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Introduction

1	 Introduction
In this book, we will examine the transport of momentum, heat, and mass through a system. 
Thermodynamics deals with systems at equilibrium and transitions between equilibrium states. It can 
tell us things like the properties of various states or the criteria for equilibrium. For example using 
thermodynamics, we can prove that, for all positions r and r′  in a system, equilibrium is given by  
(N.B.: The following equations neglect the presence of gravity)

p(r) = p(r′)

T (r) = T (r′)

µα(r) = µα(r
′)

where p(r) is the pressure, T(r) is the temperature, and µα(r) is the chemical potential of species α at 
position r. Mathematically, this tells us that the pressure, temperature, and chemical potentials are 
uniform in a system at equilibrium. If there is a gradient in any of these quantities, then the system is 
out of equilibrium. As a consequence, momentum, energy, and mass will flow through the system to 
try to bring it to equilibrium.

Despite its usefulness, thermodynamics tells us nothing about the rate of changes between states or the 
rate of approach to equilibrium. It does not even apply to steady state processes, where the properties of 
the system are independent of time, but it is still not in equilibrium. Most processes that are of practical 
interest are not in equilibrium and never truly achieve equilibrium. In order to describe these systems, 
we need to study fluid mechanics, heat transfer, and mass transport, which are also known collectively 
as non-equilibrium thermodynamics or transport phenomena.

1.1	 Balance equations

In order to quantitatively handle transport phenomena, we must first develop a mathematical description 
for the motion of momentum, energy, and mass through a system. The first equation we will develop is 
the balance equation. We will begin by examining the balance equation for a general quantity B. This 
quantity can be anything at all. For example, B can be energy, the momentum in the x-direction, apples, 
people, oxygen molecules, etc. The balance equation for B can be written as

accumulation of B = (influx of B) − (outflux of B) + (generation of B)� (1.1)

Equation (1.1) is applicable to any system; however, it is not always convenient to use, especially in cases 
where we are interested in the variation of a property across a system. In order to study these situations, 
we need to develop differential equations.
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1.1.1	 Flux

Before we can develop a differential equation to describe the balance of B, we need to introduce the 
concept of flux. The flux of a general property B, denoted by JB, describes the flow of B through a 
system. The flux is a vector quantity which can vary with position and time. The units of JB are equal 
to the units of B per unit time per unit area.

To demonstrate the physical meaning of JB, let’s place a small plane at a position r in the system. The 
area of the plane is small enough such that the flux of B can be considered constant across the surface 
of the plane. The orientation of the plane is given by the unit vector n̂, which is normal to the surface 
of the plane. The rate of B that crosses the plane is given by

rate of B crossing plane = JB · n̂ˆ  (area of plane)� (1.2)

If the plane is perpendicular to the x-direction, the rate of B that crosses the plane, per unit area, is 
equal to JB,x, the x-component of the flux vector.

In general, the flux of property B is due to two factors: convection and diffusion.

JB = Jconv
B + Jdiff

B � (1.3)

The convective flux is due to the macroscopic flow of the fluid which carry with it the property B into 
and out of the control volume. This is of the form:

Jconv
B = cBv � (1.4)

where cB  is the concentration of B, and v is the velocity of the fluid.

The diffusive flux is due to molecular motion. This flux leads to irreversibility and generates entropy. It 
is assumed that the fluxes are proportional to the thermodynamic driving forces.

1.1.2	 Differential approach: One-dimensional balances

We first consider a system where the property B only varies in one direction, which we choose to be 
the x-direction. For this one-dimensional problem, we can perform a balance around a differential 
element (which is referred to as a control volume) located between the positions x and x+∆x,  with 
a cross-subsectional area A. The width ∆x of the control volume is chosen to be small enough such 
that the concentration of B (i.e., the amount of B per unit volume) in the element cB(x, t) can be 
considered uniform.
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The total amount of B currently within the control volume is cB(x, t)A∆x. . The rate of production of B 
per unit volume is σB(x, t); therefore, the net rate of B that is produced in the system is σB(x, t)A∆x. 
B enters the control volume from the left side at a rate of JB,x(x, t)A, and exits the control volume from 
the right side at a rate of JB,x(x+∆x, t)AA. Putting this all together in Eq. (1.1), we find

∂

∂t
[cB(x, t)A∆x] = AJB,x(x, t)−AJB,x(x+∆x, t) + σB(x, t)A∆x

If we divide both sides of the equation by A∆x, we find

∂cB(x, t)

∂t
= −JB,x(x+∆x, t)− JB,x(x, t)

∆x
+ σB(x, t)

Taking the limit as ∆x goes to zero, the first term on the right side of the equation becomes a derivative, 
and so

∂cB(x, t)

∂t
= −∂JB,x(x, t)

∂x
+ σB(x, t) � (1.5)

The balance equation for any one-dimensional problem can always be written in the form given in 
Eq. (1.5).

1.1.3	 Differential approach: Three-dimensional balances

In this subsection, we consider a system where the property B varies in all directions, x, y , and z. 
We choose as our control volume a small rectangular prism of dimensions ∆x, ∆ y , and ∆z. These 
dimensions are chosen to be small enough so that the concentration of B within the control volume cB  
is approximately uniform.

For a three-dimensional differential volume element, we have:

∂

∂t
(cB∆x∆y∆z) = −∆y∆zJB,x(x+∆x, y, z, t) + ∆y∆zJB,x(x, y, z, t)

−∆x∆zJB,y(x, y +∆y, z, t) + ∆x∆zJB,y(x, y, z, t)

−∆x∆yJB,z(x, y, z +∆z, t) + ∆x∆yJB,z(x, y, z, t)

+ (σB∆x∆y∆z)

∂cB
∂t

= −
[
JB,x(x+∆x, y, z, t)− JB,x(x, y, z, t)

∆x

]

−
[
JB,y(x, y +∆y, z, t)− JB,x(x, y, z, t)

∆y

]

−
[
JB,z(x, y, z +∆z, t)− JB,x(x, y, z, t)

∆z

]

+ σB � (1.6)
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Taking the limit ∆x, ∆ y , ∆z → 0, we find

∂cB
∂t

= −∂JB,x(x, y, z, t)

∂x
− ∂JB,y(x, y, z, t)

∂y
− ∂JB,z(x, y, z, t)

∂z
+ σB � (1.7)

This can be written in vector form as

∂cB
∂t

= −∇ · JB + σB � (1.8)

where ∇ is the gradient operator, defined as

∇ ≡ êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
� (1.9)

where êx is a unit vector pointing in the positive x-direction, êy  is a unit vector pointing in the positive 
y-direction, and êz  is a unit vector pointing in the positive z-direction.

1.2	 Index notation

Before proceeding on to analyze the balance equations for mass, momentum, and energy, we will 
introduce the use of index notation, which will help in keeping the equations more compact and clear, 
as well as facilitating their manipulation. In index notation, vectors and matrices are explicitly referred 
to by their various components. The expression vi  denotes the ith component of the vector v where i 
can be either x, y , or z. The expression Aij  denotes the ijth element of the matrix A.

If an index is repeated in a term, then this implies that the index is summed over all components.

uivi → uxvx + uyvy + uzvz

This is referred to as the summation convention. For example, the dot product between two vectors u 
and v is given by

u · v → uivi

The multiplication of a matrix τ  by a vector can be written as

τ · v → τijvj

The multiplication of two matricies is given by

A ·B → AijBjk
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The general balance equation, Eq. (1.7) or (1.8), can then be written as

∂cB
∂t

= −∂JB,i

∂xi
+ σB � (1.10)

where xi  is the ith component of the position vector (i.e., xx = x, xy = y, and xz = z), and JB,i  is 
the ith component of the flux vector JB . Note the use of the summation convention in the first term 
on the right side of the equation.

1.3	 Mass balance

The first balance equation that we will consider is for the overall mass. The concentration of mass is 
simply the density ρ. Mass cannot be created or destroyed, so there is no generation term in the balance 
equation. Finally, the only flux present for the overall mass is the convective flux. Combining all these 
facts together with Eq. (1.8), we arrive at

∂ρ

∂t
= −∇ · ρv

This is typically referred to as the continuity equation and is usually written in the form:

∂ρ

∂t
+∇ · ρv = 0 � (1.11)

Using index notation, we can rewrite Eq. (1.11) as:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 � (1.12)

For an incompressible fluid, the density remains constant. Mathematically, this means that all of the 
derivatives of the density are equal to zero. With this assumption, we find that the continuity equation 
reduces to

∇ · v = 0 � (1.13)

Note that this is only true for an incompressible fluid.
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2	 Momentum transport
2.1	 Introduction

In this section, we will consider the momentum balance equation. Unlike the previous quantities that we have 
considered, which were all scalars, momentum is a vector. This means that we need to consider the balance equation 
for each of its three components.

The “concentration” of momentum is the amount of momentum contained in the system per unit volume. 
If we recall that the momentum of a particle is equal to mv, where m is the mass of the particle and v 
is the velocity of the particle, then the “concentration” of momentum is given by ρv. Note that because 
momentum is a vector, there are three types of momentum concentration: ρvx, ρvy,

 and ρvz .

The next term to consider is generation of momentum. So what is responsible for the creation of 
momentum? The answer to this question is given by Newton’s second law:

∂

∂t
(mv) = F � (2.1)

where m is the mass, and F is the force acting on the mass. Therefore, we see that forces generate 
momentum.
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Let’s consider the possible forces that act on a cubic element of a fluid which has dimensions ∆x, ∆y,  
and ∆z (i.e., the control volume). The first force we consider is the pressure. The pressure always acts 
inwards, compressing the cube from all six faces. The total force acting on the cube due to pressure is, 
therefore, the sum of six terms (one corresponding to each face of the cube):

	 pressure force = [p(x, y, z)∆y∆z − p(x+∆x, y, z)∆y∆z] êx

			   + [p(x, y, z)∆x∆z − p(x, y +∆y, z)∆x∆z] êy

			   + [p(x, y, z)∆x∆y − p(x, y, z +∆z)∆x∆y] êz

The generation of momentum per unit volume due to the pressure force is just the pressure force acting 
on the cube, divided by the volume of the cube (which is ∆x∆y,∆z). In the limit where the dimensions 
of the cube are very small, this becomes −∇p.

Another source of momentum is the force of gravity. The gravitational force acting on a mass m is given 
by mg. The generation of momentum per unit volume is then given by ρg.

Combining these two terms, we find that the generation of momentum can be written as:

σmomentum = −∇p+ ρg� (2.2)

Note that because momentum is a vector quantity, the generation of momentum σmomentum is also a vector.

The final term we need to discuss is the momentum flux Jmomentum,  which represents transport 
of momentum across the boundaries of the control volume. The momentum flux consists of two 
contributions: the convective flux Jconv

momentum , and the diffusive flux Jdiff
momentum . The convective 

contribution is given by

Jconv
momentum = (ρv)v � (2.3)

The convective flux represents reversible transport of momentum across the surface of the control volume. 
Before we discuss the form of the diffusive flux, let’s first consider the terms we have so far.

2.2	 Bernoulli’s equation

If we neglect the contribution of the diffusive flux, then the momentum balance can be written as:
∂cmomentum

∂t
= −∇ · Jmomentum + σmomentum

∂ρv

∂t
= −∇ · (ρvv)−∇p+ ρg

� (2.4)
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With the help of the continuity equation, Eq. (1.11), we can rearrange this relation to

ρ
∂v

∂t
+ v

∂ρ

∂t
= −v∇ · (ρv)− ρv · ∇v −∇p+ ρg

ρ
∂v

∂t
= −v

[
∂ρ

∂t
+∇ · (ρv)

]
− ρv · ∇v −∇p+ ρg

ρ
∂v

∂t
= −ρv · ∇v −∇p+ ρg

∂v

∂t
= −v · ∇v − 1

ρ
∇p+ g

If we assume that the fluid is incompressible (i.e. ρ is a constant) and that the flow is irrotational  
(i.e. ∇ × v = 0), then we find

∂v

∂t
= −∇

(
1

2
v2 +

p

ρ
− g · r

)
� (2.5)

For a system at steady state conditions, all derivatives with respect to time vanish, and so the right side 
of the above equation can be integrated to yield

1

2
v2 +

p

ρ
− g · r = const � (2.6)

This is just Bernoulli’s equation. So for an incompressible fluid at steady state, the momentum equation 
reduces to Bernoulli’s equation when the diffusive momentum flux can be neglected.

2.3	 Diffusive momentum flux: Newton’s law of viscosity

In a fluid, there is a tendency to try to make all parts of the fluid move at the same velocity. Consider 
the situation shown in Fig. 2.1. In this case, the upper plane of fluid A is travelling with a greater velocity 
than the fluid in plane B, which is travelling with a greater velocity than the fluid in plane C. Because the 
fluid in plane A is travelling faster than the fluid in plane B, it exerts a force on plane B in the positive 
x-direction; on the other hand, the plane B exerts a force of equal magnitude on plane A in the negative 
x-direction. In a similar manner, forces are exerted between planes B and C, and between planes C and 
D. These forces, which are often referred to as a viscous forces, are proportional to the area of contact 
between the adjacent planes and are related to the velocity difference (or gradient) between the planes.

Figure 2.1: Planes of fluid traveling at differing velocities.
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Now, let’s consider a fluid that is confined between two plates, separated by a distance H (see Fig. 2.2(a)). 
Inititially, the fluid and both plates are motionless. At a certain time, the upper plate is accelerated to 
a velocity V and is kept moving at a constant velocity. The fluid near a solid surface typically travels 
at the same velocity as the surface. This is known as the no slip boundary condition. For the situations 
depicted in Figs. 2.2(b) and (c), the fluid at the upper surface has a velocity V, and the fluid at the lower 
surface is motionless.

Figure 2.2: Flow of a fluid between a stationary and moving plate.

Immediately after the upper plate is accelerated, only a small subsection of fluid that is very near to 
the plate actually moves. The rest of the fluid remains motionless. However, as time passes, the viscous 
forces between the fluid begins to accelerate the lower parts of the fluid (see Fig. 2.2(b)). This can be 
interpreted as the gradual “diffusion” momentum from the upper part to the lower part of the fluid. At 
very long times, the system reaches steady state (see Fig. 2.2(c)).
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In order to maintain the constant velocity V of the upper plate, a force F needs to be applied. This is 
due to the fact that the viscous forces in the fluid tend to decelerate the plate. We define the viscosity

µ of a fluid by the ratio:

µ =
F/A

V/H
� (2.7)

where A is the cross-subsectional area of the plates. Note that the units of viscosity are pressure multiplied 
by time (e.g., Pa s). The more viscous a fluid, the more force it takes to keep the upper plate moving at 
the same speed. In addition, for a given applied force, the less viscous a fluid, the faster the upper plate 
will move. This is all consistent with our intuitive idea of “viscosity”.

Now let’s consider a two-dimensional element of fluid in a general flow field. The stresses due to viscous 
forces that act on this particular element of fluid are shown in Fig. 2.3. The upper and lower surfaces are 
referred to as y-faces, because they are perpendicular to the y-direction; the right and left surfaces are 
referred to as x-faces, because they are perpendicular to the x-direction. The stress (force per unit area) 
acting on the upper y-faces in the x-direction is referred to as τyx. On the upper surface, τyx. points 
in the positive x-direction, while on the lower surface, it points in the negative x-direction. The stress 
acting on the x-faces in the y-direction is referred to as τxy. This points in the positive y-direction on 
the right face, and in the negative y-direction on the left face.

Figure 2.3: Stresses acting on a two-dimensional control volume. Note that

σxx = −p+ τxx, etc., etc.

The diffusive momentum flux Jdiff
momentum

 is due to these stresses, which are caused by viscous forces.
For the general three-dimensional situation, the viscous stresses acting on an element of fluid are shown 
in Fig. 2.4. By summing all the viscous forces that act on an element of fluid, we find that the diffusive 
momentum flux is given by

Jdiff
momentum = −τ � (2.8)
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where τ  is the stress tensor

τ =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz



� (2.9)

The stress tensor τ  is a 3 × 3 matrix. The first index of the matrix refers to the face on which the stress 
acts, while the second index of the matrix indicates the direction in which the stress acts.

Figure 2.4: Stresses acting on a three-dimensional control volume. Note that σxx = −p+ τxx, etc.

Adding the contribution of diffusive flux to the momentum equation, we find

∂ρv

∂t
= −∇ · (ρvv) +∇ · τ −∇p+ ρg � (2.10)

Using index notation, the momentum equation (see Eq. (2.10)) can be rewritten as:

∂ρvi
∂t

= − ∂

∂xj
(ρvjvi) +

∂τji
∂xj

− ∂p

∂xi
+ ρgi � (2.11)

Using the continuity equation, the momentum equation can also be written as

ρ
∂vi
∂t

+ vi
∂ρ

∂t
= −ρvj

∂vi
∂xj

− vi
∂ρvj
∂xj

+
∂τji
∂xj

− ∂p

∂xi
+ ρgi

ρ
∂vi
∂t

= −ρvj
∂vi
∂xj

+
∂τji
∂xj

− ∂p

∂xi
+ ρgi

� (2.12)
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2.4	 Newton’s law of viscosity

Let’s consider the flow shown in Fig. 2.2(c) and focus on an element of fluid of height ∆ y  located 
at a distance y  above the bottom plate. The bottom surface of this element of fluid is travelling at 
velocity vx(y), while the upper surface of this element of fluid is travelling at velocity vx(y+∆y) ≈
vx(y) + ∆y∂vx/∂y.  The difference of these two velocities is ∆y∂vx/∂y. Comparing this situation with 

Eq. (2.7) where F/A ∼ τyx, H ∼ ∆y, and V ∼ ∆y∂vx/∂y,  we find

µ =
τyx

∆y∂vx/∂y/∆y

τyx = µ
∂vx
∂y � (2.13)

This relates the viscous stress to the gradients in the velocity. A fluid which obeys this relation is known 
as a Newtonian fluid. Note that this relation was derived in the special case where there is only a velocity 
gradient in the y-direction. For a general three-dimensional flow, Eq. (2.13) generalizes

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ∇ · v � (2.14)

where i  and j  are indices that represent the x, y , or z-directions, δij  is the Kronecker delta (δij = 0 
if i �= j, and δij = 1 if i = j), and λ is the longitudinal viscosity. For most fluids, λ = −2µ/3.

Substituting the constituitive relations Eq. (2.14) into the momentum balance, Eq. (2.10) or (2.11), we find

∂ρvi
∂t

= − ∂

∂xj
(ρvjvi) +

∂

∂xj

[
µ

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ λ

∂

∂xi

∂vj
∂xj

− ∂p

∂xi
+ ρgi

= − ∂

∂xj
(ρvjvi) +

∂

∂xj

[
µ
∂vi
∂xj

]
+

∂

∂xi

[
(µ+ λ)

∂vj
∂xj

]
− ∂p

∂xi
+ ρgi � (2.15)

For an incompressible fluid (where ∇ · v = 0) with a constant viscosity, this reduces to

∂v

∂t
+ v · ∇v =

µ

ρ
∇2v − 1

ρ
∇p+ g � (2.16)

This is known as the Navier-Stokes equation and is the starting point for analyzing the flow behavior of 
incompressible, Newtonian fluids (e.g., water).
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3	 Laminar flow problems
3.1	 Introduction

In the previous sections, we derived the general mass and momentum balance equations. In this section, 
we will apply this method to examine two specific examples: flow of a falling fluid film and flow of a 
fluid through a cylindrical pipe.

3.2	 Flow of a falling film

Let’s consider the problem of a film of water flowing down an inclined plane. A schematic drawing of 
the system is given in Fig. 3.1. The thickness of the film is δ. The angle of the plane from vertical is θ.

Figure 3.1: Flow of a film of liquid down the surface of an inclined plane.
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At the bottom of the film, the water is in direct contact with a solid wall, which is motionless. At this 
surface, we employ non-slip boundary conditions, where the velocity of the fluid is assumed to be the 
same as the velocity of solid. At the top surface of the film, the water is in contact with air.

Now let’s focus our attention on a small cube of fluid, of dimensions dx, d y , and dz, located at position 
r. Because the system is at steady state, there is no accumulation, and the forces that are acting on the 
system should be balanced.

We assume that the fluid flows only in the x-direction

0 = gravitational force + net viscous force� (3.1)

The gravitational force acting on the fluid in the x-direction is given by

gravitational force = (dxdydz)ρg cos θ � (3.2)

The viscous force is given by

net viscous force = τyx(x, y + dy, z)dxdz − τyx(x, y, z)dxdz � (3.3)

Inserting the expressions for the gravitational and viscous forces into the momentum balance equation, 
we find

0 = (dxdydz)ρg cos θ + τyx(x, y + dy, z)dxdz − τyx(x, y, z)dxdz

0 = ρg cos θ +
τyx(x, y + dy, z)− τyx(x, y, z)

dy

� (3.4)

If we take the limit dy  → 0, then

0 = ρg cos θ +
∂τyx
∂y

� (3.5)

Another more rapid method to arrive at Eq. (3.5) is to start from the general momentum balance equation, 
Eq. (2.12). If we consider only the x-component of the equation, we find

ρ
∂vx
∂t

= −ρvj
∂vx
∂xj

+
∂τjx
∂xj

− ∂p

∂x
+ ρgx

Since the system is at steady state, the left side of the equation is equal to zero. Also, if we note that there 
is no flow in the y and z-directions (i.e., vy = vz = 0) and that vx  only varies in the y-direction (so that 
∂vx/∂x = 0), then the first term on the right side of the equation vanishes. Neglecting the variation 

of pressure in the x-direction (i.e., ∂p/∂x = 0)  and noting that gx = g cos θ, we arrive at Eq. (3.5).
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We can integrate Eq. (3.5) with respect to y , which gives

0 = yρg cos θ +A+ τyx(y)

τyx(y) = −yρg cos θ −A � (3.6)

where A is an unknown integration constant. We can determine the integration constant by using the 
boundary condition at the top surface of the fluid, at y  = δ where τyx(δ) = 0.

τyx(δ) = −δρg cos θ −A = 0

A = −δρg cos θ
� (3.7)

Therefore, the stress in the fluid is given by

τyx(y) = δρg cos θ
(
1− y

δ

)
� (3.8)

The stress induced by the plate on the bottom of the fluid is

τyx(0) = δρg cos θ � (3.9)

The stress induced on the plate by the fluid is precisely the same magnitude as τyx(0) but in the 
opposite direction.

To determine the velocity profile, we use the relationship between stress and the velocity gradient for a 
Newtonian fluid:

τyx = µ
∂vx
∂y

� (3.10)

Substituting the expression for the stress, we find

δρg cos θ
(
1− y

δ

)
= µ

∂vx
∂y

∂vx
∂y

=
δρg cos θ

µ

(
1− y

δ

)� (3.11)

If we integrate this equation with respect to y , we find

vx(y) =
δρg cos θ

µ

(
y − y2

2δ

)
+B

=
δ2ρg cos θ

µ

(y
δ

)(
1− y

2δ

)
+B

� (3.12)

where B is an unknown integration constant. The value of this integration constant can be determined 
by using the boundary condition at the bottom surface, at y  = 0, where we have

vx(0) = 0 � (3.13)
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This gives us B = 0, and, therefore,

vx(y) =
δ2ρg cos θ

µ

(y
δ

)(
1− y

2δ

)
� (3.14)

The total volumetic flowrate Q̇  of water flowing down the plane can be obtained by integrating the 
velocity profile. If the width of the film is l,  then

Q̇ =

∫ δ

0
ldyvx(y)

=

∫ δ

0
ldy

δ2ρg cos θ

2µ

y

δ

[
2− y

δ

]

=l
δ3ρg cos θ

2µ

∫ 1

0
dξξ(2− ξ)

=l
δ3ρg cos θ

3µ � (3.15)
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Figure 3.2: Flow through a horizontal pipe of radius R and length L.

The average velocity v̄x of the fluid is given by

v̄x =
Q̇

A
=

Q̇

lδ

=
δ2ρg cos θ

3µ
� (3.16)

3.3	 Flow through a circular tube

Now let’s consider steady-state flow through a circular pipe of radius R. The length of the pipe is L, and the 
pressure drop across the length of the pipe is ∆p. A schematic drawing of the system is given in Fig. 3.2

Let’s focus on a cylindrical shell of fluid of radius dr. and thickness dr. We will work in cylindrical 
coordinates. We assume that there is no flow in the radial and angular directions (i.e., vr = vφ = 0), 
so we only need to consider the momentum balance in the z-direction. Steady state flow implies that 
there is no accumulation in the system. Therefore, the various forces in the system must be balanced.

0 = net pressure force + net viscous force� (3.17)

The net pressure force acting on the shell is given by

net pressure force = p(0)2πrdr − p(L)2πrdr

= [p(0)− p(L)]2πrdr

= ∆p 2πrdr � (3.18)

The net viscous forces acting on the cylindrical shell are

net viscous forces = τrz(r + dr)2π(r + dr)L− τrz(r)2πrL � (3.19) 

Putting these forces together, we find:

0 = ∆p 2πrdr + τrz(r + dr)2π(r + dr)L− τrz(r)2πrL � (3.20)
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Dividing by the volume of the cylindrical shell 2πrdr

0 =
∆p

L
+

1

r

∂

∂r
(rτrz)� (3.21)

If we substitute the constitutive relation τrz = µ∂vz/∂r,  we find

0 =
∆p

L
+

1

r

∂

∂r

(
rµ

∂vz
∂r

)
� (3.22)

which can be rearranged to give

∂

∂r

(
r
∂vz
∂r

)
= −∆p

µL
r � (3.23)

Integrating this equation twice with respect to r , we find

vz(r) = − ∆p

4µL
r2 +A ln r +B � (3.24)

 

  

 

                . 
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where A and B are unknown constants of integration. From the physical requirement that the velocity 
of the fluid should remain finite at the center of the pipe (i.e., at r  = 0), we find that A = 0. We can 
determine the value of B by using the no-slip boundary condition: at the surface of the pipe (i.e., r = R) 
the velocity of the fluid should be zero

vz(0) = − ∆p

4µL
R2 +B = 0

B =
∆p

4µL
R2

Finally, we find

vz(r) =
∆pR2

4µL

[
1−

( r

R

)2
]

� (3.25)

The volumetric flowrate Q̇  is given by

Q̇ =

∫ R

0
2πrdrvz(r)

=

∫ R

0
2πrdr

∆pR2

4µL

[
1−

( r

R

)2
]

= 2π
∆pR4

4µL

∫ 1

0
xdx(1− x2)

= π
∆pR4

8µL
� (3.26)

The average velocity v̄z  of the fluid is

v̄z =
Q̇

A
=

Q̇

πR2

=
∆pR2

8µL
� (3.27)

The Reynolds number is given by

Re =
Dv̄zρ

µ
� (3.28)

where D = 2R  is the diameter of the pipe. The friction factor is defined as

f =
∆p

2ρv̄2z

D

L
� (3.29)

Examining Eq. (3.27), we find that the relation between the Reynolds number and the friction factor 
is given by

f =
16

Re
� (3.30)
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4	 Dimensional analysis
4.1	 Introduction

Units play a crucial role in engineering. They allow us to quantitatively communicate the values of the 
physical properties of a system. Despite their importance to us as engineers, however, units are entirely 
artificial things. Nature does not care about units. That is, the behavior of a system is entirely independent 
of the units that we use. This fairly obvious idea is extremely powerful. In fact, it allows us to extract a 
lot of information about a system, without having to write down or solve any equations.

To illustrate this, let’s examine a pendulum consisting of a mass M tied to the end of a string of length 
L (see Figure 4.1). For this system, the acceleration due to gravity is g.

Figure 4.1: Schematic of a swinging pendulum.

How does the period T of the pendulum depend on its physical properties (i.e., L, m, and g)? 
Mathematically, this question means that we want to determine the function θ such that

T = θ(L,m, g) � (4.1)

Although Eq. (4.1) makes mathematical sense, it does not really make physical sense. This is because 
the numerical value of the function θ depends on the particular choice of units that are used to measure 
time. If we use seconds to measure time instead of hours, then the function increases by a factor of 3600. 
Also, the precise form of the function will change, depending on the units that are used to report the 
quantities L, m, and g. Because we know that the behavior of a system should not depend on the units 
that are used, we should expect that the function relating the period of oscillation of a pendulum to its 
properties should also be independent of the choice of units.
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We can remedy this situation by only using dimensionless quantities. If we choose to measure time in 
units of t (e.g., seconds, hours, etc.), mass in units of m (e.g., kilograms, pounds, etc.), and length in 
units of l (e.g., meter, feet, etc.), then we write down the following expression:

T

t
= Θ

(
L

l
,
M

m
,
gt2

l

)
� (4.2)

where Θ the function that we want to determine. Note that all the quantities in this equation, including 
the function Θ, are dimensionless. Therefore, Eq. (4.2) is completely independent of the units that are 
used, which is what we want.

We can push the analysis even further, however, based on the fact that we are free to choose whatever 
units we want. We choose as our unit of length, the length of the pendulum (i.e., l = L). As our unit of 
mass, we choose the mass of the pendulum (i.e., m = M). As our unit of time, we choose t =

√
L/g. 

Given this system of units, we find that Eq. (4.2) reduces to

T√
L/g

= Θ(1, 1, 1)� (4.3)

Note is that the right side of Eq. (4.3 is simply a constant. We no longer need to determine a function of 
three arguments – all we need is a single number Θ(1, 1, 1). This can either be determined by experiment 
or by a more careful theoretical analysis. Thus, without setting up or solving any differential equations, 
we were able to determine the mathematical relationship between the period of a pendulum and its 
properties.

In the previous section, we examined two examples of setting up the differential equations that govern 
a particular flow and then solving those equations. In many cases, however, we can greatly simplify a 
problem by simply examining its dimensions.

For the pipe flow problem, if we are only interested in how the pressure drop across a length of pipe 
varies as a function of the flow rate, then we can use dimensional analysis to greatly simplify the problem. 
In general, the pressure drop per unit length ∆p/L  depends on all the properties of the system. That is

∆p

L
= θ(D, ρ, µ, v̄z)� (4.4)

where θ denotes a general function. So at first glance, it seems that the pressure drop is a function of 
four different variables.
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One thing that is peculiar about the function given in Eq. (4.4), however, is that it depends on the units in 
which the physical quantities are measured. For example, if we measure pressure in units of bars instead 
of pascals, then the function θ must change by a factor of 105. If we measure length in meters instead 
of feet, then the dependence of the function θ on its various parameters needs to change. We know that 
the physics of a system should not depend on the units that we use. This fact should be reflected in the 
properties of the function θ.

If we measure mass in terms of units of m, length in terms of l, and time in terms of t, we find that the 
function for the pressure drop can be written as

∆p

L

l2t2

m
= Θ

(
D

l
,
ρl3

m
,
µlt

m
,
v̄zt

l

)
� (4.5)

We are completely free to choose the values of m, l, and t. For example, in the mks system of units, 
m = 1 kg, l = 1 m, and t = 1 s. Notice that all the arguments of the function Θ, as well as its value, are 
dimensionless. This means that the function Θ does not depend on the units that are used.

We can simplify Eq. (4.5) by choosing a set of units based on the properties of the system. We choose 
to measure mass in units of m = ρD3,, length in units of l = D, and time in units of t = D/v̄z . With 
this choice of units, we find Eq. (4.5) can be written as

∆p

L

D2(D/v̄z)
2

ρD3
= Θ

(
D

D
,
ρD3

ρD3
,
µD(D/v̄z)

ρD3
,
v̄z(D/v̄z)

D

)

∆p

ρv̄2z

D

L
= Θ

(
1, 1,

µ

Dρv̄z
, 1

)

f = f̄(Re) � (4.6)

While in Eq. (4.4), the function θ depends on four variables, the function f̄  depends on only one 
variable. This is a tremendous simplification of the problem!
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5	 Energy transport
5.1	 Energy balance

In this section, we derive the balance equation for energy. The total energy of the system is the sum of three terms: 
(i) the internal energy of the system, (ii) the kinetic energy of the system, and (iii) the potential energy of the system. 
The total energy per unit mass e can then be written as:

e = U +
1

2
v2 + φ(r) � (5.1)

where U is the internal energy per unit mass of the system, and φ  is the potential energy per unit mass 
of the system, which is, in general, a function of position. Examples of potential energy are gravitational 
energy (where φ(r) = −g · r) or electrostatic energy (e.g., a charged system in the presence of an electric 
potential).

Now let’s perform an energy balance on a small subsection of a system. Our control volume will be a 
small rectangular box of dimensions dx, d y , and dz. The concentration of energy inside the box is equal 
to ρe. Thus, the rate of accumulation of energy in the control volume is 

accumulation = ∂

∂t
(ρedxdydz)
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The rate of accumulation per unit volume is then

accumulation
dxdydz

=
∂

∂t
(ρe)

From the first law of thermodynamics, we know that energy is conserved. Thus, any accumulation of 
energy in our control volume must be due to flow of energy from other parts of the system. This can 
occur through several mechanisms. In the following, we will consider convection, conduction, viscous 
work, and pressure work.

5.2	 Convection
When material enters (or leaves) the control volume due to the flow of the fluid, it carries with it energy. 
This mode of energy transport is known as convection. The convective flux of energy is then given by

Jconv = (ρe)v� (5.2)

For our control volume, there are six different surfaces

convection = [Jconv
x (x, y, z)− Jconv

x (x+ dx, y, z)]dydz

+ [Jconv
y (x, y, z)− Jconv

y (x, y + dy, z)]dxdz

+ [Jconv
z (x, y, z)− Jconv

z (x, y, z + dz)]dxdy

Dividing the above equation by the total volume of the system and taking the limit that dx, dy, and 
dz → 0 yields

convection
dxdydz

=− ∂Jconv
x

∂x
−

∂Jconv
y

∂y
− ∂Jconv

z

∂z

=−∇ · Jconv

=− ∂Jconv
i

∂xi

5.3	 Diffusive transport
In addition to convection, energy can also flow into the control volume through diffusive transport. 
Diffusive energy (heat) flux q is caused by gradients in temperature and chemical potential. We will 
only consider heat flux which is driven by temperature differences, which is known as conduction. One 
simple relationship between heat flux and the temperature gradient is given by Fourier’s law of conduction

q = −k∇T � (5.3)

where k  is the thermal conductivity.

There is yet another type of flux for energy, which has no analogy in the transport of other quantities 
(such as mass and momentum). This is transport of energy due to radiation. We will not consider this 
mode of heat transfer in this module.
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5.4	 Viscous work

Because the material outside the control volume moves at a different velocity than the material inside, 
viscous stresses arise on the surfaces of the control volume. These viscous stresses lead to the conversion 
of kinetic energy into internal energy in the system. The rate of conversion on a particular surface is 
given by the force acting on the surface multiplied by the velocity at that surface. The total rate at which 
viscous forces perform work on the system is then given by the sum of the work performed on each of 
the surfaces:

viscous work =[τxx(x+ dx, y, z)vx(x+ dx, y, z)− τxx(x, y, z)vx(x, y, z)]dydz

+ [τxy(x+ dx, y, z)vy(x+ dx, y, z)− τxy(x, y, z)vy(x, y, z)]dydz

+ [τxz(x+ dx, y, z)vz(x+ dx, y, z)− τxz(x, y, z)vz(x, y, z)]dydz

+ [τyx(x, y + dy, z)vx(x, y + dy, z)− τyx(x, y, z)vx(x, y, z)]dxdz

+ [τyy(x, y + dy, z)vy(x, y + dy, z)− τyy(x, y, z)vy(x, y, z)]dxdz

+ [τyz(x, y + dy, z)vz(x, y + dy, z)− τyz(x, y, z)vz(x, y, z)]dxdz

+ [τzx(x, y, z + dz)vx(x, y, z + dz)− τzx(x, y, z)vx(x, y, z)]dxdy

+ [τzy(x, y, z + dz)vy(x, y, z + dz)− τzy(x, y, z)vy(x, y, z)]dxdy

+ [τzz(x, y, z + dz)vz(x, y, z + dz)− τzz(x, y, z)vz(x, y, z)]dxdy
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The viscous work per unit volume is then

viscous work
dxdydz

=
∂

∂x
(τxxvx) +

∂

∂x
(τxyvy) +

∂

∂x
(τxzvz)

+
∂

∂y
(τyxvx) +

∂

∂y
(τyyvy) +

∂

∂y
(τyzvz)

+
∂

∂z
(τzxvx) +

∂

∂z
(τzyvy) +

∂

∂z
(τzzvz)

=
∂

∂xi
(τijvj)

5.5	 Pressure work

Now let’s consider the work due to pressure. The rate at which work is performed by pressure forces on 
the surface is equal to the magnitude of the force acting on the surface multiplied by the velocity of the 
system at the surface. Therefore, the total work due to pressure is

pressure work =[−p(x+ dx, y, z)vx(x+ dx, y, z) + p(x, y, z)vx(x, y, z)]dydz

+ [−p(x, y + dy, z)vy(x, y + dy, z) + p(x, y, z)vy(x, y, z)]dxdz

+ [−p(x, y, z + dz)vz(x, y, z + dz) + p(x, y, z)vz(x, y, z)]dxdy

The rate at which the pressure forces do work on the system per unit volume is then:

pressure work
dxdydz

=− ∂

∂xi
(pvi)

5.6	 Finishing touches

Applying the general balance equation to energy, we find

∂ρe

∂t
=− ∂

∂xi
(ρevi)−

∂qi
∂xi

+
∂

∂xi
(τijvj)−

∂

∂xi
(pvi)� (5.4)

Using the continuity equation, this can also be written as

ρ
∂e

∂t
= −ρvi

∂e

∂xi
− ∂qi

∂xi
+

∂

∂xi
(τijvj)−

∂

∂xi
(pvi)� (5.5)

Now let’s look at some simple limits of this equation. If the system is entirely motionless and there is 
no potential energy (e.g., gravitational forces are not important), then e = U , v = 0, and the energy 
balance equation is given by

ρ
∂U

∂t
= −∇ · q � (5.6)
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If we make the further assumption that the thermal conductivity of the system is constant, and we make 
use of the thermodynamic relation dU = CvdT  at constant volume (density), where Cv  is the isochoric 
heat capacity, then

ρCv
∂T

∂t
= k∇2T � (5.7)

which is known as the heat or diffusion equation.

We will now rearrange the energy equation (see Eq. (5.5)) in a more convenient form for later work. 
The first thing we need to do is to develop a balance equation for the kinetic energy. By multiplying Eq. 
(2.12) by vi,  we find

ρvi
∂vi
∂t

= −ρvjvi
∂vi
∂xj

+ vi
∂τji
∂xj

− vi
∂p

∂xi
+ ρgivi

1

2
ρ
∂v2

∂t
= −1

2
ρvj

∂v2

∂xj
+ vi

∂τji
∂xj

− vi
∂p

∂xi
+ ρgivi

∂

∂t

(
1

2
ρv2

)
= − ∂

∂xj

(
1

2
ρv2vj

)
+ vi

∂τji
∂xj

− vi
∂p

∂xi
+ ρgivi � (5.8)

Subtracting Eq. (5.8) from Eq. (5.5), we find

ρ
∂

∂t

(
U +

1

2
v2 − gixi

)
=− ρvj

∂

∂xj

(
U +

1

2
v2 − gixi

)
− ∂qi

∂xi
+

∂

∂xi
(τijvj)−

∂

∂xi
(pvi)

ρ
∂

∂t
(U − gixi) =− ρvj

∂

∂xj
(U − gixi)−

∂qi
∂xi

+ τji
∂vi
∂xj

− p
∂vi
∂xi

− ρgivi

ρ
∂U

∂t
=− ρvj

∂U

∂xj
− ∂qi

∂xi
+ τji

∂vi
∂xj

− p
∂vi
∂xi

If we assume that the material in the control volume is in local thermodynamic equilibrium, we can 
relate the internal energy to the local temperature and pressure of the system

dU =

(
∂U

∂T

)

p

dT +

(
∂U

∂p

)

T

dp

=

[
T

(
∂S

∂T

)

p

− p

(
∂V

∂T

)

p

]
dT +

[
T

(
∂S

∂p

)

T

− p

(
∂V

∂p

)

T

]
dp

=

[
T

(
∂S

∂T

)

p

− p

(
∂V

∂T

)

p

]
dT +

[
−T

(
∂V

∂T

)

p

− p

(
∂V

∂p

)

T

]
dp

=

(
Cp −

αpp

ρ

)
dT − (αpT − κT p)

dp

ρ
� (5.9)
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where αp  is the thermal expansivity of the material, and κT  is the isothermal compressibility of the 
material.

For a liquid or a solid, the pressure dependence of the internal energy is quite weak (i.e. second term in 
Eq. (5.9) is small). In this case, we find that the energy balance can be written as:

ρCv
∂T

∂t
=− ρCvvj

∂T

∂xj
− ∂qi

∂xi
+ τji

∂vi
∂xj

− p
∂vi
∂xi

� (5.10)
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6	 Multicomponent mass transfer
6.1	 Introduction

In many chemical engineering unit operations, the key element is the transport of a particular chemical 
species from one location to another. For example, in the case of a chemical reactor, we need the reactants 
to mix and diffuse together in order for them to react to form the product we desire. In a liquid-liquid 
extractor, we want a chemical species to transfer from one liquid phase to another. In a gas absorption 
unit, we want a particular species in the gas phase to diffuse into the contacting liquid phase. The key 
to designing these processes is understanding mass transfer.

In mass transfer problems, we generally deal with multicomponent systems. Based on the general 
balance equations that we developed in the previous Sec. 1, deriving the balance equation for a species 
in a multicomponent system is fairly straightforward. For a particular molecular species α, we have (see 
Eq. (1.8))

∂cα
∂t

= −∇ ·Nα + σα � (6.1)

where cα  is the molar concentration of α, Nα is the absolute molar flux of species α, and σα  is the rate 
of generation of α per unit volume (e.g., by chemical reaction).

In a multicomponent system, different species generally travel at different velocities. Therefore, for each 
component α that is present in the system, there is a velocity vα.. The absolute molar flux of α is given by

Nα = cαvα � (6.2)

Now let’s consider what happens when a drop of ink is placed in a moving stream of water. The molecules 
of ink move as a result of two processes. First, the drop of ink moves along with the general flow of 
the stream. This contribution to the motion of the ink is referred to as convective flux. In addition to 
moving along with the flow of the stream, the ink also spreads outwards. This contribution to the motion 
is referred to as diffusive flux.

Before we can define a diffusive flux, we must first define a reference velocity with respect to which 
diffusion occurs. This choice of this reference velocity vα. is quite arbitrary, but, in general, takes the form

va =
∑

α

aαvα � (6.3)

where aα  are arbitrary weighting functions that must satisfy the normalization condition

∑

α

aα = 1� (6.4)
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If we let aα = wα,  the mass fraction of component α in the system, then va = v,  the center-of-mass 
velocity of the system:

v ≡
∑

α

wαvα � (6.5)

This is the velocity that appeared in the continuity equation, momentum balance equation, and the 
energy balance equation that were developed in the previous section.

If we let aα = xα,  the mole fraction of component α in the system, then va = v∗,  the molar-average 
velocity:

v∗ =
∑

α

xαvα � (6.6)

In what follows, we will use v∗  as our reference velocity.

With the definition of the reference velocity, the convective flux is given by cαv∗,  and the diffusive flux 
Jα is defined as

Jα = cα(vα − v∗) � (6.7)

To finish off this subsection, we demonstrate how the absolute flux can be written in terms of the diffusive 
flux and the convective flux.

Jα = cα(vα − v∗)

= Nα − cα
∑

α′

xα′vα′

= Nα − xα
∑

α′

Nα′

and so we find

Nα = Jα + xα
∑

α′

Nα � (6.8)

The first term on the right side of the equation represents the diffusive flux, while the second term 
represents the convective flux.
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6.2	 Diffusive flux

In order to complete the description of the transport of species α, we need an expression for the diffusive 
flux Jα. We need a way to relate the diffusive flux to the various driving forces in the system. In this 
subsection, we will develop this expression for binary mixtures, composed of species A and B.

The main driving forces for diffusion are gradients in the chemical potentials of the various species in the 
system. Let us consider a binary mixture consisting of molecules of type A and type B. A given species A 
will tend to move from areas where its chemical potential µA is high to areas where its chemical potential 
is low. The effective force felt by a molecule A due to nonuniformities in its chemical potentials is −−∇µA.

The A molecules, however, are impeded from freely moving (to even out their chemical potential) by 
the presence of the B molecules. The B molecules get in the way. The force exerted on the A molecules 
by the B molecules is given by

RT

DAB
xB(vA − vB)

where R is the gas constant, T is the absolute temperature, and DAB  is the diffusion coefficient. This 
“drag” force of the B molecules on the A molecules is proportional to the amount of B molecules (therefore 
the xB  factor) and to the relative velocities between A and B molecules.
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The diffusion coefficient DAB  is an empirical coefficient that describes diffusion, like the thermal 
conductivity describes heat conduction and the viscosity describes momentum diffusion. The diffusion 
coefficient has the units of length squared over time (e.g., m2/s). The larger the diffusion coefficient, the 
weaker the drag of B on A, and as a result, the A molecules can diffuse more quickly. The smaller the 
diffusion coefficient, the slower the A molecules diffuse.

If we balance the driving force for motion of species A against the drag exerted by species B, which 
opposes the motion, we find

−∇µA =
RT

DAB
xB(vA − vB) � (6.9)

This equation can be manipulated to yield

−∇µA =
RT

DAB
[vA − xAvA − xBvB]

=
RT

DAB
[vA − v]

=
RT

cADAB
cA[vA − v]

JA = −cADAB

RT
∇µA � (6.10)

where cA is the molar concentration of A. Equation (6.10) is known as the Maxwell-Stefan equation. It 
shows that the diffusive flux is proportional to chemical potential gradients.

From thermodynamics, we known that the chemical potential of a species α can be written as

µα = µ◦
α(T, p) +RT lnxαγα � (6.11)

If we substitute this into the Maxwell-Stefan equation, we find

JA = −cADAB

RT
∇[µ◦

A(T, p) +RT lnxAγA] � (6.12)

If we assume that the temperature and pressure of the system are uniform (i.e., constant with respect to 
position), the Maxwell-Stefan equation reduces to

JA = −cDAB

[
1 + xA

∂ ln γA
∂xA

]
∇xA � (6.13)

where c is the overall molar concentration of molecules. If we further assume that the system behaves 
as an ideal mixture (i.e., γA = 1), we have

JA = −cDAB∇xA� (6.14)

This is known as Fick’s law.
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7	 Examples of steady diffusion
7.1	 Introduction

In this section, we will go over some simple examples of how to apply Fick’s law to various mass transport problems.

7.2	 Arnold diffusion cell

In this example, we consider a cylinder containing pure liquid A (see Fig. 7.1). Immediately above the 
liquid surface, the mole fraction of A is yA0. The distance between the surface of the liquid and the top 
of the cylinder is H, and this region is filled with a stagnant gas B. Outside the cylinder, there is a fast 
moving stream of gas, which maintains the mole fraction of A at yAH .. We assume that the system is 
at steady state.

Figure 7.1: Arnold diffusion cell.

We begin this problem, as with all diffusion problems, by performing a balance on species A on a thin 
slab of gas located within the cylinder. The location of the bottom surface of the slab is z, the thickness 
of the slab is dz, and its cross-subsectional area is S. Because we are dealing with a steady-state problem, 
there should be no accumulation of A. In addition, because there are no chemical reactions occuring 
in the system, there should be no generation/consumption of A. From the symmetry of the system, we 
assume that motion only occurs in the z-direction. Therefore, the influx of A through the bottom surface 
of the slab should be equal to the outflux of A through the upper surface

0 = (NA,zS)z − (NA,zS)z+dz
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Dividing by the volume of the slab Sdz,

0 = − 1

S

[
(NA,zS)z+dz − (NA,zS)z

dz

]

Taking the limit dz → 0,

∂

∂z
[NA,z(z)S(z)] = 0

where we have multiplied both sides of the equation by S. 

This equation can be easily integrated to yield

NA,z(z)S = wA� (7.1)

where wA is an unknown integration constant, which represents the total molar flowrate of A up 
the cylinder.
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The absolute flux of A in the system is given by

NA,z = JA,z + yA(NA,z +NB,z)� (7.2)

The first term on the right side of the equation is the flux of A due to diffusion; the second term is the 
flux of A due to the overall motion of the system (i.e., convection). In this example, the A molecules 
will diffuse through a stagnant layer of B. The B molecules do not move. Therefore, we have NB  = 0. 
The expression for the absolute flux of A then becomes

NA,z = JA,z + yA(NA,z + 0)

=
1

1− yA
JA,z � (7.3)

If we assume that the gas mixture of A and B behaves as an ideal gas and that the temperature and 
pressure are uniform along the height of the cylinder, the diffusive flux follows Fick’s law (see Eq. (6.14))

JA,z = −cDAB
∂yA
∂z

� (7.4)

and, consequently, the absolute flux of A is given by

NA,z = − cDAB

1− yA

∂yA
∂z

� (7.5)

Substituting this expression into Eq. (7.1), we find

− cDAB

1− yA

∂yA
∂z

S = wA

ln(1− yA) =
wA

ScDAB
z + C � (7.6)

Substituting the boundary conditions (i.e., yA = yA0  at z = 0,  and yA = yAH  at z = H)  into 
Eq. (7.6), we have

ln(1− yA0) = C

ln(1− yAH) =
wA

ScDAB
H + C � (7.7)

which can be solved for the integration constants wA and C

C = ln(1− yA0)

wA =
ScDAB

H
ln

1− yAH

1− yA0
� (7.8)
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Substituting these expressions for the integration constants into Eq. (7.6), we find

ln
1− yA
1− yA0

=
z

H
ln

1− yAH

1− yA0

1− yA
1− yA0

=

[
1− yAH

1− yA0

]z/H
� (7.9)

7.3	 Heterogeneous combustion

In this example, we will examine the combustion of a spherical coal particle of radius R. Very far from the 
coal particle, the mole fraction of oxygen (which we label as species A) is given by yA =  yA∞ = 0.21.   
On the surface of the coal particle, the oxygen reacts with carbon to form carbon monoxide

2C + O2 → 2CO

We assume that this reaction proceeds so quickly that the concentration of oxygen on the surface of the 
particle is zero (i.e., yA = 0 at r  = R). In order for the coal particle to burn, oxygen needs to diffuse from 
far from the particle to the surface of the particle. In this problem, the rate of the reaction is controlled 
by the transport of oxygen to the coal particle.

For every oxygen molecule that reacts, two molecules of CO are created. These CO molecules diffuse 
in the opposite direction as the oxygen molecules. Therefore, we have NCO = −2NA. In addition, we 
assume that the nitrogen in the atmosphere is stationary (i.e., NN2 = 0).

We start the problem by performing a balance on oxygen molecules A within a spherical shell of inner 
radius r  and thickness dr. Because the system is at steady state, there is no accumulation in the shell. 
In addition, because the only chemical reaction that occurs is on the surface of the coal particle, there 
is no creation/consumption of oxygen in the shell. We make the assumption that transport of species 
only occurs in the r-direction. So in this case, the influx of A at the inner surface, which has an area 
S(r) = 4πr2  (the surface area of a sphere of radius r) must be balanced by the outflux of A from the 
outer surface:

0 = (NA,rS)r − (NA,rS)r+dr

If we divide by the volume of the spherical shell S(r)dr = 4πr2dr,  we find

0 = − 1

S

[
(NA,rS)r+dr − (NA,rS)r

dr

]

If we take the limit dr → 0, we arrive at the following differential equation

∂

∂r
[NA,r(r)S(r)] = 0 � (7.10)
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where we have multiplied both sides of the equation by S. This equation can be integrated to obtain

NA,r(r)S(r) = wA � (7.11)

where wA  is an integration constant. The physical meaning of wA  is the total moles of oxygen that 
diffuse toward the coal particle per unit time.

The absolute flux of oxygen can be written as

NA,r = JA,r + yA(NA,r +NN2,r +NCO,r)

= JA,r + yA(NA,r − 2NA,r)

=
1

1 + yA
JA,r � (7.12)

According to Fick’s law

JA,r = −cDAB
∂yA
∂r

� (7.13)
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If we substitute Fick’s law into Eq. (7.12) and then insert the resulting expression into Eq. (7.11), we find

− cDAB

1 + yA

∂yA
∂r

4πr2 = wA

− cDAB

1 + yA

∂yA
∂r

=
wA

4πr2

−cDAB ln(1 + yA) = − wA

4πr
+ C � (7.14)

where we have used the fact that S(r) = 4πr2.

We can determine the unknown integration constants wA  and C by substituting the boundary conditions 
into the expression for yA.. By doing this, we find

−cDAB ln(1 + yA∞) = C

0 = − wA

4πR
+ C, � (7.15)

which can be solved to give

C = −cDAB ln(1 + yA∞) � (7.16)

wA = −4πRcDAB ln(1 + yA∞) � (7.17)

Note that wA represents the rate at which oxygen is diffusing towards the coal particle. This is the same 
rate at which oxygen is being consumed by the combustion reaction.

By substituting the expressions for the integration constants back into the original expression for yA,  
we get

cDAB ln
1 + yA
1 + yA∞

= −4πRcDAB

4πr
ln(1 + yA∞)

ln
1 + yA
1 + yA∞

= −R

r
ln(1 + yA∞) � (7.18)

From the solution of this problem, we can also estimate how long it will take for the coal particle to 
completely react. Equation (7.17) tells us how quickly oxygen reacts to form CO. This is precisely twice 
the rate at which carbon atoms (coal) are consumed at the surface of the particle. Therefore, we have 
wC = 2wA.
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To determine the rate at which the coal particle is shrinking, we perform a mole balance for carbon. For 
a particle of radius R, the amount of carbon present is given by 4πR3cC/3, the volume of the particle 
times the molar density of carbon. The rate at which the particle shrinks is then given by:

∂

∂t

(
4πR3

3
cC

)
=wC

∂

∂t

(
4πR3

3
cC

)
=− 8πRcDAB ln(1 + yA∞)

cC
2
R
∂R

∂t
=− cDAB ln(1 + yA∞)

R2 =− 4cDABt

cC
ln(1 + yA∞) +R2

0 � (7.19)

where R0  is the initial radius of the particle. The time t required for the particle to disappear is

t =
cCR

2
0

4cDAB ln(1 + yA∞)
� (7.20)

7.4	 Diffusion with homogeneous reaction

In this example, we consider the absorption of species A from a gas phase into a liquid phase composed 
mostly of B (see Fig. 7.2). The mole fraction of A just inside the liquid phase (i.e., at z = 0) is equal 
to yA0.. At a distance δ beneath the surface of the liquid layer, there is an impenetrable solid wall. In 
addition to the diffusion of A in the liquid phase, there is also a first order reaction that converts species 
A to species C. The kinetics of this reaction are given by

σA = −k1cA

= −k1cyA � (7.21)

where σA is the rate of generation of A per unit volume, k1 is a kinetic constant, and c is the overall 
molar concentration of the liquid.

Figure 7.2: Absorption of A from a gas phase to a liquid phase.
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To begin the problem, we perform a species balance for A on a thin slab in the liquid. Because we are 
dealing with a steady-state problem, there is no accumulation in the slab. From the geometry of the 
problem, we assume there is only motion in the z-direction. So there is an influx of A from the left side 
of the slab and an outflux of A from the right side of the slab. Unlike the previous examples we considered 
in this handout, there is a chemical reaction that consumes A. Therefore, the balance equation is given by

0 = (NA,zS)z − (NA,zS)z+dz − (k1cyA)Sdz

0 = − 1

S

[
(NA,zS)z+dz − (NA,zS)z

dz

]
− (k1cyA) � (7.22)

Taking the limit dz → 0,

1

S

∂

∂z
(NA,zS) = −(k1cyA)

∂NA,z

∂z
= −k1cyA � (7.23)

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

Momentum, Heat, and Mass Transfer

48 

Examples of steady diffusion

We assume that B is stationary (i.e., NB  = 0). In addition, we assume that species C flows in the opposite 
direction of species A (i.e., NC = −NA). The absolute flux is then given by

NA,z = JA,z + yA(NA,z +NB,z +NC,z)

= JA,z + yA(NA,z + 0−NA,z)

= JA,z

= −cDAB
∂yA
∂z

� (7.24)

Putting this expression into Eq. (7.23)

− ∂

∂z
cDAB

∂yA
∂z

= −k1cyA

∂2yA
∂z2

= yA/l
2 � (7.25)

where l = (DAB/k1)
1/2.  This is a second-order, linear differential equation with constant coefficients. 

The general solution to this equation is given by

yA(z) = C1e
z/l + C2e

−z/l � (7.26)

where C1 and C2 are constants, which for the moment are unknown. The flux can be determined by 
substituting Eq. (7.26) into Eq. (7.24):

NA,z = −cDAB
∂yA
∂z

= −cDAB

l

(
C1e

z/l − C2e
−z/l

)
� (7.27)

We can determine the constants C1 and C2 by using the boundary conditions. At z = 0, we have 
yA = yA0,  which leads to

yA0 = C1 + C2 � (7.28)

Since the wall is impermeable to species A, the flux of A at z = δ must be zero:

NA,z(δ) = −cDAB

l

(
C1e

δ/l − C2e
−δ/l

)

0 = C1e
δ/l − C2e

−δ/l � (7.29)

http://bookboon.com/


Download free eBooks at bookboon.com

Momentum, Heat, and Mass Transfer

49 

Examples of steady diffusion

Equations (7.28) and (7.29) can be solved to give the coefficients C1 and C2

C1 = yA0
e−δ/l

eδ/l + e−δ/l
� (7.30)

C2 = yA0
eδ/l

eδ/l + e−δ/l
� (7.31)

Substituting these coefficients into Eq. (7.26), we find

yA(z) = yA0

[(
e−(δ−z)/l

eδ/l + e−δ/l

)
+

(
e(δ−z)/l

eδ/l + e−δ/l

)]

= yA0

[
e−(δ−z)/l + e(δ−z)/l

eδ/l + e−δ/l

]
= yA0

cosh(δ − z)/l

cosh δ/l
� (7.32)

To determine the rate at which A is absorbed from the gas phase, we need to determine the flux of A at 
the surface of the liquid. The flux is given by

NA,z(z) =− cDAB
∂yA
∂z

=− cDAB
yA0

l

[
e−(δ−z)/l − e(δ−z)/l

eδ/l + e−δ/l

]

=
cA0DAB

l

[
e(δ−z)/l − e−(δ−z)/l

eδ/l + e−δ/l

]

=
cA0DAB

l

sinh((δ − z)/l)

cosh(δ/l)
� (7.33)

where cA0  is the concentration of A at the left surface of the liquid at z = 0. The flux of A at the surface 
is given by

NA,z(z = 0) =
cA0DAB

l

sinh(δ/l)

cosh(δ/l)
� (7.34)

	

=
cA0DAB

(DAB/k1)1/2
sinh(δ/l)

cosh(δ/l)

=cA0 (k1DAB)
1/2 tanh(δ/l)� (7.35)

This is the rate (per unit area of liquid) at which A is absorbed from the gas phase.
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8	� Introduction to turbulence and 
non-linear dynamics

8.1	 Introduction

The equations that govern the flow of a fluid were developed in the previous sections. These are the 
continuity equation and the momentum balance equation.

∂ρ

∂t
= − ∂

∂xi
(ρvi)� (8.1)

∂ρvi
∂t

= − ∂

∂xj
(ρvjvi) +

∂τji
∂xj

− ∂p

∂xi
+ ρgi � (8.2)

In most situations that we will be interested in, the flows are much slower than the speed of sound. In 
these cases, the fluid can be considered incompressible (i.e., the density ρ is independent of position and 
time), even for a gas. For an incompressible fluid, the above equations reduce to:

∂vi
∂xi

= 0 � (8.3)

∂ρvi
∂t

= − ∂

∂xj
(ρvjvi) +

∂τji
∂xj

− ∂p

∂xi
+ ρgi � (8.4)
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In addition, for an incompressible Newtonian fluid, the shear stress is related to the velocity gradients by

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
� (8.5)

where µ is the viscosity of the fluid. Equations (8.3), (8.4), and (8.5) provide the exact description of the 
flow of incompressible fluids.

Let’s consider the flow of water through a pipe. If we examine, experimentally, the pressure drop as a 
function of the flowrate for this system, we find that at low flowrates (for Reynolds numbers less than 
2300), the flowrate is proportional to the pressure drop. That is, if we double the pressure drop in the 
pipe, we double the flowrate of water. We have already solved this problem in the Sec. 3, and this is 
exactly the result that we expect.

However, at high flowrates (with Reynolds numbers greater than about 2300), the flowrate is proportional 
to the square root of the pressure drop. That is, if we double the pressure drop in the pipe, the flowrate 
only increases by a factor of about 1.4. So a significant portion of the work that we are using to pump the 
water is not being converted to flow; it is lost. This is not the result that we expected from our solution 
of the Navier-Stokes equation.

What is going on? Are the Navier-Stokes equations that we solved in Sec. 3 incorrect? To get a better 
idea of what is happening, we consider Reynolds’ experiment. We inject a thin stream of dye into the 
center of a clear pipe, as shown in Fig. 8.1.

When we are at low flow rates, the stream of dye remains intact, in the same radial and angular position 
in the pipe as to where it was injected (see Fig. 8.1a). This is the behavior that we expect from our solution 
of the Navier-Stokes equation. The stream lines of the flow are well defined, and the dye traces one of 
these stream lines. This type of flow is known as laminar flow.
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Figure 8.1: Reynolds experiment: streamline in (a) laminar flow and (b) turbulent flow. Note that r is the radial 
distance from the center-line of the pipe, vz(r) is the fluid velocity at r , and v̄z(r)  is the time averaged 
velocity of the fluid.

When we are at high flow rates, the stream of dye behaves erratically (see Fig. 8.1b). Rather than 
remaining in the same radial and angular position within the pipe, it travels in a seemingly random 
path. In addition, the dye mixes with the rest of the water in the pipe much more rapidly than at low 
flow rates. So the “missing energy” (the pumping work that is not going into water flow) is going into 
the transient, “random” motion of the flow. This type of flow is known as turbulent flow.

The flow of Newtonian fluids, such as water or air, is governed by a set of differential equations. Therefore, 
these systems are deterministic. That means that if we know the state of the system at some point in 
time (i.e., the velocity and pressure throughout the system), then we can, in principle, predict the future 
behavior of the system at any time by solving the differential equations. In principle, this means that we 
could accurately predict the weather.

However, when we have turbulent flows, the system seems to behave randomly, which implies that we 
cannot predict the future behavior of the system. How do we resolve this contradiction?

8.2	 The logistic map

Part of the answer to this paradox is that non-linear equations can do very strange things! Actually, 
even extremely simple non-linear equations, much less complicated than the Navier-Stokes equations, 
can exhibit quite complex behavior.
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Let’s consider the dynamics of a very simple system: the logistic map. The logistic map was developed 
as a very simple model for growth (or shrinkage) of a population with time. It is a simple algebraic 
equation that relates xn,  the population in generation n, to xn+1,  the population in generation n+ 1:

xn+1 = rxn(1− xn) � (8.6)

The parameter r characterizes the growth rate. The logistic map balances the growth of a population 
against the competition between members of the population for resources. Given the initial size of the 
population (i.e., a value for x0), Eq. (8.6) can be used to predict the size of any future generation.

Now, let’s examine the behavior of logistic map. In our analysis, the initial size of the population x0 
will be restricted to a value between 0 and 1. As we will see, the dynamics of the logistic map depends 
crucially on the value of the parameter r .

For 0 < r < 1, xn  eventually approaches zero for any value of x0 between 0 and 1. Examples of the 
evolution of the logistic map with r  = 0.8 are shown in Fig. 8.2. The particular variation of xn with n 
depends on x0, howeve the value of xn as n → ∞ is always 0.
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Figure 8.2: Evolution of the logistic map for r  = 0.8 and (i) x0 = 0.2 (red circles),  
(ii) x0 = 0.5 (green circles), and (iii) x0 = 0.8 (blue circles).

In order to determine the possible steady-state values of the logistic map, we need to solve the equation

x∗ = rx∗(1− x∗) � (8.7)

This is a quadratic equation with two roots: x∗  = 0 and x∗  = (r  − 1)/r .

When 1 < r < 3, xn  no longer vanishes to 0 but instead eventually approaches the value (r  − 1)/r , 
independently of x0. For values of r  between 1 and 2, xn  approaches the asymptotic value monotonically. 
For values of r  between 2 and 3, xn  oscillates around its final asymptotic value, with the amplitude 
of the oscillations decaying with n. As the value of r  becomes closer to 3, the oscillations decay more 
slowly. Examples of the evolution of the logistic map with r  = 2.8 are shown in Fig. 8.3.
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Figure 8.3: Dynamics of the logistic map for r  = 2.8: (i) x0 = 0.2 (red circles),  
(ii) x0 = 0.5 (green circles), and (iii) x0 = 0.8 (blue circles).
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As the value of r  is increased to beyond 3, the logistic map begins to display a different type of steadystate 
behavior. Instead of settling to the single value (r  − 1)/r  at long times, it alternates between two distinct 
values. These values are dependent on the particular value of r , but they are independent of the initial 
condition (i.e., x0). Some examples of the evolution of the logistic map with r  = 3.3 is given in Fig. 8.4. 
This type of behavior persists for 3 < r < 1 +

√
6 ≈ 3.449.
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Figure 8.4: Dynamics of the logistic map for r  = 3.3: (i) x0 = 0.2 (red circles),  
(ii) x0 = 0.5 (green circles), and (iii) x0 = 0.8 (blue circles).
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What has happened to the steady state value at (r  − 1)/r? This value is still a fixed point of the map. That 
is, if we start the system exactly at the value (r  − 1)/r , then it will remain at that value. For r  < 3, we see 
that the system is attracted to the value (r  − 1)/r : for nearly all starting points, the system tends toward 
that value. This is what we call an attractive fixed point. However, when r  > 3, we find that (r  − 1)/r  
becomes a repulsive fixed point. Unless the system is precisely at the value (r  − 1)/r , it will eventually 
drift away from that point. The closer the system is to (r  − 1)/r , the longer it will stay near that value.

To illustrate this point, we consider a system that is very close to this unstable fixed point. In Fig. 8.5, 
the dynamics of the logistic map with r  = 3.3 is shown. The fixed point of this map is x∗  = 2.3/3.3.  
If we start the system with a value close to 2.3/3.3, then we see that the system appears to remain at that 
value. However, eventually it will drift to the stable period-2 oscillation which we observed previously. 
The closer the system is to x∗  = 2.3/3.3, the longer it takes for it to go to the steady-state oscillations.
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Figure 8.5: Dynamics of the logistic map for r  = 3.3: (a) x0 = 0.697 and (b) x0 = 0.6969697. 

Increasing r  to values greater than 1 +
√
6, the logistic map no longer settles to a steady state that 

oscillates between two values. Instead, the steady state oscillates between four values. This is referred to 
as period doubling. In Fig. 8.6, examples of the dynamics of the logistic map with r  = 3.5 are shown.
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Figure 8.6: Dynamics of the logistic map for r  = 3.5: (i) x0 = 0.2 (red circles),  
(ii) x0 = 0.5 (green circles), and (iii) x0 = 0.8) (blue circles).
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As the value of r  increases, the logistic map goes through a series of period doubling transitions. The 
rate of period doubling with r  increases. A summary of the values where period doubling occurs is 
given in Table 1.

Once r increases beyond a value of 3.569946 . . . , the logistic map is no longer periodic. In this case it 
becomes chaotic. The dynamics of the logistic map with r  = 4 is shown in Fig. 8.7. The dynamics of the 
system appears to be completely random.

The long time steady-state behavior that we have observed for the logistic map can be summarized in a 
bifurcation diagram, which can be seen on http://en.wikipedia.org/wiki/

r period
r1 = 3 2
r2 = 3.449 . . . 4
r3 = 3.54409 . . . 8
r4 = 3.5644 . . . 16
r5 = 3.568759 . . . 32
...

...
r∞ = 3.569946 . . . ∞

Table 1: Parameter values for period doubling of the logistic map.
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Figure 8.7: Dynamics of the logistic map for r = 4 and x0 = 0.2.

File:Logistic Bifurcation map High Resolution.png. The bifurcation diagram 
displays the values the logistic map attains at long times.

The time evolution of a system that is chaotic is extremely sensitive to the initial conditions. This makes 
the prediction of the precise trajectory of a chaotic system practically impossible. However, even though 
we cannot make statements about the precise time evolution of a system, in many cases we can make 
accurate predictions of the statistics of the system’s time evolution.
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For the logistic map with r  = 4, the fraction of time that the system has a particular value is shown in 
Fig. 8.8. This system is chaotic, but it can be shown that the distribution of the value of xn is given by 
the Beta distribution, which is defined as

p(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, � (8.8)

with the parameter values α = 1/2 and β = 1/2, and where Γ is the Gamma function. Therefore, even 
though we can not precisely describe the dynamics of a chaotic system, we can make predictions about 
its statistical behavior. This is an important point in trying to model turbulent flows.
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Figure 8.8: Probability distribution of observing a particular value of xn in the logistic map with r  = 4.
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9	� Statistical treatment 
of turbulence

9.1	 Introduction

In turbulent flows, the various properties of the fluid, such as the velocity, pressure, etc., vary in a very 
complicated manner with position and time. The instantaneous values of these properties appear to 
behave almost randomly with time. Luckily, however, we are generally not interested in the instantaneous 
properties of a fluid flow; rather, we want information on how the average properties vary. These average 
properties vary in a regular manner and can be modeled (at least approximately) even for a turbulent flow.
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9.2	 Brief overview of statistics

Before we can proceed, we need to define precisely what is meant by an “average property.” Consider the 
situation where we are trying to perform measurements on a turbulent flow. In order to obtain statistics 
for the measurement, we repeat the experiment N times. The time variation of the property f that we are 
measuring (e.g., pressure, velocity, etc.) will be different each time we measure it, due do slight differences 
in the initial conditions of the experiments. The average variation of the property f with time, which we 
denote as 〈f(t)〉, is defined as

〈f(t)〉 ≡ 1

N

N∑

i=1

fi(t)� (9.1)

where fi(t) is the time dependence of f measured during the ith experiment.

For a given experiment, the quantity f can always be written as a sum of two terms:

f(t) = 〈f(t)〉+ f ′(t)� (9.2)

where the first term is the average value of f , and the second term is the deviation of the quantity from 
its average value (note that in this case, f ′ is not the derivative of f ). If we take the average of both sides 
of the equation, we find

〈f(t)〉 = 〈f(t)〉+ 〈f ′(t)〉

〈f ′(t)〉 = 0
� (9.3)

which is just a statement of the fact that the average deviation of a property from its mean is zero. We will 
make frequent use of this fact shortly. Although the average of f ′ is zero, the average of f ′2  is generally 
not (i.e., 〈f ′2〉 �= 0). The larger the value of 〈f ′2〉 �= 0, the larger the fluctuations in the property.

9.3	 Reynold stresses

The various properties of a fluid can be written as the sum of an average value and an instantaneous 
fluctuation from the average

vi = 〈vi〉+ v′i � (9.4)

τij = 〈τij〉+ τ ′ij � (9.5)

p = 〈p〉+ p′ � (9.6)

Note that for a laminar flow, the fluctuations of the various properties are identically equal to zero  
(i.e., v′i = τ ′ij = p′ = 0).
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We are not directly interested in the instantaneous values vi, τij , and p of the flow, which are governed 
by the Navier-Stokes equation (see Eqs. (8.3)–(8.5)). We are only concerned in their average values (i.e., 
〈vi〉, 〈τij〉, and 〈p〉). So we need to develop the equations that govern the average properties. To do this, 
we just insert Eqs. (9.4)–(9.6) into the Navier-Stokes equations.

For the continuity equation, this becomes:

∂vi
∂xi

= 0

∂

∂xi
(〈vi〉+ v′i) = 0

Taking the average of both sides of the equation, we find

∂〈vi〉
∂xi

= 0 � (9.7)

where we have used the fact that 〈v′i〉 = 0. This is the same as the original equation, but now involves 
the average velocity rather than the instantaneous velocity.

The relationship between the stress and the velocity gradients becomes:

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)

〈τij〉+ τ ′ij = µ

(
∂

∂xj
(〈vi〉+ v′i) +

∂

∂xi
(〈vj〉+ v′j)

)

Taking the average of both sides of this equation, we find

〈τij〉 = µ

(
∂〈vi〉
∂xj

+
∂〈vj〉
∂xi

)
� (9.8)

where we have used the fact that 〈f ′〉 = 0. Again, we find that this is the same as the original equation, 
but with the instantaneous values replaced by their averages.

For the momentum equation, we find

∂ρvi
∂t

= − ∂

∂xj
(ρvjvi) +

∂τji
∂xj

− ∂p

∂xi
+ ρgi

∂

∂t
ρ(〈vi〉+ v′i) = − ∂

∂xj
ρ(〈vj〉+ v′j)(〈vi〉+ v′i) +

∂

∂xj
(〈τji〉+ τ ′ji)−

∂

∂xi
(〈p〉+ p′) + ρgi

∂

∂t
ρ(〈vi〉+ v′i) = − ∂

∂xj
ρ(〈vj〉〈vi〉+ v′j〈vi〉+ 〈vj〉v′i + v′jv

′
i)

+
∂

∂xj
(〈τji〉+ τ ′ji)−

∂

∂xi
(〈p〉+ p′) + ρgi � (9.9)
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Taking the time average of both sides of the equation, we find

∂ρ〈vi〉
∂t

= − ∂

∂xj
ρ(〈vj〉〈vi〉+ 〈v′jv′i〉) +

∂〈τji〉
∂xj

− ∂〈p〉
∂xi

+ ρgi

= − ∂

∂xj
ρ〈vj〉〈vi〉+

∂

∂xj
(〈τji〉 − ρ〈v′jv′i〉)−

∂〈p〉
∂xi

+ ρgi

= − ∂

∂xj
ρ〈vj〉〈vi〉+

∂

∂xj
(〈τji〉+ τ

(t)
ji )−

∂〈p〉
∂xi

+ ρgi � (9.10)

where τ (t)ij
 is known as the Reynolds stress and is given by

τ
(t)
ij = −ρ〈v′iv′j〉 � (9.11)

For the momentum equation, unlike the previous two equations, we find that instantaneous properties 
are not simply replaced by their average values. We actually have an extra stress term. This additional 
stress τ (t)ij

 is due to the turbulent motion of the fluid.

The average total stress 〈τij〉 within a fluid can, therefore, be decomposed into two contributions: (i) viscous 
forces 〈τij〉  and (ii) turbulent eddies τ (t)ij

τ totalij = 〈τij〉+ τ
(t)
ij � (9.12)

When the flow is laminar, then τ (t)ij
 = 0.
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In Fig. 9.1, we plot a typical velocity profile of a fluid in turbulent flow near a wall. The flow can be 
divided into three general regions: (i) the laminar sublayer (or viscous sublayer), (ii) the buffer layer, and 
(iii) the turbulent core. In the laminar sublayer, the flow is relatively slow, due to the no-slip boundary 
conditions imposed by the nearby wall. In this region of the flow, the level of turbulence is extremely 
low, and viscous stress is much greater than turbulent stress.

Away from the wall, however, the Reynolds stress dominates over viscous stress. This region is known as 
the turbulent core. In the region between the laminar sublayer and the turbulent core, viscous transport 
and turbulent transport of momentum play roughly equal roles. This region of the flow is known as 
the buffer layer. In general for a system in turbulent flow, most of the fluid is in the turbulent core. The 
laminar sublayer is typically only a thin slab near the wall; the thickness of this layer varies inversely 
with the Reynolds number.

Figure 9.1: Typical velocity profile for a system in turbulent flow conditions.

In order to get a feel for the relative contributions of the viscous and Reynolds stresses, we show a 
typical distribution of stress for the turbulent flow of a fluid through a pipe of radius R in Fig. 9.2. Near 
the wall of the pipe (located at r  = R), the viscous stresses dominate the flow. It is only when we move 
away to the pipe wall, do the turbulent stresses begin to make a significant contribution. The size of the 
region where the Reynolds stresses are significant depends on Reynolds number of the flow. The higher 
the Reynolds number, the large the region. For low Reynolds number where the flow is laminar, the 
Reynolds stresses make no contribution.
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Figure 9.2: Relative contribution of viscous 〈τrz〉 and Reynolds τ
(t)
rz  stresses as a 

function of radial position in a pipe.

In order to complete the description of turbulent flow, we need to relate the Reynold stress to other 
properties of the flow (e.g., velocity gradients, etc.). Unfortunately, this is not a simple task. For over a 
century, many attempts have been made to model turbulent flows; however, no completely satisfactory 
description of turbulence is currently available. In the next section, we will discuss a particularly simplistic, 
yet extremely useful, model of turbulence.
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10	� Approximate models 
for turbulence

10.1	 Introduction

In this section, we discuss some approximate methods to make predictions for turbulent flows.

10.2	 Boussinesq hypothesis or the mean-velocity field closure

According to Newton’s law of the viscosity, the shear stress is related to the velocity gradients

〈τij〉 = µ

(
∂〈vi〉
∂xj

+
∂〈vj〉
∂xi

)

Boussinesq suggested that the Reynolds stress can be described in an analogous manner to the viscous 
stresses:

τ
(t)
ij ≈ µ(t)

(
∂〈vi〉
∂xj

+
∂〈vj〉
∂xi

)
� (10.1)

where µ(t) is the eddy viscosity, which plays an analogous role to the viscosity µ for viscous stresses. The 
relation given in Eq. (10.1) is not exact. In many cases it is known to be a poor approximation; however, 
in general, it provides a reasonable description of turbulence and is the starting point of many theories.

Unlike the viscosity, the eddy viscosity is not simply a property of the fluid. That is, given the temperature 
and pressure of a fluid, one cannot specify the value of the eddy viscosity, as is the case for viscosity. 
The eddy viscosity is, in fact, dependent on the local flow conditions, and, consequently, its value varies 
with the position in the flow.

If we consider flow in a circular pipe, then the total stress in the fluid can be written as:

〈τrz〉+ τ (t)rz =τ totalrz

µ
∂〈vz〉
∂r

+ µ(t)∂〈vz〉
∂r

=τ totalrz

(µ+ µ(t))
∂〈vz〉
∂r

=τ totalrz � (10.2)
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where we have used the Boussinesq approximation for the Reynold stress. From this equation, we can 
see that the ratio of the eddy viscosity to the molecular viscosity is a measure of the relative contribution 
of viscous transport and turbulent transport of momentum. In Fig. 10.1, we plot µ(t)/µ as a function of 
radial position for turbulent flow in a circular pipe of radius R. From this plot we again see that viscous 
stresses dominate near the wall, while turbulent stresses dominate in most of the region away from the wall.

The Boussinesq hypothesis has essentially shifted the problem of determining the Reynolds stress τ (t)ij
 

to determining the eddy viscosity µ(t), which is a somewhat simpler problem since the eddy viscosity 
is a scalar quantity while the Reynolds stress is a tensor (matrix). However, the eddy viscosity is still an 
undetermined function of position, and so our description of turbulence is still incomplete.

Figure 10.1: Ratio of the eddy viscosity to the molecular viscosity as a function of radial position for a 
fluid in turbulent flow in a pipe of radius R.

10.3	 Prandtl mixing-length theory and von Kármán similarity hypothesis

In order to develop a simple model for the Reynolds stresses, let’s examine a turbulent flow with an average 
flow in the x-direction (see Fig. 10.2). In turbulent flow, the main structures are swirling eddies that 
spontaneously appear and then disappear due to dissipation. Prandtl assumed that these eddies would 
transport a subsection of fluid in the flow a distance l, known as the mixing length, before they disappear.
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For example, a piece of fluid that was located at position y  + l, with a velocity given by the average velocity 
of the flow 〈vx(y + l)〉 would be transported by the eddy to a position y , where the average velocity of 
the fluid is 〈vx(y)〉. Immediately after being transported, the velocity of this piece of fluid would differ 
from the average velocity of the surrounding fluid at position y . From this physical argument, we would 
expect the order of magnitude of the fluctuations in the x-component of the velocity v′x to be

v′x ∼ 〈vx(y + l)〉 − 〈vx(y)〉

∼ l
∂〈vx(y)〉

∂y
� (10.3)

where we have used the Taylor series expansion. The fluctuations in the y-component of the velocity

Figure 10.2: Illustration of Prandtl’s mixing length theory.

are expected to be of the same order of magnitude (i.e., v′y ∼ v′x).

Therefore, we expect

〈v′yv′x〉 ∼ l2
(
∂vx
∂y

)2

and so Prandtl’s expression for the Reynolds stress is

τ (t)yx = −ρ〈v′yv′x〉

= ρl2
∣∣∣∣
∂〈vx(y)〉

∂y

∣∣∣∣
∂〈vx(y)〉

∂y

� (10.4)
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Comparing this to the Boussinesq expression for the Reynolds stress, we can make the identification:

µ(t) = ρl2
∣∣∣∣
∂〈vx〉
∂y

∣∣∣∣ � (10.5)

We still have the difficulty of determining how the mixing length l depends on position. This mixing 
length physically represent, more or less, the size of the turbulent eddies. Away from the walls, we expect 
these can be fairly large; near a wall, however, these eddies are limited in size. von Kármán suggested 
that the mixing length is proportional to the distance y  from a surface.

l = κy � (10.6)

where κ is an empirical constant, which has been found to be approximately equal to 0.4. Note that 
the constant κ is independent of the geometry of the flow. With this relation, we now have a complete 
(although fairly crude) description of turbulent flow.

10.4	 Three-region model for momentum transport (universal velocity profile)

In this subsection, we will discuss the “universality” of the velocity profile of a turbulent flow. What we 
mean by this is that the velocity profile is to a large extent independent of the geometry of the flow (e.g., 
pipe diameter) and only depends on a few properties of the fluid.
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To begin, we examine the velocity profile of a fluid confined between two planes separated by a distance 
H. The bottom plane is stationary, while the upper plane is moving at a speed U in the x direction. In 
order to maintain the motion of the upper plane, a stress τw  must be applied. For this system, the flow 
is driven entirely by the motion of the upper plane, and there is no pressure gradient.

We perform a force (momentum) balance on a small slab of fluid of thickness dy, located at y above the 
bottom plane. The system is at steady state, so the forces acting on the slab must sum to zero.

0 = τ totalyx (y + dy)A− τ totalyx (y)A

0 =
1

A

[
τ totalyx (y + dy)A− τ totalyx (y)A

dy

]

� (10.7)

In the limit that dy  → 0, we find

1

A

∂τ totalyx A

∂y
= 0

∂τ totalyx

∂y
= 0 � (10.8)

where we have made use of the fact that the cross-subsectional area A is constant. This equation can be 
integrated to give

τ totalyx = τw

where the integration constant τw  is the shear stress at the wall. This equation states that the total shear 
stress in the problem is independent of position. For a system in turbulent flow condtions, the total 
shear stress is made up of two contributions: (i) a laminar contribution 〈τyx〉, and (ii) a “turbulent” 
contribution τ (t)yx , the Reynold stresses. Therefore, we have

〈τyx〉+ τ (t)yx = τw � (10.9)

Before we proceed any further in analyzing this problem, we need to identify the characteristic scales 
in the system. These characteristic scales determine how large or small a quantity is, with respect to the 
system. For example, we say that we are at a position “far from the wall”, this means that the distance 
from the wall is much greater than the characteristic length of the system.

The characteristic scales are based upon the physical properties of the system; in this case, these are the 
wall shear stress τw , the fluid density ρ, and the fluid viscosity µ. From these properties, we find that 
the characteristic velocity V̄  is

V̄ =

(
τw
ρ

)1/2
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and the characteristic length l̄  is

l̄ =
µ

√
τwρ

Very close to a wall in the laminar sublayer (when the distance from the wall is much less than the 
characteristic length), viscous transport of momentum dominates over turbulent transport. In this case, 
the force balance simplifies to:

〈τyx〉 ≈ τw

µ
∂〈vx〉
∂y

≈ τw � (10.10)

Integrating this equation, we find

〈vx〉 ≈
τw
µ
y � (10.11)

where the integration constant is equal to zero, due to the fact that the velocity must vanish at the wall. 
Introducing the dimensionless velocity 〈v+x 〉 = 〈vx〉/V̄  and the dimensionless distance y+ = y/l̄,  we 
find

〈v+x 〉 ≈ y+ � (10.12)

In this form, we see that the velocity profile in the laminar sublayer is actually independent on the nature of the 
fluid (i.e., the properties of the fluid) and the nature of the flow.

In the turbulent core, far from any walls, the Reynolds stress is much larger than the viscous stress  
(i.e., τ (t)yx � τyx).

Therefore, the viscous stress can be neglected:

τ (t)yx ≈ τw
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If we use the Boussinesq hypothesis along with the Prandtl mixing-length expression for the eddy 
viscosity, we find

µ(t)∂〈vx〉
∂y

≈ τw

ρl2
(
∂〈vx〉
∂y

)2

≈ τw

ρ(κy)2
(
∂〈vx〉
∂y

)2

≈ τw

∂〈vx〉
∂y

≈ 1

κy

(
τw
ρ

)1/2

〈vx〉 ≈ V̄

(
1

κ
ln y + C+

)

〈v+x 〉 ≈
1

κ
ln y + C+ � (10.13)

where C+ is an integration constant. Experimentally, we find κ ≈ 0.4 and C+ ≈ 5.5. Again, we find 
that the velocity profile is independent of the nature of the fluid and the nature of the flow.
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In summary, there are three different regions in turbulent flow past a surface. These are the laminar 
sublayer, the turbulent core, and the buffer layer (which interpolates between the previous two regions). 
The velocity profiles in each of these layers can be written in a “universal form,” which is independent 
of the nature of the fluid and the details of the flow:

laminar sublayer	 v+ = y+ 		  0 < y+ < 5

buffer layer		  v+ = 5 ln y+ − 3.05 	 5 < y+ < 30

turbulent core		 v+ = 2.5 ln y+ + 5.5 	 30 < y+

10.5	 Turbulent flow in a pipe

In this subsection, we will use the “universal velocity profile” developed in the previous subsection to 
get a relation between the friction factor and the Reynolds number for turbulent flow in a circular pipe 
with radius R. The thickness of the laminar sublayer is inversely proportional to the Reynolds number. 
Therefore, at very high flowrates, nearly all of the flow in a pipe should be occupied by the turbulent 
core. This means we can use the expression for the velocity profile obtained for the turbulent core as the 
velocity profile for the entire flow in the pipe.

v̄x =
1

πR2

∫ R

0
2πrdr〈vx(r)〉

=
2

R2

∫ R

0
rdrV̄

(
1

κ
ln

y

l̄
+ C+

)
� (10.14)

The coordinate y represents the distance from the wall. This is related to the coordinate r in the pipe by 
the relation y = R− r. Substituting the variable y  for the variable y , we find

v̄x =
2V̄

R2

∫ 0

R
(R− y)(−dy)

(
1

κ
ln

y

l̄
+ C+

)

= 2V̄

∫ 1

0
(1− ξ)dξ

(
1

κ
ln

ξR

l̄
+ C+

)

= V̄

(
1

κ
ln

R

l̄
+ C+ − 3/2

κ

)
� (10.15)

This expression can be written in a more familiar form by introducing the friction factor f and the 
Reynolds number Re. The Reynolds number is defined as

Re ≡ Dv̄xρ

µ
=

2Rv̄xρ

µ
� (10.16)

where D = 2R is the diameter of the pipe.

The friction factor is defined as

f ≡ ∆p

2ρv̄2x

D

L
� (10.17)
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This can be expressed in terms of the shear stress at the wall τw.. At steady state, the pressure force 
acting on the fluid should be precisely equal to the shear stress on the fluid due to the wall of the pipe.

∆p
πD2

4
= πDLτw

∆p = 4

(
L

D

)
τw � (10.18)

Substituting this into the definition of the friction factor, we get

f =
2τw
ρv̄2x

� (10.19)

If we insert the definition of the friction factor and the Reynolds number into Eq. (10.15), we find

1√
f/2

=
1

κ
ln

Re

2

√
f

2
+ C+ − 3/2

κ

1√
f
= 4.06 logRe

√
f − 0.60 � (10.20)

This relation was first derived by von Kármán.

Nikuradse empirically fit data from a series of flow experiments and found the following relation
1√
f
= 4.0 logRe

√
f − 0.40

So we see that the mixing length theory of Prandtl provides a reasonable description of turbulent pipe flow.
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11	� Turbulence in energy and 
mass transport

11.1	 Introduction

Thus far, we have only considered the effects of turbulence on momentum transport. However, turbulence 
also has a significant effect on the transport of energy and mass. We can derive the required relations 
for energy and mass transport in turbulent systems by following the same procedure we used for 
momentum transport.

11.2	 Energy transport

For an incompressible fluid, the energy balance equation can be written as

ρCv
∂T

∂t
= −ρCvvj

∂T

∂xj
− ∂qi

∂xi
+ τji

∂vi
∂xj

. � (11.1)

If we write all properties in terms of a sum of an average value and a fluctuation, we find

ρCv
∂

∂t
(〈T 〉+ T ′) = −ρCv(〈vj〉+ v′j)

∂

∂xj
(〈T 〉+ T ′)− ∂

∂xi
(〈qi〉+ q′i)

+ (〈τji〉+ τ ′ji)
∂

∂xj
(〈vi〉+ v′i). � (11.2)

Taking the time average of both sides of this equation, we find

ρCv
∂〈T 〉
∂t

= −ρCv〈vi〉
∂〈T 〉
∂xi

− ρCv

〈
v′i
∂T ′

∂xi

〉
− ∂〈qi〉

∂xi
+ 〈τji〉

∂〈vi〉
∂xj

+

〈
τ ′ji

∂v′i
∂xj

〉

= −ρCv〈vi〉
∂〈T 〉
∂xi

− ∂

∂xi

[
〈qi〉+ ρCv〈v′iT ′〉

]
+ 〈τji〉

∂〈vi〉
∂xj

+

〈
τ ′ji

∂v′i
∂xj

〉

= −ρCv〈vi〉
∂〈T 〉
∂xi

− ∂

∂xi

[
〈qi〉+ q

(t)
i

]
+ 〈τji〉

∂〈vi〉
∂xj

+

〈
τ ′ji

∂v′i
∂xj

〉
� (11.3)

The first term on the right side of the equation represents the transport of energy due to convection. 
The second term represents transport due to “conduction.” We will discuss this term later in more detail. 
The third term represents the conversion of kinetic energy to thermal energy (dissipation) due to the 
average flow of the fluid. The fourth and final term represents the conversion of the swirling motion of 
the turbulent eddies into thermal energy. The third and fourth terms in the energy balance equation are 
usually much smaller in magnitude to the other terms and, therefore, are neglected.
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In this case, we see that we have an additional contribution to the heat conduction term (i.e., the second 
term), due to turbulent mixing:

q
(t)
i = ρCv〈v′iT ′〉� (11.4)

In the case of laminar flow, this contribution vanishes (i.e., q(t)i = 0).

We can estimate the order of magnitude of the temperature fluctuations T´ by using the same arguments 
as Prandtl did for momentum transport. In this case, we find

T ′ ∼ 〈T (y + l)〉 − 〈T (y)〉

∼ l
∂〈T 〉
∂y

� (11.5)

Therefore, we would estimate that the turbulent contribution to heat conduction is given by

q(t)y = ρCvl
2

∣∣∣∣
∂〈vx〉
∂y

∣∣∣∣
∂〈T 〉
∂y

� (11.6)

where l is the Prandtl mixing length. As before, we have l = κy.

11.3	 Mass transport

As with momentum and energy transport, we can also develop an equation for the turbulent transport 
of mass. The balance equation for a particular species α in a multicomponent system is given by

∂cα
∂t

= − ∂

∂xi
(cαvα,i) + σα

= − ∂

∂xi
[cα(vα,i − vi)]−

∂

∂xi
(cαvi) + σα

= −∂Jα,i
∂xi

− ∂

∂xi
(cαvi) + σα

where Jα,i  is the ith component (i = x, y, or z)  of the diffusive flux for component α. Writing all 
properties in terms of an average value and a fluctuation, we find

∂

∂t
(〈cα〉+ c′α) = − ∂

∂xi
(〈Jα,i〉+ J ′

α,i)−
∂

∂xi
[(〈cα〉+ c′α)(〈vα,i〉+ v′α,i)] + σα

Taking the average of both sides of the equation, we find

∂〈cα〉
∂t

= − ∂

∂xi
(〈cα〉〈vα,i〉)−

∂

∂xi

(
〈Jα,i〉+ 〈c′αv′α,i〉

)
+ 〈σα〉
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If we make the additional assumption that the overall molar concentration c is constant, then we have:

∂〈cα〉
∂t

= − ∂

∂xi
(c〈yα〉〈vα,i〉)−

∂

∂xi

(
〈Jα,i〉+ c〈y′αv′α,i〉

)
+ 〈σα〉 � (11.7)

where yα  is the mole fraction of species α.

As in the case of momentum and energy transport, an additional term appears in this equation that is 
related to the transport of species α due to turbulent fluctuations in the fluid:

J
(t)
α,i = c〈y′αv′α,i〉� (11.8)

The order of magnitude of the concentration fluctuations y′α can be estimated by using the same 
arguments used to obtain the velocity and temperature fluctuations:

y′α ∼ 〈yα(y + l)〉 − 〈yα(y)〉

∼ l
∂〈yα〉
∂y

� (11.9)

With this result, we can write

J (t)
y = cl2

∣∣∣∣
∂〈vx〉
∂y

∣∣∣∣
∂〈yα〉
∂y

� (11.10)

 

  

 

                . 
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12	 Boundary layer theory
12.1	 Flowpast objects: Boundary layers

In this section, we will study the transfer of momentum, heat, and mass from an object immersed in 
a flowing fluid. To begin, we will first focus on the flow of a fluid past a stationary object. Consider 
a stationary object that is submerged in a moving fluid. Far from the object, the fluid has a uniform 
velocity U, which is constant in the direction perpendicular to the surface of the object; the velocity of 
the fluid parallel to the surface of the object may vary (i.e., U is a function of x and independent of y). 
In this region, viscosity plays very little role in the flow of the fluid.

At the surface of the object, the velocity of the fluid must be zero, due to the no-slip boundary condition. 
Near the surface of the object, viscosity plays a major role in determining the flow of the fluid. As a 
result, the object influences the flow of the fluid.

Figure 12.1: Boundary layer for flow past a flat plate.

We define a boundary layer, which divides the flow into an inner and outer region. At the surface of the 
boundary layer, the velocity of the fluid is 99% of the velocity of the fluid far from the object (i.e., at the 
edge of the boundary layer, vx  = 0.99U). Outside the boundary layer, the object has very little influence 
on the flow of the fluid; viscous forces are insignificant. Inside the boundary layer, viscous forces play a 
significant role, and the flow of the fluid is strongly influenced by the presence of the object.

A schematic drawing of the flow past a flat plate is shown in Fig. 12.1. At the leading edge of the plate, 
the boundary layer thickness is zero. The boundary layer thickness increases as we head further into the 
plate. In this part of the boundary layer, the flow is laminar. However, as we pass a critical distance into 
the plate, the flow inside the boundary layer suddenly becomes turbulent. This transition to turbulent 
flow is accompanied by a rapid increase in the thickness of the boundary layer. This general type of 
behavior is observed in flow past objects of almost any shape.

In this section, we will develop approximate methods for determining the flow past objects. In addition, 
we will also study the transfer of heat and mass from objects submerged in a flowing fluid.
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12.2	 Boundary layer theory

The general equations that govern the steady-state, two-dimensional flow of an incompressible fluid are 
(these can be derived from equations from the previous sections)

 	
∂vx
∂x

+
∂vy
∂y

= 0 � (12.1)

ρvx
∂vx
∂x

+ ρvy
∂vx
∂y

= µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
− ∂p

∂x
� (12.2)

ρvx
∂vy
∂x

+ ρvy
∂vy
∂y

= µ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
− ∂p

∂y
� (12.3)

Equation (12.1) describes the conservation of mass, Eq. (12.2) is the balance equation for the y

component of the momentum of the fluid, and Eq. (12.3) is the balance equation for the y-component 
of the momentum.

These equations are very difficult to solve, and, in general, the solution cannot be written in closed, 
analytical form. In most cases, “brute force” numerical methods must be used. However, if we use some 
physical insight, we can simplify these equations and rearrange them in a form where we can obtain 
accurate, analytical approximations to the problem.

12.2.1	 Outer flow

Very far from the surface of the object, the velocity of the fluid does not vary in the y-direction. As a 
result, the viscous stresses in the fluid do not play an important role in determining the flow; consequently, 
the viscous terms in the equation of motion can be neglected. The resulting equation that governs the 
outer flow then simplifies to

ρU
∂U

∂x
= −∂p

∂x
� (12.4)

12.2.2	 Inner flow

Inside the boundary layer, viscous forces play a significant role. In order to simplify the equations of 
motion in this region, we need to determine the relative contribution of each of the terms in Eqs. (1.11)–
(12.3). The relevant properties of the flow inside the boundary layer are: the bulk velocity of the fluid 
U, the fluid viscosity µ, the fluid density ρ. Another property is the thickness δ of the boundary layer, 
which sets the characteristic length in the y-direction. In addition, we assume there is a characteristic 
length L in the x-direction (e.g., length of the plate). We make the assumption that δ/L � 1.
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In order to determine the relative magnitudes of the properties of the fluid, it is convenient to work in 
dimensionless variables. We define dimensionless variables by scaling by the characteristic properties:

x+ =
x

L

y+ =
y

δ

v+x =
vx
U

v+y =
vy
V

p+ =
p

Π

where V is a characteristic velocity in the y-direction, and Π is a characteristic pressure, both of which 
are presently unknown. Each of the dimensionless variables that we have defined are all of the same 
order of magnitude: they are all of order one. In addition, any derivatives of these dimensionless variables 
with other dimensionless variables are also expected to be of order one.

If we substitute the dimensionless variables into Eq. (1.11), we find

U

L

∂v+x
∂x+

+
V

δ

∂v+y
∂y+

= 0

∂v+x
∂x+

+
V

U

L

δ

∂v+y
∂y+

= 0

Because we know that the dimensionless variables are all of order one, the only way we can satisfy this 
equation is if we have

V ∼ U
δ

L

In other words, the vertical component of the velocity of the fluid inside the boundary layer is extremely 
small (of order δ/L) compared with the horizontal velocity of the fluid. This sets the characteristic velocity 
in the y-direction.

Now we express Eq. (12.2) in terms of dimensionless variables:

ρU2

L
v+x

∂v+x
∂x+

+
ρUV

δ
v+y

∂v+x
∂y+

=
µU

δ2

(
δ2

L2

∂2v+x
∂x+2

+
∂2v+x
∂y+2

)
− Π

L

∂p+

∂x+

v+x
∂v+x
∂x+

+
V

U

L

δ
v+y

∂v+x
∂y+

=
µ

ρUδ

L

δ

(
δ2

L2

∂2v+x
∂x+2

+
∂2v+x
∂y+2

)
− Π

ρU2

∂p+

∂x+

v+x
∂v+x
∂x+

+ v+y
∂v+x
∂y+

=
µ

ρUδ

L

δ

(
δ2

L2

∂2v+x
∂x+2

+
∂2v+x
∂y+2

)
− Π

ρU2

∂p+

∂x+
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The first two terms on the left side of the equation represent convective momentum transport. Far from 
the surface, they dominate the flow (along with the pressure term). The first term on the right side of the 
equation represents the viscous contributions to the momentum transport. Far from the surface, these 
are negligible; however, in the boundary layer, these should contribute significantly to the momentum 
transport. Consequently, we expect:

µ

ρUδ

L

δ
∼ 1

δ ∼ L

(
ρUL

µ

)−1/2

This gives us an estimate of the boundary layer thickness. Here we see that δ varies inversely with the 
square root of the Reynolds number. From the assumption that δ/L � 1, we find that the ∂2v+x /∂x

+2  
term is negligible compared to the ∂2v+y /∂y

+2 term.

We expect that the contribution of the pressure term to be the same order of magnitude as the convective 
and viscous terms; therefore, we have

Π

ρU2
∼ 1

Π ∼ ρU2
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From this order of magnitude analysis, we find that, inside the boundary layer, Eq. (12.2) can be 
approximated as

ρvx
∂vx
∂x

+ ρvy
∂vx
∂y

≈ µ
∂2vx
∂y2

− ∂p

∂x
� (12.5)

Now, we proceed to Eq. (12.3)

ρUV

L
v+x

∂v+y
∂x+

+
ρV 2

δ
v+y

∂v+y
∂y+

=
µV

δ2

(
δ2

L2

∂2v+y
∂x+2

+
∂2v+y
∂y+2

)
− Π

δ

∂p+

∂y+

v+x
∂v+y
∂x+

+
V

U

L

δ
v+y

∂v+y
∂y+

=
µ

ρUδ

L

δ

(
δ2

L2

∂2v+y
∂x+2

+
∂2v+y
∂y+2

)
− Π

ρU2

L

δ

∂p+

∂y+

v+x
∂v+y
∂x+

+ v+y
∂v+y
∂y+

=

(
δ2

L2

∂2v+y
∂x+2

+
∂2v+y
∂y+2

)
− L

δ

∂p+

∂y+

From this equation, we note that the pressure term is much larger than any of the other terms. Therefore, 
we can approximate Eq. (12.3) as

∂p

∂y
≈ 0 � (12.6)

In other words, the pressure is approximately constant in a vertical direction through the boundary 
layer. This means that the pressure inside the boundary layer can be obtained directly from the velocity 
U of the outer flow from Eq. (12.4).

To summarize the results of this subsection, the boundary layer equations for flow past a submerged 
object are

∂vx
∂x

+
∂vy
∂y

= 0 � (12.7)

vx
∂vx
∂x

+ vy
∂vx
∂y

≈ ν
∂2vx
∂y2

+ U
∂U

∂x
� (12.8)

∂p

∂y
≈ 0 � (12.9)
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12.3	 von Kármán momentum integral analysis

Although the boundary layer equations (see Eqs. (12.7)–(12.9)) are significantly simpler than the full 
equations of motion of the fluid (see Eqs. (12.1)–(12.3)), they are still quite difficult to solve. In many 
cases, however, we are not interested in the full, detailed solution of these equations (e.g., the local velocity 
of the fluid at every point in the system), but only in a few “global” properties (e.g., the drag of the fluid 
on the object). von Kármán developed an elegant method for using the boundary layer equations to 
estimate the drag force on an object submerged in a flowing fluid. This method is known as the “von 
Kármán momentum integral analysis”.

We start by using the continuity equation, Eq. (12.7), to express the y-component of the velocity in 
terms of the x-component of the velocity:

∂vx
∂x

+
∂vy
∂y

= 0

∂vy
∂y

= −∂vx
∂x

vy = −
∫ y

0
dy′

∂vx
∂x

� (12.10)

where we have used the fact that vy = 0  at y = 0. Therefore, if we have an expression for vx(y),, we can 
use the above equation to determine vy(y).

Now, we integrate the x-momentum equation across the boundary layer. That is, we integrate Eq. (12.8) 
with respect to y  from 0 to δ(x). This yields:

∫ δ

0
dy

[
vx

∂vx
∂x

+ vy
∂vx
∂y

]
≈

∫ δ

0
dy

[
ν
∂2vx
∂y2

+ U
∂U

∂x

]

∫ δ

0
dy

[
vx

∂vx
∂x

−
(∫ y

0
dy′

∂vx
∂x

)
∂vx
∂y

]
≈

∫ δ

0
dy

[
ν
∂2vx
∂y2

+ U
∂U

∂x

]

−ν

∫ δ

0
dy

∂2vx
∂y2

≈ −
∫ δ

0
dyvx

∂vx
∂x

+

∫ δ

0
dy

(∫ y

0
dy′

∂vx
∂x

)
∂vx
∂y

+

∫ δ

0
dyU

∂U

∂x
� (12.11)
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The left side of Eq. (12.11) can be expressed in terms of the shear stress at the wall:

−ν

∫ δ

0
dy

∂2vx
∂y2

= −1

ρ

∫ δ

0
dy

∂

∂y

(
µ
∂vx
∂y

)

= −1

ρ

∫ δ

0
dy

∂τyx
∂y

= −1

ρ
[τyx(δ)− τyx(0)]

=
τw
ρ

where τw = τyx(0). The second term on the right side of Eq. (12.11) can be simplified as follows:

∫ δ

0
dy

(∫ y

0
dy′

∂vx
∂x

)
∂vx
∂y

=

[(∫ y

0
dy′

∂vx
∂x

)
vx

]δ

0

−
∫ δ

0
dy

∂vx
∂x

vx

= vx(δ)

∫ δ

0
dy′

∂vx
∂x

−
∫ δ

0
dy

∂vx
∂x

vx

= U

∫ δ

0
dy

∂vx
∂x

−
∫ δ

0
dy

∂vx
∂x

vx

=

∫ δ

0
dy

∂vx
∂x

(U − vx)
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where we have used the facts that vx(δ) ≈ U  and vx(0) = 0  (i.e., no-slip boundary condition).

Combining all these relations, we find that Eq. (12.11) can be written as

τw
ρ

≈ −
∫ δ

0
dyvx

∂vx
∂x

+

∫ δ

0
dy

∂vx
∂x

(U − vx) +

∫ δ

0
dyU

∂U

∂x

≈
∫ δ

0
dyvx

∂

∂x
(U − vx) +

∫ δ

0
dy

∂vx
∂x

(U − vx) +

∫ δ

0
dy(U − vx)

∂U

∂x

≈
∫ δ

0
dy

∂

∂x
[vx(U − vx)] +

∂U

∂x
U

∫ δ

0
dy

(
1− vx

U

)

≈ ∂

∂x

∫ δ

0
dy[vx(U − vx)] + [vx(δ)(U − vx(δ))]

∂δ

∂x
+

∂U

∂x
U

∫ δ

0
dy

(
1− vx

U

)

≈ ∂

∂x

[
U2

∫ δ

0
dy

vx
U

(
1− vx

U

)]
+

∂U

∂x
U

∫ δ

0
dy

(
1− vx

U

)
� (12.12)

where we have used the fact that vx(δ) ≈ U .

To simplify the notation, we define the displacement thickness δ1  and momentum thickness δ2:

δ1(x) =

∫ δ(x)

0
dy

(
1− vx

U

)

δ2(x) =

∫ δ(x)

0
dy

vx
U

(
1− vx

U

)

So finally we have

τw(x)

ρ
≈ ∂

∂x
[U2(x)δ2(x)] + δ1(x)U(x)

∂U(x)

∂x
� (12.13)

If we knew the expression for the velocity profile as a function of y  (i.e., vx(y)), then we could substitute 
it into Eq. (12.13) to determine the shear stress on the wall. von Kármán suggested that instead of using 
the exact velocity profile, which is unknown before we solve the full boundary layer equations, we could 
use a guess for the velocity profile. The more accurate the guess for the velocity profile, the more accurate 
the estimate for the drag on the wall.

The boundary conditions of the flow can be used to get an idea of the general shape of the velocity profile:

vx = 0 at y = 0

vx = U at y = δ

∂vx
∂y

= 0 at y = δ

µ
∂2vx
∂y2

=
∂p

∂x
at y = 0
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The first boundary condition is just the no-slip condition at the surface of the object. The second and 
third boundary conditions arise from the fact that the velocity profile inside the boundary layer must 
smoothly approach that of the outer flow as y  approaches δ, the boundary layer thickness. The final 
boundary condition follows from Eq. (12.8) and the facts vx = vy = 0  at the surface of the object 
(i.e., at y  = 0).

The four boundary conditions give us four sets of constraints that can be applied to any guess we make 
for our velocity profile. This means that if we choose a velocity profile with several free parameters, the 
boundary conditions can be used to specify four of these parameters. For example, if we choose the 
following cubic polynomial to represent the velocity profile:

vx
U

= c0 + c1
y

δ
+ c2

(y
δ

)2
+ c3

(y
δ

)3
� (12.14)

we can use the boundary conditions to set the vaules of the parameters c0, c1, c2, and c3.

12.3.1	 Flow past a flat plate

In this subsection, we will apply the von Kármán integral analysis to uniform flow past a flat plate. In 
this case, the outer flow is U = const, and, therefore, the pressure gradient is zero (i.e., ∂p/∂x = 0). If 
we choose to use the velocity profile given in Eq. (12.14), the coefficients can be determined by using 
the four boundary conditions to yield:

vx
U

=
3

2

(y
δ

)
− 1

2

(y
δ

)3
� (12.15)

Given that we know the velocity profile, we can determine the shear stress at the wall from Newton’s 
law of viscosity:

τw = τyx(0)

= µ
∂vx
∂y

∣∣∣∣
y=0

=
3µ

2

U

δ
� (12.16)

In addition, the momentum thickness δ2  can be determined:

δ2(x) =

∫ δ(x)

0
dy

vx
U

(
1− vx

U

)

=

∫ δ(x)

0
dy

[
3

2

(y
δ

)
− 1

2

(y
δ

)3
] [

1− 3

2

(y
δ

)
+

1

2

(y
δ

)3
]

= δ

∫ 1

0
dξ

(
3

2
ξ − 1

2
ξ3
)(

1− 3

2
ξ +

1

2
ξ3
)

=
39

280
δ(x) � (12.17)

where ξ = y/δ.
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Substituting both these relations into the von Kármán integral relation, Eq. (12.13), we find a differential 
equation for the boundary layer thickness δ(x)

τw
ρ

≈ ∂

∂x
[U2δ2] +

∂U

∂x
Uδ1

3µ

2ρ

U

δ(x)
≈ U2∂δ2(x)

∂x
=

39

280
U2∂δ(x)

∂x

δ(x)
∂δ(x)

∂x
≈ 140ν

13U
∂δ2(x)

∂x
≈ 280ν

13U
� (12.18)

This equation can be integrated to give

δ(x) ≈
√

280

13

(
U

νx

)−1/2

� (12.19)

where we have used the fact that δ = 0 at x = 0. This should be compared with the exact result:

δ(x) ≈ 5.0

(
U

νx

)−1/2

� (12.20)

Now that we know how the boundary layer thickness varies with the position on the plate, we can 
determine the local shear stress on the wall

τw(x) =
3µ

2

U

δ(x)

=
3µU

2

√
13

280

(
U

νx

)1/2

=

√
117

1120
µU

(
U

νx

)1/2

� (12.21)

The total force F on the wall is

F = W

∫ L

0
dxτw(x)

= W

∫ L

0
dx

√
117

1120
µU

(
U

νx

)1/2

= W

√
117

1120
µU

(
U

ν

)1/2

2L1/2

= W

√
117

280
µU

(
UL

ν

)1/2

� (12.22)

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Momentum, Heat, and Mass Transfer

87 

Boundary layer theory

If we define a drag coefficient CD  and a Reynolds number as

CD =
F/(LW )

ρU2/2

Re =
UL

ν

then we find the relation

CD =

√
117

70
Re−1/2 � (12.23)

The exact solution to the boundary layer equations gives a prefactor of 1.328, which differs from our 
approximate result by about 3%. So our simple analysis gives a fairly accurate prediction of the drag on the plate.
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13	� Boundary layers in energy and 
mass transport

13.1	 Transport of energy

The boundary layer method that was developed in the previous section to determine the flow across an 
object submerged in a fluid can be extended to study heat transfer. If we assume that the temperature 
at the surface of the object Tw  differs from the temperature of the bulk fluid T∞,  then there will be 
heat flow between the object and the fluid. The energy balance equation for an incompressible fluid in 
a steady state, two-dimensional flow is given by

ρCvvj
∂T

∂xj
= k

∂

∂xi

∂T

∂xi
+ τji

∂vi
∂xj

� (13.1)

The final term on the left side of the equation represents the conversion of kinetic energy to thermal 
energy. This term is typically much smaller than the other terms in the equation, and so we neglect it. 
Therefore, the equations that we deal with for a two-dimensional flow are given by

vx
∂T

∂x
+ vy

∂T

∂y
=

k

ρCv

(
∂2T

∂x2
+

∂2T

∂y2

)

vx
∂T

∂x
+ vy

∂T

∂y
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
� (13.2)

where α = k/(ρCv) is the thermal diffusivity.

We can perform the same order of magnitude analysis for the energy equation as we did for the momentum 
equation. In this case, however, we need to define a dimensionless temperature T+  as

T+ =
T − Tw

T∞ − Tw

Expressing the energy equation in dimensionless form leads to

U

L
v+x

∂T+

∂x+
+

V

δ
v+y

∂T+

∂y+
=

α

δ2

(
δ2

L2

∂2T+

∂x+2
+

∂2T+

∂y+2

)
� (13.3)

v+x
∂T+

∂x+
+

V

U

L

δ
v+y

∂T+

∂y+
=

α

Uδ

L

δ

(
δ2

L2

∂2T+

∂x+2
+

∂2T+

∂y+2

)
� (13.4)

v+x
∂T+

∂x+
+ v+y

∂T+

∂y+
=

α

Uδ

L

δ

(
δ2

L2

∂2T+

∂x+2
+

∂2T+

∂y+2

)
� (13.5)

http://bookboon.com/


Download free eBooks at bookboon.com

Momentum, Heat, and Mass Transfer

89 

�Boundary layers in energy and mass transpor     

We find that the first term on the right side of the equation is negligible compared to the second term; 
therefore, we find that the boundary layer equation for the balance of energy is

vx
∂T

∂x
+ vy

∂T

∂y
≈ α

∂2T

∂y2
� (13.6)

13.1.1	 Approximate integral analysis

Equation (13.6) is a partial differential equation for the temperature T in the fluid, and, in general, it can 
not be solved analytically. So, we will extend the von Kármán integral analysis of the previous subsection 
to apply to the transport of energy. This will allow us to obtain an estimate of the heat transfer coefficient 
from the object.

The first step is to integrate Eq. (13.6) across the thermal boundary layer of the system. The thickness of 
this boundary layer δt(x) is defined as the distance from the surface of the object at which T+ = 0.99. 
This thickness is not necessarily the same as the momentum boundary layer thickness (i.e., δt(x) �= δ(x)). 
Performing this integration, we find

∫ δt

0
dy

[
vx

∂T

∂x
+ vy

∂T

∂y

]
≈

∫ δt

0
dyα

∂2T

∂y2
∫ δt

0
dyvx

∂T

∂x
−

∫ δt

0
dy

(∫ y

0
dy′

∂vx
∂x

)
∂T

∂y
≈ α

[
∂T (δt)

∂y
− ∂T (0)

∂y

]

∫ δt

0
dyvx

∂T

∂x
−

(∫ δt

0
dy′

∂vx
∂x

)
T (δt) +

∫ δt

0
dy

∂vx
∂x

T ≈ − k

ρCv

∂T (0)

∂y
∫ δt

0
dyvx

∂T

∂x
+

∫ δt

0
dy

∂vx
∂x

[T − T∞] ≈ − k

ρCv

∂T (0)

∂y
∫ δt

0
dy

∂

∂x
[vx(T − T∞)] ≈ qw

ρCv

where we have used the fact that T ≈ T∞ and ∂T/∂y ≈ 0  at y = δt.  This equation can be rearranged 
to yield

qw
ρCv

≈ ∂

∂x

[
U(T∞ − Tw)

∫ δt

0
dy

vx
U

(
T − T∞
T∞ − Tw

)]

−qw/(T∞ − Tw)

ρCv
≈ ∂

∂x

[
U

∫ δt

0
dy

vx
U

(
1− T − Tw

T∞ − Tw

)]
� (13.7)
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If we knew the temperature profile in the system, we could use Eq. (13.7) to determine the rate of heat 
transfer between the object and the surrounding fluid. We can guess a form for the temperature profile, 
as we did for the velocity profile. The better the guess, the better the estimate for the rate of heat transfer. 
To aid in developing a good guess, we note the following boundary conditions for the temperature profile

T = Tw at y = 0

T = T∞ at y = δ

∂T

∂y
= 0 at y = δ

∂2T

∂y2
= 0 at y = 0

The last boundary conditions follows from Eq. (13.6) and the fact that vx = vy  = 0 when y  = 0.

13.1.2	 Flow across a flat plate

In this subsection, we determine the rate of heat transfer between a fluid at temperature T∞,  flowing 
at velocity U across a flat plate at temperature Tw . A simple estimate for the temperature profile that 
statisfies all four of the boundary conditions is:

T − Tw

T∞ − Tw
=

3

2

(
y

δt

)
− 1

2

(
y

δt

)3

� (13.8)
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With this estimate for the temperature, we can determine the heat flux qw  from the surface of the plate:

qw = −k
∂T

∂y

∣∣∣∣
y=0

= − 3k

2δt
(T∞ − Tw)

qw
T∞ − Tw

= − 3k

2δt
� (13.9)

If we substitute Eq. (13.8) into Eq. (13.7), we find

−qw/(T∞ − Tw)

ρCv
≈ ∂

∂x

[
U

∫ δt

0
dy

vx
U

(
1− T − Tw

T∞ − Tw

)]

3k

2δtρCv
≈ ∂

∂x

{
U

∫ δt

0
dy

[
3

2

(y
δ

)
− 1

2

(y
δ

)3
] [

1− 3

2

(
y

δt

)
+

1

2

(
y

δt

)3
]}

3α

2δt
≈ ∂

∂x

{
Uδt

∫ 1

0
dξ

[
3

2

(
δt
δ

)
ξ − 1

2

(
δt
δ

)3

ξ3

] [
1− 3

2
ξ +

1

2
ξ3
]}

≈ ∂

∂x

{
Uδt

[
3

20

(
δt
δ

)
− 3

280

(
δt
δ

)3
]}

� (13.10)

The thermal boundary layer thickness is proportional to the momentum boundary layer thickness; 
therefore, we can write

δt(x) = Kδ(x)

where K is a constant that we will determine later. If we substitute this relation into Eq. (13.10), we find

3α

2δt
≈ 3

20
K

(
1− K2

14

)
U
∂δt(x)

∂x

α

Kδ(x)
≈ K2

10

(
1− K2

14

)
U
∂δ(x)

∂x

α

K

√
13

280

(
U

νx

)1/2

≈ K2

10

(
1− K2

14

)
U

√
280

13

( ν

U

)1/2 x−1/2

2

K3

(
1− K2

14

)
≈ 13

14

α

ν
=

13

14

1

Pr
� (13.11)

where Pr = ν/α  is the Prandtl number, and we have substituted the expression for δ(x) given in Eq. 
(12.19). For a given Prandtl number, Eq. (13.11) can be solved to determine K, the ratio of the thermal 
boundary layer thickness to the momentum boundary layer thickness.

For most fluids, the Prandtl number ranges from about order 1 to up to order 103. In this range, 
K2/14 � 1, and Eq. (13.11) can be approximately solved explicitly for K:

K ≈
(
13

14

)1/3

Pr−1/3 + · · ·
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The thickness of the thermal boundary layer is given by

δt(x) = Kδ(x)

= K

√
280

13

(
U

νx

)−1/2

≈
√

280

13

(
13

14

)1/3

Pr−1/3

(
U

νx

)−1/2

� (13.12)

The local heat flux qw  from the plate can be determined from δt(x) by using Eq. (13.9)

− qw
T∞ − Tw

=
3k

2δt(x)

qw/(Tw − T∞)

k
=

3

2K

√
13

280

(
U

νx

)1/2

=
3

2

√
13

280

(
14

13

)1/3

Pr1/3
(

U

νx

)1/2

� (13.13)

The total rate of heat lost Q over the surface of the entire plate can be determined by integrating the 
heat flux

Q = W

∫ L

0
dxqw(x)

= Wk(Tw − T∞)

∫ L

0
dx

3k

2

√
13

280

(
14

13

)1/3

Pr1/3
(

U

νx

)1/2

Q/(Tw − T∞)

kW
= 3

√
13

280

(
14

13

)1/3

Pr1/3
(
UL

ν

)1/2

=

√
117

280

(
14

13

)1/3

Pr1/3Re1/2 � (13.14)

The average heat transfer coefficient h is

Q

WL
= h(Tw − T∞)

If we define the Nusselt number Nu as

Nu =
hL

k

then we find the relation

Nu =

√
117

280

(
14

13

)1/3

Pr1/3Re1/2 � (13.15)
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13.2	 Transport of mass

Let’s consider the problem where we have a fluid with species A dissolved at concentration cA,∞  flowing 
at velocity U past an object. At the surface of the object, the concentration of A is cA,w. In this situation, 
there will be transfer of species A between the surface of the object and the bulk fluid.

In direct analogy with the boundary layer equation for energy, we can develop a boundary layer equation 
for the transport of A:

vx
∂cA
∂x

+ vy
∂cA
∂y

≈ DAB
∂2cA
∂y2

� (13.16)
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To determine the rate of transfer of species A, we can extend the von Kármán integral analysis to Eq. 
(13.16). In this case, we integrate the mass transfer equation across the concentration boundary layer of 
the system. The thickness δc  of this boundary layer is different from both the momentum and thermal 
boundary layers (i.e., δc(x) �= δ(x)  and δc(x) �= δt(x)).  Integrating Eq. (13.16), we find

∫ δc

0
dy

[
vx

∂cA
∂x

+ vy
∂cA
∂y

]
≈

∫ δc

0
dyDAB

∂2cA
∂y2

∫ δc

0
dyvx

∂cA
∂x

−
∫ δc

0
dy

(∫ y

0
dy′

∂vx
∂x

)
∂cA
∂y

≈ DAB

[
∂cA(δc)

∂y
− ∂cA(0)

∂y

]

∫ δc

0
dyvx

∂cA
∂x

−
(∫ δc

0
dy′

∂vx
∂x

)
cA(δc) +

∫ δc

0
dy

∂vx
∂x

cA ≈ −DAB
∂cA(0)

∂y
∫ δc

0
dyvx

∂cA
∂x

+

∫ δc

0
dy

∂vx
∂x

[cA − cA,∞] ≈ −DAB
∂cA(0)

∂y
∫ δc

0
dy

∂

∂x
[vx(cA − cA,∞)] ≈ NA,w

where we have used the fact that cA(δc) = cA,∞  and ∂cA/∂y = 0  at y = δc. NA,w is the flux of A at 
the wall; we have assumed that Fick’s law is applicable. The above equation can be rearranged to yield

NA,w ≈ ∂

∂x

[
U(cA,∞ − cA,w)

∫ δt

0
dy

vx
U

(
cA − cA,∞
cA,∞ − cA,w

)]

−NA,w/(cA,∞ − cA,w)

DAB
≈ ∂

∂x

[
U

∫ δt

0
dy

vx
U

(
1− cA − cA,w

cA,∞ − cA,w

)]

This is the von Kármán integral for mass transport.

The associated boundary conditions for the concentration profile are

cA = cA,w at y = 0

cA = cA,∞ at y = δ

∂cA
∂y

= 0 at y = δ

∂2cA
∂y2

= 0 at y = 0

The last boundary conditions follows from Eq. (13.16) and the fact that vx = vy = 0 when y  = 0.

We can determine the dependence of the mass transfer coefficient on the bulk flow rate of the fluid, 
using an analysis similar to the one used to determine the heat transfer coefficient.
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14	� Analogies in Momentum, Heat, 
and Mass Transfer

14.1	 Introduction

In the previous sections, we have seen the equations that govern the transport of momentum, energy, 
and mass. If we look more closely at these equations, we can see strong analogies between the three 
types of transport.

14.2	 Comparison of diffusive transport

To begin with, we will compare diffusive transport. Let’s first look at the change in the velocity profile 
around a plate immersed in an initially stationary liquid. At time t = 0, the plate is instantaneously 
accelerated to a velocity V. We are interested in how the velocity profile changes as a function of time. 
For this problem, the momentum balance equation reduces to:

∂vx
∂t

= ν
∂2vx
∂y2

� (14.1)

where ν = µ/ρ  is the kinematic viscosity, which has units of length squared over time (e.g., , m2 s−1)). 
The boundary conditions are that vx = V  at y  = 0 and vx  = 0 as y → ∞. The initial condition is that 
vx  = 0 when t = 0. The solution of this equation is given by

vx(y, t) = V

[
1− erf

(
y

2
√
νt

)]

vx(y, t)

V
= 1− erf

(
y

2
√
νt

)
� (14.2)

where erf is the error function, which is defined as:

erf(x) ≡ 2√
π

∫ x

0
dte−t2

Now, let’s look at the change in the temperature of a plate that is suddenly immersed in a pool of liquid 
initially at a uniform temperature T0.. The temperature of the plate is kept constant at T1.. If there is 
no convection in the fluid (i.e., all heat transport is due to conduction), then the governing equation is

ρCv
∂T

∂t
= k

∂2cA
∂y2

� (14.3)
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where α = k/(ρCv) is the thermal diffusivity, which also has units of length squared over time. The 
boundary conditions are T = T1 at y = 0, and T = T0  as y → ∞. The initial condition is T = T0  
when t = 0. The solution of this equation is given by

T (y, t) = T0 + (T1 − T0)

[
1− erf

(
y

2
√
αt

)]

T (y, t)− T0

T1 − T0
= 1− erf

(
y

2
√
αt

)
� (14.4)

Finally, let’s look at the change in the concentration profile of a dye A about a plate (which is saturated 
with the dye) that is suddenly immersed in a pool of pure liquid B. The concentration of A on the plate 
remains constant at cA0. The governing equation for this problem is

∂cA
∂t

= DAB
∂2cA
∂y2

� (14.5)
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where DAB  is the diffusion coefficient of species A in B, which again has units of length squared over 
time. The boundary conditions are cA = cA0  at y = 0, and cA = 0  as y → ∞. The initial condition 
is cA = 0  when t = 0. The solution of this equation is given by

cA(y, t) = cA0

[
1− erf

(
y

2
√
DABt

)]

cA(y, t)

cA0
= 1− erf

(
y

2
√
DABt

)
� (14.6)

If we compare Eqs. (14.2), (14.4), and (14.6), we can see that they are essential identical, if we make the 
identification ν ↔ α ↔ DAB . In the first case, momentum diffuses from the plate into the bulk fluid; 
in the second case, thermal energy diffuses into the bulk fluid, while in the third case, species A into 
the bulk fluid.

As time progresses, the property (i.e., momentum, heat, or mass) slowly diffuses into the bulk of the 
system. The distance δ from the wall at which this property is significantly different from the bulk value 
varies with time as:

δ ∼
√
νt 	 for momentum

δ ∼
√
αt 	 for energy

δ ∼
√
αt 	 for mass

The relative rate at which heat diffuses with respect to momentum is given by the Prandtl number

Pr ≡ ν

α
=

µCp

k

The relative rate at which mass diffuses with respect to momentum is given by the Schmidt number

Sc ≡ ν

DAB
=

µ

ρDAB

14.3	 Reynolds analogy

In the previous subsection, we compared the diffusive transport of momentum, heat, and mass. In this 
subsection, we will compare the transport of these properties under turbulent flow conditions. In the 
fully turbulent region, the turbulent stresses dominate the momentum transport and the eddy thermal 
conductivity dominates heat transport. In this situation, the momentum balance is approximately given by

τ (t)yx ≈ τw

ρl2
(
∂〈vx〉
∂y

)2

≈ τw � (14.7)
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The energy balance is approximately given by

q(t) ≈ qw

−ρCvl
2

∣∣∣∣
∂〈vx〉
∂y

∣∣∣∣

(
∂〈T 〉
∂y

)
≈ qw � (14.8)

Dividing the energy balance by the momentum balance yields

Cv
∂〈T 〉/∂y
∂〈vx〉/∂y

= −qw
τw

∂〈T 〉
∂〈vx〉

= − qw
Cvτw

� (14.9)

If we assume that the entire fluid can be considered turbulent, even near the wall, then this equation can 
be integrated from the bulk (where the temperature is T∞,  and the velocity is V) to the wall (where the 
temperature is Tw, and the velocity is zero)

T∞ − Tw = − qw
Cvτw

V � (14.10)

The heat transfer coefficient h on the wall is defined by the relation

qw ≡ h(Tw − T∞)� (14.11)

If we then introduce the Nusselt number

Nu ≡ hL

k

where L is some characteristic length of the system, such as a pipe diameter, the Reynolds number

Re ≡ LρV

µ
,

and the friction factor:

f =
2τw
ρV 2

then we can rearrange Eq. (14.10) to the form

Nu

PrRe
=

f

2
� (14.12)

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Momentum, Heat, and Mass Transfer

99 

�Analogies in Momentum, Heat, and Mass Transfe     

This relation is known as Reynolds analogy and has been found to agree well with experimental data 
for systems where Pr ≈ 1.  It allows us to predict heat transfer coefficients from knowledge of the flow 
behavior of a system.

The Reynolds analogy provides a similar expression for mass transfer. If we consider a component A 
in a system that is diffusing from the bulk fluid, which is at concentration cA,∞, to a surface surface, 
which is at concentration cA,w, then the flux of A is given by

NA = kc(cA,w − cA,∞) � (14.13)

where kc  is the mass transfer coefficient. Then the Reynolds analogy for mass transfer is

Sh

ScRe
=

f

2
� (14.14)

where Sh is the Sherwood number, which is defined as

Sh =
kcL

DAB
� (14.15)

Similarly to the case of heat transfer, this relationship is only accurate when Sc ≈ 1.
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14.4	 Prandtl analogy

In the development of the Reynolds analogy, we assumed that the turbulent core extended all the way down 
to the wall. However, at the wall, viscous forces dominate and turbulent eddies are almost nonexistent. 
Prandtl improved upon the previous derivation by accounting for the laminar sublayer.

In the laminar sublayer, the momentum transfer is governed primarily by viscous stress and can be 
written as

µ
∂〈vx〉
∂y

≈ τw � (14.16)

Heat transfer is dominated by conduction, and the energy balance is given by

−k
∂〈T 〉
∂y

= qw � (14.17)

Dividing the energy balance equation by the momentum balance equation, we find

k

µ

∂〈T 〉/∂y
∂〈vx〉/∂y

= −qw
τw

∂〈T 〉
∂〈vx〉

= −qw
τw

µ

k
� (14.18)

Integrating this equation from the edge of the laminar sublayer y = ξ  to the wall y = 0, we find

〈T (ξ)〉 − 〈T (0)〉 = −qw
τw

µ

k
(〈vx(ξ)〉 − 〈vx(0)〉)

= −qw
τw

µ

k
〈vx(ξ)〉 � (14.19)

In order to account for the turbulent core, Prandtl used Eq. (14.9). However, instead of integrating this 
equation from the bulk all the way to the wall, he integrated it from the bulk to the edge of the laminar 
sublayer:

T∞ − 〈T (ξ)〉 = − qw
Cvτw

(U − 〈vx(ξ)〉) � (14.20)

The temperature at the edge of the laminar sublayer 〈T (ξ)〉 is unknown; however, it can be eliminated 
by adding Eqs. (14.19) and (14.20) together:

T∞ − Tw = −qw
τw

µ

k
〈vx(ξ)〉 −

qw
Cvτw

(U − 〈vx(ξ)〉)

= − qw
Cvτw

U

[
1 +

(
µCv

k
− 1

)
〈vx(ξ)〉

U

]

Nu

PrRe
=

f/2

1 + 5(Pr− 1)
√
f/2

� (14.21)
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where we have assume that the edge of the laminar sublayer is at ξ = 5µ/
√
τwρ  (see Sec. 10.4 on the 

“universal velocity profile”). This relation is known as Prandtl’s analogy.

By taking into account the buffer layer, von Karman developed the following relation:

Nu

PrRe
=

f/2

1 + 5(Pr− 1 + ln(1 + (Pr− 1)5/6))
√
f/2

� (14.22)

14.5	 Chilton-Colburn analogy

An alternate approach to extending the range of applicability of the Reynolds analogy was taken by 
Chilton and Colburn. By comparing the boundary layer analysis for momentum transfer from a flat 
plate (see Eq. (12.23)) to that for heat transfer from a flat plate (see Eq. (13.15)), they find that

Nu

RePr
Pr2/3 ≈ CD

2
� (14.23)

This relationship is quite similar to the Reynolds analogy, with the exception of the dependence on the 
Prandtl number. Even though it was developed for the flat plate geometry, empirically, it has been found 
to work well for a wide range of geometries and a wide range of Prandtl numbers 0.6 < Pr < 100.

In a similar manner, the Chilton-Colburn analogy for mass transfer can be developed as

Sh

ReSc
Sc2/3 ≈ CD

2
� (14.24)

This relationship is found to work well for a wide range of geometries for 0.6 < Sc < 2500.

Note that these two equations can be combined to give a relationship between heat and mass transfer 
coefficients

Nu

Pr
Pr2/3 ≈ Sh

Sc
Sc2/3

h

ρCpkc
≈

(
Sc

Pr

)2/3

� (14.25)
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15	 Interphase mass transfer
15.1	 Introduction

Many separation processes involve the transfer of a species from one phase to another. For example, 
liquid-liquid extraction involves the transfer of a component between two immiscible liquid phases. 
Distillation involves the transfer of a more volatile component from the liquid phase to the vapor phase. 
In order to properly design and size a separation process, we need to know the rate at which mass transfer 
between the phases occurs.

15.2	 Individual mass-transfer coefficients

Consider the adsorption of a species A from a gas stream to a liquid solution. The partial pressure of A 
in the bulk gas phase is pAG, and the concentration of the A in the bulk liquid phase is cAL. Typical 
concentration profiles are shown in Fig. 15.1. The driving force for mass transfer is the chemical potential 
difference of species A between the gas and liquid phases. Molecules have a tendency to diffuse from 
regions of high chemical potential to regions of low chemical potential.
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Figure 15.1: Concentration gradients between two contacting phases.

One method to model the adsorption of A from the gas phase is to consider it as a two step process. 
The first step is the transport of A from the bulk gas to the gas-liquid interface. The second step is the 
transport of A from the interface to the bulk liquid phase. These two processes offer the main resistances 
to mass transfer. In this model, it assumed that the interface itself offers no resistance to mass transfer, 
so the concentration of A in the gas and liquid phases are at equilibrium on the interface.

The flux of A through the gas phase is given by

NA = kG(pAG − pAi)� (15.1)

where pAi  is the partial pressure of A in the gas phase just at the interface, and kG  is the gas phase 
mass-transfer coefficient. The flux of A through the liquid phase is given by

NA = kL(cAi − cAL) � (15.2)

where cAi  is the concentration of A in the liquid phase just at the interface, and kL  is the liquid phase 
mass-transfer coefficients. The mass transfer coefficients kG  and kL  can be estimated using methods 
discussed in previous section (e.g., boundary layer theory).

At the interface, the system is at equilibrium, which implies that the concentration of A in the liquid 
phase is directly related to its partial pressure in the gas phase. If species A is only at dilute concentrations 
in the liquid phase, this can be written as Henry’s law

pAi = HAcAi
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15.3	 Overall mass-transfer coefficients

In order to apply the model developed in the previous subsection, the concentration of the species at 
the interface needs to be known. This makes it a bit difficult to directly apply, since typically only the 
concentrations in the bulk phases are known (i.e., pAG  and cAL).

Thus, it is convenient to define mass transfer coefficients that are based on the overall driving force in 
the system, so that the interfacial concentrations are not required. There are two manners in which to 
characterize the overall driving force for mass transfer. One is to base the driving force on the gas partial 
pressures. In this case, the flux of A is given by

NA = KG(pAG − p∗A) � (15.3)

where KG is the overall mass transfer coefficient based on the gas partial pressure, and p∗A = HAcAL.  
Note that p∗A  is the partial pressure of A that would be in equilibrium with the bulk liquid concentration 
of A. Note that, as expected, the flux of A vanishes when the bulk gas partial pressure is in equilibrium 
with the bulk liquid concentration (i.e., pAG = p∗A = HAcAL).  

The other choice is to base the driving force on the liquid concentration:

NA = KL(cAL − c∗A)� (15.4)

where kL  is the overall mass transfer coefficient based on the liquid concentrations, and c∗A =pA/HA  
which is the concentration of A that would be in equilibrium with the gas partial pressure of A. Again, 
the flux of A vanishes when the two bulk phases are at equilibrium.

A sketch of the various driving forces associated with each of the definitions of the flux of A are given 
in Fig. 15.2.

Although we do not need the interfacial concentrations in this approach, the difficulty with using overall 
mass-transfer coefficients (i.e., kG  and kL) is that there is no direct manner to estimate their values, where 
as there are methods to estimate the individual mass transfer coefficients (i.e., kG  and kL). Therefore, 
we need to find a relationship between overall and individual mass transfer coefficients.
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Figure 15.2: Interfacial compositions as predicted by two-resistance theory.
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Let’s obtain this relation for KG. First we note that flux of A from the bulk gas phase to the gas-liquid 
interface (see Eq. (15.1)) can be rewritten as

NA

kG
= pAG − pAi � (15.5)

From Eq. 15.2, the flux of A from the interface to the bulk liquid phase can also be written as

NA

kL
= cAi − cAL � (15.6)

Multiplying this equation by the Henry’s law constant HA leads to

NA
HA

kL
= HAcAi −HAcAL = pAi − p∗A � (15.7)

By adding Eqs. (15.5) and (15.7), we find:

NA

(
1

kG
+

HA

kL

)
= pAG − p∗A � (15.8)

where we have assumed that the system is at steady state so all the fluxes must be the same. Comparing 
this relation with Eq. (15.3), we can determine that

1

KG
=

1

kG
+

HA

kL
� (15.9)

This directly relates the overall mass-transfer coefficients to the two individual mass transfer coefficients. 
In a similar manner, we can determine the relationship for the overall mass-transfer coefficient KL

1

KL
=

1

HAkG
+

1

kL
� (15.10)

The quantity 1/KG can be interpreted as an overall resistance to mass transfer. Thus, by examining 
Eq. (15.9), we can see that the total resistance to mass transfer is composed of two contributions: the 
resistance of the gas phase 1/KG and the resistance of the liquid phase HA/kL.
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