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Preface

Preface

This book gives the solutions to the exercises at the end of each chapter of my book “Essential
Electromagnetism” (also published by Ventus). I recommend that you attempt a particular
exercise after reading the relevant chapter, and before looking at the solutions published here.
Often there is more than one way to solve a problem, and obviously one should use any valid
method that gets the result with the least effort. Usually this means looking for symmetry in the
problem – for example from the information given can we say that from symmetry arguments
the field we need to derive can only be pointing in a certain direction. If so, we only need to
calculate the component of the field in that direction, or we may be able to use Gauss’ law or
Ampère’s law to enable us to write down the result. In some of these exercise solutions the
simplest route to the solution is deliberately not taken in order to illustrate other methods of
solving a problem, but in these cases the simpler method is pointed out.

The solutions to the exercise problems for Each chapter of “Essential Electromagnetism” are
presented here in the corresponding chapters of “Essential Electromagnetism - Solutions”.

I hope you find these exercises useful. If you find typos or errors I would appreciate you
letting me know. Suggestions for improvement are also welcome – please email them to me at
protheroe.essentialphysics@gmail.com.

Raymond J. Protheroe, January 2013
School of Chemistry & Physics, The University of Adelaide, Australia

http://bookboon.com/
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Electrostatics

1 Electrostatics

1–1 The surface of a non-conducting sphere of radius a centred on the origin has surface charge
density σ(a, θ, φ) = σ0 cos θ and is uniformly filled with charge of density ρ0. Find the
electric field at the origin.

Solution

z

d

dS=r dS

E

O

φd

x
φ

θ
d θ

At the centre of the sphere the electric field due to the volume charge will be zero because
the contribution of a volume element located at r′ will be exactly cancelled by that of an
equivalent volume element at −r′, so we only need to consider the surface charge.

E(0, θ, φ) =
1

4πε0

∫
σ(a, θ, φ)

a2
(−�r)dS, (1.1)

=
1

4πε0a2

∫ 2π

0

∫ π

0
σ(a, θ, φ)(−�r)[a2 sin θdθdφ], (1.2)

=
1

4πε0

∫ 2π

0
dφ

∫ 1

−1
d cos θ(σ0 cos θ)(−�r). (1.3)

Because of the symmetry of the problem, the electric field at the centre can only be in the
±z direction, and so we only need to find the z-component

E(0, θ, φ) · �z =
1

4πε0

∫ 2π

0
dφ

∫ 1

−1
d cos θ(σ0 cos θ)(−�r) · �z, (1.4)

=
1

4πε0
2π

∫ 1

−1
d cos θ(σ0 cos θ)(− cos θ), (1.5)
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∴ E(0, θ, ϕ) · �z = − σ0
2ε0

∫ 1

−1
d cos θ cos2 θ = − σ0

3ε0
. (1.6)

∴ E(0, θ, ϕ) = − σ0
3ε0

�z. (1.7)

1–2 A spherically symmetric charge distribution has the following charge density profile

ρ(r, θ, ϕ) =

{
ρ0 (r < a)

ρ0(r/a)
−β (r ≥ a)

(1.8)

where β is a constant (2 < β < 3). Find the electric field and electrostatic potential
everywhere.

Solution

The charge density is spherically symmetric, with no dependence on θ or ϕ, so the electric
field must be in the radial direction and depend only on r. This is the ideal case to exploit
Gauss’ law in integral form,

∮
E · dS =

1

ε0

∫
ρd3r. (1.9)

For r < a

4πr2Er =
1

ε0

4

3
πr3ρ0, ∴ E(r) = ρ0r

3ε0
�r. (1.10)

For r > a

4πr2Er =
1

ε0

4

3
πa3ρ0 +

1

ε0

∫ r

a
4π(r′)2ρ0a

β(r′)−βdr′, (1.11)

=
1

ε0

4

3
πa3ρ0 +

4πρ0a
β

ε0

[
(r′)3−β

3− β

]r

a

, (1.12)

∴ 4πr2Er =
4πρ0a

3

ε0

(
1

3
+

(r/a)3−β − 1

3− β

)
. (1.13)

∴ Er =
ρ0a

3

(3− β)ε0r2

((r
a

)3−β
− β

3

)
. (1.14)
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This electric field is due entirely to the charge distribution, and so must be conservative,
and we would expect that ∇ × E = 0 as E is directed radially outward and so has no
circulation. It follows that:

V (r ≥ a) = − ρ0a
3

(3− β)ε0

∫ r

∞

(
(r′)1−βaβ−3 − β(r′)−2

3

)
dr′, (1.15)

= − ρ0a
3

(3− β)ε0

[
(r′)2−βaβ−3

2− β
+

β(r′)−1

3

]r

∞
, (1.16)

=
ρ0a

3

3(3− β)(β − 2)ε0

(
3r2−βaβ−3 − β(β − 2)r−1

)
. (1.17)

V (r ≤ a) = V (a)− ρ0
3ε0

∫ r

a
r′ dr′, (1.18)

=
(3 + 2β − β2)ρ0a

2

3(3− β)(β − 2)ε0
− ρ0

3ε0

[
(r′)2

2

]r
a

, (1.19)

=
(3 + 2β − β2)ρ0a

2

3(3− β)(β − 2)ε0
+

ρ0
6ε0

(a2 − r2). (1.20)
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1–3 The electric field is given by E(r) = E0 cos(z/z0) exp(−r/r0)�r, where z0 and r0 are con-
stants. Find the charge density.

Solution

In this problem the electric field is given in terms of z and r. We will need to write E in
terms of either Cartesian or spherical coordinates, and then use Gauss’ law in differential
form. Choosing spherical coordinates because E is in the radial direction,

ρ(r) = ε0∇ · E, (1.21)

= ε0E0
1

r2
∂

∂r

[
r2 cos

(
r cos θ
z0

)
exp

(
− r

r0

)]
, (1.22)

=
ε0E0

r2

[
2r cos

(
r cos θ
z0

)
exp

(
− r

r0

)
− r2 sin

(
r cos θ
z0

)
cos θ
z0

exp
(
− r

r0

)
+

r2 cos
(
r cos θ
z0

)
exp

(
− r

r0

)(
−1

r0

)]
, (1.23)

=
ε0E0

r
cos

(
r cos θ
z0

)
exp

(
− r

r0

)[
2− tan

(
r cos θ
z0

)
r cos θ
z0

− r

r0

]
, (1.24)

=
ε0E0

r
cos

(
z

z0

)
exp

(
− r

r0

)[
2− tan

(
z

z0

)
z

z0
− r

r0

]
. (1.25)

1–4 If we had a point charge q at the origin we might choose the reference point to be some
point at an arbitrary distance r0 (usually infinity) from the origin. Then if we wish to
find V (r, θ, φ) it would be convenient to have the reference point at r0 = (r0, θ, φ). Al-
though obtaining the potential in this case is trivial, and one would usually just write it
down, obtain the potential by carrying out explicitly the line integral for an appropriately
parameterised curve.

Solution
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= r  − r’

path

x

y

Γ
0

z

r

dr’ λ=0

λ 0

r’

r

E

q

λ 0

= r  − r

We start by parameterising the path from r0 to r:

r′(λ) = (r0 − λ)�r; dr′ = −dλ�r; (0 < λ < r0 − r). (1.26)

Then,

V (r) = −
∫ r

r0
E(r′) · dr′, (1.27)

= −
∫ r(λ=r0−r)

r(λ=0)
E(r′(λ)) · dr′, (1.28)

= −
∫ r(λ=r0−r)

r(λ=0)

q

4πε0(r0 − λ)2
�r · (−dλ�r), (1.29)

=

∫ r0−r

0

q

4πε0(r0 − λ)2
dλ, (1.30)

=

[
q

4πε0(r0 − λ)

]r0−r

0

, (1.31)

=
q

4πε0[r0 − (r0 − r)]
− q

4πε0(r0 − 0)
, (1.32)

=
q

4πε0r
− q

4πε0r0
. (1.33)

Hence, if we set r0 = ∞ we get the usual potential for a point charge q at the origin

V (r) =
q

4πε0r
. (1.34)
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1–5 The electric field is given by E(r) = E0 cos(z/z0) exp(−r/r0)�r, where z0 and r0 are con-
stants. Check whether or not the electric field is conservative. If it is conservative find
the potential, if it isn’t suggest how it may be possible to find the electrostatic part of the
electric field (if present) and the corresponding electrostatic potential V (r).

Solution

First we need to test whether or not the field is purely electrostatic, i.e. whether or not
it is conservative. If ∇ × E = 0 then E is conservative. First write the field in spherical
coordinates

E(r, θ, φ) = E0 cos(r cos θ/z0) exp(−r/r0)�r (1.35)

and use

∇× A =
1

r sin θ

[
∂

∂θ
(sin θ Aϕ)−

∂Aθ

∂φ

]
�r +

1

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(r Aϕ)

]
�θ

+
1

r

[
∂

∂r
(r Aθ)−

∂Ar

∂θ

]
�ϕ. (1.36)
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∴ ∇× E = −1

r

∂Er

∂θ
�ϕ, (1.37)

= −E0

r
exp(−r/r0)

∂

∂θ
cos(r cos θ/z0) �ϕ, (1.38)

= −E0

r
exp(−r/r0) [− sin(r cos θ/z0)][−r sin θ/z0] �ϕ, (1.39)

= −E0

z0
exp(−r/r0) sin(r cos θ/z0) sin θ �ϕ. (1.40)

Since ∇×E ̸= 0 the electric field is not purely electrostatic. However, from Exercise 1—3
we see that there is a non-zero charge density ρ(r, θ, φ), and so there must be an electrostatic
component of the electric field. This electrostatic field and potential could be computed
from ρ using Coulomb’s law.

1–6 How much work must be done to assemble: (a) a physical dipole made of charge +q and
charge −q separated by distance d, (b) a physical quadrupole made up of four charges +q,
−q, +q and −q on successive corners of a square of side d, and (c) a physical quadrupole
made up of four charges −q, +q, +q and −q equally spaced apart by distance d on a
straight line (see diagram below).

+
(a) (c)

+ +

1 2 3 4

4

1

3

2

(b)

d

+

+

d

d

Solution

The work done to bring together a group of N charges is

W =
1

2

N∑
i=1

qiV (ri). (1.41)

(a)

W =
1

2

(
(−q)

(+q)

4πε0d
+ (+q)

(−q)

4πε0d

)
= − q2

4πε0d
. (1.42)
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(b)

V1 = V3 =
q

4πε0

(
−1

d
+

√
2

d
+

−1

d

)
=

q

4πε0d

(√
2− 2

)
, (1.43)

∴ q1V1 = q3V3 =
q2

4πε0d

(√
2− 2

)
. (1.44)

V2 = V4 =
q

4πε0

(
1

d
+

−
√
2

d
+

1

d

)
=

q

4πε0d

(
2−

√
2
)
, (1.45)

∴ q2V2 = q4V4 =
q2

4πε0d

(√
2− 2

)
. (1.46)

Hence,

W =
1

2
× 4× q2

4πε0d

(√
2− 2

)
= − q2

2πε0d

(
2−

√
2
)
. (1.47)

(c)

V1 = V4 =
q

4πε0

(
1

d
+

1

2d
+

−1

3d

)
=

7

6

q

4πε0d
, (1.48)

∴ q1V1 = q4V4 = − 7

6

q2

4πε0d
. (1.49)

V2 = V3 =
q

4πε0

(
−1

d
+

1

d
+

−1

2d

)
= − 1

2

q

4πε0d
, (1.50)

∴ q2V2 = q3V3 = − 1

2

q2

4πε0d
. (1.51)

Hence,

W =
1

2
× q2

4πε0d

(
− 7

6
− 1

2
− 1

2
− 7

6

)
= − 10

3

q2

4πε0d
. (1.52)

1–7 (a) Use Gauss’ law in integral form to find the electric field due to charge density ρ(r) =
ρ0 exp(−r/r0), and (b) check that you obtain the original charge density by taking the
divergence of the electric field you find.
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Solution

Gauss’ law

∮

S
E · dS =

1

ε0
Qenc, ∇ · E =

ρ

ε0
. (1.53)

(a)

4πr2Er =
1

ε0

∫ r

0
ρ0 exp(−r′/r0)4π(r

′)2 dr′, (1.54)

∴ Er =
ρ0
ε0r2

[
r0

(
−e−r′/r0

) (
2r20 + 2r0r

′ + (r′)2
)]r

0
, (1.55)

=
ρ0
ε0r2

[
2r30 − r0e

−r/r0
(
2r20 + 2r0r + r2

)]
. (1.56)

(b)

ρ = ε0∇ · E (1.57)
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= ε0
1

r2
d

dr
r2

{
ρ0
ε0r2

[
2r30 − r0e

−r/r0
(
2r20 + 2r0r + r2

)]}
, (1.58)

=
ρ0
r2

[
−r0

(
−1

r0

)(
2r20 + 2r0r + r2

)
− r0 (2r0 + 2r)

]
e−r/r0 , (1.59)

= ρ0 exp(−r/r0). (1.60)

1–8 An isolated conducting sphere of radius a has net charge Q. Find how much work was
done to charge the sphere using two different methods: (a) from the charge on the sphere
and its potential, (b) by finding the energy stored in the electric field.

Solution

From Gauss’ law

Er(r) =

{
0 (r < a)

Q/4πε0r
2 (r ≥ a)

, V (r) =

{
Q/4πε0a (r < a)

Q/4πε0r (r ≥ a)
. (1.61)

(a) The work done to bring together a group of N charges, or a continuous charge distri-
bution ρ(r) is

W =
1

2

∫

all space
ρ(r)V (r). d3r. (1.62)

We can re-write this for a surface charge density

W =
1

2

∫

S
σ(r)V (r) dS, (1.63)

=
1

2

Q

4πa2
Q

4πε0a
4πa2, (1.64)

=
Q2

8πε0a
. (1.65)

(b) The energy density stored in an electric field is

uE(r) =
ε0
2

E(r) · E(r). (1.66)

http://bookboon.com/
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Since the sphere is conducting E = 0 for r < a, and so

W =
ε0
2

∫

all space
E2d3r, (1.67)

=
ε0
2

∫ ∞

a

(
Q

4πε0r2

)2

4πr2 dr, (1.68)

=
ε0
2

Q2

(4πε0)2
4π

∫ ∞

a
r−2 dr, (1.69)

=
Q2

8πε0a
. (1.70)
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2 Poisson's and Laplace's equations

2–1 Charge +q is located on the z axis a distance d/2 from a grounded plane conductor in
the x–y plane. Find how much work was done to bring the charge to its current location
using two different approaches: (a) the work done against the electrostatic force if the
image charge were real and there was no grounded conductor, (b) the work done against
the electrostatic force due to the induced surface charge

σ(x, y, 0) =
−q

2π

z

(x2 + y2 + z2)3/2
(2.1)

where z is the height of the charge above the plane.

Solution

(a) The force on charge +q at height +z due to image charge −q at height −z is

F(z) = − 1

4πε0

q2

(2z)2
�z. (2.2)

W (z = d/2) = −
∫ (0,0,d/2)

(0,0,∞)
F · dr, (2.3)

= − q2

16πε0

∫ ∞

d/2
z−2dz, (2.4)

= − 1

2

q2

4πε0d
. (2.5)

(2.6)

+q

r

dF

dS

R z

θ

image charge −q

(b) From symmetry arguments, the force on charge +q at (0, 0, z) due to the real surface

http://bookboon.com/
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charge density σ(r) will be in the z direction,

dFz(z) = dF (z) cos θ, (2.7)

=
(+q)[σ(r)dS]

4πε0R2

z

R
, (2.8)

=
(+q)

4πε0R2

−q

2π

z

(R2)3/2
z

R
2πr dr, (2.9)

∴ dFz(z) =
−q2z2

4πε0R6
r dr. (2.10)

Fz(z) =
−q2

4πε0

∫ ∞

0

z2r

(r2 + z2)3
dr, (2.11)

Fz(z) =
−q2

4πε0

[
− z2

4(r2 + z2)2

]∞
0

, (2.12)

∴ F(z) = − 1

4πε0

q2

(2z)2
�z. (2.13)

This is identical to the force on charge +q at height +z due to image charge −q, and so
the work done will be identical to that calculated in part (a).

2–2 Charge +q is brought near to two orthogonal grounded conducting planes, one correspond-
ing to the x–z plane and the other to the y–z plane. The charge is located at (a, b, 0).
Find the work done in bringing the charge from infinity to its current location (a) by using
the method of images to find the potential at the location of the real charge, and (b) by
considering the force on the charge as it is brought from infinity.

Solution

(a) At the location of charge +q the potential can be calculated as if it were due to the
three image charges as in part (a) of the diagram below,

V =
q

4πε0

[
− 1

2a
+

1

[(2a)2 + (2b)2]1/2
− 1

2b

]
, (2.14)

∴ W =
1

2

N∑
i=1

qiV (ri) =
q2

16πε0

[
−1

a
+

1

(a2 + b)2]1/2
− 1

b

]
. (2.15)
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Note, it is only the real charge that enters into the sum above.

88(    ,    ,0)

y

x

a

b

+q

−q+q

−q

(a) (b)

(    ,b,0)

0

(a,b,0) Γ
2

Γ
1

8

a

b

y

x0

(b) We first calculate the force on charge +q at its final position due to the induced surface
charge on the conductor as if it were due instead to the image charges as in part (a) of
diagram above,

F(a, b, z) =
(+q)

4πε0

[
−q�x
(2a)2

+
+q

[(2a)2 + (2b)2]

(
a�x

(a2 + b2)1/2
+

b�y
(a2 + b2)1/2

)
+

−q�y
(2b)2

]
,

∴ F(a, b, z) =
q2

16πε0

[(
a

(a2 + b2)3/2
− 1

a2

)
�x +

(
b

(a2 + b2)3/2
− 1

b2

)
�y
]
. (2.16)
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Similarly, for the charge at some arbitrary position (x, y, z) the force is

F(x, y, z) =
q2

16πε0

[(
x

(x2 + y2)3/2
− 1

x2

)
�x +

(
y

(x2 + y2)3/2
− 1

y2

)
�y
]
. (2.17)

The work done to move a charge from r1 = (∞,∞, 0) to r2 = (a, b, 0) is W = −
∫ r2

r1 F · dr,
and because the electrostatic field is conservative, this is independent of the path taken.
For convenience we split the path into two parts as in part (b) of the diagram above. Then

W = −
∫

Γ1

F(∞, y, 0) · (−dy �y)−
∫

Γ2

F(x, b, 0) · (−dx �x), (2.18)

=
q2

16πε0

[∫ ∞

b

(
− 1

y2

)
dy +

∫ ∞

a

(
x

(x2 + b2)3/2
− 1

x2

)
dx

]
, (2.19)

=
q2

16πε0

{[
1

y

]∞
b

+

[
− 1√

x2 + b2
+

1

x

]∞
a

}
, (2.20)

=
q2

16πε0

[
−1

b
+

1

(a2 + b)1/2
− 1

a

]
, (2.21)

which is the same as found in part (a).

2–3 Show that the potential outside a long conducting cylinder of radius a in the presence of
a long parallel line charge +λ at distance d is identical to the potential of the line charge
and a parallel image line charge −λ at distance di from the cylinder’s axis towards the real
line charge (see diagram below). [Hint: draw lines to point P from the two line charges.
Use the cosine rule of triangles to write the two distances in terms of a, di, d and ϕ and use
the formula the for potential due to a line charge, and superposition, to write a formula
for the potential at P. Finally require that V does not change if ϕ changes.]

O

line charge

λ

d

P

−λ

a

φ

line
charge

i

image

d

Solution
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ρ
2 ρ

1

O

line charge

λ

d

P

−λ image
charge

a

i

φ

d

Using the cosine law:

ρ21 = a2 + d2 − 2ad cosϕ, ρ22 = a2 + d2i − 2adi cosϕ. (2.22)

Adding the potentials at P of the real and image line charges,

V (a, ϕ) = − 1

2πε0
[(+λ) ln ρ1 + (−λ) ln ρ2] , (2.23)

= − 1

2πε0
ln

(
ρ2
ρ1

)
, (2.24)

= − 1

2πε0

1

2
ln

(
a2 + d2i − 2adi cosϕ
a2 + d2 − 2ad cosϕ

)
. (2.25)

For this to be constant on the cylinder’s surface, ∂V /∂ϕ = 0, i.e.

∂

∂ϕ

(
a2 + d2i − 2adi cosϕ
a2 + d2 − 2ad cosϕ

)
= 0, (2.26)

∴ 2adi sinϕ

(a2 + d2 − 2ad cosϕ) −
(a2 + d2i − 2adi cosϕ)2ad sinϕ

(a2 + d2 − 2ad cosϕ)2 = 0. (2.27)

∴
2a sinϕ

[
di(a

2 + d2 − 2ad cosϕ)− (a2 + d2i − 2adi cosϕ)d
]

(a2 + d2 − 2ad cosϕ)2 = 0. (2.28)

∴ (−d)d2i + (d2 + a2)di + (−a2d) = 0. (2.29)

The solution of this quadratic equation is

di = a2/d or di = d. (2.30)

The physical solution is di = a2/d as di = d corresponds to the image line charge −λ being
co-located with the real line charge +λ — it is nevertheless a solution as V = 0 on the
cylinder’s surface, as well as everywhere else!
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2–4 Find the capacitance of a two-wire transmission line comprising two identical parallel cylin-
drical conductors of radius a whose axes are separated by distance D (see diagram below).
You may use the result for the potential due to a line charge near a single cylindrical
conductor to find the potential difference by replacing the cylinders by equal but opposite
image line charges, +λ and −λ (C m−1). The capacitance of two conductors with potential
difference V and having charge +q on one and −q on the other is C = q/V

−λ +λ

Cylinder 1 Cylinder 2

d
ρ

A

d  = a  /di

B

di

2

d

D

iρ2
1

a

Solution

The potential at A (and conductor 1 surface) due to the image line charges is,
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VA = − 1

2πε0
[(+λ) ln ρ1 + (−λ) ln ρ2] , (2.31)

= − λ

2πε0
ln

(
ρ1
ρ2

)
, (2.32)

= − λ

2πε0
ln

(
d− a

a− di

)
= − λ

2πε0
ln

(
d− a

a− a2/d

)
= − λ

2πε0
ln

(
d

a

)
. (2.33)

Similarly, the potential at B (and conductor 2 surface) due to image line-charge −λ is

VB = +
λ

2πε0
ln
(
d

a

)
. (2.34)

Hence the potential difference between the two conductors is

VBA = (VB − VA) =
λ

πε0
ln

(
d

a

)
. (2.35)

But d = D − di and di = a2/d, so

d2 −Dd+ a2 = 0 (quadratic equation), ∴ d =
1

2
(D +

√
D2 − 4a2) (2.36)

since the other solution, d = 1
2(D −

√
D2 − 4a2) is discarded because usually D ≫ a and

d ≫ a.

Hence the potential difference is

VBA =
λ

πε0
ln

(
d

a

)
=

λ

πε0
ln

(
1
2(D +

√
D2 − 4a2)

a

)
. (2.37)

By definition the charge per unit length is λ, and the capacitance per unit length (F m−1)
is the charge per unit length divided by the potential difference, so that

C =
λ

VBA
=

πε0

ln
(

1
2a(D +

√
D2 − 4a2)

) ≈ πε0
ln (D/a)

, (2.38)

where the approximate result is valid for D ≫ a.
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2–5 A region of space is bounded by three plane conductors as illustrated. Find the potential
everywhere between the conductors.

0
0

y

b

x

8

V(x,b)=0

V(x,0)=0

V(0,y)=V0

Solution

The potential must be finite at x = 0 and drop to zero as x → ∞, so we need the negative
exponentials for the functions in x. At x = 0 the potential must be zero at y = 0 and so we
need the sine functions for the functions in y. Furthermore V (0, b) = 0 requires k = nπ/b

so that the solution is

V (x, y) =

∞∑
n=0

An exp
(
− nπ

b
x
)

sin
(nπ

b
y
)
. (2.39)

The boundary conditions at x = 0 determine the coefficients An in this Fourier sine series

∞∑
n=0

An sin
(nπ

b
y
)
= V0. (2.40)

∴ An =
2

b

∫ b

0
V0 sin

(nπ
b
y
)
dy, (2.41)

=
2

b
V0

[
− b

nπ
cos

(nπ
b
y
)]b

0

(2.42)

=

{
0 n even,
4V0/nπ n odd.

(2.43)

2–6 Find the potential inside the rectangular region, 0< x< a, 0< y< b and 0< z < c with
V (x, y, c) = V0(x, y), and V =0 on the other 5 sides, where

V0(x, y) = V1 sin
(πx

a

)
sin

(
3πy

b

)
. (2.44)
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Solution

The potential for this case is of the form

V (x, y, z) =
∞∑
k=1

∞∑
l=1

Akl sinh (γkl z) sin (αk x) sin (βl y) , (2.45)

αk ≡ kπ

a
, βl ≡

lπ

b
and γ2kl ≡ α2

k + β2
l . (2.46)

The potential at z = c may be written

V0(x, y) = V1 sin (α1x) sin (β3y) (2.47)

and so the coefficients in the series are

Akl =
4V1

a b sinh (γkl c)

∫ a

0

∫ b

0
sin (α1x) sin (αk x) sin (β3y) sin (βl y) dx dy, (2.48)

and in this case there is only one non-zero coefficient
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A13 =
4V1

a b sinh (γ13 c)

∫ a

0
sin2 (α1x) dx

∫ b

0
sin2 (β3y) dy, (2.49)

=
4V1

a b sinh (γ13 c)

[
x

2
− sin(2α1x)

4α1

]a
0

×
[
y

2
− sin(2β3y)

4β3

]b
0

(2.50)

=
4V1

a b sinh (γ13 c)

[
x

2
− sin(2πx/a)

4π/a

]a
0

×
[
y

2
− sin(6πy/b)

12π/b

]b
0

(2.51)

=
4V1

a b sinh (γ13 c)

[
a

2
− sin(2π)

4π/a

]
×
[
b

2
− sin(6π)

12π/b

]
(2.52)

A13 =
V1

sinh (γ13 c)
. (2.53)

∴ V (x, y, z) = V1

sinh
(√

(π/a)2 + (3π/b)2 z

)

sinh
(√

(π/a)2 + (3π/b)2 c

) sin
(πx

a

)
sin

(
3πy

b

)
. (2.54)

Actually, we could have written down this answer straight away after recognising that
V0(x, y) was the product of one of the allowed functions of x having α = α1 with one of
the allowed functions of y having β = β3, from which we obtain immediately the solution
in z with γ = γ13.

2–7 The potential on a non-conducting sphere of radius a is given by

V = V0(3 cos2 θ + cos θ − 1). (2.55)

(a) Find the potential and electric field inside the sphere.
(b) Find the potential and electric field outside the sphere.
(c) Find the surface charge density on the sphere as a function of θ.

Solution

(a) Clearly we have spherical symmetry and no dependence on azimuthal coordinate ϕ.
The general solution of Laplace’s equation with axial symmetry is

V (r, θ, ϕ) =

∞∑
ℓ=0

(
Aℓ r

ℓ +Bℓ r
−(ℓ+1)

)
Pℓ(cos θ). (2.56)
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Since the potential must be finite as r → 0 we must have Bℓ = 0 for all ℓ. Before applying
the boundary condition it will simplify our working if we write it in terms of Legendre
polynomials

V (a, θ, φ) = V0[P1(cos θ) + 2P2(cos θ)]. (2.57)

Then, applying the boundary condition,

∞∑
ℓ=0

Aℓ a
ℓPℓ(cos θ) = V0[P1(cos θ) + 2P2(cos θ)], (2.58)

and by equating coefficients of Pℓ(cos θ) we see that A1 = V0/a and A2 = 2V0/a
2, giving

V in(r, θ, φ) =

[
r

a
P1(cos θ) + 2

r2

a2
P2(cos θ)

]
V0, (2.59)

∴ V in(r, θ, φ) =

[
r

a
cos θ + r2

a2
(3 cos2 θ − 1)

]
V0. (2.60)

The electric field is

Ein(r) = −
(
∂V

∂r
�r +

1

r

∂V

∂θ
�θ +

1

r sin θ

∂V

∂φ
�ϕ
)
, (2.61)

= −
[
1

a
cos θ + 2r

a2
(3 cos2 θ − 1)

]
V0 �r +

[
1

a
sin θ +

6r

a2
cos θ sin θ

]
V0

�θ. (2.62)

(b) Since the potential must tend to zero as r → ∞ we must have Aℓ = 0 for all ℓ. Again,
we write the boundary condition in terms of Legendre polynomials

V (a, θ, φ) = V0[P1(cos θ) + 2P2(cos θ)]. (2.63)

Then, applying the boundary condition,

∞∑
ℓ=0

Bℓ a
−(ℓ+1)Pℓ(cos θ) = V0[P1(cos θ) + 2P2(cos θ)], (2.64)
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we see that B1 = a2V0 and B2 = 2a3V0, giving

V out(r, θ, φ) =

[
a2

r2
P1(cos θ) + 2

a3

r3
P2(cos θ)

]
V0, (2.65)

∴ V out(r, θ, φ) =

[
a2

r2
cos θ + a3

r3
(3 cos2 θ − 1)

]
V0. (2.66)

The electric field is

Eout(r) = −
(
∂V

∂r
�r +

1

r

∂V

∂θ
�θ +

1

r sin θ

∂V

∂φ
�ϕ
)
, (2.67)

=

[
2
a2

r3
cos θ + 3

a3

r4
(3 cos2 θ − 1)

]
V0�r +

[
a2

r3
sin θ + 6

a3

r4
cos θ sin θ

]
V0

�θ.
(2.68)

(c) We use Gauss’ law in integral form for a small section of the sphere of area δS located
at (a, θ, φ) inside an infinitesimally thin gaussian pill box having an upper surface of area

 

  

 

                . 
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δS just outside the sphere and a lower surface just inside the sphere. For the upper surface
of the pill box the normal unit vector outwards from the pill box is �n = �r, whereas for the
lower surface of the pill box the normal unit vector outwards from the pill box is �n = −�r.
Applying Gauss law in integral form

Eout(a, θ, ϕ) · (δS �r) + Ein(a, θ, ϕ) · (−δS �r) = σ(θ)δS/ε0. (2.69)

Hence,

σ(θ) = ε0[E
out
r (a, θ, ϕ)− Ein

r (a, θ, ϕ)], (2.70)

= ε0
V0

a

([
2 cos θ + 3(3 cos2 θ − 1)

]
+
[
cos θ + 2(3 cos2 θ − 1)

])
, (2.71)

= ε0
V0

a

(
3 cos θ + 15 cos2 θ − 5

)
. (2.72)

2–8 Consider a point charge on the z-axis at z = r′. Find V (r, θ, ϕ) in terms of Legendre
polynomials for r > r′.

Solution

There is no dependence of V on ϕ, so

V (r, θ, ϕ) =

∞∑
n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ). (2.73)

The diagram shows the geometry for this problem.

q

x

r’

r

y

r

R

ϕ

θ

z

The boundary condition for this problem will be the potential along the z axis for z > r′,
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which we can obtain from Coulomb’s law

V (r, 0, ϕ) =
q

4πε0
(r − r′)−1, (2.74)

=
q

4πε0
r−1

[
1−

(
r′

r

)]−1

, (2.75)

=
q

4πε0
r−1

∞∑
n=0

(
r′

r

)n

(binomial series). (2.76)

On the z-axis θ = 0 so Pn(cos θ) = Pn(1) = 1, and the general solution for the potential is

V (r, 0, ϕ) =

∞∑
n=0

(
Anr

n +Bnr
−(n+1)

)
. (2.77)

Hence,

∞∑
n=0

(Anr
n +Bnr

−n−1) =
q

4πε0
r−1

∞∑
n=0

(
r′

r

)n

(2.78)

giving

An = 0, Bn =
(r′)nq

4πε0
, (2.79)

V (r > r′, θ, ϕ) =
q

4πε0

∞∑
n=0

(r′)nr−(n+1)Pn(cos θ). (2.80)

2–9 The potential on the surface of a sphere is

V (a, θ, ϕ) = V1 sin θ sinϕ+ V2 sin θ cos θ sinϕ. (2.81)

Find the potential inside the sphere.

Solution

The solution is of the form

V (r, θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
Aℓ,m rℓ +Bℓ,m r−(ℓ+1)

)
Yℓ,m(θ, ϕ). (2.82)
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The requirement that V (0, θ, ϕ) is finite gives Bℓ = 0 for all ℓ. The boundary condition at
r = a can be re-written in terms of spherical harmonics as follows

V (a, θ, ϕ) = V1

√
2π

3
[Y1,1(θ, ϕ)− Y1,−1(θ, ϕ)] + V2

√
2π

15
[Y2,1(θ, ϕ)− Y2,−1(θ, ϕ)] .

(2.83)

Hence, comparing coefficients we find

A1,1 = V1

√
2π

3
a−1, A1,−1 = −V1

√
2π

3
a−1, (2.84)

A2,1 = V2

√
2π

15
a−2, A2,−1 = −V2

√
2π

15
a−2, (2.85)

giving

V (r, θ, ϕ) = V1
r

a

√
2π

3
[Y1,1(θ, ϕ)− Y1,−1(θ, ϕ)] + V2

r2

a2

√
2π

15
[Y2,1(θ, ϕ)− Y2,−1(θ, ϕ)] ,

= V1
r

a
sin θ cosϕ+ V2

r2

a2
sin θ cos θ cosϕ. (2.86)
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3 Multipole expansion for localised charge distribution

3–1 On the surface of a non-conducting sphere of radius a is surface charge density σ(a, θ, φ) =

σ0 cos3 θ. Find the dipole moment of the sphere.

Solution

θ
d θ

z

dS=r dS

dφ

x
φ

O

y

For a surface charge density σ(r) the dipole moment is

p =

∫
σ(r) r dS. (3.1)

In this example, the surface charge density depends only on θ and so p = pz�z where

pz =

∫
σ(r) z dS (3.2)

=

∫ π

0
σ(θ) z 2πa2 sin θ dθ, (3.3)

=

∫ 1

−1
(σ0 cos3 θ) (a cos θ) 2πa2 d(cos θ), (3.4)

= 2πa3σ0

[
cos5 θ
5

]1
−1

, (3.5)

pz =
4

5
πa3σ0. (3.6)

∴ p =
4

5
πa3σ0�z. (3.7)
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3–2 The quadrupole potential is

Vquad(r) =
1

4πε0r3

∫
ρ(r ′)(r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′. (3.8)

Show that it can be written as

Vquad(r) =
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj (3.9)

where the quadrupole moment tensor is

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′. (3.10)

[This exercise is easy using index notation.]

Solution
The quadrupole potential is

Vquad(r) =
1

4πε0r3

∫
ρ(r ′)(r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′, (3.11)

=
1

4πε0r5

∫
ρ(r ′)r2 (r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′, (3.12)

=
1

4πε0r5

∫
ρ(r ′)

1

2

[
3(r · r ′)2 − r2 (r′)2

]
d3r′, (3.13)

=
1

4πε0r5

∫
ρ(r ′)

1

2

[
3 rir

′
i rjr

′
j − riri (r

′)2
]
d3r′, (3.14)

=
1

4πε0r5

∫
ρ(r ′)rirj

1

2

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′, (3.15)

Vquad(r) =
1

4πε0r5
1

2
Qij rirj . (3.16)

Index notation and the Einstein summation convention has been used above, but writing
the summation explicitly we have

Vquad(r) =
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj (3.17)

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Essential Electromagnetism: Solutions

34 

Multipole expansion for localised charge distribution
Essential Electromagnetism - Solutions 3 Multipole expansion for localised charge distribution

where

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′. (3.18)

3–3 A physical quadrupole is made up of four charges lined up along the z axis: -q0 at (0,0,−2a),
+q0 at (0,0,−a), +q0 at (0,0,a) and -q0 at (0,0,2a). (a) Obtain the quadrupole moment.
(b) Find the potential at r = (b, b, 0) for b ≫ a.

Solution

+q−q +q −q

charge # 2 4

−2a z2a0−a a

1 3

(a) The quadrupole moment tensor is

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′. (3.19)

 - 
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For N point charges this becomes

Qij =

N∑
k=1

qk

[
3r

[k]
i r

[k]
j − δij (r

[k])2
]

(3.20)

where rk = (r
[k]
1 , r

[k]
2 , r

[k]
3 ) is postion of charge qk.

Since r
[k]
1 = r

[k]
2 = 0 for all four charges as they are on the z axis, the quadrupole moment

tensor is diagonal with only Q11, Q22 and Q33 being non-zero,

Q11 =

4∑
k=1

qk

[
3× 0× 0− δ11 (r

[k])2
]
, (3.21)

= (−q)
[
−(−2a)2

]
+ (+q)

[
−(−a)2

]
+ (+q)

[
−(a)2] + (−q)[−(2a)2

]
,

(3.22)

∴ Q11 = 6qa2. (3.23)

Similarly,

Q22 = 6qa2. (3.24)

Q33 =
4∑

k=1

qk

[
3× r

[k]
3 × r

[k]
3 − δ33 (r

[k])2
]
, (3.25)

= (−q)
[
3(−2a)2 − (2a)2

]
+ (+q)

[
3(−a)2 − (a)2

]

+ (+q)
[
3(a)2 − (a)2

]
+ (−q)

[
3(2a)2 − (2a)2

]
, (3.26)

∴ Q33 = −12qa2. (3.27)

∴ Qij =




6qa2 0 0

0 6qa2 0

0 0 −12qa2


 . (3.28)

(b) The potential for r ≫ a can be approximated by the quadrupole potential

Vquad(r) =
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj . (3.29)

Only Q11, Q22 and Q33 are non-zero, and for r = (b, b, 0) the distance from the origin is
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r =
√
2b, so that

Vquad(b, b, 0) =
1

4πε0(
√
2b)5

1

2

[
6qa2 × b× b + 6qa2 × b× b − 12qa2 × 0× 0

]
,

(3.30)

=
3qa2

8π
√
2ε0b3

. (3.31)

3–4 Charge −q is located at the origin and charge +q is located at
(x, y, z) = (a sin θ0 cosϕ0, a sin θ0 sinϕ0, a cos θ0).
(a) Find the the non-zero moments of the multipole expansion of the potential in Cartesian
coordinates, i.e. q, p, Qij (if non-zero), and use these moments in the multipole expansion
in Cartesian coordinates to find the potential at (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)
where r ≫ a.
(b) Find the non-zero moments of the multipole expansion of the potential in spherical
coordinates, i.e.

qℓm =

∫
Y ∗
ℓm(θ′, ϕ′)r′

ℓ
ρ(r′)d3r′, (3.32)

and use these moments in the multipole expansion in spherical coordinates to find the po-
tential at (r, θ, ϕ) where r ≫ a. Compare the result with that from part (a).

Solution

The net charge (monopole moment) is zero. There are two equal but opposite charges and
so we have an electric dipole moment, and no higher moments.
(a) In Cartesian coordinates

p = (−q)(0, 0, 0) + (+q)(a sin θ0 cosϕ0, a sin θ0 sinϕ0, a cos θ0), (3.33)

= p0 × (sin θ0 cosϕ0, sin θ0 sinϕ0, cos θ0), (3.34)

where p0 = qa. The potential at (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) where r ≫ a
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is

V (r) = 1

4πε0r2
p · �r, (3.35)

=
p0

4πε0r2
(sin θ0 cosϕ0, sin θ0 sinϕ0, cos θ0) · (sin θ cosϕ, sin θ sinϕ, cos θ), (3.36)

=
p0

4πε0r2
(sin θ0 cosϕ0 sin θ cosϕ+ sin θ0 sinϕ0 sin θ sinϕ+ cos θ0 cos θ) , (3.37)

=
p0

4πε0r2
[sin θ0 sin θ (cosϕ0 cosϕ+ sinϕ0 sinϕ) + cos θ0 cos θ] , (3.38)

=
p0

4πε0r2
[sin θ0 sin θ cos(ϕ0 − ϕ) + cos θ0 cos θ] . (3.39)

(a) In spherical coordinates the multipole moments are given by

qℓ,m =

∫
Y ∗
ℓ,m(θ′, ϕ′)r′

ℓ
ρ(r′)d3r′. (3.40)

Writing the charge density using Dirac delta functions in spherical coordinates we have
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ρ(r) = −qδ(r) + q
δ(r − a)δ(θ − θ0)δ(ϕ− ϕ0)

r2 sin θ
. (3.41)

There will only be dipole (ℓ = 1) multipole moments

q1−1 =

∫ 2π

0

∫ π

0

∫ ∞

0

√
3

8π
sin θeiϕ r

qδ(r − a)δ(θ − θ0)δ(ϕ− ϕ0)

r2 sin θ
r2 sin θdr dθ dϕ,

∴ q1−1 = aq

√
3

8π
sin θ0e

iϕ0 . (3.42)

q10 =

∫ 2π

0

∫ π

0

∫ ∞

0

√
3

4π
cos θ r qδ(r − a)δ(θ − θ0)δ(ϕ− ϕ0)

r2 sin θ
r2 sin θdr dθ dϕ,

∴ q10 = aq

√
3

4π
cos θ0. (3.43)

q11 =

∫ 2π

0

∫ π

0

∫ ∞

0
−
√

3

8π
sin θe−iϕ r

qδ(r − a)δ(θ − θ0)δ(ϕ− ϕ0)

r2 sin θ
r2 sin θdr dθ dϕ,

∴ q11 = −aq

√
3

8π
sin θ0e

−iϕ0 . (3.44)

The potential for r ≫ a will then be the same as in part (a),

V (r, θ, ϕ) =
1

ε0

∞∑
ℓ=0

ℓ∑
m=−ℓ

qℓ,m
2ℓ+ 1

r−(ℓ+1)Yℓ,m(θ, ϕ), (3.45)

=
aq

3ε0r2

[√
3

8π
sin θ0e

iϕ0

√
3

8π
sin θe−iϕ +

√
3

4π
cos θ0

√
3

4π
cos θ

+

√
3

8π
sin θ0e

−iϕ0

√
3

8π
sin θeiϕ

]
, (3.46)

=
aq

3ε0r2

[
3

8π
sin θ0 sin θei(ϕ0−ϕ) +

3

4π
cos θ0 cos θ

+
3

8π
sin θ0 sin θe−i(ϕ0−ϕ)

]
, (3.47)

=
aq

4πε0r2
[sin θ0 sin θ cos(ϕ0 − ϕ) + cos θ0 cos θ] . (3.48)
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4 Macroscopic and microscopic dielectric theory

4–1 A dielectric sphere (dielectric constant K) of radius a is placed in an initially uniform
electric field E0. (a) What are the boundary conditions on V , E and D for this problem.
(b) Find the potential everywhere. (c) Find E, D and P everywhere. (d) Find the dipole
moment of the sphere and the surface polarisation charge density.

Solution

(a) The boundary conditions at the surface of the sphere are that E∥, D⊥ and V are
continuous across the boundary. In addition the electric field very far from the sphere
must equal the initial field. Defining this to be in the z-direction,

E(r ≫ a, θ, ϕ) = E0�z, (4.1)
∴ V (r ≫ a, θ, ϕ) = −E0z = −E0r cos θ = −E0rP1(cos θ). (4.2)

Since the potential has not been specified anywhere, we are free for convenience to set
V (0, θ, ϕ) = 0.

(b) This is a problem with spherical symmetry but with no dependence on ϕ. Hence, we
can write down the form of the potential

V (r, θ, ϕ) =

∞∑
ℓ=0

(
Aℓ r

ℓ +Bℓ r
−(ℓ+1)

)
Pℓ(cos θ). (4.3)

So that Vin is finite inside the sphere (containing r = 0), we must have all Bin
ℓ = 0.

Similarly, so that Vout is finite outside the sphere we must have all Aout
ℓ = 0, except as

needed to give V (r ≫ a, θ, ϕ) = −E0rP1(cos θ), i.e. Aout
1 = −E0. Hence

Vin(r, θ, ϕ) =
∞∑
ℓ=0

Ain
ℓ rℓPℓ(cos θ), (4.4)

Vout(r, θ, ϕ) = −E0r
1P1(cos θ) +

∞∑
ℓ=0

Bout
ℓ r−(ℓ+1)Pℓ(cos θ). (4.5)

Applying the boundary condition on V at r = a, and remembering that we set V (0, θ, ϕ) =
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0,

∞∑
ℓ=0

Ain
ℓ aℓPℓ(cos θ) = −E0a

1P1(cos θ) +
∞∑
ℓ=0

Bout
ℓ a−(ℓ+1)Pℓ(cos θ), (4.6)

∴ Ain
1 a = −E0a+Bout

1 a−2. (4.7)

with all other coefficients zero. Hence, we can now write the form of the solution as

Vin(r, θ, φ) = Ain
1 r cos θ, (4.8)

Vout(r, θ, φ) = −E0r cos θ +Bout
1 r−2 cos θ. (4.9)

Next we apply the boundary conditions on E and D at r = a,

E∥ = − 1

r

∂V

∂θ

����
r=a

�θ, (4.10)

∴ Ain
1 sin θ = −E0 sin θ +Bout

1 a−3 sin θ. (4.11)
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D⊥ = − ε
∂V

∂r

����
r=a

�r, (4.12)

∴ −εAin
1 cos θ = ε0E0 cos θ + 2ε0B

out
1 a−3 cos θ. (4.13)

Equations 4.7, 4.11 and 4.13 are three equations in two unknowns, but we only need two
equations. Solving Eqs. 4.11 and 4.13 gives

Bout
1 = E0a

3 (ε− ε0)

(ε+ 2ε0)
, Ain

1 = −E0
3ε0

(ε+ 2ε0)
. (4.14)

Hence,

Vin(r, θ, φ) = −E0
3ε0

(ε+ 2ε0)
r cos θ = −E0

3ε0
(ε+ 2ε0)

z, (4.15)

Vout(r, θ, φ) = −E0r cos θ + E0a
3 (ε− ε0)

(ε+ 2ε0)
r−2 cos θ. (4.16)

(c) The electric field is E = −∇V and the displacement field is D = εE

E(r, θ, φ) = −∂V

∂r
�r − 1

r

∂V

∂θ
�θ − 1

r sin θ

∂V

∂φ
�ϕ. (4.17)

∴ Ein =
3ε0

(ε+ 2ε0)
E0, Din = εEin. (4.18)

Eout = E0 +
(ε− ε0)

(ε+ 2ε0)
a3E0

[
2 cos θ�r + sin θ �θ

]
r−3, Dout = ε0Eout. (4.19)

The polarisation field inside the dielectric is obtained from P = D − ε0E giving

P = (ε− ε0)E =
3(ε− ε0)ε0
(ε+ 2ε0)

E0. (4.20)

(d) Since the polarisation field is uniform the dipole moment is

p =
4

3
πa3P =

4

3
πa3

3(ε− ε0)ε0
(ε+ 2ε0)

E0. (4.21)
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The surface polarisation charge density on the sphere is

σp(a, θ, φ) = P · �n =
3(ε− ε0)ε0
(ε+ 2ε0)

E0 cos θ. (4.22)

4–2 An electret, i.e. a piece of material with a permanent electric polarisation, is in the shape
of a sphere of radius a and has P(r) = P0. (a) Find the surface polarisation charge density
and the dipole moment of the sphere, (b) find V , E, and D everywhere, and (c) sketch the
field lines of E and D.

Solution

(a) We are free to choose the sphere to be polarised in the �z direction. Then

σpol(a, θ, φ) = P · �n = (P0 �z) · �r = P0 cos θ = P0 P1(cos θ). (4.23)

As the polarisation is uniform, we can obtain the dipole moment directly from P and the
sphere’s volume

p =
4

3
πa3P0 �z. (4.24)

(b) We first need to write down the form of the solution for the potential (inside and outside
the sphere), and then apply the boundary conditions to fix the coefficients in the series for
V .

The form of the solution for the potential is

V (r, θ, φ) =

∞∑
ℓ=0

(Aℓ r
ℓ +Bℓ r

−(ℓ+1))Pℓ(cos θ). (4.25)

Examining the angular dependence of σpol we realise that the solution will only involve
terms with ℓ ≤ 1, then

V in(r, θ, φ) = A0 +A1r cos θ, (4.26)
V out(r, θ, φ) = B0r

−1 +B1r
−2 cos θ. (4.27)
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The potential must be continuous ar r = a so that

A0 = B0a
−1, A1 = B1a

−3. (4.28)

Gauss’ law can be used to provide a boundary condition on E, and for this we will need
the normal (in this case radial) components of the electric field, Er = −∂V /∂r,

Ein
r (r, θ, φ) = −A1 cos θ, (4.29)

Eout
r (r, θ, φ) = B0r

−2 + 2B1r
−3 cos θ. (4.30)

Gauss’ law applied to the a pillbox spanning r = a at (a, θ, φ) is then,

Eout
r (a, θ, φ)− Ein

r (a, θ, φ) = σpol(a, θ, φ)/εo, (4.31)
B0a

−2 + 2B1a
−3 cos θ +A1 cos θ = P0 cos θ/ε0. (4.32)

From this we see that B0 = 0, and then from Eq. 4.28 that A0 = 0, and that
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A1 = P0/3ε0, B1 = a3P0/3ε0. (4.33)

Hence, the potential is

V in(r, θ, φ) =
P0

3ε0
r cos θ =

P0

3ε0
z, (4.34)

V out(r, θ, φ) =
a3P0

3ε0
r−2 cos θ. (4.35)

The electric field is

E(r, θ, φ) = −∂V

∂r
�r − 1

r

∂V

∂θ
�θ − 1

r sin θ

∂V

∂φ
�ϕ. (4.36)

∴ Ein(r, θ, φ) = − P0

3ε0
�z =

P0

3ε0

(
− cos θ�r + sin θ �θ

)
, (4.37)

Eout(r, θ, φ) =
a3P0

3ε0
r−3

(
2 cos θ�r + sin θ �θ

)
. (4.38)

The electric potential and field outside the sphere is identical to that of a dipole

Vdip(r) =
1

4πε0

p · �r
r2

=
1

4πε0

p cos θ
r2

, (4.39)

Edip(r) =
p

4πε0r3

(
2 cos θ�r + sin θ �θ

)
. (4.40)

and is consistent with p calculated earlier from P0 and the volume.

Finally, the displacement field is given by D = ε0E + P,

Din(r, θ, φ) =
2

3
P0, (4.41)

Dout(r, θ, φ) =
a3P0

3
r−3

(
2 cos θ�r + sin θ �θ

)
. (4.42)

(c) To sketch the electric field lines we notice that inside the sphere E is constant and in
the −�z direction, and that at the poles |Ein| = |Eout|/2, and that outside the sphere it has
a dipole field. Also, electric field lines start on positive charge (either free or polarisation
charge) and end on negative charge (free or polarisation charge).

To sketch the displacement field we notice that inside the sphere D is constant and in the
+�z direction, at the poles that |Din| = |Dout|, and that outside the sphere it has a dipole
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field. Also, since there is no free charge present the field lines of D must form closed loops.

P DE

++ ++ + +
+

− −−
− −

−−

0

4–3 The space between two concentric conducting cylinders of radius a and b > a and length
L ≫ b is filled with a dielectric with permittivity ε. The inner and outer conductors are
held at potentials Va and Vb, respectively. Find: (a) E, D and P everywhere; (b) the po-
larisation surface and volume charge density everywhere, and the net polarisation charge;
(c) the free charge on the inner and outer conductors, and the capacitance.

Solution

a

cylinders
length

b

conducting

ε

V

L

b

Va

(a) We start by solving Laplace’s equation in cylindrical coordinates with no dependence
on ϕ and z

1

ρ

d

dρ

(
ρ
dV

dρ

)
= 0. (4.43)

Integrating, we get

ρ
dV

dρ
= A,

∫
dV = A

∫
dρ

ρ
, ∴ V = A ln ρ+B. (4.44)
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A and B are integration constants to be determined from the boundary conditions at ρ = a

and ρ = b,

Va = A ln a+B, Vb = A ln b+B. (4.45)

Solving for A and B,

A =
(Vb − Va)

ln(b/a) , B = Va +
(Va − Vb)

ln(b/a) ln a. (4.46)

∴ V (ρ) = Va + (Vb − Va)
ln(ρ/a)
ln(b/a) . (4.47)

The electric field will be present only between the inner and outer conductors

E(ρ) = − dV

dρ
ρ̂ = − (Vb − Va)

ln(b/a)
1

ρ
ρ̂. (4.48)

Since the dielectric is linear the displacement and polarisation fields, again only between
the inner and outer conductors, are
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D = εE = ε
(Va − Vb)

ln(b/a)
1

ρ
�ρ, (4.49)

P = D − ε0E = (ε− ε0)
(Va − Vb)

ln(b/a)
1

ρ
�ρ. (4.50)

(b) The volume polarisation charge density is

ρpol = −∇ · P = − 1

ρ

∂

∂ρ
(ρPρ) = 0. (4.51)

The surface polarisation charge density is σpol = P · �n,

σpol(a) = (ε− ε0)
(Va − Vb)

ln(b/a)
1

a
�ρ · �ρ = (ε− ε0)

(Va − Vb)

ln(b/a)
1

a
, (4.52)

σpol(b) = (ε− ε0)
(Va − Vb)

ln(b/a)
1

b
�ρ · (−�ρ) = − (ε− ε0)

(Va − Vb)

ln(b/a)
1

b
. (4.53)

The net polarisation charge is

qpol = L× [2πa× σpol(a) + 2πb× σpol(b)] , (4.54)

= L (ε− ε0)
(Va − Vb)

ln(b/a)

(
2πa

a
− 2πb

b

)
= 0. (4.55)

(c) We obtain the free charge present on the conductors using Gauss’ law from which
σf = D · �n,

σf (a) = ε
(Va − Vb)

ln(b/a)
1

a
�ρ · �ρ = ε

(Va − Vb)

ln(b/a)
1

a
, qf (a) = 2πLε

(Va − Vb)

ln(b/a) , (4.56)

σf (b) = ε
(Va − Vb)

ln(b/a)
1

b
�ρ · (−�ρ) = − ε

(Va − Vb)

ln(b/a)
1

b
, qf (b) = −2πLε

(Va − Vb)

ln(b/a) .

(4.57)

Hence, the capacitance is C = qf/(Va − Vb),

C =
2πLε

ln(b/a) . (4.58)
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4–4 A spherical capacitor is filled with two different dielectrics with permittivities ε1 and ε2 as
shown in the diagram. The capacitor is charged such that charge +q is on the inner con-
ductor. Find: (a) D, E and P everywhere; (b) the polarisation surface and volume charge
density everywhere; (c) the net polarisation charge; (d) the potential difference between
the inner and outer conductor, and the capacitance of the capacitor.

ε ε12

c

b
a

conducting
spherical
shells

+q

Solution

Because of the spherical symmetry we can use Gauss’ law in integral form to find the
displacement field between the conductors

4πr2Dr = +q, D(a<r<c, θ, φ) =
q

4πr2
�r. (4.59)

The electric field is E = D/ε,

E(r, θ, φ) =

{
q

4πε1r2
�r (a < r < b)

q
4πε2r2

�r (b < r < c)
. (4.60)

The polarisation field is P = D − ε0E,

P(r, θ, φ) =




q
4πr2

(
1− ε0

ε1

)
�r (a < r < b)

q
4πr2

(
1− ε0

ε2

)
�r (b < r < c)

. (4.61)

(b) The volume polarisation charge density is

ρpol = −∇ · P = − 1

r2
∂

∂r
(r2Pr) = 0. (4.62)

The surface polarisation charge density is σpol = P · �n, and each of the two dielectrics will
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have surface polarisation charge at its inner and outer radii. Hence,

σ
(1)
pol(a) =

q

4πa2

(
1− ε0

ε1

)
�r · (−�r) = − q

4πa2

(
1− ε0

ε1

)
, (4.63)

σ
(1)
pol(b) =

q

4πb2

(
1− ε0

ε1

)
�r · (+�r) =

q

4πb2

(
1− ε0

ε1

)
, (4.64)

σ
(2)
pol(b) =

q

4πb2

(
1− ε0

ε2

)
�r · (−�r) = − q

4πb2

(
1− ε0

ε2

)
, (4.65)

σ
(2)
pol(c) =

q

4πc2

(
1− ε0

ε2

)
�r · (+�r) =

q

4πc2

(
1− ε0

ε2

)
. (4.66)

(c) The net polarisation charge is

qpol = 4πa2σ
(1)
pol(a) + 4πb2

[
σ
(1)
pol(b) + σ

(2)
pol(b)

]
+ 4πc2σ

(2)
pol(c), (4.67)

= q

[
−
(
1− ε0

ε1

)
+

(
1− ε0

ε1

)
−
(
1− ε0

ε2

)
+

(
1− ε0

ε2

)]
= 0. (4.68)
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(d) The potential difference is Va − Vc = −
∫ a
c E · dr,

Vb − Vc = −
∫ b

c

q

4πε2r2
dr =

∫ b

c

q

4πε2r2
dr =

q

4πε2

(
1

b
− 1

c

)
, (4.69)

Va − Vb = −
∫ a

b

q

4πε1r2
dr =

∫ a

b

q

4πε1r2
dr =

q

4πε1

(
1

a
− 1

b

)
. (4.70)

∴ Va − Vc =
q

4π

[
1

ε1

(
1

a
− 1

b

)
+

1

ε2

(
1

b
− 1

c

)]
. (4.71)

Hence, the capacitance is

C = 4π

[
1

ε1

(
1

a
− 1

b

)
+

1

ε2

(
1

b
− 1

c

)]−1

. (4.72)

4–5 A uniform slab of material with permittivity ε1 is suspended parallel to the xy-plane, and
has its lower surface at z = 0 and its upper surface at z = d. Outside the slab there is
a uniform electric field E0 = E0(sin θ0 �x − cos θ0 �z). (a) Find formulae for E, D and P
in the dielectric, the angle between E in the dielectric and the normal to the surface, and
the surface polarisation charge density at z = 0 and z = d. (b) Find numerical values for
the case of E0 = 1000 V m−1, θ0 = 45◦ and εr = 2, and include a sketch showing field
directions.

Solution

A field line will bend as in the diagram.

z

x

d

0

ε
θ E1

θ1

θ0

1
1

ε

θ0E

0

0

E
0

(a) The component of E parallel to the boundary is unchanged, and since there is no free
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charge the component of D normal to the boundary is unchanged

E0 sin θ0 = E1 sin θ1, ε0E0 cos θ0 = ε1E1 cos θ1. (4.73)

The electric field is

E1 = E1 sin θ1�x − E1 cos θ1�z. (4.74)

∴ E1 = E0 sin θ0�x − ε0
ε1

E0 cos θ0�z. (4.75)

Hence, from Eqs. 4.75 the magnitude and direction

E1 =

[
sin2 θ0 +

(
ε0
ε1

)2

cos2 θ0

]1/2

E0, θ1 = arctan
(
ε1
ε0

tan θ0

)
. (4.76)

The displacement and polarisation fileds are

D1 = ε1E1 = ε1E0 sin θ0 �x − ε0E0 cos θ0 �z, (4.77)

P1 = (D1 − ε0E1) = (ε1 − ε0)E0 sin θ0 �x − (ε1 − ε0)ε0
ε1

E0 cos θ0 �z. (4.78)

The surface polarisation charge is

σpol(x, y, 0) = +P1 cos θ1, σpol(x, y, d) = −P1 cos θ1. (4.79)

(b) Substituting for the case of E0 = 1000 V m−1, θ0 = 45◦ and εr = 2, i.e. ε1 = 2ε0 we
find

θ1 = 63.4◦, E1 = 791 V m−1, D1 = 1.40× 10−8 C m−2, (4.80)
P1 = 7.00× 10−9 C m−2, (4.81)

σpol(x, y, z=0) = +3.13× 10−9 C m−2, (4.82)
σpol(x, y, z=d) = −3.13× 10−9 C m−2. (4.83)

4–6 Derive the force on an electric dipole in a non-uniform electric field.

Solution
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Consider a physical dipole consisting of charge +q located at rpos and charge −q located
at rneg. Its dipole moment is p = qd where d = (rpos − rneg). It follows that the force is

F = (+q)E(rpos) + (−q)E(rneg), (4.84)

= q∆E (4.85)

= q(x̂∆Ex + ŷ∆Ey + ẑ∆Ez), (4.86)

= q [x̂ (d ·∇Ex) + ŷ (d ·∇Ey) + ẑ (d ·∇Ez)] , (4.87)

= q [(d ·∇Ex x̂) + (d ·∇Ey ŷ) + (d ·∇Ez ẑ)] , (4.88)

= q(d ·∇E), (4.89)

= (qd ·∇)E, (4.90)

F = (p ·∇)E. (4.91)
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4–7 The relative permittivities of Nitrogen, Argon and Hydrogen in gas (at 20◦C) and liquid
phases are given below.

Element N2 gas Ar gas H2 gas N2 liquid Ar liquid H2 liquid
εr 1.000546 1.000517 1.000272 1.45 1.53 1.22

http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_1.html

Use the Clausius-Mossotti formula to find the electronic polarisability, and compare the
results for the same elements in the liquid and gas phases. [You will need to look up any
constants and the atomic weights and densities required.]

Solution

We need to use the Clausius-Mossotti formula

αpol =
3ε0
N

(
εr − 1

εr + 2

)
(4.92)

where N = ρ/(Ā u), ρ is the density, Ā is the mean atomic mass, u = 1.66× 10−27 kg and
ε0 = 8.85× 10−12 F m−1.

Values of density in the liquid and gas phases, and the mean molecular weight have been
looked up in tables of physical/chemical constants and have been added to the table, and
the polarisability calculated using Eq. 4.92.

Element N2 gas Ar gas H2 gas N2 liquid Ar liquid H2 liquid
εr 1.000546 1.000517 1.000272 1.45 1.53 1.22
ρ (kg m−3) 1.25 1.78 0.089 800. 1393. 67.8
Ā 14. 39.95 1. 14. 39.95 1.
αpol (C m2V−1) 8.98×10−41 1.70×10−40 4.49×10−41 1.01×10−40 1.89×10−40 4.44×10−41

The agreement in αpol for the same element between liquid and gas phases is quite good,
the difference being at most 10%.
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5 Magnetic field and vector potential

5–1 Two parallel wires are separated by distance a and carry currents I1 and I2 in the same
direction. Find the force per unit length of wire. Include a diagram showing the direction
of the force. If I1 = I2 = 1 A and a = 1 m, what is the magnitude of the force per unit
length?

Solution

B

I

F

a

I
2

1

1

The force on a circuit in a magnetic field is given by Ampère’s force law

Fmag =

∮
(I dr × B). (5.1)

For parallel currents as in the diagram, the force on length L of wire 2 is

F = I2LB1 = I2L
µ0I1
2πa

(5.2)

and is directed towards wire 1 as shown. The force per unit length is

F

L
=

µ0I1I2
2πa

. (5.3)

If the wires are 1 m apart and each carry 1 A,

F

L
=

4π × 10−7

2π
= 2× 10−7 N m−1. (5.4)

The amp is defined as the current flowing in two parallel wires 1 m apart such that the
force beween them per unit length is 2× 10−7 N m−1.
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5–2 Using the equation for the vector potential in terms of the current density find the vector
potential of an infinite straight wire along the z axis carrying current I.

Solution

zz

R

ρ

I

dzz=0

We shall consider a long straight current along the z axis (−L < z < L) and obtain the
vector potential for cylindrical coordinate radii ρ ≪ L, which is a good approximation for
the case L → ∞. Then

A(r) = µ0

4π

∮
Idr′
R

(5.5)

=
µ0I

4π

∫ L

−L

dz �z√
z2 + ρ2

(5.6)

= �z µ0I

4π

[
ln(

√
z2 + ρ2 + z)

]L
−L

(5.7)
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= �z µ0I

4π
ln
(√

L2 + ρ2 + L√
L2 + ρ2 − L

)
(5.8)

= �z µ0I

4π
ln
(√

1 + ρ2/L2 + 1√
1 + ρ2/L2 − 1

)
(5.9)

≈ �z µ0I

4π
ln
(
1 + ρ2/2L2 + 1

1 + ρ2/2L2 − 1

)
(1st 2 terms of series expansion)

= �z µ0I

4π
ln
(

2

ρ2/2L2

)
(provided ρ ≪ L) (5.10)

= �z µ0I

4π

[
ln(4L2)− 2 ln(ρ)

]
(5.11)

∴ A(r) = −�z µ0I

2π
ln(ρ) + �zC. (C is a constant.). (5.12)

Note that the value of C has no effect on the magnetic field, and so it is convenient to write
A(r) = −�z (µ0I/2π) ln(ρ).

5–3 We can add the gradient of a scalar field U(r) to A(r) without changing B(r). This is
called a gauge transformation. The “gauge” of the vector potential is determined by the
value of ∇ · A. Show that in magnetostatics ∇ · A = ∇2U(r).

Solution

∇ · A(r) = ∇ ·
[(

µ0

4π

∫ J(r ′)

R
d3r′

)
+∇U(r)

]
, (5.13)

=
µ0

4π

∫
∇ ·

(
J(r ′)

R

)
d3r′ + ∇2U(r). (5.14)

We shall show that the integral is zero for a finite current distribution, i.e. for J(r → ∞) =

0. We can use the product rule ∇ · (aV) = ∇a · V + a∇ · V to expand the integrand

∇ ·
(

J(r ′)

R

)
= ∇

(
1

R

)
· J(r ′) +

1

R
∇ · J(r ′), (5.15)

= ∇
(
1

R

)
· J(r ′) + 0 (diff. is w.r.t. unprimed coords.), (5.16)

= −∇′
(
1

R

)
· J(r ′) (∇Rn = −∇′Rn = nRn−1 �R). (5.17)
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Next use the same product rule but for primed coordinates ∇′ · (aV) = ∇′a · V + a∇′ · V
to get

∇′ ·
(

J(r ′)

R

)
= ∇′

(
1

R

)
· J(r ′) +

1

R
∇′ · J(r ′), (5.18)

= ∇′
(
1

R

)
· J(r ′) + 0, (5.19)

since charge conservation in magnetostatics requires ∇ · J = 0.

Then

∫

all space
∇ ·

(
J(r ′)

R

)
d3r′ = −

∫

all space
∇′ ·

(
J(r ′)

R

)
d3r′, (5.20)

= −
∮

S at ∞

(
J(r ′)

R

)
· dS′, (5.21)

= 0, (5.22)

since J(r ′ → ∞) = 0 for a localised charge distribution. Hence,

∇ · A(r) = ∇2U(r). (5.23)

In magnetostatics, it is convenient to choose U(r) such that ∇ · A = 0 (Coulomb gauge).

5–4 (a) Find the vector potential of the constant magnetic field B0 = (B0
x, B

0
y , B

0
z ), (b) check

that the vector potential you find does give the desired magnetic field, (c) find ∇ · A and
check it is what is expected in magnetostatics. [Hint: first find the vector potential A(z)(r)
of the simpler constant field B0

z �z by writing down the components of ∇×A(z) in Cartesian
coordinates before appealing to the symmetry of the problem, and then integrating.]

Solution

(a) We first attempt to find A(z)(r) which must satisfy

(
∂A

(z)
y

∂x
− ∂A

(z)
x

∂y

)
= B0

z . (5.24)
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A(z)(r) must be symmetrical about the z axis which suggests that

∂A
(z)
y

∂x
=

1

2
B0

z , −∂A
(z)
x

∂y
=

1

2
B0

z . (5.25)

Integrating we get

A(z)
y =

1

2
B0

z x, A(z)
x = −1

2
B0

z y. (5.26)

Hence,

A(z) =
1

2

(
B0

zx �y −B0
zy �x

)
. (5.27)

Similarly, or by cyclic permutation of x, y and z above,

A(x) =
1

2

(
B0

xy �z −B0
xz �y

)
, (5.28)

A(y) =
1

2

(
B0

yz �x −B0
yx�z

)
, (5.29)
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so that the vector potential of B0 = (B0
x, B

0
y , B

0
z ) is

A = (A(x) + A(y) + A(z)), (5.30)

=
1

2

[�x (
B0

yz −B0
zy

)
+ �y (

B0
zx−B0

xz
)
+ �z (B0

xy −B0
yx

)]
, (5.31)

=
1

2
B0 × r = −1

2
r × B0. (5.32)

This A(r) is not unique – we could add the gradient of any scalar field to A(r) without
changing B(r).

(b) Taking curl of the vector potential found above, this time using index notation,

∇× A = −1

2
∇× (r × B0), (5.33)

[∇× A]i = −1

2
εijk∇jεklmrlB

0
m, (5.34)

= −1

2
εkijεklm∇jrlB

0
m, (5.35)

= −1

2
(δilδjm − δimδjl)∇jrlB

0
m, (5.36)

= −1

2
(δilδjm∇jrlB

0
m − δimδjl∇jrlB

0
m), (5.37)

= −1

2
(∇mriB

0
m −∇lrlB

0
i ), (5.38)

= −1

2
(ri∇mB0

m +B0
m∇mri − rl∇lB

0
i −B0

i ∇lrl), (5.39)

= −1

2
(0 +B0

i − 0− 3B0
i ), (5.40)

= −1

2
(−2B0

i ), (5.41)

[∇× A]i = B0
i , (5.42)

∴ ∇× A = B0 (as required). (5.43)

We have used ∇ ·B0 = 0, ∇mri = δmi, B0 constant, and ∇ · r = 3 used in Eq. 5.39 above.
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(c) the divergence is

∇ · A = −1

2
∇ · (r × B0), (5.44)

= −1

2
∇i εijkrjB

0
k, (5.45)

= −1

2
εijk(B

0
k∇irj + rj∇iB

0
k), (5.46)

= −1

2
εkijB

0
k∇irj + 0, (5.47)

= −1

2
B0

kεkij∇irj , (5.48)

= −1

2
B0

k[∇× r]k, (5.49)

∴ ∇ · A = 0 (because ∇× r = 0), (5.50)

and the vector potential is seen to satisfy Coulomb gauge.

5–5 A steady current I flows down a long cylindrical wire of radius b. Find the magnetic field
both inside and outside the wire.

Solution

Γ1

Γ2ρ
1

2
ρ

b

We define the z axis to correspond the axis of the wire, and point out of the screen/page.
Then assuming the current density is constant inside the wire

J(r) =




I/(πb2) ẑ (0 < ρ < b)

0 (ρ > b)

(5.51)
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From symmetry arguments B must be azimuthal, i.e. B(r) = B(ρ)�ϕ. We apply Ampère’s
law to loops Γ1 and Γ2 in the diagram,

∮
B · dr = µ0Iencl. (5.52)

∴ 2πρ1B(ρ1) = µ0πρ
2
1

I

πb2
(loop Γ1), (5.53)

∴ 2πρ2B(ρ2) = µ0I (loop Γ2). (5.54)

∴ B(r) =
{

(µ0ρI/2πb
2) �ϕ (0 < ρ < b),

(µ0I/2πρ) �ϕ (ρ > b).
(5.55)

5–6 A semi-infinite solenoid of radius a, has n turns per unit length, extends from z = −∞ to
z = 0 along the z axis and carries current I in the +�ϕ direction. Magnetic flux is confined
to the solenoid, but emerges isotropically from its end at the origin as shown below.

(a) On the cone of half-angle θ with apex at the origin there is a circular loop (as shown)
with all points on the loop being at distance r ≫ a from the origin. Find the magnetic
flux passing through this loop.
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θ

B

semi−infinite solenoid

z

(b) Find the magnetic vector potential at the point (r, θ, φ), and take it’s curl to find the
magnetic field. [The expression for magnetic flux through a loop in terms of the vector
potential may be useful here.]

Solution

a) The magnetic flux emerging from the end of the solenoid is the flux inside the solenoid,
i.e.

Φ0 = (µ0nI)(πa
2). (5.56)

The flux emerges isotropically from the end of the solenoid at z = 0, so we shall need the
solid angle subtended at the origin by the circular loop, which is

Ω = 2π

∫ θ

0
sin θ′dθ′ = 2π[− cos θ′]θ0 = 2π[(− cos θ)− (−1)] = 2π(1− cos θ).

(5.57)

Then the magnetic flux through the circular loop is

ΦB =
Ω

4π
Φ0 =

1

2
(1− cos θ)Φ0 =

1

2
(1− cos θ)(µ0nI)(πa

2). (5.58)

(b) The magnetic flux through the loop is equal to the line-integral of the vector potential
around the loop

∮
A · d� = ΦB. (5.59)
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From symmetry arguments, since the current around the solenoid is only in the �ϕ direction,
the vector potential must also be in the �ϕ direction, and since the loop has radius r sin θ

Aϕ(r, θ, φ)(2πr sin θ) =
1

2
(1− cos θ)Φ0, (5.60)

Aϕ(r, θ, φ) =
1

2

(1− cos θ)
(2πr sin θ)

Φ0. (5.61)

∴ A(r, θ, φ) =
(1− cos θ)
(4πr sin θ)

Φ0
�ϕ. (5.62)

Taking the curl,

B =
1

r sin θ

[
∂

∂θ
(sin θ Aϕ)−

∂Aθ

∂φ

]
�r +

1

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(r Aϕ)

]
�θ

+
1

r

[
∂

∂r
(r Aθ)−

∂Ar

∂θ

]
�ϕ, (5.63)

=
1

r sin θ

∂

∂θ
(sin θ Aϕ)�r − 1

r

∂

∂r
(r Aϕ) �θ, (5.64)

=
1

r sin θ

∂

∂θ

(1− cos θ)
(4πr)

Φ0 �r + 0, (5.65)

=
1

r sin θ

sin θ

(4πr)
Φ0 �r, (5.66)

=
Φ0

4πr2
�r, (5.67)

=
µ0(nIπa

2)

4πr2
�r. (5.68)

This field has similar form to the electric field of a point electric charge. Hence, the end
of a semi-infinite solenoid appears as if it were a magnetic monopole of “magnetic charge”
nIπa2.

5–7 By taking the curl of the vector potential for a magnetic dipole with moment m located
at the origin, find it’s magnetic field using index notation.

Solution
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Using index notation,

B(r) = µ0

4π
∇×

(
m × r

r3

)
. (5.69)

Bi =
µ0

4π
εijk∇j

(εklnmlrn
r3

)
, (5.70)

=
µ0

4π
εkjiεkln

(
∇jmlrn

r3
+mlrn∇j

1

r3

)
, (5.71)

=
µ0

4π
εkjiεkln

[
ml∇jrn

r3
+mlrn

(
−3

�r
r4

)
· �ej

]
, (5.72)

=
µ0

4π
(δilδjn − δinδjl)

(
mlδjn
r3

+mlrn(−3)rj
1

r5

)
, (5.73)

=
µ0

4π

(
miδnn −mjδji

r3
− 3(mirnrn −mjrirj)

r5

)
, (5.74)

=
µ0

4π

(
3mi −mi

r3
− 3[mir

2 − (m · r) ri]
r5

)
, (5.75)

Bi =
µ0

4π

(
3(m · �r)(�r · �ei)−mi

r3

)
. (5.76)

∴ B(r) = µ0

4π

(
3(m · �r)�r − m

r3

)
. (5.77)
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5–8 A circular current loop in the xy plane has radius a and is centred on the origin. It carries
current I in the ϕ-direction. There is a uniform magnetic field B(r) = B0(cos θẑ + sin θŷ)
present. By integrating the torque dN = r′ × dF on line element dr′ of the current loop
at r′, find the torque on the entire current loop. Compare your result with the result you
would get by first finding the current loop’s dipole moment, and then applying the formula
for the torque on a magnetic dipole in a magnetic field.

Solution

d

B

I

a

r’
x

y

θ

φ

z

A point on the loop and the corresponding line element on the loop are

r′ = a(cosϕ x̂ + sinϕ ŷ), (5.78)
dr′ = a dϕ(− sinϕ x̂ + cosϕ ŷ). (5.79)

The force on that line element is

dF = Idr′ × B, (5.80)

= I

∣∣∣∣∣∣∣

x̂ ŷ ẑ
−a dϕ sinϕ a dϕ cosϕ 0

0 B0 sin θ B0 cos θ

∣∣∣∣∣∣∣
(5.81)

= IaB0 dϕ(cosϕ cos θ x̂ + sinϕ cos θ ŷ − sinϕ sin θ ẑ). (5.82)
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The torque on the line element is

dN = r′ × (dF), (5.83)

=

�������

�x �y �z
a cosϕ a sinϕ 0

IaB0 dϕ cosϕ cos θ IaB0 dϕ sinϕ cos θ −IaB0 dϕ sinϕ sin θ

�������
(5.84)

= Ia2B0 dϕ
[
− sin2 ϕ sin θ �x + cosϕ sinϕ sin θ �y

+ (cosϕ sinϕ cos θ − sinϕ cosϕ cos θ)�z], (5.85)

= Ia2B0 dϕ (− sin θ sin2 ϕ �x + cosϕ sinϕ sin θ �y). (5.86)

When integrating over ϕ we note that cosϕ sinϕ is an odd function and its integral from 0

to 2π will be zero, and so

N = −Ia2B0 sin θ �x
∫ 2π

0
sin2 ϕdϕ (5.87)

= −Ia2B0 sin θ �x
[
1

2
ϕ− 1

2
sinϕ cosϕ

]2π
0

(5.88)

= −Iπa2B0 sin θ �x. (5.89)

Given that the dipole moment is m = Iπa2 �z, we expect a torque

N = m × B, (5.90)
= −Iπa2B0 sin θ �x (5.91)

as just found using the force law.
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6–1 Derive the following which are needed to obtain the magnetisation currents of a magnetised
object: (a) Identity for ∇ ′R−1,

∇ ′R−1 = +R−2 �R. (6.1)

(b) Product rule for ∇× (aF),

∇× (aF) = (∇a)× F + a∇× F. (6.2)

(c) Corollary to Gauss’ Theorem,

∫

V
∇× F d3r = −

∮

S
F × dS. (6.3)
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Solution

(a) First, for the identity for ∇ ′R−1 we shall start by deriving the more general case,

∇′Rn = �x ∂

∂x′
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]n/2

+ �y ∂

∂y′
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]n/2

+ �z ∂

∂z′
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]n/2
, (6.4)

= �x n

2

[
(x− x′)2 + (y − y′)2 + (z − z′)2

](n/2−1)
2 (x− x′)(−1)

+ �y n

2

[
(x− x′)2 + (y − y′)2 + (z − z′)2

](n/2−1)
2 (y − y′)(−1)

+ �z n

2

[
(x− x′)2 + (y − y′)2 + (z − z′)2

](n/2−1)
2 (z − z′)(−1), (6.5)

= −n
[�x(x− x′) + �y(y − y′) + �z(z − z′)

]
Rn−2, (6.6)

= −nRRn−2, (6.7)

∴ ∇′Rn = −nRn−1 �R. (6.8)

Thus, for this exercise,

∇ ′R−1 = +R−2 �R. (6.9)

(b) The product rule for ∇× (aF) is derived as follows using index notation,

[∇× (aF)]i = εijk∇j(aFk), (6.10)

= εijk(Fk∇ja + a∇jFk), (6.11)

= εijk(∇a)jFk + aεijk∇jFk, (6.12)

∴ [∇× (aF)]i = [(∇a)× F]i + [a∇× F]i. (6.13)

∴ ∇× (aF) = (∇a)× F + a∇× F. (6.14)
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Finally, re-arrange the product rule:

−(∇a)× F = a∇× F − ∇× (aF), (6.15)

∴ F × (∇a) = a∇× F − ∇× (aF). (6.16)

(c) We shall prove the corollary to Gauss’ Theorem by applying Gauss’ theorem for the
vector field c × F(r) where c is a constant vector is

∫

V
∇ · (c × F) d3r =

∮

S
(c × F) · dS. (6.17)

Then we rearrange the right-hand side using the scalar triple product rule (c × F) · dS =

(F × dS) · c, and on the left-hand side we can integrate by parts using the product rule
∇ · (c × F) = (∇× c) · F − (∇× F) · c, giving

∫

V
[(∇× c ) · F − (∇× F) · c ] d3r =

∮

S
(F × dS) · c, (6.18)

−
[∫

V
∇× F d3r

]
· c =

[∮

S
F × dS

]
· c, (6.19)

∴
∫

V
∇× F d3r = −

∮

S
F × dS, (6.20)

as ∇× c = 0 for c being a constant vector.

6–2 A thin disc of magnetised material is coincident with the xy plane. It is of thickness s and
radius a and has magnetisation M = M0�z. Find the magnetisation current, and from this
find the magnetic dipole moment of the disc. Compare this with what you would get by
multiplying the disc’s volume by M.

Solution

ρ

a

z

s

M
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The surface magnetisation current is

Kmag = M × n̂ = M0 ẑ × ρ̂ = M0 ϕ̂. (6.21)

The net magnetisation current around the disc’s circumference is Imag = sKmag = sM0,
and so the dipole moment is

m = (πa2)Imag ẑ = πa2sM. (6.22)

This is just the volume multiplied by the magnetisation field.

6–3 Consider a permanent magnet in the form of a short cylinder of radius a extending along
the z axis from z = −L to z = +L and having uniform magnetisation M = M0ẑ. (a) Find
B and H at all points (0, 0, z) on the cylinder’s axis, and plot B(0, 0, z) and H(0, 0, z) vs.
z. (b) Discuss whether the result obtained in part (a) obeys Ampère’s law for H in integral
form.
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Solution

x

z

θ’

y

∆B (0,0,z)
R

z’

dz’ L

L

K
mag

a

M

(a) Because the magnetisation field is uniform, there is no magnetisation volume current.
The magnetisation surface current Kmag(r) = M(r) × �n is zero on the two ends, and
Kmag(r) = M0

�ϕ on the cylindrical surface.

The Biot-Savart law gives the magnetic field due to an arbitrary surface current distribu-
tion:

B(r) =
µ0

4π

∫
[Kmag(r′) dS′]× �R

R2
(6.23)

The diagram shows the contribution ∆B to the magnetic field at (0, 0, z) due to the surface
magnetisation current in a small patch of the surface making up part of the strip of thickness
dz′ at z′. The components of ∆B due to the surface currents in different patches around
the strip which are not in the z direction will cancel each other out. This leaves only a
z-component for the contribution dB, due to the entire strip, so that

dB(0, 0, z) =
µ0

4π

(Kmagdz′)(2πa)

R2
cos θ′ �z, (6.24)

=
µ0

4π

(Mdz′)(2πa)

R2

a

R
�z, (6.25)

∴ dB(0, 0, z) =
µ0Ma2dz′

2[(z − z′)2 + a2]3/2
�z. (6.26)
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Hence, integrating over the entire cylindrical surface,

B(0, 0, z) =

∫ L

−L

µ0Ma2dz′

2[(z − z′)2 + a2]3/2
�z, (6.27)

=
µ0M

2

[
z + z′√

(z + z′)2 + a2

]L

−L

�z, (6.28)

∴ B(0, 0, z) =
µ0M

2

[
z + L√

(z + L)2 + a2
− z − L√

(z − L)2 + a2

]
�z. (6.29)

Now, H = B/µ0 − M, and so

H(0, 0, z) =




M0
2

[
z+L√

(z+L)2+a2
− z−L√

(z−L)2+a2

]
�z (|z| > L)

M0
2

[
z+L√

(z+L)2+a2
− z−L√

(z−L)2+a2

]
�z −M0�z (|z| < L)

(6.30)

B and H are plotted below.

(b) Ampère’s law in integral form is

∮

Γ
H · dr = If, encl. (6.31)
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where If, encl. is the net free current through loop Γ. Since there are no free currents the
integral must be zero for any closed path. We only know H on the z axis, and at |r| = ∞
where H must be zero because the source of magnetic field, in this case the magnet, is
localised near the origin. But we can construct a closed loop which has as part of it the
entire z-axis as follows: (0, 0,−∞) to (0, 0,+∞) to (0,+∞,+∞) to (0,+∞,−∞) and back
to (0, 0,−∞). The integrand is zero except along the z-axis, so in this case Ampère’s law
in integral form is satisfied provided

∫ ∞

−∞
Hz(0, 0, z)dz = 0. (6.32)

Examining the plot of Hz vs. z above, it appears that the integral is indeed zero, as could
easily be checked by numerical integration.
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6–4 A cylindrical rod of radius a and length h ≫ a is permanently magnetised along its length
which coincides with the z direction, i.e. M = M0�z. (a) Find the surface magnetisation
current Kmag(r), and use it together with Ampere’s law to find B and H inside and outside
the rod (assume h → ∞). (b) The rod is now bent into a circle of circumference (h+ 2L)

such that there is an air gap of width 2L < a. Plot B and H along the axis of the magnet
in the vicinity of the air gap for the case of a = 0.5 and L = 0.2.

Solution

LK 2a 2mag

M

z

M

a Γ

z

δz

(a) The surface magnetisation current density is Kmag(r) = M(r)× �n, hence

Kmag(a, φ, z) = M0 �z × �ρ = M0
�ϕ. (6.33)

This surface magnetisation current is similar to the current in a tightly-wound solenoid,
and the magnetic field inside the rod can be calculated in the same way using Ampère’s
law

∮
B · dr = µ0Iencl. From the symmetry of the problem B inside the rod can only be in

the �z direction.

For Amperian rectangular loop Γ (see diagram) with one side of length δz inside the rod
at cylindrical radius ρ1 and one outside at cylindrical radius ρ2

[Bz(ρ1, φ, z)−Bz(ρ2, φ, z)] δz = µ0M0δz. (6.34)

That this is independent of ρ2 and applies equally to ρ2 → ∞ (where B = 0) tells us that
B = 0 outside the rod. Again, since the integral is independent of ρ1 the magnetic field
inside the rod is constant,

B(ρ < a, φ, z) = µ0M0 �z = µ0M. (6.35)
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Finally,

H =

(
B
µ0

)
− M = 0 (6.36)

everywhere. Note that this result is for an (unrealistic) infinite magnetised rod, and that
near the two ends of the rod B would be different, and H would be non-zero.

(b) To find B and H on the axis of the magnet near the air gap we can use the information
that h ≫ a and assume the magnet in this region is approximately straight, with its axis
being along the z-axis, and with the air gap extending from z = −L to z = +L. In that
case we can imagine that a short magnet of length 2L has been removed from an infinite
magnetised rod.

Using the principle of superposition, we can get B in the vicinity of the air gap by subtract-
ing the field of the short magnet of length 2L from the field of an infinite straight magnetised
rod with no air gap. For the short magnet we can use the results from Exercise 6–3 for the
magnetic field of the short magnet. Thus,

B(0, 0, z) = µ0M0�z − µ0M0

2

[
z + L√

(z + L)2 + a2
− z − L√

(z − L)2 + a2

]
�z. (6.37)

Now, H = B/µ0 − M, and so

H(0, 0, z) =




− M0
2

[
z+L√

(z+L)2+a2
− z−L√

(z−L)2+a2

]
�z (|z| > L)

M0�z − M0
2

[
z+L√

(z+L)2+a2
− z−L√

(z−L)2+a2

]
�z (|z| < L)

(6.38)

B and H are plotted below. Note that the area under the plot of Hz(0, 0, z) vs. z appears
to be zero in agreement with Ampère’s law in integral form for the case of no free currents.
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6–5 Consider a permanently magnetised sphere of radius a with uniform magnetisation M(r) =
M0�z. (a) Find the surface magnetisation current density, and use this to find the magnetic
dipole moment of the sphere. Compare this with what you expect given the volume of the
sphere and the magnetisation field. (b) Find B and H at the centre of the sphere.

Solution

a

x

y

z

magK

M
B

H

(a) The surface magnetisation current density is

Kmag(a, φ, z) = M × �n = M0 �z × �r = M0 sin θ �ϕ. (6.39)

The magnetic dipole moment of the surface magnetisation current distribution is

m =
1

2

∮
r × Kmag(r)dS. (6.40)

From symmetry arguments, the dipole moment must be m = mz �z where

mz = �z · 1
2

∫ 1

−1
a�r × (M0 sin θ �ϕ)2πa2d(cos θ) (6.41)

=
2πa3M0

2

∫ 1

−1
sin θ �z · (−�θ) d(cos θ) (6.42)

= πa3M0

∫ 1

−1
sin2 θ d(cos θ) (6.43)

= πa3M0

∫ 1

−1
(1− cos2 θ) d(cos θ) (6.44)

=
4

3
πa3M0 (6.45)

as expected.
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(b) We can use the Biot-Savart law to obtain the magnetic field at the centre of the sphere

B(0, 0, 0) =
µ0

4π

∮ Kmag(r′)× �R
R2

dS′. (6.46)

From symmetry, this must be B(0, 0, 0) = B(0, 0, 0)�z where

B(0, 0, 0) = �z · µ0

4π

∫ 1

−1

(M0 sin θ �ϕ)× (−�r)
a2

2πa2d(cos θ), (6.47)

=
µ0M0

2

∫ 1

−1
sin θ �z · (−�θ) d(cos θ), (6.48)

=
µ0M0

2

∫ 1

−1
sin2 θ d(cos θ), (6.49)

=
µ0M0

2

∫ 1

−1
(1− cos2 θ) d(cos θ), (6.50)

∴ B(0, 0, 0) =
2

3
µ0M0. (6.51)

∴ B(0, 0, 0) =
2

3
µ0M (6.52)

and is in the same direction as M.

Now H = B/µ0 − M, so that H(0, 0, 0) = −1
3M and it is in the opposite direction to M.

6–6 Consider the hysteresis loops of the magnetically-soft iron-based amorphous alloy and the
magnetically-hard alloy of iron, aluminium, nickel and cobalt shown in Chapter 6.
(a) Estimate the work done to bring 1 cm3 of each material through one cycle of the
hysteresis loop. (b) Two transformers operating at 50 Hz have magnetic cores of volume
100 cm3 (one of each type of material) and are (unwisely) operated at a current at which
saturation occurs. How much power is lost as heat in each case? [You could print the
hysteresis plots and estimate the area by drawing over it a grid and measuring by hand
sufficient points on the graph to get within say 20% accuracy for the area.]

Solution
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Grid lines have been drawn over the hysteresis plots above. The area of the upper half of
the hysteresis loop (for positive BM ) is identical to that of the lower half. Read off the
(horizontal) “widths” in H at “heights” BM = 0, 0.1, 0.2, . . . (T). The approximate values
are tabulated below.
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iron-based alloy Alnico
BM (T) ∆H (kA m−1) ∆H (kA m−1)

0.0 30 120
0.1 25 120
0.2 25 120
0.3 20 120
0.4 20 120
0.5 15 120
0.6 15 120
0.7 15 120
0.8 10 120
0.9 10 120
1.0 0 120
1.1 115
1.2 100
1.3 90
1.4 0

sum: 185 1625

The areas of the two loops are approximately:

iron-based alloy:
∮

BMdH = 2× (185 kA m−1)× (0.1 T) = 3.7× 104 J, (6.53)

Alnico:
∮

BMdH = 2× (1625 kA m−1)× (0.1 T) = 3.2× 105 J. (6.54)

Now, this is for a sample volume of 1 m3. For a magnetic core of volume 100 cm3=10−4 m3,
the energy to take the sample around one cycle is then 3.7 J (iron-based alloy) or 32 J
(Alnico).

If the sample is used in a transformer operating at 50 Hz with the magnetic field saturating,
the energy lost to heat in one second is 50 times the energy for one cycle, i.e. 185 W (iron-
based alloy) or 1.6 kW (Alnico). If the core were made of Alnico, the rate of heating would
be similar to that of a domestic electric room heater!




