
Professor D. M. Causon; Professor C. G. Mingham

Introductory Finite Difference Methods for
PDEs

Download free books at

Download free eBooks at bookboon.com

2

Professor D. M. Causon & Professor C. G. Mingham

Introductory Finite Difference
Methods for PDEs

http://bookboon.com/

Download free eBooks at bookboon.com

3

Introductory Finite Difference Methods for PDEs
© 2010 Professor D. M. Causon, Professor C. G. Mingham & Ventus Publishing ApS
ISBN 978-87-7681-642-1

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more
4

ContentsIntroductory Finite Difference Methods for PDEs

Contents
	 Preface	 9

1. 	 Introduction	 10
1.1 	 Partial Differential Equations	 10
1.2 	 Solution to a Partial Differential Equation	 10
1.3 	 PDE Models	 11
1.4 	 Classification of PDEs	 11
1.5 	 Discrete Notation	 15
1.6 	 Checking Results	 15
1.7 	 Exercise 1	 16

2. 	 Fundamentals	 17
2.1 	 Taylor’s Theorem	 17
2.2 	 Taylor’s Theorem Applied to the Finite Difference Method (FDM)	 17
2.3 	 Simple Finite Difference Approximation to a Derivative	 18
2.4 	 Example: Simple Finite Difference Approximations to a Derivative	 18
2.5 	 Constructing a Finite Difference Toolkit	 20
2.6 	 Simple Example of a Finite Difference Scheme	 24
2.7 	 Pen and Paper Calculation (very important)	 28
2.8	 Exercise 2a	 32
2.9 	 Exercise 2b	 33

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Click on the ad to read more
5

ContentsIntroductory Finite Difference Methods for PDEs

3. 	 Elliptic Equations	 34
3.1 	 Introduction	 34
3.2 	 Finite Difference Method for Laplace’s Equation	 34
3.3 	 Setting up the Equations	 37
3.4 	 Grid Convergence	 38
3.5 	 Direct Solution Method	 38
3.6 	 Exercise 3a	 41
3.7 	 Iterative Solution Methods	 42
3.8 	 Jacobi Iteration	 43
3.9 	 Gauss-Seidel Iteration	 45
3.10	 Exercise 3b	 47
3.11	 Successive Over Relaxation (SoR) Method	 47
3.12 	 Line SoR	 49
3.13 	 Exercise 3c	 51

4. 	 Hyperbolic Equations	 52
4.1 	 Introduction	 52
4.2 	 1D Linear Advection Equation	 53
4.3 	 Results for the Simple Linear Advection Scheme	 55
4.4 	 Scheme Design	 60
4.5 	 Multi-Level Scheme Design	 67
4.6 	 Exercise 4a	 69
4.7 	 Implicit Schemes	 70
4.8 	 Exercise 4b	 76

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

6

Contents

5. 	 Parabolic Equations: the Advection-Diffusion Equation	 77
5.1 	 Introduction	 77
5.2 	 Pure Diffusion	 78
5.3 	 Advection-Diffusion Equation	 81
5.4 	 Exercise 5b	 83

6. 	 Extension to Multi-dimensions and Operator Splitting	 84
6.1 	 Introduction	 84
6.2 	 2D Scheme Design (unsplit)	 84
6.3 	 Operator Splitting (Approximate Factorisation)	 92

7. 	 Systems of Equations	 105
7.1 	 Introduction	 105
7.2 	 The Shallow Water Equations	 105
7.3 	 Solving the Shallow Water Equations	 106
7.4 	 Example Scheme to Solve the SWE	 109
7.5 	 Exercise 7	 111

	 Appendix A: Definition and Properties of Order	 112
A.1 	 Definition of O(h)	 112
A.2 	 The Meaning of O(h)	 113
A.3 	 Properties of O(h)	 113
A.4 	 Explanation of the Properties of O(h)	 114
A.5 	 Exercise A	 114

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

7

Contents

	 Appendix B: Boundary Conditions	 115
B.1 	 Introduction	 115
B.2 	 Boundary Conditions	 116
B.3 	 Specifying Ghost and Boundary Values	 118
B.4 	 Common Boundary Conditions	 120
B.5 	 Exercise B	 121

	 Appendix C: Consistency, Convergence and Stability	 123
C.1 	 Introduction	 123
C.2	 Convergence	 124
C.3 	 Consistency and Scheme Order	 124
C.4 	 Stability	 126
C.5 	 Exercise C	 133

	 Appendix D: Convergence Analysis for Iterative Methods	 135
D.1 	 Introduction	 135
D.2 	 Jacobi Iteration	 136
D.3 	 Gauss-Seidel Iteration	 137
D.4 	 SoR Iterative Scheme	 139
D.5 	 Theory for Dominant Eigenvalues	 139
D.6 	 Rates of Convergence of Iterative Schemes	 142
D.7 	 Exercise D	 143

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

8

Professor D.M. Causon and Professor C.G. Mingham

Department of Computing and Mathematics, Manchester Metropolitan University, UK

To our parents and to Mags

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

9

Preface

Preface

The following chapters contain core material supported by pen and paper exercises together with
computer-based exercises where appropriate. In addition there are web links to:

 worked solutions,
 computer codes,
 audio-visual presentations,
 case studies,
 further reading.

Codes are written using Scilab (a Matlab clone, downloadable for free from http://www.scilab.org/) and
also Matlab.

The emphasis of this book is on the practical: students are encouraged to experiment with different input
parameters and investigate outputs in the computer-based exercises. Theory is reduced to a necessary
minimum and provided in appendices. Web links are found on the following web page:

http://www2.docm.mmu.ac.uk/STAFF/C.Mingham/

This book is intended for final year undergraduates who have knowledge of Calculus and introductory
level computer programming.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

10

Introduction

1. Introduction

This book provides an introduction to the finite difference method (FDM) for solving partial differential
equations (PDEs). In addition to specific FDM details, general concepts such as stability, boundary
conditions, verification, validation and grid independence are presented which are important for anyone
wishing to solve PDEs by using other numerical methods and/or commercial software packages. Material
is presented in order of increasing complexity and supplementary theory is included in appendices.

1.1 Partial Differential Equations

The following equation is an example of a PDE:

)y,x,t(fU)y,x,t(cU)y,x,t(bU)y,x,t(a yyxt  (1.1)

where,

 t, x, y are the independent variables (often time and space)
 a, b, c and f are known functions of the independent variables,
 U is the dependent variable and is an unknown function of the independent variables.

 partial derivatives are denoted by subscripts: 2

2

yyxt y
UU,

x
UU,

t
UU












 etc.

The order of a PDE is the order of its highest derivative. A PDE is linear if U and all its partial derivatives
occur to the first power only and there are no products involving more than one of these terms. (1.1) is
second order and linear. The dimension of a PDE is the number of independent spatial variables it
contains. (1.1) is 2D if x and y are spatial variables.

1.2 Solution to a Partial Differential Equation

Solving a PDE means finding the unknown function U. An analytical (i.e. exact) solution of a PDE is a
function that satisfies the PDE and also satisfies any boundary and/or initial conditions given with the PDE
(more about these later). Most PDEs of interest do not have analytical solutions so a numerical procedure must
be used to find an approximate solution. The approximation is made at discrete values of the independent
variables and the approximation scheme is implemented via a computer program. The FDM replaces all partial
derivatives and other terms in the PDE by approximations. After some manipulation, a finite difference scheme
(FDS) is created from which the approximate solution is obtained. The FDM depends fundamentally on
Taylor’s beautiful theorem (circa 1712!) which is stated in the next chapter.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

11

Introduction

1.3 PDE Models

PDEs describe many of the fundamental natural laws (e.g. conservation of mass) so describe a wide range
of physical phenomena. Examples include Laplace’s equation for steady state heat conduction, the
advection-diffusion equation for pollutant transport, Maxwell’s equations for electromagnetic waves, the
Navier–Stokes equations for fluid flow and many, many more. The authors’ main interest is in solving
PDEs for fluid flow problems and details, including pictures and animations, can be found at:
http://www.docm.mmu.ac.uk/cmmfa/

1.4 Classification of PDEs

Second order linear PDEs can be formally classified into 3 generic types: elliptic, parabolic and
hyperbolic. The simplest examples are:

a) Elliptic: e.g.)y,x(fUU yyxx  .

This is Poisson’s equation or Laplace’s equation (when f(x,y) =0) which may be used to model the steady
state temperature distribution in a plate or incompressible potential flow. Notice there is no time derivative.

b) Parabolic: e.g. xxt kUU  .

This is the 1D diffusion equation and can be used to model the time-dependent temperature distribution
along a heated 1D bar.

c) Hyperbolic: e.g. xx
2

tt UcU  .

This is the wave equation and may be used to model a vibrating guitar string or 1D supersonic flow.

d) xt cUU  .

This first order PDE is called the advection equation. Solutions of d) also satisfy c).

e) xxxt kUcUU  .

This is the advection-diffusion equation and may be used to model transport of a pollutant in a river. The
coefficients k, c in the above PDEs quantify material properties that relate to the problem being solved e.g.
k could be the coefficient of thermal conductivity in the case of a heated bar, or 1D diffusion coefficient in
the case of pollutant transport; c is a wave speed, usually, in fluid flow, the speed of sound.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

12

Introduction

1.4.1 Initial and Boundary Conditions

PDEs require proper initial conditions (ICs) and boundary conditions (BCs) in order to define what is
known as a well-posed problem. If too many conditions are specified then there will be no solution; if too
few conditions are specified the solution will not be unique. If the ICs/BCs are specified in the wrong
place or at the wrong time then the solution will not depend smoothly on the ICs/BCs and small errors in
the ICs/BCs will bring about large changes in the solution. This is referred to as an ill-posed problem. The
PDEs encountered in practice are often non-linear and multi-dimensional and cannot be reduced to the
simple so-called canonical forms of a) - e). However, we need to understand the properties of the solution
to these simple model PDEs before attempting to solve more complicated PDEs.

A second order elliptic PDE such as a) requires a boundary condition on U at each point on the boundary.
Thus, these are called Boundary Value (BV) problems. The BC may be a value of U on the boundary or
the value of its derivative (see Appendix B). Linear parabolic equations such a b) require ICs at the initial
start time (usually t=0) and one BC at each end-point of the spatial domain (e.g. at the ends of the heated
bar). Technically linear hyperbolic equations such as d) require ICs and as many BCs as there are inward-
pointing characteristics (this is an advanced topic which we will not cover) which depend on the sign of
wave speed c, thus:

If c>0, we need ICs: U(0,x) = f(x) and BCs: U(t,0) = g(t);

If c<0, we need ICs: U(0,x) = f(x) but no BCs.

These are called Initial Boundary Value Problems (IBV) problems.

1.4.2 Domain of Dependence

The differences between the types of PDEs can be illustrated by sketching their respective domains of
dependence. So for example, in the hyperbolic case d), point P (x0, t0) in Figure 1.1 can only be influenced
by points lying within the region bounded by the two characteristics x+ct = const and x-ct = const and
t < t0. This region is called the domain of dependence. In turn, point P can influence points at later times
lying within its zone of influence. In the parabolic case, shown in Figure 1.2 information travels
downstream (or forward in time) only and so the domain of dependence of point P (x0, t0) in this case is
the region t < t0 and the zone of influence is all points for which t > t0.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

13

Introduction

Figure 1.1 Domain of dependence: hyperbolic case.

Figure 1.2 Domain of dependence: parabolic case.

x

BC P (x0, t0)

Domain of
dependence

Zone of
influence

IC

x+ct = const

t

BC

x-ct = const

x

BC

P (x0, t0)

Domain of
dependence

Zone of
influence

IC

t
BC

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

14

Introduction

In the elliptic case, corresponding to subsonic flow (Figure 1.3), information travels in all directions at
infinite speed so the solution at point P (x0, t0) influences all points within the domain and vice versa.

Figure 1.3 Domain of dependence: elliptic case.

Notice in this case that the whole region bounded by the BCs is both a domain of dependence and zone of
influence.

x

BC

P (x0, t0)

Domain of
dependence

Zone of
influence

BC

y

BC

BC

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

15

Introduction

The type of PDE fundamentally influences the choice of solution strategy. Time dependent hyperbolic
problems and parabolic problems illustrated by Figures 1.1 and 1.2 are solved numerically by time-
marching methods which involves, as its name suggests, obtaining the numerical solution at a later time
from that at an earlier time starting from given ICs.

Elliptic problems, as illustrated in Figure 1.3 are solved numerically by so-called relaxation methods.

1.5 Discrete Notation

We will use upper case U to denote the analytic (exact) solution of the PDE and lower case u to denote the
numerical (approximate) solution. Subscripts will denote discrete points in space and superscripts discrete

levels in time. e.g. n
j,iu denotes the numerical solution at grid point (i, j) in a 2D region at time level n.

1.6 Checking Results

Before applying a numerical scheme to real life situations modelled by PDEs there are two important steps
that should always be undertaken.

1.6.1 Verification

The computer program implementing the scheme must be verified. This is a check to see if the program is
doing what it is supposed to do. Comparing results from pen and paper calculations at a small number of
points to equivalent computer output is a way to (partially) verify a program. Give or take a small amount
of rounding error the numbers should be the same. Another way to verify the program is to find an exact
solution to the PDE for a simpler problem (if one exists) and compare numerical and exact results.
Complete program verification involves testing that all branches, program elements and statements are
executed and produce the expected outcomes. For large programs there exist software verification
programs to facilitate the verification process. For a commercial solver it may not be possible to
completely verify the program if the source code is unavailable.

1.6.2 Validation

Validation is really a check on whether the PDE is a good model for the real problem being studied.
Validation means comparing numerical results with results from similar physical problems. Physical
results may come from measurements from real life or from small-scale laboratory experiments. Either
way, due to measurement errors, scaling problems and the inevitable failure of the PDEs to capture all the
underlying physics, agreement between numerical and physical results will not be perfect and the user will
have to decide what is ‘close enough’.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

16

Introduction

1.7 Exercise 1

1. Assuming that t is time and x and y are spatial variables give the dimensions of the PDEs in a) to e)
of Section 1.4.

2. Classify the following PDEs:

a) xxtt U2U  , b) 0UU yyxx  , c) 0UU xxt  .

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

17

Fundamentals

2. Fundamentals

The finite difference method (FDM) works by replacing the region over which the independent variables
in the PDE are defined by a finite grid (also called a mesh) of points at which the dependent variable is
approximated. The partial derivatives in the PDE at each grid point are approximated from neighbouring
values by using Taylor’s theorem.

2.1 Taylor’s Theorem

Let U(x) have n continuous derivatives over the interval (a, b). Then for a < xo, xo+h < b,

)h(O
)!1n(

)x(U
h...

!2
)x(Uh)x(Uh)x(U)hx(U no)1n(1noxx2

oxoo 


  , (2.1)

where,

 1n

1n

)1n(2

2

xxx dx
UdU,...,

dx
UdU,

dx
dUU 



  .

)x(U ox is the derivative of U with respect to x evaluated at x = xo.

 O(hn) is an unknown error term defined in Appendix A.

The usual interpretation of Taylor’s theorem says that if we know the value of U and the values of its
derivatives at point xo then we can write down the equation (2.1) for its value at the (nearby) point xo+h.
This expression contains an unknown quantity which is written in as O(h P

n
P) and pronounced ‘order h to the

n’. If we discard the term O(hP

n
P) in (2.1) (i.e. truncate the right hand side of (2.1)) we get an approximation

to U(xo+h). The error in this approximation is O(hP

n
P).

2.2 Taylor’s Theorem Applied to the Finite Difference Method (FDM)

In the FDM we know the U values at the grid points and we want to replace partial derivatives in the PDE
we are solving by approximations at these grid points. We do this by interpreting (2.1) in another way. In
the FDM both xo and xo+h are grid points and U(xo) and U(xo+h) are known. This allows us to rearrange
equation (2.1) to get so-called Finite Difference (FD) approximations to derivatives which have O(hP

n
P)

errors. Appendix A explains the meaning of O(hP

n
P) notation.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

18

Fundamentals

2.3 Simple Finite Difference Approximation to a Derivative

Truncating (2.1) after the first derivative term gives,

)h(O)x(Uh)x(U)hx(U 2
oxoo  (2.2)

Rearranging (2.2) gives,

)3.3.Aby()h(O
h

)x(U)hx(U
h

)h(O
h

)x(U)hx(U)x(U

oo

2
oo

ox











Neglecting the O(h) term gives,

h
)x(U)hx(U)x(U oo

ox


 (2.3)

(2.3) is called a first order FD approximation to)x(U ox since the approximation error = O(h) which

depends on the first power of h. This approximation is called a forward FD approximation since we start
at xo and step forwards to the point xo+h. h is called the step size (h > 0).

2.4 Example: Simple Finite Difference Approximations to a Derivative

This simple example shows that our forward difference approximation works and has the stated order of
accuracy. We choose a simple function for U. Let U(x) = xP

2
P. We will find the first order forward FD

approximation to)3(Ux using step size h = 0.1. From (2.3) the general first order forward FD
approximation formula is,

h
)x(U)hx(U)x(U oo

ox


 (2.4)

Substituting for U gives,

h
x)hx()x(U

2
o

2
o

ox




http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

19

Fundamentals

Replacing xo by 3 and h by 0.1 gives,

1.6
1.0

3)1.03()3(U
22

x 




The exact answer from basic Calculus is clearly 6)3(U x  so the error in the approximation is
6.1 – 6 = 0.1. Repeating the problem with h = 0.05 (i.e. half the step size) gives,

05.6
05.0

3)05.03()3(U
22

x 




The error is 6.05 – 6 = 0.05. The approximation formula (2.4) is first order so the errors should be
proportional to h which is seen to be the case: halving the step size results in a halving of the error.

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

20

Fundamentals

2.5 Constructing a Finite Difference Toolkit

We now construct common FD approximations to common partial derivatives. For simplicity we suppose
that U is a function of only two variables, t and x. We will approximate the partial derivatives of U with
respect to x. As t is held constant U is effectively a function of the single variable x so we can use Taylor’s
formula (2.1) where the ordinary derivative terms are now partial derivatives and the arguments are (t, x)
instead of x. Finally we will replace the step size h by x (to indicate a change in x) so that (2.1) becomes,

)x(O)x,t(U
)!1n(

x...)x,t(U
!2

x)x,t(Ux)x,t(U)xx,t(U n
o)1n(

1n

oxx

2

oxoo 






 



(2.5a)

Truncating (2.5a) to O(x2) gives,

)x(O)x,t(Ux)x,t(U)xx,t(U 2
oxoo  (2.5b)

Now we derive some FD approximations to partial derivatives. Rearranging (2.5b) gives,

x

)x(O
x

)x,t(U)xx,t(U)x,t(U
2

oo
ox 









)x(O
x

)x,t(U)xx,t(U)x,t(U oo
ox 




 (2.6a)

Equation (2.6a) holds at any point (t, xo). In numerical schemes for solving PDEs we are restricted to a
grid of discrete x values, x1, x2, … , xN, and discrete t levels 0 = t0, t1, We will assume a constant grid
spacing, x, in x, so that xi+1 = xi + x. Evaluating Equation (2.6a) for a point, (tn, xi), on the grid gives,

)x(O
x

)x,t(U)x,t(U)x,t(U in1in
inx 




  (2.6b)

We will use the common subscript/superscript notation,

)x,t(UU in
n
i 

(2.6c)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

21

Fundamentals

so that dropping the O(x) error term, (2.6b) becomes,

x
UU)x,t(U

n
i

n
1i

inx 


 

(2.6d)

(2.6d) is the first order forward difference approximation to)x,t(U inx that we derived previously in

approximation (2.4). We now derive another FD approximation to)x,t(U inx . Replacing x by –x in
(2.5b) gives,

)x(O)x,t(Ux)x,t(U)xx,t(U 2
oxoo  (2.7a)

Evaluating (2.7a) at (tn, xi) and rearranging as previously gives,

x
UU)x,t(U

n
1i

n
i

inx 


  (2.7b)

(2.7b) is the first order backward difference approximation to)x,t(U inx .

Our first two FD approximations are first order in x but we can increase the order (and so make the
approximation more accurate) by taking more terms in the Taylor series as follows. Truncating (2.5a) to
O(x3), then replacing x by -x and subtracting this new expression from (2.5a) and evaluating at (tn, xi)
gives, after some algebra,

x2
UU)x,t(U

n
1i

n
1i

inx 


 

(2.8)

(2.8) is called the second order central difference FD approximation to)x,t(U inx .

We could construct even higher order FD approximations to xU by taking even more terms in the Taylor
series but we will stop at second order approximations to first order derivatives.

Many PDEs of interest contain second order (and higher) partial derivatives so we need to derive
approximations to them. We will restrict our attention to second order unmixed partial derivatives i.e. xxU .

Truncating (2.5a) to O(x4) gives,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

22

Fundamentals

)x(O)x,t(U
!3
x)x,t(U

!2
x)x,t(Ux)x,t(U)xx,t(U 4

oxxx

3

oxx

2

oxoo 







(2.9a)

Replacing x by -x in (2.9a) gives,

)x(O)x,t(U
!3
x)x,t(U

!2
x)x,t(Ux)x,t(U)xx,t(U 4

oxxx

3

oxx

2

oxoo 







(2.9b)

Adding (2.9a) and (2.9b) gives,

)x(O)x,t(Ux)x,t(U2)xx,t(U)xx,t(U 4
oxx

2
ooo  (2.10a)

Evaluating (2.10a) at (tn, xi) and using our discrete notation gives,

)x(O)x,t(UxU2UU 4
inxx

2n
i

n
1i

n
1i   (2.10b)

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

23

Fundamentals

Rearranging (2.10b) and dropping the O(x2) error term gives,

2

n
1i

n
i

n
1i

inxx x
UU2U)x,t(U




  (2.11)

(2.11) is the second order symmetric difference FD approximation to)x,t(U inxx . These results are put
into Table 2.1 to form a FD approximation toolkit. FD approximations to partial derivatives with respect
to t are derived in a similar manner and are included in Table 2.1.

partial derivative finite difference approximation type order

xU
x
U





x
UU n

i
n

1i


 forward first in x

xU
x
U





x
UU n

1i
n
i


  backward first in x

xU
x
U





x2
UU n

1i
n

1i


  central second in x

xx2

2

U
x
U





2

n
1i

n
i

n
1i

x
UU2U


  symmetric second in x

tU
t
U





t
UU n

i
1n

i




forward first in t

tU
t
U





t
UU 1n

i
n
i


 

backward first in t

tU
t
U





t2
UU 1n

i
1n

i


 

central second in t

tt2

2

U
t
U





2

1n
i

n
i

1n
i

t
UU2U


 

symmetric second in t

Table 2.1 Finite Difference Toolkit for Partial Derivatives

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

24

Fundamentals

The above FD toolkit can be used to create a finite difference scheme (FDS) to obtain the approximate solution
of a large number of PDEs simply by replacing each partial derivative by an appropriate FD approximation.

2.6 Simple Example of a Finite Difference Scheme

We construct a simple FDS to find an approximate solution of a simple PDE. This PDE will be studied in
more detail in Chapter 4. For now it suffices to generate a simple FDS to provide motivation for further
study. The 1D linear advection equation is,

Ut + v Ux = 0, (2.12a)

where the independent variables are t (time) and x (space). x is restricted to the finite interval [p, q] which
is called the computational domain. v is a constant and the dependent variable, U = U(t, x). In addition to
the PDE, we need initial conditions for U. Let the initial conditions be,

U(0, x) = f(x), .qxp  (2.12b)

i.e. the initial value of U is given for every x value in the computational domain by a known function f(x).

A solution to (2.12a, 2.12b) is a function U = U(t, x) which satisfies the PDE (2.12a) at all points x in the
computational domain and all times t and the initial conditions (2.12b). U(t, x), the exact solution of
(2.12a,b), is defined at an infinite number of values of the independent variables t and x. We will create a
FDS to approximate U at a finite set of values of the independent variables. The approximate values of U
on this finite set will be denoted by u. We proceed in stages.

2.6.1 Step 1: Spatial Discretisation

The computational domain (Figure 2.1) contains an infinite number of x values so first we must replace
them by a finite set. This process is called spatial discretisation.

Figure 2.1: 1D computational domain.

For simplicity the computational domain is replaced by a grid of N equally spaced grid points. Starting with
the first grid point at x = p and ending with the last grid point at x = q, the constant grid spacing, x, is,

)1N(
)pq(x




 (2.13a)

p q
x

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

25

Fundamentals

The values of x in the discretised computational domain are indexed by subscripts to give,

x1 = p, x2 = p + x, … , xi = p + (i-1)x, … , xN = p + (N-1)x = q. (2.13b)

Since the grid spacing is constant,

xi+1 = xi + x (2.13c)

The discretised computational domain is shown in Figure 2.2:

Figure 2.2 Discretised computational domain.

xN=q* * **

x

p=x1

… *x2 x3 xN-1

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

26

Fundamentals

Fixing t at t = tn we approximate the spatial partial derivative, xU , in (2.12a) at each point (tn, xi) using
the forward difference formula from the toolkit in Table 2.1 to give,

x
UU)x,t(U

n
i

n
1i

inx 


  (2.14)

Replacing xU in (2.1a) by its approximation (2.14) gives,

0
x

UUvU
n
i

n
1i

t 



 

(2.15)

(2.15) is said to be in semi-discrete form since only the spatial derivative has been discretised.

Note: The grid is also called the mesh and the operation of discretising the computational domain is called
gridding or meshing.

2.6.2 Step 2: Time Discretisation

Fixing x at x = xi we approximate the temporal partial derivative, tU , in (2.12a) at each point (tn, xi) using

the first order forward difference formula from the toolkit in Table 2.1 (where t is the spacing between
time levels) to give,

t
UUU

n
i

1n
i

t 





 (2.16)

On substituting (2.16) for Ut, 2.15 becomes,

0
x
UUv

t
UU n

i
n

1i
n
i

1n
i 






 



(2.17a)

which rearranges to give,

 n
i

n
1i

n
i

1n
i UU

x
tvUU 




 
 (2.17b)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

27

Fundamentals

Equation (2.17b) is an example of a FDS to approximate the solution of the PDE (2.12a). (2.17b) is a so-
called time-marching scheme which enables U values at time level n+1 to be approximated from U values
at the previous time level n. Since all U values are only known exactly at the initial time level (2.17b) is
rewritten as,

 n
i

n
1i

n
i

1n
i uu

x
tvuu 




 


(2.18)

where n
iu is an approximation to).x,t(UU in

n
i 

Notes:

1. (2.18) holds for each grid point xi, i = 1, 2, … , N. u(tn, xi) is a numerical approximation to
U(tn, xi), the exact solution of the PDE (2.1a).

2. u(0, xi) = U(0, xi) but this will not be true in general for later times.

3. u values on the right hand side of (2.18) are all at time tn whereas on the left hand side u values are all
at the next timed level tn + t = tn+1

4. (2.18) is an example of a time-marching scheme in that (known) data for each grid point at time tn is
used to find data at each grid point at the future time tn + t. This is called an iteration of the scheme.
After an iteration of the scheme all u values at each grid point are known at time tn + t. These new
values can be used as known data for another iteration of the scheme to give data for each grid point
at the next time level. This process can be repeated until the required future time is attained. Iterations
of (2.18) are performed by a computer program.

5. The errors in approximating the spatial and temporal derivatives which are used to get (2.18) are
O(x) and O(t) respectively and so (2.18) is said to be (formally) first order in space (x) and first
order in time (t).

6. The grid spacing, x, was determined by choosing the number of grid points, N. A larger N gives a
smaller x and a (hopefully) more accurate solution as spatial derivatives are more accurately
approximated. However as N increases compute time increases so there is a trade off between
accuracy and speed.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

28

Fundamentals

7. The time step, t, is for the moment, chosen arbitrarily. However a smaller time step will mean that
more iterations of (2.18) are needed to reach a stated future time which will obviously increase the
compute time. In addition, since the result of each iteration is an approximation to the required
solution, more iterations could cause the build up of more error. We will see later (Chapter 4 and
Appendix C) that there is often a limit to the maximum size of a time step.

8. (2.18) is said to be an explicit method since the value of u at the next time level is given by an explicit
formula for each grid point.

9. Later we will see that (2.18) doesn’t work for v > 0! There is more to FDS than meets the eye!

2.7 Pen and Paper Calculation (very important)

In practice numerical schemes are implemented by writing then running a computer program. Before
doing this it is extremely useful to work through a pen and paper calculation for two reasons:

1. To check understanding of the scheme.

2. To be able to check results from the computer program against pen and paper results (verification).

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

29

Fundamentals

Since we are doing a pen and paper calculation we will only use a small number of grid points. In a
computer implementation of the calculation we would use many more grid points (hundreds, thousands,
perhaps millions) for accuracy. We now set up a simple problem.

Let p=0 and q=100, v=0.5 and let the initial conditions be,





 



.elsewhere,0
,70x20,e)x,0(U

2)45x(01.0

(2.19)

Note that there is nothing special or realistic about these initial conditions.

Let the (small) number of grid points be N = 11. Then by (2.13a),

10
)111(
)0100(x 




 .

The subscripts for the grid values go from 1 to 11 and are entered into the first row of Table 2.2. The actual x
values of the corresponding grid points are 0, 10, 20, 30, … , 90, 100 and are entered into the second row of
Table 2.2. It remains to choose the time step t. Quite arbitrarily let t = 3. Then (2.18) becomes,

 n
i

n
1i

n
i

1n
i uu15.0uu  


(2.20)

(2.20) is a FDS for calculating the solution to our problem at the next time level using data at the current
time level. We start at time t0=0, i.e. n = 0, hence (2.20) becomes,

 0
i

0
1i

0
i

1
i uu15.0uu  

(2.21)

Time level zero corresponds to the initial conditions. The initial u values are needed at the computational
grid points. i.e. we need to know 0

iu for i = 1, 2, …, 11. In general n
iu is only an approximation to the

exact solution U(tn, xi) but at time t0=0, 0
iu = U(0, xi).

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

30

Fundamentals

Using the initial conditions we get,





 



.elsewhere,0
,70x20,e)x,0(Uu

2)45x(01.0

i
0
i

i

 (2.22)

Evaluating (2.22) at a few grid points gives,

0)0,0(U)x,0(Uu 1
0
1  , 7788.0e)40,0(U)x,0(Uu 2)4540(01.0

5
0
5   , etc.

These initial values, 0
iu , are entered into the third row of Table 2.2.

i 1 2 3 4 5 6 7 8 9 10 11 12

xi 0 10 20 30 40 50 60 70 80 90 100 110

ui
0 0 0 0.0019 0.1054 0.7788 ……. ……. ……. 0 0 0 0

ui
1 0 -0.00029 -0.01363 0

ui
2

Table 2.2 Implementation of Finite difference Scheme (2.20)

Having set up the initial data we use (2.21) to find ui
1 i.e. the u values at the next time level at each grid

point. These new values are entered into the fourth row of Table 2.2. The first few values are found from
the following:

Putting i = 1 into (2.21) gives:

 0
1

0
2

0
1

1
1 uu15.0uu  = 0 – 0.15 (0 – 0) = 0

Putting i = 2 into (2.21) gives:

 0
2

0
3

0
2

1
2 uu15.0uu  = 0 – 0.15 (0.0019 – 0) = - 0.00029

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

31

Fundamentals

Putting i = 3 into (2.21) gives:

 0
3

0
4

0
3

1
3 uu15.0uu  = 0.0019 – 0.15 (0.1054 - 0.0019) = -0.01363

etc.

However there is a problem! We are using forward differences for the spatial derivatives, i.e. to
approximate the spatial derivative at a grid point we need the function value at the next grid point. This is
OK for interior grid points but when we come to the last point on the right hand boundary of the
computational domain (point index i = 11 corresponding to q = 100) we need data at point index i = 12
which we DO NOT HAVE! In this case we have to invent a fictitious point with an associated function
value. These points are called ghost points and the function values, ghost values. How we invent ghost
values is based on the boundary conditions that define the particular problem we are solving. This topic is
discussed in more detail in Appendix B. In our case we will assume that ghost point is at x12 = 110 and that
the u value at this point takes the same value as its value at the nearest interior point (i.e. x11) at all times.

i.e. ,...2,1,0n,uu n
11

n
12  (2.23)

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

32

Fundamentals

Now we can use our numerical scheme to calculate 1
11u .

Putting i = 11 into (2.21) gives:

 0
11

0
12

0
11

1
11 uu15.0uu  = 0 – 0.15 (0 – 0) = 0

This completes the first iteration of the FDS (2.21) and row 4 of Table 2.2 and we have found the
approximate solution at each grid point at

t = t1= t = 3.

Once all the values of 1
iu have been calculated the same procedure can be used to find 2

iu by a second
iteration: the time indices in equation (2.21) are increased by 1 to give,

 1
i

1
1i

1
i

2
i uu15.0uu   (2.24)

and we repeat the previous process to fill in row 5 of Table 2.2 which is the approximate solution at each
grid point at t = t2= 2t = 6.

By successive iteration of (2.20), the solution can be found at each grid point at future time levels. At each
iteration we use the known data at a particular time level to obtain the unknown data at the next time level. Of
course this iterative procedure can be automated. A computer program for this scheme is given on the website.

2.8 Exercise 2a

1. U(x) = xP

2
P. Find the first order backward difference approximations to)3(Ux using: a) h = 0.1,

b) h = 0.05, c) h = 0.025 .

2. Repeat Q1a), b), c) using the central FD approximation and show that it is second order accurate.

3. Following the text, derive the central FD approximation to a first order spatial derivative.

4. Following the text, derive the symmetric FD approximation to a second order spatial derivative.

5. Using exactly similar working for the spatial approximations derive all the time derivative
approximation in Table 2.1.

6. Complete Table 2.2 by carrying out pen and paper calculations (tedious but very important for
checking your numerical algorithm).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

33

Fundamentals

2.9 Exercise 2b

1. From the website download a computer program to implement (2.20) for the given problem.

2. Read each line of the program and make sure you understand it. This program will be used as the
basis for other programs later on.

3. Verify the program by comparison to Table 2.2.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

34

Elliptic Equations

3. Elliptic Equations

3.1 Introduction

Elliptic PDEs form a class of PDEs that may be used to model steady state problems (i.e. the dependent
variable remains constant over time). Solutions of elliptic PDEs are over closed regions on which boundary
values are given in some way. These boundary values determine the solution of the PDE in the interior of the
region. The two most widely used elliptic PDEs are Laplace’s equation and Poisson’s equation.

In 2D, Laplace’s equation is:

0UU yyxx  (3.1)

Laplace’s equation may be used to model a wide range of phenomena including steady state groundwater
flow and temperature distribution over a region. Additionally Laplace’s equation can describe ‘potential
flow’ which can be used in a simplified description of water flow amongst other things.

In 2D, Poisson’s equation is:

)y,x(fUU yyxx  . (3.2)

Poisson’s equation may also be used to model a wide range of phenomena including gravitational fields,
stress patterns and simplified viscous flow.

The above PDEs can only be solved analytically for simple situations so we need to use numerical
methods to obtain approximate solutions for cases of practical interest. In the following we focus on
Laplace’s equation since it is simpler than Poisson’s equation and the techniques carry over easily. For
simplicity the computational domain will be rectangular.

3.2 Finite Difference Method for Laplace’s Equation

The computational domain is discretised using constant grid spacings of x and y in the x and y
directions respectively. Grid points are indexed by (i, j) in the usual way and the approximate value of U
at grid point (i, j) is denoted by ui,j . Figure 3.1 shows a rectangular grid with M and N grid points in the x
and y directions respectively. u is known (=U) at the boundary grid points. It is required to find u at the
interior grid points.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

35

Elliptic Equations

Figure 3.1: Computational grid showing interior grid points (black) and boundary grid points (white)

Each partial derivative in Equation (3.1) is replaced by a symmetric FD approximation from our tool kit
(Table 2.1) to give,

2
j,1ij,ij,1i

x
uu2u


  + 0

y
uu2u

2
1j,ij,i1j,i 


  (3.3a)

Letting b = x/y, (3.3a) can be rewritten to give,

)b1(2
ububuu

u 2
1j,i

2
1j,i

2
j,1ij,1i

j,i 


  (3.3b)

Equation (3.3b) shows that ui,j depends on its 4 surrounding values. This is called a 5-point stencil.
Sometimes ‘compass notation’ is used and (3.3b) becomes,

)b1(2
ububuuu 2

S
2

N
2

WE
o 


 (3.3c)

where o denotes the current grid point and subscripts N, S, E and W denote its north, south, east and west
neighbours respectively.

j

y

i x

2,2 3,2 4,2

2,3 3,3

2,11,1

1,2

M,N1,N

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

36

Elliptic Equations

Notes:

1. Using the indexing system in Figure 3.1 the unknown value of u nearest to the bottom left hand
corner of the computational domain is u2,2 and the unknown value nearest to the top right hand corner
of the computational domain is uM-1,N-1.

2. In an MxN grid there will be (M-2)x(N-2) unknown interior values of ui,j which may be a very large
number.

3. Assuming that the boundary values of u are known then (3.3b) gives a system of (M-2)x(N-2) linear
equations for ui,j in (M-2)x(N-2) unknowns.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

37

Elliptic Equations

3.3 Setting up the Equations

There are two basic methods of solving for ui,j. Both methods set up a system of linear equations as
follows. Letting c = 1/(2(1+b2)),

d = b2/(2(1+b2)), rearranging Equation (3.3b) gives,

j,1i1j,i1j,ij,1ij,i ucududucu   (3.4)

Evaluating Equation (3.4) at successive grid points starting at 2,2 and sweeping along the rows first gives,

1N,MN,1M2N,1M1N,2M1N,1M

3,34,22,23,13,2

2,M3,1M1,1M2,2M2,1M

2,43,31,32,22,3

2,33,21,22,12,2

ucududucu

ucududucu

ucududucu

ucududucu

ucududucu



















 (3.5)

The boundary values u1,2, u2,1, uM,2, u1,3, etc. are known. In each equation the known u values are moved to
the left hand side and the unknown u values moved to the right hand side (and positioned to preserve the
ordering). For example in the first equation u1,2 and u2,1 are known (being boundary values) so the
equation becomes,

2,33,22,21,22,1 ucuduuduc 

The result is that Equations (3.5) can be written as a single matrix equation,

d = A u (3.6a)

where,

d is an (M-2)(N-2) by 1 matrix of known constants,

A is a (M-2)(N-2) by (M-2)(N-2) matrix of known coefficients and

u is a (M-2)(N-2) by 1 matrix of unknowns and

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

38

Elliptic Equations

u = (u2,2 u3,2 … u(M-1),2 u2,3 u3,3 … u(M-1),3 u(M-1),(N-1))T.

The solution to (3.6a) may be written symbolically as,

u = A-1 d (3.6b)

As A may be very large we must study efficient ways of finding u.

3.4 Grid Convergence

Before looking at solution methods we make the following important point which applies to all grid-based
numerical schemes. Clearly the accuracy of the numerical results depends on the size of the computational
grid. Ideally we would like a grid converged solution i.e. a solution that does not change significantly
when more grid points are used. Grid converged solutions can be studied formally by grid convergence
indices but for us it is enough to compare numerical solutions with more and more grid points until there
is no significant difference. A good strategy is to implement a scheme using a small number of grid points
(for verification of the program) then successively double the number of grid points until numerical results
don’t change perceptibly. In this way we can be confident that inaccuracies in the numerical solution are
not caused by the grid. We present other questions about the accuracy of schemes in Appendix C that is
best read later.

3.5 Direct Solution Method

One way to achieve a solution of (3.6a) is by using standard Gaussian elimination. This is a so-called
direct method.

Note:

We state again that in our convention the grid is traversed from left to right starting at the bottom, i.e. we
start at position (2, 2) go along the whole row, repeat for the next row etc. and eventually end at position
(M-1, N-1).

The direct method is illustrated by an example on a small grid (much too small for a real computation but
useful for verification of a program). Consider the following 5 by 4 grid of u values where
x = y,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

39

Elliptic Equations

Figure 3.2 Boundary (white) and interior (shaded) u values on a 5x4 grid.

u2,2 u3,2 u4,2

u2,3 u3,3 u4,3

6.1

7.2

8.4

8.9 8.98.9

7.76.8

8.9

8.7

8.9

9.4

9.8

9.2

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

40

Elliptic Equations

The u values at the boundary grid points are known, e.g. u1,1 = 6.1. We want to find the unknown values of
u at the interior grid points, i.e. u2,2, u3,2, u4,2, u2,3, u3,3, u4,3. Since x = y, Equation (3.4) simplifies to,

  4/uuuuu j,1i1j,i1j,ij,1ij,i   (3.7a)

In compass notation this is written,

  4/uuuuu ENSWo  (3.7b)

Starting on the second row, evaluation of (3.7a) at grid point (2, 2) gives,

u2,2 = (u1,2 + u2,1 + u2,3 + u3,2)/4 = (7.2 + 6.8 + u2,3 + u3,2)/4 (3.8a)

Evaluation of (3.7a) at grid point (3, 2) gives,

u3,2 = (u2,2 + u3,1 + u3,3 + u4,2)/4 = (u2,2 + 7.7 + u3,3 + u4,2)/4 (3.8b)

Evaluation at grid point (4, 2) gives,

u4,2 = (u3,2 + u4,1 + u4,3 + u5,2)/4 = (u3,2 + 8.7 + u4,3 + 9.4)/4 (3.8c)

Moving to the next (third) row, evaluation of (3.7a) at grid point (2, 3) gives,

u2,3 = (u1,3 + u2,2 + u2,4 + u3,3)/4 = (3.4 + u2,2 + 8.9 + u3,3)/4 (3.8d)

Evaluation of (3.7a) at grid point (3, 3) gives,

u3,3 = (u2,3 + u3,2 + u3,4 + u4,3)/4 = (u2,3 + u3,2 + 8.9 + u4,3)/4 (3.8e)

Finally evaluation of (3.7a) at grid point (4, 3) gives (fill in this for yourself), (3.8f)

These equations can be written out in standard form as 6 simultaneous linear equations in which the order
of the unknown variables is as above i.e. u2,2, u3,2, u4,2, u2,3, u3,3, u4,3.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

41

Elliptic Equations

Rewriting Equation (3.8a) in standard form gives,

-14/4 = -1 u2,2 + (1/4) u3,2 + 0 u4,2 + (1/4) u2,3 + 0 u3,3 + 0 u4,3

Rewriting Equation (3.8b) in standard form gives,

-7.7/4 = (1/4) u2,2 -1 u3,2 + (1/4) u4,2 + 0 u2,3 + (1/4) u3,3 + 0 u4,3

Equations (3.8c-f) are rewritten similarly. The 6 simultaneous linear equations are then written as the
matrix equation,






















































































3,4

3,3

3,2

2,4

2,3

2,2

u
u
u
u
u
u

04/104/114/1
004/104/11

4/7.7
4/14


 (3.9)

which can be solved by standard Gaussian elimination. For large systems this isn’t very efficient so we
will study efficient iterative methods next.

3.6 Exercise 3a

1. Finish labelling all the grid points in Figure 3.1.

2. Check that (3.3a) is correct by referring back to the FD toolkit in Table 2.1.

3. Derive (3.3b) from (3.3a).

4. Given that x = 4 and y = 2, write down the expression for u3,4 using both subscript and compass
notation.

5. Write down Equation (3.8f) in the space provided in the notes.

6. a) Write down Equations (3.8c-f) in the standard way.

b) Hence complete the matrix equation (3.9).

7. Solve (3.9) by Gaussian elimination and check your solution by back substitution.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

42

Elliptic Equations

3.7 Iterative Solution Methods

Equation (3.9) can be expressed as,

A u = b (3.10)

For practical problems A is likely to be a large matrix which makes the direct solution of (3.10)
computationally inefficient. More efficient methods use iterative approaches where an initial estimate for
u is updated to form a better estimate. The process is repeated until the distance between successive
estimates is less than some pre-defined tolerance (assuming that the iterative process converges to the
solution). Since the output from each iteration is a vector of u values we define what is meant by distance
between vectors as follows.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

43

Elliptic Equations

3.7.1 Distance between Vectors

Let x =(x1, x2, … , xN) and y =(y1, y2, … , yN) be two vectors in RN. The distance between x and y is
denoted by d(x , y) and defined by,

   |yx||yx|max)y,x(d iii
 (3.11)

(this is sometimes called the ‘infinity norm’).

e.g. x = (1, 3, 5), y = (4, 5, 3), 3)|35||,53||,41|max(|yx|   .

In the following we illustrate three variants of the iterative approach with respect to the test problem of
Figure 3.2 where x = y.

When x = y, our 5-point formula is,

  4/uuuuu j,1i1j,i1j,ij,1ij,i   (3.12)

3.8 Jacobi Iteration

We introduce the iteration index as a superscript, m, and write (3.12) as the Jacobi formula (also called the
point-Jacobi formula),

  4/uuuuu m
j,1i

m
1j,i

m
1j,i

m
j,1i

1m
j,i 
  (3.13)

(Note that this formula assumes x = y).

For each interior grid point (i, j), ui,j at the next iteration (m+1) is found from (3.13). Once an iteration has
been completed for all interior grid points we compute the distance between vectors um+1 and um. If,

tol|uu| m1m  
 , (3.14)

where tol is a pre-defined tolerance, the iterations terminate and the solution to (3.10) is um+1 otherwise the
iterations continue.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

44

Elliptic Equations

To start the iteration (at index 0) values must be given for the unknown interior values of ui,j. These values
can be set to zero or interpolated from the known boundary values. The following example of Jacobi
iteration applies to the previous ‘test problem’ with all interior starting values set to zero and a tolerance
of 0.5 x 10-3.

3.8.1 First Iteration

Equation (3.13) with m=0 gives,

  4/uuuuu 0
j,1i

0
1j,i

0
1j,i

0
j,1i

1
j,i  

Evaluating at each interior grid point gives,

    500.34/008.62.74/uuuuu 0
2,3

0
3,2

0
1,2

0
2,1

1
2,2 

    925.14/007.704/uuuuu 0
2,4

0
3,3

0
1,3

0
2,2

1
2,3  , similarly

.525.4u,225.2u,325.4u,525.4u 1
3,4

1
3,3

1
3,2

1
2,4  (3.15)

Having completed the first iteration we test for convergence. i.e. we measure how close u0 is to u1.

u0 = (0, 0, 0, 0, 0, 0), u1 = (3.5, 1.925, 4.525, 4.325, 2.225, 4.525),

therefore,

This is greater than the specified tolerance of 0.5 x 10-3 so the iteration is repeated to find u2 etc.
Eventually (we hope!) after p iterations,

31pp 10x5.0|uu| 


 

and the iterative procedure terminates. The solution is up.

A program to implement Jacobi iteration is available from the website.

 |0525.4||,0225.2||,0325.4||,0525.4||,0925.1||,05.3|max|uu| 01  

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

45

Elliptic Equations

3.9 Gauss-Seidel Iteration

This is a potentially more efficient version of Jacobi iteration. We note that in Equation (3.13) some of the
updated ui.j values are already available for use in the iteration formula. In our way of traversing the grid
when we reach grid position (i, j) we have already updated ui-1,j and ui,j-1 therefore we can use these values
in the 5-point formula which becomes,

  4/uuuuu m
j,1i

m
1j,i

1m
1j,i

1m
j,1i

1m
j,i 







  (3.16)

(Note that this formula assumes that x = y).

This is called the Gauss-Seidel formula (also called point-Gauss-Seidel) and the implementation is the
same as for Jacobi. As an example of Gauss-Seidel iteration we repeat the previous problem using starting
u values of zero (and where we don’t yet have an updated u value we use its current value).

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

46

Elliptic Equations

3.9.1 First Iteration

Equation (3.16) with m=0 gives,

  4/uuuuu 0
j,1i

0
1j,i

1
1j,i

1
j,1i

1
j,i  

Evaluating at each interior grid point gives,

  .4/uuuuu 0
2,3

0
3,2

1
1,2

1
2,1

1
2,2 

Note that we don’t have 1
1,2

1
2,1 u,u yet so we use 0

1,2
0

2,1 u,u to give,

     .500.34/008.62.74/uuuu 0
2,3

0
3,2

0
1,2

0
2,1 

   4/uuuuu 0
2,4

0
3,3

1
1,3

1
2,2

1
2,3 

Note that we now have 1
2,2u but not ,u1

1,3 so we use ,u1
1,3 to give,

     8.24/007.75.34/uuuu 0
2,4

0
3,3

0
1,3

1
2,2 

   4/uuuuu 0
2,5

0
3,4

1
1,4

1
2,3

1
2,4 

Note that we now have 1
2,3u but not ,u1

1,4 so we use ,u1
1,4 to give,

     225.54/4.907.88.24/uuuu 0
2,5

0
3,4

0
1,4

1
2,3 

(3.17)

The remaining values are calculated similarly.

Notes:

1. We are assuming that the iterative procedures converge – this needs further study.

2. For simplicity we have taken x = y. It is a simple matter to generalise the iterative formulae for the
case of different grid spacing in the x and y directions (start from Equation (3.4)).

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

47

Elliptic Equations

3. It is quite tricky to write a general program for an M by N mesh. The difficult part is to map the
(M-2)x(N-2) array of interior grid values to a system of (M-2)(N-2) linear equations in (M-2)(N-2)
unknowns.

3.10 Exercise 3b

1. Check the direct solution to (3.9) by using Scilab (or Matlab).

2. Find  |yx| for x=(1,3,5,8,4,-2,4,0,2), y=(2,-4,4,1,4,2,-3,0,2).

3. Using pen and paper perform a second iteration for each unknown for the Jacobi test problem
(equations (3.15)).

4. Write a program to implement Jacobi iteration for the test problem above and verify by comparison
to your pen and paper calculations (and by comparison to the direct solution). Comparison programs
can be found from the website.

5a. Using pen and paper complete the first iteration of the Gauss-Seidel calculations for the test problem.

5b. Perform a second iteration.

6a. Write a program to implement Gauss-Seidel iteration for the test problem using zero starting values
and verify by comparison to 5a,b.

6b. For a given tolerance compare the number of iterations taken using Gauss-Seidel and Jacobi methods
for the test problem.

7. Write a Jacobi iterative solver for a general rectangular grid and validate it on the test problem
(a program is available on the website for comparison).

8. Repeat Q7. using a Gauss-Seidel iterative solver (a program is available on the website for
comparison).

3.11 Successive Over Relaxation (SoR) Method

The idea behind this method is that in an iterative formula the point value at the new iteration depends on
the old point value plus some error (residual) at that point.

i.e. m
j,i

m
j,i

1m
j,i Ruu  (3.18)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

48

Elliptic Equations

m
j,iR is the difference between successive iterates of ui,j and is called the residual. It might be possible to

speed up the convergence of the iterative scheme by weighting the residual on the right hand side of (3.18)
appropriately. We write,

m
j,i

m
j,i

1m
j,i Rwuu  (3.19)

w is called a relaxation parameter. For 0 < w < 1 (3.19) corresponds to under-relaxation and for
1 < w < 2 (3.19) corresponds to over-relaxation. This idea is applied to improve the point-Gauss-Seidel
method. The point-Gauss-Seidel iteration formula (for x = y) is,´

  4/uuuuu m
j,1i

m
1j,i

1m
1j,i

1m
j,1i

1m
j,i 







  (3.20)

which can be re-written as,

  4/uuu4uuuu m
j,1i

m
1j,i

m
j,i

1m
1j,i

1m
j,1i

m
j,i

1m
j,i 







  (3.20a)

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

49

Elliptic Equations

which is the of the same form as (3.18) with,

  4/uuu4uuR m
j,1i

m
1j,i

m
j,i

1m
1j,i

1m
j,1i

m
j,i 





  (3.20b)

Hence we may convert this to,

  4/uuuuwu)w1(u m
j,1i

m
1j,i

1m
1j,i

1m
j,1i

m
j,i

1m
j,i 







  (3.21)

which is called the (point) SoR method. This method is implemented in the same way as the previous
iterative methods. If w = 1 (3.21) reduces to the Gauss-Seidel method. The question is what is the best
choice of w for fastest convergence? This is a difficult question to answer in general and we must use
numerical experiments to find an approximate best value. For the interested reader some convergence
analysis for the three iterative methods is given in Appendix D.

3.12 Line SoR

As we shall see next, the use of a classical tridiagonal matrix method can greatly improve the efficiency of
the previous SoR method. This is because we can update the solution along a whole line of grid points at
once instead of simply point by point, hence the name line SoR. The line of grid points will normally be a
whole row or column in the grid. We start from the finite difference toolkit approximation to Laplace’s
equation in compass notation (3.3c)

)b1(2
)uu(buuu 2

1m
S

m
N

21m
W

m
E1m

O 





 (3.22)

where we have introduced the iteration index m and assumed the usual ordering working through the grid
points left to right and bottom to top. (3.22) is the Gauss-Seidel method (3.16) in compass notation on a
rectangular mesh with b = x/y. The corresponding point SoR method is,

 )uu(buu
)b1(2

wu)w1(u 1m
S

m
N

21m
W

m
E2

m
O

1m
O

 


 (3.23)

which is the compass notation form of (3.21) on a rectangular mesh. We proceed by moving the East and
West terms onto the left hand side, with the East term written at the m+1 level, i.e. (3.23) becomes,

O
1m

W
1m

E
1m

O
2 bwuwuu)b1(2   (3.24)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

50

Elliptic Equations

Where

)uu(wbu)w1)(b1(2b 1m
S

m
N

2m
O

2
O

 (3.25)

and noting that the data 1m
Su  on the right hand side is known if we assume a bottom to top ordering for

the calculation. (3.24) is now in tridiagonal form. The corresponding matrix equations for the unknown
data u at the interior grid points (i = 2, M-1) in a single row j are:





























































































j,1M

j,3

j,2

m
j,1M

1m
j,3

1m
j,2

2

2

2

2

b
.
.
.

b
b

u
.
.
.

u
u

)b1(2w
w)b1(2w0

...
...

0w)b1(2w
w)b1(2

 (3.26)

where we see that a tridiagonal matrix is one in which the entries in the main diagonal and in the diagonals
above and below it are in general non-zero, with the remaining entries zero. A tridiagonal system like
(3.26) can be solved very efficiently using the Thomas algorithm (see website) for the m+1 iterated values
of u along one complete line or row of the mesh at once. This is the line SoR method, or SoR by lines. For
convenience, the matrix equations (3.26) assume zero end-point boundary values. Dirichlet or von
Neumann boundary conditions (see Appendix B) involve only marginal changes to the entries in the
tridiagonal matrix and the right hand side vector b. (3.26) also assumes that the nodes in each row j are
numbered left to right from i=1 to M where at the end points (i=1 and i=M) boundary conditions are
applied. Instead of visiting each node in the mesh at each iteration, we solve a complete row at a time by
solving (3.26), working up the rows bottom to top to complete one iteration cycle. The procedure is
illustrated in Figure 3.3. The row sweeps are continued until the solution values converge to the required
accuracy. In order to maintain diagonal dominance of the equations (3.26), and retain computational
efficiency, we must ensure that w  1+b2 (on a square mesh w 2).

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

51

Elliptic Equations

Figure 3.3 SoR by Lines

The faster convergence of line SoR compared to standard (point) SoR is due to the greater influence of the
boundary values that affect all nodes at each sweep. It can be shown that the optimum value of the
relaxation parameter w is given by the smaller root of,

016w16wt 22  (3.27)

where    )1N/(cos)1M/(cost  and M and N are the number of grid points in the x and y
directions respectively.

3.13 Exercise 3c

1. Write a general program to implement SoR and validate it on the test problem. Experiment with
tolerances and choice of relaxation parameter.

2. Repeat Q1 using line SoR.

y

u=u0=const

x

u=u0=const

u=u0=const

m

m+1 m+1 m+1

m+1

sweep by rows
bottom to top

Apply Thomas
algorithm then
advance to next
row up

u=u0=const

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

52

Hyperbolic Equations

4. Hyperbolic Equations

4.1 Introduction

Hyperbolic equations describe many time-dependent (transient) phenomena (e.g. fluid flow) and are
characterised by a speed of propagation of information (often called ‘wave speed’). Consequently future
solution values can only be affected by past values in a limited neighbourhood. Hyperbolic equations may
also admit discontinuities in the solution variables requiring advanced numerical treatment. A proper
mathematical treatment of hyperbolic equations involves the study of characteristics that is beyond the
scope of this book. Instead we use experimental results to illustrate key concepts. Attention is focused on
the 1D linear advection equation that, although not strictly hyperbolic according to the classical definition,
contains the essential elements of hyperbolic PDEs and, as we will see later, is a component of the shallow
water equations that are truly hyperbolic. We will look at numerical results from the simple FD scheme in
Chapter 2 to solve the 1D linear advection equation and this will lead to a series of basic questions about
numerical schemes in general.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

53

Hyperbolic Equations

4.2 1D Linear Advection Equation

The linear advection equation (also known as the transport equation) may be used in a model of various
phenomena like the movement of pollutant in a river or the movement of an air/water interface inside a
sophisticated numerical method (e.g. Volume of Fluid method). We look at the simplest version of this
equation. In one spatial dimension the linear advection equation is:

Ut + v Ux = 0 (4.1a)

Here the independent variables are t (time) and x (space). The dependent variable U is a function of t
and x.

A PDE on its own does not give a complete model of a particular problem. In addition to the PDE, we
need to give the correct initial and/or boundary conditions for the dependent variable for the particular
problem. Let the initial condition for U in (4.1a) be,

U(0, x) = f(x) (4.1b)

i.e. the initial value of U is given over the spatial domain by a known function f(x). For the moment we
will assume that the spatial domain is infinite so that we can ignore any boundary conditions.

4.2.1 An Interpretation of the Linear Advection Equation

If we interpret (4.1a, 4.1b) as a (partial) model of the transport of a soluble pollutant by a 1D river then
U(t, x) is pollutant concentration at time t and position x along the river and v is the (constant) velocity of
the river. Equation (4.1b) gives the initial pollutant concentration at each point along the river. For a fixed
value of t the graph of U against x is called the concentration profile. Suitable units measure t in seconds,
x in metres and U in kg/m. A dimensional analysis of (4.1a) shows that v is measured in m/s which is
correct for velocity.

A solution to (4.1a, 4.1b) is a function U = U(t, x) which satisfies (4.1a) and the initial conditions (4.1b) at
all points (x, t).

4.2.2 Exact Solution of the Linear Advection Equation

It can be shown that the exact solution to (4.1a, 4.1b) is,

U(t, x) = f(x – vt) (4.1c)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

54

Hyperbolic Equations

This means that U(t, x) is just the initial concentration profile, f(x), translated vt metres along the x axis.
For v > 0, the translation is to the right and for v < 0, the translation is to the left. In either case the
pollution moves downstream at the speed of the river. The following diagrams illustrate this using an
arbitrary made up initial concentration profile.

Figure 4.1a Initial concentration profile.

Figure 4.1b Concentration profile after time t (solid) compared to initial profile (dashed), v > 0.

Figure 4.1a shows a triangular initial concentration profile along the river. Concentration is only non-zero
in the interval 2 < x < 4. At time t the concentration profile is the same shape as the initial concentration
profile but has been translated vt units downstream. Physically equation (4.1a) models pollutant transport
in the absence of diffusion so the pollutant is just carried along at the speed, v, of the river. This model is
unrealistic but is useful for learning purposes. It is important to note that the model is NOT a model of the
flow in the river which flows with constant velocity v (we will look at models of water flow later as they
are more complicated).

The linear advection equation is a good PDE to study because it has an exact solution and we can assess
the performance of FD schemes by comparison to this.

x x (metres)

U(0, x) = f(x)

x

2
x

4

concentration
U (kg/m)

x 2+vt

x v t

x

2
x

4 x 4+vt

concentration
U (kg/m)

x x (metres)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

55

Hyperbolic Equations

4.3 Results for the Simple Linear Advection Scheme

Graphical output from the simple FD scheme of Chapter 2 is given for a range of parameters. In all cases
the same initial condition profile given by Equation (2.19) was used and the computational domain,
[0, 100], was discretised by N = 101 equally spaced points. There is a brief discussion of the output in
each case which will motivate the analysis later in the chapter.

4.3.1 Test Case 1

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

co
nc

en
tr

at
io

n
u

comparison of solutions to du/dt + v du/dx = 0, + numerical, o analytical

Figure 4.2a Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
first order forward differences in both space and time using v = 0.5, t = 0.3, 10 time steps.

The simulation was run for 0.3x10 = 3 seconds. The initial condition profile has moved about 1.5 metres
to the right. This is what we would expect since v = 0.5m/s is positive and distance equals speed
multiplied by time. There is ‘good’ agreement between numerical and exact solutions.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

56

Hyperbolic Equations

4.3.2 Test Case 2

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

co
nc

en
tr

at
io

n
u

comparison of solutions to du/dt + v du/dx = 0, + numerical, o analytical

Figure 4.2b Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
first order forward differences in both space and time using v = 0.5, t = 0.3, 25 time steps.

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

57

Hyperbolic Equations

The simulation has been run for 0.3x25 = 7.5 seconds. The numerical concentration peak has moved to the
right place but is higher than the exact solution. More worryingly there is some noticeable divergence
from the exact solution in the numerical solution around x = 15 and x = 67. Something is going wrong!

4.3.3 Test Case 3

0 10 20 30 40 50 60 70 80 90 100
-20

-15

-10

-5

0

5

10

15

20

x

co
nc

en
tr

at
io

n
u

comparison of solutions to du/dt + v du/dx = 0, + numerical, o analytical

Figure 4.2c Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
first order forward differences in both space and time using v = 0.5, t = 0.3, 44 time steps.

The simulation has been run for 0.3x45 = 13.5 seconds and numerical results have gone haywire. Note
that the vertical scale has changed and the numerical results have ‘blown up’. Something is terribly wrong
with this scheme!

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

58

Hyperbolic Equations

4.3.4 Test Case 4

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

co
nc

en
tr

at
io

n
u

comparison of solutions to du/dt + v du/dx = 0, + numerical, o analytical

Figure 4.2d Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
first order forward differences in both space and time using v = -0.5, t = 0.3, 44 time steps.

The simulation has again been run for 13.5 seconds but the sign of the velocity, v, has been changed. As
expected the concentration profile moves to the left. Results look reasonable this time so there is a lack of
symmetry with Test Case 3. Obviously the behaviour of the numerical scheme is influenced by the sign
of v.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

59

Hyperbolic Equations

4.3.5 Test Case 5

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

co
nc

en
tr

at
io

n
u

comparison of solutions to du/dt + v du/dx = 0, + numerical, o analytical

Figure 4.2e Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
first order forward differences in both space and time using v = -0.5, t = 13.5, 1 time step.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

60

Hyperbolic Equations

The simulation has again been run for 13.5 seconds with v = -0.5, as before. The time step has been
increase to 13.5 so that the end result is achieved in a single iteration. As before the concentration profile
moves to the left. However results look bad and there is evidence that the numerical solution has started to
‘blow up’! The time step, t, could be too big.

A number of questions arise naturally from the results of these numerical experiments:

Q1) Can we design other FD schemes to get more accurate results?

Q2) How do we know the numerical results won’t ‘blow up’ at some future time?

Q3) How do we know we have an accurate solution (in the absence of an analytical solution)?

These questions are addressed by the theory in Appendix C which should be read now.

4.4 Scheme Design

We will design FD schemes to solve the 1D linear advection equation (4.1a). First we introduce some
useful compact notation.

4.4.1 Operator Notation

Let, t denote
t


, tt denote 2

2

t


, xy denote
xy

2




 etc.

Then (4.1a) can be written,
0UvU xt  (4.2a)

UvU xt  (4.2b)

By definition,

)U(U tttt  (4.3a)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

61

Hyperbolic Equations

Using (4.2b), (4.3a) gives,
)Uv(U xttt  (4.3b)

)U(v xt 

Uv xt

Uv tx

)U(v tx 

)Uv(v xx 

Uv xx
2 (4.3c)

Now we can design some FD schemes to solve Equation (4.1a).

For fixed x, the Taylor expansion of U(t + t, x) to order 3 gives,

)t(OU
!2
tUt)x,t(U)x,tt(U 3

tt

2

t 


 (4.4a)

which, in operator notation is,

)t(OU
!2
tUt)x,t(U)x,tt(U 3

tt

2

t 


 (4.4b)

Using (4.2b) and (4.3c) the partial derivatives with respect to t can be replaced by partial derivatives with
respect to x to give,

)t(OUv
!2
tUvt)x,t(U)x,tt(U 3

xx
2

2

x 


 (4.4c)

Let,

xx
2

2

xx v
2
tvt1)t(L 


 (4.5)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

62

Hyperbolic Equations

Then (4.4c) can be written,

)t(O)x,t(U)t(L)x,tt(U 3
x  (4.6)

)t(L x  is a differential marching operator. To design FD schemes to solve (4.8a) we simply redefine

)(tLx  by replacing each continuous partial derivative by a finite difference approximation (denoted by

x, xx) to give,

xx
2

2

xx v
2
tvt1)t(L 


 (4.7)

)t(Lx  is now a difference marching operator. Different FD approximation choices for x, xx give rise to
different FD time marching schemes. The general (second order in time) FD time marching scheme for the
1D linear advection equation (4.8a) can now be written as,

n
ix

1n
i u)t(Lu  (4.8a)

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

63

Hyperbolic Equations

Written out in full this is,

n
ixx

2
2

n
ix

n
i

1n
i uv

2
tuvtuu 


 (4.8b)

(As previously defined, n
iu is the approximation to the exact solution U(tn, xi) at the ith grid point and the

nth time step). Some examples of FD schemes are now given.

4.4.2 Example 1: Forward Time Centred Space (FTCS) Scheme

From our FD toolkit we choose
x2
uuu

n
1i

n
1in

ix 


  and 0un
ixx  .

Equation (4.8b) becomes,

 n
1i

n
1i

n
i

1n
i uu

x2
tvuu 

 



 (4.9)

This is the FTCS scheme and it has the following stencil.

Figure 4.3 Stencil for the FTCS Scheme

time level

n + 1

n

i-1 i+1

t

spatial steps

i

x

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

64

Hyperbolic Equations

Notes:

1) The scheme is first order in time and second order in space (see Appendix C for definition of the order
of a scheme).

2) Ghost values are required at both left and right ends of the computational domain (see Appendix B for
boundary conditions).

4.4.3 Example 2: First Order Upwind (FOU) Scheme

From our FD toolkit we choose
x
uuu

n
1i

n
in

ix 


  and 0un
ixx  . Equation (4.8b) becomes,

 n
1i

n
i

n
i

1n
i uu

x
tvuu 

 



 (4.10)

This is the FOU scheme and it has the following stencil.

Figure 4.4 Stencil for the FOU Scheme

Notes:

1) The scheme is first order in time and first order in space.

2) A ghost value is required at the left end of the computational domain.

time level

n + 1

n

i-1

t

spatial steps

i

x

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

65

Hyperbolic Equations

4.4.4 Example 3: Lax-Wendroff Scheme

From our FD toolkit choose
x2
uuu

n
1i

n
1in

ix 


  , 2

n
1i

n
i

n
1in

ixx x
uu2uu




  .

Equation (4.8b) becomes,

   n
1i

n
i

n
1i2

22
n

1i
n

1i
n
i

1n
i uu2u

x2
tvuu

x2
tvuu 

 







 (4.11)

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

66

Hyperbolic Equations

This is the Lax-Wendroff scheme and it has the following stencil.

Figure 4.5 Stencil for the Lax-Wendroff Scheme

Notes:

1) The scheme is second order in time and second order in space.

2) Ghost values are required at both left and right ends of the computational domain.

4.4.5 Example 4: Lax-Friedrichs Scheme

This is the same as the FTCS scheme except that the first term on the right of (4.9) is replaced by the

average of its 2 neighbouring values, i.e. n
iu is replaced by

2
uu n

1i
n

1i   . As in the FTCS scheme we choose

x2
uuu

n
1i

n
1in

ix 


  and 0un
ixx  .

Equation (4.8b) becomes,

 n
1i

n
1i

n
1i

n
1i1n

i uu
x2
tv

2
uuu 

 






 (4.12)

time level

n + 1

n

i-1 i+1

t

spatial steps
i

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

67

Hyperbolic Equations

This is the Lax-Friedrichs scheme and it has the following stencil.

Figure 4.6 Stencil for the Lax-Friedrichs Scheme

Notes:

1) The scheme is first order in time and first order in space.

2) Ghost values are required at both left and right ends of the computational domain.

3) Although this scheme appears to be quite similar to the FTCS scheme its performance is very
different (see Appendix C).

4.5 Multi-Level Scheme Design

So far all our schemes have been based on using data at the current time level (n) to advance to the next
time level (n+1). This approach can be extended to multi-level schemes by performing Taylor
approximations at t - t and using algebraic manipulation as we shall now see. Replacing t by – t in
(4.4a) gives,

)t(OU
!2
tUt)x,t(U)x,tt(U 3

tt

2

t 


 (4.13a)

Subtracting (4.13b) from (4.13a) and gives,

)t(OUt2)x,tt(U)x,tt(U 3
t  (4.13b)

time level

n + 1

n

i-1 i+1

t

spatial steps i

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

68

Hyperbolic Equations

In operator notation this is,

)t(OUt2)x,tt(U)x,tt(U 3
t  (4.13c)

Using (4.2b) this becomes,

)t(OUtv2)x,tt(U)x,tt(U 3
x  (4.13d)

Dropping the error term, replacing the differential operator by the difference operator and using the usual
discrete notation gives the general FD scheme,

utv2uu x
1n

i
1n

i   (4.14)

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

69

Hyperbolic Equations

4.5.1 Example 5: Leap-Frog Scheme

In (4.14) we choose
x2
uuu

n
1i

n
1in

ix 


  to give,

 n
1i

n
1i

1n
i

1n
i uu

x
tvuu 

 



 (4.15)

This is the Leap-Frog scheme and it has the following stencil.

Figure 4.7 Stencil for the Leap-Frog Scheme

Notes:

1) The scheme is second order in time and second order in space.

2) Ghost values are required at both left and right ends of the computational domain.

3) Initial conditions are required at two time levels!

4.6 Exercise 4a

1a. Download the simple linear advection solver ‘linearadvection’ (from Chapter 2).

1b. Run ‘linearadvection’ on Test Cases 1-5 and check that the output agrees with the figures in the notes.

time level

n + 1

n

i-1 i+1

t

spatial steps
i

n-1

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

70

Hyperbolic Equations

1c. Run ‘linearadvection’ with different run times, time steps, spatial steps and values of v (both positive
and negative). In each case write down in your own words how the numerical scheme behaves in
comparison to the exact solution.

1d. Are there any values of t, x, v, ntimesteps that give good results?

2a. Copy ‘linearadvection’ to ‘linearadvectionFOU’. Change the solver in this new file so that it
implements the FOU scheme. Verify your code by comparison to a pen and paper calculation as per
Table

2.2. Important: the FOU scheme requires a left hand ghost point and hence in the first non-ghost point has
index 2 and the last non-ghost point has index N+1.

2b. Run ‘linearadvectionFOU’ using the parameters from Test Cases

1-4. In each case write down in your own words how the numerical scheme behaves with reference to the
analytical results.

2c. Run ‘linearadvectionFOU’ with different run times, time steps, spatial steps and values of v (both
positive and negative). In each case write down in your own words how the numerical scheme
behaves with reference to the analytical results.

2d. Are there any values of t, x, v, ntimesteps that give good results?

2e. Show experimentally that the FOU scheme is first order in space.

3. Copy ‘linearadvection’ to ‘linearadvectionLW’. Change the solver in this new file so that it
implements the Lax-Wendroff scheme and verify the code. Repeat 2b-e for ‘linearadvectionLW’.

4. Do all exercises in Appendix C and relate theoretical stability results to your experimentally derived
results.

4.7 Implicit Schemes

The previous schemes are called explicit schemes because data at the next time level is obtained from an
explicit formula involving data from previous time levels. This leads to a (stability) restriction on the
maximum allowable time step, t (see Appendix C). Now we come to a different type of scheme –
implicit, in which data from the next time level occurs on both sides of the difference scheme that
necessitates solving a system of linear equations. There is no stability restriction on the maximum time
stepwhich may be much larger than an explicit scheme for the same problem. In implicit schemes the
time step is chosen on the basis of accuracy considerations.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

71

Hyperbolic Equations

4.7.1 Example 6: Crank-Nicolson Scheme

This is an implicit scheme. In previous examples spatial derivatives are approximated at time level n.
However values change between time level n and time level n+1 so a better approximation to spatial
derivatives could make use of data at both time levels. Let,

x2
uu)1(

x2
uuu

1n
1i

1n
1i

n
1i

n
1in

ix 











 , 10  . (4.16)

This is a weighted average of central difference approximations at times levels n and n+1. Choose

0un
ixx  . Then for  = ½ (4.8b) becomes,








 













2
uu

2
uu

x2
tvuu

1n
1i

1n
1i

n
1i

n
1in

i
1n

i (4.17)

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

72

Hyperbolic Equations

This is the Crank-Nicolson scheme and it has the following stencil.

Figure 4.8 Stencil for the Crank-Nicolson Scheme

Notes:

1) The scheme is first order in time and second order in space.

2) Ghost values are required at both left and right ends of the computational domain.

3) The scheme is implicit so values at time level n+1 are found by solving a system of linear equations.

4.7.2 Implementation of the Crank-Nicolson Scheme

Letting
x
tvc




 , (4.17) is,








 











2
uu

2
uu

2
cuu

1n
1i

1n
1i

n
1i

n
1in

i
1n

i (4.18)

Re-writing (4.18) gives,

 1n
1i

1n
1i

n
1i

n
1i

n
i

1n
i uuuucu4u4 





  (4.19a)

time level

n + 1

n

i-1 i+1

t

spatial steps
i

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

73

Hyperbolic Equations

Rearranging so that data from the same time level is on the same side gives,

n
1i

n
i

n
1i

1n
1i

1n
i

1n
1i ucu4ucucu4uc 





  (4.19b)

The data at time level n is assumed known so (4.19b) is simplified by replacing the right hand side by n
id

to give,

n
i

1n
1i

1n
i

1n
1i ducu4uc  




 (4.19c)

For each grid point i = 1, 2, … , N, we write out (4.19c) to give,

n
N

1n
1N

1n
N

1n
1N

n
1N

1n
N

1n
1N

1n
2N

n
3

1n
4

1n
3

1n
2

n
2

1n
3

1n
2

1n
1

n
1

1n
2

1n
1

1n
0

ducu4uc

ducu4uc

ducu4uc

ducu4uc

ducu4uc































 (4.19d)

(4.19d) is a system of N linear equations in what looks like N+2 unknowns! However 1n
0u  and 1n

1Nu 
 on

the left hand side of (4.19d) are ghost values which may be known directly or can be calculated in terms of
neighbouring values depending on the type of boundary condition given in the problem (see Appendix B).
In the former case we can move these known values to the right hand side of (4.19d) and, letting

1n
1N

n
N

n
N

1n
0

n
1

n
1 ucdd,ucdd 


  , (4.19d) becomes,

n
N

1n
N

1n
1N

n
1N

1n
N

1n
1N

1n
2N

n
3

1n
4

1n
3

1n
2

n
2

1n
3

1n
2

1n
1

n
1

1n
2

1n
1

du4uc

ducu4uc

ducu4uc

ducu4uc
ducu4




























 (4.19e)

This system is expressed as the matrix equation,

A un+1= dn (4.19f)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

74

Hyperbolic Equations

where,

.

d

d

d
d

d,

u

u

u
u

u,

4c0...0
c4c0...0

0...0c4c00
0...0c4c0

0...0c4c
0...0c4

A

n
N

n
1N

n
2

n
1

n

1n
N

1n
1N

1n
2

1n
1

1n















































































































The solution to (4.19f) is obviously,

un+1= A-1 dn (4.19g)

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

75

Hyperbolic Equations

Notes:

1. (4.19g) is solved at each time step and the solution updated iteratively.
2. In practical problems A may be very large (e.g. 1000 x 1000) so an efficient matrix inversion method

may be needed (see Chapter 3).
3. In this example boundary values are known so A is constant and needs only to be inverted once. For

problems where the left hand side boundary values are calculated in terms of neighbouring values
(e.g. Derivative boundary conditions, see Appendix B) the first and last rows of A will vary from
time step to time step.

4. In our example A has a special structure – it is tridiagonal. This special structure permits the use of
the efficient Thomas algorithm for matrix inversion algorithm (see downloadable code for Chapter 3).

Results for the usual test case are given in Figure 4.9.

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

distance, x

co
nc

en
tr

at
io

n,
 u

Comparison of Crank-N numerical (+) and exact solutions to du/dt+vdu/dx=0

Figure 4.9 Comparison of numerical (+) and exact solutions (o) to the 1D linear advection equation using
the Crank-Nicolson scheme with v = 0.5, C = 2.0, 15 time steps.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

76

Hyperbolic Equations

4.8 Exercise 4b

1. Use von Neumann stability analysis (Appendix C) to show that the Crank-Nicolson scheme is
unconditionally stable.

2. Using the Crank-Nicolson scheme for the 1D linear advection equation with p = 0, q = 100,

v = 0.5, N = 5, C = 1 and Dirichlet boundary conditions nu0u n
1N

n
0   , and the usual initial profile.

Write down the system of linear equations for the first time step of the Crank-Nicolson scheme and
express them as a matrix equation. Invert the (5x5) matrix (by pen and paper or use a package) and
hence find the concentration values at each grid point after the first time step.

3. Using your calculation from Q2 to verify your program and write a program to implement the Crank-
Nicolson scheme using N = 50 grid points. Experiment with different time steps and compare your
numerical results to the exact solution. Write a short report detailing the characteristics of the scheme
(tip: use the code from a previously written scheme as a basis for your new code).

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

77

Parabolic Equations: the Advection-Diffusion Equation

5. Parabolic Equations: the Advection-Diffusion
Equation

5.1 Introduction

The advection-diffusion equation belongs to the class of parabolic PDEs. In 1 spatial dimension it is,

xxxxt UKUvU  (5.1)

Kx is called the diffusion coefficient (in the x direction). If Kx = 0 then (5.1) is the linear advection
equation which we studied in Chapter 4. Using our previous interpretation of the linear advection equation
in which U = U(t, x) is river pollutant concentration and v is the speed of the flow, (5.1) is a more realistic
description of pollutant transport. Not only does the initial pollutant move downstream with velocity v, the
pollutant also diffuses into the surrounding water at rate Kx (the presence of second order spatial
derivatives often indicates a diffusive process).

Figure 5.1 illustrates a pure advective process (K = 0 in (5.1a)) compared to an advection-diffusion
process (K > 0 in (5.1b)). As we have seen previously for pure advection there is no change in the initial
concentration profile as it moves downstream at speed v. When diffusion is introduced the initial
concentration profile moves downstream at speed v but also spreads out (diffuses) and reduces in height
over time. It is important to realise that Figure 5.1b shows the exact solution – the spreading and reduction
in height is a consequence of the underlying physical process. Of course we have seen similar behaviour
with numerical solutions hence we talk of ‘numerical diffusion’ that is a feature of most numerical
schemes.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

co
nc

en
tr

at
io

n
u

pure advection: initial profile (dotted line) and 2 later solutions

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

co
nc

en
tr

at
io

n
u

advection-diffusion: initial profile (dotted) and solution at later times,

(b)
Figure 5.1 Time evolution of solutions for advection (a) and advection-diffusion (b)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

78

Parabolic Equations: the Advection-Diffusion Equation

5.2 Pure Diffusion

To keep things simple we will start with the pure diffusion equation,

xxxt UKU  (5.2a)

5.2.1 Analytical Solution of the Pure Diffusion Equation

Equation (5.2a) has an analytical solution for special conditions that is useful for checking numerical
schemes. It can be shown that over the x interval [0, 1] with initial condition, U(0, x) = sin(x) and
boundary conditions, U(t, 0) = U(t, 1) = 0 for all t, the solution of (5.2a) is,

)xsin(e)x,t(U tK 2
x   (5.2b)

5.2.2 Finite Difference Scheme for the Pure Diffusion Equation

We start simply and use our FD toolbox to replace the time derivative by a first order forward difference
and the spatial derivative by a symmetric difference so that (5.2a) becomes,

2

n
1i

n
i

n
1i

x

n
i

1n
i

x
uu2uK

t
uu






 



 (5.3a)

This can be rearranged to give the explicit FD scheme,

 n
1i

n
i

n
1i2

xn
i

1n
i uu2u

x
Ktuu 

 



 (5.3b)

Note that the presence of n
1iu  and n

1iu  indicates the need for left and right ghost values. Equation (5.3b)
is written compactly as,

  n
1i

n
1i

n
i

1n
i ururur21u 
  (5.3c)

where,

2
x

x
Ktr




 (5.4)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

79

Parabolic Equations: the Advection-Diffusion Equation

Since this scheme is explicit the time step, t, will be limited by stability constraints. A von Neumann
stability analysis (Appendix C) gives, after some manipulation,

G = (1 – 2 r) + 2 r cos(k x) (5.5a)

where G is the amplification factor. For stability, 1|G|  which gives,

x

2

K2
xt 

 (5.5b)

The problem with the analytical solution (5.2b) was run for 300 time steps with 51 grid points using
scheme (5.3b) with Kx = 1. The maximum time step given by (5.5b) was multiplied by a safety factor of
F=0.9. Figure 5.2 shows the results. It can be seen that the initial profile reduces in height but does not
change its location. This is what we expect from a pure diffusion problem. The numerical and exact
solutions are close.

Figure 5.2 Comparison of exact and numerical solutions for a
special pure diffusion problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

concentration u

pure diffusion: initial profile (--) and numerical (+) and exact solutions

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

80

Parabolic Equations: the Advection-Diffusion Equation

5.2.3 Exercise 5a

1. State the units of Kx given standard units for the other variables in (5.1).

2. Given the initial concentration in Figure 5.1 draw plausible solutions to (5.1) at two later times on the
same graph when v = 0.

3. Show that (5.2b) satisfies the special initial and boundary conditions.

4. Show by partial differentiation that (5.2b) is a solution of (5.2a).

5. Obtain (5.3b) from (5.3a).

6. Obtain (5.3c) from (5.3b).

7. By conducting a von Neumann stability analysis obtain (5.5a) then (5.5b).

8. Write a program to solve (5.2a) using the scheme (5.3c). Check your program on the special diffusion
case and reproduce Figure 5.2.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

81

Parabolic Equations: the Advection-Diffusion Equation

5.3 Advection-Diffusion Equation

We discretise the advection-diffusion equation (5.1) using a first order forward difference for the time
derivative, a first order backward difference for the first space derivative (assuming v >0) and a (second
order) symmetric difference for the second space derivative to give,

2

n
1i

n
i

n
1i

x

n
1i

n
i

n
i

1n
i

x
uu2uK

x
uuv

t
uu










 



 (5.6a)

which can be rewritten as,

   n
1i

n
i

n
1i2

xn
1i

n
i

n
i

1n
i uu2u

x
tKuu

x
tvuu 

 







 (5.6b)

(5.6b) is an explicit FD scheme for solving the advection-diffusion equation. It is first order in time and
space. As usual we need to find the allowable time step by a stability analysis. For convenience (5.6b) is
written,

n
1i

n
i

n
1i

1n
i u)SR(u)S2R1(uSu 
  (5.6c)

where,

.
x
tvR




 (5.7a)

.
x

tKS 2
x




 (5.7b)

By von Neumann stability analysis it can be shown that,

0S2R1  (5.8)

from which it follows that,

x

2

K2xv
xt



 (5.9)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

82

Parabolic Equations: the Advection-Diffusion Equation

Note that when v = 0, (5.9) reduces to the previously calculated stability limit for pure diffusion (5.5b) and
when Kx = 0 (5.9) gives the well known stability limit for pure advection. Results from scheme (5.6b) are
given in Figure 5.3 for v = 0.5, Kx = 0.1, N = 101 at time t = 57s where t is its maximum value in (5.9)
multiplied by a safety factor of 0.9. The simulation required 45 time steps. By inspection the peak of the
concentration profile has moved about 28m. This correct as v = 0.5 and 0.5 x 57 = 28.5m. The peak value
of the profile has decreased and its width has increased as would be expected from a diffusive process.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

co
nc

en
tr

at
io

n
u

advection-diffusion: initial profile (dotted) and unsplit numerical solution (+) at later time,

Figure 5.3 Initial profile and numerical solution (+) to the 1D advection-diffusion equation at t = 57s.

Important:

When running a simulation always check your results as much as you can. There are various ways to do
this:

Check 1. If there is an exact solution to a special problem run the simulation on it and compare numerical
and exact results.

Check 2. Do a pen and paper calculation on a small problem and compare results with your numerical
output.

Check 3. Subject your results to a critical scrutiny – are they what you expect to get given the physical
process you are modelling?

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

83

Parabolic Equations: the Advection-Diffusion Equation

Of course the whole purpose of a simulation is to model some aspect of reality so the only real check (of
the model) is to compare it against real data.

5.4 Exercise 5b

1. Derive (5.6a)

2. Obtain (5.6b) from (5.6a).

3. Obtain (5.6c) from (5.6b).

4. Starting with (5.6c) carry out a von Neumann stability analysis on the solution and obtain (5.8) and
hence (5.9).

5. Calculate x and hence t for the simulation whose results are shown in Figure 5.3.

6. Draw an approximate sketch of Figure 5.3 if the simulation had been run for 70 seconds.

7. For v > 0 show that, a) 




AD

A
0x t

tlim , b) 1
t
tlim
AD

D

0x






. What do you conclude from this?

8. Write a program to implement scheme (5.6b) and reproduce Figure 5.2. (hint: extend code from a
previous scheme).

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

84

Extension to Multi-dimensions and Operator Splitting

6. Extension to Multi-dimensions and Operator
Splitting

6.1 Introduction

So far we have looked at PDEs in one (spatial) dimension. The real world is 3D so we must extend schemes to
multi-dimensions (it should be noted however that there are many useful 1D and 2D models of 3D processes).
For simplicity and to illustrate key concepts we will consider the 2D linear advection equation,

0UvUvU yyxxt  (6.1a)

Like the previous 1D linear advection equation this is another so-called ‘model’ equation in that it is a
simplified version of reality. As for the 1D linear advection equation we can interpret (6.1a) as a (partial)
model of pollutant transport in a 2D river. U= U(t, x, y) is the pollutant concentration at time t at position
(x, y) in the river (plan view) and vx and vy are the (constant) components of river velocity in the x and y
directions respectively. Given initial conditions,

U(0, x, y) = g(x, y),

it can be shown that (6.1a) has the exact solution,

U(t, x, y) = g(x – vx t, y – vy t) (6.1b)

i.e. the concentration profile is simply translated (advected) along at the speed of the river without
changing shape (there is no diffusion term in (6.1a) – it models pure advection).

6.2 2D Scheme Design (unsplit)

Our first approach to 2D scheme design is to directly discretise the PDE. These schemes are said to be
unsplit as opposed to split that we will look at later. We will design FD schemes to solve (6.1a) in an
exactly similar way to Chapter 4. In operator notation for partial derivatives (6.1a) can be written,

0UvUvU yyxxt  (6.2a)

 UvUvU yyxxt  (6.2b)

By definition,

U)(U tttt  (6.2c)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

85

Extension to Multi-dimensions and Operator Splitting

Using (6.2b, 6.2c) gives,
 U)vUv(U yyxxttt  (6.2d)

U)(vU)(v ytyxtx 

U)(vU)(v tyytxx 

U)vUv(vU)vUv(v yyxxyyyyxxxx 

UvUvvUvvUv yy
2

yxyxyyxyxxx
2

x 

UvUvv2Uv yy
2

yxyyxxx
2

x  (6.2e)

Now we can design some FD schemes to solve the 2D linear advection equation. Holding x and y constant,
the Taylor series for U(t+t, x, y) expanded about U(t, x, y) to O(t3) is,

)tO(U
2
tUty)x,U(t,y) x,t,+U(t 3

tt

2

t 


 (6.3a)

Using (6.2b, 6.2e) to replace the time derivatives in (6.3a) and rearranging gives,

)tO()Uvv2v(v
2
t)Uv(vty)x,U(t,y)x,t,+U(t 3

yy
2
yxyyxxx

2
x

2

yyxx 


 (6.3b)

Let,

)vvv2v(
2
t)vv(t1)t(L yy

2
yxyyxxx

2
x

2

yyxxXY 


 (6.4)

Then (6.3b) can be written,

)t(O)y,x,t(U)t(L)y,x,tt(U 3
XY  (6.5)

)t(LXY  is a differential marching operator and is second order in time. To design FD schemes to solve

(6.1a) we simply redefine)t(LXY  by replacing each continuous partial derivative by a FD approximation

(denoted by x, xy etc.) to give,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

86

Extension to Multi-dimensions and Operator Splitting

)vvv2v(
2
t)vv(t1)(yy

2
yxyyxxx

2
x

2

yyxx  


tLXY (6.6)

This is now a 2D difference marching operator. Different FD choices for x, xy etc. give rise to different
FD time marching schemes.

The computational domain is 2D so we need a grid of points in x and y directions. We assume a rectangular
computational domain with constant grid spacing of x and y in the x and y directions respectively. t is the
time step. Extending our usual notation by using subscript j for the index in the y direction let,

ui,j
n  U(tn, xi, yj) (6.7)

The general 2D FD time marching scheme for the 2D linear advection equation (6.1a) can now be
written as,

n
j,iXY

1n
j,i u)t(Lu  (6.8a)

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

87

Extension to Multi-dimensions and Operator Splitting

Written out in full this is,

n
ji,yy

2
yxyyxxx

2
x

2
n

ji,yyxx
n

ji,
1n

ji,)uvvv2v(
2
t)uvv(tuu 


 (6.8b)

Some examples of FD schemes are now given.

6.2.1 Example 1: First Order Upwind (FOU2D) Scheme

From our FD toolkit we choose,
y
uu

u,
x
uu

u
n

1j,i
n

j,in
j,iy

n
j,1i

n
j,in

j,ix 






  ,

0uuu n
j,ixy

n
j,iyy

n
j,ixx  . Equation (6.8b) becomes,

   n
1j,i

n
j,iy

n
j,1i

n
j,ix

n
j,i

1n
j,i uuCuuCuu 
  (6.9)

where,

y
tv

C,
x

tvC y
y

x
x 







 are the Courant numbers in the x and y directions respectively. This scheme is

simply the FOU scheme applied to each dimension.

Notes:

1. The scheme is first order in time and first order in each spatial dimension.

2. Ghost values are required at the left side and the lower side of the computational domain. This is
shown in Figure 6.1 for a grid with 5 points in the x direction and 3 points in the y direction.

3. The 2D FD scheme (6.9) could simply have been obtained by direct replacement of the partial
derivatives in the PDE (6.1a) using approximations from the FD toolkit. Our scheme is an example of
an unsplit scheme because it is obtained directly from the 2D PDE.

4. The scheme uses backward differences for the spatial derivatives and is therefore only an upwind
scheme for positive velocities. When one or more velocities are negative the scheme will fail unless
forward differences are used appropriately.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

88

Extension to Multi-dimensions and Operator Splitting

5. The scheme is explicit and will be subject to a stability constraint on the allowable time step. In the
1D case the heuristic stability approach reasoned that information could not travel across 2 grid

points in a single time step giving the condition, v/xt  . In 2D it seems reasonable to take,

 yx v/y,v/xminFt  (6.10a)

where F < 1, is a ‘safety factor’ which can be determined from numerical experiments if necessary. In
principle it is possible to undertake a stability analysis for a 2D scheme in the same way as for the
corresponding 1D scheme. This is algebraically complicated. A von Neumann analysis gives,

1CC yx  (6.10b)

which is a very restrictive condition on t.

Figure 6.1 2D Computational mesh showing real grid points (black) and ghost grid points (white)
for the FOU2D scheme

Code to implement the FOU2D scheme (6.9) may be downloaded from the website. Graphical output from
the above scheme is given in Figure 6.2.

j

y

i
x

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

89

Extension to Multi-dimensions and Operator Splitting

0

50

100

0

50

100
0

0.5

1

x

exact solution to du/dt + vx du/dx + vy du/dy = 0

y

co
nc

en
tr

at
io

n

contour plot of exact solution

x

y

0 20 40 60 80 100
0

20

40

60

80

100

0

50

100

0

50

100
0

0.5

1

x

FOU2D scheme solution to du/dt + vx du/dx + vy du/dy = 0

y

co
nc

en
tr

at
io

n

contour plot of FOU2D scheme solution

x

y

0 20 40 60 80 100
0

20

40

60

80

100

Figure 6.2 Comparison of exact and numerical solutions for the (unsplit) FOU2D scheme

6.2.2 Example 2: Lax-Friedrichs Scheme in 2D

From our FD toolkit we choose,

y2
uu

u,
x2
uu

u
n

1j,i
n

1j,in
j,iy

n
j,1i

n
j,1in

j,ix 






  , 0uuu n
j,ixy

n
j,iyy

n
j,ixx 

and estimate
4

uuuu
byu

n
1j,i

n
1j,i

n
j,1i

n
j,1in

j,i
 

 (i.e. the mean of surrounding values). Equation (6.8b)

becomes,

   n
1j,i

n
1j,i

yn
j,1i

n
j,1i

x
n

1j,i
n

1j,i
n

j,1i
n

j,1i1n
j,i uu

2
C

uu
2

C
4

uuuu
u 

 


 (6.11)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

90

Extension to Multi-dimensions and Operator Splitting

Notes:

1. The scheme is first order in t and in both x and y.

2. Ghost values are required at all sides of the computational domain.

3. This scheme is less diffusive than the FOU2D scheme and also works for positive and negative
velocities.

4. A von Neumann stability analysis gives,

2/1CC 2
y

2
x  (6.12)

which is a very restrictive time step condition.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

91

Extension to Multi-dimensions and Operator Splitting

6.2.3 Example 3: Crank-Nicolson Scheme in 2D

By an obvious extension of the 1D scheme (6.8b) becomes,










 













 

















2
uu

2
uu

2
C

2
uu

2
uu

2
Cuu

1n
1j,i

1n
1j,i

n
1j,i

n
1j,iy

1n
j,1i

1n
j,1i

n
j,1i

n
j,1ixn

j,i
1n

j,i (6.13)

Notes:

1. The scheme is first order in t and second order in both x and y.

2. Ghost values are required at all sides of the computational domain.

3. The scheme is implicit so values at time level n+1 are found by solving a system of linear equations.

4. Von Neumann stability analysis shows that this scheme is unconditionally stable.

5. Implementation of the Crank-Nicolson scheme involves solving MN linear equations in MN
unknowns at teach time step where MN is the number of computational grid points. The matrix can
be written as a penta-diagonal matrix. For large MN the computational effort at each time step may
be prohibitive unless an efficient matrix inversion algorithm is used.

6.2.4 Conclusions

From the above analysis we can see that FD schemes extend naturally from 1D to 2D (and 3D). The main
issues are:

1. It is often difficult to perform stability analysis.

2. For explicit schemes the allowable time step may be prohibitively small.

3. For implicit schemes the computational effort at each time step may be prohibitively large.

4. It would be nice to be able to exploit the relative simplicity and larger time steps of 1D schemes for
2D problems. The following analysis shows that we can actually do this and more!

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

92

Extension to Multi-dimensions and Operator Splitting

6.3 Operator Splitting (Approximate Factorisation)

This method replaces a single scheme to solve a complicated PDE by a sequence of simpler schemes
which solve related PDEs and which together solve the original PDE (up to a specified order of accuracy).
Operator splitting can be used to split up a PDE by dimension or by components or a combination of both.
We begin by looking at dimensional splitting.

6.3.1 Dimensional Splitting

The basis of this method is to split our N dimensional PDE into N, 1D PDEs and use a sequence of 1D FD
schemes to solve the problem. For simplicity we will look at the 2D linear advection equation (6.1a). We
split the (6.1a) into the following 2 PDEs (which are both 1D in space),

0UvU xxt  (6.14a)

0UvU yyt  (6.14b)

From our 1D work in Chapter 4 we know that a (second order in time) differential marching operator for
solving (6.14a) is,

xx
2
x

2

xxX v
2
tvt1)t(L 


 (6.15a)

Similarly a differential marching operator for solving (6.14b) is,

yy
2
y

2

yyY v
2
tvt1)t(L 


 (6.15b)

Consider the operator sequence,

LY(t) LX(t) (6.16)

We show that this sequence is ‘the same’ as LXY defined in (6.4) which we know solves the 2D PDE
(6.1a). By ‘the same’ it is enough to show that the difference is of an appropriate order of t. Multiplying
out (6.16) gives,

)v
2
tvt1()v

2
tvt1()t(L)t(L xx

2
x

2

xxyy
2
y

2

yyXY 





 (6.17a)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

93

Extension to Multi-dimensions and Operator Splitting

)tO()vvv2v(
2
t)vv(t1 3

yy
2
yxyyxxx

2
x

2

yyxx 


 (6.17b)

)t(O)t(L 3
XY  (6.17c)

Hence the sequence of 1D operators, LY(t) LX(t), is the same as the 2D operator LXY(t) up to O(t3).
This shows that the split scheme,

]u)t(L[)t(Lu n
j,iXY

1n
j,i  (6.18)

can be used to solve (6.1a) instead of the unsplit scheme (6.8a). It is now just a matter of replacing the
differential operators, by appropriate difference operators like we did before: e.g. LX becomes the
difference marching operator,

xx
2
x

2

xxX v
2
tvt1)t(L 


 .

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

94

Extension to Multi-dimensions and Operator Splitting

Notes:

1. (6.18) has the same temporal order as (6.8a).

2. The time step in (6.18) is the minimum allowable time step for each 1D operator and may be much
larger than the time step for the unsplit 2D scheme (6.8a) which is one of the advantages of
dimensional splitting.

3. (6.18) is implemented by first applying the LX operator to each row of the grid. This produces new
values of the dependent variable at each grid point. The LY operator is then applied to the new data
along each column of the grid.

4. The split operator sequence (6.18) is one of many split operator sequences which solve (6.1a).

5. LX and LY may be totally different FD schemes (although they should be the same order).

6. Our approach is called ‘dimensional splitting’ because a 2D PDE (6.1a) has been split into 2, 1D
PDEs (6.14a, 6.14b).

6.3.1.1 Example 4: Split FOU2D Scheme

The FOU scheme is used for both LX and LY difference operators. i.e. (for positive velocities) we choose,

y
uu

u,
x
uu

u
n

1j,i
n

j,in
j,iy

n
j,1i

n
j,in

j,ix 






  , 0uu n
j,iyy

n
j,ixx  . So that,

yyYxxX vt1)t(L,vt1)t(L  .

Neglecting terms of O(t2) the split sequence (6.16) is,

)vv(t1

)vt1()vt1()t(L)t(L

yyxx

yyxxXY





Equation (6.18) can be written,

x sweep:  n
j,1i

n
j,ix

n
j,ij,i uuCuu  (6.19a)

y sweep:  1j,ij,iyj,i
1n

j,i uuCuu 
  (6.19b)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

95

Extension to Multi-dimensions and Operator Splitting

where,

j,iu (‘u bar’) is the new data at the grid point i,j produced by the LX operator and
y

tvC,
x

tvC x
y

x
x 









are the usual Courant numbers.

Notes:

1. (6.19a) corresponds to n
j,iXj,i u)t(Lu  and (6.19b) corresponds to j,iY

1n
j,i u)t(Lu  .

2.












 


yx v
y,

v
xmint where

yx v
y,

v
x 

 are the maximum time steps for the LX and LY operators

respectively. These expressions were found previously by von Neumann stability analysis of the 1D
FOU scheme.

Code to implement the split FOU2D scheme (6.19a, 6.19b) may be downloaded from the website.

6.3.1.2 Operator Splitting for Stiff Problems

The allowable time step, t, for an explicit scheme depends on the ‘flow’ velocity and the grid spacing in
each direction. Ideally we want to time-march with as large a time step as possible for computational
speed. This cannot always be achieved by the ‘standard’ splitting (6.18) as we will see from the following
example. Let the allowable time steps in x and y directions be tx and ty respectively. For the split

FOU2D scheme,  yx t,tmint  where
y

y
x

x v
yt,

v
xt 




 . Now suppose that |vx| >> |vy| (>> means

‘much greater than’) then, assuming that the grid spacings are of the same order,

tx << ty.

This defines a ‘stiff’ problem: the time scales for each component of the problem are very different. The
‘standard’ split operator sequence,

Lx(t) LY(t) (6.20)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

96

Extension to Multi-dimensions and Operator Splitting

requires that each operator marches using the same time step which has to be the minimum of tx and ty

for stability. Clearly the time step for LY is being constrained by the much smaller allowable time step in
the x direction. It might be more efficient if we could change the splitting so that LY could march in steps
of ty. We can!

Suppose that ntx = ty where n is an integer. i.e. tx is n times as small as ty. Consider the new split
operator sequence,

n
yXyY)]n/t(L[)t(L  (6.21)

In this sequence LY is marching at its maximum time step, ty, and LX is marching at (1/n) of ty so to
‘catch up’ we need to use LX n times. The following analysis shows that this approach works.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

97

Extension to Multi-dimensions and Operator Splitting

From the split FOU2D scheme example,

yyYxxX vt1)t(L,vt1)t(L  . Substituting into (6.21) and using the Binomial expansion gives,

 
 

 2
xxyyy

2
xxyyyy

2
xxyyyy

n
xxyyyy

tO)vv(t1

)tOvt1()vt1(

)tOv/n)t(n1()vt1(

)v/n)t(1()vt1(









 (6.22)

which is LY(ty) LX(ty) up to O(t2). This shows that the sequence (6.21) is valid.

Notes:

1. If tx is not exactly a whole number times as small as ty replace ty by ntx where n is the largest
integer such that ntx < ty.

2. (6.21) says apply the operator LX to each row of the grid n times using a time step ty/n each time and
using the updated values of u at each application. Then apply the LY operator to each column of the
grid once using a time step ty.

3. Since the multiplication in (6.22) is commutative another valid operator sequence is,

m
yXyY

mn
yX)]n/t(L[)t(L)]n/t(L[  .

4. If LX and LY are second order (they aren’t in our example) and n is even then the symmetric sequence,

2/n
yXyY

2/n
yX)]n/t(L[)t(L)]n/t(L[

is also second order. Where possible it is almost always better to use symmetric sequences.

6.3.1.3 Exercise 6a

1. Show that (6.1b) is a solution to (6.1a).

2. Go through the calculations to get (6.2e).

3. Derive (6.3b).

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

98

Extension to Multi-dimensions and Operator Splitting

4. Write out (6.8a) in full to get (6.8b).

5a. Download ‘linearadvectionFOU2D’ and make sure you understand every line of code.

5b. Run ‘linearadvectionFOU2D’ and describe the output for the given parameters.

5c. By gradually increasing the safety factor F and running the code find its maximum value for a stable
scheme based on the heuristic time step formula.

5d. Find the maximum time step for the FOU2D scheme based on the von Neumann stability analysis
result and alter your program to use this time step.

5e. Change the sign of the x component of velocity and run the code. What happens to the numerical
solution and why?

i) Fix the problem so that your code can deal with vx < 0 and vy > 0. Test your program.

ii) Fix the problem so that your code can deal with any velocities. Test your program.

6. Find the expression for the time step based on von Neumann stability analysis for the 2D Lax-
Friedrichs scheme to solve the 2D linear advection equation.

7. Copy ‘linearadvectionFOU2D’ to ‘linearadvectionLF2D’ and change the solver in this new file so
that it uses the 2D Lax-Friedrichs scheme (don’t forget ghost values) and repeat Q5.

8. By multiplying out and collecting terms, derive 6.17c from 6.17a.

9. Show that LX(t) LY(t), is the same as LXY(t) up to O(t3) and hence write down another operator
sequence to solve the 2D linear advection equation.

10. Show that for the 2D linear advection equation with equal velocities in x and y directions, the time
step for the LXLY split FOU2D scheme is twice that for the unsplit FOU2D scheme when grid
spacings in x and y directions are equal.

11. Compare time steps in Q10 when the Lax-Friedrichs scheme is used for all operators.

12. Using the notation of (6.19ab) write down the FD scheme to solve the 2D linear advection equation
with the Lax-Friedrichs scheme for all operators using the LXLY sequence.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

99

Extension to Multi-dimensions and Operator Splitting

13. Copy a suitable previous code to ‘linearadvectionFOU2Dsplit’ and modify it to solve the 2D linear
advection equation using the split operator sequence, LY(t) LX(t), using the FOU scheme for each
operator.

14. Copy a suitable previous code to ‘linearadvectionFOU2Dsplit’ and change it to solve the 2D linear
advection equation using the split operator sequence)]2/t(L[)t(L)]2/t(L[XYX  using the Lax-
Friedrichs scheme for each operator.

6.3.2 Term Splitting

PDEs may contain several terms corresponding to different physical processes. As an example we use the
1D advection-diffusion equation (5.1). Rather than solving the advection-diffusion equation directly it
may be more efficient to use term splitting to solve each part separately and combine solutions. The
following time step analysis shows why this could be a preferred option.

Assuming v > 0, using a first order forward difference for the time derivative and a first order backward
difference for the first space derivative, by previous analysis the time step for pure advection is,

v/xtA  (6.23a)

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

100

Extension to Multi-dimensions and Operator Splitting

Using a first order forward difference for the time derivative and a symmetric difference for the space
derivative, by previous analysis the time step for pure diffusion is,

x

2

D K2
xt 

 (6.23b)

Assuming v > 0, the time step for the unsplit scheme for advection-diffusion is,

x

2

AD K2xv
xt



 (6.23c)

From which we can see that,

AAD tt  (6.24a)

and,

DAD tt  (6.24b)

This leads us to conclude that the corresponding direct (unsplit) scheme will have a smaller allowable time
step than the split scheme (note also that as x gets smaller tAD becomes much smaller than tA). From
our previous theory of split schemes we can derive a split scheme for the advection diffusion equation
(5.1). We replace (5.1) by two PDEs,

0UvU xt  (6.25a)

and

xxxt UKU  (6.25b)

(6.25a) is the pure advection equation and (6.25b) is the pure diffusion equation. Let LA(tA) and LD(tD)
be FD operators for solving (6.25a) and (6.25b) respectively. We will show that LD(t) LA(t) is a (term)
split operator sequence for solving (5.1) where t = min(tA, tD). From the standard Taylor expansion
with x constant,

)t(OU
2
tUt)x,t(U)x,tt(U 3

tt

2

t 


 (6.26)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

101

Extension to Multi-dimensions and Operator Splitting

Firstly we use the advection-diffusion equation (5.1) to replace the time derivatives in (6.26) by spatial
derivatives. (5.1) can be written,

U)Kv(U xxxxt  (6.27a)

Hence,

U)KKv2v(

U)Kv)(Kv(U)(U

xxxx
2

xxxxxxx
2

xxxxxxxxtttt




 (6.27b)

Substituting (6.27ab) into (6.26) gives,

)tO()UKK2v(v
2
tU)Kv(tx)U(t,x)t,U(t 3

xxxx
2

xxxxxxx
2

2

xxxx 


 (6.28)

 U(t + t, x) = LAD(t) U(t, x) + O(t3) (6.29a)

where LAD(t) is an unsplit differential marching operator to solve the advection-diffusion equation given
by,

)t(O)KKv2v(
2
t)Kv(t1)t(L 3

xxxx
2

xxxxxxx
2

2

xxxxAD 


 (6.29b)

(6.29b) is made into a difference marching operator by replacing all partial derivatives by FD
approximations. By previous work we know that a differential marching operator, LA(t), to solve the
advection equation (6.25a) is given by,

)t(Ov
2
tvt1)t(L 3

xx
2

2

xA 


 (6.30)

We derive a differential marching operator, LD(t), to solve the diffusion equation (6.25b). (6.25b) can be
written,

UKU xxxt  (6.31a)

hence,

UK

U)K()K(UU

xxxx
2

x

xxxxxxtttt




 (6.31b)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

102

Extension to Multi-dimensions and Operator Splitting

Substituting (5.18ab) into (6.26) gives,

)t(OUK
2
tUKt)x,t(U)x,tt(U 3

xxxx
2

x

2

xxx 


 (6.32)

 U(t + t, x) = LD(t) U(t, x) + O(t3) (6.33a)

where LD(t) is an unsplit differential marching operator to solve the diffusion equation given by,

)t(OK
2
tKt1)t(L 3

xxxx
2

x

2

xxxD 


 (6.33b)

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

103

Extension to Multi-dimensions and Operator Splitting

(6.33b) is made into a difference marching operator by replacing all partial derivatives by FD
approximations. It now remains to show that LAD(t) is approximated by the split sequence LD(t) LA(t).

)t(O)t(L

)t(Ov
2
tvKtvtK

2
tKt1

)t(Ov
2
tvt1)t(OK

2
tKt1)t(L)t(L

3
AD

3
xx

2
2

xxxx
2

xxxxx
2

x

2

xxx

3
xx

2
2

x
3

xxxx
2

x

2

xxxAD




































Hence the unsplit operator and the split operator sequence are the same up to O(t3).

Using the previous FD schemes the corresponding split scheme to solve the 1D advection-diffusion
equation (5.1) is,

LA:  n
1i

n
i

n
ii uu

x
tvuu 




 (6.34a)

 LD:  1ii1i2
xn

i
1n

i uu2u
x

tKuu 
 




 (6.34b)

where,

.
K2
x,

v
xmint

x

2








 
 (6.35)

Output is given in Figure 6.3 for the same conditions as for Figure 5.3. It can be seem that the peak
concentration is in the correct place as before. This was achieved in fewer time steps. However the shape
of the concentration profile is slightly different to that given by the unsplit scheme - it is higher and
narrower. Perfect numerical schemes would give the same results for split and unsplit algorithms but no
scheme is perfect and the effect of numerical diffusion in the advective solvers plays a different role in
each algorithm.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

104

Extension to Multi-dimensions and Operator Splitting

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

co
nc

en
tr

at
io

n
u

advection-diffusion: initial profile (dotted) and split numerical solution (+) at later time,

Figure 6.3 Initial profile and split numerical solution (+) to the 1D advection-diffusion equation at t = 57s.

6.3.3 Exercise 6b

1. For v > 0 show that, a) 




AD

A
0x t

tlim , b) 1
t
tlim
AD

D
0x






.

What do you conclude from this?

2. Go through the derivation of LAD, LD and LA and show that

LAD = LD LA + O(t3).

3. Write a program for the split scheme (6.34ab) and reproduce Figure 5.3.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

105

Systems of Equations

7. Systems of Equations

7.1 Introduction

The world is governed by natural laws many of which can be expressed as systems of PDEs. An important
example are the Navier-Stokes equations that, together with the Continuity Equation form a system of 6
coupled PDEs which describe fluid flow in 3D. These equations are difficult to solve even approximately.
In the following, a relatively simple system of PDEs has been chosen to illustrate the FD approach.

7.2 The Shallow Water Equations

The Shallow Water Equations (SWE) may be expressed in 1D or 2D and provide a simplified model of
water flow which may be used to simulate many situations including river flow and tsunami propagation.
For simplicity we consider only 1D. This is still useful and there are many 1D SWE software packages
used by hydraulic engineers to make flow calculations for real life applications.

The 1D SWE form a system of two coupled non-linear hyperbolic PDEs with independent variables,
t (time) and x (distance along the flow) and dependent variables h = h(t,x) (flow depth) and v = v(t,x)
(flow velocity).

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

106

Systems of Equations

Using our usual subscript notation to indicate partial differentiation the 1D SWE can be written
compactly as,

S(U)F(U)U
xt  (7.1)

where,

,
vh

h
U
U

U
2

1

















 (7. 2a)

,
2/hgvh

vh
F
F

F(U) 22
2

1



















 (7. 2b)

 









f0 SSg

0
S(U) (7. 2c)

where g is the acceleration due to gravity, U is the matrix of dependent variables, F(U) is called the flux
vector and S(U) is called the matrix of source terms which here only consists of bed slope (So, measured
positive downwards) and friction (Sf) terms.

7.3 Solving the Shallow Water Equations

7.3.1 Theoretical Background

Explicit FD schemes need a limited time step for stability. Previous stability analyses assume linearity but
the SWE are not linear and so we cannot use these approaches directly. It is therefore necessary to
examine the SWE in some detail to determine stable time steps before looking at explicit FD schemes.
Neglecting source terms and using the Chain-Rule (7.1) can be expressed in quasi-linear form as,

0UJU xt  (7.3)

where J is the Jacobian matrix given by,












































2

2

1

2

2

1

1

1

U
F

U
F

U
F

U
F

U
FJ . (7.4)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

107

Systems of Equations

It is easily shown that,













v2ghv
10

J 2
 (7.5)

J has two real eigenvalues,

ghv,ghv 21  (7.6)

These eigenvalues are real and distinct and therefore give rise to corresponding linearly independent
eigenvectors q1 and q2 (which we write as column vectors). By standard Linear Algebra theory there is a
transformation of coordinates that diagonalizes J. This is now shown. Let, T = [q1 q2], then,

 J T = J [q1 q2]

= [J q1 J q2]

= [1 q1 2 q2] (by definition of eigenvalue)

=  


















2

1

21 0

0
qq

= T 











2

1

0
0

therefore,

T-1 J T = 











2

1

0
0

= D (7.7)

We introduce a change of variable by defining 









2

1

W
W

W by,

W = T-1 U (7.8)

Assuming that T-1 is locally constant, then (7.3) becomes,

0WTJWT xt  (7.9a)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

108

Systems of Equations

Multiplying through on the left by T-1 and using (7.7) gives,

0WDW xt  (7.9b)

Since D is a diagonal matrix this system of equations has been decoupled by the change of variable.
Writing out each row of (7.9b) gives,

0
x

W)ghv(
t

W 11 







 (7.10a)

0
x

W)ghv(
t

W 22 







 (7.10b)

(7.10a) and (7.10b) are two linear advection equations with two wave speeds)ghv(,)ghv(

respectively. Any explicit scheme to solve the SWE must take account of the above wave speeds to ensure
stability. Note that these wave speeds vary over both space and time.

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

109

Systems of Equations

7.3.2 Heuristic Time Step Calculation

The following is a treatment of the time step calculation for the SWE based on the previous heuristic
analysis of Appendix C. Suppose that a given explicit scheme to solve the advection equation ut + v ux = 0
is stable when,

)v5/(xt  (7.11)

where v is the wave speed (assume v > 0) and t and x are the time and space steps respectively. By the
previous analysis, the same scheme will be stable when solving the SWE if the maximum wave speed
(chosen over the spatial interval at a given time level) is used in the stability inequality.

i.e.  )ghv(),ghv(max5
xt

i



 (7.12)

Furthermore, because the wave speeds also vary with time, this constraint must be applied at each
time step.

7.4 Example Scheme to Solve the SWE

The SWE (7.1) with S(U)=0 look very similar to the linear advection equation, ut + v ux = 0. We see that
Ut is replaced by ut and Fx is replaced by v ux. The FOU scheme (Chapter 4) to solve the linear advection
equation is,

x
)uu(vtuu

n
1i

n
in

i
1n

i 


  (7.13a)

The FOU scheme can be shown to be stable (for v>0) if,

v/xt  . (7.13b)

We apply the same scheme (in the sense that the time derivative is replaced by the first order forward
difference approximation and the spatial derivative is replaced by the first order backward difference
approximation) to solve the SWE giving,

x
)FF(tUU

n
1i

n
in

i
1n

i 


  (7.14a)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

110

Systems of Equations

By the previous analysis the time step inequality (7.13b) becomes,

 )ghv(),ghv(max
xt

i



 (7.14b)

(7.14b) must be applied at each time step.

The above analysis shows that a program written to solve the linear advection equation may be modified
to solve the SWE by appending an extra row to each array variable matrix. Prior to each time step a
routine to calculate the new time step must be invoked. After each time step h and v are found from U
(h=U1, v= U2/U1) and then U and F are initialized before the next time step.

Figure 7.1 shows the Lax-Friedrichs scheme solution to the SWE for a collapsing water column (not
shown is the graph for the associated water velocity). Initially the water is still and the surface profile is
given in Figure 7.1. The program was run for 6 seconds using 201 grid points over [0, 200] and a time step
safety factor of 0.95. Zero-gradient boundary conditions were used for both water height and velocity.
Note that this problem has discontinuous initial conditions for h that can cause classical schemes problems
(see the oscillations in Figure 7.1). There exist modern schemes to cope with discontinuities but they are
beyond the scope of this text.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

x

g

Figure 7.1 Lax-Friedrichs solution to the Shallow Water Equations for a collapsing water column. Initial
conditions (__), numerical solution (---) at t = 6s.

h

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

111

Systems of Equations

Code to implement the above scheme may be downloaded. A Case Study to illustrate the use of the 1D
SWE is given on the website. This study also gives useful information on how to set up a problem and
assess results.

7.5 Exercise 7

1. Show that J is as given and use the Chain Rule to express (7.1) in the form of (7.3).

2. Find the eigenvalues of J.

3. Given that an explicit scheme to solve the linear advection equation with wave speed v is stable for
)v3/(x2t  state the (heuristic) stability criteria when this scheme is used to solve the SWE.

4. Comment on the sign of the wave speeds for the SWE when the flow is such that v > (gh)1/2.

5. Modify one of your existing codes to solve the linear advection equation using the Lax-Friedrichs
algorithm (use previous initial and boundary conditions). Verify your code.

6. Modify your program in Q5 to solve the SWE using the conditions of Figure 7.1. Reproduce Figure
7.1.

7. Animate the solutions for height and velocity in Q6 for and run until the water passes out of the
domain.

8. Repeat Q7 with solid left and right hand boundary conditions (see Appendix B).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

112

Appendix A: Definition and Properties of Order

Appendix A: Definition and Properties of Order

A.1 Definition of O(hP

n
P)

For our purposes,
f(h) = O(hP

n
P)

(pronounced, ‘f of h is order h to the n’) means,

C
h

)h(flim n0h



, (A.1)

where C is a non-zero constant.

e.g. 500 hP

6
P + 3 hP

4
P - 2 hh P = O(h) because, 2

h
h2h3h500lim

46

0h





e.g. 9hP

4 = O(hP

4
PP) because, 9

h
h9lim 4

4

0h




© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

113

Appendix A: Definition and Properties of Order

A.2 The Meaning of O(hP

n
P)

If f(h) = O(hP

n) then, for small h, equation (A.1) gives,

C
h

)h(f
n  ,

 nhC)h(f  P (A.2)

Equation (A.2) says that for small h, an error which is O(hP

n) is proportional to hP

n. In particular if the error
is O(hP) then it is proportional to h which means that halving h halves the error. If the error is O(hP

2
P) then it

is proportional to hP

2 which means that halving h reduces the error by a factor of 2P

2 = 4.

A.3 Properties of O(hP

n
P)

In the analysis of finite difference schemes we will need to use the following properties of Order notation.
Let f(h) = O(hP

n
P), g(h) = O(hP

m
P) where 0 < m < n. Let K be a non-zero constant. Then,

A.3.1. K f(h) = O(hP

n
P)

A.3.2. f(h) + g(h) = O(hP

m
P)

A.3.3. f(h)/h = O(hP

n-1
P)

A.3.4. f(h)/g(h) = O(hP

n-m
P)

A.3.5. f(h) g(h) = O(hP

n+m
P)

Proof of A.3.3

By definition of Order we have to show that,

1n0h h
h/)h(flim 

 is a non-zero constant.

Since f(h) = O(hn),

C
h

)h(flim n0h



, where C is a non-zero constant.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

114

Appendix A: Definition and Properties of Order

C
h

)h(flim
h

h/)h(flim n0h1n0h






End of proof of A.3.3

A.4 Explanation of the Properties of O(hP

n
P)

A.3.1 says that scaling a function by a constant doesn’t change its order. In particular f(h) and –f(h) have
the same order.

A.3.2 says that the order of the sum of two functions of different orders is the smaller of the orders of the
two functions. e.g.

O(hP

2
P) + O(hP

3
P) = O(hP

2
P).

A.3.3 says that dividing a function by h reduces its order by 1. A.3.3 is a special case of A.3.4 that says
that dividing a function by a function of order m reduces its order by m. e.g. O(hP

6
P)/ hP

2
P = O(hP

4
P).

A.3.5 says that the order of the product of two functions is the sum of their orders. e.g.

O(hP

3
P) O(hP

2
P) P= O(hP

5
P).

A.5 Exercise A

1. Find the order of the following functions:

2. a) 2x + 5 xP

3
P – 3 xP

5
P b) 4 xP

2
P – 17 xP

4
P + 3 xP

8
P c) sin(x) d) x

3. Prove A.3.1) – A.3.5)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

115

Appendix B: Boundary Conditions

Appendix B: Boundary Conditions

B.1 Introduction

When solving a PDE using a finite difference (FD) scheme we may need to specify ghost grid points and
associated ghost values for the dependent variable at these points.

e.g. in the FOU scheme to solve the 1D linear advection equation (Chapter 4) we need a ghost point to the
left of the first grid point. This is illustrated in the following diagram:

Figure B.1 Ghost (white) and grid (black) points for the FOU scheme

Notes:

1. In general for a 1D region on which grid points are indexed by i = 1, 2, … , N, we will index a left
ghost point by i = 0 and a right ghost point by i = N + 1.

2. In many computer languages (e.g. Scilab and Matlab) array indices start at 1 so we must shift indices
when using them to code up a FD scheme with a left ghost point. For example to code the FOU
scheme we shift grid indices so that the left hand ghost point index is 1 and so indices 2 to N+1
represent the N computational grid points. If a scheme (e.g. Lax-Friedrichs) requires both left and
right ghost points then the left ghost point has index 1 and the right ghost point has index N+2.

x

i i ii
i

x

ghost point

x

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

116

Appendix B: Boundary Conditions

B.2 Boundary Conditions

In a computational region (which may be 1, 2 or 3D) ghost points and associated values occur at or
adjacent to the boundaries of the region. Conditions leading to the prescription of ghost values are called
boundary conditions. Boundary conditions are derived from the underlying physics of the situation. The
correct treatment of boundary conditions is vital for accurate problem simulation. This is illustrated by
considering the grid for a 2D region shown in Figure B.2. Grid points are indexed by i = 1, 2, … , N in the
x direction and by j = 1, 2, … , M in the y direction. Indices 0, N+1 and M+1 indicate ghost points. To see
the effect of different boundary conditions we consider the region to represent two different problems
(modelled by the same PDEs who solution is approximated by a FD scheme requiring the ghost points
shown).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

117

Appendix B: Boundary Conditions

B.2.1 Scenario 1

Consider the region in Figure B.2 to represent a channel of water viewed from above and flowing from
left to right. The rows having indices j = 1 and j = M correspond to the right and left sides of the channel
respectively. If water cannot flow through or over the sides of the channel we must impose solid boundary
conditions at each side by specifying the values of water depth and velocity at these locations in a special
way. The columns with indices i = 1 and i =N are at inflow and outflow boundaries respectively and
require water depths and velocities to be specified according to flow type.

B.2.2 Scenario 2

Consider the region in Figure B.2 to be a near-shore area of ocean as viewed from above with waves
travelling from left to right and impacting on a solid harbour wall that cannot be overtopped. The harbour
wall, being solid, requires a solid boundary condition be imposed on the column with i = N. The column
with i = 1 requires a time dependent boundary condition (for water depth and velocity) to generate the
incoming waves. The rows with j = 1 and j = M are edges of the finite computational domain and require
transmissive boundary conditions to be imposed there so that waves can pass in and out of the
computational domain.

Figure B.2 Ghost (white) and grid (black) points for a 2D region

( ( (
(0,

(
i

j
(

(

(0,

(0,

(0,

(0,

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

118

Appendix B: Boundary Conditions

From the two previous scenarios it is clear that changing the boundary conditions changes the problem.

B.3 Specifying Ghost and Boundary Values

There are two basic ways to specify values of the dependent variable at ghost points. For clarity we will
assume that the ghost point is at index i = 0 in a 1D domain and hence i = 1 is the index of the grid point
on left hand boundary.

B.3.1 Dirichlet Boundary Conditions

In Dirichlet boundary conditions the value, n
0u , of the dependent variable at a ghost point is specified in

some way. Examples include:

a) ttanconsun
0 . e.g. n

0u = 0 in the FOU scheme for the 1D linear advection equation (this condition

indicates that there is no more pollutant entering the river, see Chapter 4).

b))n(fun
0 , which is a time dependent boundary condition (e.g. a tidal boundary as in the previous

harbour example).

c) n
N

n
0 uu  . This is a periodic boundary condition. This means that what passes out of the right

boundary will pass in from the left boundary as though the two boundaries were joined together.

B.3.2 Derivative (von Neumann) Boundary Conditions

As the name suggests derivative boundary conditions specify the rate of change of the dependent variable
at the grid point adjacent to the ghost point (i.e. at i = 1 in our case). This can be done in two ways:

B.3.2.1)U(fUx .

Here the derivative of U in the x direction is specified at the boundary grid point i = 1. From this

information n
0u can be calculated. One way is to estimate xU at i = 1 by a central difference giving,

x2
uu)U(fU

n
0

n
2

x 


 (B.1a)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

119

Appendix B: Boundary Conditions

which rearranges to give,

)U(fx2uu n
2

n
0  (B.1b)

B.3.2.2)U(fUn .

Here the derivative of U in the direction of n, the outward pointing normal to the boundary is given at the
grid point adjacent to the ghost point. Note that this direction is opposite to the x direction at the left hand

boundary (i = 1). From this information n
0u can be calculated. As before we will use the left hand

boundary and estimate nU at i = 1 by a central difference giving,

x2
uu)U(fU

n
2

n
0

n 


 (B.2a)

which rearranges to give,

)U(fx2uu n
2

n
0  (B.2b)

Notes:

1. (B.1b) and (B.2b) are different because the directions of the given derivatives are opposite (the
formulae would be the same at the right hand boundary). It is more usual to use (B.2b) then (B.1b).

2. In the derivative boundary condition examples central differences were used but other estimates
could easily have been used (e.g. first order backward difference for the left hand ghost value).

3. The formal accuracy of a scheme may be reduced if ghost values are calculated on the basis of a
method whose accuracy is less than the spatial accuracy of the scheme. e.g. a spatially third order
scheme may drop to second order if a central difference (second order) is used to calculate a ghost
value.

4. In many numerical simulations both Dirichlet and von Neumann boundary conditions are used. These
are called mixed boundary conditions.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

120

Appendix B: Boundary Conditions

B.4 Common Boundary Conditions

We give some boundary conditions that are used frequently in problems.

B.4.1 Transmissive Boundary Conditions

Computational domains are finite and it may be that we need quantities simply to pass out of a boundary
when they reach one that is not solid. This is often done by specifying a zero gradient normal to the
boundary in the variable of interest on the boundary i.e. we use a derivative boundary condition in which
the derivative is zero. As an example consider Figure B.2 with Scenario 2 in which water height h is a
dependent variable and the solver requires a ghost value at i = 3, j = 0. Grid point i = 3, j = 1 is on a
transmissive boundary so we want waves to pass through. To impose the transmissive boundary condition
on water height, h, we set hy=0 at grid point i = 3, j = 1. Using a first order backward difference
approximation,

y
hh

0h
n

0,3
n

1,3
x 


 (B.3a)

n
1,3

n
0,3 hh  (B.3b)

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

121

Appendix B: Boundary Conditions

B.4.2 Solid (reflective) Boundary Conditions

There is no flow through a solid boundary. This implies that the normal component of flow velocity at a
solid boundary is zero. This condition is implemented by copying the normal component of velocity at the
neighbouring interior grid point to the ghost cell and changing its sign. As an example consider Figure B.2
with Scenario 1. Grid point i=3, j=1 is on a solid boundary and we wish to find the velocity at the ghost
point i=3, j=0. Suppose the velocity at neighbouring interior grid point i=3, j=2 has x and y components vx

and vy respectively. The component of velocity normal to the solid boundary is vy so the velocity at the
ghost point i=3, j=0 has x and y components vx and -vy respectively. Another way of obtaining this result
is to linearly extrapolate using the normal velocities at i=3, j=2 (i.e. vy) and i=3, j=1 (i.e. 0). Variables
other than velocity at ghost points next to solid boundaries are usually found by a zero gradient approach.

B.4.3 Slip and No-Slip Boundary Conditions

At a solid boundary we have a choice of tangential velocity component. If there is appreciable friction at
the boundary then it is said to be a no-slip boundary and the tangential velocity component is zero (along
with the normal component). If friction is not present then the boundary is said to be a slip boundary and
the tangential component of velocity may be extrapolated from interior tangential components.

B.5 Exercise B

1. A 1D PDE is to be solved numerically. The computational domain consists of N grid points
numbered 1, 2, … , N. In each case give the indices of the ghost grid points for the following FD
schemes (which can be found in Chapter 4),

a. FTCS scheme, b) Crank-Nicolson, c) Lax-Wendroff, d) Lax-Friedrichs.

2. Run the FOU scheme for the 1D linear advection equation (Chapter 4) using a periodic boundary
condition and describe how the solution evolves in time. (Remember indices start at 1 in Scilab or
Matlab).

3. The computational domain [0, 100] is discretised using 101 points. Initial values are given by
U(0, x) = sin(x). The FOU scheme is used. Calculate the ghost point and the initial associated u value
given the following boundary conditions,

a) Periodic, b) Dirichlet: 1.0u,1.0u n
1N

n
0   c) Derivative: 0Ux ,

d) Derivative: 1.0Un . e) Derivative: UUx .

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

122

Appendix B: Boundary Conditions

4. Repeat Q3 for the Lax-Friedrichs scheme.

5. In Scenario 1 the flow velocity vector at grid point i=2, j=M-1 is (vx, vy) = (4, 8).

a) Calculate the flow velocity vector at ghost point i=2, j=M+1.

b) Assuming a no-slip boundary find the flow velocity vector at grid point i=2, j=M.

c) Repeat b) assuming a slip boundary.

6. In Scenario 2 the water height at grid point i=3, j=1 is 8. Find the water height at ghost point i=3, j=0.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

123

Appendix C: Consistency, Convergence and Stability

Appendix C: Consistency, Convergence and Stability

C.1 Introduction

Consistency, convergence and stability are important concepts but much of the theory has only been
developed for special cases so a combination of theory and numerical experimentation is often the only
way to proceed (e.g. to find the maximum stable time step). For clarity we restrict our attention to a single
PDE where there are two independent variables, t and x. The dependent variable is U = U(t, x). In operator
notation the PDE is written,

L U = 0 (C.1)

L is a differential operator and U is the analytical (i.e. exact) solution of (C.1).

In order to approximate the solution of (C.1) the computational region is discretised into a finite set of grid
points, xi, where x is the (constant) grid spacing. The approximate solution is found at a set of time levels,
tn where t is the (variable) spacing between time levels. The analytical (i.e. exact) solution to (C.1) at
(tn, xi) namely U(tn, xi), is denoted by Ui

n. In operator notation the Finite Difference (FD) scheme to
approximate the solution of (C.1) is written,

0uD n
ix,t  (C.2)

D is a difference operator and ui
n is the solution to the FD scheme at (tn, xi).

Notes:

1. The idea of the FD scheme (C.2) is that ui
n approximates Ui

n and the approximation becomes better
and better as x and t become smaller. Let,

ei
n = ui

n - Ui
n (C.3)

ei
n is called the pointwise error (also called the ‘global error’).

2. Initially (i.e. time level 0) U is known at all grid points and ui
0 is taken to be Ui

0 so ei
0 = 0 at all grid

points. As iterations of the FD scheme introduce errors, in general 0en
i  . It may be that as iterations

continue errors are compounded and ei
n grows unboundedly making the FD scheme useless.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

124

Appendix C: Consistency, Convergence and Stability

The following concepts look at properties of the FD scheme with respect to errors.

C.2 Convergence

The FD scheme (C.2) for the PDE (C.1) is said to be convergent at (t, x) if the pointwise error at (t, x)
tends to zero as x and t tend to zero, i.e.

.0x,twhen)x,t()x,t(as0e i
nn

i  (C.4)

To be useful our FD scheme must be convergent but this is very difficult to prove for many schemes.
Convergence implies that a solution of the FD scheme approximates a solution of the PDE.

C.3 Consistency and Scheme Order

A measure of how well the exact solution of the PDE satisfies the FD scheme is given by the
truncation error,

n
ix,t UD  (C.5)

The FD scheme (C.2) is consistent with the PDE (C.1) if the truncation error tends to zero as x and t
tend to zero, i.e.

).x,t(at0x,tas0UD i
nn

ix,t  (C.6)

Consistency is necessary for convergence.

The order of the truncation error is obtained by Taylor expansion of its terms about (tn, xi). In many cases
the order of the truncation error is the same as the order of the pointwise error so that the truncation error
is a good (and accessible) guide to the accuracy of a FD scheme. We define the formal order of accuracy
of a FD scheme by the order of its truncation error.

C.3.1 Example Calculation of Consistency and Scheme Order

The 1D linear advection equation is,

0UvU xt  (C.7)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

125

Appendix C: Consistency, Convergence and Stability

The FTCS scheme to solve (C.7) is given in Chapter 4. Writing this scheme in the form of (C.2) gives,

0
x2
uuv

t
uu n

1i
n

1i
n
i

1n
i 






 



 (C.8)

To determine scheme consistency and order we replace u in (C.8) by the exact solution, U, of (C.7) to give
the truncation error,

0
x2
UUv

t
UU n

1i
n

1i
n
i

1n
i 






 



 (C.9)

Terms in (C.9) are replaced by their Taylor expansion about the ith spatial point and the nth time level to give,

))x(OU
2
xUxU

)x(OU
2
xUxU(

x2
v

t
U)t(OUtU

3
xx

2

x
n
i

3
xx

2

x
n
i

n
i

2
t

n
i

































 (C.10)

Simplifying (C.10) (using properties of O notation) gives,

Ut + v Ux + O(Dt) + O(Dx2) (C.11)

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

126

Appendix C: Consistency, Convergence and Stability

and using (C.7) the truncation error is finally,

)x(O)t(O 2 (C.12)

Clearly the truncation error (C.12) tends to zero as 0x,t  which demonstrates that the FTCS scheme
(C.8) is consistent with the original PDE (C.7). Furthermore the truncation error is first order in time and
second order in space so the FTCS scheme is said to be (formally) first order in time and second order in
space.

Notes:

1. In the Taylor expansions we expanded to second order for t and to third order for x. It doesn’t matter
if we expand too far as additive order expressions collapse to the term of lowest order.

2. Consistency does not imply that a FD scheme is any good! In fact the FTCS doesn’t work for reasons
we now explore.

C.4 Stability

We have seen from numerical results in Chapter 4 that care must be used when choosing the time step, t.
A scheme that produces acceptable results for small t can give results that grow unboundedly as
iterations continue if too large a t is chosen. In this case the scheme is said to have become unstable. A
FD scheme is stable if and only if pointwise errors do not grow unboundedly with time which will be the
case if, after some time level, N,

.Nn,ee n1n  (C.13a)

Another way of defining stability comes from the following argument. Rewriting (C.3) gives,

ui
n = Ui

n + ei
n (C.13b)

For stability ei
n must not grow unboundedly and since Ui

n is finite, (C.13b) implies that ui
n must also not

grow unboundedly which is true if,

.Nn,uu n1n  (C.13c)

The Lax Equivalence Theorem says that for a linear PDE, a consistent FD scheme to approximate its
solution is convergent if and only if it is stable.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

127

Appendix C: Consistency, Convergence and Stability

C.4.1 Heuristic Stability Analysis

The following reasoning gives a guide to choosing a stable time step and may be applied to PDEs where
there is a speed of propagation. We apply our reasoning to the simple 1D linear advection equation of
Chapter 4 (we will see in Chapter 7 that this reasoning extends to more complicated PDEs). Reasoning
goes as follows: during time step, t, the concentration profile travels a distance |v|t downstream. To
capture the solution numerically it seems reasonable not to let the concentration profile move more than
one grid interval, x, in a single time step, t. This means that, xt|v|  ,

|v|
xt 

 (C.14a)

Inequality (C.14a) gives a heuristic guide to the maximum allowable time step (for the linear advection
equation). It is often a good idea to multiply this maximum value by a ‘safety factor’ F where, F < 1.
Numerical experiments can then be used to determine F. It is customary to let,

x
tvc




 (C.14b)

c is called the Courant number. As we will see, schemes are often stable for c less than or equal to some
number. (C.14a) implies that,

1|c|  (C.14c)

This is called the CFL condition (after Courant, Friedrichs and Lewy).

C.4.2 Matrix Stability Analysis

This is a more mathematical approach to stability analysis but it only applies to linear FD schemes. By
writing out a linear FD scheme at each grid point and expressing the resulting set of linear equations as a
single matrix equation, a linear FD scheme with 2 times levels can be written as,

n1n uBuA  (C.15)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

128

Appendix C: Consistency, Convergence and Stability

where,  Tn
N

n
2

n
1

n u...,,u,uu  and A and B are NxN matrices (A = I for an explicit scheme). If the FD

scheme is consistent it is satisfied by the exact solution of the PDE (neglecting the vanishing truncation
error) and so,

n
i

1n
i UBUA  (C.16)

Subtracting (C.16) from (C.15) and using (C.3) gives,

n1n eBeA  (C.17a)

n11n eBAe   (C.17b)

n11n eBAe   (C.17c)

n11n eBAe   (C.17d)

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

129

Appendix C: Consistency, Convergence and Stability

Hence by (C.13a) the FD scheme (C.15) is stable if,

1BA 1  (C.18)

The matrix norm in (C.18) is induced by the vector norm in (C.13a). Hence the stability of a (linear) FD
scheme can be investigated by finding the norm of the matrix A-1B. This is the matrix method for stability
and may be quite difficult to implement. It should be noted that there are many definitions of norms and a
FD scheme may be stable in one norm but not in another.

C.4.2.1 Example of Matrix Stability Analysis

From Chapter 4 the FOU scheme to solve the 1D linear advection equation (C.7) can be written,

n
i

n
1i

1n
i u)c1(ucu  
 (C.19)

Where c is defined in (C.14b). We use matrix stability analysis to find the maximum time step for scheme

stability. Writing (C.19) out for each grid point, assuming 0un
0  at all time levels and expressing the

resulting linear equations in the form of (C.15) gives,

n1n u

)c1(c...0

0...0)c1(c0
...0)c1(c

0...00)c1(

u


































 (C.20)

(C.19) is stable if the norm of the above matrix is less than or equal to 1. If we use the infinity norm for
vectors (which is the maximum absolute value of components) the induced matrix norm is the maximum
of the sum of all absolute values in each row. For our matrix this is |c| + |1-c|. For 1c0  (which implies

that v>0), |c| + |1-c| = c + (1-c) = 1. Hence the FOU scheme is stable for 1c0  and hence the maximum

allowable time step for stability is
v
x

 which agrees with the previous heuristically derived result. The

FOU scheme is said to be conditionally stable.

C.4.3 Von Neumann Stability Analysis

This analysis of stability is due to von Neumann and is based on (C.13c). We assume that the FD scheme
is linear and that boundary conditions are periodic. Using the complex version of Fourier’s Theorem and
rescaling so that u has period 2, we may write,

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

130

Appendix C: Consistency, Convergence and Stability







k

xkjn
k

n
i

iegu (C.21)

where,

1j  , and n
kg is the amplitude of the kth Fourier component.

By linearity it is enough to examine the behaviour of a single Fourier component so we replace
ixkjn

k
n
i egbyu in (C.13c) and rearrange to get,

1
g

gG n
k

1n
k 


 (C.22)

This is the von Neumann condition for stability. G is called the amplification factor. Von Neumann
stability is carried out by the following steps:

Step 1. Replace each instance of n
iu in the FD scheme by its corresponding single Fourier component.

Step 2. Rearrange to get G.

Step 3. Use the constraint (C.22) to obtain the condition for t (this step could be algebraically tricky). If
(C.22) can never be satisfied for t > 0 the scheme is unconditionally unstable.

C.4.3.1 Von Neumann Stability Analysis: Example 1

The FTCS scheme for the 1D linear advection equation is,

 n
1i

n
1i

n
i

1n
i uu

x2
tvuu 

 



 , (C.23a)

which can be written compactly as,

 n
1i

n
1i

n
i

1n
i uu

2
cuu 

  , (C.23b)

where c is the usual Courant number defined by (C.14b).

Step 1: The FD scheme is linear and we assume periodic boundary conditions. Replacing each term in
(C.23b) by its kth Fourier component gives,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

131

Appendix C: Consistency, Convergence and Stability

 1i1iii jkxn
k

jkxn
k

jkxn
k

jkx1n
k egeg

2
cegeg   (C.24)

Step 2: Noting that xi+1 = xi + x, xi-1 = xi - x , gives,

 )xx(jkn
k

)xx(jkn
k

jkxn
k

jkx1n
k

iiii egeg
2
cegeg   (C.25)

Dividing through by ijkxn
keg gives,

 xjkxjk
n
k

1n
k ee

2
c1

g
g 



 (C.26)

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

132

Appendix C: Consistency, Convergence and Stability

Step 3: From (C.22) for stability we must have,

  1ee
2
c1G xjkxjk   (C.27)

Using the well known identity, 






 




j2
ee)sin(

jj

(C.27) gives,

1x)sin(kCj1  (C.28)

Squaring each side and evaluating the squared modulus gives,

1x)(ksinc1 22  (C.29)

This inequality can only be satisfied (for all k) if c = 0 which implies that t = 0. i.e. there is no feasible
value for the time step that makes the scheme stable. i.e. the FTCS scheme for the 1D linear advection
equation is unconditionally unstable. The FTCS scheme is therefore useless even though we have shown
that it is consistent!

C.4.3.2 Von Neumann Stability Analysis: Example 2

We apply von Neumann stability analysis to the FOU scheme (C.19).

Step 1: Replacing each term in (C.19) by its kth Fourier component gives,

1iii jkxn
k

jkxn
k

jkx1n
k egcegc)(1eg  (C.30)

Noting that xi-1 = xi - x, gives,

)xjk(xn
k

jkxn
k

jkx1n
k

iii egcegc)(1eg   (C.31)

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

133

Appendix C: Consistency, Convergence and Stability

Step 2: Dividing through by ijkxn
k eg gives,

xjk-
n
k

1n
k ecc)(1

g
g 



 (C.32)

Step 3: For stability we must have,

1ecc)(1G x-jk   (C.33)

The well-known triangle inequality states that, |b||a||ba|  ,
hence,

cc)(1ecc)(1ecc)(1 x-jkx-jk   (C.34)

When c|c|andc1|c1|,1c0  , therefore (C.34) gives,

1cc)1(cc)(1ecc)(1 x-jk   (C.35)

Hence the FOU scheme for the 1D linear advection equation is stable when 1c0  which means that

v
xt 

 . The FOU scheme is said to be conditionally stable.

Notes:

1. Stability analysis hasn’t been worked out for most non-linear schemes (PDEs).

2. Strictly speaking, the von Neumann stability analysis requires periodic boundary conditions but
seems to work even when this is not the case.

C.5 Exercise C

1. Show that the FOU scheme for the 1D linear advection equation is consistent and find its formal
order.

2. Repeat Q1 for a) Lax-Friedrichs b) Lax-Wendroff c) Crank-Nicolson

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

134

Appendix C: Consistency, Convergence and Stability

3. Show that the 5-point scheme of Chapter 3 for the 2D Laplace’s Equation is consistent and find its
formal order.

4. Using heuristic analysis, estimate the maximum allowable time step for an explicit scheme to solve
the 1D linear advection equation for pollution in a river 0.5 km long flowing at 4m/s using 200 grid
points.

5. Use von Neumann stability analysis to show that the FD scheme to solve the linear advection
equation for v > 0 using first order forward differences in both space and time is unconditionally
unstable.

6. Use von Neumann stability analysis to show that the Crank-Nicolson scheme to solve the 1D linear
advection equation is unconditionally stable.

7. Use von Neumann stability analysis to investigate the stability of the Lax-Friedrichs scheme to solve
the 1D linear advection equation.

8. Repeat Q7 for the Leap-Frog scheme.

9. Repeat Q5-Q7 using matrix stability analysis.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

135

Appendix D: Convergence Analysis for Iterative Methods

Appendix D: Convergence Analysis for Iterative
Methods

D.1 Introduction

Iterative schemes for matrix inversion do not necessarily converge so we need to determine conditions for
convergence. We would also like to know how fast they converge. In the following we assume that the
reader is familiar with some standard results from Linear Algebra. We are trying to solve the system of
linear equations (refer back to Equations (3.6), (3.9)),

A u = b (D.1)

where A is an NxN matrix, u is a column vector of N unknowns and b is a column vector of N known
constants. It is always possible to scale each equation so that every entry on the main diagonal of A is 1. A
can then be written as,

A = - L + I – U (D.2)

where I is the NxN identity matrix and L and U are NxN lower and upper triangular matrices respectively.
Substituting (D.2) into (D.1) and rearranging gives,

u = (L + U) u + b (D.3)

Equation (D.3) is the basis for the following analysis.

Notes:

1. Research into computationally efficient ways to invert a matrix continues. Computational efficiency
is not simply a matter of reducing the number of calculations for a particular class of problem; it also
depends on computer architecture. It may be that some less sophisticated method is faster than a more
modern method when run on a parallel computer.

2. There are many efficient freely downloadable matrix inversion programs so it is almost never worth
writing your own.

3. There is probably no best solution to computational efficiency. Where speed is an issue it will pay to
experiment with several methods and tune them (if necessary) by numerical experiments on small
problems.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

136

Appendix D: Convergence Analysis for Iterative Methods

D.2 Jacobi Iteration

Equation (D.3) suggests the iterative scheme,

um+1 = (L + U) um + b (D.4)

which is the Jacobi iteration scheme in matrix form. (L + U) is called the iteration matrix. In order to
analyse convergence of the Jacobi iteration scheme we need to look at how the error behaves between
iterations. Clearly we want the error to decrease to zero as iterations continue. The exact solution to (D.1)
is u. Let the error after the mth iteration be em, so,

em = um – u (D.5)

Note that em is a vector in RN whose components are the errors at each grid point after the mth iteration.
Subtracting (D.3) from (D.4) gives,

um+1 - u = (L + U) um + b - (L + U) u – b (D.6)

em+1 = (L + U) em (D.7)

writing e0 for the initial error in the initial (guessed) values for u0, after 1 iteration (D.7) gives,

e1 = (L + U) e0 .

A second iteration gives,
e2 = (L + U) e1

 = (L + U)2 e0 .

So after n iterations we have

 en = (L + U)n e0 (D.8)

For convergence of the iterative scheme all components of en must approach zero in the limit,

i.e. 0elim n

n




 0e)UL(lim 0n

n




http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

137

Appendix D: Convergence Analysis for Iterative Methods

Since e0 is a non-zero constant vector we must focus our attention on the behaviour of (L + U)n. We
assume that (L + U) has n linearly independent eigenvectors, v1, v2, … , vN with corresponding
eigenvalues, 1, 2, … , N. By a standard result from Linear Algebra (L + U)n has the same eigenvectors
with corresponding eigenvalues, 1

n, 2
n, … , N

n. The set of eigenvectors form a basis for RN so for some
constants ai we may write,

 e0 = a1 v1 + a2 v2 + … + aN vN.

  (L + U)n e0 = (L + U)n (a1 v1 + a2 v2 + … + aN vN)

= (L + U)n a1 v1 + (L + U)n a2 v2 + … + (L + U)n aN vN

 = a1 (L + U)n v1 + a2 (L + U)n v2 + … + aN (L + U)n vN

 = a1 1
n v1 + a2 2

n v2 + ... + aN N
n vN

which will clearly tend to the zero vector if and only if,

|i| < 1, for i = 1, 2, …, N.

Definition: The dominant eigenvalue of a matrix is the eigenvalue with the largest modulus.

Hence we can say that the Jacobi iterative scheme converges if and only if the dominant eigenvalue of its
iteration matrix has modulus less than 1. We denote the dominant eigenvalue of the Jacobi iteration matrix
by .

D.3 Gauss-Seidel Iteration

Using the previous notation it can be shown that the Gauss-Seidel iterative method can be expressed as,

um+1 = U um + L um+1 + b (D.9)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

138

Appendix D: Convergence Analysis for Iterative Methods

and a similar analysis to the Jacobi iterative scheme shows that,

 em+1 = U em + L em+1 (D.10a)

 em+1 = (I – L)-1 U em (D.10b)

  em+1 = ((I – L)-1 U)m e0 (D.10c)

(I – L)-1 U is called the Gauss-Seidel iteration matrix. By an exactly similar analysis to that for Jacobi
iteration, the Gauss-Seidel scheme converges if and only if the dominant eigenvalue of its iteration matrix
has modulus less than 1. It can be shown that the dominant eigenvalue = 2.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

139

Appendix D: Convergence Analysis for Iterative Methods

D.4 SoR Iterative Scheme

A similar analysis to the above shows that the SoR iteration matrix is,

(I – w U)-1 ((1 – w) I + w L) (D.11a)

It can be shown that its dominant eigenvalue, is,

1
11
2

2



 (D.11b)

As before the scheme converges if and only if this has modulus less than 1.

D.4.1 A Special Case for SoR

For a rectangular px by qy computational region the optimal value of the SoR relaxation parameter can
be shown to be,




11
2wo (D.12a)

where the dominant eigenvalue, , of the corresponding Gauss-Seidel scheme is,

4

)
q

cos()
p

cos(
2








 




 (D.12b)

D.5 Theory for Dominant Eigenvalues

Convergence of iterative schemes depends on the dominant eigenvalue of the associated iteration matrix
having a modulus less than 1. In general it is difficult and/or computationally expensive to find
eigenvalues. The following theorem is a quick way to find an upper bound for the modulus of the
dominant eigenvalue of a matrix.

D.5.1 Gershgorin’s Theorem

The modulus of the dominant eigenvalue of a matrix is less than or equal to the sum of the modulii of the
entries in any row or column.

e.g. Let





















3.01.04.0
3.02.02.0
1.01.03.0

A

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

140

Appendix D: Convergence Analysis for Iterative Methods

The sums of the modulii are:

Row 1: |0.3|+|-0.1|+|0.1| = 0.5, Row 2: |0.2|+|0.2|+|0.3| = 0.7

Row 3: |0.4|+|0.1| |-0.3| = 0.8, Col 1: |0.3|+|0.2|+|0.4| = 0.9

Col 2: |-0.1|+|0.2|+|0.1| = 0.4, Col 3: |0.1|+|0.3|+|-0.3| = 0.7

Hence the dominant eigenvalue of A is less than or equal to 0.9. If A were an iteration matrix then the
iteration scheme would converge. If the maximum value of the sum of the modulii of the row or column
elements is greater than 1 then the theorem is no use for determining whether the scheme converges. In
this case we need a way of estimating the dominant eigenvalue.

D.5.2 Power Method for Estimating Dominant Eigenvalues

This is an efficient way of estimating the dominant eigenvalue (and associated eigenvector) of a matrix A.
Start with an arbitrary non-zero vector v0 and define the iterative scheme,

vi+1 = A vi (D.13)

It can be shown that as the iteration index i tends to infinity, vi+1 tends to  vi where  is the dominant
eigenvalue of A with associated eigenvector vi and where after each iteration the resulting vector, vi+1, is
scaled by a constant ki (which is the reciprocal of its first entry) so that its first component becomes 1. The
distance between the scaled versions of vi+1 and vi is found and the iteration stops when this distance is
less than some predefined tolerance. The resulting estimate for the dominant eigenvalue of A is ki.

D.5.2.1 Example Power Method Calculation

e.g. 









21
12

A . We use the power method with a tolerance of tol = 0.01 to find the dominant eigenvalue

of A.

http://bookboon.com/

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

141

Appendix D: Convergence Analysis for Iterative Methods

Let, 









0
1

v0 . Using the iteration scheme (D.13),

.
5.0

1
2

1
2

0
1

21
12

v1





































.
5.0

1
vscaledand2kso 1

1 









 |vv| 01 = 0.5 > tol, so the iterations continue,

,
8.0

1
5.2

2
5.2

5.0
1

21
12

v 2















































8.0
1

vscaledand5.2kso 2
2

Comparing the scaled vectors gives,

 |vv| 12 = 0.3 > tol so the iterations continue and after 6 iterations we have,

,
9973.0

1
9918.2v6





















9973.0
1

vscaledand9918.2kso 6
6

Comparing scaled vectors gives,  |vv| 56 = 0.0055 < tol, so the iterations stop. An estimate for the
dominant eigenvalue of A is k6 = 2.9918 (with v6 being the corresponding estimated eigenvalue). The
exact answer is 3. Computer code for this method can be downloaded from the website.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

142

Appendix D: Convergence Analysis for Iterative Methods

D.6 Rates of Convergence of Iterative Schemes

The Rate of Convergence (RoC) of an iterative scheme is a measure of the number of iterations needed to
converge to some given tolerance. It turns out that the RoC of an iterative scheme can be defined as,

– loge  (D.14)

where  is the dominant eigenvalue of its iteration matrix.

The relative RoC of two schemes with dominant eigenvaluesand  is,

2e

1e

log
log




 (D.15)

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Introductory Finite Difference Methods for PDEs

143

Appendix D: Convergence Analysis for Iterative Methods

We can now compare (convergent) iterative schemes.

e.g. Given that the point-Jacobi scheme is convergent with dominant eigenvalue  we know that the point-
Gauss-Seidel scheme has dominant eigenvalue 2 and so is also convergent. By (D.15) the relative RoC of
the Gauss-Seidel scheme to the Jacobi scheme is,

2
log
log

e

2
e 



i.e. the number of iterations to achieve the same level of accuracy using the Gauss-Seidel scheme is
approximately half that of the Jacobi scheme.

The relative RoC isn’t the whole story when comparing iterative schemes. It could be that an iterative
scheme needs many iterations to converge but that each iteration is computationally fast. This could make
it a faster than a quick converging but computationally slow scheme.

D.7 Exercise D

1. 1.






















5.05.01.0
5.01.03.0
1.03.02.0

A . Use Gershgorin’s theorem to provide an upper bound for the dominant

eigenvalue of A. If A was an iteration matrix would the iteration converge?

2. Find the exact dominant eigenvalue for








21
12 and compare with the results from the power method

code which you should run with a tolerance of 0.001.

3. Adapt the power method code to estimate the dominant eigenvalue for the matrix in Q1. Check your
answer by using Scilab’s (or Matlab’s) built-in function for finding eigenvalues.

4. Given that the Jacobi iterative scheme converges show that the Gauss-Seidel scheme also converges.
Show that the SoR scheme also converges.

5. Find the RoC for an iterative scheme with dominant eigenvalue 0.3.

6. Repeat Q5 for a dominant eigenvalue of 0.6.

http://bookboon.com/

Click on the ad to read more

Introductory Finite Difference Methods for PDEs

144

Appendix D: Convergence Analysis for Iterative Methods

7. Given that a Gauss-Seidel iterative scheme has dominant eigenvalue 0.5 find the relative RoC of SoR
to Gauss-Seidel.

8. Iterative scheme 1 has dominant eigenvalue 0.3 and iterative scheme 2 has dominant eigenvalue 0.6.
Which scheme converges fastest? If scheme 1 takes 20 iterations to converge approximately in how
many iterations does scheme 2 to converge (with the same tolerance)?

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

