corollary 2.5.12 of Krylov (2009) it follows that for each q ≥ 0, there exists

a constant N(q,K1), such that

E
[

sup
0≤s≤t

‖Y(s)− Y(0)‖q
]
≤ Ntq/2eNt (2 + ‖X (0)‖)q ,
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where Y(0) = (X (0), 1). Since K̃ is closed,
{
ν ∈ K̃, ‖ν‖ = 1

}
is compact, and hence

by Assumption 3.1.1,

pK <∞.

Further, if Assumption 3.3.1 holds, and if π(·, ·) is locally bounded, then (4.65) is

satisfied.

4.7 Sufficient condition for lower-semicontinuity

of z(·, ·)

Assumption 4.7.1. The strategy π(·, ·), volatility σ(·, ·), and the market price of

risk ϑ(·, ·) are locally Lipschitz continuous in the space variable.

The theory of stochastic flows now leads us to Lemma 4.7.1 which essentially con-

cludes that if two stock price processes start from close enough values at close enough

times, then they will stay close to each other at all time points upto the finite termi-

nal time T . Similar observation holds also for the discounted wealth process Uν(·),

for any ν ∈ D(b)
[0,T ](K). We refer the reader to Kunita (1984) and Chapter V of Prot-

ter (2004) for an introduction to and further references on the theory of stochastic

flows.

Lemma 4.7.1. Fix a point (t, x) ∈ [0, T ] × Rn
+. Then under Assumption 4.7.1,

and for ν ∈ D(b)
[0,T ](K), we have for all sequences (tm, xm)m∈N ⊂ [0, T ] × Rn

+ with

limm→∞ (tm, xm) = (t, x) that

lim
m→∞

sup
u∈[t,T ]

(∥∥X tm,xm(u)−X t,x(u)
∥∥+

∣∣Uν,tm,xm(tm, u)− Uν,t,x(t, u)
∣∣) = 0,

almost surely, where we set

X tm,xm(u) := xm, U ν,tm,xm(tm, u) := 1, for u ≤ tm.
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Lemma 4.7.1 follows immediately from Theorem V.37 of Protter (2004) and Lemma

1 and Lemma 2 of Ruf (2011), once the dynamics of the stock price process X (·)

and that of the discounted wealth process Uν have been recast slightly.

The lower-semicontinuity of z(·, ·), defined in (4.3), now follows from Lemma 4.7.1.

Corollary 4.7.1. Under Assumption 4.7.1, z(·, ·) is lower-semicontinuous on

[0, T ]× Rn
+.

Proof. For any ν ∈ D(b)
[0,T ](K), Lemma 4.7.1 and Fatou’s lemma implies

Et,x [Uν(t, T )] ≤ lim inf
m→∞

Etm,xm [Uν(tm, T )] .

Hence,

z(t, x) ≤ sup
ν∈DM

(t,T ]
(K)

lim inf
m→∞

Etm,xm [Uν(tm, T )]

≤ lim inf
m→∞

sup
ν∈DM

(t,T ]
(K)

Etm,xm [Uν(tm, T )] = lim inf
m→∞

z(tm, xm).

Note that for any s ∈ [t, T ] and x, y ∈ Rn
+,

‖σ−1(s, x)− σ−1(s, y)‖ ≤ ‖σ−1(s, x)‖‖I − σ(s, x)σ−1(s, y)‖

≤ ‖σ−1(s, x)‖‖σ−1(s, y)‖‖σ(s, y)− σ(s, x)‖. (4.66)

On the other hand,

‖σ−1(s, x)‖ = tr
(
α−1(s, x)

)
=

n∑

i=1

1

λ2
(i)

≤ n

λ2
(1)

, (4.67)

where λ(1) ≤ λ(2) ≤ . . . ≤ λ(n) are the eigenvalues of σ(s, x). Under Assumptions

4.7.1 and 3.3.1, it follows from (4.66) and (4.67) that σ−1 is locally Lipschitz

continuous in the space variable.
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Now, for any ν ∈ D(b)
(t,T ](K), if we define the semimartingales

Ci(·) =

∫ ·

t

νi(s)ds, C0(·) =

∫ ·

t

ζ (ν(s)) ds, Zij(·) =

∫ ·

t

νj(s)dWi(s),

then we can write the dynamics of the stock price process X (·) and that of the

discounted wealth process Uν as

dXi(s) = Xi(s) [bi (s,X (s)) ds+ σi∗ (s,X (s)) dW (s)] , i = 1, 2, . . . , n,

dUν(s) = Uν(s)

[
−

n∑

i=1

πi (s,X (s)) dCi(s)− dC0(s)

]

+ Uν(s)

[
(π′σ − ϑ′) (s,X (s)) dW (s)−

∑

i,j

σji (s,X (s)) dZij(s)

]
,

where σij := (σ−1)ij. Having cast the dynamics of X (·) and Uν in this form, the

following lemma follows immediately from Theorem V.37 of Protter (2004) and

Lemma 1 and Lemma 2 of Ruf (2011).
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Chapter 5

Relative Arbitrage under

Constraints

In Section 5.1 we will present some comparison results for these viscosity solutions

and discuss their relevance in the discussion of relative arbitrage. Section 5.2 con-

tains a very important part of the thesis, where we use the viscosity solution char-

acterization to study how the constraints affect the value of z(·, ·) and thus govern

the existence or absence of relative arbitrage. Convex polyhedral constraint sets are

particularly amenable to our analysis and most of our examples will involve such

constraint sets. In Section 5.3, we will discuss polyhedral convex sets. Section 5.4

contains some examples.

5.1 Comparison principles and relative arbitrage

In this section we will discuss comparison principles for viscosity super(sub)solutions

to (4.15) and their implications about the existence of relative arbitrage opportuni-

ties. Note, that since the PDE (4.15) does not depend on the constraint set, hence,

in this section, we will be looking only at how the market model dictates existence
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or absence of arbitrage relative to π, the strategy under consideration. Throughout

the section, we will assume that the conditions of Theorem 4.2.1 hold.

In order to facilitate the subsequent discussion, we will first introduce some

notations. Recall the operator L defined in (4.9). We rewrite it here as

Lw(t, x) =
∂w

∂t
(t, x) +

1

2
(a(t, x)π(t, x) + r(t, x)1)′ diag(x)∇w(t, x)

+
1

2
tr
(
diag(x)a(t, x)diag(x)D2w(t, x)

)
, w ∈ C1,2

(
[0, T ]× Rn

+

)
.

For a fixed γ ∈ R, we define the function Fγ : [0, T ]×Rn
+ ×R×Rn ×S(n)→ R as

Fγ(t, x, z, p,X) = γz−1

2
(a(t, x)π(t, x) + r(t, x)1)′ diag(x)p−1

2
tr (diag(x)a(t, x)diag(x)X) .

(5.1)

We also define the function FM : [0, T ]× Rn
+ × R× Rn → R as

FM(t, x, z, p) = inf
ν∈K̃

[z (π′(t, x)ν + ζ(ν)) + ν ′diag(x)p] (5.2)

In terms of the newly defined functions Fγ and FM, Theorem 4.2.1 tells us that z

is a viscosity supersolution of

−∂z
∂t

(t, x) + F0(t, x, z,∇xz,D
2z) + FM(t, x, z,∇xz) = 0, (t, x) ∈ O. (5.3)

With Fγ as defined in (5.1), it is easy to see that for any γ ∈ R and (t, x, z, p,X) ∈

[0, T ]× Rn
+ × R× Rn × S(n),

Fγ ∈ C
(
[0, T ]× Rn

+ × R× Rn × S(n)
)
,

γ(z1 − z2) ≤ Fγ(t, x, z1, p,X)− Fγ(t, x, z2, p,X), z1, z2 ∈ R,

Fγ(t, x, z, p,X) ≤ Fγ(t, x, z, p, Y ), whenever X ≥ Y, X, Y ∈ S(n).

Thus, for any γ ≥ 0, Fγ is proper in the sense of Crandall et al. (1992), that is

Fγ(t, x, z2, p,X) ≤ Fγ(t, x, z1, p, Y ), if z1 ≥ z2, X ≥ Y. (5.4)

In addition, we will assume one or more of the following conditions.
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Assumption 5.1.1. σ(·, ·), π(·, ·) and r : [0, T ] × Rn
+ → R are locally Lipschitz

continuous in the space variable uniformly in time, i.e. given any compact set K ⊂

Rn
+, there exists a constant CK such that

|r(t, x)−r(t, y)|+‖σ(t, x)−σ(t, y)‖+‖π(t, x)−π(t, y)‖ ≤ CK‖x−y‖, t ∈ [0, T ], x, y ∈ K.

Assumption 5.1.2. For any fixed x ∈ Rn
+, σ(·, x), π(·, x) and r(·, x) are bounded

functions on [0, T ], i.e. there exists C(x) such that

‖σ(t, x)‖+ ‖π(t, x)‖+ |r(t, x)| ≤ C(x), ∀ t ∈ [0, T ].

Assumption 5.1.3. σ(·, ·), π(·, ·) and r(·, ·) are locally Lipschitz continuous in both

the time and space variable.

Assumption 5.1.4. diag(x) (a(t, x)π(t, x) + r(t, x)1) and diag(x)σ(t, x) are

bounded functions on [0, T ]× Rn
+.

Suppose Γ is an open subset of Rn
+, not necessarily bounded. For any γ ∈ R,

and 0 ≤ s1 < s2 ≤ T , consider the partial differential equation,

−∂w
∂t

(t, x) + Fγ(t, x, w(t, x),∇xw(t, x), D2
xw(t, x)) = 0, (t, x) ∈ (s1, s2)× Γ, (5.5)

and in particular,

−∂w
∂t

(t, x) + F0(t, x, w(t, x),∇xw(t, x), D2
xw(t, x)) = 0, (t, x) ∈ (s1, s2)× Γ. (5.6)

We then have the following comparison results.

Proposition 5.1.1. Suppose that the conditions of Theorem 4.2.1 hold. Suppose u

and v are viscosity subsolution and supersolution respectively, of (5.5).

i. If γ > 0, Γ is bounded and Assumption 5.1.1 and Assumption 5.1.2 hold, then

u(t, x)− v(t, x) ≤ sup
∂p((s1,s2)×Γ)

(u− v)+ , ∀ (t, x) ∈ (s1, s2)× Γ. (5.7)
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ii. Suppose γ ≥ 0 and Assumption 5.1.3 holds. Suppose u is of at most polynomial

growth, and v is bounded from below. If u(s2, x) ≤ v(s2, x), x ∈ Γ, then u ≤ v

on (s1, s2]× Γ.

iii. Suppose γ > 0 and Assumption 5.1.4 holds. Suppose also that lim|x|→∞ u <∞,

lim|x|→∞ v > −∞ and u(s2, ·) or v(s2, ·) is uniformly continuous with modulus

of continuity m(·). Then

sup
(s1,s2)×Γ

(u− v)(t, x) ≤ e(γ+1) sup
x∈Γ

(u(s2, x)− v(s2, x))+ .

iv. Suppose γ ≥ 0 and Assumption 5.1.4 holds. Suppose also that u and v satisfy

the following conditions:

a. u(t, x) ≤ K(|x| + 1), v(t, x) ≥ −K(|x| + 1) for some K > 0 independent of

(t, x) ∈ (s1, s2)× Γ;

b. there is a modulus mT such that

u(t, x)− v(t, y) ≤ mT (|x− y|) for all (t, x, y) ∈ ∂pU,

where U = (s1, s2)× Γ× Γ;

c. u(t, x) − v(t, y) ≤ K(|x − y| + 1) on ∂pU for some K > 0 independent of

(t, x, y) ∈ ∂pU .

Then there is a modulus m such that

u(t, x)− v(t, y) ≤ m (|x− y|) on U.

Proof. (i) Since the class of locally Lipschitz continuous functions is preserved under

addition and multiplication, it follows from Assumption 5.1.1, Assumption 5.1.2

and Example 3.6 in Crandall et al. (1992) that Fγ also satisfies condition (3.14) in
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Crandall et al. (1992), i.e. there exists a function ω : [0,∞] → [0,∞] that satisfies

ω(0+) = 0 such that for any fixed t ∈ [0, T ],

Fγ(t, y, z, α(x− y), Y )− Fγ(t, x, z, α(x− y), X) ≤ ω
(
α|x− y|2 + |x− y|

)

whenever x, y ∈ Rn
+, X, Y ∈ S(n), z ∈ R, and

−3α


 I 0

0 I


 ≤


 X 0

0 −Y


 ≤ 3α


 I −I

−I I


 .

(5.8)

We have already seen that Fγ satisfies (5.4) for any γ > 0. 5.7 now follows from

Theorem 8.2 in Crandall et al. (1992).

(ii) This follows from Theorem 4.4.5 in Pham (2009).

(iii) This follows from Theorem 1.2.1 in Zhan (1999).

(iv) This follows from Theorem 4.2 and the discussion following it in Giga et al.

(1991).

Corollary 5.1.1. Suppose the conditions of Theorem 4.2.1 and Assumption 5.1.3

hold. Suppose also that the function z(·, ·) is locally bounded on (0, T ] × Rn. Then

z ≥ 1 on (0, T )× Rn i.e. arbitrage relative to π is not possible on the time horizon

[t, T ], for any value of the stock price X (t) at time t > 0.

Proof. Under the conditions of Theorem 4.2.1, z(·, ·) is a supersolution and u ≡ 1

is a subsolution of (5.6) for s1 = 0, s2 = T,Γ = Rn
+. The corollary now follows from

Proposition 5.1.1 since z(T, ·) = u(T, ·) ≡ 1 on Rn
+.

Consider any Y ∈ S(n), Y ≥ 0. Suppose Y = QΛQ′, is an eigendecomposi-

tion of Y , with Λ = diag (λ1, . . . , λn) being a diagonal matrix with the eigenvalues

of Y as its diagonal elements and Q is an orthonormal matrix. Then, for any

(t, x, z, p,X) ∈ [0, T ]× Rn
+ × R× Rn × S(n) and γ ∈ R,

2 (Fγ(t, x, z, p,X)− Fγ(t, x, z, p,X + Y ))

= tr
(

diag(x)a(t, x)diag(x)Y
)

= tr
(
σ′(t, x)diag(x)QΛQ′diag(x)σ

)
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=
∑

i

λiσ
′(t, x)diag(x)diag(x)σ(t, x) =

∑

i

λix
2
i aii(t, x)

≥
(

min
i
x2
i aii(t, x)

)
tr(Y ).

From Assumption 3.3.1 it follows that for any compact set K ⊂ Rn
+, there exists

µ(K) > 0, such that

(
min
i
x2
i aii(t, x)

)
≥ µ(K), (t, x) ∈ [0, T ]×K,

thus showing that Fγ considered as a function from [0, T ] × K × R × Rn × S(n)

is “uniformly parabolic” in the sense of Da Lio (2004), i.e. for any (t, x, z, p,X) ∈

[0, T ]×K × R× Rn × S(n),

Fγ(t, x, z, p,X)− Fγ(t, x, z, p,X + Y ) ≥ µ(K) tr(Y ), if Y ≥ 0.

We need some more notations. For any set U ⊂ [0, T ] × Rn
+ and any point

P0 = (t0, x0) ∈ U , we denote by S(P0,U) the set of all points P ∈ U which can

be joined to P0 by a simple continuous curve lying in U along which the time

coordinate is non-increasing from P to P0.

We have the following theorem.

Theorem 5.1.1. Suppose that the conditions of Theorem 4.2.1 hold. Let Γ be an

open bounded set in Rn
+.

i. If (s1, s2) × Γ ⊂ O and if z(·, ·) attains a minimum at a point P0 = (t0, x0) ∈

[s1, s2)× Γ, then z(·, ·) is constant in S(P0, [s1, s2)× Γ). If (s1, s2)× Γ ⊂ Osub
and if z∗(·, ·) attains a maximum at a point P0 = (t0, x0) ∈ [s1, s2) × Γ, then

z∗(·, ·) is constant in S(P0, [s1, s2)× Γ).

ii. Suppose that Assumption 5.1.1 and Assumption 5.1.2 hold. If (s1, s2)×Γ ⊂ O,

then

inf
(t,x)∈∂p((s1,s2)×Γ)

z(t, x) ≤ inf
(t,x)∈(s1,s2)×Γ

z(t, x). (5.9)
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If (s1, s2)× Γ ⊂ Osub, then

sup
(t,x)∈(s1,s2)×Γ

z∗(t, x) ≤ sup
(t,x)∈∂p((s1,s2)×Γ)

z∗(t, x). (5.10)

Proof. (i) Suppose that (s1, s2)×Γ ⊂ Osub. We recall from Theorem 4.2.2 that z∗(·, ·)

is a viscosity subsolution to (5.6). It then follows from Corollary 2.4 in Da Lio (2004)

that if z∗(·, ·) attains a maximum at a point P0 = (t0, x0) ∈ [s1, s2)× Γ, then z∗(·, ·)

is constant in S(P0, [s1, s2)× Γ).

Suppose that (s1, s2)×Γ ⊂ O.We recall from Theorem 4.2.1 that z(·, ·) is a viscosity

supersolution to (5.6). For any constant K, z(·, ·) − K is also a supersolution of

(5.5) when γ = 0. Hence, it follows from Corollary 2.4 in Da Lio (2004) that if z(·, ·)

attains a minimum at a point P0 = (t0, x0) ∈ [s1, s2)× Γ, then z(·, ·) is constant in

S(P0, [s1, s2)× Γ). This proves (i).

(ii) Suppose that ũ ≥ 0 and ṽ ≥ 0 are viscosity subsolution and supersolution

respectively, of (5.6). It is easy to see that for any γ ≤ λ, γ, λ ∈ R, eλtũ is a

viscosity subsolution to (5.5). Similarly, for any γ ≥ λ, γ, λ ∈ R, eλtṽ is a viscosity

supersolution to (5.5). Therefore, for any λ1 ≥ λ2 > 0, eλ1tũ and eλ2tṽ are viscosity

subsolution and supersolution respectively of (5.5) for γ = λ2, and it follows from

(5.7) that

eλ1tũ(t, x)−eλ2tṽ(t, x) ≤ sup
(t,x)∈∂p((s1,s2)×Γ)

(
eλ1tũ(t, x)− eλ2tṽ(t, x)

)+
, (t, x) ∈ (s1, s2)×Γ.

(5.11)

If (s1, s2) × Γ ⊂ O, then z(·, ·) is a supersolution to (5.6) and hence −z(·, ·) is a

subsolution to (5.6). − inf(t,x)∈∂p((s1,s2)×Γ) z(t, x) is a supersolution to (5.6). Hence,

for any λ1 = λ2 > 0, (5.11) gives us

inf
(t,x)∈∂p((s1,s2)×Γ)

z(t, x) ≤ inf
(t,x)∈(s1,s2)×Γ

z(t, x).

If (s1, s2)× Γ ⊂ Osub, then z∗(·, ·) is a subsolution to (5.6). ṽ ≡ 0 is a supersolution
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to (5.6). Hence, for any λ1 ≥ λ2 > 0, and (t, x) ∈ (s1, s2)× Γ, (5.11) gives us

eλ1tz∗(t, x) ≤ sup
(t,x)∈∂p((s1,s2)×Γ)

eλ1tz∗(t, x) ≤ eλ1s2 sup
(t,x)∈∂p((s1,s2)×Γ)

z∗(t, x),

which implies

z∗(t, x) ≤ eλ1(s2−t) sup
(t,x)∈∂p((s1,s2)×Γ)

z∗(t, x) ≤ eλ1s2 max
(t,x)∈∂p((s1,s2)×Γ)

z∗(t, x). (5.12)

Since this holds for each λ1 > 0 we have

sup
(t,x)∈(s1,s2)×Γ

z∗(t, x) ≤ sup
(t,x)∈∂p((s1,s2)×Γ)

z∗(t, x).

Corollary 5.1.2. Suppose the conditions of Theorem 4.2.1 hold and for some C > 0,

z(·, ·) ≤ C on [0, T ]×Rn
+. If z(t0, x0) = C for some (t0, x0) ∈ Oosub, then z(t, x) = C

for all (t, x) ∈ S((t0, x0),Oosub).

Proof. Since z(·, ·) ≤ C on [0, T ] × Rn
+, hence z∗(t0, x0) = C and (t0, x0) is a point

of maximum for z∗. The corollary is now immediate from Theorem 5.1.1 (i).

Suppose now that the market is time homogeneous, i.e. the functions b, σ

and r in (2.6) are independent of time. Then, the function z(·, ·) will depend on t

only through the time to maturity T − t of the claim, and for any 0 ≤ s1 ≤ s2 ≤ T ,

sup
ν∈DM (K)

E
[
Uν(s1, s2)

∣∣ X (s1) = x
]

= sup
ν∈DM (K)

E
[
Uν(T − s2 + s1, T )

∣∣ X (T − s2 + s1) = x
]

= z (T − s2 + s1, x) .

Theorem 5.1.1, Corollary 5.1.2 and the same argument as in Proposition 2 in Fern-

holz and Karatzas (2010) now give us the following theorem.

Theorem 5.1.2. Suppose that the market is time homogeneous. Suppose the condi-

tions of Theorem 4.2.1 hold and for some C > 0, z(·, ·) ≤ C on [0, T ]×Rn
+. Suppose

also that Osub = (0, T )× Rn
+. If z(t0, x0) < C for some (t0, x0) ∈ (0, T )× Rn

+, then

z(t, x) < C for all (t, x) ∈ (0, T )× Rn
+.
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5.2 Constraint set and relative arbitrage

With the viscosity solution characterization of the function z(·, ·) and the com-

parison principles from the previous sections, we are now ready to investigate

the presence of arbitrage opportunities relative to a given strategy π among

strategies constrained to take values in given closed convex sets. Unlike in the

previous section, we will now turn our attention to the PDE (4.16) and see how the

constraint set comes into play.

Proposition 5.2.1. Under the conditions of Theorem 4.2.1, if φ ∈ C1,2([0, T ]×Rn
+)

satisfies

−Lφ(t, x) +Mφ(t, x) ≥ 0, (t, x) ∈ (0, T )× Rn+, (5.13)

φ(T, x) = 1, x ∈ Rn
+. (5.14)

Then φ ≥ z in [0, T ]× Rn
+.

Proof. Consider any ν ∈ DM . By an application of Itô’s Theorem, we can see

that the dynamics of Uν(0, t)φ(t,Xt) is given by (4.30). (5.13) now inmplies that

the process {Uν(0, t)φ(t,Xt)}0≤t≤T is a supermartingale. Hence, for any (t, x) ∈

[0, T ]× Rn
+,

φ(t, x) ≥ Et,x [Uν(t, T )φ(T )] = Et,x [Uν(t, T )] .

Taking supremum over all ν ∈ DM , we get φ(t, x) ≥ z(t, x).

Corollary 5.2.1. Under the conditions of Theorem 4.2.1, if π(t, x) ∈ K for all

(t, x) ∈ [0, T ]× Rn
+, then z(t, x) ≤ 1 for all (t, x) ∈ [0, T ]× Rn

+.

Proof. If π(t, x) ∈ K for all (t, x) ∈ [0, T ] × Rn
+, then φ ≡ 1 satisfies (5.13) and

(5.14).
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Corollary 5.2.2. Under the conditions of Theorem 4.2.1, if z takes the constant

value 0 < C <∞ in a neighborhood of (t, x) ∈ (0, T )× Rn
+, then π(t, x) ∈ K.

Proof. Since z is constant in a neighborhood of (t, x), hence (0, 0, 0) ∈ J 2,−
O z(t, x).

Since z is a supersolution to (5.3), we get

inf
ν∈K̃

[C (π′(t, x)ν + ζ(ν))] ≥ 0,

which implies π(t, x) ∈ K.

We recall from (4.14) that for a fixed (t̄, x̄) ∈ O, if φ ∈ C1,2 is such that

0 = (z − φ) (t̄, x̄) = min
(s,x)∈O

(z − φ) (s, x).

then,

Mφ(t̄, x̄) = 0,

or in other words,
(
φ (π′ν + ζ(ν)) +

∑
νixi

∂φ

∂xi

)
(t̄, x̄) ≥ 0 for all ν ∈ K̃. (5.15)

In the following, we will see that (5.15) gives us relationships in the form of

inequalities between z(t̄, x̄) and the value of z(t̄, ·) at any other point, which can be

joined to (t̄, x̄) by a smooth path which lies entirely in O, has fixed time coordinate

t̄ and whose directions in space in the logarithmic scale always lie in K̃. In other

words, if we consider smooth paths which emanate from (t̄, x̄), always lie in O and

along which the logarithm of the stock prices change in a direction belonging to K̃,

then the value of z(·, ·) at all points on this path will be shown to be related to

z(t̄, x̄) through an inequality. We make the idea precise in the following theorem.

We will denote by vect(K) the vector space generated by K.

Theorem 5.2.1. Let (t̄, x̄) ∈ O. Suppose that the conditions of Theorem 4.2.1 hold.

Let v : [0, 1]→ Rn be a smooth function with

v(0) = 0, v(1) = ν0,
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such that

(t̄, x̄ev(u)) ∈ O, ∂

∂u
v(u) =: ν(u) ∈ K̃, 0 ≤ u ≤ 1.

Then,

ln z (t̄, x̄eν0)− ln z (t̄, x̄) ≥ −
∫ 1

0

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
du, (5.16)

If we further suppose that ζ(ν(u)) + ζ(−ν(u)) = 0, 0 ≤ u ≤ 1, then

ln z (t̄, x̄eν0)− ln z (t̄, x̄) = −
∫ 1

0

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
du. (5.17)

If we suppose that ν(u) ∈ (vect(K))⊥ and π
(
t̄, x̄ev(u)

)
∈ vect(K), 0 ≤ u ≤ 1, then

z(t̄, x̄) = z (t̄, x̄eν0) . (5.18)

Note that, if ν ∈ (vect(K))⊥, then both ν and −ν are in K̃ and ζ(ν) + ζ(−ν) = 0.

Also recall from Lemma 3.1.3 that both ν,−ν ∈ K̃ if and only if ν⊥ vect(0+K).

Proof. Fix any ū ∈ (0, 1). Let φ ∈ C1,2 be such that

0 = (z − φ) (t̄, x̄ev(ū)) = min
(s,x)∈O

(z − φ) (s, x).

Consider the function

ψv(u) = lnφ
(
t̄, x̄ev(u)

)
, 0 ≤ u ≤ 1.

Then,
∂

∂u
ψv(u) = (ν(u))′ (diag(x)∇ lnφ)

(
t̄, x̄ev(u)

)
.

(5.15) now implies that

∂

∂u
ψv(u)

∣∣∣∣
u=ū

= (ν(ū))′ (diag(x)∇ lnφ)
(
t̄, x̄ev(ū)

)
≥ −

(
π′
(
t̄, x̄ev(ū)

)
ν(ū) + ζ(ν(ū)

)
.

Thus, we can see that the function w(u) := ln z
(
t̄, x̄ev(u)

)
, 0 ≤ u ≤ 1, is a viscosity

supersolution to the equation

∂

∂u
w(u) = −

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
, 0 < u < 1.
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This implies that,

ln z (t̄, x̄eν0)− ln z (t̄, x̄) ≥ −
∫ 1

0

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
du, (5.19)

thus proving (5.16).

Now suppose further that both ν(u) and −ν(u) are in K̃ for all 0 ≤ u ≤ 1, and

ζ(ν) = −ζ(−ν). (5.20)

Consider the smooth function ṽ : [0, 1]→ Rn,

ṽ(u) := −ν0 + v(1− u), ν̃(u) :=
∂

∂u
ṽ(u) = −ν(1− u), 0 ≤ u ≤ 1.

Then, from (5.16),

ln z (t̄, x̄)− ln z (t̄, x̄eν0) ≥ −
∫ 1

0

π′
(
t̄, x̄eν0+ṽ(u)

)
ν̃(u)du−

∫ 1

0

ζ (ν̃(u)) du

=

∫ 1

0

π′
(
t̄, x̄ev(1−u)

)
ν(1− u)du−

∫ 1

0

ζ (−ν(1− u)) du

=

∫ 1

0

π′
(
t̄, x̄ev(u)

)
ν(u)du−

∫ 1

0

ζ (−ν(u)) du. (5.21)

(5.19), (5.21) and (5.20) together prove (5.17).

(5.18) is obvious from (5.17).

Remark 5.2.1. It is not difficult to see that, for any function v(·) satisfying the

conditions of Theorem 5.2.1,

v(u) ∈ K̃, u ∈ [0, 1].

Remark 5.2.2. By definition of O, there exists an open ball B(x̄) ⊂ Rn
+ such that

t̄ × B(x̄) ⊂ O. If x̄eν0 ∈ B(x̄), then there exists at least one function v, which

satisfies the conditions of Theorem 5.2.1, viz.

v(u) = uν0, 0 ≤ u ≤ 1.
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We will present examples in a more complete way in Section 5.4. But, to keep

the reader interested, let us present a small example of an application of Theorem

5.2.1.

Example 5.2.1. Consider the market portfolio given by πi(x) = xi/ (
∑
xj) , i =

1, 2, . . . , n. Let the constraint set be K = [0,∞)n, i.e. only long-only strategies

are admissible. It follows immediately from Corollary 3.1.2, that ζ(ν) = 0 for all

ν ∈ K̃ = [0,∞)n. Since π ∈ K on [0, T ] × Rn
+, hence by Corollary 5.2.1 we have

that z ≤ 1. Therefore O = (0, T ) × Rn
+. Now, for any ν ∈ K̃, Theorem 5.2.1 gives

us that

ln z (t, xeν)− ln z (t, x) ≥ log

( ∑
xi∑
xieνi

)
, (t, x) ∈ (0, T )× Rn

+.

Therefore, if z(t, x) < 1, for some (t, x) ∈ (0, T ) × Rn
+, then z(t, xe−ν) < 1 for all

ν ∈ K̃ such that (
∑
xi)/(

∑
xie
−νi) < 1/z(t, x). In other words, if z(t, x) < 1, then

z(t, y) < 1 for all

y ∈ Rn
+ such that 0 < y ≤ x and

n∑

i=1

yi > z(t, x)
n∑

i=1

xi. (5.22)

This means that if there exists a long-only strategy which presents an arbitrage

opportunity relative to the market portfolio on the time horizon [t, T ] given that the

stock price X (t) = x, then there exists similar relative arbitrage opportunity if the

stock price X (t) takes any other value y satisfying (5.22).

We denote

OπK :=
{

(t, x) ∈ (0, T )× Rn
+

∣∣π(t, x) ∈ K
}
. (5.23)

Proposition 5.2.2. Suppose the conditions of Theorem 4.2.1 hold and the con-

straint set K is such that K = vect(K). Then z∗(·, ·) is a subsolution to

−Lz∗(t, x) = 0, (t, x) ∈ OπK ∩ O.
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Proof. Consider any (t, x) ∈ OπK . Let φ ∈ C1,2 be such that

0 = (φ− z∗) (t, x) = min
(s,y)∈[0,T ]×Rn+

(φ− z)(s, y).

Since z > 0, hence φ > 0 on [0, T ] × Rn
+. From Theorem 4.2.1, we see that if

ν ∈ (vect(K))⊥, then z(t, x) = z(t, xeν). Therefore, without loss of generality

we can assume that φ(t, x) = φ(t, xeν) for all ν ∈ (vect(K))⊥. This implies that

diag(x)∇ log φ(t, x) ∈ vect(K). Hence, if π(t, x) ∈ K, then

(π + diag(x)∇ log φ) (t, x) ∈ vect(K) = ri(K),

which implies that

M(φ)(t, x) = 0,M1(φ)(t, x) > 0.

The proposition then follows from Theorem 4.2.2.

Corollary 5.2.3. Suppose the conditions of Theorem 4.2.1 hold and the constraint

set K is such that K = vect(K). Suppose also that π(t, x) ∈ K for all (t, x) ∈

[0, T ] × Rn
+. If z(t, x) < 1 for some (t, x) ∈ (0, T ) × Rn

+, then z(t, x) < 1 for all

(t, x) ∈ (t, T ) × Rn
+. If the market is time homogeneous, then z(t, x) < 1 for some

(t, x) ∈ (0, T )× Rn
+ implies that z(t, x) < 1 for all (t, x) ∈ (0, T )× Rn

+.

Proof. This follows from Corollary 5.1.2, Corollary 5.2.1, Corollary 5.2.2 and The-

orem 5.1.2.

The integral in (5.16) might depend on v(u) for all values of u between 0 and 1.

This motivates investigating when the integral depends on v(·) only through the

terminal value v(1). We have the following lemma.

Lemma 5.2.1. Let S be a vector subspace of Rn and π(t0, ·) : Rn
+ → Rn

+ a contin-

uous function. Let v : [0, 1]→ Rn be a smooth function with

v(0) = 0, v(1) = ν0 ∈ S,
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such that
∂

∂u
v(u) =: ν(u) ∈ S, 0 ≤ u ≤ 1.

The path integral
∫ 1

0
π′
(
t0, x0e

v(u)
)
ν(u)du depends on v(·) only through the terminal

point v(1), if and only if there exists a scalar potential Π(t0, x0, ·) : Rn → R such

that

Dx∇xΠ(t0, x0, x) = ProjSπ(t0, x), ∀ x ∈ Rn
+, (5.24)

where ProjS denotes the projection operator into the vector space S.

Proof. Let {s1, s2, . . . , sk} be an orthonormal basis for S and let S be a n×k matrix

with si, i = 1, 2, . . . , k as its columns. Then for any vector m ∈ Rn, we have

ProjSm = SS ′m.

We denote

c(u) := S ′v(u); π̃(t0, c) = S ′π
(
t0, x0e

Sc
)
.

Then, we can write the path integral

∫ 1

0

π′
(
t0, x0e

v(u)
)
ν(u)du =

∫ 1

0

π′
(
t0, x0e

SS′v(u)
)
SS ′ν(u)du

=

∫ 1

0

(
S ′π

(
t0, x0e

SS′v(u)
))′

S ′ν(u)du

=

∫ 1

0

(
S ′π

(
t0, x0e

Sc(u)
))′ ∂

∂u
c(u)du

=

∫ 1

0

π̃′ (t0, c(u))
∂

∂u
c(u)du (5.25)

The path integral in (5.25) depends on the path only through the terminal point

c(1) if and only if there exists a scalar potential Π̃(t0, x0, ·) : Rk → R, such that

π̃ (t0, c) = ∇cΠ̃(t0, x0, c), ∀ c ∈ Rk. (5.26)

We now need to show that such a Π̃(t0, x0, ·) exists if and only if there exists a

Π(t0, x0, ·) satisfying (5.24).
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To prove the necessary condition, let us assume that there exists Π̃(t0, x0, ·) satisfying

(5.26). We now define,

Π(t0, x0, x) := Π̃ (t0, x0, S
′ (log x− log x0)) . (5.27)

It is now easy to see that

∇xΠ(t0, x0, x) = D−1
x S∇cΠ̃(t0, x0, c) where c = S ′ (log x− log x0)

= D−1
x Sπ̃(t0, x0, c) = D−1

x SS ′π(t0, x),

thus verifying (5.24).

To prove the sufficient condition, assume that there exists Π(t0, x0, ·) satisfying

(5.24). We then define,

Π̃(t0, x0, c) := Π
(
t0, x0, x0e

Sc
)
.

It is again easy to see that

∇cΠ̃(t0, x0, c) = S ′ (Dx∇xΠ)
(
t0, x0, x0e

Sc
)

= S ′SS ′π
(
t0, x0e

Sc
)

= S ′π
(
t0, x0e

Sc
)
,

thus proving (5.26). This completes the proof of Lemma 5.2.1.

Remark 5.2.3. If dim(S) = 1, then for any π(t0, ·), there exists Π(t0, x0, ·) satisfying

(5.24). Indeed, if s is a unit vector in S,

Π(t0, x0, x) :=

∫ s′(log x−log x0)

0

s′π (t0, x0e
us) du,

satisfies (5.24). This is also clear intuitively, because if dim(S) = 1, then there

exists only one possible path v(·).

A special case which will be of interest to us is when

π(t, x) = diag(x)∇xΠ(t, x), (t, x) ∈ [0, T ]× Rn
+, (5.28)
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for some scalar potential Π(t, ·) : Rn
+ → R, or in other words diag(x)−1π(t, ·) is

a conservative vector filed. This is the situation presented in Lemma 5.2.1 with

S = Rn. The market portfolio, as defined in (2.20) and of significant importance to

us, satisfies (5.28). Indeed, if we denote the market portfolio by πM , then we can

see that

πM(t, x) =
1∑
i xi

x = (diag(x)∇Π) (t, x),

where

Π(t, x) = ln
(∑

xi

)
, (t, x) ∈ [0, T ]× Rn

+.

Lemma 5.2.1 and Theorem 5.2.1 gives us the following corollary.

Corollary 5.2.4. Let (t̄, x̄) ∈ O. Suppose that (5.28) holds. Let v : [0, 1] → Rn be

a smooth function with

v(0) = 0, v(1) = ν0,

such that

(t̄, x̄ev(u)) ∈ O, ∂

∂u
v(u) =: ν(u) ∈ K̃, 0 ≤ u ≤ 1.

Then, under the conditions of Theorem 4.2.1,

ln z (t̄, x̄eν0)− ln z (t̄, x̄) ≥ − (Π (t̄, x̄eν0)− Π (t̄, x̄))−
∫ 1

0

ζ (ν(u)))du. (5.29)

If we further suppose that ν(u) ∈ (vect(K))⊥ , 0 ≤ u ≤ 1, then

ln z (t̄, x̄eν0)− ln z (t̄, x̄) = − (Π (t̄, x̄eν0)− Π (t̄, x̄)) . (5.30)

Furthermore, if we also suppose that π
(
t̄, x̄ev(u)

)
∈ vect(K), 0 ≤ u ≤ 1, then

z(t̄, x̄) = z (t̄, x̄eν0) .

Since Theorem 5.2.1 holds for all possible smooth paths v(·) satisfying the specified

conditions, we also have the following characterization. We denote

V(ν0) :=





the collection of all smooth functions v : [0, 1]→ Rn, such that

v(0) = 0, v(1) = ν0;
(
t̄, x̄ev(u)

)
∈ O, ∂

∂u
v(u) ∈ K̃, 0 ≤ u ≤ 1.

(5.31)
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From Theorem 5.2.1 and Corollary 5.2.4, it follows that

Corollary 5.2.5. Suppose the conditions of Theorem 4.2.1 hold. Let (t̄, x̄) ∈ O.

Then

ln z (t̄, x̄eν0)− ln z (t̄, x̄) ≥ − inf
v∈V(ν0)

{∫ 1

0

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
du

}
. (5.32)

In the special case that (5.28) holds, we have

ln z (t̄, x̄eν0)− ln z (t̄, x̄) ≥ − (Π (t̄, x̄eν0)− Π (t̄, x̄))− inf
v∈V(ν0)

{∫ 1

0

ζ (ν(u)))du

}
.

(5.33)

Here, we have followed the convention that the infimum of the empty set is ∞.

For convenience of notation, we will denote

Iπ(ν0, K, t̄, x̄) = inf
v∈V(ν0)

{∫ 1

0

(
π′
(
t̄, x̄ev(u)

)
ν(u) + ζ(ν(u))

)
du

}
, (5.34)

I(ν0, K) = inf
v∈V(ν0)

{∫ 1

0

ζ (ν(u)))du

}
. (5.35)

All the results presented above hold for (t̄, x̄) ∈ O. In the following we will

give a necessary condition for (t̄, x̄) to belong to O. For this we look at (5.17).

Since the left hand side of (5.17) does not depend on v(·), the integral on the

right hand side of (5.17) should also be independent of the path v(·) ∈ V(ν0).

Then this can be posed as a necessary condition for (t̄, x̄) to belong to O. Thus

we can say that under the conditions of Theorem 4.2.1, a necessary condition for

(t̄, x̄) ∈ O is the existence of an open ball B(x̄) ⊂ Rn containing x̄, such that for

any ν0 ∈ (vect(K))⊥ with x̄eν0 ∈ B(x̄), the integral
∫ 1

0
π′
(
t̄, x̄ev(u)

)
ν(u)du does not

depend on the choice of v(·) ∈ V(ν0). By Lemma 5.2.1, a necessary and sufficient

condition for the independence of the path integral is the existence of a scalar

potential Π(t̄, x̄, ·) : Rn
+ → R such that

Proj(vect(K))⊥π(t̄, x) = diag(x)∇Π(t̄, x̄, x), (5.36)
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We can summarize this as a corollary.

Corollary 5.2.6. Suppose that the conditions of Theorem 4.2.1 hold. A necessary

condition for (t̄, x̄) ∈ O is that (5.36) holds in a neighborhood of (t̄, x̄).

(5.36) will be satisfied vacuously if (vect(K))⊥ = ∅. By Remark 5.2.3, it will also

be satisfied if dim((vect(K))⊥) = 1. For dim((vect(K))⊥) ≥ 2, the condition will be

satisfied if any of the following conditions are satisfied:

i. π (t̄, x̄eν) ∈ vect(K) whenever ν ∈ (vect(K))⊥ and x̄eν ∈ B(x̄).

ii. diag(x)−1π(t, x) is a conservative vector field. See (5.28).

Suppose now that O = (0, T )×Rn
+, i.e. z(·, ·) is locally bounded on (0, T )×

Rn
+. Consider any (t, x) ∈ (0, T ) × Rn

+, ν ∈ K̃. From (5.32), we see that for any

c > 0,

ln z (t, xecν) ≥ ln z(t, x)− Iπ(cν,K, t, x). (5.37)

Therefore, if Iπ(cν,K, t, x) is unbounded from below as a function of c on (0,∞),

then we can choose c0 > 0 such that z (t, xec0ν) > 1, thus proving the existence of a

(t, y) ∈ (0, T )×Rn
+ such that arbitrage opportunities do not exist relative to π over

the time horizon [0, T ], if the stock price X (t) at time t is y.

On the other hand, if z(t, x) > 1, then (5.37) yields that z (t, xecν) ≥ 1 for all ν ∈ K̃

for which Iπ(cν,K, t, x) ≤ ln z(t, x).

Suppose now that K̃ = Rn. Consider 0 ≤ s1 < s2 ≤ T . For a fixed x ∈ Rn
+, ε > 0,

denote

δx := sup
s1<t<s2

{ln z(t, x)}+ ε.

If there exist C > 0, such that

Iπ(cν,K, t, x) < ln z(t, x)− δx, for all c ≥ C, ν ∈ Rn, such that ‖ν‖ = 1, (5.38)



Chapter 5. Relative Arbitrage under Constraints 101

then we will have

z(t, xeCν) > eε sup
s1<t<s2

z(t, x) ≥ inf
[s1,s2)×Γ

z(s, y), ν ∈ Rn, ‖ν‖ = 1, t ∈ (s1, s2),

(5.39)

where

Γ :=
{
xecν

∣∣ ν ∈ Rn, ‖ν‖ = 1, 0 ≤ c < C
}
.

(5.39) contradicts the comparison principle in Theorem 5.1.1 (i) and hence proves

that, if there exists C > 0 satisfying (5.38), then (s1, s2)× Rn
+ * O, i.e.

there exists (t, y) ∈ (s1, s2)× Rn
+ such that z(t, y) =∞, (5.40)

i.e. if the stock price X (t) at time t is y, then the terminal wealth generated by π

cannot be superreplicated by starting with any finite amount of wealth at time t and

following a strategy which always takes values in K. In Example 5.4.3, we consider

the portfolio defined as π(t, x) = −2 lnx, (t, x) ∈ [0, T ]×Rn
+, and the constraint set

K = {p :
∑
pi = 1, p ≥ 0} corresponding to the restriction that investments can be

made only in long-only portfolios. We will show there that

Iπ(cν,K, t, x) = −2cν ′ lnx− c2‖ν‖2 − cν(1),

which can be made to take arbitrarily large negative values by increasing c and

hence there exists a C > 0 satisfying (5.38). Therefore, (5.40) also holds in this case.

Similarly, if ν ∈ K̃, then writing (5.37) with x replaced by xe−cν , we get

ln z (t, x) + Iπ(cν,K, t, xe−cν) ≥ ln z(t, xe−cν). (5.41)

Therefore, if Iπ(cν,K, t, xe−cν) is unbounded from below as a function of c on (0,∞),

then we can choose c0 > 0 such that z (t, xe−c0ν) < 1, thus proving the existence of

a (t, y) ∈ (0, T ) × Rn
+ such that arbitrage opportunities relative to π exist over the

time horizon [0, T ], if the stock price X (t) at time t is y.
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On the other hand, if z(t, x) < 1, then (5.37) yields that z (t, xe−cν) < 1 for all

ν ∈ K̃ for which Iπ(cν,K, t, xe−cν) < − ln z(t, x).

Suppose now that K̃ = Rn. Consider 0 ≤ s1 < s2 ≤ T . For a fixed x ∈ Rn
+, ε > 0,

denote

δx := inf
s1<t<s2

{ln z(t, x)} − ε.

If there exist C > 0, such that

Iπ(cν,K, t, x) < − ln z(t, x) + δx, for all c ≥ C, ν ∈ Rn, such that ‖ν‖ = 1, (5.42)

then we will have

z∗(t, xe−(C+1)ν) < e−ε inf
s1<t<s2

z(t, x) ≤ sup
[s1,s2)×Γ

z∗(s, y), ν ∈ Rn, ‖ν‖ = 1, t ∈ (s1, s2),

(5.43)

where

Γ :=
{
xe−cν

∣∣ ν ∈ Rn, ‖ν‖ = 1, 0 ≤ c < C + 1
}
.

(5.43) contradicts the comparison principle in Theorem 5.1.1 (i) and hence proves

that, if there exists C > 0 satisfying (5.42), then (s1, s2)× Rn
+ * O, i.e.

there exists (t, y) ∈ (s1, s2)× Rn
+ such that z(t, y) =∞, (5.44)

i.e. if the stock price X (t) at time t is y, then the terminal wealth generated by π

cannot be superreplicated by starting with any finite amount of wealth at time t

and following a strategy which always takes values in K.

Consider two constraint sets K2 ⊆ K1 ⊆ Rn. Then,

zK2(t, x) ≥ zK1(t, x), (t, x) ∈ [0, T ]× Rn
+. (5.45)

Suppose ν ∈ Rn is such that

ν ∈ K̃1 ⊆ K̃2, −ν ∈ K̃2, ζK2(ν) + ζK2(−ν) = 0.
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By Theorem 5.2.1 and (5.45), it follows that for any c > 0 and (t, x) ∈ (0, T )×Rn
+,

ln zK2(t, x)− Iπ(cν,K2, t, x) = ln zK2 (t, xecν)

≥ ln zK1 (t, xecν) ≥ ln zK1(t, x)− Iπ(cν,K1, t, x).

Therefore,

ln zK2(t, x)− ln zK1(t, x) ≥ sup
c>0

[Iπ(cν,K2, t, x)− Iπ(cν,K1, t, x)] . (5.46)

Now if supc>0 [Iπ(cν,K2, t, x)− Iπ(cν,K1, t, x)] = ∞ for some (t, x) ∈ (0, T ) × Rn
+,

then (5.46) would imply that zK2(t, x) =∞.

When the constraint set K is a polyhedral convex set, ζK(·) takes a simple

form. Further, if π(·, ·) satisfies (5.28), then the function Iπ(·, K, ·, ·) becomes much

simpler and amenable to simple analyses yielding interesting results, which we will

present after we discuss polyhedral convex constraint sets in the next section.

5.3 Convex polyhedral constraint set

As discussed in the end of Section 5.2, convex polyhedral constraint sets will be of

special interest to us. We refer the reader to Section 19 in Rockafellar (1970) for a

discussion on polyhedral convex sets. By Theorem 20.5 in Rockafellar (1970), every

polyhedral convex set is locally simplical; hence satisfies Assumption 3.1.1 and

thus fits into our framework. On the other hand, under fairly general conditions,

convex sets can be approximated by polyhedral convex sets. We refer the reader to

Theorem 2.1 in Ney and Robinson (1995) for polyhedral approximation of closed

convex sets whose recession cone is polyhedral, and to Section 4 of Bronstein (2008)

for approximation of compact convex sets with nonempty interior by polytopes

(bounded polyhedral convex sets).
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Suppose now that the constraint set K is a polyhedral convex set. By The-

orem 19.1 in Rockafellar (1970), it is finitely generated, i.e. there exist vectors

a1, a2, . . . , am such that, for a fixed integer k, 0 ≤ k ≤ m, K is of the form

K =

{
m∑

i=1

βiai :
m∑

i=k+1

βi = 1, βi ≥ 0, i = 1, 2, . . . ,m

}
. (5.47)

We will denote

S0(K) := {ak+1, . . . , am} , S1(K) := {a1, . . . , ak} .

Note that if K is a polyhedral cone, then S0(K) = ∅, and the vectors in S1(K) are

called the edges of the cone. By Theorem 19.5 in Rockafellar (1970), it follows that

the recession cone 0+K of K is also polyhedral, and in fact it can be written as

{
k∑

i=1

βiai : βi ≥ 0, i = 1, . . . , k

}
.

Therefore, the set of edges of the recession cone 0+K is S1(0+K) = S1(K).

The polyhedral convex cone 0+K can also be seen as the intersection of closed

half-spaces H1, H2, . . . , H`. Each half-space Hi has a corresponding inward pointing

normal vector ni, the face normal of the cone 0+K, such that

Hi =
{
v ∈ Rn

∣∣ v′ni ≥ 0
}
.

K̃, the dual cone to 0+K, will also be a polyhedral cone, and each of the face normals

of 0+K will be an edge of K̃ and vice versa. Thus, S1(K̃) = {n1, n2, . . . , n`}, i.e.

K̃ :=

{∑̀

i=1

αini : ni ∈ S1(K̃), αi ≥ 0, i = 1, 2, . . . , `

}
(5.48)

With K as in (5.47), and since K is convex, it follows that

n′iaj ≥ 0, ni ∈ S1(K̃), aj ∈ S1(K). (5.49)
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The edges of K̃ can also be determined directly from the edges of 0+K. It is

particularly easy when n = 2 and S1(0+K) = {a1, a2} for some a1, a2 ∈ R2. If

ñ1, ñ2 ∈ R2 are perpendicular to a1 and a2 respectively, then S1(K̃) = {n1, n2}

where,

n1 = sgn (ñ′1a2) ñ1, n2 = sgn (ñ′2a1) ñ2,

and sgn(x) is as defined in (1.1).

For any K̃ 3 ν =
∑`

i=1 αini, α ≥ 0, it follows that,

ζ(ν) = − inf
π∈K

π′ν = − inf

{
m∑

j=1

βja
′
j

(∑̀

i=1

αini

)
:

m∑

j=k+1

βj = 1, β ≥ 0

}

= − inf

{
m∑

j=k+1

βja
′
j

(∑̀

i=1

αini

)
:

m∑

j=k+1

βj = 1, β ≥ 0

}

= −min
{
a′jν : j = k + 1, . . . ,m

}
(5.50)

The third equality in the above, is a consequence of (5.49).

If S0(K) = ∅, then from (5.50) we get

ζ(ν) = 0 for all ν ∈ K̃, (5.51)

as expected from Corollary 3.1.2.

If k + 1 = m, i.e. S0(K) = {ak+1}, then from (5.50) we get

ζ(ν) = −a′k+1ν for all ν ∈ K̃. (5.52)

From Lemma 3.1.3, we see that

ν ∈ K̃,−ν ∈ K̃ ⇐⇒ ν⊥ai, i = 1, 2, . . . , k.

From (5.50), it follows that if ν,−ν ∈ K̃, then

ζ(ν) + ζ(−ν) = 0 ⇐⇒ min
k+1≤j≤m

a′jν = max
k+1≤j≤m

a′jν. (5.53)
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Therefore, a necessary and sufficient condition for ζ(ν) + ζ(−ν) = 0 is that ν is

orthogonal to each vector in S1(K) and either of the following is satisfied:

1. S0(K) = ∅.

2. S0(K) is a singleton set.

3. ν is orthogonal to each vector in S0(K), i.e. ζ(ν) = 0.

Suppose now that S1(K̃) = {n1, . . . , n`} are the distinct edges of K̃. Consider

any

K̃ 3 ν0 =
∑̀

i=1

αini.

Let L(α) denote the class of functions Λ : [0, 1] → Rn
+ such that each component

Λi(·), i = 1, . . . , n is a smooth increasing function, with Λ(0) = 0 and Λ(1) = α. It

is easy to see that for any Λ ∈ L(α), the path v(·) defined by

v(u) =
∑̀

i=1

Λi(u)ni, u ∈ [0, 1], (5.54)

belongs to V(ν0) defined as in (5.31). And for any path v(·) ∈ V(ν0), there exists

such a function Λ(·) ∈ L(α), thus establishing a one-to-one correspondence between

V(ν0) and L(α). If we denote λi(u) = ∂/∂u(Λ(u)), then

ν(u) =
∂

∂u
v(u) =

∑̀

i=1

λi(u)ni, u ∈ (0, 1). (5.55)

It follows from (5.50) that

I(ν0, K) = inf
v∈V(ν0)

{∫ 1

0

ζ (ν(u)))du

}

= − sup
Λ(·)∈L(α)

{∫ 1

0

min
k+1≤j≤m

{∑̀

i=1

λi(u)
(
a′jni

)
}

du

}
(5.56)
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Now, for any Λ(·) ∈ L(α),

∫ 1

0

min
k+1≤j≤m

{∑̀

i=1

λi(u)
(
a′jni

)
}

du ≤ min
k+1≤j≤m

∫ 1

0

{∑̀

i=1

λi(u)
(
a′jni

)
}

du = min
k+1≤j≤m

a′jν0.

Therefore,

I(ν0, K) ≥ −ζ(ν0). (5.57)

On the other hand, taking Λ(u) = uα, 0 ≤ u ≤ 1, we get

∫ 1

0

min
k+1≤j≤m

{∑̀

i=1

λi(u)
(
a′jni

)
}

du = ζ(ν0)

∫ 1

0

u du = ζ(ν0). (5.58)

(5.57) and (5.58) together imply that

I(ν0, K) = ζ(ν). (5.59)

Example 5.3.1. Suppose K = {p ∈ Rn :
∑

i pi ≥ 1}. This would correspond to the

constraint, that money can be borrowed from the bank, but the entire wealth has

to be invested in stocks. Then,

S0(K) =

{
1

n
1

}
; S1(K) = S1(0+K) = {1, ei − ej i 6= j, i, j = 1, 2, . . . , n} , S1(K̃) = {1} .

Any ν ∈ K̃ is of the form λ1, λ ≥ 0. Therefore, for any K̃ 3 ν = λ1, by (5.52) and

(5.59)

I(ν,K) = ζ(ν) = −λ.

Example 5.3.2. If K = {p ∈ Rn :
∑

i pi ≥ 1, p ≥ 0}, then the constraint would be

that money can be borrowed from the bank, but the entire wealth has to be used

to take long positions in stocks. Then,

S0(K) = S1(K) = S1(0+K) = S1(K̃) = {ei i = 1, 2, . . . , n} .

Therefore, for any ν0 ∈ K̃, it follows from (5.50) and (5.59) that

I(ν0, K) = ζ(ν0) = −ν0
(1).
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Example 5.3.3. If K = {p ∈ Rn :
∑

i pi ≤ 1, p ≥ 0}, then the constraint would be

that money cannot be borrowed from the bank and investments can be made only

in long-only strategies. Then,

S0(K) = {0, ei i = 1, 2, . . . , n} ; S1(K) = S1(0+K) = ∅;

S1(K̃) = {ei i = 1, 2, . . . , n} ; K̃ = Rn.

Therefore, for any ν0 ∈ K̃, it follows from (5.50) and (5.59) that

I(ν0, K) = ζ(ν0) = −
(
ν0

(1) ∧ 0
)
.

Example 5.3.4. If K = {p ∈ Rn :
∑

i pi = 1, p ≥ 0}, then the constraint would be

that investments can be made only in long-only portfolios. Then,

S0(K) = {ei i = 1, 2, . . . , n} ; S1(K) = S1(0+K) = ∅;

S1(K̃) = {ei i = 1, 2, . . . , n} ; K̃ = Rn.

Therefore, for any ν0 ∈ K̃, it follows from (5.50) and (5.59) that

I(ν0, K) = ζ(ν0) = −ν0
(1).

Example 5.3.5. If K = {p ∈ Rn :
∑

i pi = 1}, then the constraint would be that

investments can be made only in portfolios. Then,

S0(K) =

{
1

n
1

}
; S1(K) = S1(0+K) = {ei − ej i 6= j, i, j = 1, 2, . . . , n} ,

S1(K̃) = {1,−1} ; K̃ = {α1 : α ∈ R} .

Therefore, for any K̃ 3 ν0 = α1, by (5.52) and (5.59)

I(ν0, K) = ζ(ν0) = −α.

Also, note that for any ν ∈ K̃, we will have

ζ(ν) + ζ(−ν) = 0.
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Example 5.3.6. Let n = 2 and for c ∈ R2 and distinct points a1, a2 ∈ R2, suppose

S0(K) = {c} , S1(K) = {a1, a2}, i.e.

K = {C + α1a1 + α2a2, α1, α2 ≥ 0} .

Then, S1(0+K) = {a1, a2}. For any ν ∈ K̃,

I(ν,K) = ζ(ν) = −ν ′c.

5.4 Examples

In this section, we will present several examples illustrating the use of the results

developed so far. We start with the special case of convex polyhedral constraint

sets and strategies which satisfy (5.28).

Suppose that O = (0, T ) × Rn
+. We recall from (5.37) and (5.41) that for

ν ∈ K̃ and (t, x) ∈ (0, T )× Rn
+,

ln z (t, xecν) ≥ ln z(t, x)− Iπ(cν,K, t, x), c ≥ 0, (5.60)

ln z
(
t, xe−cν

)
≤ ln z (t, x) + Iπ(cν,K, t, xe−cν), c ≥ 0, . (5.61)

If ν ∈ K̃ is such that −ν ∈ K̃ and ζ(ν) + ζ(−ν) = 0, then

ln z (t, xecν) = ln z(t, x)− Iπ(cν,K, t, x), c ∈ R,

Suppose now that the strategy π is of the form

π(t, x) = diag(x)∇xΠ(t, x), (t, x) ∈ [0, T ]× Rn
+,

and the constraint set K is a polyhedral convex set. Then, Iπ(cν,K, t, x) takes the

form

Iπ(cν,K, t, x) = Π (t, xecν)− Π (t, x)− c min
a∈S0(K)

{a′ν} (5.62)
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Given a ν ∈ Rn, suppose that we want a constraint set K so that arbitrage oppor-

tunities relative to π do not exist over the time horizon [t, T ], if the stock price X (t)

at time t is xecν for large enough c. From (5.60), we see that a sufficient condition

for this would be

inf
c>0

Iπ(cν,K, t, x) = −∞. (5.63)

From (5.62), we see that if

Π (t, xecν)− Π (t, x) ≤ Ac, for some A ∈ R, (5.64)

then (5.63) will be satisfied if S1(K̃) = {ν} and S0(K) = {a0} for some a0 ∈ Rn

such that a′0ν > A. From (5.48), we see that if S1(K̃) = {ν}, then 0+K = {p ∈ Rn :

p′ν ≥ 0}. Therefore, K = {a0 + p : p ∈ Rn, p′ν ≥ 0}. In particular, we can take

a0 = 1
‖ν‖2 (A+ 1)ν.

Example 5.4.1. If π denotes the market portfolio, as defined in (2.20), then

π(t, x) = (diag(x)∇Π) (t, x), where

Π(t, x) = ln
(∑

xi

)
, (t, x) ∈ [0, T ]× Rn

+.

Therefore,

Π (t, xecν)− Π (t, x) = ln

(∑
xie

cνi

∑
xi

)
≤ ln

(
nx(n)e

cν(n)

nx(1)

)
= ln

x(n)

x(1)

+ cν(n), (5.65)

which satisfies (5.64). (5.63) will be satisfied if we take

a0 = γ1ν(n)>0

(
1ν1=ν(n) , . . . , 1νn=ν(n)

)
, K = {a0 + p : p ∈ Rn, p′ν ≥ 0},

for any γ > 1. For any x ∈ Rn
+, it follows from (5.60) that z(t, xecν) ≥ 1 if

c ≥ −
(

1ν(n)<0 +
1

γ − 1
1ν(n)>0

)
1

ν(n)

ln

(
x(1)

x(n)

z(t, x)

)
.

Thus, for example, if ν = e1, and if we take the constraint set to be K = [γ,∞) ×

Rn−1, then for any x ∈ Rn
+, we will have z(t, xece1) > 1 if c ≥ − 1

γ−1
ln
(
x(1)
x(n)

z(t, x)
)
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Suppose now, that we want a constraint set K, such that for a fixed (t, x) ∈

(0, T )× Rn
+ and for large enough c > 0,

zK

(
t, xecν

i
)
≥ 1, νi ∈ K̃, i = 1, 2, . . . , `.

An easy solution would be to find Ki such that

zKi

(
t, xecν

i
)
≥ 1, νi ∈ K̃i, i = 1, 2, . . . , `,

for large enough c > 0, and then K :=
⋂
iKi will be our desired constraint set

provided it is non-empty. We could also proceed as follows. Since νi ∈ K̃, i =

1, 2, . . . , `, we should have

0+K ⊆ {p ∈ Rn : p′νi ≥ 0, i = 1, 2, . . . , `} .

We would then need to determine S0(K) so that

inf
c>0

[
Π
(
t, xecν

i
)
− Π (t, x)− c min

a∈S0(K)

{
a′νi
}]

= −∞, i = 1, 2, . . . , `,

if it exists. We illustrate this in the following two examples.

Example 5.4.2. Let π denote the market portfolio. Given (t, x) ∈ (0, T ) × Rn
+,

suppose we want the constraint K to be such that for each ν ∈ Rn with ‖ν‖ = 1,

z(t, xecν) > 1 for large enough c > 0. In order to be able to use the inequality (5.60),

for any ν ∈ Rn, we need K̃ = Rn, and hence 0+K = ∅. Therefore, K has to be a

bounded set. From (5.65), we see that for any ν ∈ Rn,

Iπ(cν,K, t, x) ≤ ln
x(n)

x(1)

+ cν(n) − c min
a∈S0(K)

{a′ν}. (5.66)

In order to have the right hand side in (5.66) to go to −∞ as c→∞ for any ν ∈ Rn,

we would need to have

ν(n) < min
a∈S0(K)

{a′ν}, (5.67)
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for any ν ∈ Rn. For (5.67) to hold for ν = ei, i = 1, 2, . . . , n, we require

min
a∈S0(K)

ai > 1, i = 1, 2, . . . , n. (5.68)

On the contrary, for (5.67) to hold for ν = −ei i = 1, 2, . . . , n, we require

max
a∈S0(K)

ai < 1, i = 1, 2, . . . , n. (5.69)

Therefore, we cannot find S0(K) as desired.

Example 5.4.3. Consider the portfolio π defined by π(t, x) = −2 lnx, (t, x) ∈

[0, T ]× Rn
+. Then π(t, x) = (diag(x)∇Π)(t, x), where

Π(t, x) = −
∑

(lnxi)
2 , (t, x) ∈ [0, T ]× Rn

+.

For a fixed (t, x) ∈ (0, T )× Rn
+, we want the constraint set K to be such that

for each ν ∈ Rn with ‖ν‖ = 1, ∃ c ≥ 0, such

that either (t, xecν) /∈ O or, zK (t, xecν) > 1.
(5.70)

It would be sufficient if we can find a constraint set K, such that for each ν ∈ Rn,

if (t, xecν) ∈ O for all c ≥ 0, then z (t, xecν) ≥ 1 for some c ≥ 0. (5.71)

In order to be able to use the inequality (5.60) for any ν ∈ Rn, we need K̃ = Rn,

and hence 0+K = ∅. Therefore, K has to be a bounded set.

Now, for any ν ∈ Rn, Iπ(cν,K, t, x) takes the form

Iπ(cν,K, t, x) = −2cν ′ lnx− c2‖ν‖2 − c min
a∈S0(K)

a′ν. (5.72)

For any finite set S0(K) ⊂ Rn, mina∈S0(K) a
′ν <∞ and hence it follows from (5.72)

that

Iπ(cν,K, t, x)→ −∞ as c→∞ for any ν ∈ Rn.



Chapter 5. Relative Arbitrage under Constraints 113

Hence, we conclude that (5.70) will be satisfied if the constraint set K is any poly-

tope (bounded polyhedral convex set) in Rn.

In the next example, we will consider the constraint that investments can be made

only in long-only portfolios and show that there exist time points s ∈ (0, T ) arbi-

trarily close to t such that for some ν ∈ Rn, ‖ν‖ = 1 and c ≥ 0, (s, xecν) /∈ O.

However, the same argument would work if we constrain the investment strategies

to take value in any other polytope in Rn.

Example 5.4.4. (Continuation of Example 5.4.3)

Suppose K = {p :
∑
pi = 1, p ≥ 0}. Then K̃ = Rn. We will show that for any

strip (s1, s2) × Rn
+, 0 < s1 < s2 ≤ T , there exists (t, y) ∈ (s1, s2) × Rn

+ such that

(t, y) /∈ O.

On the contrary, suppose that there exist (s1, s2), 0 < s1 < s2 ≤ T , such that

(s1, s2)× Rn
+ ⊂ O. By Example 5.3.4, for any ν ∈ Rn, c ∈ R, (t, y) ∈ (0, T ) ∈ Rn

+,

I(ν,K) = ζ(ν) = −ν(1),

Iπ(cν,K, t, y) = −2cν ′ ln y − c2‖ν‖2 − cν(1).

Fix x ∈ Rn
+ and θ > sup

{
ln z(t, x)

∣∣ t ∈ (s1, s2)
}

. By (??), we see that for any

ν ∈ Rn such that ‖ν‖ = 1, we will have z(t, xecν) > θ if

− 2cν ′ lnx− c2‖ν‖2 − cν(1) < A

i.e. c2 + c
(
ν(1) + 2ν ′ lnx

)
+ A > 0

where A = − ln θ + ln z(t, x) < 0. Denote

c(ν) :=
1

2

[
−
(
ν(1) + 2ν ′ lnx

)
+

√(
ν(1) + 2ν ′ lnx

)2 − 4A

]
.

By an application of Cauchy-Schwartz inequality it follows that,

0 < c(ν) ≤
∣∣ν(1) + 2ν ′ lnx

∣∣+
√
−A
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≤ |ν(1)|+ 2‖ lnx‖+
√
−A ≤ 1 + 2‖ lnx‖+

√
−A.

Therefore, if we fix C > 1 + 2‖ lnx‖ +
√
−A, then for all ν ∈ Rn with ‖ν‖ = 1, we

will have

z(t, xeCν) > θ > z(t, x) ≥ inf
[s1,s2)×Γ

z(s, y), ν ∈ Rn, ‖ν‖ = 1, t ∈ (s1, s2),

where

Γ :=
{
xecν

∣∣ ν ∈ Rn, ‖ν‖ = 1, 0 ≤ c < C
}
,

thus contradicting the comparison principle in Theorem 5.1.1 (i) and hence proving

our claim.

We now turn our attention to (5.61). We see that if (t, x) ∈ O, and if ν ∈ Rn

is such that

inf
c>0

Iπ(cν,K, t, xe−cν) = −∞,

then for some c > 0 we will have z(t, xe−cν) < 1. If z(t, x) ≤ 1, and if

Iπ(cν,K, t, xe−cν) < 0 for some ν ∈ K̃, c > 0, then z(t, xe−cν) < 1. z(t, x) ≤

1, (t, x) ∈ (0, T )Rn
+ if π(t, x) ∈ K, (t, x) ∈ (0, T )Rn

+, a necessary condition for

which is that

π′(t, x)ν ≥ min
a∈S0(K)

a′ν, for all (t, x) ∈ [0, T ]× Rn
+. (5.73)

On the other hand, for any (t, x) ∈ (0, T ) × Rn
+, Iπ(cν,K, t, xe−cν) < 0 if and only

if

c min
a∈S0(K)

a′ν > Π(t, x)− Π
(
t, xe−cν

)
= cν ′π

(
t, xe−bν

)
, b ∈ [0, c]. (5.74)

The second equality follows by an application of the mean value theorem. (5.73)

and (5.74) cannot hold simultaneously. Therefore, it is not possible that that there

exist a constraint set K and a strategy π which is of the form (5.28), such that

π(·, ·) ∈ K on [0, T ]× Rn
+, and Iπ(cν,K, t, xe−cν) < 0 for some (t, x) ∈ (0, T )× Rn

+.
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We need to look at strategies which are not of the form (5.28).

We will now demonstrate how introduction of suitable constraints K can

make {t} ×Rn
+ 6⊆ OK for any t ∈ (0, T ). We refer the reader to the discussion after

the definition of OK in (4.7) for the economic significance of this. Suppose K1 is a

closed convex constraint set such that

S0(K1) = ∅, K̃1 6= {0} and (0, T )× Rn
+ ⊆ OK1 . (5.75)

We want to find a constraint set K2 ⊆ K1 such that OK2 ( (0, T )×Rn
+. We choose

any ν ∈ K̃1, ν 6= 0 and a ∈ Rn such that a′ν < 0. We define

K2 := a+ 0+K1 ∩ {p ∈ Rn : p′ν ≤ 0 } . (5.76)

It follows that a ∈ S0(K2) and ζK2(ν) = −ζK2(−ν) = −a′ν > 0. We will show that

there does not exist any t ∈ (0, T ) such that t×Rn
+ ⊆ OK2 . Suppose on the contrary

that there exists a t ∈ (0, T ) such that t× Rn
+ ⊆ OK2 . For any x ∈ Rn

+ and c > 0,

I(cν,K2, t, x)− I(cν,K1, t, x) = ζK2(ν) = −c (a′ν)→∞, as c→∞.

It now follows from (5.46) that zK2(t, x) = ∞ contradicting our supposition. This

proves our claim.

Example 5.4.5. Consider again the market portfolio π. Suppose K1 = [0,∞)n.

Since π ∈ K1, hence zK1 ≤ 1 on [0, T ]×Rn
+. Also, it is easily seen that the conditions

in (5.75) hold with K̃1 = [0,∞)n. Suppose we choose ν = e1 and a = −e1. Defining

K2 as in (5.76) gives us K2 = {−1}× [0,∞)n−1. It follows from (5.46), as discussed

above, that there does not exist any t ∈ (0, T ) such that t× Rn
+ ⊆ OK2 .

Example 5.4.6. If π denotes the market portfolio, as defined in (2.20), then we

have seen that π(t, x) = (diag(x)∇Π) (t, x), where

Π(t, x) = ln
(∑

xi

)
, (t, x) ∈ [0, T ]× Rn

+.
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Therefore,

Iπ(ln y − lnx,K, t, x) = ln

∑
yi∑
xi

+ I(ln y − lnx,K). (5.77)

(i) If K = [0,∞)n, then K̃ = [0,∞)n. Corollary 5.2.1 implies that z ≤ 1 on

[0, T ] × Rn
+, and hence O = (0, T ) × Rn

+. Lemma 3.1.1 and Corollary 3.1.2 imply

that ζ(ν) = 0 and hence I(ν,K) = 0 for all ν ∈ [0,∞)n. By (5.77), for any

y ≥ x ∈ Rn
+,

Iπ(ln y − lnx,K, t, x) = ln

∑
yi∑
xi
,

and hence by (5.60),

z (t, y) ≥
(∑

xi∑
yi

)
z (t, x) , if y ≥ x. (5.78)

Therefore, if x ∈ Rn
+ is such that z(t, x) < 1, then z(t, y) < 1 for all Rn

+ 3 y ≤ x

such that
∑
yi > z(t, x) (

∑
xi). In particular, if z(t, x) < 1, then z(t, ecx) < 1 for

0 ≥ c > ln z(t, x).

(ii) For some c > 0, suppose K = [c,∞)n. Then K̃ = [0,∞)n and S0(K) = {c1}.

By (5.52) and (5.59),

I(ν,K) = ζ(ν) = −cν ′1 < 0, for all ν ∈ K̃. (5.79)

Therefore, from (5.77), for any y ≥ x ∈ Rn
+,

Iπ(ln y − lnx,K, t, x) = ln

(∑
yi∑
xi

)
− c

∑

i

(ln yi − lnxi) , (5.80)

and hence,

z (t, y) ≥
(

Πyi
Πxi

)c(∑
xi∑
yi

)
z(t, x), y ≥ x ∈ Rn

+. (5.81)

Thus, for a fixed x ∈ Rn
+, we see that

z(t, y) > 1, if y > x and
(Πyi)

c

∑
yi

>
(Πxi)

c

∑
xi

1

z(t, x)
,
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and, z(t, y) < 1, if y < x and
(Πyi)

c

∑
yi

<
(Πxi)

c

∑
xi

1

z(t, x)
.

Now, with ν = ln y − lnx, we see from (5.80), (5.60) and (5.61),

Iπ(ν,K, t, x) ≥ −c
∑

νi + ν(n),

z(t, xeν) > 1, if ν > 0 and c
∑

νi − ν(n) > − ln z(t, x),

and, z(t, xeν) < 1, if ν < 0 and c
∑

νi − ν(n) < − ln z(t, x).

(iii) Suppose K = [c, 2c]n for some c > 0. Then

K̃ = Rn; S0(K) = {c1 + cv : v ∈ {0, 1}n} .

By (5.50) and (5.59),

I(ν,K) = ζ(ν) = −c
∑

νi − c
∑

(νi ∧ 0) , ν ∈ Rn, (5.82)

Iπ(ln y − lnx,K, t, x) = ln

(∑
yi∑
xi

)
− c

∑
ln
yi
xi
− c

∑
ln

(
yi
xi
∧ 1

)
(5.83)

By (5.60),

z(t, y) ≥
(∑

xi∑
yi

) n∏

i=1

(
yi
xi

)c(
yi
xi
∧ 1

)c
z(t, x).

(iv) If K = {p ∈ Rn : p ≥ 0,
∑

i pi = 1} , then K̃ = Rn. Since π ∈ K, hence Corol-

lary 5.2.1 implies that z ≤ 1. From Example 5.3.4, we see that,

I(ν,K) = ζ(ν) = −ν(1), for any ν ∈ K̃,

Iπ(ln y − lnx,K, t, x) = ln

(∑
yi∑
xi

)
−min

i
ln

(
yi
xi

)
, x, y ∈ Rn

+.

Therefore, by (5.60),

z (t, y) ≥
(

min
i

yi
xi

)(∑
xi∑
yi

)
z (t, x) x, y ∈ Rn

+. (5.84)
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If z(t, x) < 1, (t, x) ∈ (0, T )× Rn
+, then we will have z(t, y) < 1 if

Iπ(lnx− ln y,K, t, y) < − ln z(t, x).

(v) Suppose that the market is diverse, i.e. there exits a 1 > δ′ > 0 such that

π(n) ≤ 1− δ′. For some 0 < δ < δ′, let the constraint set K = [0, 1− δ]n. Consider a

strategy π which satisfies the conditions required for Theorem 4.2.1 to hold, π ∈ K

and is equal to the market portfolio on [0, 1 − δ′]n. By Corollary 5.2.1, z ≤ 1 and

hence O = (0, T ) × Rn
+. Also, by definition of δ′, z is equal to that corresponding

to the market portfolio in this diverse market.

Now,

K̃ = Rn; S0(K) = {0, (1− δ)ei, i = 1, 2, . . . , n} .

By (5.50) and (5.59), we get

I(ν0, K) = ζ(ν0) = −(1− δ)
(
ν0

(1) ∧ 0
)
, ν ∈ Rn, (5.85)

Iπ(ln y − lnx,K, t, x) = ln

∑
yi∑
xi
− ln

[(
min
i

yi
xi

)1−δ

∧ 1

]
, x, y ∈ Rn

+. (5.86)

Suppose now that Osub = (0, T ) × Rn
+, i.e. z∗ is a subsolution of −Lz = 0 on

(0, T )×Rn
+. By Corollary 5.1.2, it then follows that if z(t, x) = 1 for some x ∈ Rn

+,

then z(t, y) = 1 for all y ∈ Rn
+. Therefore, if we can show the existence of x, y ∈ Rn

+

such that z(t, y) < z(t, x), then that would prove that z < 1 on (0, T )× Rn
+.

We consider any fixed x ∈ Rn
+ and ν = 1 ∈ Rn, y = xeν = ex. By (5.86),

Iπ(lnx − ln y,K, t, y) = −δ < 0. From (5.61), it follows now that z(t, y) < 1, thus

proving that z < 1 on (0, T )× Rn
+.

We have thus proved that in a diverse market satisfying the conditions of Theorem

4.2.1 and conditions which guarantee that Osub = (0, T )× Rn
+, there exists relative

arbitrage opportunity with respect to the market portfolio over any time horizon

[t, T ], 0 < t < T , for X (t) belonging to an almost sure subset of Rn
+.
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Example 5.4.7. If K = {p ∈ Rn : pn = 0}, which corresponds to prohibition of

trading in the n-th stock, then K̃ = {p ∈ Rn : pi = 0, i 6= n}, and ζ ≡ 0 on K̃.

Taking ν ′ = (0, . . . , 0, 1), we get that

z∗(t, x) =

∑n−1
i=1 xi + 1∑n

i=1 xi
z∗ (t, (x1, . . . , xn−1, 1)) .
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