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ABSTRACT

Stochastic Models of Limit Order Markets

Arseniy Kukanov

During the last two decades most stock and derivatives exchanges in the world transi-

tioned to electronic trading in limit order books, creating a need for a new set of quantitative

models to describe these order-driven markets. This dissertation offers a collection of mod-

els that provide insight into the structure of modern financial markets, and can help to

optimize trading decisions in practical applications.

In the first part of the thesis we study the dynamics of prices, order flows and liquidity

in limit order markets over short timescales. We propose a stylized order book model

that predicts a particularly simple linear relation between price changes and order flow

imbalance, defined as a difference between net changes in supply and demand. The slope

in this linear relation, called a price impact coefficient, is inversely proportional in our

model to market depth - a measure of liquidity. Our empirical results confirm both of these

predictions. The linear relation between order flow imbalance and price changes holds for

time intervals between 50 milliseconds and 5 minutes. The inverse relation between the

price impact coefficient and market depth holds on longer timescales. These findings shed

a new light on intraday variations in market volatility. According to our model volatility

fluctuates due to changes in market depth or in order flow variance. Previous studies also

found a positive correlation between volatility and trading volume, but in order-driven

markets prices are determined by the limit order book activity, so the association between

trading volume and volatility is unclear. We show how a spurious correlation between these

variables can indeed emerge in our linear model due to time aggregation of high-frequency

data. Finally, we observe short-term positive autocorrelation in order flow imbalance and

discuss an application of this variable as a measure of adverse selection in limit order

executions. Our results suggest that monitoring recent order flow can improve the quality



of order executions in practice.

In the second part of the thesis we study the problem of optimal order placement in a

fragmented limit order market. To execute a trade, market participants can submit limit

orders or market orders across various exchanges where a stock is traded. In practice these

decisions are influenced by sizes of order queues and by statistical properties of order flows

in each limit order book, and also by rebates that exchanges pay for limit order submissions.

We present a realistic model of limit order executions and formalize the search for an optimal

order placement policy as a convex optimization problem. Based on this formulation we

study how various factors determine investor’s order placement decisions. In a case when

a single exchange is used for order execution, we derive an explicit formula for the optimal

limit and market order quantities. Our solution shows that the optimal split between market

and limit orders largely depends on one’s tolerance to execution risk. Market orders help

to alleviate this risk because they execute with certainty. Correspondingly, we find that

an optimal order allocation shifts to these more expensive orders when the execution risk

is of primary concern, for example when the intended trade quantity is large or when it is

costly to catch up on the quantity after limit order execution fails. We also characterize the

optimal solution in the general case of simultaneous order placement on multiple exchanges,

and show that it sets execution shortfall probabilities to specific threshold values computed

with model parameters. Finally, we propose a non-parametric stochastic algorithm that

computes an optimal solution by resampling historical data and does not require specifying

order flow distributions. A numerical implementation of this algorithm is used to study the

sensitivity of an optimal solution to changes in model parameters. Our numerical results

show that order placement optimization can bring a substantial reduction in trading costs,

especially for small orders and in cases when order flows are relatively uncorrelated across

trading venues. The order placement optimization framework developed in this thesis can

also be used to quantify the costs and benefits of financial market fragmentation from the

point of view of an individual investor. For instance, we find that a positive correlation

between order flows, which is empirically observed in a fragmented U.S. equity market,

increases the costs of trading. As the correlation increases it may become more expensive

to trade in a fragmented market than it is in a consolidated market.



In the third part of the thesis we analyze the dynamics of limit order queues at the best

bid or ask of an exchange. These queues consist of orders submitted by a variety of market

participants, yet existing order book models commonly assume that all orders have similar

dynamics. In practice, some orders are submitted by trade execution algorithms in an at-

tempt to buy or sell a certain quantity of assets under time constraints, and these orders

are canceled if their realized waiting time exceeds a patience threshold. In contrast, high-

frequency traders submit and cancel orders depending on the order book state and their

orders are not driven by patience. The interaction between these two order types within

a single FIFO queue leads bursts of order cancelations for small queues and anomalously

long waiting times in large queues. We analyze a fluid model that describes the evolution

of large order queues in liquid markets, taking into account the heterogeneity between or-

der submission and cancelation strategies of different traders. Our results show that after

a finite initial time interval, the queue reaches a specific structure where all orders from

high-frequency traders stay in the queue until execution but most orders from execution

algorithms exceed their patience thresholds and are canceled. This “order crowding” effect

has been previously noted by participants in highly liquid stock and futures markets and

was attributed to a large participation of high-frequency traders. In our model, their pres-

ence creates an additional workload, which increases queue waiting times for new orders.

Our analysis of the fluid model leads to waiting time estimates that take into account the

distribution of order types in a queue. These estimates are tested against a large dataset

of realized limit order waiting times collected by a U.S. equity brokerage firm. The queue

composition at a moment of order submission noticeably affects its waiting time and we

find that assuming a single order type for all orders in the queue leads to unrealistic results.

Estimates that assume instead a mix of heterogeneous orders in the queue are closer to

empirical data. Our model for a limit order queue with heterogeneous order types also

appears to be interesting from a methodological point of view. It introduces a new type of

behavior in a queueing system where one class of jobs has state-dependent dynamics, while

others are driven by patience. Although this model is motivated by the analysis of limit

order books, it may find applications in studying other service systems with state-dependent

abandonments.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Shareholder: I really must say that you are an ignorant person, friend Greybeard,

if you know nothing of this enigmatic business [of a stock exchange] which is at

once the fairest and the most deceitful in Europe, the noblest and the most infa-

mous in the world, the finest and the most vulgar on earth. It is a quintessence

of academic learning and a paragon of fraudulence; it is a touchstone for the

intelligent and a tombstone for the audacious, a treasury of usefulness and a

source of disaster, and finally a counterpart of Sisyphus who never rests as also

of Ixion who is chained to a wheel that turns perpetually.

Philosopher: Does my curiosity not deserve a short description from you on this

deceit and a succinct explanation of this riddle?

Joseph de la Vega, Confusion de confusiones, 1688

1.1 The Brave New Market

The main role of financial markets is to facilitate transactions between buyers and sellers

and thus to provide liquidity. Markets are also the main vehicle of price formation - a

process by which prices for commodities, securities and other assets are determined and all

relevant information and risks are taken into account. Both liquidity and price formation

are outcomes of a dynamic interaction between multiple counterparties who actively trade

and provide quotes and other indications of trading interest to the rest of the market.
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Market microstructure research is a detailed analysis of how interactions between mar-

ket participants give rise to liquidity and price formation. The goal of this analysis is to

formulate quantitative models of the trading process and to improve this process, leading

to a reduction in transaction costs and ultimately to a more efficient allocation of goods

and capital in the economy. For example, in 1994, an academic paper [24] established that

the bid-ask spreads (margins between the best prices for buying and selling securities) on

the NASDAQ stock exchange were anomalously wide, suggesting that dealers colluded to

purposefully widen these spreads. A subsequent investigation by the U.S. Department of

Justice confirmed this observation, leading to a major scandal and an introduction of new

trading rules. This new regulation lead to a rapid growth of electronic communication net-

works (ECNs) - alternative trading platforms that profoundly changed the landscape of the

U.S. equity markets, increasing competition and reducing transaction costs.

Trading regulation and trading mechanisms have continuously evolved since the first

stock exchange opened in Amsterdam in 1602, but this evolution was never as fast as during

the last two decades - the era of electronic trading. Computer technology revolutionized

financial markets: trading moved from buzzing exchange pits to quiet data centers where

racks of co-located computer servers automatically process real-time market information and

execute orders. Similarly to other industries altered by technology, financial markets became

more cost-efficient as a result of this transformation. Various measures of transaction costs,

such as bid-ask spreads, effective spreads, brokerage commissions and order execution delays

dramatically improved over time (see [10; 23; 69]). As trading became more transparent

and its costs decreased, some previously uneconomical investment strategies became viable

and trading volumes skyrocketed.

The standardization and automatization of trading protocols made it possible to im-

plement many trading strategies as computer programs. Electronic trading now dominates

liquid financial markets. For example, in the U.S. the share of equity trading volume due

to electronic trading increased from 16% in 2000 to 82% in 2009 [71] and continues to grow.

Although the rules and costs of trading are the same for all traders, competitive forces have

led to a significant specialization among their strategies and algorithms. In particular, it is

common to distinguish between algorithmic trading in general and its subset high-frequency
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trading. Algorithmic trading is a general term, but most commonly it is used to refer to

trade execution strategies that are typically used by fund managers to buy or sell large

amounts of assets. They aim to minimize the cost of these transactions under certain risk

and timing constraints. These algorithms adjust how trading is done but typically do not

have discretion on whether to trade or not - this decision belongs to a portfolio manager.

In contrast, high-frequency trading algorithms have full discretion regarding their trading

positions. They opportunistically submit orders to buy and to sell, aiming to profit from

the market environment itself by capturing small price differences between their buy and

sell orders many times during a trading session.

The transition to electronic trading was a radical shift and it has seen its share of drama,

skepticism and controversy. As trading became predominantly electronic and exchange pits

closed, thousands of clerks, brokers and other trading specialists lost their jobs [87]. Since

then, repetitive periods of extreme volatility and incomprehensible stock price behavior have

plagued financial markets. These periods were associated with computer trading algorithms,

and their rather frequent occurrence undermines investors’ confidence in the current market

structure [43; 21]. One of the most well-known episodes of such market turbulence is the

Flash Crash of May 6, 2010. During a fifteen-minute interval of time between 2:30pm and

2:45pm, all major U.S. equity indices experienced a sudden 5-6% decline followed by an

almost complete recovery within the next 30 minutes. Some liquid stocks and exchange-

traded funds (ETFs) declined even further during that period, and thousands of trades

were executed at prices more than 60% away from their values just minutes prior. The

government investigation of that event [109] related it to a computer program executing an

exceptionally large order to sell. Empirical evidence presented in this government report

and in the subsequent studies [75; 93] shows that complex interactions between the program

executing the large sale and other trading programs exacerbated, if not caused, the crash.

Another infamous technological incident occurred with the trading systems of Knight

Capital Group on August 1, 2012. Knight Capital was one of the worldwide leaders in

automated market-making and a major advocate of electronic trading in general. Its market

volume share in U.S. equities alone was more than 16%. According to the company’s own

official statement “Knight experienced a technology issue at the open of trading at the NYSE
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... This issue was related to Knight’s installation of trading software and resulted in Knight

sending numerous erroneous orders in NYSE-listed securities into the market ... , which has

resulted in a realized pre-tax loss of approximately $440 million.”. According to company’s

financial statements, this loss is approximately equal to its cumulative net income over the

previous 4 years, or about 30% of its previous year book equity value. After just 30 minutes

of spurious trading this error brought to an end Knight’s 17 year-long history of success,

and the firm was subsequently merged with one of its rivals.

These events highlight the fragility of modern electronic markets and the high level of

their operational risks. Although a reduction in transaction costs due to automated elec-

tronic trading is an empirically established fact (see [60; 90]), the complexity, operational

risks and technological costs of maintaining the modern electronic market system are often

cited as arguments against it. The incidents cited above are extreme, dramatic consequences

of this complexity, but it also presents challenges for the analysis of everyday market behav-

ior. Some of the old questions in the market microstructure literature need to be revisited

again for this brave new market. How do changes in supply and demand translate into

changes in prices? What drives market volatility? How to quantify market liquidity and

what is the connection between liquidity and volatility? There is also a number of new

questions that emerged as markets became increasingly automated and fragmented. How

can market participants reduce their transaction costs in this challenging environment?

What is the effect of high-frequency trading strategies on market dynamics? What benefits

does market fragmentation bring to investors? Fortunately, electronic markets also generate

enormous amounts of data which help in answering these questions. The availability of data

coupled with the simple, transparent rules that underlie electronic trading create exciting

opportunities for research and innovation in market microstructure.
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1.2 Limit Order Books

Merchant: If it is not too great a trouble for our friend, I should like to hear also

about the place and the ways of the exchange transactions, how business is done,

for, although we know the origin, the innovators, and the confusions of the stock

exchange, we do not yet know anything about the kind of business dealings or

the site of the contest.

Joseph de la Vega, Confusion de confusiones, 1688

A major factor that contributed to the transformation of financial markets is the widespread

adoption of a unified trading protocol - a limit order book - by most exchanges around the

world [66; 112]. To trade in a limit order book at an exchange, participants submit limit

orders - electronic instructions to buy or to sell a certain asset, that specify a quantity to

be traded and the worst acceptable price (a limit price). Upon receiving a new order, a

matching engine at the exchange compares the order’s price and quantity with prices and

quantities of pre-existing orders. If an existing order can be matched with the new one

(according to their limit prices) they are are executed and a trade is reported. The new

order is called marketable or aggressive in this case because it initiated the trade and the

pre-existing order is called passive. If the new order’s limit price does not allow to execute it

right away (i.e. it is non-marketable) it joins other unmatched orders in the order book and

stays there until either a new aggressive order fills it or until it is canceled by the market

participant.

Order matching details vary across exchanges and can sometimes become very involved

[67], but in general matching priority is simply given to passive orders that have a better

price (e.g. buy orders with a higher price) and to orders that arrived earlier. With this

price-time matching priority structure, limit orders with identical prices form first-in first-

out (FIFO) queues across different price levels as they arrive to the exchange. The queue

of orders to buy (sell) at the highest (lowest) price is called the best bid (the best ask)

and only orders at the front of these two queues are matched with aggressive orders. Order

queues are depleted by aggressive orders and cancelations, and whenever the best bid or ask

queue is depleted, a queue at the next-best price becomes the new best bid or ask. Some
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Figure 1.1: An illustration of limit order book dynamics

exchanges provide additional order types, such as market orders, pegged orders, iceberg

orders, discretionary orders, etc., but most of them can be represented as simple limit order

trading strategies.

For markets organized as limit order books liquidity is often associated with passive

orders because they provide options to incoming traders to transact with them at their limit

prices. If liquidity is viewed as a good, then submission of passive orders is associated with

liquidity provision and submission of aggressive orders - with its consumption. In contrast

with dealer or specialist markets, limit order markets do not have designated agents whose

role is to provide liquidity or to set prices. Instead, liquidity is self-organized in the sense

that some market participants send passive limit orders based on their preferences and their

experience with the trading process. Similarly, prices are formed by passive orders resting

at the top of the book - near the best bid and ask prices.

The basic rules of limit order trading described above are quite simple, but limit order

trading strategies can be very complex. Depending on trader’s objectives he can submit limit
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orders to buy and/or to sell at different points in time with different prices and quantities

and moreover submit orders simultaneously to multiple order books (in a fragmented market

the same asset can be traded at multiple exchanges). These orders can be subsequently

canceled and modified at any time producing a high-dimensional action space of possible

strategies. In addition to this, strategies depend on past order submission outcomes and on

the actions of other traders. The high flexibility of strategies presents a significant challenge

for modeling limit order book markets in an economic equilibrium framework, but some

progress has been made in this direction (see [100] for a recent survey). Nevertheless, the

formal and well-defined decision environment of a limit order book (as compared to more

opaque dealer markets), combined with enormous amounts of data generated and recorded

daily by electronic financial markets present a good opportunity for rigorous mathematical

modeling of these systems. Their complexity can be overcome and meaningful results can

still be obtained from reduced-form models of limit order books using operations research

tools such as stochastic processes, statistics and optimization. Models of limit order books

have an immediate and important application in the financial markets industry, and also

motivate the development of new stochastic modeling techniquies and new statistical tools

that could be of interest to a broader academic community.

1.3 Literature Review

One of the major questions in market microstructure analysis is how trading activity leads

to price changes. The price impact of orders is a fundamental mechanism of price formation

because it translates changes in supply and demand into price movements. Early market

microstructure literature has described this concept in a setting of specialist markets. In

these markets prices are quoted by a centralized intermediary (a specialist) or a group of

competitive market-makers. The specialist receives orders from brokers and updates his

quotes as he interacts with their order flow. From a broker’s viewpoint, the impact of his

orders is a cost paid to a market-maker for his continuous availability to accept broker’s

orders [33], i.e. price impact can be seen as a transaction cost, specifically the cost of

immediacy. From a market-maker’s viewpoint, the picture is more complex. Some of the
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orders are submitted by brokers based on information about future asset payoffs, and a

fraction of this information is inferred from their order flow by the market maker. This

information becomes permanently impounded in the market-maker’s quotes [79] and the

permanent price impact reflects this learning process. Larger aggressive orders are more

frequently used by informed traders than smaller orders, implying larger potential losses for

a market-maker who trades against an informed counterparty [34]. Larger orders also create

more inventory risk for a market-maker because accepting these orders significantly exposes

him to random future price fluctuations. To recoup these utility losses, market-makers

quote worse prices for larger orders. The difference between a price that a specific order

obtains in the market and the best available quote for a small order is called the immediate

price impact and it is an increasing function of an order size. The temporary price impact

can be defined as a difference between the immediate and the permanent impact of an order

[73] and it represents a transient price concession required to accommodate a large order.

Although specialist markets have been largely replaced by electronic limit order books,

the same price impact terminology is commonly applied to both kinds of markets. However,

for limit order markets it is much more difficult to disentangle permanent and temporary

price impact because there are no centralized specialists, all traders can send aggressive

and passive orders, and all learn from each other’s actions. To describe price impact in a

theoretical economic model of a limit order market, one needs to detail trader utilities and

strategies, and then derive the dynamics of order flows and trader beliefs. Although this

is possible to do in some stylized models, they commonly involve unobservable parameters

and are rarely tractable (see [51; 100]), which prevents their estimation with real data and

limits their practical applicability. Describing the immediate price impact in a limit order

book appears, at first, to be a simpler goal because the impact of an aggressive order is

fully described by its mechanical effect on the order book state. However this approach is

also problematic because it requires a description of the high-dimensional state of an order

book. This state and its dynamics can be studied in a simulation framework (see e.g. [41])

but this approach is again infeasible for real-time applications.

Since theoretical market microstructure models give little practical guidance on how to

describe price impact in limit order markets, statistical models of price impact have gained
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significant popularity. An empirical approach is facilitated by the availability of detailed

data from limit order markets, and statistical price impact models are often motivated by

applications in algorithmic trading which typically rely on the data. Empirical studies of

price impact can be differentiated by the kind data that are used: proprietary data from

financial firms regarding their own orders, or public data from an exchange containing all

orders but not trader identities.

Proprietary datasets contain orders of a subset of firms (typically just one) but these

datasets have more detailed information on each order including intended trade sizes that

are also called parent orders or meta-orders in the literature. Using this information one can

aggregate smaller orders that were actually submitted to an exchange into intended trades,

which is not possible with public data that are lacking trader identifiers. With proprietary

order data, one can also directly model parent order transaction cost as a function of its size,

direction and other parameters. Most studies of proprietary data agree that the price impact

of a parent order is an increasing, concave function of its size, controlling for the average

stock trading volume, volatility and an execution time window [7; 115]. The monotonicity

and concavity of these price impact functions are confirmed by many studies, but their

estimation details vary and their reliance on proprietary data is prone to several general

criticisms. First of all, orders are executed over time and trader’s discretion to stop an

execution in unfavorable circumstances introduces a significant selection bias [96]. There is

also a large number of important factors that affect price impact but are difficult to control

in a proprietary dataset, such as details of specific algorithms and trading venues used to

execute a trade [20]. There are also significant variations in price impact across economies

and sectors and across stocks with different properties such as momentum or growth [16].

In summary, modeling the price impact of parent orders is an important practical task, but

implementation details make it difficult to draw general conclusions based on proprietary

data.

An alternative approach is to rely on anonimized public data from an exchange and to

estimate the price impact of all orders that were placed in a market by all traders. Until

recently, most studies focused exclusively on marketable orders and analyzed correlations

between sizes of these orders and subsequent price movements [39; 48; 54; 73; 74; 114; 102;
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103]. General conclusions are the same as for the impact of parent orders - the immediate

and temporary impact of a single marketable order are both increasing, concave functions

of an order size. Unfortunately these results do not at all describe a complete picture of

price formation. In most cases, marketable orders constitute about 10% of all orders [57]

at an exchange, so a model for their impact gives, at best, a very limited description of

market dynamics and price formation. Restricting analysis to marketable orders is also

unsatisfactory from a practical point of view because modern algorithmic trading strategies

often rely on passive limit orders to reduce trading costs [42]. More recent empirical studies

[61; 59; 35] consider the immediate impact of marketable orders, passive orders and order

cancelations together with the evolution of their impact through time. Descriptive statistical

models used in these studies illuminate rich interactions between order flows in a limit order

book and produce a highly complex picture of market dynamics on the level of individual

orders. Unfortunately these models also involve hundreds of free parameters which reduces

their usefulness for applications.

An important application of price impact models is the optimal trade execution problem

arising in algorithmic trading. Generally speaking it is a problem of finding a strategy to

buy or to sell a large quantity of assets at a low cost within a limited amount of time. The

trade quantity (a parent order) is typically much larger than the quantity of passive limit

orders available at the top of an order book at any time, so a trade is done with a sequence

of small child orders that are gradually submitted to an exchange. The problem of finding

a good trade execution strategy, i.e. a sequence of child order sizes and submission times is

important from both practical and regulatory points of view. In most developed markets

trading regulations require brokers to seek “best execution” for their customers1. Yet there

is no definition of best execution and, until recently, there was no quantitative methodology

to evaluate, compare and improve the quality of trade execution strategies.

Different formulations of the optimal trade execution problem vary in terms of their

assumptions on asset price dynamics, price impact and mechanisms by which trader’s orders

are filled in the market. An early treatment of the trade execution problem was given in

[15] where the authors used dynamic programming to minimize a mean execution cost

1see for example http://www.sec.gov/answers/bestex.htm
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objective. This formulation was later augmented in [6; 105] by adding a penalty for the

execution price risk carried by price fluctuations over the course of an execution. A trader’s

aversion to execution risk presses him to trade faster and use larger orders, which also bear

higher costs due to temporary price impact. Finding an optimal execution strategy that

balances execution risks and price impact costs is an interesting control problem, and it has

motivated a large number of theoretical studies.

Studies have noted that certain price impact assumptions make it possible to system-

atically earn positive returns on round-trip transactions, leading to ill-posed optimal trade

execution problems. For example, if price impact is a concave function of an order size

and is permanent, one can make systematic profits by selling two shares of a stock in a

sequence and then buying them back with one order. A rigorous study of quasi-arbitrage

trading strategies is performed in [63] with a conclusion that the permanent price impact

needs to be a linear function of an order size to avoid arbitrage. A later study [50] re-

lates the form of an immediate price impact function (which is possibly non-linear) to the

rate at which temporary impact decays through time, and establishes no-arbitrage restric-

tions on these functions for a number of popular price impact models. Later studies [4;

44] found additional restrictions on price impact models that must be imposed to prevent

price manipulation or erratic behavior of order execution strategies in a market model.

Practical applications of the optimal trade execution problem have motivated a large

number of extensions and alterations of its basic setup. On a macroscopic level, this prob-

lem is related to portfolio allocation decisions because trade execution strategies are ul-

timately used to turn over investors’ portfolios. On a microscopic level, each child order

generated by a trade execution strategy needs to be placed as a limit or a market order

in a limit order book, linking trade execution and order placement decisions. Although

it is possible to combine optimal trade execution with optimal portfolio construction [47;

99] or optimal option hedging [86] within a single problem formulation, such problems are

rarely analytically tractable, and their solutions require strong assumptions on price impact

and on the evolution of asset prices.

Similarly, it is possible to include some details of order placement decisions into an

optimal trade execution problem, but such extensions come at the cost of restrictive as-
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sumptions on trading strategies and on market dynamics. One approach, followed in [3; 97;

104], restricts a trader to use only marketable orders. The execution cost of a marketable

order is explicitly computed by integrating an idealized density function which represents

passive orders at the top of the book. After a marketable order is executed, this density

restores over time due to order book resiliency [81]. In these models the total cost of a

sequence of marketable orders depends on their initial impact and the speed of order book

recovery, creating a tradeoff between execution cost and speed. This approach presents an

improvement compared to early trade execution models that completely abstracted from

mechanisms of order placement. However the restriction to use only marketable orders is

not satisfactory. In practice investors rely on passive orders for trade execution [20], thus

suggesting that pure marketable order strategies are generally suboptimal. Because the

restriction to use marketable orders is imposed ex-ante in these models, they also do not

improve our understanding of the order type selection (limit or market) and do not explain

what factors contribute to this choice.

More recent studies [14; 53; 65] present optimal trade execution strategies with limit

orders. Limit order fills are modeled with a point process whose intensity depends on

the distance of a limit order to the best bid or ask price. This distance is within trader’s

control, and thus a trade execution problem with limit orders can be solved using stochastic

control techniques. Market orders can also be included in this setting as impulse controls.

A general drawback of this approach is that it requires specifying a joint process of price

and limit order book dynamics. Another problem is that even with strong assumptions on

this process, the resulting control problems are usually analytically intractable. Finally, the

focus of these problems remains on optimizing trade execution across time, and only basic

details of order placement decisions (e.g. average limit order execution rates) are included

in stochastic control formulations. This leaves out important information about the present

state of an order book [111], adverse selection in limit order executions [107], order queue

sizes and limit order queueing delays [94] that matter for order timing and order placement

decisions in practice.

Another important aspect of trade execution that is rarely addressed in the academic

literature is market fragmentation, i.e. the possibility of trading the same asset in multiple
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limit order books at the same time. The problem of optimizing order placement across

multiple dark pools (markets where supply and demand are unobserved) is studied in [49;

82] but there is no similar analysis for limit order books.

In summary, the problem of optimally pricing and placing limit orders in a fragmented

market remains relatively unexplored and, until recently, limit order placement optimization

was considered only as a complicated extension to the trade execution problem.

The market microstructure literature shows a steady interest in developing tractable

models of order-driven markets that can realistically describe these markets, and at the

same time can be used in practical applications such as optimal trade execution [97; 104]

or market-making [12; 53; 85]. The two main streams of literature - theoretical equilibrium

models from financial economics, and statistical order book models from econometrics and

econophysics - describe different aspects of limit order markets but do not seem to answer

practical needs. Economic models precisely describe various theoretical tradeoffs that are

faced by market participants, but usually present them in a simplified setting and rely on

unobservable parameters such as individual trader utilities. These models can rarely be

estimated with real data which limits their practical value. On the other hand, statistical

models of price impact and order book dynamics can fit the data well, but often lack

economic structure and involve numerous free parameters which also reduces their usefulness

in applications.

Stochastic order book models seem to find a balance between analytical tractability

and descriptive power. The distinguishing feature of these models is that they represent

aggregate order flows from all traders with a random process, e.g., a Poisson process [31;

41]. With this description a limit order market can be viewed as a stochastic system (a

queueing system), where orders randomly arrive, cancel and execute according to order

matching rules. This stochastic modeling approach avoids making detailed assumptions on

the utilities, beliefs and strategies of individual traders, replacing them with assumptions

on measurable statistical properties of aggregate order flows, thus making it straightforward

to calibrate a stochastic model to order book data. Stochastic models of limit order books

are more flexible than economic equilibrium models, but possess more structure than purely

descriptive statistical models.
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The analysis of stochastic order book models relies on a rich queueing theory, and

their analytical tractability makes them appealing from a practical point of view. For

example, order execution costs can be improved in practice by strategically timing order

submissions. It is optimal to submit aggressive orders when the probability of an adverse

price change implied by the current order book state is high [111]. This probability and

other useful distributions for order placement optimization can be easily computed in a

birth-death stochastic order book model via Laplace transforms [31; 62]. Analytical results

can also be derived from scaling approximations of order book models. Even if processes

that govern individual order arrivals and cancelations are very complicated, under suitable

conditions their time aggregates can be conveniently approximated with simpler processes

using functional laws of large numbers and functional central limit theorems. For instance,

a queueing order book model in a heavy-traffic regime is analyzed in [30]. This model is

used to derive the distribution of durations between consecutive price changes, as well as the

distribution of price increments conditional on the order book state. This analysis creates

a link between the order book state and its dynamics on a microscopic timescale of a few

milliseconds and price fluctuations on longer mesoscopic timescales of several minutes or

hours. The link is formally established in a subsequent work [29] via a heavy-traffic limit

theorem - under suitable conditions microscopic price changes in a queueing order book

model converge on a larger scale to a Brownian motion, whose volatility is a function of

the average order queue size and the order inter-arrival rate. Other widely used tools in

the stochastic modeling literature are fluid approximations, and they have been applied to

limit order books as well. A fluid model of a fragmented market with multiple order books

is used in [94] to show how the strategic order routing activity of self-interested investors

creates coupling between order flows and order queues across market centers.

These are several successful examples of applying classical stochastic modeling tech-

niques to describe limit order markets. However, the rich structure of these markets also

motivates the development of entirely new modeling tools. Empirical studies of order data

with trader identifiers [1; 13; 75] have exposed complicated interactions and feedback ef-

fects between heterogeneous market participants. While the queueing order book models

discussed above can describe the behavior of aggregate order flows from all participants in
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a limit order book, studying interactions between traders or trader groups seems to be dif-

ficult with off-the-shelf stochastic models. So far these interactions have been only explored

in the financial economics literature using game theoretical arguments. The stochastic mod-

eling literature offers a large variety of multi-class queueing models for studying systems

with dissimilar participants. These models express differences between participants (jobs)

in a queue or a network of queues by assigning each class of jobs a distinct distribution

of arrival, service or abandonment times (see e.g. [68]). Multi-class queueing models may

capture some of the differences between participants in limit order markets, but their use

does not seem proper because they have been developed in other contexts such as call center

modeling or healthcare. Impatient customers in a service system typically share the same

timescale - customers in a call center may wait several minutes, and patients may spend

several days or weeks in a ward. In contrast, some participants in financial markets submit

and cancel their orders thousands of times faster than other traders [57], responding to

changes in the state of the order books. Some orders that queue in a limit order book are

driven by patience, similarly to customers in a service system, while others exhibit more

complex behavior which depends on the order book state. In summary, modeling limit or-

der books is a new and interesting application of the queueing theory and presents exciting

opportunities for developing new models and new theoretical tools.

1.4 Contribution

The rapid transformation of financial markets during the last two decades posed a num-

ber of challenges. Regulators and exchanges worldwide recognize the complexity of these

markets and work to improve their fairness, transparency and robustness to hazards like

the Flash Crash event. Practitioners increasingly rely on quantitative models and computer

algorithms to hedge their positions, turn over large portfolios, provide liquidity and guide

their trading decisions. To better understand and improve the modern marketplace, regu-

lators and practitioners alike need models of limit order books, which on one hand could

realistically describe the complicated dynamics exhibited by these markets, and on the other

hand would be tractable enough to be useful in applications.
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This need has motivated four research goals addressed in this thesis:

� Develop a parsimonious model that relates price dynamics in a limit order market to

order submissions and cancelations (order book events) without requiring a complex

description of full order book dynamics or references to unobservable parameters.

� Investigate connections between the price impact of order book events, liquidity, trad-

ing volume and volatility in limit order markets on intraday timescales.

� Propose a tractable framework for order placement and order routing optimization in

a fragmented market with multiple limit order books, and study the tradeoffs that

form the order placement decisions of a single investor.

� Study how the heterogeneity in order submission and cancelation strategies across

market participants (e.g. algorithmic traders and high-frequency traders) affects the

dynamics of limit order queues and order waiting times in these queues.

In Chapter 2 we develop a model that describes price dynamics in limit order books by

incorporating the immediate effects of limit orders, market orders and order cancelations

on prices. Our model specification (2.7) is detailed enough to describe the immediate price

impact of all order book updates, yet it does not require one to describe the complex

evolution of a limit order book and involves a single parameter that can be estimated

by fitting a linear regression. We follow an empirical approach and test our model on a

large sample of high-frequency data. The methodological contribution of this model is that

it finds a middle ground between theoretical order book models from financial economics

literature and statistical models of price impact. In comparison with theoretical order book

models, ours is simpler and can be easily mapped to real data or used in applications.

In contrast with statistical price impact models, it is based on simple economic intuition

and imposes strong structural restrictions on parameter values. This structure allows us

to not only describe the immediate price impact in a limit order book, but also to link

different variables of interest: the magnitude of price impact, market depth, volatility and

trading volume. Specifically our model predicts an inverse relation between the price impact

coefficient and market depth (2.8). This relation and other parameter restrictions posed
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by our model are confirmed by empirical analysis in Section 2.3, where we also show that,

despite its simplicity, our model successfully explains 65% of variance in short-term price

movements (see also Tables 2.2 – 2.4). The link between market depth and price impact

predicted by this model allows us to structurally explain intraday variations in volatility

with variations in two observable variables - the average market depth and the variance

of order flows 2.21. Previous studies of trade data noted that market volatility positively

correlates with trading volume, but, in order-driven markets, prices are determined by limit

order book dynamics and the effect of trading volume on prices is dubious. Proposition

1 in Section 2.4.3 establishes one channel through which the correlation between volume

and volatility can spuriously emerge as a consequence of aggregating high-frequency data.

Our model parsimoniously relates price changes, order flows and market liquidity and thus

lends itself to multiple applications, from the analysis of intraday volatility dynamics to

price impact forecasting. In Section 2.4.1 we develop an application of our results that can

improve the quality of limit order executions in practice.

In Chapter 3 we propose a novel framework for order placement optimization in a

fragmented market. The main distinction of our approach from the existing literature on

optimal trade execution is that we decouple the optimization of a trade execution trajectory

in time and individual order placement decisions, focusing on the latter part. This allows

us to study order placement decisions in significant detail without sacrificing analytical

tractability. In Section 3.2 we describe a realistic model for limit order executions in an order

book that considers the length of limit order queues, statistical properties of order flows

on multiple exchanges and different order routing incentives (fees and rebates) provided by

exchanges. Based on this detailed description of limit order execution mechanics, the search

for an optimal order placement policy can be formulated as a convex optimization problem

3.4, which is shown to have an optimal solution in propositions 2,3. An alternative approach

to order placement optimization is based on a cost minimization problem 3.6 under execution

shortfall constraints, and we show in section 3.2 that the two approaches are connected by

duality. Other studies in the optimal trade execution literature have predominantly focused

on the risk of price fluctuations during the course of a trade execution, but assumed that

each order on a trade execution schedule is filled with certainty. Instead, we focus on the
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non-execution risk for an individual order and show that this risk plays a major role in

determining an optimal mix of market and limit orders for a trader. In a special case when

a single exchange is used for order execution, proposition 4 gives an explicit formula for

optimal limit and market order sizes, and shows how the optimal solution shifts to market

orders when the non-execution risk outweighs the high cost of these orders.

The fragmentation of financial markets in the U.S. and Europe motivates us to analyze

the order placement problem with multiple exchanges. This is an improvement relative to

existing studies that typically consider a single exchange for order execution. Proposition

5 shows that the optimal solution in case of fragmented markets is characterized by setting

execution shortfall probabilities to specific values computed with transaction cost parame-

ters. In Section 3.5 we propose a stochastic approximation scheme that uses historical data

samples to optimize order placement decisions without a need to specify order flow distribu-

tions. Our numerical examples in that section illustrate the structure of an optimal solution

in a case of fragmented markets and show that substantial cost savings can be realized by

applying order placement optimization. The framework developed in Chapter 3 can also be

applied to study the costs and benefits of market fragmentation from an investor’s perspec-

tive. We observe that it is often optimal to oversize the total quantity of limit orders sent to

all exchanges (i.e. to overbook) in an attempt to diversify the non-execution risk. However,

when order flows on each exchange are strongly positively correlated, this diversification

advantage fades and the cost of execution in a fragmented market can become higher than

the cost of execution in a consolidated market.

In Chapter 4, we study the dynamics of a limit order queue in a market populated

by heterogeneous traders. Our model for this queue, presented in Section 4.2, explicitly

distinguishes between orders submitted by trade execution algorithms and high-frequency

traders (henceforth, type-1 and type-2 orders). Trade execution algorithms usually oper-

ate under time constraints and therefore type-1 orders in our model have finite patience

deadlines. In contrast, type-2 orders of high-frequency traders respond to changes in a

limit order book state and are not driven by patience. This distinction between order types

plays an important role in our analysis and it is a new feature compared to the existing

literature on stochastic order book models, which assume identical dynamics for all orders
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in the market. In our model, orders of both types arrive at the back of the same FIFO

queue at the best bid (ask) and gradually propagate through this queue to match against

a contra-side marketable order at the queue front. When the queue size is relatively large,

high-frequency traders perceive a low risk of price changes and keep their type-2 orders in

the queue, as opposed to type-1 orders that constantly cancel due to impatience. As it takes

additional time for marketable orders to clear the extra “workload” introduced by type-2

orders, the queue waiting times for type-1 orders increase, forcing execution algorithms to

cancel their orders and trade aggressively at worse prices. This “order crowding” effect has

been previously noticed by traders in exceptionally liquid stock and futures markets, but

it cannot be captured by models with homogenous order behavior. In contrast, when the

queue size becomes small, all type-2 orders immediately cancel due to the risk of a price

change, creating a rush of high-frequency order cancelations.

In Section 4.3 we present our results for a fluid model that approximates the evolution

of large orders queues over relatively long time intervals. This approximation is analytically

tractable and applicable to studying limit order queue waiting times in liquid markets.

Propositions 6, 7, 8 analyze the fluid model dynamics and show that a particular queue

structure emerges for large queues and for queues that have evolved for a sufficiently long

time. These cases correspond to the “crowding” phenomenon because all new type-2 orders

remain in the queue until execution, while only a fraction of finitely patient type-1 orders

make it to the queue front. Proposition 8 describes the convergence of the fluid model to

a steady state and characterizes its limit. Proposition 9 explores the dependence of queue

waiting times on the initial queue composition with type-1 and type-2 orders. When all or-

ders in a queue belong to impatient traders, waiting times are expected to be relatively short

even if the queue is long because most of its content is eventually canceled. However, the

presence of type-2 orders significantly increases queueing delays, and our model prescribes a

specific procedure for computing queueing delay forecasts as a function of the initial type-1

and type-2 order quantities. In Section 4.4 these forecasts are tested against an extensive

proprietary dataset of realized limit order delays in U.S. equity markets. We find that as-

suming a homogenous queue composition leads to unrealistic waiting time predictions that

can biased up or down by a factor of 10 or more. The model with heterogeneous orders
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leads to more realistic predictions that lie between the two extremes (see Figure 4.5) and can

potentially be used to predict order queueing delays in practical applications. In summary,

our analysis motivates the development of a new generation of stochastic models for order

book markets. These models go beyond the description of aggregate order flows and take

into account more detailed features of these markets, such as the trader heterogeneity, pro-

viding a link with market microstructure models in the financial economics literature. The

stochastic model introduced here is also interesting on a stand-alone basis - in comparison

with existing multi-class queueing models, it introduces new types of dynamics, induced by

the state-dependent behavior of one of the job classes.
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Chapter 2

Price impact, liquidity and market

volatility

This chapter is based on the paper ”The Price Impact of Order Book Events” [28] which is

a joint work with Professor Rama Cont and Doctor Sasha Stoikov.

2.1 Introduction

Sometimes a quiet state of prices is obtained and the Exchange is influenced by

neither favorable nor unfavorable news... Suddenly a cloud appears which por-

tends a storm. The sellers of shares rejoice and start talk about the uncertainties

in the situation and the possibilities of disasters. As quick as lightning the bulls

hasten forward in order to dam the inundations and to reject this reproach on

their wisdom... The skirmishing goes on, and at last the price is higher than

before the confusion, because those groups of exchange operators who, suspect-

ing no intrigue, had no thought of fighting and had been pursuing their regular,

peaceful practices, have been awakened by the attacks.

Joseph de la Vega, Confusion de confusiones, 1688

The availability of high-frequency records of trades and quotes has stimulated an exten-

sive empirical and theoretical literature on the relation between order flow, liquidity and
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price movements in order-driven markets. A particularly important issue for applications

is the impact of orders on prices: the optimal liquidation of a large block of shares, given

a fixed time horizon, crucially involves assumptions on price impact (see Bertsimas and Lo

[15], Almgren and Chriss [6], Obizhaeva and Wang [97]). Understanding price impact is

also important from a theoretical perspective, since it is a fundamental mechanism of price

formation.

Various aspects of price impact have been studied in the literature but there is little

agreement on how to model it [18], and the only consensus seems to be the intuitive notion

that imbalance between supply and demand moves prices. Theoretical studies draw a

distinction between instantaneous price impact of orders and its decay through time, and

show that the form of instantaneous impact has important implications. Huberman and

Stanzl [63] show that there are arbitrage opportunities if the instantaneous effect of trades

on prices is non-linear and permanent. Gatheral [50] extends this analysis by showing that if

the instantaneous price impact function is non-linear, impact needs to decay in a particular

way to exclude arbitrage and if it is linear, it needs to decay exponentially. Bouchaud et

al. [19] associated the decay of price impact of trades with limit orders, arguing that there

is a “delicate interplay between two opposite tendencies: strongly correlated market orders

that lead to super-diffusion (or persistence), and mean reverting limit orders that lead

to sub-diffusion (or anti-persistence)”. This insight implies that looking solely at trades,

without including the effect of limit orders amounts to ignoring an important part of the

price formation mechanism.

However, most of the empirical literature on price impact has primarily focused on

trades. One approach is to study the impact of “parent orders” gradually executed over

time using proprietary data (see Engle et. al [105], Almgren et. al [7]). Alternatively,

empirical studies on public data [39; 48; 54; 73; 74; 114; 102; 103] have analyzed the relation

between the direction and sizes of trades and price changes and typically conclude that the

instantaneous price impact of trades is an increasing, nonlinear function of their size. This

focus on trades leaves out the information in quotes, which provide a more detailed picture

of price formation [37], and raises a natural question: is volume of trades truly the best

explanatory variable for price movements in markets where many quote events can happen
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between two trades?

In our view, a price impact model that encompasses limit orders, market orders and

cancelations, and relates their impact to the concurrent market liquidity would provide a

more detailed description of price formation. Obtaining such model is also desirable from

the practical point of view because modern order execution algorithms increasingly use

limit orders and incorporate market state variables in their decisions. There is also ample

empirical evidence that limit orders play an important role in determining price dynamics.

Arriving limit orders significantly reduce the impact of trades [116] and the concave shape

of the price impact function changes depending on the contemporaneous limit order arrivals

[110]. The outstanding limit orders (also known as market depth) significantly affect the

impact of an individual trade ([76]), low depth is associated with large price changes [117;

40], and depth influences the relation between trade sizes and returns [58]. The emphasis in

the aforementioned studies remains, however, on trades and there are few empirical studies

that focus on limit orders from the outset. Notable exceptions are Engle & Lunde [37],

Hautsch and Huang [59] who perform an impulse-response analysis of limit and market

orders, Hopman [61] who analyzes the impact of different order categories over 30 minute

intervals and Bouchaud et al. [35] who examine the impact of market orders, limit orders

and cancelations at the level of individual events.

2.1.1 Relation to the literature

The primary focus of our study is on short-term effects of orders on stock prices, i.e. their

price impact, and on the relation between price impact and market liquidity. The immediate

price impact of individual orders and aggregate order imbalances (sums of buy order sizes

minus sell order sizes) was previously analyzed for marketable orders in [74; 102; 103;

61] and was generally confirmed to be an increasing, concave function of a marketable order

size. This can be explained by a typical order book density shape that has more orders

near the top of the book and fewer orders deeper in the book [116]. A marketable order

consumes liquidity from the top of the book first and then executes against orders that are

progressively deeper in the order book. Therefore its impact can be written as an integral

of a decreasing order book density, leading to a concave price impact function. Although
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the aforementioned studies provide interesting insights into order book properties they do

not consider the impact of non-marketable orders or order cancelations which constitute

a majority of order book updates, and therefore more detailed models are required to

comprehensively describe price dynamics in order-driven markets. Vector autoregression

and kernel models were applied to study the price impact of marketable orders [54], non-

marketable limit orders and order cancelations [35; 59] and the evolution of their impact

through time. These statistical models give a highly detailed description of price impact

but involve many parameters which impedes their further application. We propose a more

structured model that describes the immediate price impact of all order book events at the

top of the order book using a single parameter.

Our model is applied to investigate the relation between market depth (a measure of

liquidity), price volatility and price impact. Market depth and volatility are known to

be correlated - depth increases in response to an increase in transitory volatility [2], but

decreases when informational volatility is high [101], while volatility itself decreases with

an increase in market depth. Our model contributes to this discussion by structurally

explaining these connections: price volatility is related to variations in order flow, whose

effect on prices depends on market depth. We use these links to explain significant intraday

variations in volatility, that were previously attributed to information asymmetries by [89]

and [55]. In contrast, our model explains these diurnal data features using only observable

variables. Multiple studies comment on the positive correlation between trading volume and

volatility (see [72] for a review), but we argue that prices in limit order markets are driven by

orders and not by trades. However, we make a connection with market volume by showing

that a spurious positive correlation between price volatility and volume can emerge as an

artifact due to aggregation of high-frequency data. Price impact models are often applied

to optimize transaction costs, for instance optimization of limit order executions is studied

in [14; 111]. Our findings suggest that monitoring imbalances in order flow can improve the

quality of limit order executions.
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2.1.2 Summary of main results

We conduct an empirical investigation of the instantaneous impact of order book events –

market orders, limit orders and cancelations – on equity prices. Although previous studies

give a relatively complex description of their impact, we show that their instantaneous

effect on prices may be modeled parsimoniously through a single variable, the order flow

imbalance (OFI). This variable represents the net order flow at the best bid and ask and

tracks changes in the size of the bid and ask queues by

� increasing every time the bid size increases, the ask size decreases or the bid/ask prices

increase,

� decreases every time the bid size decreases, the ask size increases or the bid/ask prices

decrease.

Interestingly, this variable treats a market sell and a cancel buy of the same size as equiva-

lent, since they have the same effect on the size of the best bid queue. This aggregate variable

explains mid-price changes over short time scales in a linear fashion, for a large sample of

stocks, with an average R2 of 65%. In contrast, order flows deeper in the order book do not

substantially contribute to price changes. Our model based on OFI relates prices, trades,

limit orders and cancelations in a simple way: it is linear, requires the estimation of a single

price impact coefficient and it is robust across stocks and across timescales.

Most of variability in the instantaneous price impact, both across time and across stocks

is explained by variations in market depth. In fact, we establish an exact inverse relation

between the two variables. The coefficient of proportionality in that relation depends dra-

matically on the depth definition, showing that arbitrary measures of market depth are

biased proxies for price impact and may lead to misleading conclusions on market liquidity.

The price impact coefficient exhibits substantial intraday variability coinciding with

known intraday patterns observed in spreads, market depth and price volatility [2; 9; 83;

91]. We explain the diurnal effects in price volatility using the volatility of order flow

imbalance and market depth, as opposed to unobservable parameters previously invoked

in the literature, such as information asymmetry [89] or informativeness of trades [55].

The strong link between price volatility and standard deviation of OFI suggests that our
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price impact coefficient is a better estimate of Kyle’s λ (a useful metric of liquidity [8;

79]) than traditional estimates based on trades data. We also show that intraday price

volatility is mainly driven by OFI and not by trading volume. The positive correlation

between price volatility and volume, widely confirmed by empirical studies [72], can be a

statistical artifact due to aggregation of data over time, and we establish how such spurious

relation can arise in our model.

The OFI variable exhibits positive autocorrelation over short time scales, which can be

exploited to improve the quality of order executions. In particular, we show that a limit

order fill is more likely to be followed with a price change in the same direction as the order

flow imbalance before that fill. For example, a limit sell order is more likely to be adversely

selected when order flow imbalance is positive. Monitoring OFI can therefore help reduce

adverse selection in limit order fills.

2.1.3 Chapter outline

This chapter is structured as follows. In Section 2.2, we specify a parsimonious model that

links stock price changes, order flow imbalance and market depth and motivate it by a

stylized order book example. Section 2.3 describes our data and presents estimation results

for our model. Section 2.4 discusses potential applications of our results: in 2.4.1 we use

order flow imbalance as a measure of adverse selection in limit order executions, in 2.4.2

we demonstrate how diurnal effects in depth and order flow imbalance generate intraday

patterns in price impact and price volatility, and in 2.4.3 we show how a spurious relation

between volume and the magnitude of price moves emerges as a statistical artifact from our

simple model. Section 2.6 presents our conclusions.
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2.2 Price impact model

2.2.1 Stylized order book

To motivate our approach we first consider a stylized example of the order book where the

instantaneous effect of order book events can be explicitly computed.

Consider an order book in which the number of shares (depth) at each price level beyond

the best bid and ask is equal to D. Order arrivals and cancelations occur only at the best

bid and ask. Moreover, when bid (or ask) size reaches D, the next passive order arrives one

tick above (or below) the best quote, initializing a new best level. Consider a time interval

[tk−1, tk] and denote by Lbk, C
b
k respectively the total size of buy orders that arrived to and

canceled from current best bid during that time interval. Also denote by M b
k the total size

of marketable buy orders that arrived to current best ask, and by P bk the bid price at time

tk. The quantities Lsk, C
s
k,M

s
k for sell orders are defined analogously and P sk is the ask price.

In this simple order book model there exists a linear relation between order flows

Lb,sk , Cb,sk ,M b,s
k and price changes ∆P b,sk = (P b,sk −P

b,s
k−1) (also illustrated on Figures 2.1-2.3):

∆P bk = δ

⌈
Lbk − Cbk −M s

k

D

⌉
(2.1)

∆P sk = −δ
⌈
Lsk − Csk −M b

k

D

⌉
, (2.2)

where δ is the tick size1. These relations are remarkably simple - they involve no parameters,

the impact of all order book events is additive and depends only on their net imbalance.

1This is easily proven by induction over the number of price changes in [tk−1, tk]. The statement is clearly
true when there are no price changes or a single price change of ±δ. Since any price change of ±kδ consists
of jumps of size 1, we simply need to sum the order flow imbalances across these jumps on the right side of
the equation.
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Although all of the subsequent analysis can be carried out separately for bid and ask

prices, for simplicity we consider mid-price changes normalized by tick size Pk =
P bk+P sk

2δ :

∆Pk =
OFIk

2D
+ εk, (2.3)

OFIk = Lbk − Cbk −M s
k − Lsk + Csk +M b

k, (2.4)

where OFIk is the order flow imbalance (or net order flow) and ε is the truncation error.

We can also rewrite (2.3) as:

∆Pk =
TIk
2D

+ ηk, (2.5)

TIk = M b
k −M s

k , (2.6)

where TIk is the trade imbalance and ηk =
Lbk−C

b
k−L

s
k+Csk

2D + εk. When limit order activity

dominates, i.e. absolute values of terms |Lb,sk |, |C
b,s
k | are much larger than |M b,s

k |, the corre-

lation of price changes with TIk is weaker than with OFIk, because limit order submissions

and cancelations manifest as noise in (2.5).
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Figure 2.1: Market sell orders remove M s shares from the bid (gray squares represent net
change in the order book).

Figure 2.2: Market sell orders remove M s shares from the bid, while limit buy orders add
Lb shares to the bid.

Figure 2.3: Market sell orders and limit buy cancels remove M s + Cb shares from the bid,
while limit buy orders add Lb shares to the bid.
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2.2.2 Model specification

Actual order books have complex dynamics: arrivals and cancelations occur at all price

levels, the depth distribution across levels has non-trivial features [103; 106; 119], and hidden

orders together with data-reporting issues create additional errors [11; 56]. Motivated by

the stylized order book example we assume a noisy relation between price changes and OFI,

which holds locally for short intervals of time [tk−1,i, tk,i] ⊂ [Ti−1, Ti], where [Ti−1, Ti] are

longer intervals.

∆Pk,i = βiOFIk,i + εk,i (2.7)

In this model βi is a price impact coefficient for an i-th time interval and εk,i is a noise

term summarizing influences of other factors (e.g. deeper levels of the order book). We

allow βi and the distribution of εk,i to change with index i, because of well-known intraday

seasonality effects. Our discussion from the previous section allows us to interpret 1
2βi

as

an implied order book depth. The stylized order book model suggests that price impact

coefficient is inversely related to market depth, and we consider the following model:

βi =
c

Dλ
i

+ νi, (2.8)

where c, λ are constants and νi is a noise term. The stylized order book model corresponds

to c = 1
2 , λ = 1. We also consider a relation between price changes and trades:

∆Pk,i = βTi TIk,i + ηk,i, (2.9)

but expect it to be much noisier than (2.7).

The specification (2.7-2.8) may be regarded as a model of instantaneous price impact of

order book events, arriving within time interval [tk−1, tk]. An order submitted or canceled

at time τ ∈ [tk−1, tk] contributes a signed quantity eτ to supply/demand. In any given time

interval, these contributions are likely be unbalanced, leading to an order flow imbalance

OFIk, which affects supply/demand and leads to a corresponding price adjustment. If an

individual order goes in the same direction as the majority of orders (sgn(eτ ) = sgn(OFIk)),
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it reinforces the concurrent order flow imbalance and can affect the price. If the order goes

against the concurrent order flow imbalance (sgn(eτ ) = −sgn(OFIk)), it is compensated

by other orders and has an instantaneous impact of zero. In our model all events (including

trades) have a linear price impact, on average equal to βi during the i-th interval. Their

realized impact however depends on the concurrent orders.

The idea that the concurrent limit order activity can make a difference in terms of trades’

impact was demonstrated in [110], where authors show that the shape of the price impact

function essentially depends on the contemporaneous limit order activity. Our approach can

also be related to the model proposed in [35], where order book events have a linear impact

on prices, which depends on their signs and types2. The major difference of our model lies

in the aggregation across time and events. As shown in [35], time series of individual order

book events have complicated auto- and cross-correlation structures, which typically vanish

after 10 seconds. In our data the autocorrelations at a timescale of 10 seconds are small

and quickly vanish as well (ACF plots for a representative stock are shown on Figure 2.4).

Finally, the model used in [58] for explaining the price impact of trades is similar to (2.9).

Although the focus there is on trades, authors allow the price impact coefficient to depend

on contemporaneous liquidity factors and change through time.

At the same time, the linear relation (2.7) is different from many earlier models that

consider only the effect of transactions [48; 54; 74; 114; 102; 103]. Instead of modeling price

impact of trades as a (nonlinear) function of trade size, we show that the instantaneous

price impact of a series of events (including trades) is a linear function of their size after

these events are aggregated into a single imbalance variable. We will show that, first, the

effect of trades on prices is adequately captured by the order flow imbalance and, second,

that if one leaves out all events except trades, the relation 2.7 leads to an apparent concave

relation between the magnitude of price changes and trading volume.

The next section provides an overview of the estimation results for our model.

2Note that in our case all order book events have the same average impact, equal to βi, regardless of
their type. As shown in [35], average impacts of different event types are empirically very similar, allowing
to reasonably approximate them with a single number.
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Figure 2.4: ACF of the mid-price changes ∆Pk,i, the order flow imbalance OFIk,i and the
5% significance bounds for the Schlumberger stock (SLB).

2.3 Estimation and results

2.3.1 Data

Our main data set consists of one calendar month (April, 2010) of trades and quotes data

for 50 stocks. The stocks were selected by a random number generator from S&P 500

constituents, which were obtained from Compustat. The data for individual stocks was

obtained from the TAQ consolidated quotes and TAQ consolidated trades databases3.

Consolidated quotes contain best bid/ask price changes and round-lot changes in best

bid/ask sizes. Quote data entries consist of a stock ticker, a timestamp (rounded to the

nearest second), bid price and size, ask price and size and various flags including exchange

flag. Consolidated trade entries consist of timestamps, prices, sizes and various flags. These

two data sets are often referred to as Level 1 data, as opposed to Level 2 data, which includes

quote updates deeper in the book, or information on individual orders. The main reason

for using TAQ data rather than Level 2 order book data, is that it is far more accessible,

yet contains all events in the top order book (best bid and ask updates), except maybe for

odd-lot changes. We demonstrate that Level 1 TAQ data can be successfully used to study

3The TAQ data were obtained through Wharton Research Data Services (WRDS).
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the impact of limit order submissions and cancelations and we hope that more empirical

studies of that subject will follow. We find that the ratio between the number of NBBO

quote updates and the number of trades is roughly 40 to 1 in our data. Many empirical

studies have previously focused exclusively on trades rather than quotes, but the sheer

difference in sizes of these data sets suggests that more information may be conveyed by

quotes than by trades.

We considered only quotes with timestamps ∈ [9:30 am, 4:00 pm], positive bid/ask

prices and sizes, and quote mode 6∈ {4, 7, 9, 11, 13, 14, 15, 19, 20, 27, 28}. Similarly, trades

were considered only if they had timestamps ∈ [9:30 am, 4:00 pm], positive price and size,

correction indicator ≤ 2 and condition 6∈ {”O”, ”Z”, ”B”, ”T”, ”L”, ”G”, ”W”, ”J”, ”K”}.

From the filtered quotes data we construct the National Best Bid and Offer (NBBO)

quotes. This is done by scanning through the filtered quotes data, while maintaining a

matrix with the best quotes for every exchange. When a new entry is read, we check the

exchange flag of that entry and update the corresponding row in the exchange matrix. Using

this matrix, the NBBO prices are computed at each entry as the highest bid and the lowest

ask across all exchanges. The NBBO sizes are simply the sums of all sizes at the NBBO bid

and ask across all exchanges. For more details on TAQ dataset we refer the reader to [56],

which discusses some particularities of that data, such as possible mis-sequencing of data

across exchanges and lack of odd-lot sized orders. With our auxiliary dataset we checked

that neither of these issues significantly affects our results. As a robustness check, we also

considered using data from one exchange at a time instead of NBBO data and obtained

similar empirical results.
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After the NBBO quotes are computed, we applied a simple quote test to the NBBO

quotes and the filtered trades data. This test matches trades with NBBO quotes and

computes the direction of matched trades. A trade is matched with a quote, if:

1. Trade is not inside the spread, i.e.

(a) Trade price ≥ NBBO ask: in this case the trade is considered to be a buy trade.

(b) Trade price ≤ NBBO bid: in this case the trade is considered to be a sell trade.

2. Trade date = quote date.

3. Trade timestamp ∈ [quote timestamp, quote timestamp + 1 second].

4. If the above conditions allow to match a trade with several quotes, it is matched with

the earliest quote.

This matching algorithm cannot identify the direction of trades occurring within the

bid-ask spread. By comparing the number of matched trades with the overall number of

trades in our sample, we found that 59-95% of trades depending on the stock cannot be

matched. Although these percentages appear to be extremely large, the volume percentage

of unmatched trades is only 10-39% depending on the stock with an average of 17% across

stocks, and we believe that omitting these trades does not affect our results. There are

other routines to estimate trade direction, including the tick test and the Lee-Ready rule

[84]. Although the latter is used quite frequently, there seems to be no compelling evidence

of superiority of either of these heuristics [98; 113]. To test the robustness of our findings

to the choice of a trade direction test, we compared our results on a subsample of stocks,

applying alternatively the tick test or our quote test and results were virtually the same.

Finally, we removed observations with high bid-ask spreads to filter out “stub quotes”

and data errors. To apply this filter coherently across stocks, we computed the 95-th

percentile of bid-ask spread distribution for each stock and removed 5% of that stock’s

quotes with spreads above that percentile. For the representative stock in our sample

(SLB), the removed observations fall mostly on the first minutes after market opening:

15.8% of them occur between 9:30 am and 9:35 am, and 42.1% of them occur between 9:30
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am and 10:00 am. The average bid-ask spread of the removed quotes is 3.44 cents with

a standard deviation 11.98 cents, the average queue size of these quotes is 11.78 round

lots with a standard deviation 12.89 lots. The average time interval between two removed

quotes is 1.03 seconds with a standard deviation 41.64 seconds. All results in this chapter

are generated using the filtered data.

TAQ data has important limitations - the timestamps are rounded to the nearest sec-

ond, and it may omit odd-lot trades and quotes. To perform several detailed robustness

checks we also use an auxiliary data set consisting of NASDAQ ITCH 4.0 messages for the

same calendar month (April, 2010) for one representative stock from our main data set

(Schlumberger). This data is accessible through LOBSTER website4 which also provides

NASDAQ order book history for the selected stock. We used LOBSTER data for the top

five order book levels without any additional pre-processing.

2.3.2 Variables

Every observation of the bid and the ask consists of the bid price P b, the bid queue size qb

(in number of shares), the ask price P s and size qs. We enumerate them by n and compute

differences between consecutive observations (P bn, q
b
n, P

s
n, q

s
n) as follows:

en = qbn1{P bn≥P bn−1} − q
b
n−11{P bn≤P bn−1} − q

s
n1{P sn≤P sn−1} + qsn−11{P sn≥P sn−1} (2.10)

The variables en are signed contributions of order book events to supply/demand. When a

passive buy order arrives, qb increases but P b remains the same, leading to en = qbn − qbn−1

which is the size of that order. If qb decreases, we have en = qbn − qbn−1, representing the

size of a marketable sell order or buy order cancelation. If P b changes, then en = qbn or

en = −qbn−1, representing respectively the size of a price-improving order or the last order

in the queue that that was removed. Symmetric computations are done for the ask side.

4http://lobster.wiwi.hu-berlin.de/Lobster/about/About WhatIsLOBSTER.jsp
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We use two uniform time grids {T0, . . . , TI} and {t0,0, . . . , tI,K} with time steps Ti −

Ti−1 = 30 minutes and tk,i − tk−1,i = ∆t = 10 seconds5. Within each long time interval

[Ti−1, Ti] we compute 180 price changes and order flow imbalances indexed by k:

∆Pk,i =
P bN(tk,i)

+ P sN(tk,i)

2δ
−
P bN(tk−1,i)

+ P sN(tk−1,i)

2δ
, (2.11)

OFIk,i =

N(tk,i)∑
n=N(tk−1,i)+1

en, (2.12)

where N(tk−1,i)+1 and N(tk,i) are the index of the first and the last order book event in the

interval [tk−1,i, tk,i]. The tick size δ is equal to 1 cent in our data. Note that in our empirical

study OFI is computed from fluctuations in best bid/ask prices and their sizes according

to (2.12), because data on individual orders is not available in our main dataset. If that

data is available, OFI can be computed according to (2.4). We believe that a computation

based on (2.4) can lead to better empirical results because aggressive order terms M b,M s

will capture information on hidden orders and unreported odd-lot sized orders within the

spread, to the extent that aggressive orders interact with hidden orders. Since TAQ data

reports only round-lot sized quote changes, we note that units of OFI are round lots (100

shares), and assume in (2.12) that both sides of the market are equally affected by missing

quote updates6.

We define trade imbalance during a time interval [tk−1,i, tk,i] as the difference between

volumes of buyer- and seller-initiated trades during that interval, and also define trading

volume within that time interval:

TIk,i =

N(tk,i)∑
n=N(tk−1,i)+1

bn − sn V OLk,i =

N(tk,i)∑
n=N(tk−1,i)+1

bn + sn, (2.13)

where bn, sn are sizes of buyer- and seller-initiated trades (in round lots) that occurred

at the n-th quote (equal to zero if no trade occurred at that quote). In contrast with

5results for other timescales are reported in Section 2.5

6As we demonstrate in Section 2.5, neither missing odd-lot sized observations nor potential mis-sequencing
of quote updates across different exchanges during NBBO computation change our qualitative findings.
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TI, the OFI measure computed using (2.12) does not hinge on trade classification, which

is known to be problematic for TAQ data (see Section 2.5 for more details on matching

trades with quotes and trade classification). Whereas previous studies [23; 54; 58; 74; 102;

114] focused on trade imbalance7, the order flow imbalance is a more general measure. It

encompasses effects of all order book events, including trades.

For each interval [Ti−1, Ti] we also estimate depth by averaging the bid/ask queue sizes

right before or right after a price change, consistently with the definition of depth in the

stylized order book model:

Di =
1

2


N(Ti)∑

n=N(Ti−1)+1

(
qbn1{P bn<P bn−1} + qbn−11{P bn>P bn−1}

)
N(Ti)∑

n=N(Ti−1)+1

1{P bn 6=P bn−1}

+

N(Ti)∑
n=N(Ti−1)+1

(
qsn1{P sn>P sn−1} + qsn−11{P sn<P sn−1}

)
N(Ti)∑

n=N(Ti−1)+1

1{P sn 6=P sn−1}

 . (2.14)

7Hopman [61] computes the supply/demand imbalance based on limit orders and trades, but not cance-
lations.
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Table 2.1: Descriptive statistics for 50 randomly chosen U.S. stocks

Name Ticker Price
Daily Number of Number of Average Maximum Best quote

volume, best quote trades Spread, spread, size,
shares updates ticks ticks shares

Advanced Micro Devices AMD 9.61 20872996 417204 6687 1 1 103484
Apollo Group APOL 62.92 1949337 172942 4095 2 5 1525
American Express AXP 45.21 8678723 559701 7748 1 24 7918
Autozone AZO 179.03 243197 43682 1081 9 35 750
Bank of America BAC 18.43 164550168 1529395 15008 1 1 320801
Becton Dickinson BDX 78.07 1130362 61029 2968 2 5 1530
Bank of New York Mellon BK 31.77 6310701 285619 5518 1 1 12199
Boston Scientific BSX 7.13 25746787 309441 6768 1 1 296501
Peabody Energy corp BTU 47.14 5210642 298616 7267 1 3 2949
Caterpillar CAT 67.20 6664891 392499 8224 1 2 3835
Chubb CB 52.22 1951618 149010 3601 1 2 4251
Carnival CCL 40.16 4275911 215427 5503 1 2 5330
Cincinnati Financial CINF 29.41 688914 51373 1528 1 2 4157
CME Group CME 322.83 418955 38504 1412 31 103 541
Coach COH 41.91 3126469 176795 4458 1 2 4061
ConocoPhillips COP 56.09 9644544 426614 8621 1 2 8402
Coventry Health Care CVH 24.16 1157022 79305 2213 1 2 3838
Denbury Resources DNR 17.88 5737740 263173 4643 1 1 18622
Devon Energy DVN 66.98 3260982 177006 5805 2 4 1847
Equifax EFX 35.34 799505 62957 1945 1 3 3925
Eaton ETN 78.53 1757136 67989 3580 2 6 1254
Fiserv FISV 52.56 1038311 58304 2208 1 3 2026
Hasbro HAS 39.48 1322037 86040 2672 1 2 3438
HCP HCP 32.63 2872521 213045 4357 1 2 4810
Starwood Hotels HOT 50.59 3164807 150252 5106 2 4 2174
Kohl’s KSS 56.88 3064821 128196 4936 1 3 2688
L-3 Communications LLL 94.64 670937 72818 2141 2 6 867
Lockheed Martin LMT 84.14 1416072 88254 3333 2 5 1495
Macy’s M 23.40 8324639 491756 6469 1 1 17567
Marriott MAR 34.45 5014098 238190 5499 1 2 6511
McAfee MFE 40.04 2469324 109073 3561 1 2 4018
McGraw-Hill MHP 34.90 1954576 102389 3261 1 2 4183
Medco Health Solutions MHS 63.22 2798098 109382 4680 1 3 2534
Merck MRK 36.03 13930842 448748 7997 1 1 23137
Marathon Oil MRO 32.33 5035354 341408 5522 1 1 14259
MeadWestvaco MWV 26.96 1035547 92825 2312 1 3 3741
Newmont Mining NEM 53.43 5673718 435295 7717 1 2 3847
Omnicom OMC 41.17 3357585 150800 4359 1 2 6492
MetroPCS Communications PCS 7.53 4424560 107967 2901 1 1 52304
Pultegroup PHM 11.80 6834683 262420 4604 1 1 31856
PerkinElmer PKI 23.98 1268774 78114 2127 1 2 7163
Ryder System R 44.01 631889 47422 2085 2 5 1147
Reynolds American RAI 54.44 773387 56236 2076 1 4 2177
Schlumberger SLB 67.94 9476060 440839 10286 1 2 3942
Teco Energy TE 16.52 1070815 70318 1807 1 1 14816
Time Warner Cable TWC 53.21 1770234 88286 3554 2 3 2174
Whirlpool WHR 97.73 1424264 134152 3348 4 9 958
Windstream WIN 11.03 2508830 104887 2937 1 1 79834
Watson Pharmaceuticals WPI 42.51 895967 63094 2024 1 3 2884
XTO Energy XTO 48.13 7219436 612804 5040 1 7 22479
Grand mean 51.75 7512376 223232 4552 2 6 22665

Table 2.1 presents average mid-prices, daily transaction volumes, daily numbers of best
quote updates, daily numbers of trades, spreads and the depths at the best quotes.
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2.3.3 Empirical findings

This section reports detailed results for a representative stock, Schlumberger (SLB) and

some average results across stocks. Detailed results for other stocks in our sample are

presented in Section 2.5. During the sample period the average price of Schlumberger stock

was 67.94 dollars and the average daily volume was 947.6 million shares. The daily average

number of NBBO quote updates is about 440 thousands, and the average daily number of

trades is around 10 thousands. The average spread is one cent, its 95-th percentile is 2 cents

and the average best NBBO quote size is 39 round lots (3900 shares).

The model (2.7) is estimated by an ordinary least squares regression:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i, (2.15)

with separate half-hour subsamples indexed by i. Figure 2.5 presents a scatter plot of ∆Pk,i

against OFIk,i for one of such subsamples.

Figure 2.5: Scatter plot of ∆Pk,i against OFIk,i for the Schlumberger stock (SLB),
04/01/2010 11:30-12:00pm.
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In general we find that β̂i is statistically significant8 in 98% of samples, and α̂i is signif-

icant in 10% of samples, which is close to the Type-I error rate. The average t-statistics for

α̂i, β̂i are respectively -0.21 and 16.27 for SLB (cross-sectional averages are -0.02 and 12.08).

To check for higher order/nonlinear dependence we estimate an augmented regression:

∆Pk,i = α̂Qi + γ̂iOFIk,i + γ̂Qi OFIk,i|OFIk,i|+ ε̂Qk,i. (2.16)

The coefficients γ̂Qi have an average t-statistic of -0.32 across stocks and are statistically

significant only in 17% of our samples. We reject the hypothesis of quadratic (convex or

concave) instantaneous price impact, and take this as strong evidence for a linear price

impact model (2.7), because other kinds of non-linear dependence would likely be picked

up by this quadratic term.

The goodness of fit is surprising for high-frequency data, with an R2 of 76% for SLB and

65% on average across stocks9, suggesting that a one-parameter linear model (2.7) performs

well regardless of stock-specific features, such as average spread, depth or price level. The

definition of R2 as a percentage of explained variance has an interesting consequence in

our case. Since OFI is constructed from order book events taking place only at the best

bid/ask, our results show that activity at the top of the order book is the most important

factor driving price changes. In Section 2.5 we confirm this by showing that order flow

imbalances from deeper order book levels only marginally contribute to short-term price

dynamics. Even though large price movements sometimes occur at this timescale, they

mostly correspond to large readings of OFI. Figure 2.6 confirms this by demonstrating a

relatively low level of excess kurtosis in regression residuals.

When the amount of passive order submissions and cancelations is much larger than

the amount of trades, the stylized order book model predicts that trade imbalance TI

8Given a relatively large number of observations we use the z-test with a 95% significance level. Since
regression residuals demonstrate heteroscedasticity and autocorrelation, Newey-West standard errors are
used to compute t-statistics.

9We note that OFI includes the contributions en of price-changing order book events, leading to a
possible endogeneity in the regression (2.15). This problem is inherent to all price impact modeling, because
the explanatory variables (events or trades) sometimes mechanically lead to price changes. To test that the
high R2 in our regressions is not due to this endogeneity, we estimated (2.15) on a subsample of stocks,
excluding the price-changing events from OFI. With this change the R2 declined, but remained high, in
the 35%-60% region.
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Figure 2.6: Distribution of excess kurtosis in the residuals ε̂k,i across stocks and time.

explains price changes significantly worse thanOFI. To empirically confirm this we estimate

following regressions using the same half-hour subsamples 10:

∆Pk,i = α̂Ti + β̂Ti TIk,i + η̂k,i (2.17a)

∆Pk,i = α̂Di + θ̂Oi OFIk + θ̂Ti TIk,i + ε̂Dk,i. (2.17b)

When either OFI or TI variable is taken individually, that variable has a statistically

significant correlation with price changes. The average t-statistics of slope coefficients in

simple regressions (2.15, 2.17a) are, correspondingly 16.27 and 5.31 for SLB (cross-sectional

averages are 12.08 and 5.08). The average R2 for the two regressions are 65% and 32%,

respectively, confirming the prediction that relation between price changes and trade im-

balance is more noisy. When the two variables are used in a multiple regression (2.17b),

the dependence of price changes on trade imbalance becomes much weaker. The average

t-statistic of TI coefficient drops to 1.56 for SLB (1.51 across stocks) and it remains statis-

10These regressions contain only linear terms, because we found no evidence of non-linear price impacts
in our data (for neither OFI nor TI).
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tically significant in only 47% of SLB samples (43% of all stock samples). The dependence

on OFI remains strong with an average t-statistic 13.91 for SLB (9.53 across stocks), and

the coefficient is statistically significant in almost all samples. We conclude that OFI ex-

plains price movements better than trade imbalance, and OFI is a more general measure

of supply/demand imbalance because it adequately includes the effect of trade imbalance.

Finally, we use time series of Di and β̂i for each stock to estimate the relation (2.8) with

the following two regressions:

log β̂i = ˆαL,i − λ̂ logDi + ε̂L,i, (2.18)

β̂i = ˆαM,i +
ĉ

Dλ̂
i

+ ε̂M,i. (2.19)

Both regressions are estimated using ordinary least squares11. For SLB we find ĉ =

0.56, λ̂ = 1.08 and an R2 of (2.18) is 92%. The results for all stocks are shown in Table

2.2. We observe that depth significantly correlates with price impact coefficients for the

vast majority of stocks, confirming our intuition that 1
2βi

is the implied order book depth.

Interestingly, estimates ĉ, λ̂ across stocks are very close to values predicted by the stylized

order book model. With the t-statistics12 in Table 2.4 the null hypotheses {c = 0.5} and

{λ = 1} cannot be rejected for most stocks based on conventional significance levels. The

restricted model with λ = 1 also demonstrates a good quality of fit, making this a good

approximation13. Figure 2.7 illustrates these results with a log-log scatter plot for Di and

β̂i. Some stocks (namely APOL, AZO and CME) have poor fits in regression (2.18), mainly

due to outliers in the dependent variable. After removing these outliers and re-estimating

the regression, the estimates ĉ, λ̂ for these stocks fell in line with estimates for other stocks.

11We note that an estimate λ̂i is used in regression (2.19). This “plug-in” approach leads to potential
errors in explanatory variable, and standard errors for ĉ may be underestimated. However, the good quality
of fit in regression (2.18) with an average R2 of 76% indicates that λ̂i are estimated with good precision.
We believe that errors in variable 1

Dλ̂i

are small and do not affect our results.

12Since the residuals of these regressions appear to be autocorrelated, the t-statistics are computed with
Newey-West standard errors.

13The squared correlation between ∆Pk,i and
OFIk,i

2Di
averaged across all subsamples in our data is 0.6523,

very close to the average R2 in (2.15).



CHAPTER 2. PRICE IMPACT, LIQUIDITY AND MARKET VOLATILITY 43

Figure 2.7: Log-log scatter plot of the price impact coefficient estimate β̂i against average
market depth Di for the Schlumberger stock (SLB).

To assess the stability of these findings, we re-estimated (2.18,2.19) with observations

pooled across days but not across intraday time intrervals, resulting in 13 estimates ĉi, λ̂i

for each stock. Although these estimates demonstrate some diurnal variability, they are

relatively stable and most of variability in price impact coefficients is explained by variations

in depth (e.g. see Figure 2.9).

We repeated the analysis with different depth variables, taking Di to be equal to arith-

metic or geometric average of queue sizes over the i-th time interval. Overall, the results

were the same, except for the level of ĉ estimates, which were about 40% lower across stocks

for the arithmetic average depth, and even lower for the geometric average. The systematic

difference in these coefficients implies that taking an arbitrary measure of depth (such as

arithmetic average of queue sizes) as a proxy of price impact may lead to significant biases,

i.e. one would dramatically under- or over-estimate price impact in a given stock. Instead

of looking at arbitrary depth measures, we suggest computing price impact coefficients βi

and/or implied depth 1
2βi

to precisely characterize price sensitivity to order flow.
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2.4 Applications

2.4.1 Monitoring adverse selection

Time intervals that are involved in modern high-frequency trading applications are usually

so short that price changes are relatively infrequent events. Therefore price changes provide

a very coarse and limited description of market dynamics. However, OFI tracks best

bid and ask queues and fluctuates on a much faster timescale than prices. It incorporates

information about build-ups and depletions of order queues and it can be used to interpolate

market dynamics between price changes (see Figure 2.8 for example). Our results confirm

that such interpolation is in fact valid because OFI closely approximates price changes

over short time intervals (e.g. results for 50 millisecond time intervals are shown in Section

2.5). To study one possible application of OFI for high-frequency trading we turn to our

auxiliary dataset, because it contains accurate timestamps up to a millisecond.

Figure 2.8: Price dynamics and cumulative OFI on NASDAQ for a 1-second time interval
starting at 11:16:39.515 on 04/28/2010, Schlumberger stock (SLB).
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Given the strong link between OFI and price changes, and the positive autocorrelation

of OFI over short time intervals (see Figure 2.4), we propose to use it as a measure of

adverse selection in the order flow. For example, when a limit order is filled, and its

execution was preceded by positive OFI, a positive price change is more likely to happen

after the limit order execution. This is because the pre-execution positive OFI is likely to

persist in the future, and can lead to a post-execution positive price change. For a limit sell

order a positive post-execution price change implies that the order was executed at a loss,

i.e. adversely selected.

To test our hypothesis, we consider all limit order executions in our auxiliary dataset.

For each execution we compute the pre-execution order flow imbalance OFIprek and the post-

execution mid price change ∆P postk . The pre-execution order flow imbalance is computed

from best bid and ask quote updates with timestamps in [tk−200, tk−1] milliseconds, where

tk is the time of the k-th limit order execution. Similarly the post-execution price change

is defined as the difference in mid-quote prices between tk + 200 milliseconds and tk
14 .

Then we consider 30-minute subsamples of data indexed by i, and estimate the following

regression:

∆P postk,i = αpi + βpiOFI
pre
k,i + εpk,i. (2.20)

The average R2 of these regressions across a month is 2.93%, the average t-statistic15 of βpi is

2.68 and this coefficient is significant at a 5% level in 63% of subsamples. The average βpi is

0.0105. We conclude that pre-execution OFI are positively correlated with post-execution

price changes.

We also estimated regression (2.20) with 50- and 100-millisecond time intervals for pre-

and post-execution variables, and obtained similar results, with stronger correlations for

smaller time intervals16. When we split OFIprek,i into multiple order flow imbalance variables

over non-overlapping subintervals of [tk − 200, tk − 1], we find that only the variable closest

14If there are multiple quotes with timestamp tk + 200 or tk, we take the last one.

15Here we also use Newey-West standard errors because residuals demonstrate significant autocorrelation.

16For instance, with 50-millisecond time intervals the average t-statistic of βpi is 3.41 and this coefficient
is significant in 75% of samples. The average R2 becomes 3.32%
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to tk - the execution time - is statistically significant and positively correlated with post-

execution price change. These results suggest that limit order traders need to actively

monitor order flows and react to emerging order flow imbalances as quickly as possible to

avoid being adversely selected.

2.4.2 Intraday volatility dynamics

The link between price impact and market depth established here has important implications

for intraday volatility. Market depth is known to follow a predictable diurnal pattern ([2],

[83]), and equation (2.8) implies that instantaneous price impact must also have a predictable

intraday pattern. To demonstrate it, we averaged β̂i for each stock and each intraday half-

hour interval across days, resulting in diurnal effects for that stock, normalized these effects

by a grand average β̂i for that stock and averaged normalized diurnal effects across stocks.

The same procedure was repeated for depths Di. We also re-estimated (2.18,2.19) with

observations pooled across days but not across intraday time intrervals, resulting in 13

estimates λ̂i, ĉi for each stock. The overall average diurnal effects for these quantities are

shown on Figure 2.9.

Figure 2.9: Diurnal effects in the price impact coefficient β̂i, the average depth Di and the
parameters ĉi, λ̂i. Most of the intraday variation in price impact coefficients comes from
variations in depth, while parameters ĉi, λ̂i are relatively more stable.
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We found that between 9:30 and 10am the depth is two times lower than on average,

indicating that the market is relatively shallow. In a shallow market, incoming orders can

easily affect mid-prices and price impact coefficients between 9:30 and 10am are in fact two

times higher than on average. Moreover, price impact coefficients between 9:30 and 10am

are five times higher than between 3:30 and 4pm.

The intraday pattern in price impact can be used to explain intraday patterns in price

volatility, observed by many studies ([2], [9], [55],[89]). Similarly to the price impact co-

efficient and the market depth, we computed the intraday patterns in variances of ∆Pk,i

and OFIk,i, using our half-hour subsamples. Taking the variance on both sides in equation

(2.7), we obtain a link between var[∆Pk,i], var[OFIk,i] and βi:

var[∆Pk,i] = β2
i var[OFIk,i] + var[εk,i] (2.21)

Figure 2.10: Diurnal variability in variances var[∆Pk,i], var[OFIk,i], the price impact coef-

ficient β̂i and the expression β2
i var[OFIk]i.

The average variance patterns are plotted on Figure 2.10. Notice that price volatility

has a sharp peak near the market open, while volatility of OFI peaks near the market close.

The latter peak is offset by low price impact, which gradually declined throughout the day.

For the i-th half-hour interval, equation (2.21) implies that var[∆Pk,i] ≈ β̂2
i var[OFIk,i]
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because var[εk,i] is relatively small, which is also demonstrated17 on Figure 2.10.

Since the R2 in regression (2.15) is high, the ratio
var[εk,i]

var[OFIk,i]
is small, and we can rewrite

(2.21) as βi ≈
σP,i
σO,i

, where σP,i =
√
var[∆Pk,i] and σO,i =

√
var[OFIk,i]. This bears strong

resemblance to the definition of Kyle’s λ (see [79]) - a metric that is used in the asset pricing

literature to gauge liquidity risk (see [8] and references therein). This metric is traditionally

estimated as a slope βLi in regression (2.17a), but our analysis suggests that βi is a better

estimate. Although one could also write βLi ≈
σP,i
σT,i

, where σT,i =
√
var[TIk,i], this would

be a poorer approximation because
var[ηk,i]
var[TIk,i]

>
var[εk,i]

var[OFIk,i]
as shown by R2 values in Table

2.2.

The intraday pattern in price variance was explained in an earlier study [89] using a

structural model. The authors argued that price volatility is higher in the morning because

of a higher inflow of public and private information. In another study [55] the morning

peak of price volatility is explained mostly by higher intensity of public information. Both

studies agree that the impact of trades is larger in the morning. Our model contributes to

this discussion by explaining the peak of price volatility using tangible quantities, rather

than unobservable information variables. Our findings also suggest that price impact and

information asymmetry may be, in fact, two sides of the same coin. If there is more private

information in the morning than in the evening and if limit order traders are aware of this

information asymmetry, their participation will likely diminish in the morning, leading to

lower depth near market open. At the same time, low depth implies a higher price impact

in our model, making the information advantages harder to realize at the market open.

17β̂2
i var[OFIk,i] was computed from the average patterns of β̂i and var[OFIk,i]
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2.4.3 Volume and volatility

The positive correlation between magnitudes of price changes and trading volume is empir-

ically confirmed by many authors (see [72] for a review). Recently, trading volume became

an important metric for order execution algorithms - these algorithms often attempt to

match a certain percentage of the total traded volume to reduce the price impact. However,

it remains unclear whether trading volume truly determines the magnitude of price moves

and whether it is a good metric for price impact. Casting doubt on this assertion, it was

found in [70] that the relation between daily volatility and daily volume is essentially due

to the number of trades and not the volume per se (also see [22] for a following discussion).

We provide further evidence that volume is not a driver of price volatility, now on

intraday timescales. First, we prove that even when prices are purely driven by OFI and not

by volume, a concave relation between magnitude of price changes and transaction volume

emerges as an artifact due to aggregation of data across time. Second, we confirm that

such relation exists in the data, but it becomes statistically insignificant after accounting

for magnitude of OFI.

Comparing the definitions of V OL and OFI we note that both quantities are sums of

random variables. As the aggregation time window [tk−1, tk] becomes progressively larger,

the behavior of these sums (under certain assumptions) will be governed by the Law of Large

Numbers and the Central Limit Theorem. We consider a general time interval [0, T ] and

denote by N(T ) the number of order book events during that time interval. We also denote

by OFI(T ) and V OL(T ), respectively, the order flow imbalance and the traded volume

during [0, T ]. The following proposition shows a link between OFI(T ) and V OL(T ) as T

grows.
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Proposition 1 Assume that

1. N(T )
T → Λ, as T →∞, where Λ is the average arrival rate of order book events.

2. {ei}i≥1 form a covariance-stationary sequence and have a linear-process representation

ei =
∞∑
j=0

ajYi−j, where Yi is a two-sided sequence of i.i.d random variables with E[Yi] =

0 and E[Y 2
i ] = 1, and aj is a sequence of constants with

∞∑
j=0

a2
j = σ2 <∞. Moreover,

cov(e1, e1+n) ∼ cn2(H−1) as n→∞, where 0 < H < 1 is a constant that governs the

decay of the autocorrelation function.

3. {wi}i≥1, wi = bi + si are random variables with a finite mean µπ, where π is the

proportion of order book events that correspond to trades and µ is the mean trade size.

E|wi|p <∞ for some p > 1 and
∑
N≥1

1
N (E| 1

N

∑
i≤N

wi|q)r/q <∞ for some r, q such that

0 < r ≤ q ≤ ∞ and r/q ≤ 1− 1/p.

Then
(µπ)H

σ

OFI(T )

V OLH(T )

T→∞⇒ ξ ∼ N(0, 1),

where ⇒ denotes convergence in distribution.

Proof: First, we note that Assumption (1) ensures N(T ) → ∞ as T → ∞. With this we

can use Assumption (3) and apply the law of large numbers for weakly dependent variables

(e.g. see Theorem 7 in [88]) to the traded volume.

V OL(T )

N(T )
=

∑N(T )
i=1 wi
N(T )

→ µπ,w.p.1, as T →∞ (2.22)

Second, event contributions ei have a finite variance σ2 and, using Assumption (2), we

apply a central limit theorem for strongly dependent sequences (see Chapter 4.6 in [118]):

OFI(T )

σNH(T )
≡
∑N(T )

i=1 ei
σNH(T )

⇒ ξ, as T →∞, (2.23)

where ξ ∼ N(0, 1) is a standard normal random variable. Although the denominator

σNH(T ) is random, it goes to infinity by assumption (1) and Anscombe’s lemma ensures

that we can use such a normalization in the central limit theorem [36, Lemma 2.5.8]. Since

the function g(x) = xH , H > 0, x ≥ 0 is continuous, the convergence in (2.22) takes place
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almost-surely and the limit in (2.22) is deterministic, we can combine (2.22) and (2.23) in

the following way:

(µπ)H

σ

OFI(T )

V OLH(T )
≡

∑N(T )
i=1 ei

σNH(T )(∑N(T )
i=1 wi

µπ(N(T ))

)H ⇒ ξ, as T →∞ � (2.24)

Proposition 1 implies that as the time interval [0, T ] increases and includes a progressively

larger enough number of order book events, we can use an approximation for OFI(T ):

OFI(T ) ∼ ξ σ

(µπ)H
V OLH(T ) ' N

(
0,

σ2

(µπ)2H
V OL2H(T )

)
(2.25)

If all time intervals [tk−1,i, tk,i] are large enough to support this approximation then we can

substitute (2.25) into (2.7) to obtain

∆Pk,i ∼ N
(

0,
σ2β2

i

(µπ)2H
V OL2H

k,i + σi

)
,

where σi = var[εk,i]. Note that even if σi = 0, i.e. even if volume cannot affect price

volatility through the residual variance, Proposition 1 predicts a spurious relation between

price volatility and volume.

Interestingly, the recent theory of market microstructure invariants (see [80]) also pre-

dicts a relation between the volatility of order flow imbalance and trading volume. In their

analysis, order flow imbalance is defined differently based on unobservable “bets”, however

it is natural to assume positive correlation between OFI and the imbalance of “bets”, since

the latter reach exchanges in form of actual orders.

We can recast this statement in a testable form for the magnitudes (absolute values) of

price changes. Assuming εk,i ≈ 0, the scaling argument in Proposition 1 together with our

linear price impact model imply that

|OFIk,i| ≈
σ

(µπ)H
V OLHk,i|ξk,i| (2.26)

|∆Pk,i| ≈
βiσ

(µπ)H
V OLHk,i|ξk,i| (2.27)
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We denote by θi = βiσ
(µπ)H

and take logarithms in (2.27) to obtain

log |∆Pk,i| = log θ̂i + Ĥi log V OLk,i + log |ξ̂k,i| (2.28)

Based on Proposition 1, we expect this relation to be indirect (i.e. come through

|OFIk,i|) and noisy. To confirm this empirically, we estimate three regressions18:

|∆Pk,i| = α̂Oi + β̂Oi |OFIk,i|+ ε̂Ok,i (2.29a)

|∆Pk,i| = α̂Vi + β̂Vi V OL
Ĥi
k,i + ε̂Vk,i (2.29b)

|∆Pk,i| = α̂Wi + φ̂Oi |OFIk,i|+ φ̂Vi V OL
Ĥi
k,i + ε̂Wk,i (2.29c)

These regressions are estimated for every half-hour subsample with the exponents Ĥi pre-

estimated by (2.28). The averages of Ĥi and their standard deviation for each stock are

presented on the left panel in Table 2.5. The exponent varies considerably across stocks

and time, but is generally below 1/2 in our data. The average results of regressions (2.29a-

2.29c) for each stock are presented on the middle and right panels. We observe that |OFIk,i|

explains the magnitude of price moves better than V OLĤik,i. Although both variables appear

to be statistically significant when taken individually, the t-statistics for V OLk,i drop to

marginally significant levels in the multiple regression. Thus, the dependence between

absolute values of price moves and traded volume seems to come mostly from correlation

between V OLk,i and |OFIk,i|. Interestingly, the number of trades variable (suggested in

[70]) is also statistically significant on a stand-alone basis, but becomes insignificant when

added to (2.29c) as a third variable. Given the recent proliferation of order splitting, the

size of most orders is equal to one lot, so V OLk,i is almost the same as the number of trades

variable.

18Here we estimate linear regressions rather than log-linear ones to directly test whether the effect of V OL
is consumed by |OFI| variable
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2.5 Robustness checks

2.5.1 Cross-sectional evidence

This section presents various robustness checks for our model. First of all, we re-estimate

the regressions from previous sections on a larger sample of 50 randomly selected stocks

and find that results fall in line with those for the representative stock. Detailed results for

each stock are provided below.
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Table 2.2: Relation between price changes and order flow imbalance.

Ticker
Average results Hypothesis testing

α̂ t(α̂) β̂i t(β̂i) γ̂Qi t(γ̂Qi ) R2 {αi 6= 0} {βi 6= 0} {γQi 6= 0}
AMD -0.0032 -0.24 0.0008 11.10 1.4E-07 0.93 64% 0% 100% 36%
APOL 0.0038 0.13 0.0555 10.74 -2.2E-04 -2.42 63% 17% 96% 6%
AXP 0.0019 0.11 0.0082 14.12 -3.8E-06 -1.37 69% 16% 100% 8%
AZO 0.0101 0.34 0.1619 7.02 -9.3E-04 -1.40 47% 25% 99% 6%
BAC -0.0018 -0.13 0.0002 19.08 1.9E-09 -0.08 79% 3% 100% 14%
BDX -0.0008 -0.07 0.0536 10.77 -1.1E-04 -0.74 63% 12% 100% 12%
BK -0.0078 -0.26 0.0069 15.56 -4.0E-06 -0.89 74% 6% 100% 8%
BSX 0.0000 0.01 0.0003 7.55 7.8E-08 3.51 58% 3% 88% 51%
BTU 0.0048 0.15 0.0242 14.75 -3.5E-05 -2.05 72% 16% 100% 3%
CAT 0.0147 0.30 0.0194 14.80 -1.9E-05 -1.72 71% 19% 100% 5%
CB -0.0086 -0.05 0.0191 12.61 -3.5E-07 -0.04 64% 10% 100% 18%
CCL -0.0067 -0.24 0.0140 14.16 -1.2E-05 -1.03 70% 7% 100% 11%
CINF -0.0030 -0.02 0.0260 11.66 -7.0E-06 0.38 70% 4% 99% 30%
CME 0.0506 0.06 0.6262 5.46 -7.2E-03 -1.66 35% 18% 96% 7%
COH -0.0221 -0.54 0.0179 13.13 -1.7E-05 -1.18 69% 5% 100% 7%
COP -0.0008 0.10 0.0084 12.79 -5.8E-06 -1.86 68% 13% 100% 5%
CVH -0.0034 -0.07 0.0217 11.74 7.6E-06 0.37 65% 7% 99% 20%
DNR -0.0008 -0.07 0.0045 13.78 -1.3E-07 0.19 69% 5% 99% 22%
DVN 0.0112 0.20 0.0370 12.11 -1.0E-04 -2.72 65% 19% 100% 2%
EFX -0.0032 -0.06 0.0222 9.47 6.4E-05 0.87 56% 6% 99% 32%
ETN -0.0076 0.10 0.0712 11.01 -2.3E-04 -1.81 65% 17% 100% 4%
FISV -0.0002 0.10 0.0397 11.09 -2.3E-05 -0.28 63% 10% 100% 16%
HAS -0.0031 -0.01 0.0222 12.36 4.7E-06 0.28 67% 6% 100% 23%
HCP -0.0078 -0.21 0.0150 13.82 -1.4E-05 -0.63 67% 5% 100% 10%
HOT -0.0012 0.05 0.0345 12.94 -7.2E-05 -2.06 68% 14% 100% 4%
KSS -0.0030 -0.05 0.0317 14.10 -5.4E-05 -1.38 71% 13% 100% 5%
LLL 0.0160 0.42 0.1000 12.34 -3.8E-04 -1.56 67% 22% 98% 7%
LMT 0.0006 0.00 0.0520 14.14 -1.2E-04 -1.49 72% 17% 100% 4%
M -0.0010 0.07 0.0043 16.61 8.8E-08 0.15 75% 6% 100% 19%
MAR -0.0039 0.02 0.0121 15.10 -4.1E-06 -0.43 71% 10% 100% 10%
MFE 0.0087 0.22 0.0205 13.19 -3.8E-05 -0.63 68% 11% 100% 11%
MHP -0.0073 -0.18 0.0211 12.41 5.8E-06 0.18 68% 5% 99% 24%
MHS -0.0055 -0.20 0.0334 11.97 -8.3E-05 -1.64 66% 12% 100% 4%
MRK -0.0065 -0.26 0.0032 13.26 -5.4E-07 -0.61 69% 4% 100% 14%
MRO 0.0018 0.12 0.0058 14.16 -3.6E-07 0.32 69% 8% 100% 23%
MWV -0.0011 0.02 0.0205 12.55 -1.7E-05 -0.31 68% 9% 100% 17%
NEM -0.0102 -0.26 0.0170 13.90 -1.9E-05 -2.15 71% 12% 100% 5%
OMC -0.0099 -0.36 0.0144 12.40 -4.5E-06 -0.19 65% 4% 100% 20%
PCS -0.0006 -0.05 0.0015 6.52 1.8E-06 3.79 53% 2% 86% 51%
PHM 0.0006 0.02 0.0027 11.27 8.4E-07 1.20 66% 3% 99% 36%
PKI -0.0004 -0.05 0.0102 7.96 4.1E-05 2.15 53% 3% 96% 51%
R 0.0006 0.03 0.0667 10.90 3.7E-05 -0.21 63% 14% 100% 16%
RAI -0.0070 -0.10 0.0396 11.39 2.6E-05 -0.03 66% 9% 100% 19%
SLB -0.0077 -0.21 0.0198 16.27 -1.8E-05 -1.67 76% 10% 100% 2%
TE 0.0011 0.05 0.0049 7.76 1.4E-05 3.27 54% 4% 91% 55%
TWC -0.0130 -0.15 0.0384 12.24 -5.6E-05 -0.73 64% 12% 99% 9%
WHR 0.0628 0.73 0.1278 11.10 -3.3E-04 -1.44 65% 25% 100% 7%
WIN -0.0004 -0.04 0.0009 4.32 1.5E-06 3.98 44% 1% 72% 43%
WPI -0.0090 -0.27 0.0270 11.46 2.9E-05 0.26 66% 5% 99% 23%
XTO -0.0088 -0.25 0.0029 13.26 2.7E-07 0.48 65% 3% 100% 28%
Average 0.0002 -0.02 0.0398 12.08 -2.0E-04 -0.32 65% 10% 98% 17%

Table 2.2 presents a cross-section of results (averaged across time) for regressions:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i,

∆Pk,i = α̂Qi + β̂Qi OFIk,i + γ̂Qi OFIk,i|OFIk,i|+ ε̂Qk,i,

where ∆Pk,i are the 10-second mid-price changes in ticks and OFIk,i are the contemporaneous order flow imbalances.
These regressions were estimated using 273 half-hour subsamples (indexed by i) for each stock and their outputs
were averaged across subsamples. Each subsample typically contains about 180 observations (indexed by k). The
t-statistics were computed using Newey-West standard errors. For brevity, we report the R2, the average α̂i and the
average β̂i only for the first regression (with a single OFIk,i term). There is almost no difference between averages of

estimates β̂i and β̂Qi and the R2 in two regressions. The last three columns report the percentage of samples where
the coefficient(s) passed the z-test at the 5% significance level.
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Table 2.3: Comparison of order flow imbalance and trade imbalance.

Ticker
Order flow imbalance Trade imbalance Both covariates

R2 t(β̂i) {βi 6= 0} F R2 t(β̂Ti ) {βTi 6= 0} F R2 t(θ̂Oi ) t(θ̂Ti ) {θOi 6= 0} {θTi 6= 0} F
AMD 64% 11.10 100% 382 39% 5.06 95% 140 67% 7.64 1.59 99% 45% 214
APOL 63% 10.74 96% 396 30% 5.04 95% 83 66% 8.95 1.58 96% 44% 211
AXP 69% 14.12 100% 449 34% 5.55 92% 101 71% 11.31 1.90 100% 55% 241
AZO 47% 7.02 99% 179 30% 4.88 96% 87 54% 5.78 2.87 98% 81% 118
BAC 79% 19.08 100% 774 45% 7.03 98% 157 80% 13.55 0.80 99% 25% 397
BDX 63% 10.77 100% 362 28% 4.85 92% 79 65% 8.90 1.53 100% 46% 195
BK 74% 15.56 100% 610 36% 5.36 93% 117 75% 11.90 0.80 100% 26% 313
BSX 58% 7.55 88% 338 31% 3.60 71% 106 62% 5.74 0.88 82% 24% 189
BTU 72% 14.75 100% 527 35% 6.03 97% 103 74% 11.96 1.63 100% 44% 277
CAT 71% 14.80 100% 498 33% 5.75 94% 94 72% 12.14 1.55 100% 46% 262
CB 64% 12.61 100% 378 33% 5.47 95% 102 66% 9.41 1.57 99% 44% 202
CCL 70% 14.16 100% 478 32% 5.31 94% 93 71% 11.44 1.17 100% 37% 247
CINF 70% 11.66 99% 552 39% 5.35 96% 141 72% 8.28 1.28 98% 40% 297
CME 35% 5.46 96% 112 24% 4.31 88% 63 44% 4.73 2.78 96% 71% 78
COH 69% 13.13 100% 457 29% 4.75 93% 80 70% 11.06 1.12 100% 31% 238
COP 68% 12.79 100% 450 35% 5.69 92% 107 70% 10.25 1.76 100% 49% 240
CVH 65% 11.74 99% 418 35% 5.05 93% 114 67% 8.43 1.35 97% 37% 222
DNR 69% 13.78 99% 471 32% 4.89 92% 101 70% 10.43 1.27 99% 37% 246
DVN 65% 12.11 100% 414 33% 5.57 95% 96 68% 9.61 2.12 98% 60% 226
EFX 56% 9.47 99% 289 31% 4.75 89% 101 60% 7.13 2.26 98% 55% 167
ETN 65% 11.01 100% 389 25% 4.43 86% 69 67% 9.85 1.47 99% 43% 209
FISV 63% 11.09 100% 380 28% 4.82 93% 79 65% 9.08 1.25 100% 38% 201
HAS 67% 12.36 100% 427 32% 5.15 95% 97 68% 9.67 1.17 100% 34% 223
HCP 67% 13.82 100% 417 31% 5.07 90% 91 68% 10.92 1.33 100% 42% 217
HOT 68% 12.94 100% 438 27% 4.75 88% 74 70% 11.00 1.48 100% 40% 231
KSS 71% 14.10 100% 525 31% 5.16 93% 91 72% 11.86 1.14 100% 37% 274
LLL 67% 12.34 98% 485 36% 6.00 95% 117 70% 9.68 2.14 98% 57% 270
LMT 72% 14.14 100% 516 35% 5.80 96% 105 73% 11.35 1.83 100% 51% 277
M 75% 16.61 100% 640 35% 5.10 93% 108 76% 12.80 1.13 100% 38% 330
MAR 71% 15.10 100% 498 34% 5.54 95% 105 72% 11.41 1.18 100% 36% 258
MFE 68% 13.19 100% 463 31% 4.82 88% 93 69% 10.27 0.89 100% 30% 239
MHP 68% 12.41 99% 489 31% 5.09 93% 96 70% 9.94 1.04 99% 33% 257
MHS 66% 11.97 100% 414 28% 4.81 89% 80 68% 10.03 1.50 99% 40% 218
MRK 69% 13.26 100% 451 31% 4.99 92% 93 70% 10.41 1.02 100% 29% 235
MRO 69% 14.16 100% 465 35% 5.38 96% 104 70% 10.67 1.12 100% 35% 241
MWV 68% 12.55 100% 452 34% 5.30 96% 102 69% 9.66 1.01 100% 33% 237
NEM 71% 13.90 100% 490 34% 5.77 92% 100 72% 11.38 1.90 100% 54% 260
OMC 65% 12.40 100% 411 30% 4.90 93% 88 67% 9.85 1.22 100% 39% 216
PCS 53% 6.52 86% 297 35% 4.08 74% 169 58% 4.47 1.43 81% 35% 195
PHM 66% 11.27 99% 416 35% 4.76 93% 115 68% 8.40 1.22 98% 38% 224
PKI 53% 7.96 96% 263 28% 3.98 82% 89 57% 6.16 1.70 93% 47% 148
R 63% 10.90 100% 352 27% 4.80 96% 71 65% 9.02 1.58 100% 44% 188
RAI 66% 11.39 100% 422 36% 5.60 98% 111 68% 8.64 1.42 100% 43% 224
SLB 76% 16.27 100% 644 32% 5.31 89% 94 77% 13.91 1.56 100% 47% 336
TE 54% 7.76 91% 301 37% 4.65 82% 175 60% 5.27 1.96 86% 45% 200
TWC 64% 12.24 99% 377 31% 5.21 86% 93 66% 9.67 1.70 99% 45% 201
WHR 65% 11.10 100% 394 29% 5.03 95% 85 67% 9.27 1.86 100% 52% 217
WIN 44% 4.32 72% 243 41% 4.74 75% 249 58% 2.60 2.55 58% 47% 206
WPI 66% 11.46 99% 437 32% 4.80 93% 100 68% 8.95 1.35 99% 46% 232
XTO 65% 13.26 100% 399 21% 3.78 78% 54 66% 11.72 1.42 100% 40% 209
Average 65% 12.08 98% 429 32% 5.08 91% 103 67% 9.53 1.51 97% 43% 231

Table 2.3 presents the average results of regressions:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i,

∆Pk,i = α̂Ti + β̂Ti TIk,i + η̂k,i,

∆Pk,i = α̂Di + θ̂Oi OFIk,i + θ̂Ti TIk,i + ε̂Dk,i,

where ∆Pk,i are the 10-second mid-price changes, OFIk,i are the contemporaneous order flow imbalances and TIk,i are the contem-
poraneous trade imbalances. These regressions were estimated using 273 half-hour subsamples (indexed by i) for each stock and their
outputs were averaged across subsamples. Each subsample typically contains about 180 observations (indexed by k). The t-statistics

were computed using Newey-West standard errors. For each of three regressions, Table 2.3 reports the average R2, the average t-statistic
of the coefficient(s), the percentage of samples where the coefficient(s) passed the z-test at the 5% significance level and the F-statistic
of the regression.
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Table 2.4: Relation between the price impact coefficient and market depth.

Ticker
Parameter estimates Fit measures

ĉ λ̂ t(ĉ = 0) t(ĉ = 0.5) t(λ̂ = 0) t(λ̂ = 1) R2 corr[β̂,
ˆ̂
β]2 corr[β̂,

ˆ̂
β∗]2

AMD 0.53 1.04 31.06 2.0 22.5 1.0 78% 86% 86%
APOL 0.30 0.38 4.59 -3.2 1.1 -1.8 3% 34% 35%
AXP 0.45 1.01 26.27 -3.2 45.8 0.6 90% 87% 87%
AZO 0.45 0.70 5.47 -0.7 5.2 -2.2 14% 17% 16%
BAC 0.87 1.10 31.80 13.6 19.1 1.7 80% 89% 89%
BDX 0.48 1.03 23.91 -1.2 22.2 0.6 74% 71% 71%
BK 0.47 1.04 28.28 -1.9 68.5 2.5 94% 94% 94%
BSX 0.51 1.02 15.23 0.3 24.1 0.4 73% 81% 81%
BTU 0.58 1.10 45.36 6.2 53.8 5.0 93% 90% 90%
CAT 0.48 1.01 35.12 -1.4 20.7 0.2 91% 91% 90%
CB 0.53 1.09 32.41 2.1 63.6 5.5 93% 91% 91%
CCL 0.45 1.04 35.26 -3.6 41.9 1.5 89% 86% 86%
CINF 0.43 1.03 25.48 -4.2 52.5 1.7 93% 90% 90%
CME 1.21 0.35 2.10 1.2 1.4 -2.7 1% 2% 2%
COH 0.61 1.11 15.35 2.9 44.7 4.3 81% 83% 82%
COP 0.32 0.94 13.77 -8.1 22.6 -1.6 82% 79% 79%
CVH 0.54 1.13 26.92 2.2 37.9 4.2 88% 90% 89%
DNR 0.55 1.10 40.77 3.6 44.9 3.9 92% 90% 90%
DVN 0.34 0.91 16.15 -7.8 19.3 -2.0 48% 61% 61%
EFX 0.43 1.05 19.58 -3.0 27.1 1.2 84% 80% 80%
ETN 0.64 1.11 13.55 2.9 20.8 2.1 65% 63% 63%
FISV 0.47 1.04 25.33 -1.7 34.1 1.3 85% 80% 80%
HAS 0.52 1.08 27.80 1.3 49.8 3.8 90% 86% 85%
HCP 0.37 1.00 33.13 -11.3 64.7 0.0 95% 94% 94%
HOT 0.61 1.13 28.19 5.2 37.7 4.3 87% 87% 87%
KSS 0.59 1.09 28.99 4.3 41.7 3.4 90% 85% 85%
LLL 0.57 1.02 15.30 1.9 14.5 0.3 53% 65% 65%
LMT 0.72 1.17 7.93 2.4 15.6 2.3 69% 63% 63%
M 0.52 1.06 24.92 1.0 52.1 3.0 94% 92% 92%
MAR 0.50 1.06 22.26 0.0 52.7 3.1 92% 89% 89%
MFE 0.47 1.06 22.12 -1.3 45.3 2.7 92% 89% 89%
MHP 0.45 1.02 20.58 -2.1 38.1 0.6 83% 78% 78%
MHS 0.71 1.16 19.88 5.9 39.5 5.3 88% 87% 86%
MRK 0.31 0.94 21.38 -12.8 36.3 -2.3 87% 84% 84%
MRO 0.55 1.09 28.87 2.4 51.9 4.2 94% 94% 94%
MWV 0.54 1.13 28.16 2.2 39.3 4.6 90% 87% 87%
NEM 0.51 1.07 31.09 0.4 39.3 2.6 89% 88% 88%
OMC 0.52 1.04 36.61 1.1 19.5 0.7 86% 90% 90%
PCS 0.43 1.06 22.79 -3.4 18.6 1.1 53% 83% 83%
PHM 0.62 1.10 39.56 7.7 36.6 3.3 87% 92% 92%
PKI 0.49 1.14 29.01 -0.5 34.7 4.4 80% 87% 86%
R 0.50 1.05 17.43 -0.1 15.8 0.7 58% 59% 59%
RAI 0.51 1.07 26.19 0.4 47.3 3.1 88% 79% 79%
SLB 0.56 1.08 23.39 2.5 47.6 3.6 92% 94% 93%
TE 0.35 1.10 12.12 -5.1 25.1 2.2 70% 85% 86%
TWC 0.55 1.07 22.29 1.9 18.9 1.2 73% 85% 84%
WHR 1.09 1.25 12.66 6.9 13.4 2.7 51% 54% 53%
WIN 17.21 1.80 13.95 13.5 12.2 5.4 35% 72% 74%
WPI 0.39 0.99 19.57 -5.6 32.6 -0.4 79% 77% 77%
XTO 0.97 1.19 27.70 13.46 35.64 5.77 88% 91% 90%
Grand mean 0.88 1.05 23.55 0.59 33.40 1.99 76% 79% 79%

Table 2.4 presents the results of regressions:

log β̂i = ˆαL,i − λ̂ logDi + ε̂L,i,

β̂i = ˆαM,i + ĉ

Dλ̂i

+ ε̂M,i,

where β̂i is the price impact coefficient for the i-th half-hour subsample and Di is the average market depth for
that subsample. These regressions were estimated for each of the 50 stocks, using 273 estimates of β̂i for that stock,
obtained from (2.15). The second regression uses estimates λ̂ obtained from the first regression. The t-statistics were
computed using Newey-West standard errors. The last three columns provide three alternative fit measures - the

R2 of the linear regression (2.18), the squared correlation between β̂i and fitted values
ˆ̂
βi = ĉ

Dλ̂i

and the squared

correlation between β̂i and
ˆ̂
β∗i = ĉ

Di
.
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Table 2.5: Comparison of traded volume and order flow imbalance.

Ticker
Avg Stdev Order flow imbalance Traded volume Both covariates

Ĥ Ĥ R2 t(β̂Oi ) βOi 6= 0 F R2 t(β̂Vi ) βVi 6= 0 F R2 t(φ̂Oi ) t(φ̂Vi ) φOi 6= 0 φVi 6= 0 F
AMD 0.06 0.08 63% 11.7 100% 356 14% 4.6 87% 34 63% 10.8 1.2 99% 38% 182
APOL 0.24 0.08 53% 9.1 97% 258 25% 6.9 100% 63 57% 7.6 3.3 94% 86% 144
AXP 0.16 0.08 55% 11.3 100% 249 20% 6.8 100% 48 57% 9.7 2.9 100% 82% 133
AZO 0.43 0.22 39% 6.3 98% 131 32% 5.8 100% 93 50% 5.0 3.9 97% 98% 98
BAC 0.09 0.08 73% 17.6 100% 560 24% 6.0 89% 61 74% 15.3 1.3 97% 40% 285
BDX 0.26 0.10 55% 9.4 100% 261 27% 6.5 100% 71 58% 7.6 3.1 99% 85% 147
BK 0.11 0.07 68% 14.1 100% 437 19% 6.7 97% 46 68% 12.6 2.0 100% 58% 225
BSX -0.17 2.41 68% 10.3 100% 486 14% 3.4 97% 33 69% 10.1 0.0 99% 13% 246
BTU 0.24 0.07 58% 11.4 100% 283 23% 7.1 99% 57 60% 9.7 2.6 100% 81% 151
CAT 0.22 0.07 56% 11.0 100% 250 19% 6.3 99% 44 57% 9.7 2.3 100% 68% 131
CB 0.19 0.09 56% 11.1 100% 261 23% 6.5 99% 58 58% 9.1 2.8 100% 76% 141
CCL 0.14 0.07 60% 12.2 100% 309 19% 6.7 99% 45 62% 10.8 2.5 100% 77% 162
CINF 0.13 0.12 67% 12.0 100% 505 30% 6.2 98% 85 69% 10.3 2.1 100% 58% 268
CME 0.49 0.24 28% 4.8 98% 78 30% 5.3 100% 83 42% 3.9 4.1 94% 99% 71
COH 0.19 0.07 60% 11.3 100% 299 22% 6.5 99% 52 61% 9.8 2.4 100% 73% 157
COP 0.16 0.07 56% 10.5 100% 277 20% 6.1 97% 49 58% 9.2 2.5 100% 74% 145
CVH 0.18 0.10 62% 11.4 100% 352 27% 6.1 100% 72 64% 9.2 2.4 100% 73% 189
DNR 0.08 0.07 64% 13.4 100% 376 17% 6.4 95% 38 65% 12.0 1.9 99% 57% 193
DVN 0.26 0.07 52% 9.6 97% 236 24% 6.9 100% 59 55% 8.0 3.2 96% 85% 131
EFX 0.20 0.11 52% 9.1 100% 241 26% 5.6 99% 69 56% 7.3 2.8 99% 77% 137
ETN 0.26 0.10 55% 9.1 99% 252 27% 6.6 99% 70 58% 7.6 3.1 98% 85% 142
FISV 0.19 0.11 57% 10.1 100% 284 25% 6.0 100% 65 59% 8.3 2.4 100% 70% 153
HAS 0.20 0.09 61% 11.3 100% 328 26% 6.3 100% 67 63% 9.5 2.5 100% 76% 175
HCP 0.14 0.07 57% 11.8 100% 268 21% 7.1 99% 50 59% 10.0 2.8 100% 80% 143
HOT 0.23 0.08 57% 10.5 99% 263 24% 7.2 100% 60 60% 9.0 3.2 99% 88% 145
KSS 0.24 0.08 60% 11.6 100% 318 25% 6.8 99% 61 62% 9.8 2.6 99% 78% 169
LLL 0.33 0.12 58% 10.3 97% 323 34% 7.2 100% 101 63% 7.9 3.4 96% 92% 188
LMT 0.28 0.09 61% 11.6 100% 327 31% 7.6 100% 85 64% 9.3 3.1 100% 85% 182
M 0.11 0.07 69% 15.2 100% 463 20% 6.3 100% 46 69% 13.5 2.0 100% 63% 238
MAR 0.15 0.07 61% 13.3 100% 324 21% 7.0 99% 50 62% 11.5 2.5 100% 74% 170
MFE 0.16 0.09 60% 11.7 100% 318 24% 7.0 98% 62 62% 9.7 2.6 100% 73% 170
MHP 0.20 0.10 62% 11.6 100% 377 25% 6.1 100% 62 64% 9.7 2.0 100% 56% 199
MHS 0.23 0.08 56% 10.0 100% 258 24% 6.7 100% 58 58% 8.4 2.9 100% 80% 139
MRK 0.10 0.07 62% 12.1 100% 330 17% 5.5 99% 40 63% 10.8 1.9 100% 60% 170
MRO 0.09 0.06 61% 12.7 100% 333 16% 6.4 97% 36 63% 11.5 2.0 100% 56% 172
MWV 0.18 0.10 62% 11.3 100% 330 28% 6.9 100% 75 64% 9.2 2.6 100% 79% 180
NEM 0.20 0.07 56% 10.6 100% 253 20% 6.3 99% 47 58% 9.3 2.6 100% 79% 135
OMC 0.15 0.09 57% 11.0 100% 286 20% 6.4 98% 48 59% 9.4 2.5 100% 75% 151
PCS 0.11 0.18 62% 8.9 100% 411 18% 3.8 98% 54 63% 8.4 0.8 100% 28% 214
PHM 0.07 0.08 64% 11.5 100% 384 15% 5.4 91% 34 65% 10.7 1.2 100% 41% 195
PKI 0.11 0.11 55% 9.0 99% 266 20% 4.8 98% 47 57% 7.8 1.9 98% 55% 141
R 0.27 0.11 56% 9.8 99% 259 28% 6.3 100% 74 59% 7.9 3.1 99% 87% 147
RAI 0.25 0.10 61% 10.6 100% 334 28% 5.9 99% 73 63% 8.8 2.6 100% 75% 182
SLB 0.24 0.07 62% 12.5 99% 330 19% 5.8 97% 46 63% 11.2 1.9 99% 56% 171
TE 0.09 1.69 60% 9.6 100% 371 18% 4.5 84% 48 61% 8.7 1.3 99% 43% 196
TWC 0.25 0.10 55% 10.5 100% 253 27% 6.8 100% 73 58% 8.4 3.1 99% 83% 142
WHR 0.34 0.11 56% 9.2 99% 272 29% 6.6 100% 78 59% 7.5 3.2 98% 88% 156
WIN 0.06 0.26 48% 5.5 86% 340 10% 2.9 50% 34 49% 5.3 0.6 85% 31% 179
WPI 0.22 0.10 61% 11.0 100% 361 28% 5.9 100% 75 64% 9.0 2.4 99% 71% 196
XTO 0.08 0.06 53% 11.3 100% 238 15% 6.6 100% 32 55% 10.0 2.8 100% 82% 125
Average 0.18 0.18 58% 10.9 99% 313 23% 6.1 97% 58 61% 9.3 2.4 99% 70% 168

Table 2.5 presents the average results of regressions:

|∆Pk,i| = α̂Oi + β̂Oi |OFIk,i|+ ε̂Ok,i,

|∆Pk,i| = α̂Vi + β̂Vi V OL
Ĥi
k,i + ε̂Vk,i,

|∆Pk,i| = α̂Wi + φ̂Oi |OFIk,i|+ φ̂Vi V OL
Ĥi
k,i + ε̂Wk,i,

where ∆Pk,i are the 10-second mid-price changes, OFIk,i are the contemporaneous order flow imbalances and V OLk,i
are the contemporaneous trade volumes. The exponents Ĥi were estimated in each subsample beforehand using a
logarithmic regression: log |∆Pk,i| = log θ̂i + Ĥi log V OLk,i + log |ξ̂k,i|. These regressions were estimated using 273
half-hour subsamples (indexed by i) for each stock and their outputs were averaged across subsamples. Each subsample
typically contains about 180 observations (indexed by k). The t-statistics were computed using Newey-West standard
errors. For each of three regressions, Table 2.5 reports the average R2, the average t-statistic of the coefficient(s), the
percentage of samples where the coefficient(s) passed the z-sest at the 5% significance level and the F-statistic of the
regression.
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2.5.2 Transaction prices

To reconcile our results with earlier studies that operate in transaction time, we repeated

regressions (2.15,2.17a,2.17b) with differences between transaction prices ∆LP
t
k = P tk−P tk−L

for L trades, instead of differences in mid-prices ∆Pk. We picked at random five stocks from

our sample (BDX, CB, MHS, PHM and PKI), and computed ∆LP
t
k for L = 2, 5, 10 trades

(we avoided using L = 1 because of possible issues with order direction estimation). Using

the same inter-trade time intervals we computed concurrent OFI and TI variables. To

ensure that there is an ample amount of data for each regression, we pooled data across

days for each stock and each intraday time subsample, resulting in 13 samples for each stock

over a month of data. The results averaged across time and stocks are presented in Table

2.6 and closely mirror our results for mid prices. The variable OFIk explains price changes

better than TIk on stand-alone basis. Moreover, the effect of trades on prices seems to be

captured by the order flow imbalance, i.e. the variable TIk loses its statistical significance19.

when used together with OFIk in the regression. The increase in R2 from adding TIk as

an extra regressor is almost nill (0.65%, 0.18%, 0.24% for L = 1, 2, 5 respectively).

Table 2.6: Comparison of order flow imbalance and trade imbalance for transaction prices.

Lag
Order flow imbalance Trade imbalance Both covariates

R2 t(β̂i) {βi 6= 0} F R2 t(β̂Ti ) {βTi 6= 0} F R2 t(θ̂Oi ) t(θ̂Ti ) {θOi 6= 0} {θTi 6= 0} F
L = 2 14% 15.03 100% 464 1% 2.97 69% 26 15% 14.19 -2.90 100% 71% 245
L = 5 38% 16.68 98% 753 8% 4.79 88% 113 39% 15.13 -0.14 98% 14% 379
L = 10 51% 14.85 98% 655 13% 4.85 88% 100 51% 13.21 0.70 98% 11% 329

Interestingly, we found that the relation between trade price changes and OFIk (or TIk)

is sometimes concave. We estimated regressions (2.15) and (2.17a) for trade price changes

∆LP
t
k with additional quadratic variable OFIk|OFIk| and found that average t-statistics

of its coefficient are, respectively -3.02, -4.10 and -3.85 for L = 1, 2, 5 trades. The quadratic

term is significant at a 5% level in 60%, 74% and 85% of samples for respective values of

L, and we did not observe any pattern in these t-statistics, neither across stock nor across

time. In the trade imbalance regression the coefficient near quadratic variable TIk|TIk| is

also significant with average t-statistics -3.64, -5.53, -5.48 for respective lag values and it is

19Here we also use Newey-West standard errors because regression residuals have statistically significant
autocorrelation
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significant in even a larger fraction of samples.

From these results it appears that price impact is concave when prices are sampled at

trade times, but it is linear when they are sampled at regular time intervals. This effect

may be a consequence of sampling data at special times (i.e. trade times), which introduces

systematic biases into the regression. If traders submit large orders when they expect their

impact to be minimal, it would lead to a concave (sublinear) price impact. Supporting

the idea of a sampling bias, we found that when mid-price changes are sampled at trade

times, the price impact of OFIk is again concave - the quadratic term in the regression

is statistically significant in a large fraction of our samples. We also regressed changes in

last trade prices sampled regularly at a 1-minute frequency on OFIk, and observed concave

price impact once again. This may again be attributed to a dependent variable bias - since

trades are relatively infrequent, for many time intervals the trade prices are going to be

stale and trade price changes are equal to zero, while mid price changes are not.

2.5.3 Order flow at higher order book levels

The level of detail in our Level 2 auxiliary data set allows us to analyze contributions of

order flows at different price levels to price formation and to confirm our claim that price

changes are mostly driven by activity at the top of the order book (thus Level 1 data is

sufficient to study the impact of limit orders on prices).

For example, consider the bid side of the order book with 10 shares at the top two levels.

Absent any activity on the ask side and the second bid level, an OFI of -11 shares will lead

to a bid price change of -1 tick. However, if 9 orders at the second bid level cancel before

that order flow happens, the same OFI of -11 shares will lead to a price change of -2 ticks.

In other words, if order activity up to second (third, fourth etc) level is important, tracking

OFI only at the best prices will give a flawed picture of price dynamics.

To test this assertion, we compute variables OFIm,m = 2, . . . , 5 from m-th level queue

fluctuations similarly to (2.12) and relabel OFI1 = OFI. Then we fit five regressions,

similar to (2.15), where variables OFIm, m = 2, . . . , 5 are added one at a time:

∆Pk,i = α̂Mi +
M∑
m=1

β̂m,Mi OFImk,i + ε̂Mk,i, M = 1, . . . , 5 (2.30)
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The average results across time for a representative stock are shown on Figure 2.11. The

average increase in explanatory power (measured by R2) from adding OFI2 as a regressor

is 6.22%, which is quite small compared to the stand-alone R2 of 70.83% for OFI1. The

effect of OFI3 − OFI5 is very small, and their coefficients appear to be only marginally

significant, in contrast with those of OFI1 and OFI2. The cross-time average of coefficients

β̂1,1
i in the simple regression20 with OFI1 is 0.0597. In the multiple regression with OFI1

and OFI2 the averages of their respective coefficients are 0.0673 and 0.0406. We conclude

that second-level activity, as summarized by OFI2, has only a second-order influence on

price changes, which are mainly driven by OFI1. The effect of OFI3−OFI5 is almost nill.

Figure 2.11: Cross-time average increase in R2 from inclusion of variables OFI2 − OFI5,
and cross-time average Newey-West t-statistics of their coefficient in the regression with all
five variables, with NASDAQ ITCH data for the Schlumberger stock (SLB).

2.5.4 Choice of timescale

Using the auxiliary Level 2 dataset, we verify that our results are robust to potential issues

in TAQ data, namely odd-lot sized orders at the best bid and offer, and mis-sequencing in

quote data across exchanges during NBBO construction. We also compare our results across

20This coefficient is higher than the one obtained with NBBO data, because NASDAQ best quote depth
is smaller than NBBO depth
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a wide range of timescales. The auxiliary data comes from a single exchange (NASDAQ),

has information on orders of all sizes and has timestamps up to a millisecond.

We estimate the regression (2.15) for a variety of timescales ∆t, ranging from 50 millisec-

onds to 5 minutes using separate intraday subsamples as before. The size of these samples

was different in order to stabilize the number of observations per sample. More precisely,

data for the smallest timescales (50, 100 and 500 milliseconds) was separated into 1-minute

instead of 30-minute subsamples to make numerical computations feasible. Data for the

largest timescales (30 seconds to 5 minutes) was pooled across days preserving separate 30-

minute intraday intervals to have a large number of observations per sample. The average

R2 and Newey-West t-statistics for OFI across time for each ∆t are presented on Figure

2.12.

Figure 2.12: Average R2 and Newey-West t-statistics for OFI coefficient across time for
different ∆t, with NASDAQ ITCH data for the Schlumberger stock (SLB).

The goodness of fit is stable across ∆t, despite pronounced discreteness of data for very

short time intervals. The OFI variable is statistically significant at a 95% level21 in more

than 80% of samples for ∆t below one second, 100% of samples for ∆t between one second

and 2 minutes, and 92% of samples for ∆t equal 5 minutes.

Notably there are many large price changes even when we consider ∆t equal to 50

21using Newey-West t-statistics
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milliseconds, but they usually correspond to high values of OFI. This is consistent with

findings in [57], where authors describe the sporadic character of order activity in modern

markets. When a subset of traders reacts to market updates in a matter of several millisec-

onds, this creates short intervals of increased activity with possibly large price changes and

large OFI, and many time intervals with no activity when both variables are equal to zero.

From our findings it appears that the simple model (2.7) can capture both of these regimes.

When a quadratic term γ̂Qi OFIk,i|OFIk,i| is added to the regression, the coefficient γ̂Qi

is significant in a handful of samples (10 out of 871) for ∆t bigger or equal to one second.

For ∆t under one second, the quadratic term is significant in about 16% of samples, and its

contribution is marginal (about 3% increase in average R2). We conclude that the relation

between price changes and OFI is linear, irrespective of a timescale.

2.6 Conclusion

We have introduced order flow imbalance, a variable that cumulates the sizes of order book

events, treating the contributions of market, limit and cancel orders equally, and provided

empirical and theoretical evidence for a linear relation between high-frequency price changes

and order flow imbalance for individual stocks. We have shown that this linear model is

robust across stocks and timescales, and the price impact coefficient is inversely proportional

to market depth. These relations suggest that prices respond to changes in the supply and

demand for shares at the best quotes, and that the impact coefficient fluctuates with the

amount of liquidity provision, or depth, in the market. Moreover, we have demonstrated

that order flow imbalance is a more general metric of supply/demand dynamics than trade

imbalance, and it can be used to analyze intraday changes in volatility, and monitor possible

adverse selection in limit order executions. Trades seem to carry little to no information

about price changes after the simultaneous order flow imbalance is taken into account. If

trades do not help to explain price changes after controlling for the order flow imbalance, it is

highly possible that the relation between the magnitude of price changes, or price volatility

and traded volume simply captures the noisy scaling relation between these variables.



CHAPTER 3. OPTIMAL ORDER PLACEMENT IN LIMIT ORDER MARKETS 63

Chapter 3

Optimal order placement in limit

order markets

This chapter is based on the paper ”Optimal Order Placement in Limit Order Markets” [27]

which is a joint work with Professor Rama Cont.

3.1 Introduction

When [a group of brokers] thinks it is advisable to sell shares, the means for

prudently carrying out this purpose are given much thought. The members ini-

tiate action only when they can foresee its result, so that, apart from unlucky

incidents, they can reckon on rather sure success.

Joseph de la Vega, Confusion de confusiones, 1688

In today’s automated, electronic financial markets, the trading process is divided into

several stages, each taking place on a different time horizon: portfolio allocation decisions

are usually made on a monthly or daily basis and translate into trades that are executed

over time intervals of several minutes to several days. Existing studies on optimal trade

execution [15; 6] have investigated how the execution cost of a large trade may be reduced

by splitting it into multiple orders spread in time. Once this order scheduling decision

is taken, one still needs to specify how each individual order should be placed: this order
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placement decision involves the choice of an order type (limit order or market order), order

size and destination, when multiple trading venues are available. We focus here on this

order placement problem: given an order which has been scheduled, deciding what type of

order –market or limit order– and which trading venue to submit it to.

Orders are filled over short time intervals of a few milliseconds to several minutes and

the mechanism through which orders are filled in the limit order book are relevant for such

order placement decisions. When trading large portfolios, market participants need to make

such decisions repeatedly, thousands of times a day, and their outcomes have a large impact

on each participant’s transaction cost as well as on aggregate market dynamics.

Early work on optimal trade execution [15; 6] did not explicitly model the process

whereby each order is filled, but more recent formulations have tried to incorporate some

elements in this direction. In one stream of literature (see [97], [3], [104]) a trader is restricted

to using market orders whose execution costs are given by an idealized order book shape

function. Another approach is to model the process through which an order is filled as a

dynamic random process ([25; 26]) and thus formulate the optimal execution problem as a

stochastic control problem: this formulation has been studied in various setting with limit

orders ([14], [52]) or limit and market orders [53; 65] but its complexity makes it intractable

unless restrictive assumptions are made on price and order book dynamics.

In the present work, we adopt a simpler, more tractable approach: assuming that the

trade execution schedule has been specified, we focus on the task of filling each order.

Decoupling the scheduling problem from the order placement problem leads to a more

tractable approach which is closer to market practice and allows us to incorporate some

realistic features which matter for order placement decisions, while conserving analytical

tractability.

Individual order placement and order routing decisions play an important role in modern

financial markets. Brokers are commonly obliged by law to deliver the best execution quality

to their clients and empirical evidence confirms that a large percentage of market orders in

the U.S. and Europe is sent to trading venues providing lower execution costs or smaller

delays [17; 46]. Market orders gravitate towards exchanges with larger posted quote sizes

and low fees, while limit orders are submitted to exchanges with high rebates and lower
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execution waiting times (see [94]). These studies demonstrate how investors’ aggregate order

routing decisions have a significant influence on market dynamics, but a systematic study of

the order routing problem from the investor’s perspective is lacking. A reduced-form model

for routing an infinitesimal limit order to a single destination is used by [94], while [49] and

[82] propose numerical algorithms to optimize order executions across multiple dark pools,

where supply/demand is unobserved. To the best of our knowledge this work is the first

to provide a detailed treatment of investor’s order placement decision in a multi-exchange

market, unified with the market/limit order choice.

Our key contribution is a quantitative formulation of the order placement problem which

takes into account multiple important factors - the size of an order to be executed, lengths

of order queues across exchanges, statistical properties of order flows in these exchanges,

trader’s execution preferences, and the structure of liquidity rebates across trading venues.

Our problem formulation is tractable, intuitive and blends the aforementioned factors into

an optimal allocation of limit orders and market orders across available trading venues.

Order routing heuristics employed in practice commonly depend on past order fill rates at

each exchange and are inherently backward-looking. In contrast, our approach is forward-

looking - the optimal order allocation depends on current queue sizes and distributions

of future trading volumes across exchanges. When only a single exchange is available for

execution, this order placement problem reduces to the problem of choosing an optimal split

between market orders and limit orders. We derive an explicit solution for this problem

and analyze its sensitivity to the order size, the trader’s urgency for filling the order and

other factors. Similar results are also established in a case of two trading venues under

some assumptions on order flow distributions. Finally, we propose a numerical method for

solving the order placement problem in a general case and demonstrate its efficiency through

examples. Our numerical examples show that the use of our optimal order placement

method allows to substantially decrease trading costs in comparison with some simple order

placement strategies.

An important aspect of our framework is to account for the execution risk, i.e. the risk

of not filling an order, through the incorporation of a penalty for such outcomes. This is

different from most other studies which focus on the risk of price variations over the course
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of a trade execution [6; 64] but assume that orders are always filled, or studies that ignore

execution risks altogether [15; 14]. In our framework the penalty for execution risk plays

an important role. When it is costly to catch up on the unfilled portion of the order, the

optimal allocation shifts from limit to market orders. Although market orders are executed

at a less favorable price, their execution is more certain and it becomes optimal to use

them when the execution risk is a primary concern. Optimal limit order sizes are strongly

influenced by total quantities of orders queueing for execution at each exchange and by

distributions of order outflows from these queues. For example, if the queue size at one of

the exchanges is much smaller than the expected future order outflow there, it is optimal

to place a larger limit order on that exchange. According to a related study [94] such

favorable limit order placement opportunities vanish in equilibrium due to competition and

strategic order routing of individual traders. However the empirical results in that study

also show that short-term deviations from the equilibrium are a norm, and can therefore

be exploited in our optimization framework to improve limit order placement decisions.

Finally, we find that the targeted execution size plays an important role - limit orders are

used predominantly to execute small sizes and market orders are used to execute larger

quantities, as long as their cost is less than the penalty for falling behind the target. This

is a due to the fact that the amount of limit orders that can be realistically filled at each

exchange is naturally constrained by the corresponding queue size and the order outflow

distribution, so to execute larger quantities the trader needs to rely on market orders.

We find that the optimal order allocation almost always sends limit orders to all available

exchanges in an attempt to diversify execution risk, which suggests a benefit in having

multiple exchanges. However, when order flows on different exchanges are highly positively

correlated, these diversification advantages fade and the cost of execution becomes higher

than on a single consolidated exchange.

Section 3.2 describes our formulation of the order placement problem and presents simple

and intuitive conditions for the existence of an optimal order placement. In Section 3.3 we

derive an optimal split between market and limit orders for a single exchange. Section

3.4 analyzes the general case of order placement on multiple trading venues. Section 3.5

presents a numerical algorithm for solving the order placement problem in a general case
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and our simulation results, and Section 3.6 concludes.

3.2 The order placement problem

Consider a trader who has a mandate to buy S shares of a stock within a (short) time interval

[0, T ]. The deadline T may be a fixed time horizon (e.g. 1 minute) or a stopping time (e.g.

triggered by price changes or trading volume dynamics). To gain queue priority, the trader

can immediately submit K limit orders of sizes Lk to multiple exchanges k = 1, . . . ,K and

also market orders for M shares. The trader’s order placement decision is thus summarized

by a vectorX
∆
= (M,L1, . . . , LK) ∈ RK+1

+ of order sizes whose components are non-negative

(only buy orders are allowed). Our objective is to define a meaningful framework in which

the trader may choose between various possibilities for this order placement decision, for

example between sending an order to a single exchange or splitting it in some proportion

across K exchanges.

Our focus here is on limit order placement and we assume for simplicity that a market

order of any size M ≤ S can be filled immediately and with certainty at any exchange.

Under this assumption sending market orders to exchanges with high fees is clearly sub-

optimal and we therefore consider a single exchange with the smallest liquidity fee f for

the purpose of sending a single market order1 of size M . Limit orders with quantities

(L1, . . . , LK) join queues of (Q1, . . . , QK) pre-existing orders at the best bids of K limit

order books, where Qk ≥ 0, i.e. empty queues are allowed which corresponds to sending an

order inside the bid-ask spread. We assume that all K limit orders submitted by the trader

have the same price (the national best bid price), but this can be generalized to having

multiple prices at the expense of additional notation2.

1This simplifying assumption is reasonable as long as the target size S is small relative to the prevailing
market depth. Otherwise the quantity S can be filled with multiple market orders at exchanges with
progressively larger fees f1 < f2 < · · · < fK , and the total cost of these market orders becomes a convex
piecewise linear function. Our results extend to this case, but to avoid additional notation we assume that
S can be executed with a single market order at a fee f so the market order cost is linear in its size.

2In our framework the only difference between submitting a limit order to the best bid price and deeper in
the order book is that orders deeper in the book have lower costs and larger queue sizes - i.e. in addition to
orders queued at the same price they need to wait for all higher-priced buy orders to clear from the market.
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Denote by (x)+
∆
= max(x, 0). If the trader does not modify his limit orders before time

T , the amount purchased with each limit order by time T can be explicitly computed as a

function of future order flow:

min(max(ξk −Qk, 0), Lk) = (ξk −Qk)+ − (ξk −Qk − Lk)+, k = 1, . . . ,K,

where ξk is a total outflow from the front of the k-th order queue. The order outflow ξk

consists of order cancelations that occurred before time T from queue positions in front of an

order Lk, and of marketable orders that reach the k-th exchange before T . The mechanics

of limit order fills and order outflows are further illustrated on Figure 3.1.

Figure 3.1: Limit order execution on exchange k depends on the order size Lk, the queue
Qk in front of it, total sizes of order cancelations Ck and marketable orders Dk, specifically
on ξk = Ck +Dk.

We note that limit order fill amounts are random because they depend on random

future bid queue outflows ξ = (ξ1, . . . , ξK). The random variable ξ is defined with respect

to an execution time horizon T , therefore its distribution depends on a trader’s choice of T .

Here we do not make any assumptions regarding the distribution of ξ except for illustration

purposes. In fact our formulation leads to an intuitive iterative procedure that approximates

the optimal order allocation by using historical data and also does not require specifying a

distribution for ξ.
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The total amount of shares A(X, ξ) bought by the trader by time T with his limit and

market orders is a function of the order allocation X and an overall bid queue outflow ξ:

A(X, ξ) = M +

K∑
k=1

((ξk −Qk)+ − (ξk −Qk − Lk)+) (3.1)

The total price of this purchase is divided into a benchmark cost paid regardless of

trader’s decisions, computed using a mid-quote price level, and an execution cost relative

to mid-quote price given by

(h+ f)M −
K∑
k=1

(h+ rk)((ξk −Qk)+ − (ξk −Qk − Lk)+), (3.2)

where h is a half of the bid-ask spread at time 0, f is the lowest available fee for taking

liquidity and rk, k = 1, . . . ,K are rebates for adding liquidity on different exchanges. The

benchmark price in our formulation is the mid-quote price at time 0, so in (3.2) the trader

saves half of the bid-ask spread plus liquidity rebates on his limit orders, and pays half of

the spread plus a liquidity fee on his market orders. Limit orders reduce the cost but lead

to a risk of falling behind the target quantity S because their fills are random. To capture

this execution risk we include, in the objective function, a penalty for violations of target

quantity in both directions:

λu (S −A(X, ξ))+ + λo (A(X, ξ)− S)+ , (3.3)

where λu ≥ 0, λo ≥ 0 are marginal penalties in dollars per share for, respectively falling

behind or exceeding the execution target S. These penalties are motivated by a correlation

that exists between limit order executions and price movements (so-called adverse selection,

see e.g. [107]). If A(X, ξ) < S, the trader has to purchase the remaining S−A(X, ξ) shares

at time T with market orders. Adverse selection implies that conditionally on the event

{A(X, ξ) < S} prices have likely moved up and the transaction cost of market orders at

time T is higher than their cost at time 0, i.e. λu > h+ f . Alternatively, if A(X, ξ) > S the

trader experiences buyer’s remorse - conditionally on this event prices have likely moved

down and he could have achieved a better execution by sparing some of his market orders.
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Besides adverse selection, parameters λu, λo may reflect trader’s execution preferences. For

example a trader with a positive forecast of short-term returns may prefer to trade early

with a market order and set a larger value for λu compared to λo. A trader with significant

aversion to execution risk would choose high values for both λu, λo to reflect this aversion.

Problem 1 (Optimal order placement problem) An optimal order placement is a vec-

tor X∗ ∈ RK+1
+ solution of

min
X∈RK+1

+

E[v(X, ξ)] (3.4)

where

v(X, ξ) := (h+f)M−
K∑
k=1

(h+rk)((ξk−Qk)+−(ξk−Qk−Lk)+)+λu (S −A(X, ξ)))++λo (A(X, ξ)− S)+

(3.5)

is the sum of the execution cost and penalty for execution risk.

We will denote V (X) = E[v(X, ξ)]. We begin by assuming certain economically reasonable

restrictions on parameter values.

Assumptions

A1 min
k
{rk}+h > 0: even if some rebates rk are negative3, limit orders reduce the execution

cost.

A2 λo > h+max
k
{rk} and λo > −(h+f): there is no incentive to exceed the target quantity

S regardless of fees and rebates, even if they are negative.

Proposition 2 below shows that it is not optimal to submit limit or market orders that are

a priori too large or too small (larger than the target size S or whose sum is less than S).

Proposition 3 guarantees the existence of an optimal solution.

3Some inverse exchanges pay for executing marketable orders and charge for executing passive limit
orders. For example, on 03/07/2013 a U.S. equity exchange Direct Edge EDGA had a negative rebate
r = −$0.0006 per share for passive orders and a negative fee f = −$0.0004 per share for marketabe orders.
Another inverse exchange BATS BYX had on that date a rebate r = −$0.0002 and a fee f = −$0.0002.
These negative values are typically smaller than the minimal value of h = $0.005 for U.S. equities, justifying
our assumptions A1-A2.
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Proposition 2 Consider the compact convex subset of RK+1
+ defined by

C ∆
=

{
X ∈ RK+1

+

∣∣∣ 0 ≤M ≤ S, 0 ≤ Lk ≤ S −M,k = 1, . . . ,K, M +
K∑
k=1

Lk ≥ S

}
.

Under assumptions A1-A2 for any X̃ /∈ C, ∃X̃ ′ ∈ C with V (X̃ ′) ≤ V (X̃). Moreover, if

min
k
{P(ξk > Qk + S)} > 0, the inequality is strict: V (X̃ ′) < V (X̃).

Proof: First, for any allocation X̃ that has M̃ > S, we automatically have A(X̃) > S and

we can show that the (random) cost and penalty of X̃ are larger than those of Xnaive ∆
=

(S, 0, . . . , 0) ∈ C:

v(X̃, ξ)− v(Xnaive, ξ) = (h+ f)(M̃ − S)−
K∑
k=1

(h+ rk)((ξk −Qk)+ − (ξk −Qk − Lk)+)+

λo

(
M̃ − S +

K∑
k=1

((ξk −Qk)+ − (ξk −Qk − Lk)+)

)
=

(λo + h+ f)(M̃ − S) +
K∑
k=1

(λo − h− rk)((ξk −Qk)+ − (ξk −Qk − Lk)+) > 0,

which holds for all random ξ. Therefore, V (X̃) > V (Xnaive). Similarly, for any allocation

X̃ with L̃k > S − M̃ define a different allocation X̃ ′ by M̃ ′ = M̃ , L̃′j = L̃j , ∀j 6= k and

L̃′k = S − M̃ . Then v(X̃, ξ) − v(X̃ ′, ξ) = 0 on the event B = {ω|ξk(ω) < Qk + S −M}.

On its complementary event Bc,

v(X̃, ξ)− v(X̃ ′, ξ) = −(h+ rk)((ξk −Qk − S + M̃)+ − (ξk −Qk − L̃k)+)

+λo((ξk −Qk − S + M̃)+ − (ξk −Qk − L̃k)+).
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Therefore

V (X̃)− V (X̃ ′) = E
[
v(X̃, ξ)− v(X̃ ′, ξ)|B

]
P(B) + E

[
v(X̃, ξ)− v(X̃ ′, ξ)|Bc

]
P(Bc) =

0 + E
[
(λo − (h+ rk))((ξk −Qk − S + M̃)+ − (ξk −Qk − L̃k)+)|Bc

]
P(Bc) ≥ 0

with a strict inequality if P(Bc) > 0. If X̃ ′ /∈ C, we can continue truncating limit order sizes

L̃′j > S − M̃ ′ following the same argument. Each time the truncation does not increase the

objective function and finally we obtain X̃ ′′ ∈ C, such that V (X̃ ′′) ≤ V (X̃).

Next, if X̃ is such that M̃ −
∑K

k=1 L̃k < S define s = S − M̃ −
∑K

k=1 L̃k, take

M̃ ′ = M̃, L̃′k = L̃k, k = 1, . . . ,K − 1 and L̃′K = L̃k + s. Then, on the event B ={
ω|ξK(ω) < QK + L̃K

}
we have v(X̃, ξ) = v(X̃ ′, ξ). However, on the event Bc,

v(X̃, ξ)− v(X̃ ′, ξ) = (h+ rK)((ξK −QK − L̃K)+ − (ξk −Qk − L̃K − s)+)

+ λu((ξK −QK − L̃K)+ − (ξk −Qk − L̃K − s)+),

therefore

V (X̃)− V (X̃ ′) = E
[
v(X̃, ξ)− v(X̃ ′, ξ)|B

]
P(B) + E

[
v(X̃, ξ)− v(X̃ ′, ξ)|Bc

]
P(Bc) =

0 + E
[
(λu + (h+ rk))((ξK −QK − L̃K)+ − (ξk −Qk − L̃K − s)+)|Bc

]
P(Bc) ≥ 0

with a strict inequality if P(Bc) > 0. �

Proposition 2 shows that it is never optimal to overflow the target size S with a single

order, but it may be optimal to exceed the target S with the sum of order sizes M+
∑K

k=1 Lk.

The penalty function (3.3) effectively implements a soft constraint for order sizes and focuses

the search for an optimal order allocation to the set C. Specific economic or operational

considerations could also motivate adding hard constraints to problem (3.4), e.g. M = 0

or
∑K

k=1 Lk = S. Such constraints can be easily included in our framework but absent the

aforementioned considerations we do not impose them here.
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Proposition 3 Under assumptions A1-A2, V : RK+1
+ 7→ R is convex, bounded from below

and has a global minimizer X? ∈ C.

Proof: First, note that (ξk−Qk)+−(ξk−Qk−Lk)+ are concave functions of Lk. Therefore,

A(X, ξ) is concave as a sum of concave functions. Similarly, the cost term in v(X, ξ) is a sum

of convex functions, as long as rk ≥ −h, k = 1, . . . ,K and is itself a convex function. Second,

since S −A(X, ξ) is a convex function of X, and the function w(x)
∆
= λu(x)+ − λo(−x)+ is

convex in x for positive λu, λo, so the penalty term w (S −A(X, ξ))) is also convex.

If λo > h + max
k
{rk} the function V (X) is also bounded from below since v(X, ξ) ≥

−(h+ max
k
{rk})S.

Finally, since V (X) is convex, it is also continous and reaches a local minimum Vmin on

the compact set C at some point X? ∈ C. By convexity, Vmin is a global minimum of V (X)

on C. Moreover, since λo > h + max
k
{rk}, Proposition 2 guarantees that Vmin < V (X̃) for

any X̃ /∈ C, so Vmin is also a global minimum of V (X) on RK+1
+ . �

We may also consider an alternative approach to order placement optimization, which

turns out to be related to our original formulation by duality. Consider the following

problem:

Problem 2 (Alternative formulation: cost minimization under execution constraints)

min
X∈RK+1

+

E[(h+ f)M −
K∑
k=1

(h+ rk)((ξk −Qk)+ − (ξk −Qk − Lk)+)], (3.6)

subject to: E
[
(S −A(X, ξ))+

]
≤ µu, (3.7)

E
[
(A(X, ξ)− S)+

]
≤ µo (3.8)

In this alternative formulation a trader can specify his tolerance to execution risks using

constraints on expected order shortfalls and overflows. The goal is to minimize an expecta-

tion of order execution costs under the expected shortfall constraints. Problem 2 does not

appear to be tractable, but it has a convex objective and convex inequality constraints, and

we can easily find its (Lagrangian) dual problem:
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Problem 3

max
λu≥0,λo≥0

{V ?(λu, λo)− λuµu − λoµo} , (3.9)

where V ?(λu, λo) is the optimal objective value from Problem 1 given λu, λo.

We see that Problem 3 is related to our original order placement problem - solving Problem

3 (and therefore, Problem 2) amounts to re-solving Problem 1 for different values of λu, λo.

This discussion also leads to a new interpretation of parameters λu, λo in Problem 1 as

shadow prices for expected shortfall and overflow constraints in the related Problem 2.

Hereafter we focus on the (more tractable) Problem 1, but note that the optimal point for

Problem 2 can also be found by solving its dual.
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3.3 Choice of order type: limit orders vs market orders

To highlight the tradeoff between limit and market order executions in our optimization

setup, we first consider a case when the asset is traded on a single exchange, and the trader

has to choose an optimal split between limit and market orders. Since K = 1, we suppress

the subscript 1 throughout this section.

Proposition 4 (Single exchange: optimal split between limit and market orders)

Assume that ξ has a continuous distribution and (A1-A2) hold. The optimal order allocation

depends on λu:

If λu ≤ λu
∆
=

2h+ f + r

F (Q+ S)
− (h + r), the optimal strategy is to submit only limit orders:

(M?, L?) = (0, S).

If λu ≥ λu
∆
=

2h+ f + r

F (Q)
− (h+ r), the optimal strategy is to submit only market orders:

(M?, L?) = (S, 0).

If λu ∈ (λu, λu), the optimal split between limit and market orders is


M? = S − F−1

(
2h+ f + r

λu + h+ r

)
+Q,

L? = F−1

(
2h+ f + r

λu + h+ r

)
−Q,

(3.10)

where F (·) is a cumulative distribution function of the bid queue outflow ξ.

Proof: By Proposition 2 there exists an optimal split (M?, L?) ∈ C between limit and

market orders. Moreover for K = 1 the set C reduces to a line M? + L? = S so it is

sufficient to find M?. Restricting L = S −M implies that {A(X, ξ) > S} = ∅, {A(X, ξ) <

S, ξ > Q+ L} = ∅, and we can rewrite the objective function as

V (M) = E
[
(h+ f)M − (h+ r)((ξ −Q)+ − (ξ −Q− S +M)+) +

λu (S −M − ((ξ −Q)+ − (ξ −Q− S +M)+))))+

]
. (3.11)

For M ∈ (0, S) the expression under the expectation in (3.11) is bounded for all ξ and

differentiable with respect to M for almost all ξ, so we can compute V ′(M) = dV (M)
dM by
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interchanging the order of differentiation and integration (see e.g. [5], Theorem 24.5):

V ′(M) = E
[
h+f+(h+r)1{ξ>Q+S−M}−λu1{ξ<Q+S−M}

]
= 2h+f+r−(h+r+λu)F (Q+S−M)

(3.12)

Note that if λu ≤
2h+ f + r

F (Q+ S)
− (h+ r), then V ′(M) ≥ 0 for M ∈ (0, S) and therefore V is

non-decreasing at these points. Checking that V (S) − V (0) ≥ (h + f − λu)S + (λu + h +

r)S(1− F (Q+ S)) ≥ 0 we conclude that M? = 0. Similarly, if λu ≥
2h+ f + r

F (Q)
− (h+ r),

then v(M) ≤ 0 for all M ∈ (0, S) and V (M) is non-increasing at these points. Checking

that V (S)−V (0) ≤ (h+f −λu)S+(λu+h+ r)S(1−F (Q)) ≤ 0 we conclude that M? = S.

Finally, if λu is between these two values, ∃ε > 0, such that V ′(ε) < 0, V ′(S − ε) > 0 and

by continuity of V ′ there is a point where V ′(M?) = 0. This M? is optimal by convexity of

V (M) and (3.10) solves equations v(M?, ξ) = 0, L? = S −M?. �

In the case of a single exchange, Proposition 2 implies that M? +L? = S, therefore there is

no risk of exceeding the target size and λo does not affect the optimal solution. The trader

is only concerned with the risk of falling behind the target quantity, and balances this risk

with the fee, rebate and other market information. The parameter λu can be interpreted as

trader’s urgency to fill the orders, and higher values of λu lead to smaller limit order sizes,

as illustrated on Figure 3.2. In contrast, the optimal market order size increases with λu.

The optimal split between market and limit orders depends on the ratio 2h+f+r
λu+(h+r) which

balances marginal costs and savings from a market order. It also depends on the order

outflow distribution F (·) and the queue length Q - keeping all else constant, a trader would

submit a larger limit order if its execution is more likely and vice versa. The optimal limit

order size decreases with λu as it becomes more expensive to underfulfill the order and

increases with f as market orders become more expensive. Another interesting feature is

that L? is fully determined by Q, F and pricing parameters h, r, f, λu, while M? increases

with S. The consequence of this solution feature is that as the target size S increases,

a larger fraction M?

S of it is executed with a market order. The total quantity that can

realistically be filled with a limit order is limited by Q and ξ, so to accommodate larger

target sizes the trader resorts to market orders. This bounded capacity feature of limit

orders also appears in our solutions for multiple exchanges. For example, as the number of
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available exchanges K increases, the overall prospects of filling limit orders at any of them

improve and the fraction M?

S decreases. We can see that the solution (M?, L?) depends on

the entire distribution F (·) and not just on the mean of ξ. Limit orders are filled when

ξ ≥ Q + L, so the tail of F (·) affects order executions and is an important determinant of

the optimal order allocation. Figure 3.2 shows two order allocations for exponential and

Pareto distributions of ξ with equal means.

Figure 3.2: Optimal limit order size L? for one exchange. The parameters for this figure
are: Q = 2000, S = 1000, h = 0.02, r = 0.002, f = 0.003. Colors correspond to different
order outflow distributions - exponential with means 2200 and 2500 and Pareto with mean
2200 and a tail index 5.
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3.4 Optimal routing of limit orders across multiple exchanges

When multiple trading venues are available, dividing the target quantity among them re-

duces the risk of not filling the order and may improve the execution quality. However,

sending too many orders leads to an undesirable possibility of exceeding the target size.

Proposition 5 gives optimality conditions for an order allocation X? = (M?, L?1, . . . , L
?
K)

that balances shortfall risks and costs. The following probabilities play an important role

in this balance:

p0
∆
= P

(
K⋂
k=1

{ξk ≤ Qk}

)
, pj

∆
= P

⋂
k 6=j
{ξk ≤ Qk}

∣∣∣∣ξj > Qj

 , j = 1, . . . ,K

Intuitively, p0 is a probability that no limit orders will be filled given current queue sizes,

and it measures the overall execution prospects for limit orders. Each pj is a probability of

no fills everywhere except the j-th exchange, conditional on a fill at the exchange j, so pj

measure tail dependences between order flows on different exchanges.

Proposition 5 Assume (A1-A2), also assume that the distribution of ξ is continuous,

max
k
{Fk(Qk + S)} < 1 and λu < max

k

{
2h+ f + rk
Fk(Qk)

− (h+ rk)

}
. Then:

1. If

λu ≥
2h+ f + max

k
{rk}

p0
− (h+ max

k
{rk}), (3.13)

then any optimal order placement strategy involves market orders: M? > 0.

2. If

pj >
λo − (h+ rj)

λu + λo
, (3.14)

then any optimal order placement strategy involves submitting limit orders to the j-th

exchange: L?j > 0.

3. If (3.13)-(3.14) hold for all exchanges j = 1, . . . ,K: X? ∈ C is an optimal order
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placement if and only if the following conditions are fulfilled:

P

(
M? +

K∑
k=1

((ξk −Qk)+ − (ξk −Qk − L?k)+) < S

)
=
h+ f + λo
λu + λo

(3.15)

P

(
M? +

K∑
k=1

((ξk −Qk)+ − (ξk −Qk − L?k)+) < S

∣∣∣∣ξj > Qj + L?j

)
=
λo − (h+ rj)

λu + λo
,

j = 1, . . . ,K

(3.16)

Proof: Proposition 3 implies the existence of an optimal order allocation X? ∈ C. First,

we define XM
∆
= (S, 0, . . . , 0) and prove that X? 6= XM by contradiction. If XM were

optimal in problem (3.4) it would also be optimal in the same problem with a constraint

Lk = 0, k 6= j, for any one j. In other words, the solution (S, 0) would be optimal for any

one-exchange problem, defined by using only exchange j. But by our assumption, there

existsJ such that λu <
2h+ f + rJ
FJ(QJ)

− (h+ rJ) and Proposition 4 implies that (S, 0) is not

optimal for the J-th single-exchange subproblem, leading to a contradiction.

The function v(X, ξ) is bounded for X ∈ C and for all ξ, differentiable with respect to

M and Lk, k = 1, . . . ,K for X ∈ C\ {XM} for almost all ξ. Applying the same theorem as

in the proof of Proposition 4 we conclude that V (X) is differentiable for X ∈ C\ {XM} and

we can compute all of its partial derivatives by interchanging the order of differentiation

and integration. The KKT conditions for problem (3.4) and X ∈ C\ {XM} are

h+ f − λuP(A(X?, ξ) < S) + λoP(A(X?, ξ) > S)− µ0 = 0 (3.17)

−(h+ rk)P(ξk > Qk + L?k)− λuP(A(X?, ξ) < S, ξk > Qk + L?k)+

λoP(A(X?, ξ) > S, ξk > Qk + L?k)− µk = 0, k = 1, . . . ,K

(3.18)

M ≥ 0, Lk ≥ 0, µ0 ≥ 0, µk ≥ 0, µ0M = 0, µkLk = 0, k = 1, . . . ,K (3.19)
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Since the objective function V (·) is convex, conditions (3.17)–(3.19) are both necessary

and sufficient for optimality. The first result of this proposition follows from considering

any X̃ with M̃ = 0:

V (X̃) ≥ λuSP
(⋂
k

{ξk ≤ Qk}
)
− (h + max

k
{rk})SP

(⋂
k

{ξk ≤ Qk}
)
≥ (h + f)S = V (XM )

and we already argued that ∃X? with V (X?) < V (XM ), so X? 6= X̃ and therefore M? > 0.

Rearranging terms in a j-th equality (3.18) we obtain

P(ξj > Qj +L?j )
[
λo − (h+ rj)− (λu + λo)P(A(X?, ξ) < S|ξj > Qj + L?j )

]
−µj = 0 (3.20)

The term in square brackets in (3.20) is negative for any X ∈ C\ {XM} with Lj = 0, because

P(A(X, ξ) < S|ξj > Qj + Lj) > P

( ⋂
k 6=j
{ξk ≤ Qk}

∣∣∣∣ξj > Qj

)
>

λo−(h+rj)
λu+λo

by assumption and since µj ≥ 0 the condition (3.18) cannot be satisfied with L?j = 0. We

showed that M? > 0, L?j > 0 for all j = 1, . . . ,K and therefore, µ0 = µ1 = · · · = µK = 0 by

complimentary slackness. Then the KKT conditions (3.17)–(3.19) reduce to (3.15)–(3.16).

�

Equations (3.15)-(3.16) show that an optimal order allocation equates shortfall prob-

abilities to specific values computed with pricing parameters. This gives yet another in-

terpretation for parameters λu, λo - a trader can specify his tolerance for execution risk in

terms of shortfall probabilities and use the above equations to calibrate these parameters.

When the number of exchanges K is large, the probabilities in (3.15)-(3.16) are difficult

to compute in closed-form. However, the case K = 2 is relatively tractable and will be

analyzed as an illustration. The assumption of independence between ξ1, ξ2 is made only

in this example and is not required for the rest of our results. In Section 3.5 we study the

effect of correlation between order flows on optimal order placement decisions.



CHAPTER 3. OPTIMAL ORDER PLACEMENT IN LIMIT ORDER MARKETS 81

Corollary Consider the case of two exchanges with outflows ξ1, ξ2 that are independent and

have continuous distributions. If

1. max
k=1,2

{Fk(Qk + S)} < 1,

2. λu < max
k=1,2

{
2h+ f + rk
Fk(Qk)

− (h+ rk)

}
, λu ≥

2h+ f + max
k=1,2

{rk}

F1(Q1)F2(Q2)
− (h+ max

k=1,2
{rk}), and

3. F1(Q1) < 1− h+ r2

λo
, F2(Q2) < 1− h+ r1

λo
,

then there exists an optimal order allocation X? = (M?, L?1, L
?
2) ∈ int{C} and it verifies

L?1 = Q2 + S −M? − F−12

(
λo − (h+ r1)

λu + λo

)
(3.21a)

L?2 = Q1 + S −M? − F−11

(
λo − (h+ r2)

λu + λo

)
(3.21b)

F̄1(Q1 + L?1)F̄2(Q2 + S −M? − L?1) +

Q1+L
?
1∫

Q1+S−M?−L?2

F̄2(Q1 +Q2 + S −M? − x1)dF1(x1) =
λu − (h+ f)

λu + λo
,

(3.21c)

where F1(·), F2(·) are the cdf of ξ1, ξ2 respectively.

Proof: Solutions on the boundary of C are sub-optimal: M? = 0 and M? = S are ruled

out by assumption 2, L?1 = S −M and L?2 = S −M are ruled out by assumption 3 and

(3.18). Solutions with M? +
K∑
k=1

L?k = S are ruled out by directly checking (3.18). Finally,

L?1 = 0 and L?2 = 0 are also ruled out by (3.18). For example if L?1 = 0, then by Proposition

2 M? + L?2 = S and in (3.18) µ2 = 0 by complimentary slackness, P(A(X?, ξ) < S, ξ2 >

Q2 + L?2) = P(A(X?, ξ) > S, ξ2 > Q2 + L?2) = 0. But then (3.18) cannot hold because

P(ξ2 > Q2 + L?2) > 0.

For any X ∈ int{C}, A(X, ξ) > S if and only if all the following three inequalities are

satisfied:

ξ1 > Q1 + S −M − L2 (3.22a)

ξ2 > Q2 + S −M − L1 (3.22b)

ξ1 + ξ2 > Q1 +Q2 + S −M (3.22c)
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These inequalities give a simple characterization of the event {A(X, ξ) > S} which is directly

verified by considering subsets of (ξ1, ξ2) forming a complete partition of R2
+.

Case 1: ξ1 > Q1 + L1, ξ2 > Q2 + L2. Since L1 + L2 + M > S, we have A(X, ξ) =

L1 +L2 +M > S and at the same time all of the inequalities (3.22a-3.22c) are satisfied, so

they are trivially equivalent in this case.

Case 2: ξ1 > Q1 + L1, Q2 ≤ ξ2 ≤ Q2 + L2. Because of the condition ξ1 > Q1 + L1,

(3.22a) is satisfied. We have in this case that A(X, ξ) = L1 + ξ2 − Q2 + M and thus

A(X, ξ) > S if and only if (3.22b) is satisfied. Finally, ξ1 > Q1 + L1 together with (3.22b)

imply (3.22c), so A(X, ξ) > S and (3.22a-3.22c) are equivalent in this case.

Case 3: ξ2 > Q2 + L2, Q1 ≤ ξ1 ≤ Q1 + L1. Similarly to Case 2 we can show that

inequalities (3.22a-3.22c) are satisfied if and only if A(X, ξ) > S.

Case 4: Q1 + S − M − L2 < ξ1 ≤ Q1 + L1, Q2 + S − M − L1 < ξ2 ≤ Q2 + L2.

This set is non-empty because 0 < S −M − L1 < L2 and similarly for L1, L2 reversed.

Inequalities (3.22a)–(3.22b) hold trivially, only (3.22c) needs to be checked. We can write

A(X, ξ) = ξ1 − Q1 + ξ2 − Q2 + M > S if and only if (3.22c) holds, so A(X, ξ) > S is

equivalent to (3.22a-3.22c).

Case 5: Outside of Cases 1-4, either (3.22a) or (3.22b) is not satisfied. If ξ1 ≤ Q1 +

S − M − L2, ξ2 ≤ Q2 + L2, then A(X, ξ) ≤ S − M − L2 + L2 + M = S. The case

ξ2 ≤ Q2 + S −M − L1, ξ1 ≤ Q1 + L1 is completely symmetric, and it shows that neither

A(X, ξ) > S nor (3.22a-3.22c) hold in this case.

Next, we use inequalities (3.22a-3.22c) to characterize the set {A(X, ξ) > S} in the first-

order conditions (3.15)–(3.16). We observe that in the two-exchange case

{A(X, ξ) > S, ξ1 > Q1 + L1} = {ξ1 > Q1 + L1, ξ2 > Q2 + S −M − L1}

{A(X, ξ) > S, ξ2 > Q2 + L2} = {ξ2 > Q2 + L2, ξ1 > Q1 + S −M − L2},

and then use the independence of ξ1 and ξ2 to compute

P(A(X, ξ) > S|ξ1 > Q1 + L1) = F̄2(Q2 + S −M − L1)

P(A(X, ξ) > S|ξ2 > Q2 + L2) = F̄1(Q1 + S −M − L2)
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Together with (3.15) and (3.16), this leads to a pair of equations for limit orders sizes:

F̄2(Q2 + S −M − L1) =
λu + h+ r1

λu + λo
F̄1(Q1 + S −M − L2) =

λu + h+ r2

λu + λo

whose solution is given by L?1, L
?
2 from (3.21a,3.21b). To obtain the equation (3.21c),

we rewrite the first equation in (3.15,3.16) using the inequalities (3.22a-3.22c). Then

P (A(X, ξ) > S) may be computed as the integral of the product measure F1 ⊗ F2 over

the region defined by

U(Q,S,M,L1, L2) =

{(x1, x2) ∈ R2, x1 > Q1 + S −M − L2, x2 > Q2 + S −M − L1, x1 + x2 > Q1 +Q2 + S −M}.

This integral is given by

P (A(X, ξ) > S) = F1 ⊗ F2 (U(Q,S,M,L1, L2))

= F̄1(Q1 + L1)F̄2(Q2 + S −M − L1) +

Q1+L1∫
Q1+S−M−L2

F̄2(Q1 +Q2 + S −M − x1)dF1(x1)

=
λu − (h+ f)

λu + λo

�

In the solution (3.21a)–(3.21b) optimal limit order quantities L?1, L
?
2 are linear functions of

an optimal market order quantity M?. When (3.21a)-(3.21b) are substituted into (3.21c)

we obtain a (non-linear) equation for M?, which can be solved for a given distribution of

(ξ1, ξ2).
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3.5 Numerical solution of the optimization problem

Computing the objective function in the order placement problem (Problem 1) or its gra-

dient at any point requires calculating an expectation (a multidimensional integral) which

is not analytically tractable aside from special examples. Fortunately, there are numerical

methods developed specifically for problems where the objective function is an expectation,

and they turn out to be very useful for this problem. Based on these methods we propose a

procedure for computing the optimal order placement policy using historical data samples

without specifying an order outflow distribution.

Our numerical solution is based on the robust stochastic approximation algorithm of [95].

Consider an objective function V (X)
∆
= E[v(X, ξ)] to be minimized and denote by g(X, ξ)

∆
=

∇v(X, ξ) where the gradient is taken with respect to X. The stochastic approximation

algorithm tackles the problem of minimizing V (X) in the following way:

1: Choose X0 ∈ RK+1 and a step size γ;

2: for n = 1, . . . , N do

3: Draw an i.i.d. random variable ξn ∈ RK from a distribution F

4: Set Xn = Xn−1 − γg(Xn−1, ξ
n)

5: end

6: Compute X̂? ∆
= 1

N

∑N
n=1Xn

Here ξn are independent across n, but the components of each draw ξn need not be inde-

pendent. The iterative algorithm produces an estimate X̂?, which converges to the opti-

mal point X? under some weak assumptions. In particular, it has a performance bound

V (X̂?)− V (X?) ≤ C√
N

, where the constant C depends on K,S and other problem param-

eters4. In general stochastic approximation methods require sampling random variables ξ

from the distribution F at each step to compute g(X, ξ). But in our case this function takes

4The method assumes that min
X∈X
{V (X)} is sought, where V (X) is a well-defined and finite-valued

expectation for every X ∈ X and X is a non-empty bounded closed convex set. Moreover V (X)
needs to be continuous and convex on X . The optimal step size is γ = D√

NM
and the constant

C = DM , where D = max
X,X′∈C

‖X − X ′‖2, M =
√

max
X∈C

E [‖g(X, ξ)‖22]. We use a step size γ =

K1/2S

(
N(h+ f + λu + λo)

2 +N
K∑
k=1

(h+ rk + λu + λo)
2

)−1/2

which scales appropriately with problem pa-

rameters. For more details we refer to [78] and [95].
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a particularly simple form which makes it unnecessary to specify the distribution F :

g(Xn, ξ) =



h+ f − λu1{A(Xn,ξ)<S} + λo1{A(Xn,ξ)>S}

−(h+ r1)1{ξ1>Q1+L1,n} − λu1{A(Xn,ξ)<S,ξ1>Q1+L1,n} + λo1{A(Xn,ξ)>S,ξ1>Q1+L1,n}

. . .

−(h+ rK)1{ξK>QK+LK,n} − λu1{A(Xn,ξ)<S,ξK>QK+LK,n} + λo1{A(Xn,ξ)>S,ξK>QK+LK,n}



Note that g(Xn, ξ) depends on ξ only through indicator functions, which have simple eco-

nomic meaning. For example 1{A(Xn,ξ)<S} = 1 if the trader fell behind the target size and

1{ξk>Qk+Lk,n} = 1 if a limit order Lk was fully executed. As a consequence, the solution is

updated on each step in response to order execution outcomes - limit order fills and target

size shortfalls or excesses. For example, the first component of g(Xn, ξ) describes market

order size updates - on each step this size is decreased by γ(h + f) to reduce the cost, in-

creased by γλu if the trader fell behind the target size, or decreased by γλo if the target was

exceeded. Limit order sizes are updated only when these orders are executed. Their sizes

are either increased or decreased depending on whether there was an execution shortfall or

excess.

This iterative algorithm gives a specific way to resample past order fill data or historical

order flow data and obtain a solution for the order placement problem. Since this method

involves only basic arithmetic operations it can also be implemented for on-line order routing

optimization in real-time trading applications. Alternatively, one can follow the same steps

using a parametric model for F to simulate ξ and compute the optimal order allocation

off-line based on a parametric model for order flows.

We apply this algorithm to several numerical examples using typical parameter values

for U.S. equity markets. We start by comparing numerical and closed-form solutions in

the single exchange case to assess the algorithm stability and convergence. Our exam-

ple assumes that a trader is buying S = 1000 shares of a stock with a deadline T = 1

minute with an initial bid queue size Q = 2000 shares, order outflow ξ ∼ Pois(µT )

and µ = 2200 shares per minute. With these parameters a small limit order is likely

to be executed before T , but a limit order for S = 1000 shares is unlikely to be fully
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filled. The pricing parameters and penalty costs (all in dollars per share) are set to

h = 0.02, r = 0.002, f = 0.003, λo = 0.024, λu = 0.026. According to (3.10) the opti-

mal allocation with these parameters is (M?, L?) = (728, 272) shares. Numerical estimates

X̂? were computed for five initial points X0 using a different number of samples N . For

each choice of X0 and N the objective function V (X) was approximated with averages

W (X) =
1

L

L∑
i=1

v(X, ξi)) taken over additional L = 1000 samples of ξ. Figures 3.3 and 3.4

show that estimates converge to X? regardless of the initial point X0 and moreover when

X0 = X? the iterates remain close to the optimal point. Convergence is also quite fast -

after as few as 50 samples the algorithm is within 2% of the optimal objective value. In the

worst case of initial points on the boundary it can take a few thousand samples to converge.

It is also worth noting that convergence in terms of the objective value occurs significantly

faster than convergence in terms of the order allocation vector.

We also estimated savings from dividing orders among multiple exchanges in a naive

way and according to our solution. Denote a pure market order allocation by XM =

(S, 0, . . . , 0), a single limit order allocation by XL = (0, S, 0, . . . , 0) and an equal split

allocation by XE = (
S

K + 1
,

S

K + 1
, . . . ,

S

K + 1
). Table 1 presents numerical solutions with

X0 = XE , N = 1000, L = 1000 for different order sizes S and a varying number of exchanges

K = 1, . . . , 5. The parameters s, f, r, λu, λo are same as in the previous simulation and K

exchanges are identical replicas of each other: rk = r,Qk = Q and ξn,k ∼ Pois(µT ) are

i.i.d., k = 1, . . . ,K, n = 1, . . . , N . Optimal order allocations clearly outperform the

naive benchmarks, especially when a target quantity S is relatively small. This is because

small quantities can be allocated in form of limit orders among available exchanges and fully

capture limit order cost savings, while larger quantities are traded with costly market orders

even with the optimal allocation. Comparing W (XL) and W (XE) we also see that splitting

limit orders across multiple exchanges, even in a naive way, can be very advantageous when

limit order fills are independent. Since multiple exchanges in this example are copies of

each other, the algorithm splits the total limit order amount equally among them. There is

however a difference between the equal split allocation XE and the optimal allocation. The

former sets a market order size to
S

K + 1
, which may be too big or too small depending

on problem parameters. Another interesting feature of the numerical solution X̂? is its
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tendency to oversize the total quantity of orders: M +
∑K

k=1 Lk > S for S = 1000, 5000 and

K = 4, 5. This may be a consequence of assumed independence between ξk - by submitting

large orders to multiple exchanges the algorithm reduces the probability of falling behind

the target quantity with a relatively low probability of exceeding it.

K
(
M̂? L̂?1 L̂?2 L̂?3 L̂?4 L̂?5

)
/S W (XM ) W (XL) W (XE) W (X̂?)

S̄ = 500

1 0.481 0.519 11.50 3.36 2.79 2.76
2 0.034 0.601 0.615 11.50 3.48 -2.86 -6.00
3 0.003 0.438 0.433 0.421 11.50 3.39 -5.22 -10.56
4 0.002 0.280 0.277 0.273 0.264 11.50 3.52 -6.44 -10.84
5 0.001 0.198 0.215 0.224 0.206 0.214 11.50 3.35 -7.24 -10.91

S̄ = 1000

1 0.713 0.287 23.00 16.30 14.80 14.20
2 0.484 0.343 0.338 23.00 16.43 5.88 5.48
3 0.268 0.338 0.334 0.336 23.00 16.29 -3.16 -3.61
4 0.055 0.316 0.313 0.351 0.333 23.00 16.48 -9.27 -12.12
5 0.003 0.309 0.300 0.300 0.309 0.321 23.00 16.44 -12.88 -19.76

S̄ = 5000

1 0.839 0.161 115.00 120.33 112.83 107.76
2 0.747 0.192 0.192 115.00 120.44 105.86 99.65
3 0.693 0.189 0.189 0.189 115.00 120.40 97.35 90.71
4 0.650 0.186 0.186 0.186 0.186 115.00 120.37 88.64 81.89
5 0.614 0.167 0.167 0.167 0.167 0.167 115.00 120.40 79.63 72.93

Table 3.1: Savings from order splitting.
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Figure 3.3: Convergence of objective values to an optimal point for different initial points.

Figure 3.4: Convergence of order allocation vectors to an optimal point for different initial
points.
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Modern high-frequency trading activity connects different trading venues (see e.g. [92]), so

in reality order flows across exchanges are highly positively correlated. To investigate how

order flow correlations affect order placement strategies and order execution costs we use

an example with two exchanges and a common factor in order flows:

ξ1 = αξ0 + (1− α)ε1, ξ2 = αξ0 + (1− α)ε2,

where ξ0, ε1, ε2 ∼ Pois(µT ) are three i.i.d. random variables and the scalar parameter

α ∈ [0, 1] controls the degree of positive correlation between ξ1 and ξ2. We set µ = 2200,

(Q1, Q2) = (1900, 2000) and the rest of the parameters are the same as in the previous

example. As the parameter α increases, we can see that the sum of order sizes M +L1 +L2

decreases to the target quantity S = 1000. When α → 1, the second exchange does not

provide any benefit in terms of diversifying execution risk, so it is not optimal anymore to

oversize the total quantity of orders. This is similar to the case of a single exchange where

M + L = S by Proposition 4.

Figure 3.5: Optimal order allocations with correlated order flows.
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However, executing orders on two exchanges with order flows (ξ1, ξ2) and queue sizes

(Q1, Q2) is not equivalent to the case of a single exchange with ξ = ξ1 +ξ2 and Q = Q1 +Q2,

even if the correlation between ξ1 and ξ2 is high. Figure 3.6 compares average execution

costs for these two cases with an optimal order allocation and different values α. It appears

from this example that the availability of multiple exchanges reduces the costs of trading

compared to a single consolidated exchange, but only as long as multiple exchanges remain

relatively uncorrelated.

Figure 3.6: Comparison of average order execution costs: two exchanges with correlated
order flows against vs a single consolidated exchange. Dashed lines show 95% confidence
intervals for averages.

To further illustrate the structure of a numerical solution we performed a sensitivity

analysis with K = 2 exchanges and parameters Q1 = Q2 = 2000, S = 1000, ξ1,2 ∼

Pois(µ1,2T ), µ1 = 2600, µ2 = 2200, T = 1, h = 0.02, r1 = r2 = 0.002, f = 0.003,

λu = 0.26 and λo = 0.24. Varying some of these parameters one at a time we plot the

numerical solution X̂? after N = 1000 iterations, together with an analytical solution for a

single exchange. The results are presented on Figures 3.7 and 3.8. Similarly to the single
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exchange case, limit order sizes on two exchanges L1, L2 decrease and market order size

M increases as the penalty λu increases. Increasing the half-spread h, the rebate r1 or the

fee f makes a limit order on exchange number one more attractive, so L1 increases and M

decreases. Because the penalty λu is large in this example, execution risk is more important

than fees and rebates, therefore the queue size Q1 and the order outflow mean µ1 have a

much stronger effect on the optimal solution than r1. Both decreasing the Q1 and increasing

µ1 make a limit order fill more likely at exchange number one and L1 increases5. Finally,

as in the case of a single exchange, the target size S has a strong effect on the optimal

order allocation. Only limit orders are used while S is small, but as it becomes larger it

is difficult to fill that amount solely with limit orders and the optimal market order size

begins to grow to limit the execution risk.

3.6 Conclusion

We have formulated optimal order placement problem for a market participant able to sub-

mit market orders and limit orders across multiple exchanges as a well-posed optimization

problem, and studied the solution of this problem in various configurations. In the case

when there is a single exchange we have shown that this leads to an optimal split between

limit and market orders. For the general case of K exchanges, we have given a charac-

terization of the optimal order placement strategy and propose a stochastic approximation

algorithm for numerically computing it. Using this algorithm, we have explored the prop-

erties of an optimal order allocation and showed that an optimal routing of orders across

multiple exchanges can lead to a substantial reduction in transaction costs.

5The observed drop in L1 for large µ1 and small Q1 appeared only in this example, we were not able to
replicate it for other distributions of ξ.
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Figure 3.7: Sensitivity analysis for a numerical solution X̂? = (M,L1, L2) with two exchanges and an optimal solution (Ma, La)
with the first exchange only.
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Figure 3.8: Sensitivity analysis for a numerical solution X̂? = (M,L1, L2) with two exchanges and an optimal solution (Ma, La)
with the first exchange only.
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Chapter 4

Heterogenous traders in a limit

order book

This chapter is based on the paper ”A Limit Order Queue Model with Heterogenous Traders”

[77] which is a joint work with Professor Costis Maglaras.

4.1 Introduction

It should be observed that three classes of men are to be distinguished on the

stock exchange. The princes of business belong to the first class, the merchants

to the second, and the speculators to the last.

Joseph de la Vega, Confusion de confusiones, 1688

During the last two decades, financial markets worldwide experienced a fundamental

transformation fueled by computer technology and new regulation. Evidence shows that

automated electronic trading reduced various measures of trading costs (see [60; 69; 90]).

But the increasing complexity of electronic financial markets is also stimulating a substantial

debate on the overall benefits of their current structure. This discussion together with a

practical need to guide trading decision in a complex environment sparked an active interest

in limit order book modeling.
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Most financial markets in the world are organized as limit order books [66; 112]. In this

market structure liquidity is provided and prices are formed through a collective activity of

a diverse trader population. Strategies of individual traders include decisions on the timing

of their order submissions, as well as on order prices and quantities. These strategies

are flexible, complex and can depend on the previous activity of other traders, making it

difficult to model limit order books in an economic equilibrium framework. Nevertheless

useful insights can still be derived from reduced-form models of limit order books (see [100]

for a recent survey). Such “engineering” approach is further facilitated by the simplicity and

formality of basic rules underlying limit order trading as compared to other, more opaque

market structures (e.g. dealer markets).

On the fine level of individual order submissions, a limit order book can be represented

as a multiclass queueing system. To buy or sell an asset, traders can use two types of

instructions - limit and market orders. Limit orders specify the maximum quantity to be

bought or sold and the worst acceptable price, while market orders specify only a quantity.

In a standard “price-time” priority scheme, adopted by most financial markets1, limit orders

with identical prices form first-in first-out queues across different price levels as they arrive

to an exchange. The queue of buy orders with the highest price at a given time is called the

best bid and the queue of sell orders with the lowest price - the best ask. Market orders to

buy (sell) are matched only with limit orders at the front of the best ask (bid) queue. From

the queueing point of view market orders provide “service” (liquidity) to these limit order

queues2. A large number of limit orders is canceled and these orders abandon their queues

before reaching execution (in U.S. equities markets more than 90% of orders are canceled

[57]). When the best bid or ask queue is depleted by market orders and cancelations, the

queue at next-best price becomes the new best bid or ask. A new best bid or ask queue

can also be initiated by a new limit order with a price between the current best bid and ask

prices.

1Some markets, for example NASDAQ OMX PSX and certain interest rate futures markets, follow dif-
ferent schemes - see [67] for a discussion on order matching rules.

2Aggressive limit orders to buy/sell whose prices are above/below the best ask/bid are similar to market
orders. For simplicity we also do not specifically consider derived order types such as discretionary orders
and iceberg orders, most of which are equivalent to simple strategies employing limit and market orders.
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Limit order books are naturally modeled as dynamic stochastic systems, specifically as

queueing systems. An early development in this direction were “zero-intelligence models” in

econophysics [41; 108] where instead of making detailed behavioral assumptions regarding

traders’ strategies authors posited that orders arrive and cancel purely at random (hence the

name). Subsequent stochastic queueing models [31; 62] added more realistic features of limit

order books - order queues at a discrete price grid, varying order arrival rates and random

order sizes. These models are easily calibrated to real data and provide tractable procedures

for computing various quantities of practical interest. For instance, the distribution of a next

price move, a valuable input for optimal timing of order submissions [111], can be obtained

in these models using standard tools from queueing theory such as Laplace transforms [31],

or diffusion approximations [11; 29; 30]. Queueing models of limit order books also provide

valuable insights into the aggregate behavior of financial markets. They establish a link

between limit order flow dynamics on a microscopic scale and price volatility on a larger

timescale [30], and allow to describe order flow coupling and queue dynamics in a fragmented

market where agents strategically route their orders [94].

A common simplifying assumption made in stochastic order book models is that order

arrivals and cancelations are generated by a single mechanism, some random process. How-

ever, in reality there are significant differences across strategies of market participants [13;

75] and this heterogeneity plays a key role in classical market microstructure models.

Traders differ in terms of their patience [45; 106], information on future asset returns [34;

79], trading objectives and holding periods [57]. This heterogeneity leads to profound differ-

ences between properties of their order flows that are hard to capture with a single stochastic

process for all order arrivals and cancelations. Another typical assumption is that order

arrivals and departures are generated by an exogenous process with a common timescale

for all orders. Such process may represent orders of fund managers who come to the mar-

ket to fulfill their exogenous liquidity needs. But orders of other trading strategies (e.g.

high-frequency market-makers) depend mostly on the dynamics of the order book itself, i.e.

these orders are generated endogenously within the market environment and typically have

a different timescale for arrivals and cancelations. A recent empirical study [57] contrasts

“agency algorithms” that are used by money managers for trading large positions, with
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“principal algorithms” whose goal is to profit from the market environment itself. Agency

algorithms tend to update their orders based on a fixed time schedule, while principal al-

gorithms operate in “real time” reacting to order book updates almost immediately. The

queueing model developed here incorporates this distinction and the endogenous nature

of orders generated by market-makers. In our knowledge this is one of the first attempts

to unite reduced-form stochastic modeling of limit order books with more detailed market

microstructure models.

We propose a two-class queueing model of limit order book dynamics that distinguishes

between orders of institutional fund managers and high-frequency traders. Specifically, or-

ders of fund managers arrive to a limit order queue according to an exogenous process, while

high-frequency traders submit and cancel their orders in response to queue size changes.

Our analysis of this model shows how two classes of orders propagate through a FIFO

queue and delivers a procedure for forecasting waiting times of new orders. The model can

structurally explain abnormally long waiting times in large limit order queues of large-tick

stocks. This phenomenon is related by practitioners to a “crowding” of orders coming from

high-frequency traders [42]. Additionally, our model helps to explain limit order cancelation

behavior better than the existing models. It makes predictions on the amount of cancela-

tions, their dependence on a queue size and on a queue position of canceled orders. Order

waiting time estimates derived from our model can be used in practical order management

systems to improve order placement and order routing decisions. From a stochastic model-

ing viewpoint, our model seems novel and different from the bulk of the literature on that

topic that has been largely motivated by the analysis of call centers. In comparison to

previous studies of multi-class queues with abandonments (e.g. [68]) our model introduces

a new kind of heterogeneity, stemming from an endogenous, state-dependent dynamics of

one class of orders. This analysis can be of interest in studying service systems for het-

erogeneous populations with abandonment. To empirically validate our predictions we use

a proprietary data set from a broker providing of order execution services. The data de-

scribes actual orders submitted by firm’s agency algorithms, their outcomes (executions or

cancelations) and their realized queue waiting times. To the best of our knowledge such

data has not been previously studied in academic literature. Our empirical results verify
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that the two-class model makes realistic predictions for waiting times.

The rest of this paper is structured as follows. In Section 4.2 we introduce a two-class

queueing model with state-dependent order behavior. Section 4.3 presents our results for

a fluid approximation of this model, Section 4.4 describes empirical tests with order data

and Section 4.5 concludes.

4.2 Model description

We develop a two-class queueing model for orders at the best bid (or ask) of an exchange.

New limit orders arrive at random times and join at the back of the order queue. Market

orders also arrive at random times and match with a limit order currently in front of the

queue, if there is any, and all orders have a unit size. We assume that limit and market

orders are submitted by a heterogeneous population of traders and that limit orders belong

to one of two classes:

Type-1 limit orders are submitted by fund managers whose goal is to satisfy specific

needs to buy or sell their assets within certain time constraints. These orders arrive accord-

ing to an exogenous Poisson process with a rate λ and each has a finite patience deadline,

exponentially distributed with a mean 1/γ. Whenever a realized waiting time of a type-1

order reaches its patience deadline, the order is canceled.

Type-2 limit orders are submitted by high-frequency traders. They have no exogenous

liquidity needs or time constraints. Instead, their orders react to changes in the current

queue state:

� When any limit order joins the queue and its size becomes equal to q, one type-2 limit

order may instantaneously join the queue with a probability F (q).

� When any limit order leaves the queue (due to a trade or a cancelation) and the queue

size becomes equal to q, each type-2 limit order that is currently in the queue may

instantaneously cancel with a probability G(q)3.

3Since multiple type-2 orders may cancel at the same epoch, we assume that after an order departure
each type-2 order in the queue is selected with a probability G(q), and if more than one order is selected
they cancel as a batch. If at least one type-2 order so cancels, the selection and batch cancelation procedure
is repeated with the new queue size.
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Market orders are submitted by all traders and arrive according to an exogenous

Poisson process with a rate µ.

Type-2 order arrivals and cancelations are endogenously generated in this model, i.e.

they can be triggered only by another queue update. Since type-2 order arrivals or cance-

lations can trigger further type-2 orders arrivals or cancelations, these events can cascade.

We assume that the function G(q) is non-increasing, and that F (q) is non-decreasing near

zero with F (0) = 0. These conditions imply that type-2 orders tend to persist (do not

cancel) in large queues, but cancel more easily from small queues and also tend to avoid

joining small queues.

Such state-dependent queue behavior is observed in practice - fewer orders join a small

queue than a large queue, and more orders cancel from a small queue. Figure 4.2 shows how

average 10-second arrival, cancelation and trade volumes vary with the initial queue size at

the beginning of the 10 second time interval. A possible explanation for this behavior is that

small bid (ask) queue size implies a higher probability of a future negative (positive) price

change [11; 29]. To avoid trading at a price just before it changes in an adverse direction,

traders may prefer submitting orders to large queues where the risk of a price change is

small. For the same reason they may also cancel their orders from small queues. In our

model, this concerns only type-2 orders, since type-1 orders are driven solely by patience

and do not react to queue size fluctuations.

This general model description presented here covers a class of state-dependent queue

models with different functions F (q), G(q). For the sake of tractability we pursue a partic-

ular choice of F (q) = φ1{q>θ}, G(q) = 1{q≤θ}, where 0 < φ < 1 is a constant characterizing

the participation rate of type-2 orders (e.g. orders of high-frequency traders), and θ is a

threshold at which all type-2 orders instantly cancel4. We define the average size of a type-2

order arrival cascade f
∆
= φ

1−φ and note that non-trivial queue dynamics are observed when

λf < µ < λ(1 + f), otherwise the queue tends to build up to infinity or decrease to zero.

4as perceived by slower market participants
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Figure 4.1: Average arrival, cancelation and trade volumes per 10 seconds, with confidence intervals, for different initial queue
sizes. This plot is based on trade and quote data for 30 Dow Jones stocks and all U.S. exchanges on 03/08/2012. All volumes and
queue sizes were standardized with averages and standard deviations computed separately for each stock, exchange and half-hour
interval during the trading day. To avoid the influence of “fleeting quotes” we only considered 10-second time intervals without
a price change.
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4.3 Fluid model

A direct analysis of the stochastic multiclass queueing model is complicated by event-driven

and state-dependent behavior of type-2 orders which motivates us to consider its fluid

approximation. The fluid model describes average dynamics of the stochastic model over

time intervals that are long in comparison with typical order inter-arrival times. It assumes

that the contribution of each order arrival or cancelation is small in comparison with the

queue size, and replaces discrete orders with a continuous fluid that is added to the queue

by limit order arrivals and is removed by market orders and cancelations. At the back of the

queue, infinitesimal quanta of type-1 orders arrive at a constant rate λ. Quanta of type-2

orders also arrive at the back of the queue at a constant rate λf , as long as the queue size is

larger than the threshold θ. In front of the queue, orders of both types leave the queue at a

rate µ due to executions, and additionally type-1 orders leave the queue due to cancelations.

The basic components of this fluid model are q1,2(t, y) - quantities of type-1 and type-2

fluid that are in the queue at time t and have waited there for at most y units of time. With

this notation the total amount of type-1 or type-2 fluid is denoted by q1,2(t)
∆
= q1,2(t,∞)

and the total fluid amount (queue size) is q(t)
∆
= q1(t) + q2(t). We can also write q1,2(t) =

q1,2(t, τ(t)), where τ(t) is the head-of-line waiting time, defined as:

τ(t) = inf
y≥0
{y|q1(t,∞)− q1(t, y) = 0} = inf

y≥0
{y|q2(t,∞)− q2(t, y) = 0}

We assume that for all t, y functions q1,2(t, y) are differentiable with respect to y, and can

be represented as

q1,2(t, y) =

∫ y

0
ζ1,2(t− u, u)du

where ζ1,2(t − u, u), u ≤ t is a density of fluid that arrived at time t − u and waited for

exactly u units of time. We are now ready to describe the queue evolution.
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Fluid quantity dynamics:

q̇1(t) = λ− γq1(t)− α(t)µ

q̇2(t) = (λf − (1− α(t))µ)1{q(t)>θ} − q2(t)δ
(
1{q(t)>θ}

)
α(t) =

ζ1(t− τ(t), τ(t))

ζ1(t− τ(t), τ(t)) + ζ2(t− τ(t), τ(t))

(4.1)

where δ(x) is the delta function.

Fluid density dynamics:

ζ1(t, 0) = λ, t > 0

ζ2(t, 0) = λf1{q(t)>θ}, t > 0

∂ζ1(t, u)

∂u
= −γζ1(t, u), t ≥ 0, 0 < u ≤ τ(t)

ζ2(t, u) = ζ2(t− u, 0)1{
min

0≤v≤u
(q(t−v))>θ

}, t ≥ 0, 0 < u ≤ τ(t)

(4.2)

It easily follows from (4.2) that the density of type-1 orders that arrived after the initial

moment, ζ1(t, u) = λe−γu and in particular it does not depend on t. However, arbitrary ini-

tial densities ζ1,2(0, u) may introduce a non-linear delay into ordinary differential equations

(4.1) through α(t). Differential equations of this kind are generally hard to solve, but this

complexity can be avoided by assuming a special queue structure, hereafter called regular

queue structure.

Assumption Rt: For a fixed t ≥ 0, θ < q1(t) < λ
γ , q2(t) > 0 and ζ1(t, u) = λe−γu, ζ2(t, u) =

λf, 0 ≤ u ≤ τ(t)

Proposition 6 shows that the regular queue structure is stable - once Rt is true, Rs is also

true for all s > t. Proposition 7 shows that all sufficiently large queues must be regular, and

Proposition 8 shows that the model converges to the regular structure in a finite amount of

time. Except for an initial time interval during which arbitrary initial conditions may lead

to complicated dynamics, the queue structure is regular and differential equations (4.1) are

non-delayed.
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Proposition 6 Assume that λ−µ
γ > θ and R0 is true, then Rt holds for all t > 0. Moreover,

equations (4.1) are non-delayed for all t > 0 and α(t), τ(t) can be computed as follows:

α(t) =
e−γτ(t)

e−γτ(t) + f
(4.3)

τ(t) =
1

γ
log

(
λ

λ− γq1(t)

)
(4.4)

Proof: Consider a function p(t)
∆
=
(
θ − λ−µ

γ

)
e−γt + λ−µ

γ , and note that p(t) > θ, t > 0

because λ−µ
γ > θ and p(0) = θ. Since q1(0) > p(0) = θ and q̇1(t) ≥ ṗ(t), t > 0 we conclude

that q(t) ≥ q1(t) = q1(0) +
∫ t

0 q̇(s)ds ≥ p(0) +
∫ t

0 ṗ(s)ds > θ, t > 0. Since q(t) > θ for all

t > 0, type-2 orders never cancel from the queue. Combining this with equations (4.2) and

the assumption R0 we can write ζ1(t, u) = λe−γu, ζ2(t, u) = λf for all t ≥ 0, 0 ≤ u ≤ τ(t).

Therefore for any t ≥ 0, q1(t) =
∫ τ(t)

0 ζ1(t− u, u)du =
∫ τ(t)

0 λe−γudu = λ
γ

(
1− e−γτ(t)

)
,

which leads to (4.4). Note that in (4.4) the expression inside logarithm is positive because

q1(t) < λ
γ

(
1− e−γt

)
< λ

γ , and therefore λ − γq1(t) > 0. Substituting the expressions for

ζ1,2(t, u) and τ(t) into (4.1) yields (4.3) where α(t) depends solely on q1(t). Therefore

differential equations (4.1) depend only on the current state of q1(t), q2(t) and not on their

past. �

Proposition 7 If λ−µ
γ > θ, q(t) ≥ Q̄

∆
= λθ

µ+θγ + λf
γ log

(
1 + θγ

µ

)
and ∃T0, 0 < T0 < t such

that q(T0) < θ, then Rt holds.

Proof: Given that q(T0) < θ we can write for some s > T0

q̇(s) = λ− γq1(s)− µ

which is solved by q(s) =
(
q(T0)− λ−µ

γ

)
e−γ(t−T0)+ λ−µ

γ . The function q(s) is monotonically

increasing towards λ−µ
γ > θ > 0. Since it is also continuous there exists a time T1 such that

q(T1) = q1(T1) = θ.

At time T1 type-2 orders start arriving, but it takes some time for them to reach the

front of the queue. Denote by r1,2(s) = q1,2(s, s − T1), s > T1 the quantities of type-1 and
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type-2 fluids that arrived after T1 and are still in the system at time s. Also denote by

p(s) = q1(s) − r1(s) the quantity of fluid that arrived before T1 and is still in the queue.

For s > T0 > 0 we can use (4.2) to write r1(s) =
∫ s−T1

0 λe−γudu = λ
γ

(
1− e−γ(s−T1)

)
,

r2(s) = λf(s− T1). Noting that ṙ1(s) = λ− γr1(s), r1(T1) = 0 we obtain ṗ(s) = −γp(s)−

µ, p(T1) = θ, which is solved by p(s) =
(
θ + µ

γ

)
e−γ(s−T1) − µ

γ . Setting p(T2) = 0 we

find the time T2 = T1 + 1
γ log

(
1 + θγ

µ

)
by which all of the initial single-type queue content

has left the system. At that time q(T2) = r1(T2) + r2(T2) = Q̄. For s ∈ [T1, T2], q(s) ≥

q1(s) =
(
q(T0)− λ−µ

γ

)
e−γ(s−T0) + λ−µ

γ > θ, so type-2 orders did not cancel and q2(T2) > 0.

We have established RT2 , which implies Ru for u > T2 via Proposition 6. It remains to

show that q(t) > Q̄ implies t > T2. The function q(s) = q1(s) + q2(s) = q1(s) + r2(s) is

monotonically increasing for s ∈ [T1, T2] and since q(T2) = Q̄, it implies that q(s) < Q̄ for

s ∈ [T1, T2), therefore t ≥ T2. �

Proposition 8 If µ > 0 and ζ1,2(0, y) < ∞, y ≤ τ(0) < ∞, then Rt is true for t ≥ T̄
∆
=

q(0)
µ + T1 + T2, where

T1 =
1

γ
log

(
1 +

θγ

λ− µ− θγ

)
, T2 = T1 +

1

γ
log

(
1 +

θγ

µ

)
.

Moreover qi(t) are monotinically increasing (decreasing) if q1(T ) < q∗1 (q1(T ) > q∗1), qi(t)→

q∗i , i = 1, 2 as t→∞ and the limit point q∗1, q
∗
2 is given by


q∗1 =

λ(1 + f)− µ
γ

,

q∗2 =
λf

γ
log

(
λ

µ− λf

)
In the limit α∗ = 1− λf

µ and the head-of-line waiting time τ∗ = 1
γ log

(
λ

µ−λf

)
.

Proof: If q(0) < θ then without loss of generality q2(0) = 0 and we simply follow the

argument of Proposition 7 with T0 = 0 to show Rt for t > T̄ . Otherwise if q(0) > θ,

we denote by ri(t) = qi(t, t), pi(t) = qi(t) − ri(t) and p(t) = p1(t) + p2(t). For t > 0 we

can write ṙ1(t) = λ − γr1(t), ṙ2(t) = λf and therefore ṗ(t) = −γp1(t) − µ ≤ −µ. Since

p(t) = p(0) +
∫ t

0 ṗ(s)ds ≤ p(0) − µt, ∃Tp such that p(Tp) = 0 and Tp ≤ q(0)
µ . We now

consider two alternatives.
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If ∃Tq ∈ [0, Tp], such that q(Tq) < θ, all type-2 orders cancel at the time Tq, and queue

dynamics for t > Tq are the same as if the queue were initiated with q1(Tq) < θ type-1

orders and no type-2 orders. Following the same steps as in Proposition 7, we see that such

queue will reach level θ by time Tq + T1 ≤ q(0)
µ + T1 and establish Rt for t ≥ Tq + T1 + T2,

therefore Rt is true for t ≥ T̄ .

If there is no such Tq and q(t) ≥ θ, t ∈ [0, Tp], then by the time Tp all initial queue

content has left the queue, and RTp is satisfied by construction. Since Tp ≤ q(0)
µ + T1 + T2,

we also have RT̄ .

To find the limit state of the queue, we useRT and note that q2(t) =
τ(t)∫
0

λfds = λfτ(t) =

λf
γ log

(
λ

λ−γq1(t)

)
for t > T . This is a continuous monotonically increasing function of q1(t),

so q2(t) converges to a limit as t → ∞, as long as q1(t) does. Substituting expressions for

α(t), τ(t) into the equation for q̇1(t), we can write:

q̇1(t) = λ− γq1(t)− λ− γq1(t)

λ(1 + f)− γq1(t)
µ (4.5)

Monotonicity of q1(t) for q1(t) > q∗, q1(t) < q∗ follows directly from (4.5) and q1(t) < λ
γ , t ≥

T . Since q2(q1) is also monotonically increasing, this proves monotonicity of q(t). Applying

a Lyapunov function V (x) = x2 we find that q1(t) is globally asymptotically stable with a

unique stability point q∗1, which implies convergence of q1(t), q2(t) to q∗1, q
∗
2 as t→∞. The

expressions for α∗, τ∗, q∗2 are found by direct substitution of q∗1 into corresponding equations.

�

Remark 1: In the steady state all type-2 fluid must be executed, therefore we must have

(1 − α∗)µ = λf . Because of this the steady-state amount of type-1 fluid in the two-class

system is the same as the steady-state amount of fluid in a single-class system with a lower

market order rate µ− λf . This can also be seen by rewriting q∗1 = λ(1+f)−µ
γ = λ−(µ−λf)

γ .

Remark 2: The steady state fluid quantities depend on model parameters in an intuitive

way: both q∗1,2 and τ∗ increase with λ and f , and decrease with γ and µ.

We now turn to studying transient dynamics of the fluid model. Depending on the

initial composition of type-1 and type-2 orders in the queue, the model predicts different

limit order waiting times. The following Proposition 9 describes a procedure for computing
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the virtual waiting time w - the time that a newly submitted infinitely patient limit order

would wait until its execution. The initial queue size is denoted by q(0) = Q and is divided

in different proportions into type-1 and type-2 orders.

Proposition 9 If at t = 0 all orders in the queue belong to type 1, i.e. q1(0) = Q, q2(0) = 0

then w = 1
γ log

(
1 + γQ

µ

)
. If q1(0) = 0, q2(0) = Q and Q > θ, then w = Q

µ .

Othewise, if the initial queue structure is given by R0, w is computed by solving the

following system of differential equations:



ṗ1(t) = −γp1(t)− α(t)µ

ṗ2(t) = −(1− α(t))µ

q̇1(t) = λ− γq1(t)− λ− γq1(t)

λ(1 + f)− γq1(t)
µ

α(t) =
λ− γq1(t)

λ(1 + f)− γq1(t)
,

(4.6)

with initial conditions p1(0) = q1(0), p2(0) = q2(0) and terminal conditions

p1(w) = p2(w) = 0.

The initial quantities q1(0), q2(0) solve equations

q1(0) +
λf

γ
log

(
λ

λ− γq1(0)

)
= Q

q2(0) = Q− q1(0).

(4.7)

Moreover, if q1(0) < q∗1 then w ∈
[

q2(0)

(1− α∗)µ
,

q2(0)

(1− α(0))µ

]
, otherwise w ∈

[
q2(0)

(1− α(0))µ
,

q2(0)

(1− α∗)µ

]
.

Proof: Denote by p1,2 = q1,2(∞, t)− q1,2(t, t) the amounts of type-1 and type-2 fluid that

was in the system at time 0 and is still in the queue at time t. The two extreme cases

with q1(0) = Q, q2(0) = 0 and q2(0) = Q, q1(0) = 0 are trivial. In the first case w is a

solution of a differential equation ṗ1(t) = −γp1(t) − µ with initial condition p1(0) = Q

and terminal condition p1(w) = 0. In the second case the equation is ṗ2(t) = −µ with

p2(0) = Q, p2(w) = 0.

If the initial queue structure is given by R0, q2(0) = λfτ(0) and with (4.4) it can be

further expressed as a function of q1(0), which, together with the initial condition q1(0) +
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q2(0) = Q leads to equation 4.7. The equations (4.6) follow from computing the derivatives

of p1,2 and finding the time w such that p1(w) = p2(w) = 0. Although they reach zero at

the same time it is easier to bound w through type-2 fluid dynamics. Depending on whether

q1(0) < q∗1 or q1(0) > q∗1, Proposition 8 implies that q1(t) is monotonically increasing or

decreasing, therefore (1−α(t)) is either monotonically increasing or decreasing in these two

cases. Therefore, it is possible to bound the time when p2(t) reaches zero by bounding its

rate of decrease. In the case when q1(0) < q∗1, (1− α(0)) ≤ (1− α(t)) ≤ (1− α∗), therefore
q2(0)

(1− α∗)µ
≤ w ≤ q2(0)

(1− α(0))µ
, and vice versa if q1(0) > q∗1. �

4.4 Empirical results

We rely on an extensive proprietary dataset of limit order executions to test the results of

Section 4.3. Specifically, our aim is to compare queueing delays experienced by limit orders

in practice with theoretical predictions of Proposition 9. Our results show that the queue

structure significantly affects limit order delays. It is unrealistic to assume that the queue

consists only of type-1 or type-2 orders, because this leads to biased delay estimates that

under- or overestimate realized delays by a factor of 10. Assuming a mix of order types in

a queue leads to more accurate delay predictions that lie between the two extremes.

The dataset for this study was collected by an electronic broker dealer firm and consists

of 327,505 orders that were sent by firm’s algorithms to various U.S. equity exchanges be-

tween 03/01/2012 and 04/30/2012. Each entry describes a single limit order: its submission

date and time (up to a millisecond), its destination exchange, a stock symbol, an order di-

rection (buy or sell), a trade execution strategy that generated the order (e.g. VWAP), the

order outcome (execution or cancelation) and the order waiting time that elapsed between

its submission and its execution or cancelation.

Because of a large variation in orders submission times, destination exchanges and stock

symbols in our data we chose to estimate fluid model parameters (λi, γi, µi, fi, Qi) separately

for each order i = 1, . . . , N using trades and quotes that happened before its submission.

For order i, we consider a 3 minute time interval before its timestamp (henceforth the i-th

time interval) and retrieve trades and quotes at the i-th destination exchange for the i-th
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interval from the NYSE TAQ database5. The market order rate µi (in shares per second)

was estimated as the total volume of trades in the i-th time interval divided by 360. The

initial queue size Qi was set to the size of the last bid or ask quote in the i-th interval,

depending on the i-th order direction. We also computed a time-weighted average Q̄i of bid

or ask quote sizes during the i-th interval.

TAQ data does not contain neither trader identifiers nor order “types”, but parameters

λi, γi and fi can still be approximately inferred by using structural assumptions of our

model. In the stochastic model, Type-2 orders arrive instantaneously after a type-1 order

arrival, suggesting that order types can be inferred from the lengths of their inter-arrival

periods. In practice, responding to quote updates takes some time even for the fastest

traders, for example, the analysis in [57] suggests a lower bound of 2-3 ms. The total

number of limit order arrivals in the i-th interval Λi is divided into Λ1
i , the number of new

orders whose inter-arrival times were shorter than 20 ms, and Λ2
i = Λi − Λ1

i . The fraction

of “fast” order arrivals Λ1
i /Λi during the i-th interval measures the relative activity of high-

frequency traders (i.e. type-2 orders), but it needs to be corrected for the expected number

of type-1 orders whose inter-arrivals were short due to randomness. To make this correction

we assume in correspondence with the stochastic model that type-1 orders arrive according

to a Poisson process and therefore set φi = 1
Λi

(
Λ1
i −

(
e20/MΛ

i − 1
)

Λ2
i

)
, where MΛ

i is the

mean inter-arrival time (in ms) of orders counted in Λ2
i . Then we calculate the fluid model

parameters fi = φi
1−φi , λi = Λi

180(1+fi)
.

The parameter γi is estimated in a similar way. First we decompose Ωi - the total number

of order departures during the i-th interval - into Ω1
i and Ω2

i that are correspondingly the

number of orders whose inter-departure times were shorter or longer than 20 ms. Then

we estimate the total volume of type-1 order cancelations in the i-th interval as Γ1
i =(

e20/MΩ
i Ω2

i

)
Γi/Ωi, where MΩ

i is the mean inter-departure time for orders counted in Ω2
i

and Γi is the total cancelation volume in the i-th interval. Using the steady-state equations

(4.5) we can then recover γi =
(

Γ1
i − λifi log

(
1− Γ1

i
λ

))
/Q̄i.

The descriptive statistics and average parameter values for our data are given in Table

5For 18% of orders there were no trades or quotes during that interval at their destination exchange.
Instead, for these orders we used NBBO quotes and consolidated trades.



CHAPTER 4. HETEROGENOUS TRADERS IN A LIMIT ORDER BOOK 109

4.5, where order dataset is divided into 25 equal-sized subsamples by quintiles of µi and

Q̄i. There are significant differences in order waiting times across subsamples and we can

also note a correlation between average bid-ask spreads and average quote sizes. We find

that the bottom group consists of orders for ultra-liquid stocks that have large queue sizes

and large tick sizes relative to their prices. Average values of fi show little variation across

subsamples and imply that on average about 40% of orders are of type-2. The values of γi

decrease with queue size and increase with trading volume, suggesting that type-1 orders are

more patient in markets with larger average queues and smaller average trading volumes.

Order data is distributed unevenly among 487 different stocks, 13 exchanges and alter-

native trading venues, 7 execution strategies and 42 days. To ensure data consistency and

at least a moderate number of data points in each group of orders we applied multiple data

filters6. The filtered dataset contains 109,938 orders for 268 stocks submitted to NASDAQ

(48%), NYSE (24%), ARCA (13%), BATS Z (10%) and EDGE X (5%) over the course

of 21 days in March and April 2012. As illustrated on Figure 4.2, the top 10 symbols

by a number of orders7 contain more than 30% of observations, with the next 40 symbols

contributing another 30%. Orders are submitted throughout the entire trading session and

our sample has 5,000 to 20,000 orders in each half-hour time interval between 9:30am and

4:00pm. Most orders are submitted by VWAP strategies (59%), followed by TWAP (31%)

and POV (9%). Only 35% of all orders are executed, and the rest is canceled. VWAP and

TWAP strategies generate orders with execution rates of 38% and 32% respectively. POV

strategies are supposedly less patient with their orders and only 26% of them are executed.

Most orders in our data are canceled (56-85% depending on a subsample) which has

important implications for the analysis of limit order execution delays. An order is canceled

6Specifically, we filtered out: orders placed behind NBBO prices (deep in the order book) and aggressive
orders; trade execution strategies other than TWAP, VWAP and POV; orders sent to alternative trading
venues, inverse exchanges and the NASDAQ PSX exchange (due to different order execution mechanics
there); orders sent to the National Stock Exchange (it had only 88 orders); trading dates with less than 1000
orders; orders sent during the first five and the last five minutes of trading; orders submitted to markets
with wide spreads (the NBBO spread ≥ 50 basis points at an order submission time); orders submitted
to markets with small queues (average NBB or NBO quote size < 1000 shares during 3 minutes before an
order submission); symbols with less than 200 orders in the full dataset or less than 50 orders in the filtered
dataset; orders whose lifetime at an exchange includes an anomalous burst of trading volume (defined as a
1-second time interval in the top 5% of 1-second intervals by volume for that stock, date and exchange).

7These stocks are MU, GLW, USB, TXN, CVS, ALTR, BAC, GT, COP, LOW.
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when its waiting time in a queue exceeds its patience deadline or when the cumulative

trading volume since its submission exceeds a threshold value. Orders are also canceled and

resubmitted when prices move away from them. Finally, since orders are sent to multiple

exchanges at the same time, an order can be canceled when its substitute order at a different

trading venue is filled. Regardless of cancelation motives, a hypothetical execution delay

of a canceled order (had it remained in its queue) is longer than its actual waiting time

until cancelation. In other words, a waiting time of an order until cancelation is a truncated

observation of its queueing delay until execution. Ex-post, orders with long execution delays

are canceled more frequently than orders with short delays, which can be observed in Table

4.5. Because of this selection bias, it would be incorrect to directly compare a theoretical

execution delay estimate for an infinitely patient order with a realized waiting time of a

canceled order. To avoid the bias we use four different methods to transform (un-censor)

waiting time observations of canceled orders.

First, we fit two parametric models - an exponential and a Pareto distribution to each

of 25 order subsamples defined by µi and Q̄i. These two distributions are convenient for

modeling censored execution delay data because they have non-negative support and are

memoryless8. The parameters of exponential or Pareto distribution can be directly esti-

mated from censored waiting time data Di, i = 1, . . . , N, as a fixed-point solution of a

corresponding E-M scheme. For an exponential distribution, we estimate for each sub-

sample g a mean parameter ν̂g = 1
E(g)

∑I(g)
i=I(g−1)+1Di, where E(g) is the number of

executed orders in subsample g and I(g) is the index of the last observation in sub-

sample g with I(0) = 0. For the Pareto distribution, we estimate its scale parameter

m̂g = min
I(g−1)+1<i≤I(g)

{Di} and its tail index β̂g as the positive solution of a quadratic equa-

tion
[∑I(g)

i=I(g−1)+1 log
(
m̂g
Di

)]
β2 + (I(g) − I(g − 1))β + E(g) = 0. After estimating these

distribution parameters separately for each group we use the memorylessness property again

and add a random variable drawn from a corresponding distribution to the waiting time of

each canceled order.

The other two un-censoring methods are based on a concept of maximum entropy (see

8If a delay D has an exponential distribution with a mean µ, then P(D > s+t|D > t;µ) = P(D > s;µ). If
it has a Pareto distribution with a scale parameter m and tail parameter α, then P(D > s+ t|D > t;m,α) =
P(D > s; t, α).
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e.g. [32]). The first method assumes a maximum entropy (uniform) distribution for the

length of time that each canceled order had to wait until execution, in excess of the time it

already spent in a queue. For each such order, this procedure replaces its waiting time with

a random variable, uniformly distributed between its waiting time until cancelation and an

observation-specific ceiling value Qi/µi. The second method finds a maximum entropy dis-

tribution for the entire dataset, subject to fractile constraints of the form P(Di > x) = y(x)

imposed by the censored data sample. We refer to [38] for a formulation of the maxi-

mum entropy distribution problem with fractile constraints. In short, this approach assigns

higher values to censored observations so that the resulting distribution of execution delays

satisfies fractile constraints and has the highest possible entropy. The maximum entropy

distribution has the least possible structure as measured by its descriptive complexity. Hav-

ing solved for the maximum entropy distribution, we then re-allocate censored observations

according to the solution, in addition restricting each un-censored point to be smaller than

Qi/µi. To prevent the power and maximum entropy distributions from assigning arbitrarily

large values to truncated observations we also impose a constraint that all execution delays

are smaller than 30 minutes. Histograms of the resulting execution delay distributions for

the entire sample are shown on Figure 4.5. We note substantial differences between some

of these histograms - the choice of an un-censoring methodology has a significant effect on

the overall distribution of data because a large share of data is censored. For this reason,

we view the output of four un-censoring procedures as four different samples of data and

test our model on each sample.

For each order i we numerically solve equations 4.6 and compute a delay forecast wi

that assumes a mixture of type-1 and type-2 orders in the initial queue. We also compute

forecasts w0
i = Qi

µi
that assume no cancelations from initial queues in front of our order, and

w1
i = 1

γ1
i

log
(

1 +
γ1
iQi
µi

)
that assume all orders in front of ours to be of type-1. We divide the

estimates (w0
i , w

1
i , wi)

N
i=1 into equal-sized bins sorted by un-censored execution delays Du

i ,

and compute for each bin the average values of Du
i , w

0
i , w

1
i , wi. If estimates were correct,

their averages should lie on a 45o line when plotted against average realized delays. These

plots together with 95% confidence intervals for average values are presented on Figures

4.5-4.5. We can observe that for delays Du
i of 0-10 seconds all three forecasts systematically
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overestimate realized delays. A possible explanation is that short delays are experienced

when Qi is small relative to µi, i.e. when the volume of market orders is larger than the

queue size. This case cannot be reliably described by a fluid model which assumes that

on the contrary the queue size is large compared to order sizes, making fluid model-based

forecasts inadequate for short realized delays.

As realized delays become longer, single-type forecasts w1
i seem to asymptote at around

60 seconds, even as the average delay Du
i extends to several minutes. Estimates w1

i assume

that all orders in the initial queue have a finite patience (belong to type-1) so even if the

initial queue Qi is large, most of them are expected to cancel, and therefore their presence

does not significantly increase the forecast w1
i . Mathematically, this can be seen from the

expression for w1
i (Qi) ∼ O(log(Qi)). On another hand, assuming that all orders in the

initial queue belong to type-2 (i.e. never cancel) leads to extremely long delay forecasts.

After all, some orders will cancel and realized delays are smaller than forecasts w0
i .

For delays longer than 60 seconds, we see that two-type forecasts wi are closer to real-

ized delays, suggesting that a mixture of type-1 and type-2 orders better describes queue

dynamics in this range. Although none of three estimates gives a perfect fit, the comparison

seems to favor a model with a mixture of order types. We note that the aim of this com-

putation was to compare single-type models with a two-type model without fitting any of

them to the realized delay data. If we were to calibrate parameters (λi, γi, µi, fi) to realized

delays Du
i we would a priori expect better performance from the model with heterogeneous

orders because it has more parameters than its single-type counterparts.

4.5 Conclusion

We propose a multiclass queueing model that describes the evolution of bid and ask quotes

in a limit order market. The model distinguishes between orders of fund managers that have

finite patience and orders of high-frequency traders that are driven by changes in the order

book state. Our model structurally explains long waiting times experienced by limit orders

in large queues and bursts of cancelations in small queues. It leads to qualitatively different

waiting time estimates that are closer to empirical measurements, and sheds light on the
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composition of order queues in limit order markets. Our analysis is one of the first steps in

the direction of reconciling naive “zero-intelligence” stochastic models of limit order books

with more detailed economic models from the market microstructure literature, and it also

motivates a new class of queueing models for studying service systems for heterogeneous

populations with state-dependent abandonments.
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Figure 4.2: Total number of orders per symbol in filtered order data.
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Table 4.1: Descriptive statistics for order data
Subsample Average parameter values Mean waiting % of executed Mean bid-ask Number

number Qi µi λi γi fi time (sec) orders spread (bp) of stocks

1 342 2 22 0.156 1.171 32 34% 4.16 235
2 366 4 31 0.281 1.723 28 37% 3.99 238
3 396 8 57 0.372 1.144 26 38% 4.08 238
4 421 15 77 0.498 1.269 26 36% 4.01 235
5 453 38 127 0.741 1.351 27 38% 4.21 206

6 942 4 50 0.134 1.241 31 34% 4.25 238
7 954 10 78 0.228 1.393 27 36% 4.03 244
8 977 18 120 0.312 1.335 28 38% 4.04 235
9 1000 29 158 0.388 1.136 26 39% 4.17 229

10 1038 70 275 0.665 1.334 24 42% 3.87 210

11 2163 6 98 0.114 1.443 35 31% 4.29 237
12 2197 16 143 0.190 1.755 31 38% 4.13 223
13 2219 28 172 0.280 1.811 28 38% 4.06 225
14 2320 48 296 0.302 1.230 26 40% 3.97 226
15 2391 126 600 0.678 1.298 22 43% 3.85 209

16 6199 6 133 0.064 1.459 44 25% 5.39 214
17 5797 22 240 0.109 1.264 35 31% 5.07 207
18 5772 44 353 0.156 1.171 33 35% 4.82 215
19 6015 78 466 0.233 1.423 30 35% 5.16 204
20 6472 187 986 0.450 1.504 25 41% 4.43 182

21 49285 3 339 0.021 1.325 59 17% 8.20 149
22 41533 20 509 0.038 1.289 47 18% 7.94 172
23 45579 57 984 0.066 1.520 44 24% 7.59 178
24 46354 134 1523 0.130 1.512 38 29% 6.73 171
25 112279 736 5033 0.186 1.437 36 33% 7.64 152
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Figure 4.3: Histograms of limit order execution delays for the entire sample.
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Figure 4.4: Average delay estimates and forecasts, based on the exponential distribution uncensoring.
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Figure 4.5: Average delay estimates and forecasts, based on the power distribution uncensoring.



C
H

A
P

T
E

R
4
.

H
E

T
E

R
O

G
E

N
O

U
S

T
R

A
D

E
R

S
IN

A
L

IM
IT

O
R

D
E

R
B

O
O

K
119

Figure 4.6: Average delay estimates and forecasts, based on the uniform distribution uncensoring.
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Figure 4.7: Average delay estimates and forecasts, based on the maximum entropy uncensoring.
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