Programming in
Objective-C 2.0

Stephen G. Kochan

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston e Indianapolis ¢ San Francisco
New York e Toronto e Montreal ¢ London ¢ Munich ¢ Paris ¢« Madrid
Cape Town e Sydney e Tokyo e Singapore » Mexico City

Programming in Objective-C 2.0
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-56615-7
ISBN-10: 0-321-56615-7

Library of Congress Cataloging-in-Publication Data:
Kochan, Stephen G.

Programming in Objective-C 2.0 / Stephen G. Kochan. - 2nd ed.

p. cm.

ISBN 978-0-321-56615-7 (pbk.)

1. Objective-C (Computer program language) 2. Object-oriented
programming (Computer science) 3. Macintosh (Computer)-Programming.
I. Title.

QA76.73.0115K63 2009

005.1'17-dc22

2008049771

Printed in the United States of America
First Printing December 2008

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor

Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor

Krista Hansing
Editorial Services,
Inc.

Indexer
Ken Johnson

Proofreader
Arle Writing
and Editing

Technical Editor
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

Table of Contents

[070] 1) F24 1 | PR

Developer’s LIDrary...ccccccccccicicecicicicececececececececececesescscscssssssssssssssssssesesesssesese 4
a0 Yol 0 1t d o T2\ B Ud 1 10) oY
About the Technical ReVIEWEeTrS....ccccieiitieiiciiececcncececcssssecescscecescssscescssesesesces 5
We Want to Hear from You!...ccccccieieieiiicieiicicicecececececscscscscssssececesesscscscscess O
Reader ServiCesS...ccciciiiiiieiaiiiiceceiecercssececescssssececsssssssesescssssssescssssesesssssssesse O
Chapter 1. INtroduction.....ccciciiiiiiiciiiciceieieiececccescscscssssscesssesesesesscscssssssscese O

What You Will Learn from ThiS BOOK.......cccuieeiiiiiiiieeiieeeie et ettt et e e ettt eeeveeeeaeesesseeeessaesessaeesseeesseesessaessssesesseessssesssens 9
How This Book Is Organized
ACKNIOWIEAZIMENES. ...euvevieiieiiiieiietesieseeit et steete et et e ste st et e st estee st et e besse st e bessesseestesbessesatestessessaestestensessesstessansaasaestensessesssensensenses
Part I: The Objective-C 2.0 LaNGUAaZEe....ccccceetecerecrcrcscrcresesesecesesesssscssssscseseses 14
Chapter 2. Programming in ODBJECHIVE-C.......c.coueiiiiiiiniiiiiiiiieiretce ettt st sae e a e s ene 16
Compiling and RUNNING PrOGIAINS.cccvecveeririreriereeteitestesseseseseessessessessassassassssssessessassessessesssessessessessassassssssessessassassessassasns 16
Explanation of YOUT FIrSt PIOZTAIM.cccoieuiiriertiieteieieteteeteteteee ettt sae e st ettt et be et s e e esae e eseneemesnenes 25
Displaying the Values of Variables..........cc.ccviiiiiiiiiiiiiicicieeceeee ettt ettt st 29
SUITIITIATY ...ttt ettt e ettt e et e s bt e e bt e e s st e e e bt e e e ab e e s ma e e e st e e e ba e e eas e e e ea b e e e eab e e s ma e e e st e e eabeeeenstesenbee e saeesseesensaeannnee 32
X T CISES. teeuutieiiieeetieeste st e et e ettt e st eeette e e bt e e s abe e e et e esstaeesbeeassaaassseesssaesassaeassseansseeessseaassseensbee e saeenssae e saeeessaeensseeebaeeessaeettaenes 32
Chapter 3. Classes, Objects, aNd METNOAS.ccueeuirriririiieieterere ettt ettt s b e s st sttt et et besbe s b e e st st et et e ssessesneen 34
WHhat IS an ODJECt, ATLTWAY?....ccviruieieierierereetesteseetestestesseetessessesseessessessessesssessessesssessassessesssessessesssessassassesssessessessesssassassasss 34
INSANCES ANA IMETNOAS.oeeeeviieeieeeeiieeeree ettt eete e eeaeeeeteeeebeeeesaeeeesseeeessseeesseeesseeensasessseeessseeesssseessseeasseeensssesssseeesreenn 35
An Objective-C Class for Working with FIaCtiONS.........cccevevuiiiiriiniiiiiiiiiieeeeestetereee et sres e ss e ae s 37
The @INTEITACE SECHIOM. .. .vviieeviiiieeieieeeeiee ettt et eete e erte e e eteeeeaeeesaeeesbeeessbeeesseesabeeesssssesssesasssesssssensseesnbseensssessseesnsaeensaresnsres 40
The @IMPlEMENtATION SECHIOM......eoeririiiirietertenerteterteetet ettt st et et st e b et esbe st et essesseestesbessesasessessessaestensessesssensessessaensense 44
THE PrOGIAI SECTIOML. ..uviuieuiiiiteeterteetet ettt ettt et e st et et e st e s bt et e e et e s b e s bt s st et e b e s st e st e st et et essesat et ebesaeestent et enbansesstenbensessesnean 45
Accessing Instance Variables and Data ENCAPSULATION.ccuecverieriererierierierertertestessestessessessessesseessessessessessessassessessesssessessesses 51
SUITIIMATY ...ttt ettt ettt et e e bt e s b s bt e e b e e s bb e e sb e e e bae e ba e s b e e eab e e e bb e s mbeeeabe e e sbesenbesenseeeasaesmbeeenbaeenaesennaeensaeaas 54
X BT CISES. o utieetieeeiee ettt e ettt ee et e e te e e eteeeeteeeetaeeeseeeessaaeasseeassseaasaaaasseeeasssaessaaassseessseenssaaansaeesseeenseeeesssesesseeenseeesaeeeseeeenseeeseeans 54
Chapter 4. Data TYPES ANd EXPIESSIONS......ccvectererrerrerrterieseseertertesesessesssessessessasssessessessassssssessessessesssessessessassasssessessassassssssassass 56
Data TYPES aNd CONSLANES...c..ceerieriiriiriinietetetetestesesestestestestestestesstestestestessessessesstessessessessessassasstessensessessessessssnsensessessassasses 56
Arithmetic Expressions
ASSIZININENT OPETATOTS. ¢e.uteeurerreeierrieereestestesteesteestessseesseesstessaesssessseessesssaesseesssesssesssessesssesssessseesssesssesssesssesssessssessaessesssesssasns
A CalCULALOT ClaSS....ueouereeuiererteitriitetrieetete ettt ettt et et ae et sae e et se st et b et e s et e st s ae st e se s e st e st et entese s et e se s emtese e enesaensenesaenentene
Bit Operators........ccceceeueeerenueceeinreneecreenennens
Types: _Bool, _Complex, and _Imaginary... .
Exercises.......covvevereiiinnenens80
Chapter 5. Program LOOPING. ..ottt st et sa et a et a et s sesa et b e e s b et neaenesasnennene 84
THE fOT SEATEIMIENT.ccveeeireetiicieeeeeeeeete et eete e e e eteeeteesteeste e seebaeseesseersessseessasssesssesssessseasseasseassassessessessessenseenssersaenssensannseenses 85
The WHILE STATEIMEIIT.cccuviieiiieeieeeeieeceee ettt e teeeteeerteeeetbeeeseeessseeesseeeesseeessseessesensseeessseensssensssessseeasssesssseensseensssessseensseenns 96
THE O STALEIMENT...c..eueiieiiteetieeetetet ettt ettt ettt et e bt et et e st e s bt e st et et et e b e e st s at et e b e e bt e st et et e be b eesesatebensesaeeateneensensenses 101

Chapter 6. Making Decisions....

The if Statement.............. ...106
The switch Statement...... .. 127
Boolean Variables............... ...130
The CONAitioNal OPETALOT.......cc.eetririeieierteeteettete ettt e st es e st e et esbe s s e st et et et et e besbe s st sateat e bessesseentent et ebesesanbesseeatensensens 135
EXICISES. ¢ uveruieeteeiteieiteete st et e e et e e e ste e bt esat e s bt e s atesabesa b e st e e b e e bt e st essaesstesabesateaaseenbeense e st e s st e seesabesa b e e be e be e be e bae st esaaeeaaesataens

Chapter 7. More on Classes
Separate Interface and Implementation Files
SYNhESIZEA ACCESSOT IMETNOMAS. ..c.veeueruieeieieierieriereseeeetetestestestestestessesseeseessessessassassassessessesssessessessessassessessasssessessansensassassanss
Accessing Properties Using the Dot Operator .
Multiple Arguments t0 MEthOAS.c.ooueririiiiriieieieeesee ettt ettt s et sb sttt e s b s st et e sbesae s st et etenne

LOCAL VATIADIES. ... eeteeiieieeieeciectee ettt et et e et e et e et e s e e st e st e s st esseeeseesseassteassassaaaseesssanstesssanseastessanseanssanseesssenseesseenseans 153
THE SEIf KEYWOT. ..cuverveeuieiieieieientistesteseeeeteetetetestestestassessesseeseessessassassassassessassasssessestassensessessessessesseessessessensensansansessessesssenes 156
Allocating and Returning Objects from METNOAS.cceeterieririiirieninierieneeteteseetesre st et e ste st estessesseestessesssessessesssessessaensense 157
Exercises .
CRAPTLET 8. INNETITANICE. ...everviruieiertieteeietestesteetestestesteetee e estestesseesaessessassasseessassesseessessassansesssessensensesssessensassessesssessensesseessessassanss
Tt AlL BEZINS At he ROOL...ceteierieriiriieiteieienteeite ettt e st st st sttt et st et s b e sse et e st et e bessesaesatestestestessassassassesseensensensessessens
Extension Through Inheritance: Adding New Methods...
OVEITIAING METNOMAS. .c.vevieiiriiriiiieietetestestesee et e et et e e st e saestesse s e et et e ae st e sassasbassassasssessessessessassessessessesseessessessensensansansanse
Extension Through Inheritance: Adding New Instance Variables.........ccceveeirvierienienenerienteniesieseneseetessessessesesesseeseesseses 188
Abstract Classes
EIXETCISES. c.euvenreieiiiitetetectte ettt ettt ettt b e b sttt b e s bt s bt st et et e bt b e b e e Rt st e b e b e s b e s Rt st et et e b e e bt e bt st et e besbene
Chapter 9. Polymorphism, Dynamic Typing, and Dynamic Binding..........ccecceeverrerrerrienienenerreertentesienieneseeseessessesessesssessessense 194
Polymorphism: Same Name, Different Class......c.ccccevereeveeveenuennenne. ...194

Dynamic Binding and the id Type.........ccccueuue. ..198
Compile Time Versus Runtime Checking.. ..200
The id Data Type and Static Typing........... ... 201

Asking Questions About Classes...... ...202
Exception Handling Using @try... .207
EXETCISES...cevevereteeeeeienieeeeteseesre st 210
Chapter 10. More on Variables and Data Types... ... 212
Initializing Classes.......coceeveevverrerererrerreesuenennes ..212
Scope Revisited............. ...214
STOTAZE ClaSS SPECIIETS. c.veververuereeeieiterteriestesteeteseeeeeetetestestessessessessesseestestessessessassassassassessesssessessessessessessessesseessessessensansanse 220
Enumerated Data Types.. 222
The typedef Statement..... .225
Data Type Conversions.... .227
EXEICISES.uueieeerreeeeeerreeeeeirereeeeennees ...229
Chapter 11. Categories and PrOtOCOLS.........cccvuiiiiiiriiiiieicec ettt s s a e 232
CATEEOTIES. ¢ uverureereeeeenieertestes e este et e st e st e st esabesuseesbe s besse e saesseenseenseenseessa e stessaesstesseesasesaseestesnseesseeabeenseenseensaessaesaensaessaenssenas 232
Protocols
COMPOSITE ODJECLS. ...veuiiireiiiiiiiiieerct ettt et b et e b et a et b et bbbt e se s et ae s ese s et ssenenesnens
EIXETCISES. c. ettt ettt ettt ettt b ettt b e bbbttt e b b e b e Rt et et b e bt e Rt e Rt et e b e b e b e R e st e b e be b e ene st s

Chapter 12. The Preprocessor....
The #AEfINE STATEIMENT.......eeiiieieeieeceeeeee et te e et e et e et e e te st e e ee st eessesseasssasssesssasssaensassseessasssasnsesnsesnsesssesssesnsesssanns
The AIMPOTT STATEIMENT. .. .e.veruirtieieietecteseeeeeetestesteseseetestestessassaeseessessessessessesseessessansessassasssessensessessesssessessensessesseessensansanse
Conditional Compilation..

Miscellaneous Language Features... - 312
How Things Work.........cccceceevevencnne ... 317
X BT CISES. 1o iutieitiieeiteeeiteee e ettt e eette e e rteeeeteeeettee e baee e baeeesbaeassae e saeeassaaaassseansaee e saeaassaeeassaeeasbaaessseeensaeeesbae e saee e saeeeraeearbaeenraeean 319

Part II: The Foundation FrameworK......cccccceeiieeceiecencecercececcncecscecescncecess 322
Chapter 14. Introduction to the Foundation Framework
Foundation DOCUMENTATION.co.eitrtrieriertieteetetetetestest st st et e steste st st e st e st et et esbesb e s st s st et e sbesse s st ente st et e b esessessesaeeneensesensens
Chapter 15. Numbers, Strings, and COIECHIONS.cevverviriririeeeieeeetetertestestesesesseseeseessessessessassassassassassassssssessessessessassassens
Number ObJectS......cocerverreereereeneenieneneneeennes
String Objects......
Array ODJECtS..ccveererererrerrereeneeneenneen
Synthesized AddressCard Methods..
Dictionary Objects.......ccccceevvueeencnne.
Set Objects..............
EXercises.......cooevvevvvenrencnennens
Chapter 16. Working with Files..........ccccccecneeinnnnann.
Managing Files and Directories: NSFIlEMANAZET........ccccoereeeerrerierieerteseseestensesesssessesseessessesesssessessasssessassesssessassasssessassasss

Working with Paths: NSPathUtIIHES.H.....coueiiiieiieeee ettt ettt ettt st a e s s 396
Basic File Operations: NSFIlEHANAIE.........cccccevvirrerrierieniineeeeiestestesestestestestestesseesessessessesseessessassassassssssessassassesssessassassassanns 404
XTI CISES. ¢ uvenuteeueeruteetesteeitest et et et e et ete st e et e sabesseesat e s st e sat e st e e st e st e st e s e s st e s seseseease e s aease e s eeaseea b e e et e sutesateeaeesat e st e eat e seeneeraaes

Chapter 17. Memory Management... .
The AULOTEIEASE POOL.....c..cuiiiiiiieiiietcetete ettt ettt ettt ettt et b et et b et e st et e st s b et e st s b et et b et et benaenessenes
REFEIENCE COUNTITIG. .. veuveueritiiitirietertenest et et stee et e b e stesae et e tesbesse e st et essessee st estesbassaessensesseestestensensasseestessessesstentensensassasssens
An Autorelease Example
Summary of Memory-Management RULES.........ccceieierieneriirieneneeiestenestestesseseesessessesssessessesssessessesssessessassasssessessessasssanses 426
GATDAZE COLLECHIOMN. ... uteueeiiiieietesiteterterteet et et et e st e b et e st e st et e sbe b e s st et e sbesse et esbessessaestenbesbesasentessassaessentessassesasessessesseensensanse 427
Exercises

Chapter 18. COPYING ODJECES...ccueeeririeiieiterterteseseseetestestestessessassessassasseessessessessessassessessesssessessessassessessessesssessessessassassassessassanns 430
The copy and mutableCopy MEthOdS.coeveririiriiniinininteteteresest ettt ettt e s b e sse st et et esbesbesse st essessessesaesnsensessensanses 431
Shallow Versus Deep Copying...........cccoueuce... ...433
Implementing the <INSCOPYING> PIOTOCOL......ccuieieieieierienereetestesteseeeetestestesseseessessessessesssessassassassesssessessassesssessassassassanns 436
Copying Objects in Setter and Getter Methods ..439
EXEICISES..cccuiieeiieeeteeceee ettt et .. 441

Chapter 19. Archiving....
Archiving With XIML PrOPerty LiSES......ccceeveererrtrrteriereriiestertesiesestestestessesestestessessessessessessessesssessessessassassessessessasssessessassasses 442
Archiving with NSKeyedArchiver..............
Writing Encoding and Decoding Methods....

Using NSData to Create Custom Archives.... ... 454
Using the Archiver to Copy Objects........... ...457
EXOICISES. ¢ uveureeieeieeteeste ettt ettt ettt et e et e e st e e aeesaaesbe e s st e s s e e st e s st e s st esste s st e e abe s st e s st e e s besateeateea b e e st e et e et e et e et e e st e be e beenaeebaans 459
Part II1: Cocoa and the iPhone SDK......cccccieiieiececcececccncecscececcscecescsceceses 400
Chapter 20. INTrOAUCHION 0 COCOA......uiruiruirririeterterterertrtestestestestesestestetessessessesstsssessessessessassassesssessensessessessesntensessessessassasses 462
Framework Layers.........cccccceruenen. ... 462

C0ocoa TOUCH......veeveereereereeir e, ..463
Chapter 21. Writing iPhone Applications... ... 466
THE IPRONE SDK....cciiitieeiieeieeieeteeiteesteesteestee st esetasstesteesaesessaasseesssasseeassesssassseessesnsessessseenseesssesssesseesnsesssesssesssessseesseesseenns 466
Your First iPhone Application... .. 466
An iPhone Fraction Calculator.. ..483
SUMMArYy....ccccceeerieenieereeeeeeen. .498
X OIS . 1 eiuutieitieieiee et eette ettt e et e e te e e te e e tbeeebae e saeaessaeeesaeaassae e saee e saeaasseeessaeeasbaeensseeassaeesaeeassaeeasaeeantaeensreans e e 499
Part IV: APPendiXesS...cccceeierieereceieiececesacecacasssssssssssesesesesesesssssssssssssssssscses 5302
GLOSSATY ..c.ueeutereienreriereeitest ettt s te st e st et e st et e st esbessesse e st et et e aessessaeseeate st eabenbessessesae s st ente st e seseesaesaesae st e st e bessesseeateatentesbesensessasaeenes 504
Appendix B. Objective-C 2.0 Language Summary.. ...512
Digraphs and Identifiers..... ... 512
Comments.........cceeeeeernneens .516
Constants......cccccceeeeereveeeeneeen.517
Data Types and Declarations..... ...520
EXpressions......c..cceceevveeeeeennen.531
Storage Classes ANd SCOPE........cuiuiruiiiiiiriitiieee ettt ettt ae st s a et e bt sa e e et ae bt se s ae bt e aesa et eneas 546
FUIICHIONIS .« ittt ettt et et e e et e e e tae e e bae e sb e e s bae e saeeessae e saeeesssa e ssseessasaassaaasssseassaeasaseassseanssseesssaensseeessasansssaesaeens 550
Classes .
STATEIMIEIIES. ... ettt ettt ettt et e ettt e et e e et e e s bt e e abe e e st e e s as e e s uteeea s e e e abe e e st e e eabee e steeessae e steesaste s nbeeeseeeesbeesnteennsaenas 563
EXCEPTION HANAIINEG. ... veeveeteirerieeieeieteseseeitestesteetestestesseeseessessesseessessassessesssessessesssessassessesssessessesssessassessesssessessesssensassassassanns 568
Preprocessor
Appendix C. Address BOOK SOUICE COE........coiuiiiuiriiniiiiiiiicieiteect ettt st e sneas 576
AddresSCard INTEITACE FIle.......c.cccruiiiiriiiriiieieierte ettt ettt ettt et b et b st e et e st s b et e st s b et e se b et s st s et eaensenis
AddressBook Interface File .
AddressCard Implementation FAle.........cc.co ittt sttt st sttt ettt e s bt st et sbe s st et et et e bessesaeennens 577
AddressBook IMplementation File.........cceciiiiriirieiiinienenieitesieseeeestesieste et e saestestee e esaesaesseesaessassesseessessessesssessassassasssessessessens 579
Appendix D. Resources -
Answers to Exercises, Errata, and SUCK........c.cooviiiieiiiiieeeeece ettt ste ettt eeaeeae s ae e s e e st e eaeesaeessaeenseenseenseans 582
ODJECHIVE-C LANIGUAZE. ..veveeveenrerrerrererrtessesseeseessessessesseessessessesssessassessesssessessesssessessassessasssessessesssessessassessssssessessesssessassessassaessans 582
C Programming Language... .

K2
o

To Roy and Ve, two people whom I dearly miss

K3
°

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN 978-0-672-32916-6 ISBN-13: 978-0-672-32862-6
MySQL Programming in Objective-C
Paul DuBois Stephen G. Kochan

ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-321-56615-7
Linux Kernel Development PostgreSQL

Robert Love Korry Douglas

ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s
Library

informit.com/devlibrary

About the Author

Stephen Kochan is the author and coauthor of several bestselling titles on the C lan-
guage, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring the
Unix System (Sams, 1992) and Unix Shell Programming (Sams 2003). He has been pro-
gramming on Macintosh computers since the introduction of the first Mac in 1984, and
he wrote Programming C for the Mac as part of the Apple Press Library. In 2003 Kochan
wrote Programming in Objective-C (Sams, 2003), and followed that with another Mac-
related title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers

Michael Trent has been programming in Objective-C since 1997—and programming
Macs since well before that. He is a regular contributor to Steven Frank’s
www.cocoadev.com Web site, a technical reviewer for numerous books and magazine
articles, and an occasional dabbler in Mac OS X open source projects. Currently, he is
using Objective-C and Apple Computer’s Cocoa frameworks to build professional video
applications for Mac OS X. Michael holds a Bachelor of Science degree in computer
science and a Bachelor of Arts degree in music from Beloit College of Beloit, Wisconsin.
He lives in Santa Clara, California, with his lovely wife, Angela.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you'’re willing to
pass our way.
You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.
E-mail: feedback@developers-library.info
Mail: Mark Taub

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/title/9780321566157 for
convenient access to any updates, downloads, or errata that might be available for this
book.

1

Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in
the early 1970s. However, this programming language did not begin to gain widespread
popularity and support until the late 1970s. This was because, until that time, C compilers
were not readily available for commercial use outside of Bell Laboratories. Initially, this
growth in popularity was also partly spurred by the equal, if not faster, growth in popular-
ity of the UNIX operating system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s.The language was
based on a language called SmallTalk-80. Objective-C was layered on top of the C lan-
guage, meaning that extensions were added to C to create a new programming language
that enabled objects to be created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries
and a development environment called NEXTSTEP. In 1992, Objective-C support was
added to the Free Software Foundation’s GNU development environment. This software
is in the public domain, which means that anyone who wants to learn how to program in
Objective-C can do so by downloading its tools at no charge.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification
of the NEXTSTEP system, called OPENSTEP. The Free Software Foundation’s imple-
mentation of OPENSTEP is called GNUStep. A Linux version, which also includes the
Linux kernel and the GNUStep development environment, is called, appropriately
enough, LinuxSTEP.

On December 20, 1996, Apple Computer announced that it was acquiring NeXT
Software, and the NEXTSTEP/OPENSTEP environment became the basis for the next
major release of Apple’s operating system, OS X. Apple’s version of this development en-
vironment was called Cocoa. With built-in support for the Objective-C language, cou-
pled with development tools such as Project Builder (or its successor Xcode) and
Interface Builder, Apple created a powerful development environment for application de-
velopment on Mac OS X.

In 2007, Apple released an update to the Objective-C language and labeled it
Objective-C 2.0.That version of the language is covered in this second edition of the
book.

Chapter 1 Introduction

When the iPhone was released in 2007, developers clamored for the opportunity to
develop applications for this revolutionary device. At first, Apple did not welcome third-
party application development. The company’s way of placating wannabe iPhone devel-
opers was to allow them to develop web-based applications. A web-based application runs
under the iPhone’s built-in Safari web browser and requires the user to connect to the
website that hosts the application in order to run it. Developers were not satisfied with
the many inherent limitations of web-based applications, and Apple shortly thereafter an-
nounced that developers would be able to develop so-called native applications for the
iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s op-
erating system, in the same way that the iPhone’s built-in applications (such as Contacts,
iPod, and Weather) run on the device. The iPhone’s OS is actually a version of Mac OS
X, which meant that applications could be developed and debugged on a MacBook Pro,
for example. In fact, Apple soon provided a powerful Software Development Kit (SDK)
that allowed for rapid iPhone application development and debugging. The availability of
an iPhone simulator made it possible for developers to debug their applications directly
on their development system, obviating the need to download and test the program on an
actual iPhone or iPod Touch device.

What You Will Learn from This Book

When I contemplated writing a tutorial on Objective-C, I had to make a fundamental
decision. As with other texts on Objective-C, I could write mine to assume that the
reader already knew how to write C programs. I could also teach the language from the
perspective of using the rich library of routines, such as the Foundation and Application
Kit frameworks. Some texts also take the approach of teaching how to use the develop-
ment tools, such as the Mac’s Xcode and Interface Builder.

I had several problems adopting this approach. First, learning the entire C language be-
fore learning Objective-C is wrong. C is a procedural language containing many features
that are not necessary for programming in Objective-C, especially at the novice level. In
fact, resorting to some of these features goes against the grain of adhering to a good ob-
ject-oriented programming methodology. It’s also not a good idea to learn all the details
of a procedural language before learning an object-oriented one. This starts the program-
mer in the wrong direction, and gives the wrong orientation and mindset for fostering a
good object-oriented programming style. Just because Objective-C is an extension to the
C language doesn’t mean you have to learn C first.

So I decided neither to teach C first nor to assume prior knowledge of the language.
Instead, I decided to take the unconventional approach of teaching Objective-C and the
underlying C language as a single integrated language, from an object-oriented program-
ming perspective. The purpose of this book is as its name implies: to teach you how to
program in Objective-C 2.0. It does not profess to teach you in detail how to use the de-
velopment tools that are available for entering and debugging programs, or to provide in-

How This Book Is Organized

depth instructions on how to develop interactive graphical applications with Cocoa.You
can learn all that material in greater detail elsewhere, after you've learned how to write
programs in Objective-C. In fact, mastering that material will be much easier when you
have a solid foundation of how to program in Objective-C.This book does not assume
much, if any, previous programming experience. In fact, if you're a novice programmer,
you should be able to learn Objective-C as your first programming language.

This book teaches Objective-C by example. As I present each new feature of the lan-
guage, I usually provide a small complete program example to illustrate the feature. Just as
a picture is worth a thousand words, so is a properly chosen program example.You are
strongly encouraged to run each program (all of which are available online) and compare
the results obtained on your system to those shown in the text. By doing so, you will
learn the language and its syntax, but you will also become familiar with the process of
compiling and running Objective-C programs.

How This Book Is Organized

This book is divided into three logical parts. Part I,““The Objective-C 2.0 Language,”
teaches the essentials of the language. Part II,“The Foundation Framework,” teaches how
to use the rich assortment of predefined classes that form the Foundation framework. Part
11, “Cocoa Programming and the iPhone SDK,” gives you an overview of Cocoa’s Appli-
cation Kit framework and then walks you through the process of developing a simple
iPhone application using the UIKit framework, and developing and debugging the code
with Xcode and Interface Builder.

A framework is a set of classes and routines that have been logically grouped together to
make developing programs easier. Much of the power of programming in Objective-C
rests on the extensive frameworks that are available.

Chapter 2, “Programming in Objective-C,” begins by teaching you how to write your
first program in Objective-C.

Because this is not a book on Cocoa programming, graphical user interfaces (GUIs)
are not extensively taught and are hardly even mentioned until Part III. So an approach
was needed to get input into a program and produce output. Most of the examples in this
text take input from the keyboard and produce their output in a window: a Terminal
window if you’re using gcc from the command line, or a Console window if you're using
Xcode.

Chapter 3, “Classes, Objects, and Methods,” covers the fundamentals of object-ori-
ented programming. This chapter introduces some terminology, but it’s kept to a mini-
mum. I also introduce the mechanism for defining a class and the means for sending
messages to instances or objects. Instructors and seasoned Objective-C programmers will
notice that I use static typing for declaring objects. I think this is the best way for the stu-
dent to get started because the compiler can catch more errors, making the programs
more self~documenting and encouraging the new programmer to explicitly declare the
data types when they are known. As a result, the notion of the id type and its power is not
fully explored until Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Binding.”

Chapter 1 Introduction

Chapter 4, “Data Types and Expressions,” describes the basic Objective-C data types
and how to use them in your programs.

Chapter 5, “Program Looping,” introduces the three looping statements you can use in
your programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6,
“Making Decisions,” covers the Objective-C language’s if and switch statements in detail.
Chapter 7,“More on Classes,” delves more deeply into working with classes and ob-
jects. Details about methods, multiple arguments to methods, and local variables are dis-

cussed here.

Chapter 8, “Inheritance,” introduces the key concept of inheritance. This feature makes
the development of programs easier because you can take advantage of what comes from
above. Inheritance and the notion of subclasses make modifying and extending existing
class definitions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10—13 round out the discussion of the Objective-C language, covering issues
such as initialization of objects, protocols, categories, the preprocessor, and some of the
underlying C features, including functions, arrays, structures, and pointers. These underly-
ing features are often unnecessary (and often best avoided) when first developing object-
oriented applications. It’s recommended that you skim Chapter 13, “Underlying C
Features,” the first time through the text and return to it only as necessary to learn more
about a particular feature of the language.

Part I begins with Chapter 14, “Introduction to the Foundation Framework,” which
gives an introduction to the Foundation framework and how to access its documentation.

Chapters 15-19 cover important features of the Foundation framework. These include
number and string objects, collections, the file system, memory management, and the
process of copying and archiving objects.

By the time you’re done with Part II, you will be able to develop fairly sophisticated
programs in Objective-C that work with the Foundation framework.

Part III starts with Chapter 20, “Introduction to Cocoa.” Here you’ll get a quick
overview of the Application Kit that provides the classes you need to develop sophisti-
cated graphical applications on the Mac.

Chapter 21, “Writing iPhone Applications,” introduces the iPhone SDK and the UIKit
framework. This chapter illustrates a step-by-step approach to writing a simple iPhone (or
iTouch) application, followed by a calculator application that enables you to use your
iPhone to perform simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology, Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B, “Objective-C Language Summary,” gives a summary of the Objective-C
language, for your quick reference.

Appendix C,“Address Book Source Code,” gives the source code listing for two classes
that are developed and used extensively in Part IT of this text. These classes define address

Acknowledgments

card and address book classes. Methods enable you to perform simple operations such as
adding and removing address cards from the address book, looking up someone, listing
the contents of the address book, and so on.

After you've learned how to write Objective-C programs, you can go in several direc-
tions.You might want to lean more about the underlying C programming language—or
you might want to start writing Cocoa programs to run on Mac OS X, or develop more
sophisticated iPhone applications. In any case, Appendix D, “Resources,” will guide you in
the right direction.

Acknowledgments

I would like to acknowledge several people for their help in the preparation of the first
edition of this text. First, I want to thank Tony Iannino and Steven Levy for reviewing the
manuscript. [am also grateful to Mike Gaines for providing his input.

I'd also like to thank my technical editors, Jack Purdum (first edition) and Mike Trent.
I was lucky enough to have Mike review both editions of this text. He provided the most
thorough review of any book I've ever written. Not only did he point out weaknesses,
but he was also generous enough to offer his suggestions. Because of Mike’s comments in
the first edition, I changed my approach to teaching memory management and tried to
make sure that every program example in this book was “leak free.” Mike also provided
invaluable input for my chapter on iPhone programming.

From the first edition, Catherine Babin supplied the cover photograph and provided
me with many wonderful pictures to choose from. Having the cover art from a friend
made the book even more special.

I am so grateful to Mark Taber from Pearson for putting up with all delays and for be-
ing kind enough to work around my schedule and to tolerate my consistent missing of
deadlines while working on this second edition. From Pearson I'd also like to thank my
development editor, Michael Thurston, my copy editor, Krista Hansing, and my project
editor, Mandie Frank, who expertly managed the mad dash to the finish line.

As always, my children showed an incredible amount of maturity and patience while I
pulled this book together over the summer (and then into the fall)! To Gregory, Linda,
and Julia, I love you!

Stephen G. Kochan

October 2008

Part |

The Objective-C 2.0
Language

Introduction

Programming in Objective-C
Classes, Objects, and Methods
Data Types and Expressions
Program Looping

Making Decisions

More on Classes

Inheritance

© 0 N O aa A W N R

Polymorphism, Dynamic Typing,
and Dynamic Binding

10 More on Variables and Data Types
11 Categories and Protocols
12 The Preprocessor

13 Underlying C Language Features

2

Programming in

Objective-C

n this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won'’t work with objects just yet; that’s the topic of the next chapter. We want you
to understand the steps involved in keying in a program and compiling and running it. We
give special attention to this process both under Windows and on a Macintosh computer.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen. Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task:

Program 2.1

// First program example

#import Foundation/Foundation.h>
int main (int argc, const char * argv[])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog (@"Programming is fun!");

[pool drain];
return 0;

Compiling and Running Programs

Before we go into a detailed explanation of this program, we need to cover the steps in-
volved in compiling and running it.You can both compile and run your program using

Xcode, or you can use the GNU Objective-C compiler in a Terminal window. Let’s go

through the sequence of steps using both methods. Then you can decide how you want
to work with your programs throughout the rest of this book.

10

Chapter 2 Programming in Objective-C

Note

These tools should be preinstalled on all Macs that came with OS X. If you separately in-
stalled OS X, make sure you install the Developer Tools as well.

Using Xcode

Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile. We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical ap-
plication with it.

First, Xcode is located in the Developer folder inside a subfolder called Applications.

Figure 2.1 shows its icon.
Start Xcode. Under the File menu, select New Project (see Figure 2.2).

7

Xcode

Figure 2.1 Xcode Icon

A window appears, as shown in Figure 2.3.

~. New Project... 0N
EN

New File...

Open... #0
Open Quickly... 08D
Open Recent File >
Open Recent Project >
Cet Info |
Close Window HW
Close Current File +EW
Save 8
Save As {+3S
Revert to Saved U
Make Snapshot ~385
Snapshots

Print.. HP

Figure 2.2 Starting a new project

Compiling and Running Programs 11

Choose a template for your new project:

g 9 B
P s : et
Cocoa ' Cocoa B

Core Data

re
Application

Description This project bullds a Cocoa-based application written
4 3

in Ojective-

Comemand Line Utiliny
Dynamie Lisrary
Frameworl

Java

Kernel Extension

Standard Apple Plug...

Statle Ubrary -
 Other 1=

Figure 2.3 Starting a new project: selecting the application type

Scroll down the left pane until you get to Command Line Utility. In the upper-right
pane, highlight Foundation Tool.Your window should now appear as shown in Figure 2.4.

Choose a template for your new project:

. iPhone OS m m

Application C#+ Tool CoreFoundation CoreServices Tool
3 Toal

ﬁ Mac 08 X.

Application |

Audio Units 'ﬁ .

Automator Action L i

Bundle | Stamdard Tool

Dynamie Library

Framework.

Java Descriptian This project bullds a command-line taal that links agalnst
Kernel Extension the Foundation library,

Standard Apple Plug-ins

Suatle Uibrary
Oener

() (@)
&

Figure 2.4 Starting a new project: creating a Foundation tool

Click Choose.This brings up a new window, shown in Figure 2.5.

12

Chapter 2 Programming in Objective-C

Save As: progl 8
(< ») (s27=Tm) (E30hC Progs B @oenrch)
¥ DEVICES (& Desktop ’ |
A Macinosh . | B8 Deeuments "
8 ioisk Downloads »
%) Remore Disc | Library »
[THum,., & [movies "
[music »

¥ PLACES

S B Pictures "
Blnesktop | g pupiic ’
7 hpplications | [sites "
[% Documents.

)
<&

Figure 2.5 Xcode file list window

We’ll call the first program progl, so type that into the Save As field. You may want to
create a separate folder to store all your projects in. On my system, I keep the projects for
this book in a folder called objC Progs.

Click the Save button to create your new project. This gives you a project window
such as the one shown in Figure 2.6. Note that your window might display differently if
you’ve used Xcode before or have changed any of its options.

Now it’s time to type in your first program. Select the file progl.m in the upper-right
pane.Your Xcode window should now appear as shown in Figure 2.7.

Objective-C source files use .m as the last two characters of the filename (known as its
extension). Table 2.1 lists other commonly used filename extensions.

Table 2.1 Common Filename Extensions

Extension Meaning
.c C language source file
.cc, .cpp C++ language source file
.h Header file
.m Objective-C source file
. mm Objective-C++ source file
.pl Perl source file

.o Object (compiled) file

Compiling and Running Programs

& prog) §¥& Foundation framework

» [] Documentation

»] External Frameworis ane.
» [Products
+ @) Targets

» 4 Execunables
» {8 Errers and Warnings

W progl
| progl.l
progLm
W] progl_Prefxpch

R AR

(il implementation Files
- i NI Files

Mo Editor

B —-|

Figure 2.6 Xcode progl project window

¥ (] Extemal Frameworks ane |
* | Products
= () Targets

r o Execumbles
» B Errors and Warnings
v, Find Resules

= LI Bookmarks

g=E-]
8 Project Symbols
(5 Implementation Files
[NIR Files

Figure 2.7

int motn (int argc, const
.

= | = [Bproglml =Noselected symbols 3

Jinport < cundaticn/Feunaation. o

char &

argv(]) {

24 insart eode bare...
NSLog(d“Hello, ¥oridi™};
[roal drain];

return 8

ponl =

{l

Peol alloe] init];

File progl.m and edit window

=oAL
L]

13

14

Chapter 2 Programming in Objective-C

Returning to your Xcode project window, the bottom-right side of the window shows
the file called prog1.m and contains the following lines:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// insert code here...
NSLog (@"Hello World!");
[pool drain];

return 0;

Note

If you can’t see the file’s contents displayed, you might have to click and drag up the bottom-
right pane to get the edit window to appear. Again, this might be the case if you've previously
used Xcode.

You can edit your file inside this window. Xcode has created a template file for you to
use.

Make changes to the program shown in the Edit window to match Program 2.1.The
line you add at the beginning of prog1.m that starts with two slash characters (//) is called
a comment; we talk more about comments shortly.

Your program in the edit window should now look like this:

// First program example

int main (int argc, const char * argvl[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Programming is fun!");

[pool drain];
return 0;

Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
build and run.You need to save your program first, however, by selecting Save from the File
menu. If you try to compile and run your program without first saving your file, Xcode
asks whether you want to save it.

Compiling and Running Programs

Under the Build menu, you can select either Build or Build and Run. Select the latter
because that automatically runs the program if it builds without any errors.You can also
click the Build and Go icon that appears in the toolbar.

Note

Build and Go means “Build and then do the last thing | asked you to do,” which might be
Run, Debug, Run with Shark or Instruments, and so on. The first time you use this for a proj-
ect, Build and Go means to build and run the program, so you should be fine using this op-
tion. However, just be aware of the distinction between “Build and Go” and “Build and Run.”

If you made mistakes in your program, you’ll see error messages listed during this step.
In this case, go back, fix the errors, and repeat the process. After all the errors have been
removed from the program, a new window appears, labeled progl - Debugger Console.
This window contains the output from your program and should look similar to Figure
2.8.If this window doesn’t automatically appear, go to the main menu bar and select Con-
sole from the Run menu. We discuss the actual contents of the Console window shortly.

[Seosion started at 2008-06-08 18134109 -0400.)
2008-06-08 1R:14:09.271 progl[7880:10h) Programming im funl

The Dohigger ham exited with atatua 0.

Prbraging of ‘read snses ponmaky: Dsucceeded |

Figure 2.8 Xcode Debugger Console window

You're now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!). The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.
2. If'this is a new project, select File, New Project.

3. For the type of application, select Command Line Ultility, Foundation Tool, and
click Choose.

15

16

Chapter 2 Programming in Objective-C

4. Select a name for your project, and optionally a directory to store your project files

in. Click Save.

5. In the top-right pane, you will see the file progl.m (or whatever name you assigned
to your project, followed by .m. Highlight that file. Type your program into the edit
window that appears directly below that pane.

6. Save the changes you've entered by selecting File, Save.

7. Build and run your application by selecting Build, Build and Run, or by clicking
the Build and Go Button.

8. If you get any compiler errors or the output is not what you expected, make your
changes to the program and repeat steps 6 and 7.

Using Terminal

Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you're used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here
we examine how to go about doing that.
The first step is to start the Terminal application on your Mac. The Terminal application
is located in the Applications folder, stored under Ultilities. Figure 2.9 shows its icon.
Start the Terminal application.You’ll see a window that looks like Figure 2.10.

Terminal

Figure 2.9 Terminal program icon

You type commands after the $ (or %, depending on how your Terminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this
straightforward.

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples. Then you must run a text edi-
tor, such as vi or emacs, to enter your program:
sh-2.05a$ mkdir Progs Create a directory to store programs in

sh-2.05a$ cd Progs Change to the new directory
sh-2.05a$ vi progl.m Start up a text editor to enter program

Compiling and Running Programs 17

|[0O0O0 Terminal—bash—sox24 |
Lost login: Fri Jun 6 B5:38:46 on console
steve-kochans-mocbook-air i~ steve_kochand I

Figure 2.10 Terminal window

Note

In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you've entered your program into a file, you can use the GNU Objective-C
compiler, which is called gec, to compile and link your program.This is the general format
of the gce command:

gcc -framework Foundation files -o progname

This option says to use information about the Foundation framework:

-framework Foundation

Just remember to use this option on your command line. £7Zes is the list of files to be
compiled. In our example, we have only one such file, and we're calling it progl.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program progi; here, then, is the command line to compile your first
Objective-C program:
$ gee -framework Foundation progl.m -o progl Compile progl.m & call it progl

$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name progl at the command prompt:

$ progl Execute progl

18

Chapter 2 Programming in Objective-C

sh: progl: command not found

$

This is the result you’ll probably get unless you’ve used Terminal before. The UNIX
shell (which is the application running your program) doesn’t know where prog1 is lo-
cated (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute. The other is to add the directory in
which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./progl Execute progl
2008-06-08 18:48:44.210 progl[7985:10b] Programming is fun!
$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iPhone applications, there’s more to just the executable file that needs to be
“packaged” into an application bundle. It’s not easy to do that from the Terminal applica-
tion, and it’s one of Xcode’s specialties. Therefore, I suggest you start learning to use
Xcode to develop your programs. There is a learning curve to do this, but the effort will
be well worth it in the end.

Explanation of Your First Program

Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

// First program example

int main (int argc, const char * argvl[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Programming is fun!");
[pool drain];
return 0;

In Objective-C, lowercase and uppercase letters are distinct. Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first line of the program introduces the concept of the comment:

// First program example

Explanation of Your First Program

A comment statement is used in a program to document a program and enhance its
readability. Comments tell the reader of the program—whether it’s the programmer or
someone else whose responsibility it is to maintain the program—just what the program-
mer had in mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//). The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the be-
ginning of the comment. These types of comments have to be terminated. To end the
comment, you use the characters * and /, again without any embedded spaces. All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler. This form of comment is
often used when comments span many lines of code, as in the following:

/*
This file implements a class called Fraction, which
represents fractional numbers. Methods allow manipulation of
fractions, such as addition, subtraction, etc.

For more information, consult the document:
/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or
type it into the computer, for three good reasons. First, documenting the program while
the particular program logic is still fresh in your mind is far easier than going back and re-
thinking the logic after the program has been completed. Second, by inserting comments
into the program at such an early stage of the game, you can reap the benefits of the com-
ments during the debug phase, when program logic errors are isolated and debugged. Not
only can a comment help you (and others) read through the program, but it also can help
point the way to the source of the logic mistake. Finally, I haven’t yet discovered a pro-
grammer who actually enjoys documenting a program. In fact, after you’ve finished de-
bugging your program, you will probably not relish the idea of going back to the program
to insert comments. Inserting comments while developing the program makes this some-
times tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or in-
clude the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

19

20

Chapter 2 Programming in Objective-C

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char *argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion. The reserved word int that precedes main specifies the type of value main returns,
which is an integer (more about that soon). We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon. The system treats all the program statements included
between the braces as part of the main routine. Program 2.1 has four statements.

The first statement in Program 2.1 reads

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

It reserves space in memory for an autorelease pool. We discuss this thoroughly in
Chapter 17,“Memory Management.” Xcode puts this line into your program automati-
cally as part of the template, so just leave it there for now.

The next statement specifies that a routine named NSLog is to be invoked, or called. The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@"Programming is fun!"

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NsSstring object.

Note

If you have C programming experience, you might be puzzled by the leading @ character.
Without that leading @ character, you are writing a constant C-style string; with it, you are
writing an NSString string object.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here. Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

Explanation of Your First Program

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

Before you exit your program, you should release the allocated memory pool (and ob-
jects that are associated with it) with a line such as the following:

[pool drain];

Again, Xcode automatically inserts this line into your program for you. Again, we defer
detailed explanation of what this does until later.
The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of o.
By convention, 0 means that the program ended normally. Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

If you’re using Xcode and you glance back to your Debug Console window (refer to
Figure 2.8), you’ll recall that the following displayed after the line of output from NSLog:

The Debugger has exited with status 0.

You should understand what that message means now.

Now that we have finished discussing your first program, let’s modify it to also display
the phrase “And programming in Objective-C is even more fun!”You can do this by sim-
ply adding another call to the NSLog routine, as shown in Program 2.2. Remember that
every Objective-C program statement must be terminated by a semicolon.

Program 2.2

#import <Foundation/Foundation.h>

int main (int argc, const char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Programming is fun!");
NSLog (@"Programming in Objective-C is even more fun!");

[pool drain];
return 0;

21

22

Chapter 2 Programming in Objective-C

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the out-

put):
Program 2.2 Output

Programming is fun!
Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence. The backslash (\) and the letter
n are known collectively as the newline character. A newline character tells the system to
do precisely what its name implies: go to a new line. Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you ex-
amine the output (no cheating, now!).

Program 2.3

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Testing...\n..1\n...2\n....3");
[pool drain];
return 0;

Program 2.3 Output

Testing...
.1
.2

.3

Displaying the Values of Variables

Not only can simple phrases be displayed with NsLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

Displaying the Values of Variables

Program 2.4

#import <Foundation/Foundation.h>

int main (int argc, const char *argvl(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int sum;

sum = 50 + 25;
NSLog (@"The sum of 50 and 25 is %i", sum);
[pool drain];

return 0;

Program 2.4 Output
The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can
use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it. The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable. A variable de-
fined as type int can be used to hold only integral values—that is, values without decimal
places. Examples of integral values are 3, 5, -20, and 0. Numbers with decimal places, such
as 2.14,2.455,and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the re-
sult is stored (as indicated by the assignment operator, the equals sign) in the variable sum.
The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses. These arguments are separated by a comma. The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of

the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

23

24

Chapter 2 Programming in Objective-C

The percent character inside the first argument is a special character recognized by the
NsLog function. The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after ““The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int valuel, value2, sum;

valuel = 50;
value2 = 25;
sum = valuel + value2;

NSLog (@"The sum of %i and %i is %i", valuel, value2, sum);

[pool drain];
return 0;

Program 2.5 Output
The sum of 50 and 25 is 75

The second program statement inside main defines three variables called valuel,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int valuel;

int value2;
int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable valuel and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

Exercises

The call to the NSLog routine now contains four arguments. Once again, the first argu-
ment, commonly called the format string, describes to the system how the remaining argu-
ments are to be displayed. The value of valuel is to be displayed immediately following
the phrase “The sum of”” Similarly, the values of value2 and sum are to be printed at the
points indicated by the next two occurrences of the %i characters in the format string.

Summary

After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you be-
gin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises

1. Type in and run the five programs presented in this chapter. Compare the output
produced by each program with the output presented after each program.
2. Write a program that displays the following text:

In Objective-C, lowercase letters are significant.
main is where program execution begins.
Open and closed braces enclose program statements in a routine.
All program statements must be terminated by a semicolon.
3. What output would you expect from the following program?

#import <Foundation/Foundation.hs>

int main (int argc, const char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init;
int i;

i=1;

NSLog (@"Testing...");

NSLog (@"....%i", 1i);

NSLog (@"...%i", 1 + 1);

NSLog (@"..%i", i + 2);

[pool drain];
return 0;

25

26 Chapter 2 Programming in Objective-C

4. Write a program that subtracts the value 15 from 87 and displays the result,
together with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:

#import <Foundation/Foundation.hs>

int main (int argc, const char *argvl[]);

(

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

INT sum;

/* COMPUTE RESULT //
sum = 25 + 37 - 19

/ DISPLAY RESULTS /

NSLog (@'The answer is %i' sum);

[pool drain] ;
return 0;

}

6. What output would you expect from the following program?

#import <Foundation/Foundation.h>

int main (int argc, const char *argv([])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int answer, result;

answer = 100;
result = answer - 10;

NSLog (@"The result is %i\n", result + 5);

[pool drain] ;
return 0;

3

Classes, Objects, and Methods

n this chapter, you’ll learn about some key concepts in object-oriented programming
and start working with classes in Objective-C.You’ll need to learn a little bit of terminol-
ogy, but we keep it fairly informal. We also cover only some of the basic terms here be-
cause you can easily get overwhelmed. Refer to Appendix A, “Glossary,” at the end of this
book, for more precise definitions of these terms.

What Is an Object, Anyway?

An object is a thing. Think about object-oriented programming as a thing and something
you want to do to that thing. This is in contrast to a programming language such as C,
known as a procedural programming language. In C, you typically think about what you
want to do first and then you worry about the objects, almost the opposite of object ori-
entation.

Consider an example from everyday life. Let’s assume that you own a car, which is ob-
viously an object, and one that you own.You don’t have just any car; you have a particular
car that was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe
someplace else.Your car has a vehicle identification number (VIN) that uniquely identi-
fies that car.

In object-oriented parlance, your car is an instance of a car. Continuing with the termi-
nology, car is the name of the class from which this instance was created. So each time a
new car is manufactured, a new instance from the class of cars is created, and each in-
stance of the car is referred to as an object.

Your car might be silver, have a black interior, be a convertible or hardtop, and so on.
Additionally, you perform certain actions with your car. For example, you drive your car,
fill it with gas, (hopefully) wash it, take it in for service, and so on.Table 3.1 depicts this.

The actions listed in Table 3.1 can be done with you car, and they can be done with
other cars as well. For example, your sister drives her car, washes it, fills it with gas, and so on.

28 Chapter 3: Classes, Objects, and Methods

Table 3.1 Actions on Objects

Object What You Do with It
Your car Drive it

Fill it with gas

Wash it

Service it

Instances and Methods

A unique occurrence of a class is an instance, and the actions that are performed on the in-
stance are called methods. In some cases, a method can be applied to an instance of the class
or to the class itself. For example, washing you car applies to an instance (in fact, all the
methods listed in Table 3.1 can be considered instance methods). Finding out how many
types of cars a manufacturer makes would apply to the class, so it would be a class method.

Suppose you have two cars that came off the assembly line and are seemingly identical:
They both have the same interior, same paint color, and so on. They might start out the
same, but as each car is used by its respective owner, it acquires its own unique character-
istics. For example, one car might end up with a scratch on it and the other might have
more miles on it. Each instance or object contains not only information about its initial
characteristics acquired from the factory, but also its current characteristics. Those charac-
teristics can change dynamically. As you drive your car, the gas tank becomes depleted, the
car gets dirtier, and the tires get a little more worn.

Applying a method to an object can affect the state of that object. If your method is to
“fill up my car with gas,” after that method is performed, your car’s gas tank will be full.
The method then will have affected the state of the car’s gas tank.

The key concepts here are that objects are unique representations from a class, and
each object contains some information (data) that is typically private to that object. The
methods provide the means of accessing and changing that data.

The Objective-C programming language has the following particular syntax for ap-
plying methods to classes and instances:

[ClassOrInstance method];

In this syntax, a left bracket is followed by the name of a class or instance of that class,
which is followed by one or more spaces, which is followed by the method you want to
perform. Finally, it is closed off with a right bracket and a terminating semicolon. When
you ask a class or an instance to perform some action, you say that you are sending it a
message; the recipient of that message is called the receiver. So another way to look at the
general format described previously is as follows:

[receiver message] ;

Let’s go back to the previous list and write everything in this new syntax. Before you
do that, though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

Instances and Methods

You send a message to the car class (the receiver of the message) asking it to give you
a new car. The resulting object (which represents your unique car) is then stored in the
variable yourcar. From now on, yourCar can be used to refer to your instance of the car,
which you got from the factory.

Because you went to the factory to get the car, the method new is called a factory or
class method. The rest of the actions on your new car will be instance methods because
they apply to your car. Here are some sample message expressions you might write for
your car:

[yourCar prepl] ; get it ready for first-time use
[yourCar drive]; drive your car

[yourCar wash] ; wash your car

[yourCar getGas]; put gas in your car i1f you need It
[yourCar servicel]; service your car

[yourCar topDown] ; If it's a convertible

[yourCar topUp] ;
currentMileage = [suesCar currentOdometer];

This last example shows an instance method that returns information—presumably, the
current mileage, as indicated on the odometer. Here we store that information inside a
variable in our program called currentMileage.

Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];
[suesCar wash];
[suesCar getGas];

Applying the same methods to different objects is one of the key concepts of object-
oriented programming, and you’ll learn more about it later.

You probably won’t need to work with cars in your programs.Your objects will likely
be computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a
calculator or a playlist of songs. And just like the methods used for your cars, your meth-
ods might look similar, as in the following:

[myWindow erase] ; Clear the window

[myRect getAreal ; Calculate the area of the rectangle
[userText spellCheck]; Spell-check some text
[deskCalculator clearEntry]; Clear the last entry
[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber diall ; Dial a phone number

29

30

Chapter 3: Classes, Objects, and Methods

An Objective-C Class for Working with Fractions

Now it’s time to define an actual class in Objective-C and learn how to work with in-
stances of the class.

Once again, you’ll learn procedure first. As a result, the actual program examples might
not seem very practical. We get into more practical stuft later.

Suppose you need to write a program to work with fractions. Maybe you need to deal
with adding, subtracting, multiplying, and so on. If you didn’t know about classes, you
might start with a simple program that looked like this:

Program 3.1

// Simple program to work with fractions
#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int numerator = 1;
int denominator = 3;
NSLog (@"The fraction is %i/%i", numerator, denominator);

[pool drain];
return 0;

Program 3.1 Output

The fraction is 1/3

In Program 3.1 the fraction is represented in terms of its numerator and denominator.
After the autorelease pool is created, the two lines in main both declare the variables
numerator and denominator as integers and assign them initial values of 1 and 3, respec-
tively. This is equivalent to the following lines:

int numerator, denominator;

numerator = 1;
denominator = 3;

We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the
variable denominator. If you needed to store a lot of fractions in your program, this could
be cumbersome. Each time you wanted to refer to the fraction, you'd have to refer to the
corresponding numerator and denominator. And performing operations on these fractions
would be just as awkward.

An Objective-C Class for Working with Fractions

It would be better if you could define a fraction as a single entity and collectively refer
to its numerator and denominator with a single name, such as myFraction.You can do
that in Objective-C, and it starts by defining a new class.

Program 3.2 duplicates the functionality of Program 3.1 using a new class called
Fraction. Here, then, is the program, followed by a detailed explanation of how it works.
Program 3.2

// Program to work with fractions - class version

#import <Foundation/Foundation.h>
//---- @interface section ----
@interface Fraction: NSObject

int numerator;

int denominator;

}

- (void) print;

- (void) setNumerator: (int) n;

- (void) setDenominator: (int) d;
@end

//---- @implementation section ----

@implementation Fraction
- (void) print

NSLog (@"%1i/%i", numerator, denominator) ;

}

- (void) setNumerator: (int) n

{

numerator = n;

}
- (void) setDenominator: (int) d

denominator = d;

31

32

Chapter 3: Classes, Objects, and Methods

@end

//---- program section ----

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];
[myFraction release];

[pool drain];
return 0;

Program 3.2 Output
The value of myFraction is:

1/3

As you can see from the comments in Program 3.2, the program is logically divided
into three sections:

= @interface section
= @implementation section

= program section

The einterface section describes the class, its data components, and its methods,
whereas the @implementation section contains the actual code that implements these
methods. Finally, the program section contains the program code to carry out the in-
tended purpose of the program.

The @interface Section

Each of these sections is a part of every Objective-C program, even though you might
not need to write each section yourself. As you'll see, each section is typically put in its
own file. For now, however, we keep it all together in a single file.

The @interface Section

When you define a new class, you have to do a few things. First, you have to tell the Ob-
jective-C compiler where the class came from. That is, you have to name its parent class.
Second, you have to specify what type of data is to be stored in the objects of this class.
That is, you have to describe the data that members of the class will contain. These mem-
bers are called the instance variables. Finally, you need to define the type of operations, or
methods, that can be used when working with objects from this class. This is all done in a
special section of the program called the einterface section. The general format of this
section looks like this:

@interface NewClassName: ParentClassName

{

memberDeclarations;

methodDeclarations;
@end

By convention, class names begin with an uppercase letter, even though it’s not re-
quired. This enables someone reading your program to distinguish class names from other
types of variables by simply looking at the first character of the name. Let’s take a short
diversion to talk a little about forming names in Objective-C.

Choosing Names

In Chapter 2,“Programming in Objective-C,” you used several variables to store integer
values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

The Objective-C language allows you to store data types other than just integers in
variables as well, as long as the proper declaration for the variable is made before it is used
in the program.Variables can be used to store floating-point numbers, characters, and even
objects (or, more precisely, references to objects).

The rules for forming names are quite simple: They must begin with a letter or under-
score (), and they can be followed by any combination of letters (upper- or lowercase),
underscores, or the digits 0—9. The following is a list of valid names:

" sum

= pieceFlag

33

34

Chapter 3: Classes, Objects, and Methods

=]

= myLocation

= numberOfMoves
= sysFlag

= ChessBoard

On the other hand, the following names are not valid for the stated reasons:

= sum$value $—is not a valid character.
= piece flag—Embedded spaces are not permitted.
= 3spencer—Names can’t start with a number.

» int—This is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the
Objective-C compiler. This use is known as a reserved name or reserved word. In general, any
name that has special significance to the Objective-C compiler cannot be used as a vari-
able name. Appendix B, “Objective-C 2.0 Language Summary,” provides a complete list of
such reserved names.

Always remember that upper- and lowercase letters are distinct in Objective-C. There-
fore, the variable names sum, Sum, and SUM each refer to a different variable. As noted,
when naming a class, start it with a capital letter. Instance variables, objects, and method
names, on the other hand, typically begin with lowercase letters. To aid readability, capital
letters are used inside names to indicate the start of a new word, as in the following ex-
amples:

» AddressBook—This could be a class name.
= currentEntry—This could be an object.
= current_entry—Some programmers use underscores as word separators.

» addNewEntry—This could be a method name.

When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick
names that reflect the intended use of the variable or object. The reasons are obvious. Just
as with the comment statement, meaningful names can dramatically increase the readabil-
ity of a program and will pay off in the debug and documentation phases. In fact, the
documentation task will probably be much easier because the program will be more self-
explanatory.

Here, again, is the @interface section from Program 3.2:

//---- @interface section ----

@interface Fraction: NSObject

{

int numerator;

The @interface Section

int denominator;

- (void) print;
- (void) setNumerator: (int) n;
- (void) setDenominator: (int) d;

@end

The name of the new class (¥ewclassVame) is Fraction, and its parent class is
NSobject. (We talk in greater detail about parent classes in Chapter 8, “Inheritance.”’) The
NsObject class is defined in the file NsSObject . h, which is automatically included in your
program whenever you import Foundation.h.

Instance Variables

The memberpecilarations section specifies what types of data are stored in a Fraction,
along with the names of those data types. As you can see, this section is enclosed inside its
own set of curly braces. For your Fraction class, these declarations say that a Fraction
object has two integer members, called numerator and denominator:

int numerator;
int denominator;

The members declared in this section are known as the instance variables. As you’ll
see, each time you create a new object, a new and unique set of instance variables also is
created. Therefore, if you have two Fractions, one called fraca and another called
fracB, each will have its own set of instance variables. That is, fraca and fracB each will
have its own separate numerator and denominator.The Objective-C system automati-
cally keeps track of this for you, which is one of the nicer things about working with
objects.

Class and Instance Methods

You have to define methods to work with your Fractions.You need to be able to set the
value of a fraction to a particular value. Because you won’t have direct access to the inter-
nal representation of a fraction (in other words, direct access to its instance variables), you
must write methods to set the numerator and denominator.You’ll also write a method
called print that will display the value of a fraction. Here’s what the declaration for the
print method looks like in the interface file:

- (void) print;
The leading minus sign (-) tells the Objective-C compiler that the method is an in-

stance method. The only other option is a plus sign (+), which indicates a class method. A
class method is one that performs some operation on the class itself, such as creating a

35

36

Chapter 3: Classes, Objects, and Methods

new instance of the class. This is similar to manufacturing a new car, in that the car is the
class and you want to create a new one, which would be a class method.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the car
example, after you have manufactured the car, you might need to fill it with gas. The op-
eration of filling it with gas is performed on a particular car, so it is analogous to an in-
stance method.

Return Values

When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns.You do this by enclos-
ing the return type in parentheses after the leading minus or plus sign. So this declaration
specifies that the instance method called retrieveNumerator returns an integer value:

-(int) retrieveNumerator;

Similarly, this line declares a method that returns a double precision value. (You’ll learn
more about this data type in Chapter 4, “Data Types and Expressions.”)

- (double) retrieveDoubleValue;

A value is returned from a method using the Objective-C return statement, similar to
the way in which we returned a value from main in previous program examples.
If the method returns no value, you indicate that using the type void, as in the following:

-(void) print;

This declares an instance method called print that returns no value. In such a case,
you do not need to execute a return statement at the end of your method. Alternatively,
you can execute a return without any specified value, as in the following:

return;

You don’t need to specify a return type for your methods, although it’s better pro-
gramming practice if you do. If you don'’t specify a type, id is the default.You’ll learn
more about the id data type in Chapter 9, “Polymorphism, Dynamic Typing, and Dy-
namic Binding.” Basically, you can use the id type to refer to any type of object.

Method Arguments
Two other methods are declared in the einterface section from Program 3.2:

- (void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

These are both instance methods that return no value. Each method takes an integer
argument, which is indicated by the (int) in front of the argument name. In the case of
setNumerator, the name of the argument is n. This name is arbitrary and is the name the
method uses to refer to the argument. Therefore, the declaration of setNumerator speci-
fies that one integer argument, called n, will be passed to the method and that no value

The @implementation Section

will be returned. This is similar for setDenominator, except that the name of its argu-
ment is d.

Notice the syntax of the declaration for these methods. Each method name ends with
a colon, which tells the Objective-C compiler that the method expects to see an argu-
ment. Next, the type of the argument is specified, enclosed in a set of parentheses, in
much the same way the return type is specified for the method itself. Finally, the symbolic
name to be used to identify that argument in the method is specified. The entire declara-
tion is terminated with a semicolon. Figure 3.1 depicts this syntax.

- (void) setNumerator: (int) n;
method return method method argument argument
type type name takes type name

argument

Figure 3.1 Declaring a method

When a method takes an argument, you also append a colon to the method name
when referring to the method. Therefore, setNumerator: and setDenominator: is the
correct way to identify these two methods, each of which takes a single argument. Also,
identifying the print method without a trailing colon indicates that this method does not
take any arguments. In Chapter 7,“More on Classes,” you’ll see how methods that take
more than one argument are identified.

The @Qimplementation Section

As noted, the eimplementation section contains the actual code for the methods you de-
clared in the einterface section. Just as a point of terminology, you say that you declare
the methods in the einterface section and that you define them (that is, give the actual
code) in the @implementation section.

The general format for the @implementation section is as follows:
@implementation NewClassName

methodDefinitions;
@end

NewClassName is the same name that was used for the class in the @interface section.
You can use the trailing colon followed by the parent class name, as we did in the
@interface section:

@implementation Fraction: NSObject

However, this is optional and typically not done.

The methodpefinitions part of the @implementation section contains the code for
each method specified in the @interface section. Similar to the einterface section,
each method’s definition starts by identifying the type of method (class or instance), its

37

38

Chapter 3: Classes, Objects, and Methods

return type, and its arguments and their types. However, instead of the line ending with a

semicolon, the code for the method follows, enclosed inside a set of curly braces.
Consider the @implementation section from Program 3.2:

//---- @implementation section ----

@implementation Fraction

-(void) print

{

NSLog ("%i/%i", numerator, denominator);

-(void) setNumerator: (int) n

{

numerator = n;

-(void) setDenominator: (int) d

{

denominator = d;

@end

The print method uses NSLog to display the values of the instance variables
numerator and denominator. But to which numerator and denominator does this
method refer? It refers to the instance variables contained in the object that is the receiver
of the message. That’s an important concept, and we return to it shortly.

The setNumerator: method stores the integer argument you called n in the instance
variable numerator. Similarly, setDenominator: stores the value of its argument d in the
instance variable denominator.

The program Section

The program section contains the code to solve your particular problem, which can be
spread out across many files, if necessary. Somewhere you must have a routine called main,
as we've previously noted. That’s where your program always begins execution. Here’s the
program section from Program 3.2:

//---- program section ----

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

The eprogram Section

Fraction *myFraction;
// Create an instance of a Fraction

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];

[myFraction release];
[pool drain];

return 0;

Inside main, you define a variable called myFraction with the following line:

Fraction *myFraction;

This line says that myFraction is an object of type Fraction; that is, myFraction is
used to store values from your new Fraction class. The asterisk (*) in front of
myFraction is required, but don’t worry about its purpose now. Technically, it says that
myFraction is actually a reference (or pointer) to a Fraction.

Now that you have an object to store a Fraction, you need to create one, just as you
ask the factory to build you a new car. This is done with the following line:

myFraction = [Fraction alloc];

alloc is short for allocate.You want to allocate memory storage space for a new frac-
tion. This expression sends a message to your newly created Fraction class:

[Fraction alloc]

You are asking the Fraction class to apply the alloc method, but you never defined
an alloc method, so where did it come from? The method was inherited from a parent
class. Chapter 8,“Classes, Objects, and Methods” deals with this topic in detail.

When you send the alloc message to a class, you get back a new instance of that class.
In Program 3.2, the returned value is stored inside your variable myFraction.The alloc
method is guaranteed to zero out all of an object’s instance variables. However, that doesn’t

39

40

Chapter 3: Classes, Objects, and Methods

mean that the object has been properly initialized for use.You need to initialize an object
after you allocate it.
This is done with the next statement in Program 3.2, which reads as follows:

myFraction = [myFraction init];

Again, you are using a method here that you didn’t write yourself. The init method
initializes the instance of a class. Note that you are sending the init message to
myFraction. That is, you want to initialize a specific Fraction object here, so you don’t
send it to the class—you send it to an instance of the class. Make sure you understand this
point before continuing.

The init method also returns a value—namely, the initialized object.You store the re-
turn value in your Fraction variable myFraction.

The two-line sequence of allocating a new instance of class and then initializing it is
done so often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

This inner message expression is evaluated first:

[Fraction alloc]

As you know, the result of this message expression is the actual Fraction that is allo-
cated. Instead of storing the result of the allocation in a variable, as you did before, you
directly apply the init method to it. So, again, first you allocate a new Fraction and
then you initialize it. The result of the initialization is then assigned to the myFraction
variable.

As a final shorthand technique, the allocation and initialization is often incorporated
directly into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

We use this coding style often throughout the remainder of this book, so it’s important
that you understand it.You've seen in every program up to this point with the allocation
of the autorelease pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Here an alloc message is sent to the NSAutoreleasePool class requesting that a new
instance be created. The init message then is sent to the newly created object to get it
initialized.

Returning to Program 3.2, you are now ready to set the value of your fraction. These
program lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

The program Section 41

The first message statement sends the setNumerator: message to myFraction.The ar-
gument that is supplied is the value 1. Control is then sent to the setNumerator: method
you defined for your Fraction class. The Objective-C system knows that it is the method
from this class to use because it knows that myFraction is an object from the Fraction
class.

Inside the setNumerator: method, the passed value of 1 is stored inside the variable n.
The single program line in that method stores that value in the instance variable
numerator. So you have eftectively set the numerator of myFraction to 1.

The message that invokes the setDenominator: method on myFraction follows next.
The argument of 3 is assigned to the variable d inside the setDenominator: method. This
value is then stored inside the denominator instance variable, thus completing the assign-
ment of the value 1/3 to myFraction. Now you're ready to display the value of your
fraction, which you do with the following lines of code from Program 3.2:

// display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];

The NsLog call simply displays the following text:

The value of myFraction is:

The following message expression invokes the print method:

[myFraction print];

Inside the print method, the values of the instance variables numerator and
denominator are displayed, separated by a slash character.

The message in the program releases or frees the memory that was used for the
Fraction object:

[myFraction release];

This is a critical part of good programming style. Whenever you create a new object,
you are asking for memory to be allocated for that object. Also, when you’re done with
the object, you are responsible for releasing the memory it uses. Although it’s true that the
memory will be released when your program terminates anyway, after you start develop-
ing more sophisticated applications, you can end up working with hundreds (or thou-
sands) of objects that consume a lot of memory. Waiting for the program to terminate for
the memory to be released is wasteful of memory, can slow your program’ execution, and
is not good programming style. So get into the habit of releasing memory when you can
right now.

The Apple runtime system provides a mechanism known as garbage collection that facili-
tates automatic cleanup of memory. However, it’s best to learn how to manage your
memory usage yourself instead of relying on this automated mechanism. In fact, you can’t

42

Chapter 3: Classes, Objects, and Methods

rely on garbage collection when programming for certain platforms on which garbage
collection is not supported, such as the iPhone. For that reason, we don’t talk about
garbage collection until much later in this book.

It seems as if you had to write a lot more code to duplicate in Program 3.2 what you
did in Program 3.1.That’s true for this simple example here; however, the ultimate goal in
working with objects is to make your programs easier to write, maintain, and extend.
You'll realize that later.

The last example in this chapter shows how you can work with more than one frac-
tion in your program. In Program 3.3, you set one fraction to 2/3, set another to 3/7, and
display them both.

Program 3.3

// Program to work with fractions - cont’d

#import <Foundation/Foundation.h>
//---- @interface section ----
@interface Fraction: NSObject

int numerator;
int denominator;

}

- (void) print;
- (void) setNumerator: (int) n;
- (void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
- (void) print

NSLog (@"%i/%i", numerator, denominator);

}

- (void) setNumerator: (int) n

{

numerator = n;

}

- (void) setDenominator: (int) d

{

The eprogram Section

denominator = d;

@end
//---- program section ----

int main (int argc, char *argv([])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *fracl = [[Fraction alloc] init];
Fraction *frac2 = [[Fraction alloc] init];

// Set 1st fraction to 2/3

[fracl setNumerator: 2];
[fracl setDenominator: 3];

// Set 2nd fraction to 3/7

[frac2 setNumerator: 3];
[frac2 setDenominator: 7];

// Display the fractions

NSLog (@"First fraction is:");

[fracl print];

NSLog (@"Second fraction is:");
[frac2 print];

[fracl release];
[frac2 release];

[pool drain];
return 0;

Program 3.3 Output

First fraction is:
2/3
Second fraction is:

3/7

The einterface and @implementation sections remain unchanged from Program
3.2.The program creates two Fraction objects, called frac1 and frac2, and then assigns
the value 2/3 to the first fraction and 3/7 to the second. Realize that when the
setNumerator: method is applied to fracl to set its numerator to 2, the instance vari-
able frac1l gets its instance variable numerator set to 2. Also, when frac2 uses the same
method to set its numerator to 3, its distinct instance variable numerator is set to the

43

44

Chapter 3: Classes, Objects, and Methods

value 3. Each time you create a new object, it gets its own distinct set of instance vari-
ables. Figure 3.2 depicts this.

Based on which object is getting sent the message, the correct instance variables are
referenced. Therefore, here fraci’s numerator is referenced whenever setNumerator:
uses the name numerator inside the method:

[fracl setNumerator: 2];

That’s because frac1 is the receiver of the message.

Object fract frac2
Instance numerator 2 numerator 3
Variables denominator 3 denominator 7

Figure 3.2 Unique instance variables

Accessing Instance Variables and Data
Encapsulation

You’ve seen how the methods that deal with fractions can access the two instance vari-
ables numerator and denominator directly by name. In fact, an instance method can al-
ways directly access its instance variables. A class method can’t, however, because it’s
dealing only with the class itself, not with any instances of the class (think about that for a
second). But what if you wanted to access your instance variables from someplace else—
for example, from inside your main routine? You can’t do that directly because they are
hidden. The fact that they are hidden from you is a key concept called data encapsulation. It
enables someone writing class definitions to extend and modify the class definitions,
without worrying about whether programmers (that is, users of the class) are tinkering
with the internal details of the class. Data encapsulation provides a nice layer of insulation
between the programmer and the class developer.

You can access your instance variables in a clean way by writing special methods to re-
trieve their values. For example, you’'ll create two new methods called, appropriately
enough, numerator and denominator to access the corresponding instance variables of
the Fraction that is the receiver of the message. The result is the corresponding integer
value, which you return. Here are the declarations for your two new methods:

- (int) numerator;
-(int) denominator;
And here are the definitions:

- (int) numerator

{

return numerator;

Accessing Instance Variables and Data Encapsulation 45

-(int) denominator

{

return denominator;

Note that the names of the methods and the instance variables they access are the
same. There’s no problem doing this; in fact, it is common practice. Program 3.4 tests your
two new methods.

Program 3.4

// Program to access instance variables - cont’d

#import <Foundation/Foundation.h>
//---- @interface section ----

@interface Fraction: NSObject

int numerator;
int denominator;

}

- (void) print;

- (void) setNumerator: (int) n;

- (void) setDenominator: (int) d;
- (int) numerator;

- (int) denominator;

@end

//---- @implementation section ----

@implementation Fraction
- (void) print

NSLog (@"%$i/%i", numerator, denominator);

}

- (void) setNumerator: (int) n

{
}

- (void) setDenominator: (int) d

numerator = n;

denominator = d;

}

- (int) numerator

{
}

return numerator;

46

Chapter 3: Classes, Objects, and Methods

- (int) denominator

return denominator;
@end

//---- program section ----
int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using our two new methods

NSLog (@"The value of myFraction is: %i/%i",
[myFraction numerator], [myFraction denominator]) ;

[myFraction release];

[pool drain];

return 0;

Program 3.4 Output
The value of myFraction is 1/3

This NSLog statement displays the results of sending two messages to myFraction: the
first to retrieve the value of its numerator, and the second the value of its denominator:
NSLog (@"The value of myFraction is: %i/%i",

[myFraction numerator], [myFraction denominator]) ;

Incidentally, methods that set the values of instance variables are often collectively re-
ferred to as setters, and methods used to retrieve the values of instance variables are called
getters. For the Fraction class, setNumerator: and setDenominator: are the setters, and
numerator and denominator are the getters.

Note

Soon you’ll learn a convenient feature of Objective-C 2.0 that allows for the automatic cre-
ation of getter and setter methods.

Exercises

We should also point out that there’s also a method called new that combines the ac-
tions of an alloc and init. So this line could be used to allocate and initialize a new

Fraction:

Fraction *myFraction = [Fraction new];

It’s generally better to use the two-step allocation and initialization approach so you
conceptually understand that two distinct events are occurring: You're first creating a new
object and then you're initializing it.

Summary

Now you know how to define your own class, create objects or instances of that class, and
send messages to those objects. We return to the Fraction class in later chapters.You’ll
learn how to pass multiple arguments to your methods, how to divide your class defini-
tions into separate files, and also how to use key concepts such as inheritance and dy-
namic binding. However, now it’s time to learn more about data types and writing
expressions in Objective-C. First, try the exercises that follow to test your understanding
of the important points covered in this chapter.

.
Exercises
1. Which of the following are invalid names? Why?
Int playNextSong 6_05
_calloc Xx alphaBetaRoutine
clearScreen 1312 Z
ReInitialize _ AS

2. Based on the example of the car in this chapter, think of an object you use every
day. Identify a class for that object and write five actions you do with that object.

3. Given the list in exercise 2, use the following syntax to rewrite your list in this format:
[instance method] ;

4. Imagine that you owned a boat and a motorcycle in addition to a car. List the ac-
tions you would perform with each of these. Do you have any overlap between
these actions?

5. Based on question 4, imagine that you had a class called vehicle and an object
called myVehicle that could be either car, Motorcycle, Of Boat. Imagine that
you wrote the following:

[myVehicle prep];
[myVehicle getGas];
[myVehicle service];

Do you see any advantages of being able to apply an action to an object that could
be from one of several classes?

47

48 Chapter 3: Classes, Objects, and Methods

6. In a procedural language such as C, you think about actions and then write code to
perform the action on various objects. Referring to the car example, you might
write a procedure in C to wash a vehicle and then inside that procedure write code
to handle washing a car, washing a boat, washing a motorcycle, and so on. If you
took that approach and then wanted to add a new vehicle type (see the previous
exercise), do you see advantages or disadvantages to using this procedural approach
over an object-oriented approach?

7. Define a class called xyPoint that will hold a Cartesian coordinate (x,y), where x
and y are integers. Define methods to individually set the x and y coordinates of a
point and retrieve their values. Write an Objective-C program to implement your
new class and test it.

A

Data Types and Expressions

In this chapter, we take a look at the basic data types and describe some fundamental
rules for forming arithmetic expressions in Objective-C.

Data Types and Constants

You have already been exposed to the Objective-C basic data type int.As you will recall,
a variable declared to be of type int can be used to contain integral values only—that is,
values that do not contain decimal places.

The Objective-C programming language provides three other basic data types: £1loat,
double, and char. A variable declared to be of type £loat can be used for storing float-
ing-point numbers (values containing decimal places). The double type is the same as
type float, only with roughly twice the accuracy. Finally, the char data type can be used
to store a single character, such as the letter a, the digit character 6, or a semicolon (more
on this later).

In Objective-C, any number, single character, or character string is known as a constant.
For example, the number 58 represents a constant integer value. The string
@"Programming in Objective-C is fun.\n" is an example of a constant character
string object. Expressions consisting entirely of constant values are called constant expres-
sions. So this expression is a constant expression because each of the terms of the expres-
sion is a constant value:

128 + 7 - 17
But if i were declared to be an integer variable, this expression would not represent a
constant expression:

128 + 7 - 1

Type int
In Objective-C, an integer constant consists of a sequence of one or more digits. A minus

sign preceding the sequence indicates that the value is negative. The values 158, -10, and 0
are all valid examples of integer constants. No embedded spaces are permitted between

50

Chapter 4 Data Types and Expressions

the digits, and values larger than 999 cannot be expressed using commas. (So the value
12,000 is not a valid integer constant and must be written as 12000.)

Two special formats in Objective-C enable integer constants to be expressed in a base
other than decimal (base 10). If the first digit of the integer value is 0, the integer is con-
sidered to be expressed in octal notation—that is, in base 8. In this case, the remaining dig-
its of the value must be valid base 8 digits and, therefore, must be 0—7. So to express the
value 50 in base 8 in Objective-C, which is equivalent to the value 40 in decimal, the no-
tation 050 is used. Similarly, the octal constant 0177 represents the decimal value 127 (1 x
64 + 7x8 + 7).An integer value can be displayed in octal notation by using the format
characters %o in the format string of an NSLog call. In such a case, the value is displayed in
octal without a leading zero. The format character $#o does cause a leading zero to be
displayed before an octal value.

If an integer constant is preceded by a 0 and a letter x (either lower case or upper
case), the value is considered to be expressed in hexadecimal (base 16) notation. Immedi-
ately following the x are the digits of the hexadecimal value, which can be composed of
the digits 0—9 and the letters a—f (or A—F). The letters represent the values 10—15, respec-
tively. So to assign the hexadecimal value FFEFOD to an integer variable called rgbcolor,
you can use this statement:

rgbColor = OXFFEFOD;

The format characters $x display a value in hexadecimal format without the leading
ox and using lowercase letters a—f for hexidecimal digits. To display the value with the
leading 0x, you use the format characters %#x, as in the following:

NSLog ("Color is %#x\n", rgbColor) ;

An uppercase X, as in %X or $#Xx, can be used to display the leading x and hexidecimal
digits that follow using uppercase letters.

Every value, whether it’s a character, an integer, or a floating-point number, has a range
of values associated with it. This range has to do with the amount of storage allocated to
store a particular type of data. In general, that amount is not defined in the language; it
typically depends on the computer you're running on and is therefore called
implementation or machine dependent. For example, an integer can take 32 bits on your com-
puter, or perhaps it might be stored in 64.

You should never write programs that make assumptions about the size of your data
types. However, you are guaranteed that a minimum amount of storage will be set aside
for each basic data type. For example, it’s guaranteed that an integer value will be stored
in a minimum of 32 bits of storage. However, once again, it’s not guaranteed. See Table
B.2 in Appendix B, “Objective-C Language Summary,” for more information about data

type sizes.

Data Types and Constants

Type float

You can use a variable declared to be of type £loat to store values containing decimal
places. A floating-point constant is distinguished by the presence of a decimal point.You
can omit digits before the decimal point or digits after the decimal point, but, obviously,
you can’t omit both. The values 3.,125.8,and -.0001 are all valid examples of floating-
point constants. To display a floating-point value, the NSLog conversion characters $£ are
used.

Floating-point constants can also be expressed in so-called scientific notation. The value
1.7e4 is a floating-point value expressed in this notation that represents the value 1.7 x
107*. The value before the letter e is known as the mantissa, whereas the value that follows
is called the exponent. This exponent, which can be preceded by an optional plus or minus
sign, represents the power of 10 by which the mantissa is to be multiplied. So in the con-
stant 2.25e-3, the 2.25 is the value of the mantissa and -3 is the value of the exponent.
This constant represents the value 2.25 X 1073, or 0.00225. Incidentally, the letter e,
which separates the mantissa from the exponent, can be written in either lower case or
upper case.

To display a value in scientific notation, the format characters e should be specified in
the NSLog format string. The format characters g can be used to let NsSLog decide
whether to display the floating-point value in normal floating-point notation or in scien-
tific notation. This decision is based on the value of the exponent: If it’s less than -4 or
greater than s, $e (scientific notation) format is used; otherwise, $£ format is used.

A hexadecimal floating constant consists of a leading 0x or 0x, followed by one or
more decimal or hexadecimal digits, followed by a p or p, followed by an optionally
signed binary exponent. For example, 0x0.3p10 represents the value 3/16 X 2*° = 0.5.

Type double

The type double is similar to the type float, but it is used whenever the range provided
by a float variable is not sufficient. Variables declared to be of type double can store
roughly twice as many significant digits as can a variable of type £float. Most computers
represent double values using 64 bits.

Unless told otherwise, the Objective-C compiler considers all floating-point constants
to be double values.To explicitly express a £loat constant, append either £ or F to the
end of the number, like so:

12.5f

To display a double value, you can use the format characters £, %e, or g, which are
the same format characters used to display a £loat value.

Type char

You can use a char variable to store a single character. A character constant is formed by
enclosing the character within a pair of single quotation marks. So ' ;',and '0' are

a',
all valid examples of character constants. The first constant represents the letter a, the sec-

51

52

Chapter 4 Data Types and Expressions

ond is a semicolon, and the third is the character zero—which is not the same as the
number zero. Do not confuse a character constant, which is a single character enclosed in
single quotes, with a C-style character string, which is any number of characters enclosed
in double quotes. As mentioned in the last chapter, a string of characters enclosed in a pair
of double quotes that is preceded by an @ character is an NSString character string ob-
ject.

Note

Appendix B discusses methods for storing characters from extended character sets, through
special escape sequences, universal characters, and wide characters.

The character constant '\n', the newline character, is a valid character constant even
though it seems to contradict the rule cited previously. The reason for this is that the
backslash character is a special character in the Objective-C system and does not actually
count as a character. In other words, the Objective-C compiler treats the character '\n' as
a single character, even though it is actually formed by two characters. Other special char-
acters are initiated with the backslash character. See Appendix B for a complete list. The
format characters $c can be used in an NsLog call to display the value of a char variable.

Program 4.1 uses the basic Objective-C data types.

Program 4.1

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int integerVar = 100;
float floatingVar = 331.79;
double doubleVar = 8.44e+11;

char charVar = 'W';

NSLog (@"integerVar = %i", integerVar);

NSLog (@"floatingVar = %f", floatingVar);
", doubleVar) ;

o\

NSLog (@"doubleVar = %g", doubleVar) ;
NSLog (@"charVar = %c", charVar);

(

(=
NSLog (@"doubleVar = %e

("

(

[pool drain];
return 0;

Program 4.1 Output

integerVar = 100
floatingVar = 331.790009

Data Types and Constants 53

doubleVar = 8.440000e+11
doubleVar 8.44e+11

charvar = 'W'

In the second line of the program’s output, notice that the value of 331.79, which is as-
signed to floatingVar, is actually displayed as 331.790009.The reason for this inaccuracy
is the particular way in which numbers are internally represented inside the computer.You
have probably come across the same type of inaccuracy when dealing with numbers on
your calculator. If you divide 1 by 3 on your calculator, you get the result .33333333, with
perhaps some additional 3s tacked on at the end. The string of 3s is the calculator’s approx-
imation to one third. Theoretically, there should be an infinite number of 3s. But the cal-
culator can hold only so many digits, thus the inherent inaccuracy of the machine. The
same type of inaccuracy applies here: Certain floating-point values cannot be exactly rep-
resented inside the computer’s memory.

Qualifiers: 1long, long long, short, unsigned, and signed

If the qualifier long is placed directly before the int declaration, the declared integer vari-
able is of extended range on some computer systems. An example of a long int declara-
tion might be this:

long int factorial;

This declares the variable factorial to be a long integer variable. As with floats and
doubles, the particular accuracy of a long variable depends on your particular computer
system. On many systems, an int and a long int both have the same range and can be
used to store integer values up to 32 bits wide (2°' — 1, or 2,147,483,647).

A constant value of type long int is formed by optionally appending the letter L (in
upper or lower case) onto the end of an integer constant. No spaces are permitted be-
tween the number and the L. So the declaration declares the variable numberofPoints to
be of type long int with an initial value of 131,071, 100:

long int numberOfPoints = 131071100L;

To display the value of a long int using NSLog, the letter [is used as a modifier be-
fore the integer format characters i, o, and x. This means that the format characters %11
can be used to display the value of a long int in decimal format, the characters $1o can
display the value in octal format, and the characters $1x can display the value in hexadec-
imal format.

A long long integer data type can be used like this:

long long int maxAllowedStorage;
This declares the indicated variable to be of the specified extended accuracy, which is
guaranteed to be at least 64 bits wide. Instead of using a single letter /, two Is are used in

the NSLog string to display long long integers, as in “%11i”.
The long qualifier is also allowed in front of a double declaration, like so:

long double US_deficit_2004;

54

Chapter 4 Data Types and Expressions

A long double constant is written as a floating constant with an 1 or L immediately
following, like so:

1.234e+7L

To display a long double, you use the L modifier. So L. would display a long dou-
ble value in floating-point notation, $Le would display the same value in scientific nota-
tion, and $Lg would tell NSLog to choose between $Lf and $Le.

The qualifier short, when placed in front of the int declaration, tells the Objective-C
compiler that the particular variable being declared is used to store fairly small integer val-
ues. The motivation for using short variables is primarily one of conserving memory
space, which can be an issue when the program needs a lot of memory and the amount of
available memory is limited.

On some machines, a short int takes up half the amount of storage as a regular int
variable does. In any case, you are guaranteed that the amount of space allocated for a
short int will not be less than 16 bits.

No way exists to explicitly write a constant of type short int in Objective-C.To dis-
play a short int variable, place the letter h in front of any of the normal integer-conver-
sion characters: $hi, $ho, or $hx. Alternatively, you can use any of the integer-conversion
characters to display short ints because they can be converted into integers when they
are passed as arguments to the NSLog routine.

The final qualifier that can be placed in front of an int variable is used when an inte-
ger variable will be used to store only positive numbers. The following declares to the
compiler that the variable counter is used to contain only positive values:

unsigned int counter;

Restricting the use of an integer variable to the exclusive storage of positive integers
extends the accuracy of the integer variable.
An unsigned int constant is formed by placing a u or U after the constant, like so:

0x00£f£fU

You can combine the u (or U) and 1 (or L) when writing an integer constant, so this
tells the compiler to treat the constant 20000 as unsigned long:

20000UL

An integer constant that’s not followed by any of the letters u, U, 1, or L and that is too
large to fit into a normal-sized int is treated as an unsigned int by the compiler. If it’s
too small to fit into an unsigned int, the compiler treats it as a long int. If it still can’t
fit inside a long int, the compiler makes it an unsigned long int.

When declaring variables to be of type long int, short int,or unsigned int,you
can omit the keyword int.Therefore, the unsigned variable counter could have been
equivalently declared as follows:

unsigned counter;

You can also declare char variables to be unsigned.

Data Types and Constants

The signed qualifier can be used to explicitly tell the compiler that a particular vari-
able is a signed quantity. Its use is primarily in front of the char declaration, and further
discussion is beyond the scope of this book.

Type id
The id data type is used to store an object of any type. In a sense, it is a generic object
type. For example, this line declares number to be a variable of type id:

id number;

Methods can be declared to return values of type id, like so:

- (id) newObject: (int) type;

This declares an instance method called newobject that takes a single integer argument
called type and returns a value of type id. Note that id is the default type for return and
argument type declarations. So, the following declares a class method that returns a value
of type ia:

+allocInit;

The id data type is an important data type used often in this book. We mention it in
passing here for the sake of completeness. The id type is the basis for very important fea-
tures in Objective-C know as polymorphism and dynamic binding, which Chapter 9, “Poly-
morphism, Dynamic Typing, and Dynamic Binding,” discusses extensively.

Table 4.1 summarizes the basic data types and qualifiers.

Table 4.1 Basic Data Types

Type Constant Examples NSLog chars
char a’, '\n’ %c
short int — %hi, %hx, %ho

unsigned short int

%hu, %hx, %ho

int 12,-97, OXFFEO, 0177 %i, %X, %0
unsigned int 12u, 100U, OXFFu %u, %X, %0
long int 12L,-2001, OxffffL %li, %Ix, %lo

unsigned long int
long long int
unsigned long long int

12UL, 100ul, OxffeeUL
Oxebebe5e5LL, 500l
12ull, OxffeeULL

%lu, %lx, %lo
%lli, %lIx, &llo
%llu, %lIx, %llo

float 12.34f, 3.1e-5f, %f, %e, %g, %a
0x1.5p10, Ox1P-1

double 12.34, 3.1e-5, 0x.1p3 %f, %e, %g, %a

long double 12.341, 3.1e-51 %Lf, $Le, %Lg

id nil %p

55

56

Chapter 4 Data Types and Expressions

Arithmetic Expressions

In Objective-C, just as in virtually all programming languages, the plus sign (+) is used
to add two values, the minus sign (-) is used to subtract two values, the asterisk (*) is
used to multiply two values, and the slash (/) is used to divide two values. These opera-
tors are known as binary arithmetic operators because they operate on two values or
terms.

Operator Precedence

You have seen how a simple operation such as addition can be performed in Objective-C.
The following program further illustrates the operations of subtraction, multiplication, and
division. The last two operations performed in the program introduce the notion that one
operator can have a higher priority, or precedence, over another operator. In fact, each oper-
ator in Objective-C has a precedence associated with it.

This precedence is used to determine how an expression that has more than one oper-
ator is evaluated: The operator with the higher precedence is evaluated first. Expressions
containing operators of the same precedence are evaluated either from left to right or
from right to left, depending on the operator. This is known as the associative property of
an operator. Appendix B provides a complete list of operator precedences and their rules
of association.

Program 4.2

// Illustrate the use of various arithmetic operators

#import <Foundation/Foundation.hs>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int a = 100;

int b =2;

int c = 25;

int d = 4;

int result;

result = a - b; //subtraction
NSLog (@"a - b = %i", result);

result = b * ¢; //multiplication
NSLog (@"b * ¢ = %i", result);

result = a / ¢; //division
NSLog (@"a / ¢ = %i", result);

Arithmetic Expressions

result = a + b * ¢; //precedence

NSLog (@"a + b * ¢ = %1i", result);
"

NSLog (@"a * b + ¢ * d = %1", a * b + ¢ * 4d);

[pool drain];
return 0;

Program 4.2 Output

a - b =098

b *c =50

a/ c=4

a+b*c =150
a*b+c*d=300

After declaring the integer variables a, b, ¢, d, and result, the program assigns the re-
sult of subtracting b from a to result and then displays its value with an appropriate
NSLog call.

The next statement has the effect of multiplying the value of b by the value of ¢ and
storing the product in result:

result = b * c;

The result of the multiplication is then displayed using a NSLog call that should be fa-
miliar to you by now.

The next program statement introduces the division operator, the slash. The NSLog
statement displays the result of 4, obtained by dividing 100 by 25, immediately following
the division of a by c.

Attempting to divide a number by zero results in abnormal termination or an excep-
tion when the division is attempted. Even if the program does not terminate abnormally,
the results obtained by such a division will be meaningless. In Chapter 6,“Making Deci-
sions,” you will see how you can check for division by zero before the division operation
is performed. If the divisor is determined to be zero, an appropriate action can be taken
and the division operation can be averted.

This expression does not produce the result of 2550 (102 X 25); instead, the result dis-
played by the corresponding NSLog statement is shown as 150:

a+b*c

This is because Objective-C, like most other programming languages, has rules for the
order of evaluating multiple operations or terms in an expression. Evaluation of an expres-
sion generally proceeds from left to right. However, the operations of multiplication and
division are given precedence over the operations of addition and subtraction. Therefore,
the system evaluates the expression

57

58

Chapter 4 Data Types and Expressions

a+b*c

as follows:
a+ (b *c)

(This is the same way this expression would be evaluated if you applied the basic rules
of algebra.)

If you want to alter the order of evaluation of terms inside an expression, you can use
parentheses. In fact, the expression listed previously is a perfectly valid Objective-C expres-

sion. Thus, the following statement could have been substituted in Program 4.2 to achieve
identical results:

result = a + (b * c);

However, if this expression were used instead, the value assigned to result would be
2550:
result = (a + b) * c;

This is because the value of a (100) would be added to the value of b (2) before multi-
plication by the value of Objective-C (25) would take place. Parentheses can also be
nested, in which case evaluation of the expression proceeds outward from the innermost
set of parentheses. Just be sure to have as many closed parentheses as you have open ones.

Notice from the last statement in Program 4.2 that it is perfectly valid to give an ex-

pression as an argument to NSLog without having to first assign the result of the expression
evaluation to a variable. The expression

a*b+c*d
is evaluated according to the rules stated previously as
(a * b) + (c * d)

or

(100 * 2) + (25 * 4)

The result of 300 is handed to the NSLog routine.

Integer Arithmetic and the Unary Minus Operator

Program 4.3 reinforces what we have just discussed and introduces the concept of integer
arithmetic.

Program 4.3

// More arithmetic expressions

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

Arithmetic Expressions

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int a = 25;
int b =2;
int result;
float ¢ = 25.0;
float d = 2.0;

NSLog (@"6 + a /5 *b =2%1", 6 +a /5 *Db);
NSLog (@"a / b * b = %i", a / b * b);

NSLog (@"c / d * d = %f", ¢/ d * 4d);

NSLog (@"-a = %i", -a);

[pool drain];
return 0;

Program 4.3 Output

6 +a/5*b=16
a/b*b=24

¢/ d*d=25.000000
-a = -25

We inserted extra blank spaces between int and the declaration of a, b, and result in
the first three statements to align the declaration of each variable. This helps make the pro-
gram more readable.You also might have noticed in each program presented thus far that
a blank space was placed around each operator. This, too, is not required and is done solely
for aesthetic reasons. In general, you can add extra blank spaces just about anywhere that a
single blank space is allowed. A few extra presses of the spacebar will prove worthwhile if
the resulting program is easier to read.

The expression in the first NSLog call of Program 4.3 reinforces the notion of operator
precedence. Evaluation of this expression proceeds as follows:

1. Because division has higher precedence than addition, the value of a (25) is divided
by s first. This gives the intermediate result of 4.

2. Because multiplication also has higher precedence than addition, the intermediate re-
sult of 5 is next multiplied by 2, the value of b, giving a new intermediate result of 10.

3. Finally, the addition of 6 and 10 is performed, giving a final result of 16.

The second NSLog statement introduces a new twist.You would expect that dividing a
by b and then multiplying by b would return the value of a, which has been set to 25. But
this does not seem to be the case, as shown by the output display of 24. Did the computer
lose a bit somewhere along the way? Very unlikely. The fact of the matter is that this ex-
pression was evaluated using integer arithmetic.

59

60

Chapter 4 Data Types and Expressions

If you glance back at the declarations for the variables a and b, you will recall that both
were declared to be of type int. Whenever a term to be evaluated in an expression con-
sists of two integers, the Objective-C system performs the operation using integer arith-
metic. In such a case, all decimal portions of numbers are lost. Therefore, when the value
of a is divided by the value of b, or 25 is divided by 2, you get an intermediate result of
12, and not 12.5, as you might expect. Multiplying this intermediate result by 2 gives the
final result of 24, thus explaining the “lost” digit.

As you can see from the next-to-last NSLog statement in Program 4.3, if you perform
the same operation using floating-point values instead of integers, you obtain the ex-
pected result.

The decision of whether to use a float variable or an int variable should be made
based on the variable’s intended use. If you don’t need any decimal places, use an integer
variable. The resulting program will be more efficient—that is, it will execute more
quickly on many computers. On the other hand, if you need the decimal place accuracy,
the choice is clear. The only question you then must answer is whether to use a float or
a double.The answer to this question depends on the desired accuracy of the numbers
you are dealing with, as well as their magnitude.

In the last NSLog statement, the value of the variable a is negated by use of the unary
minus operator. A unary operator is one that operates on a single value, as opposed to a bi-
nary operator, which operates on two values. The minus sign actually has a dual role: As a
binary operator, it is used for subtracting two values; as a unary operator, it is used to
negate a value.

The unary minus operator has higher precedence than all other arithmetic operators,
except for the unary plus operator (+), which has the same precedence. So the following
expression results in the multiplication of -a by b:

c = -a* b;

Once again, you will find a table in Appendix B summarizing the various operators
and their precedences.

The Modulus Operator

The last arithmetic operator to be presented in this chapter is the modulus operator,
which is symbolized by the percent sign (%).Try to determine how this operator works by
analyzing the output from Program 4.4.

Program 4.4

// The modulus operator

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Arithmetic Expressions

int a = 25, b =5, ¢ =10, d = 7;

NSLog (@"a %% b = %i", a % b);

NSLog (@"a %% c = %i", a % c);

NSLog (@"a %% d = %i", a % d);

NSLog (@"a / d *d +a %% d=2%i", a/d*d+a%d;

[pool drain];
return 0;

Program 4.4 Output
b =

oe

oe

c
d =
d

*

[URE VRN URN)
o°
Q U o

/

Note the statement inside main that defines and initializes the variables a, b, ¢, and d in
a single statement.

As you know, NSLog uses the character that immediately follows the percent sign to de-
termine how to print its next argument. However, if it is another percent sign that fol-
lows, the NSLog routine takes this as an indication that you really intend to display a
percent sign and inserts one at the appropriate place in the program’s output.

You are correct if you concluded that the function of the modulus operator % is to give
the remainder of the first value divided by the second value. In the first example, the re-
mainder, after 25 is divided by 5, is displayed as 0. If you divide 25 by 10, you get a remain-
der of 5, as verified by the second line of output. Dividing 25 by 7 gives a remainder of 4,
as shown in the third output line.

Let’s now turn our attention to the last arithmetic expression evaluated in the last state-
ment.You will recall that any operations between two integer values in Objective-C are
performed with integer arithmetic. Therefore, any remainder resulting from the division of
two integer values is simply discarded. Dividing 25 by 7, as indicated by the expression a
/ d, gives an intermediate result of 3. Multiplying this value by the value of d, which is 7,
produces the intermediate result of 21. Finally, adding the remainder of dividing a by 4, as
indicated by the expression a % d,leads to the final result of 25. It is no coincidence that
this value is the same as the value of the variable a. In general, this expression will always
equal the value of a, assuming, of course, that a and b are both integer values:

a/b*b+ashb
In fact, the modulus operator % is defined to work only with integer values.

As far as precedence is concerned, the modulus operator has equal precedence to the
multiplication and division operators. This implies, of course, that an expression such as

table + value % TABLE SIZE

will be evaluated as

table + (value % TABLE_ SIZE)

61

62

Chapter 4 Data Types and Expressions

Integer and Floating-Point Conversions

To effectively develop Objective-C programs, you must understand the rules used for the
implicit conversion of floating-point and integer values in Objective-C. Program 4.5
demonstrates some of the simple conversions between numeric data types.

Program 4.5

// Basic conversions in Objective-C

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
float £1 = 123.125, £2;

int i1, i2 = -150;

i1 = f1; // floating to integer conversion

NSLog (@"%f assigned to an int produces %i", f1, il);

fl = i2; // integer to floating conversion
NSLog (@"%i assigned to a float produces %f", i2, f1);

f1 = i2 / 100; // integer divided by integer
NSLog (@"%i divided by 100 produces %f", i2, f1);

f2 = i2 / 100.0; // integer divided by a float
NSLog (@"%i divided by 100.0 produces %f", i2, £2);

f2 = (float) i2 / 100; // type cast operator
NSLog (@"(float) %i divided by 100 produces %f", i2, £2);

[pool drain];
return 0;

Program 4.5 Output

123.125000 assigned to an int produces 123
-150 assigned to a float produces -150.000000
-150 divided by 100 produces -1.000000

-150 divided by 100.0 produces -1.500000

(float) -150 divided by 100 produces -1.500000

Whenever a floating-point value is assigned to an integer variable in Objective-C, the
decimal portion of the number gets truncated. So when the value of £1 is assigned to i1
in the previous program, the number 123.125 is fruncated, which means that only its inte-

Arithmetic Expressions

ger portion, or 123, is stored in i1.The first line of the program’s output verifies that this
is the case.

Assigning an integer variable to a floating variable does not cause any change in the
value of the number; the system simply converts the value and stores it in the floating
variable. The second line of the program’s output verifies that the value of i2 (-150) was
correctly converted and stored in the float variable £1.

The next two lines of the program’s output illustrate two points to remember when
forming arithmetic expressions. The first has to do with integer arithmetic, which we have
already discussed in this chapter. Whenever two operands in an expression are integers
(and this applies to short, unsigned, and long integers as well), the operation is carried
out under the rules of integer arithme ic Therefore, any decimal portion resulting from a
division operation is discarded, even if the result is assigned to a floating variable (as we
did in the program). When the integer variable i2 is divided by the integer constant 100,
the system performs the division as an integer division. The result of dividing -150 by 100,
which is -1, is, therefore the value tha is stored in the float variable £1

The next division pe formed in the previous program involves an integer variable and
a floating-point constant. Any operation between two values in Objective-C is performed
as a floating-point operation if either value is a floating-point variable or constant. There-
fore, when the value of i2 is divided by 100. 0, the system treats the division as a floating-
point division and produces the result of -1.5, which is assigned to the float variable £1.

The Type Cast Operator

You've already seen how enclosing a type inside a set of parentheses is used to declare the
return and argument types when declaring and defining methods. It serves a different pur-
pose when used inside expressions.

The last division operation from Program 4.5 that reads as follows introduces the type
cast operator:

f2 = (float) i2 / 100; // type cast operator

The type cast operator has the effect of converting the value of the variable i2 to type
float for purposes of evaluating the expression. In no way does this operator perma-
nently affect the value of the variable 12; it is a unary operator that behaves like other
unary operators. Just as the expression -a has no permanent effect on the value of a, nei-
ther does the expression (float) a.

The type cast operator has a higher precedence than all the arithmetic operators except
the unary minus and unary plus. Of course, if necessary, you can always use parentheses in
an expression to force the terms to be evaluated in any desired order.

As another example of the use of the type cast operator, the expression

(int) 29.55 + (int) 21.99

is evaluated in Objective-C as

29 + 21

63

64

Chapter 4 Data Types and Expressions

because the effect of casting a floating value to an integer is one of truncating the float-
ing-point value. The expression

(float) 6 / (float) 4

produces a result of 1.5, as does the following expression:
(float) 6 / 4
The type cast operator is often used to coerce an object that is a generic id type into

an object of a particular class. For example, the following lines convert the value of the id
variable myNumber to a Fraction object:

id myNumber ;
Fraction *myFraction;

myFraction = (Fraction *) myNumber;

The result of the conversion is assigned to the Fraction variable myFraction.

Assignment Operators

The Objective-C language permits you to combine the arithmetic operators with the as-
signment operator using the following general format:

op=
In this format, op is any of the arithmetic operators, including +, -, *, /, or %. In addi-

tion, op can be any of the bit operators for shifting and masking, discussed later.
Consider this statement:

count += 10;
The effect of the so-called “plus equals” operator += is to add the expression on the
right side of the operator to the expression on the left side of the operator, and to store

the result back into the variable on the left side of the operator. So the previous statement
is equivalent to this statement:

count = count + 10;
The following expression uses the “minus equals” assignment operator to subtract 5
from the value of counter:

counter -= 5

It is equivalent to this expression:

counter = counter - 5

This is a slightly more involved expression:

a/=b+c

It divides a by whatever appears to the right of the equals sign—or by the sum of b
and c—and stores the result in a. The addition is performed first because the addition op-

A Calculator Class

erator has higher precedence than the assignment operator. In fact, all operators but the
comma operator have higher precedence than the assighment operators, which all have
the same precedence.

In this case, this expression is identical to the following:

a=a/ (b+c)

The motivation for using assignment operators is threefold. First, the program state-
ment becomes easier to write because what appears on the left side of the operator does
not have to be repeated on the right side. Second, the resulting expression is usually easier
to read. Third, the use of these operators can result in programs that execute more quickly
because the compiler can sometimes generate less code to evaluate an expression.

A Calculator Class

It’s time now to define a new class. We’re going to make a calculator class, which will be
a simple four-function calculator you can use to add, multiply, subtract, and divide num-
bers. Similar to a regular calculator, this one must keep track of the running total, or
what’s usually called the accumulator. So methods must let you set the accumulator to a
specific value, clear it (or set it to zero), and retrieve its value when you're done. Program
4.6 includes the new class definition and a test program to try your calculator.

Program 4.6

// Implement a Calculator class

#import <Foundation/Foundation.h>

@interface Calculator: NSObject

{

double accumulator;

// accumulator methods

- (void) setAccumulator: (double) value;
- (void) clear;

- (double) accumulator;

// arithmetic methods

- (void) add: (double) value;

- (void) subtract: (double) value;
- (void) multiply: (double) value;
- (void) divide: (double) value;
@end

@implementation Calculator
- (void) setAccumulator: (double) value

{

65

66

Chapter 4 Data Types and Expressions

accumulator = value;

}

- (void) clear

{
}

- (double) accumulator

{
}

- (void) add: (double) value

{
}

- (void) subtract: (double) value

{
}

- (void) multiply: (double) value

{
}

- (void) divide: (double) value

{
}

@end

accumulator = 0;

return accumulator;

accumulator += value;

accumulator -= value;

accumulator *= value;

accumulator /= value;

int main (int argc, char *argv(])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
Calculator *deskCalc;

deskCalc = [[Calculator alloc] init];

deskCalc clear];

deskCalc setAccumulator: 100.0];

deskCalc add: 200.];

deskCalc divide: 15.0];

deskCalc subtract: 10.0];

deskCalc multiply: 5];

NSLog (@"The result is %g", [deskCalc accumulator]);
[deskCalc release];

[
[
[
[
[
[

[pool drain];
return 0;

init];

Bit Operators

Program 4.6 Output
The result is 50

The calculator class has only one instance variable, a double value that holds the
value of the accumulator. The method definitions themselves are quite straightforward.
Notice the message that invokes the multiply method:

[deskCalc multiply: 5];

The argument to the method is an integer, yet the method expects a double. No prob-
lem arises here because numeric arguments to methods are automatically converted to
match the type expected. A double is expected by multiply:,so the integer value 5 auto-
matically is converted to a double precision floating value when the function is called.
Even though this automatic conversion takes place, it’s better programming practice to
supply the correct argument types when invoking methods.

Realize that, unlike the Fraction class, in which you might work with many different
fractions, you might want to work with only a single calculator object in your program.
Yet it still makes sense to define a new class to make working with this object easy. At
some point, you might want to add a graphical front end to your calculator so the user
can actually click buttons on the screen, such as the calculator application you probably
have installed on your system or phone.

In several of the exercises that follow, you’ll see that one additional benefit of defining a
calculator class has to do with the ease of extending it.

Bit Operators

Various operators in the Objective-C language work with the particular bits inside a
number. Table 4.2 presents these operators.

Table 4.2 Bit Operators

Symbol Operation

& Bitwise AND

\ Bitwise inclusive-OR
* Bitwise OR

~ Ones complement
<< Left shift

>> Right shift

67

68

Chapter 4 Data Types and Expressions

All the operators listed in Table 4.2, with the exception of the ones complement opera-
tor (~), are binary operators and, as such, take two operands. Bit operations can be per-
formed on any type of integer value but cannot be performed on floating-point values.

The Bitwise AND Operator

When two values are ANDed, the binary representations of the values are compared bit by
bit. Each corresponding bit that is a 1 in the first value and a 1 in the second value pro-
duce a 1 in the corresponding bit position of the result; anything else produces a 0. If b1
and b2 represent corresponding bits of the two operands, the following table, called a truth
table, shows the result of b1 ANDed with b2 for all possible values of b1 and b2.

bl b2 bl & b2
0 0 0
0 1 0
1 0 0
1 1 1

For example, if w1 and w2 are defined as short ints, and w1 is set equal to hexadecimal
15 and w2 is set equal to hexadecimal oc, then the following C statement assigns the value
0x04 to w3:

w3 = wl & w2;

You can see this more easily by treating the values of w1, w2, and w3 as binary numbers.
Assume that you are dealing with a short int size of 16 bits:

wl 0000 0000 0001 0101 0x15
w2 0000 0000 0000 1100 & 0x0c
w3 0000 0000 0000 0100 0x04

Bitwise ANDing is frequently used for masking operations. That is, this operator can be
used to easily set specific bits of a data item to 0. For example, the following statement as-
signs to w3 the value of w1 bitwise ANDed with the constant 3.

w3 = wl & 3;
This has the effect of setting all the bits in w3, other than the rightmost 2 bits, to 0, and
of preserving the rightmost 2 bits from wi.

As with all binary arithmetic operators in Objective-C, the binary bit operators can
also be used as assignment operators by tacking on an equals sign. So the statement

word &= 15;

will perform the same function as

word = word & 15;

and will have the eftect of setting all but the rightmost 4 bits of word to o.

Bit Operators

The Bitwise Inclusive-OR Operator

When two values are bitwise Inclusive-ORed in Objective-C, the binary representation
of the two values is once again compared bit by bit. This time, each bit that is a 1 in the
first value or a 1 in the second value will produce a 1 in the corresponding bit of the re-
sult. The truth table for the Inclusive-OR operator is shown next.

bl b2 bl | b2
0 0 0
0 1 1
1 0 1
1 1 1

So if wl is a short int equal to hexadecimal 19 and w2 is a short int equal to hexa-
decimal 6a, then a bitwise Inclusive-OR of w1 and w2 will produce a result of hexadeci-
mal 7b, as shown:

wl 0000 0000 0001 1001 0x19
w2 0000 0000 0110 1010 | ox6a
0000 0000 0111 1011 0x7b

Bitwise Inclusive-ORing, frequently called just bitwise ORing, is used to set some
specified bits of a word to 1. For example, the following statement sets the three rightmost
bits of w1 to 1, regardless of the state of these bits before the operation was performed.

Of course, you could have used a special assignment operator in the statement, as in
this statement:

wl |= 07;

We defer a program example that illustrates the use of the Inclusive-OR operator un-
til later.

The Bitwise Exclusive-OR Operator

The bitwise Exclusive-OR operator, which is often called the XOR operator, works as
follows: For corresponding bits of the two operands, if either bit is a 1—but not both
bits—the corresponding bit of the result is a 1; otherwise, it is a 0. The truth table for this
operator is as shown.

bl b2 bl * b2
0 0 0
0 1 1
1 0 1
1 1 0

69

70

Chapter 4 Data Types and Expressions

If w1 and w2, were set equal to hexadecimal se and de, respectively, the result of w1 Ex-
clusive-OR ed with w2 would be hexadecimal es, as illustrated:

wl 0000 0000 0101 1110 0x5e
w2 0000 0000 1011 0110 * 0xd6
0000 0000 1110 1000 0xe8

The Ones Complement Operator

The ones complement operator is a unary operator, and its effect is to simply “flip” the
bits of its operand. Each bit of the operand that is a 1 is changed to a 0, and each bit that is
a 0 is changed to a 1.The truth table is provided here simply for the sake of completeness.

bl ~bl
0 1
1 0

If wi is a short int thatis 16 bits long and is set equal to hexadecimal a52£, then tak-
ing the ones complement of this value produces a result of hexadecimal sabo:

wl 1010 0101 0010 1111 O0xa52f
~wl 0101 1010 1101 0000 0x5ab0

The ones complement operator is useful when you don’t know the precise bit size of
the quantity that you are dealing with in an operation, and its use can help make a pro-
gram less dependent on the particular size of an integer data type. For example, to set the
low-order bit of an int called w1 to 0, you can AND w1 with an int consisting of all 1s
except for a single 0 in the rightmost bit. So a statement in C such as this one works fine
on machines on which an integer is represented by 32 bits:

wl &= OXFFFFFFFE;

If you replace the preceding statement with this one, w1 will be ANDed with the cor-
rect value on any machine:
wl &= ~1;

This is because the ones complement of 1 will be calculated and will consist of as
many leftmost 1 bits as necessary to fill the size of an int (31 leftmost bits on a 32-bit in-
teger system).

Now it is time to show an actual program example that illustrates the use of the vari-
ous bit operators (see Program 4.7).

Program 4.7

// Bitwise operators illustrated

#import <Foundation/Foundation.h>

Bit Operators

int main (int argc, char *argv(])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
unsigned int wl = OxAOAOAQAO0, w2 = OxXFFFF0000,
w3 = 0x00007777;
NSLog (@"$x %x %x", wl & w2, wl | w2, wl ~ w2);
NSLog (@"$x %$x %x", ~wl, ~w2, ~w3);
NSLog (@"$x %x %x", wl ~ wl, wl & ~w2, wl | w2 | w3);
NSLog (@"$x %x", wl | w2 & w3, wl | w2 & ~w3);
NSLog (@"$x %x", ~(~wl & ~w2), ~(~wl | ~w2));
[pool drain];
return 0;
}

Program 4.7 Output

a0a00000 ffffa0a0 5f5falal
5f5fs5fsf ffff £ff££8888

0 a0a0 fffff7£7

a0a0a0a0 ffffala0

ffffa0a0d a0a00000

Work out each of the operations from Program 4.7 to verify that you understand how
the results were obtained.

In the fourth NsLog call, it is important to note that the bitwise AND operator has
higher precedence than the bitwise OR because this fact influences the resulting value of
the expression. For a summary of operator precedence, see Appendix B.

The fifth NSLog call illustrates DeMorgan’s rule: ~ (~a & ~b) is equal to a | b,and
~(~a | ~b) isequal to a & b.The sequence of statements that follows next in the pro-
gram verifies that the exchange operation works as discussed in the section on the exclu-
sive-OR operator.

The Left Shift Operator

When a left shift operation is performed on a value, the bits contained in the value are lit-
erally shifted to the left. Associated with this operation is the number of places (bits) that
the value is to be shifted. Bits that are shifted out through the high-order bit of the data
item are lost, and os are always shifted in through the low-order bit of the value. So if w1 is
equal to 3, then the expression

wl = wl << 1;

which can also be expressed as

wl <<= 1;

71

72

Chapter 4 Data Types and Expressions

will result in 3 being shifted one place to the left, which will result in 6 being assigned to
wl:

wl ... 0000 o011 0x03
wl << 1 ... 0000 0110 0x06

The operand on the left of the << operator is the value to be shifted, while the operand
on the right is the number of bit positions the value is to be shifted by. If we were to shift
wl one more place to the left, we would end up with hexadecimal oc:

wl ... 0000 0110 0x06
wl << 1 ... 0000 1100 0x0c

The Right Shift Operator

As implied from its name, the right shift operator >> shifts the bits of a value to the right.
Bits shifted out of the low-order bit of the value are lost. Right-shifting an unsigned value
always results in 0s being shifted in on the left—that is, through the high-order bits. What
is shifted in on the left for signed values depends on the sign of the value that is being
shifted and also on how this operation is implemented on your computer system. If the
sign bit is 0 (meaning the value is positive), 0s will be shifted in no matter what machine is
used. However, if the sign bit is 1, on some machines 1s will be shifted in, and on others os
will be shifted in. This former type of operation is known as an arithmetic right shift, while
the latter is known as a logical right shift.

Caution

Never make any assumptions about whether a system implements an arithmetic or a logical
right shift. A program that shifts signed values right might work correctly on one system and
then fail on another due to this type of assumption.

If wl is an unsigned int, which is represented in 32 bits, and w1 is set equal to hexa-
decimal F777EE22, then shifting w1 one place to the right with the statement

wl >>= 1;

will set w1 equal to hexadecimal 7BBBF711, as shown:

wl 1111 0111 0111 0111 1110 1110 0010 0010 0xF777EE22
wl >> 1 0111 1011 1011 1011 1111 0111 0001 0001 0x7BBBF711

If w1 were declared to be a (signed) short int, the same result would be produced on
some computers; on others, the result would be FBBBF711 if the operation were per-
formed as an arithmetic right shift.

It should be noted that the Objective-C language does not produce a defined result if
an attempt is made to shift a value to the left or right by an amount that is greater than or
equal to the number of bits in the size of the data item. So on a machine that represents

Exercises

integers in 32 bits, for example, shifting an integer to the left or right by 32 or more bits
is not guaranteed to produce a defined result in your program.You should also note that if
you shift a value by a negative amount, the result is similarly undefined.

Types: Bool, Complex, and _Imaginary
Before leaving this chapter, we should mention three other types in the language: _Bool,
for working with Boolean (that is, 0 or 1) values, and _complex and _Imaginary, for
working with complex and imaginary numbers, respectively.

Objective-C programmers tend to use the BOOL data type instead of _Bool for working
with Boolean values in their programs. This “data type” is actually not a data type unto it-
self, but is another name for the char data type. This is done with the language’s special
typedef keyword, which is described in Chapter 10, “More on Variables and Data Types.”

Exercises
1. Which of the following are invalid constants. Why?

123.456 0x10.5 0X0G1

0001 OXFFFF 123L

0Xab05 0L -597.25

123.5e2 .0001 +12

98.6F 98.7U0 17777s

0996 -12E-12 07777

1234ulL 1.2Fe-7 15,000

1.234L 197u 100U

OXABCDEFL Oxabcu +123

2. Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius
(C) using the following formula:
C=(F -32) / 1.8

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char c, d;

c='d';
d = c;
NSLog (@"d = %c", d);

[pool drain];
return 0;

73

74 Chapter 4 Data Types and Expressions

4. Write a program to evaluate the polynomial shown here:

3x*-5x*+ 6
for x = 2.55

5. Write a program that evaluates the following expression and displays the results (re-
member to use exponential format to display the result):
(3.31 x 10°® x + 2.01 x 1077) / (7.16 x 10°° + 2.01 x 10°°)

6. Complex numbers are numbers that contain two components: a real part and an
imaginary part. If a is the real component and » is the imaginary component, this
notation is used to represent the number:

a+ b i

Write an Objective-C program that defines a new class called complex. Following
the paradigm established for the Fraction class, define the following methods for
your new class:

- (void) setReal: (double) a;

- (void) setImaginary: (double) b;

- (void) print; // display as a + bi

- (double) real;

- (double) imaginary;

Write a test program to test your new class and methods.

7. Suppose you are developing a library of routines to manipulate graphical objects.
Start by defining a new class called Rectangle. For now, just keep track of the rec-
tangle’s width and height. Develop methods to set the rectangle’s width and height,
retrieve these values, and calculate the rectangle’s area and perimeter. Assume that
these rectangle objects describe rectangles on an integral grid, such as a computer
screen. In that case, assume that the width and height of the rectangle are integer
values.

Here is the @interface section for the Rectangle class:
@interface Rectangle: NSObject

{
int width;
int height;

}

- (void) setWidth: (int) w;
- (void) setHeight: (int) h;
- (int) width;

- (int) height;

- (int) area;

- (int) perimeter;

@end

Write the implementation section and a test program to test your new class and
methods.

10.

Exercises

Modify the add:, subtract:, multiply:, and divide: methods from Program
4.6 to return the resulting value of the accumulator. Test the new methods.

After completing exercise 8, add the following methods to the calculator class
and test them:

- (double) changeSign; // change sign of accumulator
- (double) reciprocal; // 1/accumulator
- (double) xSquared; // accumulator squared

Add a memory capability to the calculator class from Program 4.6. Implement
the following method declarations and test them:

- (double) memoryClear; // clear memory

- (double) memoryStore; // set memory to accumulator

- (double) memoryRecall; // set accumulator to memory

- (double) memoryAdd; // add accumulator to memory

- (double) memorySubtract; // subtract accumulator from memory

Have each method return the value of the accumulator.

75

5

Program Looping

n Objective-C, you can repeatedly execute a sequence of code in several ways. These
looping capabilities are the subject of this chapter, and they consist of the following:

» The for statement
» The while statement

» The do statement

We start with a simple example: counting numbers.
If you were to arrange 15 marbles into the shape of a triangle, you would end up with
an arrangement that might look something like Figure 5.1.

Figure 5.1 Triangle arrangement example

The first row of the triangle contains one marble, the second row contains two mar-
bles, and so on. In general, the number of marbles required to form a triangle containing
n rows would be the sum of the integers from 1 through z This sum is known as a
triangular number.

If you started at 1, the fourth triangular number would be the sum of the consecutive
integers 1—4 (1 + 2 + 3 + 4),0r 10.

Suppose you wanted to write a program that calculated and displayed the value of the
eighth triangular number at the terminal. Obviously, you could easily calculate this num-
ber in your head, but for the sake of argument, let’s assume you wanted to write a pro-
gram in Objective-C to perform this task. Program 5.1 illustrates such a program.

78

Chapter 5 Program Looping

Program 5.1

#import <Foundation/Foundation.h>

// Program to calculate the eighth triangular number

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int triangularNumber;

triangularNumber = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8;
NSLog (@"The eighth triangular number is %i", triangularNumber) ;

[pool drain];
return 0;

Program 5.1 Output

The eighth triangular number is 36

The technique of Program 5.1 works fine for calculating relatively small triangular
numbers, but what would happen if you needed to find the value of the 200th triangular
number, for example? It certainly would be tedious to have to modify Program 5.1 to ex-
plicitly add up all the integers from 1 to 200. Luckily, there is an easier way.

One of the fundamental properties of a computer is its capability to repetitively exe-
cute a set of statements. These looping capabilities enable programmers to develop concise
programs containing repetitive processes that could otherwise require thousands or even
millions of program statements to perform. The Objective-C language contains three pro-
gram statements for program looping.

The for Statement

Let’s take a look at a program that uses the for statement. The purpose of Program 5.2 is
to calculate the 200th triangular number. See whether you can determine how the for
statement works.

Program 5.2

// Program to calculate the 200th triangular number
// Introduction of the for statement

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

The for Statement

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, triangularNumber;

triangularNumber = 0;

for (n=1; n<=200; n=n+ 1)
triangularNumber += n;

NSLog (@"The 200th triangular number is %i", triangularNumber) ;

[pool drain];
return 0;

Program 5.2 Output

The 200th triangular number is 20100

Some explanation is needed for Program 5.2.The method employed to calculate the
200th triangular number is really the same as that used to calculate the 8th triangular
number in the previous program: The integers from 1 to 200 are summed.

The variable triangularNumber is set equal to 0 before the for statement is reached.
In general, you need to initialize all variables to some value (just like your objects) before
you use them in your program. As you’ll learn later, certain types of variables are given
default initial values, but it’s safer not to rely on those and you should set them anyway.

The for statement enables you to avoid having to explicitly write each integer from 1
to 200. In a sense, this statement generates these numbers for you.

The general format of the for statement is as follows:

for (init expression; loop condition; loop expression)
program statement

The three expressions enclosed within the parentheses—ini¢t expression,
loop condition,and loop expression—set up the environment for the program loop.
The program statement that immediately follows (which is, of course, terminated by a semi-
colon) can be any valid Objective-C program statement and constitutes the body of the
loop. This statement is executed as many times as specified by the parameters set up in the
for statement.

The first component of the for statement, labeled 7nit expression,is used to set the
initial values before the loop begins. In Program 5.2, this portion of the for statement is
used to set the initial value of n to 1. As you can see, an assignment is a valid form of an
expression.

The second component of the for statement specifies the condition(s) necessary for
the loop to continue. In other words, looping continues as long as this condition is satis-
fied. Again referring to Program 5.2, the Zoop condition of the for is specified by the
following relational expression:

n <= 200

79

80

Chapter 5 Program Looping

This expression can be read as “n less than or equal to 200.” The “less than or equal
to” operator (which is the less than character [<] followed immediately by the equals sign
[=]) is only one of several relational operators provided in the Objective-C programming
language. These operators are used to test specific conditions. The answer to the test is yes
(or TRUE) if the condition is satisfied and no (or FALSE) if the condition is not satisfied.

Table 5.1 lists all the relational operators available in Objective-C.

Table 5.1 Relational Operators

Operator Meaning Example

== Equal to count == 10

1= Not equal to flag != DONE

< Less than a<b

<= Less than or equal to low <= high

> Greater than points > POINT MAX
>= Greater than or equal to j >=0

The relational operators have lower precedence than all arithmetic operators. This
means, for example, that an expression such as

a<b+c

is evaluated as
a< (b+c)

This is as you would expect. It would be TRUE if the value of a were less than the value
of b + ¢, and FALSE otherwise.

Pay particular attention to the “is equal to” operator (==) and do not confuse its use
with the assignment operator (=). The expression

a == 2
tests whether the value of a is equal to 2, whereas the expression
a=2
assigns the number 2 to the variable a.
The choice of which relational operator to use depends on the particular test being

made and, in some instances, on your particular preferences. For example, the relational
expression

n <= 200
can be equivalently expressed as

n < 201

The for Statement

Returning to the previous example, the program statement that forms the body of the
for loop—triangularNumber += n;—is repetitively executed as long as the result of the
relational test is TRUE, or, in this case, as long as the value of n is less than or equal to 200.
This program statement has the effect of adding the value of n to the value of
triangularNumber.

When the Zoop conditionis no longer satisfied, execution of the program continues
with the program statement immediately following the for loop. In this program, execu-
tion continues with the NSLog statement after the loop has terminated.

The final component of the for statement contains an expression that is evaluated
each time after the body of the loop is executed. In Program 5.2, this Zoop expression
adds 1 to the value of n. Therefore, the value of n is incremented by 1 each time after its
value has been added into the value of triangularNumber, and it ranges in value from 1
through 201.

It is worth noting that the last value that n attains, 201, is not added into the value of
triangularNumber because the loop is terminated as soon as the looping condition is no
longer satisfied, or as soon as n equals 201.

In summary, execution of the for statement proceeds as follows:

1. The initial expression is evaluated first. This expression usually sets a variable that is
used inside the loop, generally referred to as an index variable, to some initial value
(such as 0 or 1).

2. The looping condition is evaluated. If the condition is not satisfied (the expression
is FALSE), the loop immediately terminates. Execution continues with the program
statement that immediately follows the loop.

3. The program statement that constitutes the body of the loop is executed.

4. The looping expression is evaluated. This expression is generally used to change the
value of the index variable, frequently by adding 1 to it or subtracting 1 from it.

5. Return to step 2.

Remember that the looping condition is evaluated immediately on entry into the
loop, before the body of the loop has executed one time. Also remember not to put a
semicolon after the closed parenthesis at the end of the loop because this immediately
ends the loop.

Program 5.2 actually generates all the first 200 triangular numbers on its way to its fi-
nal goal, so it might be nice to generate a table of these numbers. To save space, however,
let’s assume that you want to print a table of just the first 10 triangular numbers. Program
5.3 performs this task.

Program 5.3

// Program to generate a table of triangular numbers

#import <Foundation/Foundation.h>

81

82

Chapter 5 Program Looping

int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, triangularNumber;

NSLog (@"TABLE OF TRIANGULAR NUMBERS"");
NSLog (@" n Sum from 1 to n");

NSLog (@"-- -------- "y
triangularNumber = 0;

for (n=1; n <= 10; ++n) {
triangularNumber += n;
NSLog (@" %i %1", n, triangularNumber) ;

[pool drain];
return 0;

Program 5.3 Output

TABLE OF TRIANGULAR NUMBERS
n Sum from 1 to n

1 1

2 3

3 6

4 10
5 15
6 21
7 28
8 36
9 45
10 55

In Program 5.3, the purpose of the first three NSLog statements is simply to provide a
general heading and to label the columns of the output.

After the appropriate headings have been displayed, the program calculates the first 10
triangular numbers. The variable n is used to count the current number whose sum from
1 to n you are computing, and the variable triangularNumber is used to store the value
of triangular number n.

Execution of the for statement commences by setting the value of the variable n to 1.
As mentioned earlier, the program statement immediately following the for statement
constitutes the body of the program loop. But what happens if you want to repetitively

The for Statement

execute not just a single program statement, but a group of program statements? This can
be accomplished by enclosing all such program statements within a pair of braces. The
system then treats this group, or block, of statements as a single entity. In general, any place
in a Objective-C program that a single statement is permitted, a block of statements can
be used, provided that you remember to enclose the block within a pair of braces.
Therefore, in Program 5.3, both the expression that adds n into the value of
triangularNumber and the NSLog statement that immediately follows constitute the
body of the program loop. Pay particular attention to the way the program statements are
indented. At a quick glance, you can easily determine which statements form part of the
for loop.You should also note that programmers use different coding styles; some prefer

to type the loop this way:

for (n=1; n <= 10; ++n)

{

triangularNumber += n;
NSLog (@

}

Here, the opening brace is placed on the line following the for.This is strictly a mat-

" %i %i", n, triangularNumber) ;

ter of taste and has no effect on the program.

The next triangular number is calculated by simply adding the value of n to the previ-
ous triangular number. The first time through the for loop, the previous triangular num-
ber is 0, so the new value of triangularNumber when n is equal to 1 is simply the value
of n, or 1. The values of n and triangularNumber are then displayed, with an appropriate
number of blank spaces inserted into the format string to ensure that the values of the
two variables line up under the appropriate column headings.

Because the body of the loop has now been executed, the looping expression is evalu-
ated next. The expression in this for statement appears a bit strange, however. Surely you
must have made a typographical mistake and meant to insertn = n + 1 instead of this
funny-looking expression:

++n

But ++n is actually a perfectly valid Objective-C expression. It introduces a new (and
rather unique) operator in the Objective-C programming language: the increment operator.
The function of the double plus sign, or the increment operator, is to add 1 to its
operand. Addition by 1 is such a common operation in programs that a special operator
was created solely for this purpose. Therefore, the expression ++n is equivalent to the ex-
pressionn = n + 1.At first glance, it might appear thatn = n + 1 is more readable, but
you will soon get used to the function of this operator and even learn to appreciate its
succinctness.

Of course, no programming language that offers an increment operator to add 1
would be complete without a corresponding operator to subtract 1. As you would guess,
the name of this operator is the decrement operator, and it is symbolized by the double mi-
nus sign. So an expression in Objective-C that reads

bean_counter = bean counter - 1

83

84

Chapter 5 Program Looping

can be equivalently expressed using the decrement operator, like so:

--bean_counter

Some programmers prefer to put the ++ or -- after the variable name, as in n++ or
bean_counter--.This is acceptable and is a matter of personal preference.

You might have noticed that the last line of output from Program 5.3 doesn’t line up.
You can correct this minor annoyance by substituting the following NsLog statement in
place of the corresponding statement from Program 5.3:

NSLog ("%2i %i", n, triangularNumber) ;

To verify that this change solves the problem, here’s the output from the modified pro-
gram (called Program 5.3A).

Program 5.3A Output

TABLE OF TRIANGULAR NUMBERS

n Sum from 1 to n
1

3

6

10

15

21

28

36

45

55

O VIO U WN R

[

The primary change made to the NSLog statement is the inclusion of a field width
specification. The characters %21 tell the NsLog routine not only that you want to display
the value of an integer at that particular point, but also that the size of the integer to be
displayed should take up at least two columns in the display. Any integer that would nor-
mally take up less than two columns (that is, the integers 0—9) will be displayed with a
leading space. This is known as right justification.

Thus, by using a field width specification of $21i, you guarantee that at least two
columns will be used for displaying the value of n; you also ensure that the values of
triangularNumber will be aligned.

Keyboard Input

Program 5.2 calculates the 200th triangular number, and nothing more. What if you
wanted to calculate the 50th or the 100th triangular number instead? Well, if that were
the case, you would have to change the program so that the for loop would be executed

The for Statement

the correct number of times.You would also have to change the NSLog statement to dis-
play the correct message.

An easier solution might be to somehow have the program ask you which triangular
number you want to calculate. Then, after you had given your answer, the program could
calculate the desired triangular number.You can effect such a solution by using a routine
called scanf.The scanf routine is similar in concept to the NSLog routine. Whereas the
NSLog routine is used to display values, the purpose of the scanf routine is to enable the
programmer to type values into the program. Of course, if you’re writing an Objective-C
program that uses a graphical User Interface (UI), such as a Cocoa or iPhone application,
you likely won’t be using NSLog or scanf at all in your program.

Program 5.4 asks the user which triangular number should be calculated, calculates
that number, and then displays the results.

Program 5.4

#import <Foundation/Foundation.h>

int main (int argc, char *argv([])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, number, triangularNumber;

NSLog (@"What triangular number do you want?");
scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@"Triangular number %i is %i\n", number, triangularNumber) ;

[pool drain];
return 0;

In the program output that follows, the number typed in by the user (100) is set in
bold type, to distinguish it from the output displayed by the program.

Program 5.4 Output

What triangular number do you want?
100

Triangular number 100 is 5050

According to the output, the user typed the number 100.The program then calculated
the 100th triangular number and displayed the result of 5050 at the terminal. The user

85

86

Chapter 5 Program Looping

could have just as easily typed in the number 10 or 30, for example, if he or she wanted to
calculate those particular triangular numbers.

The first NSLog statement in Program 5.4 is used to prompt the user to type in a num-
ber. Of course, it is always nice to remind the user of what you want entered. After the
message is printed, the scanf routine is called. The first argument to scanf is the format
string, which does not begin with the @ character. Unlike NsLog, whose first argument is
always an NSString object, the first argument to scanf is a C-style string. As noted earlier
in this text, C-style character strings are not preceded by the @ character.

The format string tells scanf what types of values are to be read in from the console
(or terminal window, if you're compiling your programs using the Terminal application).
As with NSLog, the %1 characters are used to specify an integer value.

The second argument to the scanf routine specifies where the value that the user
types in is to be stored.The & character before the variable number is necessary in this
case. Don’t worry about its function here, though. We discuss this character, which is actu-
ally an operator, in great detail when we talk about pointers in Chapter 13,“Underlying
C Language Features.”

Given the preceding discussion, you can now see that the scanf call from Program 5.4
specifies that an integer value is to be read and stored into the variable number. This value
represents the particular triangular number the user wants to have calculated.

After the user has typed in this number (and pressed the Enter key on the keyboard to
signal that typing of the number is completed), the program calculates the requested tri-
angular number. This is done in the same way as in Program 5.2; the only difference is
that, instead of using 200 as the limit, number is used as the limit.

After the desired triangular number has been calculated, the results are displayed. Exe-
cution of the program is then complete.

Nested for Loops

Program 5.4 gives the user the flexibility to have the program calculate any triangular
number that is desired. But suppose the user had a list of five triangular numbers to be
calculated? In such a case, the user could simply execute the program five times, each time
typing in the next triangular number from the list to be calculated.

Another way to accomplish the same goal, and a far more interesting method, as far as
learning about Objective-C is concerned, is to have the program handle the situation.
This can best be accomplished by inserting a loop into the program to repeat the entire
series of calculations five times.You can use the for statement to set up such a loop.
Program 5.5 and its associated output illustrate this technique.

Program 5.5

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

The for Statement

int n, number, triangularNumber, counter;

for (counter = 1; counter <= 5; ++counter)
NSLog (@"What triangular number do you want?");
scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@"Triangular number %i is %i", number, triangularNumber) ;

}

[pool drain];
return 0;

Program 5.5 Output

What triangular number do you want?
Triangular number 12 is 78

What triangular number do you want?
Triangular number 25 is 325

What triangular number do you want?
Triangular number 50 is 1275

What triangular number do you want?
Triangular number 75 is 2850

What triangular number do you want?

Triangular number 83 is 3486

The program consists of two levels of for statements. The outermost for statement is

as follows:

for (counter = 1; counter <= 5; ++counter)

87

88

Chapter 5 Program Looping

This specifies that the program loop is to be executed precisely five times. The value of
counter is initially set to 1 and is incremented by 1 until it is no longer less than or equal
to 5 (in other words, until it reaches 6).

Unlike the previous program examples, the variable counter is not used anywhere else
within the program. Its function is solely as a loop counter in the for statement. Never-
theless, because it is a variable, you must declare it in the program.

The program loop actually consists of all the remaining program statements, as indi-
cated by the braces.You might be able to more easily comprehend the way this program
operates if you conceptualize it as follows:

For 5 times

{

Get the number from the user.
Calculate the requested triangular number.
Display the results.

The portion of the loop referred to in the preceding as Calculate the requested triangular
number actually consists of setting the value of the variable triangularNumber to 0 plus
the for loop that calculates the triangular number. Thus, a for statement is actually contained
within another for statement. This is perfectly valid in Objective-C, and nesting can con-
tinue even further to any desired level.

The proper use of indentation becomes even more critical when dealing with more
sophisticated program constructs, such as nested for statements. At a quick glance, you
can easily determine which statements are contained within each for statement.

for Loop Variants

Before leaving this discussion of the for loop, we should mention some of the syntactic
variations that are permitted in forming this loop. When writing a for loop, you might
discover that you want to initialize more than one variable before the loop begins, or per-
haps you want to evaluate more than one expression each time through the loop.You can
include multiple expressions in any of the fields of the for loop, as long as you separate
such expressions by commas. For example, in the for statement that begins

for (1 =0, § = 0; i < 10; ++i)

the value of 1 is set to 0 and the value of j is set to 0 before the loop begins. The two
expressions 1 = 0and j = 0 are separated from each other by a comma, and both expres-
sions are considered part of the init expression field of the loop. As another example,
the for loop that starts

for (i =0, j =100; 1 < 10; ++i, j -= 10)

The while Statement

sets up two index variables: 1 and j, which initialize to 0 and 100, respectively, before
the loop begins. Each time after the body of the loop is executed, the value of i is incre-
mented by 1 and the value of § is decremented by 10.

Just as you might need to include more than one expression in a particular field of the
for statement, you also might need to omit one or more fields from the statement.You
can do this simply by omitting the desired field and marking its place with a semicolon.
The most common application for the omission of a field in the for statement occurs
when no initial expression needs to be evaluated.You can simply leave the
init expression field blank in such a case, as long as you still include the semicolon:

for (; j != 100; ++3)

This statement might be used if j were already set to some initial value before the
loop was entered.

A for loop that has its Jooping condition field omitted effectively sets up an infinite
loop—that is, a loop that theoretically will be executed forever. Such a loop can be used
as long as some other means is used to exit from the loop (such as executing a return,
break, or goto statement, as discussed later in this book).

You can also define variables as part of your initial expression inside a for loop. This is
done using the typical ways we’ve defined variables in the past. For example, the follow-
ing can be used to set up a for loop with an integer variable counter both defined and
initialized to the value 1, like so:

for (int counter = 1; counter <= 5; ++counter)
The variable counter is known only throughout the execution of the for loop (it’s

called a local variable) and cannot be accessed outside the loop. As another example, the
following for loop defines two integer variables and sets their values accordingly:
for (int n = 1, triangularNumber = 0; n <= 200; ++n)

triangularNumber += n;

A final for loop variant, for performing what’s known as fast enumerations on collec-
tions of objects is described in detail in Chapter 15, “Numbers, Strings, and Collections.”

The while Statement

The while statement further extends the Objective-C language’s repertoire of looping
capabilities. The syntax of this frequently used construct is as follows:

while (expression
program statement

The expression specified inside the parentheses is evaluated. If the result of the
expression evaluation is TRUE, the program statement that immediately follows is exe-
cuted. After execution of this statement (or statements, if enclosed in braces), expression

89

90

Chapter 5 Program Looping

is again evaluated. If the result of the evaluation is TRUE, the program statement is again
executed. This process continues until expresszon finally evaluates FALSE, at which point
the loop is terminated. Execution of the program then continues with the statement that
ﬁﬂknwsprvgram statement.

As an example of its use, the following program sets up a while loop, which merely
counts from 1 to 5.

Program 5.6

// This program introduces the while statement

#import <Foundation/Foundation.hs>
#import <stdio.h>
int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int count = 1;

while (count <= 5) ({
NSLog (@"%i", count);
++count;

[pool drain];

return 0;

Program 5.6 Output

[S2 B S VURN SR

The program initially sets the value of count to 1; execution of the while loop then
begins. Because the value of count is less than or equal to 5, the statement that immedi-
ately follows is executed. The braces define both the NSLog statement and the statement
that increments count as the body of the while loop. From the output of the program,
you can see that this loop is executed five times or until the value of count reaches 5.

You might have realized from this program that you could have readily accomplished
the same task by using a for statement. In fact, a for statement can always be translated
into an equivalent while statement, and vice versa. For example, the general for statement

The while Statement

for (init expression; loop condition; loop expression)
program statement

can be equivalently expressed in the form of a while statement, like so:

init expression;
while (loop condition)

{

program statement
loop expression;

When you become familiar with the use of the while statement, you will gain a bet-
ter feel for when it seems more logical to use a while statement and when you should
use a for statement. In general, a loop executed a predetermined number of times is a
prime candidate for implementation as a for statement. Also, if the initial expression,
looping expression, and looping condition all involve the same variable, the for statement
is probably the right choice.

The next program provides another example of the use of the while statement. The
program computes the greatest common divisor of two integer values. The greatest com-
mon divisor (we abbreviate it hereafter as gcd) of two integers is the largest integer value
that evenly divides the two integers. For example, the ged of 10 and 15 is 5 because 5 is
the largest integer that evenly divides both 10 and 15.

A procedure, or algorithm, that can be followed to arrive at the ged of two arbitrary
integers is based on a procedure originally developed by Euclid around 300 B.C. It can be
stated as follows:

Problem: Find the greatest common divisor of two nonnegative integers u and v.

Step 1: If vequals 0, then we are done and the gcd is equal to u.
Step 2: Calculate temp = u % v, u = v, v = temp and go back to step 1.

Don'’t concern yourself with the details of how the previous algorithm works—simply
take it on faith. We are more concerned here with developing a program to find the
greatest common divisor than in performing an analysis of how the algorithm works.

After expressing the solution to the problem of finding the greatest common divisor in
terms of an algorithm, developing the computer program becomes a much simpler task.
An analysis of the steps of the algorithm reveals that step 2 is repetitively executed as long
as the value of v is not equal to 0.This realization leads to the natural implementation of
this algorithm in Objective-C with the use of a while statement.

Program 5.7 finds the ged of two nonnegative integer values typed in by the user.

Program 5.7

// This program finds the greatest common divisor
// of two nonnegative integer values

#import <Foundation/Foundation.h>

int main (int argc, char *argvl[])

91

92 Chapter 5 Program Looping

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
unsigned int u, v, temp;

NSLog (@"Please type in two nonnegative integers.");

"o

scanf ("%u%u", &u, &v);

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

NSLog (@"Their greatest common divisor is %u", u);
[pool drain];

return 0;

Program 5.7 Output

Please type in two nonnegative integers.
150 35
Their greatest common divisor is 5

Program 5.7 Output (Rerun)

Please type in two nonnegative integers.
1026 540

Their greatest common divisor is 54

After the two integer values have been entered and stored in the variables u and v (us-
ing the %u format characters to read in an unsigned integer value), the program enters a
while loop to calculate their greatest common divisor. After the while loop is exited, the
value of u, which represents the gcd of v and of the original value of u, is displayed with
an appropriate message.

You will use the algorithm for finding the greatest common divisor again in Chapter
7,“More on Classes,” when you return to working with fractions.

For the next program that illustrates the use of the while statement, let’s consider the
task of reversing the digits of an integer that is entered from the terminal. For example, if
the user types in the number 1234, the program should reverse the digits of this number
and display the result of 4321.

Note

Using NSLog calls will cause each digit to appear on a separate line of the output. C pro-
grammers who are familiar with the print£ function can use that routine instead to get the
digits to appear consecutively.

The while Statement

To write such a program, you first must come up with an algorithm that accomplishes
the stated task. Frequently, analyzing your own method for solving the problem leads to
an algorithm. For the task of reversing the digits of a number, the solution can be simply
stated as “successively read the digits of the number from right to left.” You can have a
computer program successively read the digits of the number by developing a procedure
to successively isolate or extract each digit of the number, beginning with the rightmost
digit. The extracted digit can be subsequently displayed at the terminal as the next digit of
the reversed number.

You can extract the rightmost digit from an integer number by taking the remainder
of the integer after it is divided by 10. For example, 1234 % 10 gives the value 4, which is
the rightmost digit of 1234 and is also the first digit of the reversed number. (Remember
that the modulus operator gives the remainder of one integer divided by another.) You
can get the next digit of the number by using the same process if you first divide the
number by 10, bearing in mind the way integer division works. Thus, 1234 % 10 gives a
result of 123, and 123 % 10 gives you 3, which is the next digit of the reversed number.

You can continue this procedure until you've extracted the last digit. In the general
case, you know that the last digit of the number has been extracted when the result of the
last integer division by 10 is o.

Program 5.8 prompts the user to enter a number and then proceeds to display the dig-
its from that number from the rightmost to leftmost digit.

Program 5.8

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>
int main (int argc, char *argv([])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int number, right digit;

NSLog (@"Enter your number.");

scanf ("%i", &number);

while (number != 0) {
right digit = number % 10;
NSLog (@"%$i", right digit);
number /= 10;

}

[pool drain];
return 0;

93

94

Chapter 5 Program Looping

Program 5.8 Output

Enter your number.
13579
9

w9

The do Statement

The two looping constructs discussed thus far in this chapter both test the conditions be-
fore the loop is executed. Therefore, the body of the loop might never be executed if the
conditions are not satisfied. When developing programs, you sometimes want to have the
test made at the end of the loop instead of at the beginning. Naturally, the Objective-C
language provides a special language construct to handle such a situation, known as the do
statement. The syntax of this statement is as follows:

do
program statement
while (expression);

Execution of the do statement proceeds as follows: program statement is executed
first. Next, the expression inside the parentheses is evaluated. If the result of evaluating
expressionis TRUE, the loop continues and program statement is again executed. As
long as the evaluation of expression continues to be TRUE, program statement is re-
peatedly executed. When the evaluation of the expression proves FALSE, the loop is termi-
nated and the next statement in the program is executed in the normal sequential
manner.

The do statement is simply a transposition of the while statement, with the looping
conditions placed at the end of the loop instead of at the beginning.

Program 5.8 used a while statement to reverse the digits of a number. Go back to that
program and try to determine what would happen if the user had typed in the number o
instead of 13579.The loop of the while statement would never have been executed, and
nothing would have been displayed for output. If you were to use a do statement instead
of a while statement, you would be assured that the program loop would be executed at
least once, thus guaranteeing the display of at least one digit in all cases. Program 5.9 illus-
trates the use of the do statement.

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>
int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number, right digit;

The break Statement

NSLog (@"Enter your number.");

scanf ("%i", &number) ;

do {
right digit = number % 10;
NSLog (@"%i", right digit);
number /= 10;

}

while (number != 0);

[pool drain];
return 0;

Program 5.9 Output

Enter your number.
135

5

3

1

Program 5.9 Output (Rerun)
Enter your number.

0

0

As you can see from the program’s output, when 0 is keyed into the program, the pro-
gram correctly displays the digit o.

The break Statement

Sometimes when executing a loop, you’ll want to leave the loop as soon as a certain con-
dition occurs—for instance, maybe you detect an error condition or reach the end of
your data prematurely. You can use the break statement for this purpose. Execution of the
break statement causes the program to immediately exit from the loop it is executing,
whether it’s a for, while, or do loop. Subsequent statements in the loop are skipped and
execution of the loop is terminated. Execution continues with whatever statement fol-
lows the loop.

If a break is executed from within a set of nested loops, only the innermost loop in
which the break is executed is terminated.

95

96

Chapter 5 Program Looping

The format of the break statement is simply the keyword break followed by a semi-
colon, like so:

break;

The continue Statement

The continue statement is similar to the break statement, except that it doesn’t cause the
loop to terminate. At the point that the continue statement is executed, any statements
that appear after the continue statement up to the end of the loop are skipped. Execu-
tion of the loop otherwise continues as normal.

The continue statement is most often used to bypass a group of statements inside a
loop based on some condition, but then to otherwise continue executing the loop. The
format of the continue statement is as follows:

continue;

Don'’t use the break or continue statements until you become very familiar with
writing program loops and gracefully exiting from them. These statements are too easy to
abuse and can result in programs that are hard to follow.

Summary

Now that you are familiar with all the basic looping constructs the Objective-C language
provides, you're ready to learn about another class of language statements that enables you
to make decisions during the execution of a program. The next chapter describes these
decision-making capabilities in detail.

Exercises

1. Write a program to generate and display a table of n and n?, for integer values of n
ranging from 1 through 10. Be sure to print the appropriate column headings.

2. A triangular number can also be generated for any integer value of nn by this formula:
triangularNumber = n (n + 1) / 2

For example, the 10th triangular number, 55, can be calculated by substituting 10
as the value for n into the previous formula. Write a program that generates a table
of triangular numbers using the previous formula. Have the program generate every
fifth triangular number between 5 and 50 (thatis, 5, 10, 15, ..., 50).

3. The factorial of an integer n, written n!, is the product of the consecutive integers
1 through n. For example, 5 factorial is calculated as follows:
5! =5x4x3x2x1-=120
Write a program to generate and print a table of the first 10 factorials.

Exercises

. A minus sign placed in front of a field width specification causes the field to be dis-
played left-justified. Substitute the following NSLog statement for the correspon-
ding statement in Program 5.2, run the program, and compare the outputs produced
by both programs:

NSLog (@"%-2i %i", n, triangularNumber) ;

. Program 5.5 allows the user to type in only five different numbers. Modity that
program so that the user can type in the number of triangular numbers to be calcu-
lated.

. Rewrite Programs 5.2 through 5.5, replacing all uses of the £or statement with
equivalent while statements. Run each program to verify that both versions are
identical.

. What would happen if you typed a negative number into Program 5.8? Try it and
see.

. Write a program that calculates the sum of the digits of an integer. For example, the
sum of the digits of the number 2155is2 + 1 + 5 + 5, or 13. The program
should accept any arbitrary integer the user types.

97

0

Making Decisions

A fundamental feature of any programming language is its capability to make decisions.
Decisions were made when executing the looping statements to determine when to ter-
minate a loop. The Objective-C programming language also provides several other deci-
sion-making constructs, which are covered in this chapter:

» The if statement
» The switch statement

= The conditional operator

The if Statement

The Objective-C programming language provides a general decision-making capability in
the form of a language construct known as the if statement. The general format of this
statement is shown here:

if (expression)
program statement

Imagine that you could translate a statement such as “If it is not raining, then I will go
swimming” into the Objective-C language. Using the previous format for the if state-
ment, this might be “written” in Objective-C as follows:
if (it is not raining)

I will go swimming

The if statement is used to stipulate execution of a program statement (or statements,
if enclosed in braces) based on specified conditions. I will go swimming if it is not rain-
ing. Similarly, in the program statement

if (count > MAXIMUM SONGS)
[playlist maxExceeded] ;

the maxExceeded message is sent to playlist only if the value of count is greater
than the value of MAXIMUM_SONGS; otherwise, it is ignored.

100

Chapter 6: Making Decisions

An actual program example will help drive the point home. Suppose you want to
write a program that accepts an integer entered from the keyboard and then displays the
absolute value of that integer. A straightforward way to calculate the absolute value of an
integer is to simply negate the number if it is less than zero.The phrase “if it is less than
zero” in the previous sentence signals that the program must make a decision. This deci-
sion can be affected by the use of an if statement, as shown in the program that follows.

Program 6.1

// Calculate the absolute value of an integer

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int number;

NSLog (@"Type in your number: ");
scanf ("%i", &number);

if (number < 0)
number = -number;

NSLog (@"The absolute value is %i", number);

[pool drain];
return 0;

Program 6.1 Output

Type in your number:
-100

The absolute value is 100

Program 6.1 Output (Rerun)

Type in your number:
2000

The absolute value is 2000

The program was run twice to verify that it is functioning properly. Of course, it
might be desirable to run the program several more times to get a higher level of confi-

The if Statement

dence so that you know it is indeed working correctly, but at least you know that you
have checked both possible outcomes of the program’s decision.

After a message is displayed to the user and the integer value that is entered is stored in
number, the program tests the value of number to see whether it is less than zero. If it is,
the following program statement, which negates the value of number, is executed. If the
value of number is not less than zero, this program statement is automatically skipped. (If it
is already positive, you don’t want to negate it.) The absolute value of number is then dis-
played by the program, and program execution ends.

Let’s look at another program that uses the if statement. We’ll add one more method
to the Fraction class, called convertToNum. This method will provide the value of a frac-
tion expressed as a real number. In other words, it will divide the numerator by the de-
nominator and return the result as a double precision value. So if you have the fraction
1/2, you want the method to return the value o.s.

The declaration for such a method might look like this:

- (double) convertToNum;

This is how you could write its definition:

- (double) convertToNum

{

return numerator / denominator;

Well, not quite. As it’s defined, this method actually has two serious problems. Can you spot
them? The first has to do with arithmetic conversions. Recall that numerator and
denominator are both integer instance variables. So what happens when you divide two inte-
gers? Correct, it is done as an integer division! If you wanted to convert the fraction 1/2, the
previous code would give you zero! This is easily corrected by using the type cast operator to
convert one or both of the operands to a floating-point value before the division takes place:

(double) numerator / denominator

Recalling the relatively high precedence of this operator, the value of numerator is
first converted to double before the division occurs. Furthermore, you don’t need to con-
vert the denominator because the rules of arithmetic conversion take care of that for you.

The second problem with this method is that you should check for division by zero
(you should always check for that!). The invoker of this method could inadvertently have
forgotten to set the denominator of the fraction or might have set the denominator of the
fraction to zero, and you don’t want your program to terminate abnormally.

The modified version of the convertToNum method appears here:

- (double) convertToNum
if (denominator != 0)
return (double) numerator / denominator;
else
return 0.0;

101

102 Chapter 6: Making Decisions

We arbitrarily decided to return 0.0 if the denominator of the fraction is zero. Other
options are available (such as printing an error message, throwing an exception, and so
on), but we won'’t go into them here.

Let’s put this new method to use in Program 6.2.

Program 6.2

#import <Foundation/Foundation.h>

@interface Fraction: NSObject

{

int numerator;
int denominator;

}

- (void) print;

- (void) setNumerator: (int) n;

- (void) setDenominator: (int) d;
- (int) numerator;

- (int) denominator;

- (double) convertToNum;

@end

@implementation Fraction
- (void) print

NSLog (@" %i/%i ", numerator, denominator) ;

}

- (void) setNumerator: (int) n

{
}

- (void) setDenominator: (int) d

{
}

- (int) numerator

{
}

- (int) denominator

numerator = n;

denominator = d;

return numerator;

The if Statement 103

return denominator;

}

- (double) convertToNum
{
if (denominator != 0)
return (double) numerator / denominator;
else
return 0.0;

}

@end

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *aFraction = [[Fraction alloc] init];

Fraction *bFraction = [[Fraction alloc] init];

[aFraction setNumerator: 1]; // 1lst fraction is 1/4

[aFraction setDenominator: 4];

[aFraction print];

NSLog (@" =");

NSLog (@"%g", [aFraction convertToNum]) ;
[bFraction print]; // never assigned a value
NSLog (@" =");

NSLog (@"%g", [bFraction convertToNum]) ;

[aFraction release];
[bFraction releasel];

[pool drain];
return 0;

Program 6.2 Output

1/4

0.25
0/0

0

104

Chapter 6: Making Decisions

After setting aFraction to 1/4, the program uses the convertToNum method to con-
vert the fraction to a decimal value. This value is then displayed as 0. 25.

In the second case, the value of bFraction is not explicitly set, so its numerator and
denominator are initialized to zero, which is the default for instance variables. This ex-
plains the result from the print method. It also causes the if statement inside the
convertToNum method to return the value o, as verified from the output.

The if-else Construct

If someone asks you whether a particular number is even or odd, you will most likely
make the determination by examining the last digit of the number. If this digit is o, 2, 4,
6, or 8, you will readily state that the number is even. Otherwise, you will claim that the
number is odd.

An easier way for a computer to determine whether a particular number is even or
odd is effected not by examining the last digit of the number to see whether it is o, 2, 4,
6, or 8, but by simply determining whether the number is evenly divisible by 2. If it is, the
number is even; otherwise, it is odd.

You have already seen how the modulus operator % is used to compute the remainder
of one integer divided by another. This makes it the perfect operator to use in determin-
ing whether an integer is evenly divisible by 2. If the remainder after division by 2 is o, it
is even; otherwise, it is odd.

Now let’s write a program that determines whether an integer value that the user
types in is even or odd and then displays an appropriate message at the terminal—see
Program 6.3.

Program 6.3

// Program to determine if a number is even or odd

#import <Foundation/Foundation.h>
int main (int argc, char *argvl(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int number to test, remainder;

NSLog (@"Enter your number to be tested: ");
scanf ("%1i", &number to test);

remainder = number to test % 2;

if (remainder == 0)
NSLog (@"The number is even.");

The if Statement

if (remainder != 0)
NSLog (@"The number is odd.");

[pool drain];
return 0;

Program 6.3 Output

Enter your number to be tested:
2455

The number is odd.

Program 6.3 Output (Rerun)
Enter your number to be tested:
1210

The number is even.

After the number is typed in, the remainder after division by 2 is calculated. The first
if statement tests the value of this remainder to see whether it is equal to zero. If it is, the
message “The number is even” displays.

The second if statement tests the remainder to see if it’s not equal to zero and, if that’s
the case, displays a message stating that the number is odd.

Whenever the first if statement succeeds, the second one must fail, and vice versa. If
you recall from our discussions of even/odd numbers at the beginning of this section, we
said that if the number is evenly divisible by 2, it is even; otherwise, it is odd.

When writing programs, this “else” concept is so frequently required that almost all
modern programming languages provide a special construct to handle this situation. In
Objective-C, this is known as the if-else construct, and the general format is as follows:

if (expression)
program statement 1
else
program statement 2

The if-else is actually just an extension of the general format of the if statement. If
the result of the expression’s evaluation is TRUE, then program statement 1, which imme-
diately follows, is executed; otherwise, program statement 21is executed. In either case,
either program statement 1 OY program statement 2 will be executed, but not both.

You can incorporate the if-else statement into the previous program, replacing the
two if statements by a single if-else statement.You will see how this new program
construct actually helps reduce the program’s complexity somewhat and also improves its

readability.

105

106

Chapter 6: Making Decisions

Program 6.4

// Determine if a number is even or odd (Ver. 2)

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int number to test, remainder;

NSLog (@"Enter your number to be tested:");

scanf ("%1i", &number to test);

o

remainder = number_to_test % 2;

if (remainder ==)

NSLog (@"The number is even.");
else

NSLog (@"The number is odd.");

[pool drain];
return 0;

Program 6.4 Output

Enter your number to be tested:
1234

The number is even.

Program 6.4 Output (Rerun)
Enter your number to be tested:
6551

The number is odd.

Don’t forget that the double equals sign (==) is the equality test, and the single equals
sign is the assignment operator. Forgetting this and inadvertently using the assignment
operator inside the if statement can lead to a lot of headaches.

Compound Relational Tests

The if statements you've used so far in this chapter set up simple relational tests between
two numbers. Program 6.1 compared the value of number against zero, whereas Program
6.2 compared the denominator of the fraction to zero. Sometimes it becomes desirable, if
not necessary, to set up more sophisticated tests. Suppose, for example, that you want to
count the number of grades from an exam that were between 70 and 79, inclusive. In

The if Statement

such a case, you would want to compare the value of a grade not merely against one
limit, but against the two limits 70 and 79 to ensure that it fell within the specified range.

The Objective-C language provides the mechanisms necessary to perform these types
of compound relational tests. A compound relational test is simply one or more simple rela-
tional tests joined by either the logical AND or the logical or operator. These operators are
represented by the character pairs && and || (two vertical bar characters), respectively. As
an example, the following Objective-C statement increments the value of
grades_70_to_79 only if the value of grade is greater than or equal to 70 and less than
or equal to 79:
if (grade >= 70 && grade <= 79)

++grades_70_to 79;

In a similar manner, the following statement causes execution of the NSLog statement
if index is less than 0 or greater than 99:

if (index < 0 || index > 99)
NSLog (@"Error - index out of range");

The compound operators can be used to form extremely complex expressions in Ob-
jective-C.The Objective-C language grants the programmer the ultimate flexibility in
forming expressions, but this flexibility is a capability that programmers often abuse. Sim-
pler expressions are almost always easier to read and debug.

When forming compound relational expressions, liberally use parentheses to aid read-
ability of the expression and avoid getting into trouble because of a mistaken assumption
about the precedence of the operators in the or expression. (The && operator has lower
precedence than any arithmetic or relational operator but higher precedence than the | |
operator.) Blank spaces also can aid in the expression’s readability. An extra blank space
around the && and | | operators visually sets these operators apart from the expressions
they are joining.

To illustrate the use of a compound relational test in an actual program example, let’s
write a program that tests whether a year is a leap year.We all know that a year is a leap
year if it is evenly divisible by 4. What you might not realize, however, is that a year that is
divisible by 100 is not a leap year unless it is also divisible by 400.

Try to think how you would go about setting up a test for such a condition. First, you
could compute the remainders of the year after division by 4, 100, and 400, and assign
these values to appropriately named variables, such as rem_4, rem_100, and rem_400, re-
spectively. Then you could test these remainders to determine whether the desired criteria
for a leap year were met.

If we rephrase our previous definition of a leap year, we can say that a year is a leap
year if it is evenly divisible by 4 and not by 100 or if it is evenly divisible by 400. Stop for
a moment to reflect on this last sentence and to verify to yourself that it is equivalent to
the previously stated definition. Now that we have reformulated our definition in these

107

108

Chapter 6: Making Decisions

terms, it becomes a relatively straightforward task to translate it into a program statement,
as follows:

if ((rem 4 == 0 && rem 100 != 0) || rem 400 == 0)
NSLog (@"It's a leap year.");
The parentheses around the following subexpression are not required:
rem 4 == 0 && rem 100 != 0
This is because the expression will be evaluated that way anyway: Remember that s&

has higher precedence than | |.
In fact, in this particular example, the following test would work just as well:

if (rem 4 == 0 && (rem 100 != 0 || rem 400 == 0))

If you add a few statements in front of the test to declare the variables and to enable
the user to key in the year from the terminal, you end up with a program that determines
whether a year is a leap year, as shown in Program 6.5.

Program 6.5

// This program determines if a year is a leap year

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int year, rem 4, rem 100, rem 400;

NSLog (@"Enter the year to be tested: ");

scanf ("%i", &year);

rem 4 = year % 4

rem 100 = year % 100;

rem_400 = year % 400;

if ((rem 4 == 0 && rem 100 != 0) || rem 400 == 0)
NSLog (@"It's a leap year.");

else

NSLog (@"Nope, it's not a leap year.");

[pool drain];
return 0;

Program 6.5 Output

Enter the year to be tested:
1955

Nope, it's not a leap year.

The if Statement

Program 6.5 Output (Rerun)
Enter the year to be tested:
2000

It's a leap year.

Program 6.5 Output (Rerun)

Enter the year to be tested:
1800

Nope, it's not a leap year.

The previous examples use a year that is not a leap year because it isn’t evenly divisible
by 4 (1955), a year that is a leap year because it is evenly divisible by 400 (2000), and a
year that isn’t a leap year because it is evenly divisible by 100 but not by 400 (1800).To
complete the run of test cases, you should also try a year that is evenly divisible by 4 and
not by 100.This is left as an exercise for you.

We mentioned that Objective-C gives the programmer a tremendous amount of flexi-
bility in forming expressions. For instance, in the previous program, you did not have to
calculate the intermediate results rem 4, rem_100, and rem_400—you could have per-
formed the calculation directly inside the if statement, as follows:

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

Using blank spaces to set off the various operators still makes the previous expression
readable. If you decided to ignore this and removed the unnecessary set of parentheses,
you could end up with an expression that looked like this:

if (year$4==0&&year%100!=0) | |year$400==0)

This expression is perfectly valid and, believe it or not, executes identically to the ex-
pression shown immediately before it. Obviously, those extra blanks go a long way toward
aiding our understanding of complex expressions.

Nested if Statements

In discussions of the general format of the if statement, we indicated that if the result of
evaluating the expression inside the parentheses is TRUE, the statement that immediately
follows is executed. It is perfectly valid for this program statement to be another if state-
ment, as in the following statement:

if ([chessGame isOver] == NO)

if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;

If the value returned by sending the isOver message to chessGame is NO, the following
statement is executed; this statement, in turn, is another if statement.This if statement
compares the value returned from the whoseTurn method against You. If the two values
are equal, the yourMove message is sent to the chessGame object. Therefore, the yourMove

109

110

Chapter 6: Making Decisions

message is sent only if both the game is not done and it’s your turn. In fact, this statement
could have been equivalently formulated using compound relationals, like so:

if ([chessGame isOver] == NO && [chessGame whoseTurn] == YOU)
[chessGame yourMove] ;

A more practical example of nested if statements might involve adding an else clause
to the previous example, as shown here:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;
else
[chessGame myMove] ;

Executing this statement proceeds as described previously. However, if the game is not
over and it’s not your move, the else clause is executed. This sends the message myMove to
chessGame. If the game is over, the entire if statement that follows, including its associ-
ated else clause, is skipped.

Notice how the else clause is associated with the if statement that tests the value re-
turned from the whoseTurn method, not with the if statement that tests whether the
game is over. The general rule is that an else clause is always associated with the last if
statement that doesn’t contain an else.

You can go one step further and add an else clause to the outermost if statement in
the preceding example. This else clause is executed if the game is over:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;
else
[chessGame myMove] ;
else
[chessGame finish];

Of course, even if you use indentation to indicate the way you think a statement will
be interpreted in the Objective-C language, it might not always coincide with the way
the system actually interprets the statement. For instance, removing the first else clause
from the previous example will not result in the statement being interpreted as its format

indicates:
if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;
else

[chessGame finish];

Instead, this statement will be interpreted as follows:

if ([chessGame isOver] == NO)

The if Statement

if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;

else
[chessGame finish];

This is because the else clause is associated with the last un-elsed if.You can use
braces to force a different association when an innermost if does not contain an else but
an outer if does.The braces have the eftect of closing off the if statement. Thus, the fol-
lowing statement achieves the desired eftect:

if ([chessGame isOver] == NO) {
if ([chessGame whoseTurn] == YOU)
[chessGame yourMove] ;

}

else

[chessGame finish];

The else if Construct

You have seen how the else statement comes into play when you have a test against two
possible conditions—either the number is even or it is odd; either the year is a leap year
or it is not. However, programming decisions you have to make are not always so black
and white. Consider the task of writing a program that displays -1 if a number the user
types is less than zero, 0 if the number is equal to zero, and 1 if the number is greater than
zero. (This is actually an implementation of what is commonly called the sign function.)
Obviously, you must make three tests in this case to determine whether the number that
is keyed in is negative, zero, or positive. The simple if-else construct will not work. Of
course, in this case, you can always resort to three separate if statements, but this solution
does not always work—especially if the tests are not mutually exclusive.

You can handle the situation just described by adding an if statement to your else
clause. We mentioned that the statement that follows an else could be any valid Objec-
tive-C program statement, so why not another i£? Thus, in the general case, you could
write the following:

if (expression 1
program statement 1
else
if (expression 2)
program statement 2
else
program statement 3

This effectively extends the if statement from a two-valued logic decision to a three-
valued logic decision.You can continue to add if statements to the else clauses, in the
manner just shown, to effectively extend the decision to an n-valued logic decision.

111

112

Chapter 6: Making Decisions

The preceding construct is so frequently used that it is generally referred to as an else
if construct and is usually formatted differently from that shown previously:
if (expression 1
program statement 1
else if (expression 2)
program statement 2
else
program statement 3

This latter method of formatting improves the readability of the statement and makes
it clearer that a three-way decision is being made.

The next program illustrates the use of the else if construct by implementing the
sign function discussed earlier.

Program 6.6

// Program to implement the sign function

#import <Foundation/Foundation.h>
int main (int argc, char *argv(])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number, sign;

NSLog (@"Please type in a number: ");

scanf ("%1i", &number) ;

if (number < 0

sign = -1;

else if (number ==)
sign = 0;

else // Must be positive
sign = 1;

NSLog (@"Sign = %i", sign);
[pool drain];
return 0;

Program 6.6 Output

Please type in a number:
1121

Sign =1

The if Statement

Program 6.6 Output (Rerun)
Please type in a number:
-158

Sign = -1

Program 6.6 Output (Rerun)
Please type in a number:

0

Sign = 0

If the number that is entered is less than zero, sign is assigned the value -1; if the
number is equal to zero, sign is assigned the value o; otherwise, the number must be
greater than zero, so sign is assigned the value 1.

The next program analyzes a character that is typed in from the terminal and classifies
it as either an alphabetic character (a—z or 2—z), a digit (0—9), or a special character (any-
thing else). To read a single character from the terminal, the format characters $c are used
in the scanf call.

Program 6.7

// This program categorizes a single character
// that is entered from the keyboard

#import <Foundation/Foundation.h>
int main (int argc, char *argv[])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char c;

NSLog (@"Enter a single character:");
scanf ("%c", &c);
if (((¢ >= 'a' & ¢ <= 'z') || (¢ »>= 'A' & c <= '2"))
NSLog (@"It's an alphabetic character.");
else if (¢ >= '0' & c <= '9")
NSLog (@"It's a digit.");
else
NSLog (@"It's a special character.");

[pool drain];
return 0;

113

114

Chapter 6: Making Decisions

Program 6.7 Output

Enter a single character:
&

It's a special character.

Program 6.7 Output (Rerun)
Enter a single character:
8

It's a digit.

Program 6.7 Output (Rerun)
Enter a single character:

B

It's an alphabetic character.

The first test that is made after the character is read in determines whether the char
variable c is an alphabetic character. This is done by testing whether the character is a
lowercase letter or an uppercase letter. The former test is made by the following expres-
sion:

(¢c>='a'" && ¢c <= 'z2')

This expression is TRUE if c is within the range of characters 'a' through 'z'; that is, if
c is a lowercase letter. The latter test is made by this expression:

(¢ >= 'A'" && ¢ <= 'Z2')

This expression is TRUE if c is within the range of characters 'a' through 'z'; that is, if
c is an uppercase letter. These tests work on computer systems that store characters inside
the machine in a format known as ASCII.

If the variable c is an alphabetic character, the first if test succeeds and the message
“It’s an alphabetic character.” is displayed. If the test fails, the else if clause is executed.
This clause determines whether the character is a digit. Note that this test compares the
character c against the characters '0' and '9' and not the integers 0 and 9. This is because a
character was read in from the terminal, and the characters '0' to '9' are not the same as
the numbers 0—9. In fact, in ASCII, the character '0' is actually represented internally as
the number 48, the character '1' as the number 49, and so on.

If c is a digit character, the phrase “It’s a digit.” is displayed. Otherwise, if ¢ is not al-
phabetic and is not a digit, the final else clause is executed and displays the phrase “It’s a
special character” at the terminal. Execution of the program is then complete.

Note that even though scanf is used here to read just a single character, you still must
press the Enter key after the character is typed to send the input to the program. In gen-
eral, whenever you're reading data from the terminal, the program doesn’t see any of the
data typed on the line until the Enter key is pressed.

The if Statement

Let’s suppose for the next example that you want to write a program that allows the
user to type in simple expressions of the following form:[[STYLE_FIRST]]

number operator number

The program will evaluate the expression and display the results at the terminal. The
operators you want to have recognized are the normal operators for addition, subtraction,
multiplication, and division. Let’s use the calculator class from Program 4.6 in Chapter
4,“Data Types and Expressions,” here. Each expression will be given to the calculator for
computation.

The following program uses a large if statement with many else if clauses to deter-
mine which operation is to be performed.

Note
It's better to use routines in the standard library called islower and isupper, and avoid
the internal representation issue entirely. To do that, include the line #import <ctype.h>
in your program. However, we’ve put this here for illustrative purposes only.

Program 6.8

// Program to evaluate simple expressions of the form
// number operator number

// Implement a Calculator class
#import <Foundation/Foundation.h>

@interface Calculator: NSObject

{
}

// accumulator methods

- (void) setAccumulator: (double) value;
- (void) clear;

- (double) accumulator;

double accumulator;

// arithmetic methods

-(void) add: (double) value;

- (void) subtract: (double) value;
-(void) multiply: (double) value;
-(void) divide: (double) value;
@end

@implementation Calculator
- (void) setAccumulator: (double) value

accumulator = value;

115

116

Chapter 6: Making Decisions

- (void) clear

{
}

- (double) accumulator

{
}

- (void) add: (double) value

{
}

- (void) subtract: (double) value

{
}

- (void) multiply: (double) value

{
}

- (void) divide: (double) value

{
}

@end

accumulator = 0;

return accumulator;

accumulator += value;

accumulator -= value;

accumulator *= value;

accumulator /= value;

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]

double valuel, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@"Type in your expression.");
scanf ("$1f %c %1f", &valuel, &operator, &value2);

[deskCalc setAccumulator: valuel];
if (operator == '+')
[deskCalc add: value2];
)

else if (operator == '-

init];

The if Statement

[deskCalc subtract: value2];

else if (operator == '*')
[deskCalc multiply: value2];
else if (operator == '/')

[deskCalc divide: value2];

NSLog (@"%.2f", [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

Program 6.8 Output

Type in your expression.
123.5 + 59.3

182.80

Program 6.8 Output (Rerun)
Type in your expression.

198.7 / 26
7.64

Program 6.8 Output (Rerun)
Type in your expression.
89.3 * 2.5

223.25

The scanf call specifies that three values are to be read into the variables valuel,
operator, and value2.A double value can be read in with the $1£ format characters. This
is the format used to read in the value of the variable value1, which is the first operand of
the expression.

Next, you read in the operator. Because the operator is a character ('+',
'/"') and not a number, you read it into the character variable operator. The %c format
characters tell the system to read in the next character from the terminal. The blank spaces
inside the format string indicate that an arbitrary number of blank spaces are to be per-
mitted on the input. This enables you to separate the operands from the operator with

—I,I*I,OI’

blank spaces when you type in these values.

After the two values and the operator have been read in, the program stores the first
value in the calculator’s accumulator. Next, you test the value of operator against the four
permissible operators. When a correct match is made, the corresponding message is sent to

117

118

Chapter 6: Making Decisions

the calculator to perform the operation. In the last NSLog, the value of the accumulator is
retrieved for display. Execution of the program is then complete.

A few words about program thoroughness are in order at this point. Although the pre-
ceding program does accomplish the task that we set out to perform, the program is not
really complete because it does not account for user mistakes. For example, what would
happen if the user typed in a ? for the operator by mistake? The program would simply
fall through the if statement and no messages would ever appear at the terminal to alert
the user that he had incorrectly typed in his expression.

Another overlooked case is when the user types in a division operation with zero as
the divisor.You know by now that you should never attempt to divide a number by zero
in Objective-C.The program should check for this case.

Trying to predict the ways in which a program can fail or produce unwanted results
and then taking preventive measures to account for such situations is a necessary part of
producing good, reliable programs. Running a sufficient number of test cases against a
program can often point a finger to portions of the program that do not account for cer-
tain cases. But it goes further than that. It must become a matter of self-discipline while
coding a program to always ask, “What would happen if...?” and to insert the necessary
program statements to handle the situation properly.

Program 6.8A, a modified version of Program 6.8, accounts for division by zero and
the keying in of an unknown operator.

Program 6.8A

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char *argv(])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
double valuel, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@"Type in your expression.");
scanf ("$1f %c %1f", &valuel, &operator, &value2);

[deskCalc setAccumulator: valuel];
if (operator == '+')
[deskCalc add: value2];

else if (operator == '-')

The if Statement

[deskCalc subtract: value2];

else if (operator == '*')
[deskCalc multiply: value2];
else if (operator == '/')
if (value2 == 0

NSLog (@"Division by zero.");
else
[deskCalc divide: value2];
else
NSLog (@"Unknown operator.");

NSLog (@"%.2f", [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

Program 6.8A Output
Type in your expression.
123.5 + 59.3

182.80

Program 6.8A Output (Rerun)

Type in your expression.
198.7 / 0
Division by zero.

198.7

Program 6.8A Output (Rerun)

Type in your expression.
125 $ 28
Unknown operator.

125

When the operator that is typed in is the slash, for division, another test is made to de-
termine whether value2 is 0. If it is, an appropriate message is displayed at the terminal;
otherwise, the division operation is carried out and the results are displayed. Pay careful at-
tention to the nesting of the if statements and the associated else clauses in this case.

The else clause at the end of the program catches any fall-throughs. Therefore, any
value of operator that does not match any of the four characters tested causes this else
clause to be executed, resulting in the display of “Unknown operator.” at the terminal.

119

120

Chapter 6: Making Decisions

A better way to handle the division-by-zero problem is to perform the test inside the
method that handles division.You can modify your divide: method as shown here:

- (void) divide: (double) value

{
if (value != 0.0)
accumulator /= value;
else {
NSLog (@"Division by zero.");
accumulator = 99999999.;

If value is nonzero, you perform the division; otherwise, you display the message and
set the accumulator to 99999999.This is arbitrary; you could have set it to zero or perhaps
set a special variable to indicate an error condition. In general, it’s better to have the
method handle special cases than rely on the resourcefulness of the programmer using the
method.

The switch Statement

The type of if-else statement chain you encountered in the last program example—
with the value of a variable successively compared against different values—is so com-
monly used when developing programs that a special program statement exists in the
Objective-C language for performing precisely this function. The name of the statement is
the switch statement, and its general format is as follows:

switch (expression
case valuel:
program statement
program statement
break;
case valueZ:

program statement
program statement

break;

case valuen:
program statement
program statement
break;

default:

program statement
program statement

The switch Statement

break;

The expression enclosed within parentheses is successively compared against the val-
ues valuel, valuez, ..., valuen, which must be simple constants or constant expressions.
If a case is found whose value is equal to the value of expression, the program statements
that follow the case are executed. Note that when more than one such program statement
is included, they do not have to be enclosed within braces.

The break statement signals the end of a particular case and causes execution of the
switch statement to be terminated. Remember to include the break statement at the end
of every case. Forgetting to do so for a particular case causes program execution to con-
tinue into the next case whenever that case is executed. Sometimes this is done intention-
ally; if you elect to do so, be sure to insert comments to alert others of your purpose.

The special optional case called default is executed if the value of expression does
not match any of the case values. This is conceptually equivalent to the catchall else used
in the previous example. In fact, the general form of the switch statement can be equiva-
lently expressed as an if statement, as follows:

if (expression == valuel

program statement
program statement

else if (expression == value2

program statement
program statement

else if (expression == valuen)
program statement
program statement

else

program statement
program statement

Bearing in mind the previous code, you can translate the big if statement from
Program 6.8A into an equivalent switch statement. This is shown in Program 6.9.

121

122 Chapter 6: Making Decisions

Program 6.9

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

double valuel, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@"Type in your expression.");
scanf ("%$1f %c %1f", &valuel, &operator, &value2);

[deskCalc setAccumulator: valuel];

switch (operator)

case '+'
[deskCalc add: value2];
break;

case '-'
[deskCalc subtract: value2];
break;

case '*':
[deskCalc multiply: value2];
break;

case '/':
[deskCalc divide: value2];
break;

default:
NSLog (@"Unknown operator.");
break;

}

NSLog (@"%.2f", [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

Boolean Variables

Program 6.9 Output

Type in your expression.
178.99 - 326.8

-147.81

After the expression has been read in, the value of operator is successively compared
against the values specified by each case. When a match is found, the statements contained
inside the case are executed. The break statement then sends execution out of the switch
statement, where execution of the program is completed. If none of the cases matches the
value of operator, the default case, which displays “Unknown operator.”, is executed.

The break s atement in the defau t case s actually unnecessary in the preceding pro-
gram because no statements follow this case inside the switch. Nevertheless, it is a good
programming habit to remember to include the break at the end of every case.

When writing a switch statement, bear in mind that no two case values can be the
same. However, you can associate more than one case value with a particular set of program
statements. This is done simply by 1 sting the multiple case values (with the keyword case
before the value and a colon after the value in each case) before the common statements
that are to be executed. As an example, in the switch statement that follows, the multiply:
method is executed if operator is equal to an asterisk or to the lowercase letter x:

switch (operator)

{

case '*':
case 'x':
[deskCalc multiply: value2];

break;

Boolean Variables

Just about anyone learning to program soon faces the task of having to write a program to
generate a table of prime numbers. To refresh your memory, a positive integer, p, is a
prime number if it is not evenly divisible by any other integers other than 1 and itself. The
first prime integer is defined to be 2.The next prime is 3 because it is not evenly divisible
by any integers other than 1 and 3; and 4 is not prime because it is evenly divisible by 2.

You can take several approaches to generate a table of prime numbers. If you had the
task of generating all prime numbers up to 50, for example, the most straightforward (and
simplest) algorithm to generate such a table would simply test each integer, p, for
divisibility by all integers from 2 through p-1. If any such integer evenly divided p, then p
would not be prime; otherwise, it would be a prime number.

Program 6.10 generates a list of prime numbers from 2 to 50.

123

124 Chapter 6: Making Decisions

Program 6.10

// Program to generate a table of prime numbers

#import <Foundation/Foundation.hs>

int main (int argc, char *argv(])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int p, d, isPrime;
for (p =2; p <= 50; ++p) {
isPrime = 1;
for (d=2; d < p; ++d)
if (p%d==20)
isPrime = 0;
if (isPrime != 0
NSLog (@"%i ", p);
}
[pool drain];
return 0;
}

Program 6.10 Output

[G W]

-

13
17
19
23
29
31
37
41
43

47

Several points are worth noting about Program 6.10.The outermost for statement sets
up a loop to cycle through the integers 2—50.The loop variable p represents the value you

Boolean Variables

are currently testing to see whether it is prime. The first statement in the loop assigns the
value 1 to the variable isPrime.The use of this variable will become apparent shortly.

A second loop is set up to divide p by the integers 2 through p-1. Inside the loop, a test
is performed to see whether the remainder of p divided by d is 0. If it is, you know that p
cannot be prime because an integer other than 1 and itself evenly divides it. To signal that
p is no longer a candidate as a prime number, the value of the variable isPrime is set
equal to o.

When the innermost loop finishes execution, the value of isPrime is tested. If its value
is not equal to zero, no integer was found that evenly divided p; therefore, p must be a
prime number, and its value is displayed.

You might have noticed that the variable isPrime takes on either 0 or 1, and no other
values. Its value is 1 as long as p still qualifies as a prime number. But as soon as a single
even divisor is found, its value is set to 0 to indicate that p no longer satisfies the criteria
for being prime.Variables used in such a manner are generally referred to as Boolean vari-
ables. A flag typically assumes only one of two different values. Furthermore, the value of a
flag usually is tested at least once in the program to see whether it is on (TRUE or YES) or
off (FALSE or NO), and some particular action is taken based on the results of the test.

In Objective-C, the notion of a flag being TRUE or FALSE is most naturally translated
into the values 1 and o, respectively. So in Program 6.10, when you set the value of
isPrime to 1 inside the loop, you are effectively setting it as TRUE to indicate that p “is
prime.” During the course of execution of the inner for loop, if an even divisor is found,
the value of isPrime is set FALSE to indicate that p no longer “is prime.”

It is no coincidence that the value 1 is typically used to represent the TRUE or on state
and 0 is used to represent the FALSE or off state. This representation corresponds to the
notion of a single bit inside a computer. When the bit is on, its value is 1; when it is off; its
value is 0. But in Objective-C, there is an even more convincing argument in favor of
these logic values. It has to do with the way the Objective-C language treats the concept
of TRUE and FALSE.

When we began our discussions in this chapter, we noted that if the conditions speci-
fied inside the if statement are satisfied, the program statement that immediately followed
is executed. But what exactly does satisfied mean? In the Objective-C language, satisfied
means nonzero, and nothing more. Thus, the statement
if (100)

NSLog (@"This will always be printed.");

results in the execution of the NSLog statement because the condition in the if state-
ment (in this case, simply the value 100) is nonzero and, therefore, is satisfied.

In each of the programs in this chapter, we used the notions of “nonzero means satis-
fied” and “zero means not satisfied.” This is because, whenever a relational expression is
evaluated in Objective-C, it is given the value 1 if the expression is satisfied and o if the
expression is not satisfied. So, evaluation of the statement
if (number < 0)

number = -number;

125

126

Chapter 6: Making Decisions

actually proceeds as follows: The relational expression number < 0 is evaluated. If the
condition is satisfied—that is, if number is less than o—the value of the expression is 1;
otherwise, its value is 0.

The if statement tests the result of the expression evaluation. If the result is nonzero,
the statement that immediately follows is executed; otherwise, the statement is skipped.

The preceding discussion also applies to the evaluation of conditions inside the for,
while, and do statements. Evaluation of compound relational expressions such as in the
following statement also proceeds as outlined previously:

while (char != 'e' && count != 80)

If both specified conditions are valid, the result is 1, but if either condition is not valid,
the result of the evaluation is 0. The results of the evaluation are then checked. If the result
is 0, the while loop terminates; otherwise, it continues.

Returning to Program 6.10 and the notion of flags, it is perfectly valid in Objective-C
to test whether the value of a flag is TRUE using an expression such as this one:

if (isPrime)

This expression is equivalent to the following:
if (isPrime != 0)
To easily test whether the value of a flag is FALSE, you use the logical negation opera-

tor, !. In the expression that follows, the logical negation operator is used to test whether
the value of isPrime is FALSE (read this statement as “if not isPrime”):

if (! isPrime)

In general, an expression such as this one negates the logical value of expression:
| expression

So if expressionis 0, the logical negation operator produces a 1. And if the result of
the evaluation of expression is nonzero, the negation operator yields a o.

The logical negation operator can be used to easily flip the value of a flag, as in the fol-
lowing expression:

my_move = ! my move;
As you might expect, this operator has the same precedence as the unary minus opera-
tor, which means that it has higher precedence than all binary arithmetic operators and all

relational operators. To test whether the value of a variable x is not less than the value of a
variable y, such as in

I (x<y)

the parentheses are required to ensure proper evaluation of the expression. Of course,
you could have equivalently expressed the previous statement as follows:

X >= Yy

Boolean Variables

A couple of built-in features in Objective-C make working with Boolean variables a
little easier. One is the special type BooL, which can be used to declare variables that will
contain either a true or a false value. The other is the built-in values YEs and No. Using
these predefined values in your programs can make them easier to write and read. Take a
look at Program 6.10, rewritten to take advantage of these features.

Note

The type BOOL is really added by a mechanism known as the preprocessor.

Program 6.10A
// Program to generate a table of prime numbers
// second version using BOOL type and predefined values

#import <Foundation/Foundation.h>

int main (int argc, char *argv([])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int p, d;
BOOL isPrime;

for (p =2; p <= 50; ++p) {
isPrime = YES;

for (d=2; d < p; ++d)
if (p % =0)

isPrime = NO;

if (isPrime =

}
[pool drain];
return 0;

Program 6.10A Output

127

128

Chapter 6: Making Decisions

19
23
29
31
37
41
43

47

The Conditional Operator

Perhaps the most unusual operator in the Objective-C language is one called the condi-
tional operator. Unlike all other operators in Objective-C—which are either unary or bi-
nary operators—the conditional operator is a fernary operator; that is, it takes three
operands. The two symbols used to denote this operator are the question mark (?) and
the colon (:).The first operand is placed before the 2, the second between the ? and the
., and the third after the :.

The general format of the conditional expression is shown here:

condition ? expressionl : expressionZ

In this syntax, conditionis an expression, usually a relational expression, that the Ob-
jective-C system evaluates first whenever it encounters the conditional operator. If the re-
sult of the evaluation of conditionis TRUE (that is, nonzero), expressioni is evaluated
and the result of the evaluation becomes the result of the operation. If condition evalu-
ates FALSE (that is, zero), expressionz is evaluated and its result becomes the result of the
operation.

A conditional expression is most often used to assign one of two values to a variable,
depending on some condition. For example, suppose you have an integer variable x and
another integer variable s. If you wanted to assign -1 to s if x were less than 0, and the
value of x* to s otherwise, you could write the following statement:

s=(x<0)? -1:x*x;

The condition x < 0 is first tested when the previous statement is executed. Parenthe-
ses are generally placed around the condition expression to aid in the statement’s readabil-
ity. This is usually not required, though, because the precedence of the conditional
operator is very low—lower, in fact, than all other operators but the assignment operators
and the comma operator.

If the value of x is less than zero, the expression immediately following the ? is evalu-
ated. This expression is simply the constant integer value -1, which is assigned to the vari-
able s if x is less than zero.

The Conditional Operator

If the value of x is not less than zero, the expression immediately following the : is
evaluated and assigned to s. So if x is greater than or equal to zero, the value of x * x, or
%%, 1s assigned to s.

As another example of the conditional operator, the following statement assigns to the
variable max_value the maximum of a and b:

max value = (a >b) ? a : b;

If the expression after the : (the “else” part) consists of another conditional operator,
you can achieve the effects of an else if clause. For example, the sign function imple-
mented in Program 6.6 can be written in one program line using two conditional opera-
tors, as follows:

sign = (number < 0) ? -1 : ((number ==) 20 :1);

If number is less than zero, sign is assigned the value -1; if number is equal to zero,
sign is assigned the value o0; otherwise, it is assigned the value 1.The parentheses around
the “else” part of the previous expression are actually unnecessary. This is because the con-
ditional operator associates from right to left, meaning that multiple uses of this operator
in a single expression, such as in

el ? e2 : e3 ? e4 : e5

group from right to left and therefore are evaluated as follows:

el ? e2 : (e3 ? e4 : e5)

Conditional expressions don’t have to be used on the right side of an assignment—
they can be used in any situation in which expressions can be used. This means you can
display the sign of the variable number without first assigning it to a variable using a
NSLog statement, as shown here:

NSLog (@"Sign = %i", (number < 0) ? -1
(number == 0) ?2 0 : 1);

The conditional operator is very handy when writing preprocessor macros in Objec-
tive-C.You can see this in detail in Chapter 12,*“The Preprocessor.”

Exercises

1. Write a program that asks the user to type in two integer values. Test these two
numbers to determine whether the first is evenly divisible by the second and then
display an appropriate message at the terminal.

2. Program 6.8A displays the value in the accumulator even if an invalid operator is
entered or division by zero is attempted. Fix that problem.

3. Modify the print method from the Fraction class so that whole numbers are dis-
played as such (so the fraction 5/1 should display as simply 5). Also modify the
method to display fractions with a numerator of 0 as simply zero.

129

130

Chapter 6: Making Decisions

. Write a program that acts as a simple printing calculator. The program should allow

the user to type in expressions of the following form:
number operator
The program should recognize the following operators:

+ - * / 8 E

The S operator tells the program to set the accumulator to the typed-in number,
and the E operator tells the program that execution is to end. The arithmetic opera-
tions are performed on the contents of the accumulator, with the number that was
keyed in acting as the second operand. The following is a sample run showing how
the program should operate:

Begin Calculations

10 S Set Accumulator to 10

= 10.000000 Contents of Accumulator
2/ Divide by 2

= 5.000000 Contents of Accumulator
55 - Subtract 55

-50.000000

100.25 S Set Accumulator to 100.25
= 100.250000

4 * Multiply by 4

= 401.000000

0 E End of program

= 401.000000

End of Calculations.

Make sure that the program detects division by 0 and also checks for unknown op-
erators. Use the Calculator class developed in Program 6.8 for performing your
calculations.

. We developed Program 5.9 to reverse the digits of an integer typed in from the ter-

minal. However, this program does not function well if you type in a negative num-
ber. Find out what happens in such a case, and then modify the program so that
negative numbers are correctly handled. By this, we mean that if the number -8645
were typed in, for example, the output of the program should be 5468-.

Write a program that takes an integer keyed in from the terminal and extracts and
displays each digit of the integer in English. So if the user types in 932, the pro-
gram should display the following:

nine

three

two

Exercises 131

(Remember to display zero if the user types in just 0.) Note: This exercise is a hard
one!

. Program 6.10 has several inefficiencies. One inefficiency results from checking even
numbers. Because any even number greater than 2 obviously cannot be prime, the
program could simply skip all even numbers as possible primes and as possible divi-
sors. The inner for loop is also inefficient because the value of p is always divided
by all values of d from 2 through p 1. You can avoid this inefficiency if you add a
test for the value of isPrime in the conditions of the for loop. In this manner, you
can set up the for loop to continue as long as no divisor is found and the value of
d is less than p. Modify Program 6.10 to incorporate these two changes; then run
the program to verify its operation.

v

More on Classes

n this chapter, you’ll continue learning how to work with classes and write methods.
You’ll also apply some of the concept you learned in the previous chapter, such as com-
pleting program looping, making deci ions, and working with expr s ions. First we talk
about splitting your program into multiple files to make working with larger programs
easier.

Separate Interface and Implementation Files

It’s time to get used to putting your class declarations and definitions in separate files.
If you’re using Xcode, start a new project called FractionTest.Type the following
program into the file FractionTest .m:

Program 7.1 Main Test Program: FractionTest.m

#import "Fraction.h"

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// display the fraction
NSLog (@"The value of myFraction is:");
[myFraction print];

[myFraction release];

[pool drain];
return 0;

134

Chapter 7 More on Classes

Note that this file does not include the definition of the Fraction class. However, it
does import a file called Fraction.h.

Typically, a class declaration (that is, the einterface section) is placed in its own file,
called czass.h.The definition (that is, the @implementation section) is normally placed
in a file of the same name, using the extension .m instead. So let’s put the declaration of
the Fraction class in the file Fraction.h and the definition in Fraction.m.

To do this in Xcode, select New File from the File menu. In the left pane, select
Cocoa. In the top-right pane, select Objective-C class.Your window should appear as
shown in Figure 7.1.

Click Next. Type in Fraction.m for the file name. Leave the box that reads Also Create
Fraction.h checked. The location for this file should be the same folder that contains the
FractionTest.m file.Your window should look like Figure 7.2.

E5a .

Choose a template for your new file:
. IPhone OS /A{‘ —A—J- . m
Cocoa Touch Classes = —_—
Code Signing Application X/8 Data Model Empty Y18
Settings
User interfaces §
ﬂ Mac 05 X = =3 A
=5 .m
Appleseript e — L
£and Cos Main Menu XIR Mapping Maodel |
Carben X
Cocoa
Interface Bullder 50K Description An Objective-C class file, with an cptional header which
P S includes the «Cocoa/Cocoaha header.
Pute Pythan
Ruby
Syne Services
Other
(o) (=

P

Figure 7.1 Xcode New File menu.

Now click Finish. Xcode has added two files to your project: Fraction.h and
Fraction.m. Figure 7.3 shows this.
We’re not working with Cocoa here, so change the line in the file Fraction.h that reads

#import <Cocoa/Cocoa.h>

to read

#import <Foundation/Foundation.h>

Separate Interface and Implementation Files 135

New Objective-C class

File Name: | Frastion.m]

4 Aisa create “Fractionn”
Location; |~/ObjC Progs/FractionTesy) (Choose...)
Add to Project: [FractionTest !

Targets: | & [FractionTest

e

Figure 7.2 Adding a new class to your project.

 Grouips & | Rl ﬂ'!_ S . {Code | @ |||
w B FractionTest a

¥ [Source i | v L
FractionTest_Prefix.pc
FracuonTest.m |
=il I
~ [u] Fraction.m: R |
[Documentation
[External Frameworks anc |
» [Products i
:g""‘"“ | AT fractonhl § <Noselected symboin S I=lc.le, u
" B
B (B rrors and Warnings | ¥ Proctionh
w O rind Results /4 FroctionTest
[Bookmarks I "
il seM ‘ #7 Cregted by Steve Kochon on 7/5/84.
= /G s a0 FomparyNme__, ALl ri) servod.
B Project Symbols A i = e vade
» [l implementation Files ‘
e [NIA Files. Fpport £Locos/Lecoo.

‘ Ainterfoce Fraction : NSObject {
}

ena

—_—— e ———
Figure 7.3 Xcode creates files for the new class.

In that same file (Fraction.h), you will now enter your interface section for the
Fraction class, as shown in Program 7.1:

136

Chapter 7 More on Classes

Program 7.2 Interface File Fraction.h

//
// Fraction.h
// FractionTest

//
// Created by Steve Kochan on 7/5/08.
// Copyright 2008 _ MyCompanyName_ . All rights reserved.

//

#import <Foundation/Foundation.h>
// The Fraction class

@interface Fraction : NSObject

{

int numerator;
int denominator;

(void) print;
- (void) setNumerator: (int) n;
- (void) setDenominator: (int) d;
- (int) numerator;
- (int) denominator;
(

- (double) convertToNum;

@end

The interface file tells the compiler (and other programmers, as you’ll learn later) what
a Fraction looks like: It contains two instance variables called numerator and
denominator, which are both integers. It also has six instance methods: print,
setNumerator:,setDenominator:,numerator,denominator,and convertToNum. The
first three methods don’t return a value, the next two return an int, and the last one re-
turns a double. The setNumerator: and setDenominator: methods each take an integer
argument.

The details of the implementation for the Fraction class are in the file Fraction.m.

Program 7.1 Implementation File: Fraction.m
//

// Fraction.m
// FractionTest

//

// Created by Steve Kochan on 7/5/08.

// Copyright 2008 _ MyCompanyName . All rights reserved.
/!

#import "Fraction.h"

Separate Interface and Implementation Files

@implementation Fraction
- (void) print

NSLog (@"%i/%i", numerator, denominator) ;

- (void) setNumerator: (int) n

numerator = n;

}

- (void) setDenominator: (int) d

{
}

- (int) numerator

{

denominator = d;

return numerator;

- (int) denominator

return denominator;

}

- (double) convertToNum

if (denominator != 0)

return (double) numerator / denominator;
else

return 1.0;

}

@end

Note that the interface file is imported into the implementation file with the follow-
ing statement:

#import "Fraction.h"

This is done so that the compiler knows about the class and methods you declared for
your Fraction class and so that it can also ensure consistency between the two files. Re-
call also that you don’t normally redeclare the class’s instance variables inside the imple-
mentation section (although you can), so the compiler needs to get that information from
the interface section contained in Fraction.h.

Another thing you should note is that the file that is imported is enclosed in a set of
double quotes, not < and > characters, as was the case with <Foundation/Foundation.h>.
The double quotes are used for local files (files that you create) instead of system files, and

137

138

Chapter 7 More on Classes

they tell the compiler where to look for the specified file. When you use double quotes,
the compiler typically looks for the specified file first inside your current directory and
then in a list of other places. If necessary, you can specify the actual places for the com-
piler to search.

Here is the test program for our example, which we have typed into the file

FractionTest.m.

Program 7.1 Main Test Program: FractionTest.m

#import "Fraction.h"

int main (int argc, char *argv(])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// display the fraction

NSLog (@"The value of myFraction is:");
[myFraction print];
[myFraction release];

[pool drain];
return 0;

Note again that the test program, FractionTest .m, includes the interface file
Fraction.h, not the implementation file Fraction.m. Now you have your program split
into three separate files. This might seem like a lot of work for a small program example,
but the usefulness will become apparent when you start dealing with larger programs and
sharing class declarations with other programmers.

You can now compile and run your program the same way you did before: Select
Build and Go from the Build menu, or click the Build and Go icon in your main Xcode
window.

If you’re compiling your programs from the command line, give the Objective-C
compiler both “.m” filenames. Using gcc, the command line looks like this:

gce -framework Foundation Fraction.m FractionTest.m -o FractionTest

Synthesized Accessor Methods

This builds an executable file called FractionTest. Here’s the output after running
the program:

Program 7.1 FractionTest Output

The value of myFraction is:
1/3

Synthesized Accessor Methods

As of Objective-C 2.0, you can have your setter and getter methods (collectively known
as accessor methods) automatically generated for you. We haven’t shown you how to do this
up to this point because it was important for you to learn how to write these methods on
your own. However, it’s a nice convenience provided in the language, so it’s time for you
to learn how to take advantage of this feature.

The first step is to use the eproperty directive in your interface section to identify
your properties. These properties are often your instance variables. In the case of our
Fraction class, the two instance variables numerator and denominator fall into this cate-
gory. Following is the new interface section with the new eproperty directive added.

@interface Fraction : NSObject

{

int numerator;
int denominator;

@property int numerator, denominator;

- (void) print;

- (void) setTo: (int) n over: (int) d;
- (double) convertToNum;

@end

Note that we no longer include the definitions for our getter and setter methods:
numerator,denominator,setNumerator:,and,setDenominator:.‘W%ﬁE goingto have
the Objective-C compiler automatically generate or synthesize these for us. How is that
done? Simply by using the @synthesize directive in the implementation section, as
shown.

#import "Fraction.h"

@implementation Fraction
@synthesize numerator, denominator;

- (void) print

139

140

Chapter 7 More on Classes

NSLog (@"%i/%i", numerator, denominator);

- (double) convertToNum

{
if (denominator != 0)
return (double) numerator / denominator;
else
return 1.0;

}

@end

The following line tells the Objective-C compiler to generate a pair of getter and set-
ter methods for each of the two listed instance variables, numerator and denominator:
@synthesize numerator, denominator;

In general, if you have an instance variable called x, including the following line in

your implementation section causes the compiler to automatically synthesize a getter
method called x and a setter method called set.x:.
@synthesize x;

Even though this might not seem like a big deal here, having the compiler do this for
you is worthwhile because the accessor methods that are generated will be efficient and
will run safely with multiple threads, on multiple machines, with multiple cores.

Now go back to Program 7.1 and make the changes to the interface and implementa-
tion sections as indicated so that the accessor methods are synthesized for you.Verify that
you still get the same output from the program without making any changes to

FractionTest.m.

Accessing Properties Using the Dot Operator

The Objective-C language allows you to access properties using a more convenient syn-
tax. To get the value of the numerator stored in myFraction, you could write this:

[myFraction numerator]

This sends the numerator message to the myFraction object, resulting in the return of
the desired value. As of Objective-C 2.0, you can now also write the following equivalent
expression using the dot operator:

myFraction.numerator

The general format here is:

Instance.property

Multiple Arguments to Methods

You can use a similar syntax to assign values as well:

Instance.property = value

This is equivalent to writing the following expression:|instance setProperty: value]
In Program 7.1 you set the numerator and denominator of your fraction to 1/3 using
the following two lines of code:

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

Here’s an equivalent way to write the same two lines:

myFraction.numerator = 1;
myFraction.denominator = 3;

We use these new features for synthesizing methods and accessing properties through-
out the remainder of this text.

Multiple Arguments to Methods

Let’s continue to work with the Fraction class and make some additions.You have de-
fined six methods. It would be nice to have a method to set both the numerator and the
denominator with a single message.You define methods that take multiple arguments
simply by listing each successive argument followed by a colon. This becomes part of the
method name. For example, the method named addEntryWithName: andEmail: takes two
arguments, presumably a name and an email address. The method
addEntryWithName:andEmail :andPhone: takes three arguments: a name, an email ad-
dress, and a phone number.

A method to set both the numerator and the denominator could be named
setNumerator:andDenominator:, and you might use it like this:

[myFraction setNumerator: 1 andDenominator: 3];

That’s not bad. And that was actually the first choice for the method name. But we can
come up with a more readable method name. For example, how about setTo:over:?
That might not look too appealing at first glance, but compare this message to set
myFraction to 1/3 with the previous one:

[myFraction setTo: 1 over: 3];

I think that reads a little better, but the choice is up to you (some might actually prefer
the first name because it explicitly references the instance variable names contained in the
class). Again, choosing good method names is important for program readability. Writing
out the actual message expression can help you pick a good one.

Let’s put this new method to work. First, add the declaration of setTo:over: to the
interface file, as shown in Program 7.2.

141

142 Chapter 7 More on Classes

Program 7.2 Interface File: Fraction.h

#import <Foundation/Foundation.h>

// Define the Fraction class
@interface Fraction : NSObject
int numerator;

int denominator;

}

@property int numerator, denominator;

- (void) print;

- (void) setTo: (int) n over: (int) d;
- (double) convertToNum;

@end

Next, add the definition for the new method to the implementation file.

Program 7.2 Implementation File: Fraction.m

#import "Fraction.h"

@implementation Fraction
@synthesize numerator, denominator;

- (void) print

{

NSLog (@"%1i/%i", numerator, denominator);

- (double) convertToNum

if (denominator != 0)

return (double) numerator / denominator;
else

return 1.0;

}

- (void) setTo: (int) n over: (int) d
numerator = n;
denominator = d;

}

@end

Multiple Arguments to Methods

The new setTo:over: method simply assigns its two integer arguments, n and d, to
the corresponding instance variables for the fraction, numerator, and denominator.
Here’s a test program to try your new method.

Program 7.2 Test File: FractionTest.m

#import "Fraction.h"

int main (int argc, char *argvl[])

Fraction *aFraction = [[Fraction alloc] init];
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

[aFraction setTo: 100 over: 200];
[aFraction print];

[aFraction setTo: 1 over: 3];
[aFraction pr nt];
[aFraction rele se];

[pool drain];
return 0;

Program 7.2 Output

100/200
1/3

Methods Without Argument Names
When creating the name for a method, the argument names are actually optional. For ex-
ample, you can declare a method like this:

-(int) set: (int) n: (int) d;

Note that, unlike in previous examples, no name is given for the second argument to
the method here. This method is named set: :, and the two colons mean the method
takes two arguments, even though they’re not all named.

To invoke the set: : method, you use the colons as argument delimiters, as shown here:

[aFraction set: 1 : 3];

143

144

Chapter 7 More on Classes

It’s generally not good programming style to omit argument names when writing new
methods because it makes the program harder to follow and makes the purpose of the
method’s actual parameters less intuitive.

Operations on Fractions

Let’s continue to work with the Fraction class. First, you’ll write a method that will en-
able you to add one fraction to another.You’ll name the method add:, and you’ll have it
take a fraction as an argument. Here’s the declaration for the new method:

- (void) add: (Fraction *) f;

Note the declaration for the argument £:
(Fraction *) £

This says that the argument to the add: method is of type class Fraction.The asterisk
is necessary, so the following declaration is not correct:
(Fraction) £

You will be passing one fraction as an argument to your add: method, and you’ll have

the method add it to the receiver of the message; the following message expression adds
the Fraction bFraction to the Fraction aFraction:

[aFraction add: bFraction];
Just as a quick math refresher, to add the fractions a/b and c/d, you perform the calcu-
lation as follows:

a,c ad + bc
b d bd

You put this code for the new method into the @implementation section:

// add a Fraction to the receiver

- (void) add: (Fraction *) f
{
// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = numerator * f.denominator
+ denominator * f.numerator;
denominator = denominator * f.denominator;

Multiple Arguments to Methods

Don'’t forget that you can refer to the Fraction that is the receiver of the message by
its fields: numerator and denominator. On the other hand, you can’t directly refer to the
instance variables of the argument £ that way. Instead, you have to obtain them by apply-
ing the dot operator to £ (or by sending an appropriate message to £) .

Let’s assume that you added the previous declarations and definitions for your new
add: method to your interface and implementation files. Program 7.3 is a sample test
program and output.

Program 7.3 Test File: FractionTest.m

#import "Fraction.h"

int main (int argc, char *argvl[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

// Set two fractions to 1/4 and 1/2 and add them together

[aFraction setTo: 1 over: 4];
[bFraction setTo: 1 over: 2];

// Print the results

[aFraction print];
NSLog (@"+");
[bFraction print];
NSLog (@"=");

[aFraction add: bFraction];
[aFraction print];
[aFraction release];
[bFraction release];

[pool drain];
return 0;

Program 7.3 Output

1/4
+
1/2

6/8

145

146

Chapter 7 More on Classes

The test program is straightforward enough. Two Fractions, called aFraction and
bFraction, are allocated and initialized. Then they are set to the values 1/4 and 1/2, re-
spectively. Next, the Fraction bFraction is added to the Fraction aFraction;the re-
sult of the addition is then displayed. Note again that the add: method adds the argument
to the object of the message, so the object gets modified. This is verified when you print
the value of aFraction at the end of main.You had to print the value of aFraction before
invoking the add: method to get its value displayed before the method changed it. Later
in this chapter, you’ll redefine the add: method so that add: does not aftect the value of
its argument.

Local Variables

You might have noticed that the result of adding 1/4 to 1/2 was displayed as 6/8, not as
3/4, which you might have preferred (or even expected!). That’s because your addition
routine just does the math and no more—it doesn’t worry about reducing the result. So
to continue our exercise of adding new methods to work with fractions, let’s make a new
reduce method to reduce a fraction to its simplest terms.

Reaching back to your high school math again, you can reduce a fraction by finding
the largest number that evenly divides both the numerator and the denominator of your
fraction and then dividing them by that number. Technically, you want to find the greatest
common divisor (gcd) of the numerator and denominator.You already know how to do
that from Program 5.7.You might want to refer to that program example just to refresh
your memory.

With the algorithm in hand, you can now write your new reduce method:

- (void) reduce

{

int u = numerator;
int v = denominator;
int temp;

while (v != 0) {
temp = u % v;
u=v;

v = temp;

numerator /= u;
denominator /= u;

Notice something new about this reduce method: It declares three integer variables
called u, v, and temp. These variables are local variables, meaning that their values exist
only during execution of the reduce method and that they can be accessed only from within
the method in which they are defined. In that sense, they are similar to the variables you have

Local Variables

been declaring inside your main routine; those variables were also local to main and could
be accessed directly only from within the main routine. None of the methods you devel-
oped could directly access those variables defined in main.

Local variables have no default initial value, so you must set them to some value before
using them. The three local variables in the reduce method are set to values before they
are used, so that’s not a problem here. And unlike your instance variables (which retain
their values through method calls), these local variables have no memory. Therefore, after
the method returns, the values of these variables disappear. Each time a method is called,
each local variable defined in that method is initialized to the value specified (if any) with
the variable’s declaration.

Method Arguments

The names you use to refer to a method’s arguments are also local variables. When the
method is executed, whatever arguments are passed to the method are copied into these
variables. Because the method is dealing with a copy of the arguments, it cannot change the
original values passed to the method. This is an important concept. Suppose you had a
method called calculate:, defined as follows:

- (void) calculate: (double) x

{

Also suppose that you used the following message expression to invoke it:

[myData calculate: ptVal];

Whatever value was contained in the variable ptval would be copied into the local
variable x when the calculate method was executed. So changing the value of x inside
calculate: would have no effect on the value of ptval—only on the copy of its value
stored inside x.

Incidentally, in the case of arguments that are objects, you can change the instance
variables stored in that object.You’ll learn more about that in the next chapter.

The static Keyword

You can have a local variable retain its value through multiple invocations of a method by
placing the keyword static in front of the variable’s declaration. For example, the fol-
lowing declares the integer hitCount to be a static variable:

static int hitCount = 0;
Unlike other normal local variables, a static one does have an initial value of 0, so the

initialization shown previously is redundant. Furthermore, they are initialized only once
when program execution begins and retain their values through successive method calls.

147

148

Chapter 7 More on Classes

The following code sequence might appear inside a showPage method that wanted to
keep track of the number of times it was invoked (or, in this case, perhaps the number of
pages that have been printed, for example):

- (void) showPage

{

static int pageCount = 0;

++pageCount ;

The local static variable would be set to 0 only once when the program started and
would retain its value through successive invocations of the showpage method.

Note the difference between making pagecount a local static variable and making it
an instance variable. In the former case, pageCount could count the number of pages
printed by all objects that invoked the showPage method. In the latter case, the variable
would count the number of pages printed by each individual object because each object
would have its own copy of pageCount.

Remember that static or local variables can be accessed only from within the method
in which they’re defined. So even the static pageCount variable can be accessed only from
within showPage.You can move the declaration of the variable outside any method decla-
ration (typically near the beginning of your implementation file) to make it accessible to
any methods, like so:

#import "Printer.h"
static int pageCount;

@implementation Printer
@end

Now any instance or class method contained in the file can access the pagecount vari-
able. Chapter 10, “More on Variables and Data Types,” covers this topic of variable scope
in greater detail.

Returning to fractions, you can incorporate the code for the reduce method into
your Fraction.m implementation file. Don’t forget to declare the reduce method in your

Fraction.h interface file as well. With that done, you can test your new method in
Program 7.4.

Program 7.4 Test File FractionTest.m

#import "Fraction.h"

int main (int argc, char *argv(])

{

The self Keyword

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction =
Fraction *bFraction =

[Fraction alloc] init];

[
[[Fraction alloc] init];

[aFraction setTo: 1 over: 4]; // set 1lst fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2
[aFraction print];

NSLog (@"+");

[bFraction print];

NSLog (@"=");

[aFraction add: bFraction];

// reduce the result of the addition and print the result

[aFraction reduce] ;
[aFraction print];

[aFraction release];
[bFraction release];

[pool drain];
return 0;

Program 7.4 Output
1/4

+
1/2
3/4

That’s better!

The self Keyword

In Program 7.4, we decided to reduce the fraction outside of the add: method. We could

have done it inside add: as well; the decision was completely arbitrary. However, how
would we go about identifying the fraction to be reduced to our reduce method? We

149

150

Chapter 7 More on Classes

know how to identify instance variables inside a method directly by name, but we don’t
know how to directly identify the receiver of the message.

You can use the keyword self to refer to the object that is the receiver of the current
method. If inside your add: method you wrote

[self reduce];

the reduce method would be applied to the Fraction that was the receiver of the add:
method, which is what you want.You will see throughout this book how useful the self
keyword can be. For now, use it in your add: method. Here’s what the modified method

looks like:

- (void) add: (Fraction *) f

{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = (numerator * [f denominator]) +
(denominator * [f numerator]);
denominator = denominator * [f denominator];

[self reducel];

After the addition is performed, the fraction is reduced.

Allocating and Returning Objects from Methods

We noted that the add: method changes the value of the object that is receiving the mes-
sage. Let’s create a new version of add: that will instead make a new fraction to store the
result of the addition. In this case, we need to return the new Fraction to the message
sender. Here is the definition for the new add: method:

- (Fraction *) add: (Fraction *) £
{
// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

// result will store the result of the addition
Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = numerator * f.denominator +
denominator * f.numerator;
resultDenom = denominator * f.denominator;

Allocating and Returning Objects from Methods

[result setTo: resultNum over: resultDenom] ;
[result reduce];

return result;

The first line of your method definition is this:

- (Fraction *) add: (Fraction *) f;

It says that your add: method will return a Fraction object and that it will take one
as its argument as well. The argument will be added to the receiver of the message, which
is also a Fraction.

The method allocates and initializes a new Fraction object called result and then
defines two local variables called resultNum and resultDenom. These will be used to
store the resulting numerator and denominators from your addition.

After performing the addition as before and assigning the resulting numerators and
denominators to your local variables, you can set result with the following message
expression:

[result setTo: resultNum over: resultDenom] ;

After reducing the result, you return its value to the sender of the message with the
return statement.

Note that the memory occupied by the Fraction result that is allocated inside the
add: method is returned and does not get released. You can't release it from the add:
method because the invoker of the method needs it. Therefore, it is imperative that the
user of this method know that the object being returned is a new instance and must be
subsequently released. This can be communicated through suitable documentation that is
made available to users of the class.

Program 7.5 tests your new add: method.

Program 7.5 Test File main.m

#import "Fraction.h"

int main (int argc, char *argvl[])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction =
Fraction *bFraction =

[Fraction alloc] init];
[Fraction alloc] init];

[
[

Fraction *resultFraction;

151

152

Chapter 7 More on Classes

[aFraction setTo: 1 over: 4]; // set 1lst fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2

[aFraction print];
NSLog (@"+");
[bFraction print];
NSLog (@"=");

resultFaction = [aFraction add: bFraction];
[resultFraction print];

// This time give the result directly to print
// memory leakage here!

[[aFraction add: bFraction] print];
[aFraction release];

[bFraction release];
[resultFraction release];

[pool drain];
return 0;

Program 7.5 Output

1/4

+
1/2

3/4
3/4

Some explanation is in order here. First, you define two Fractions—aFraction and
bFraction—and set their values to 1/4 and 1/2, respectively. You also define a Fraction
called resultFraction (why doesn’t it have to be allocated and initialized?). This variable
will store the result of your addition operations that follow.

The following lines of code first send the add: message to aFraction, passing along
the Fraction bFraction as its argument:

resultFraction = [aFraction add: bFraction];
[resultFraction print];

The resulting Fraction that the method returns is stored in resultFraction and
then displayed by passing it a print message. Note that you must be careful at the end of
the program to release resultFraction, even though you didn’t allocate it yourself in

Allocating and Returning Objects from Methods

main.The add: method allocated it, but it’s still your responsibility to clean it up. The fol-
lowing message expression might look nice, but it actually creates a problem:

[[aFraction add: bFraction] print];

Because you take the Fraction that add: returns and send it a message to print, you
have no way of subsequently releasing the Fraction object that add: created.This is an
example of memory leakage. If you do this type of nested messaging many times in your
program, you’ll end up accumulating storage for fractions whose memory will not be re-
leased. Each time, you would be adding, or leaking, just a little bit more memory that you
could not direc ly recover.

One solution to the problem is to have the print method return its receiver, which
you could then release. But that seems a little roundabout. A better solution is to divide
the nested messages into two separate messages, as was done earlier in the program.

By the way you could have avoided using the temporary variables resultNum and
resultDenom complete y in your add method Instead, this s ngle message call would
have done the trick:

[result setTo: numerator * f.denominator + denominator * f.numerator
over: denominator * f.denominator;

We’re not suggesting that you write such concise code. However, you might see it
when you examine other programmers’ code, so it is useful to learn how to read and un-
derstand these powerful expressions.

Let’s take one last look at fractions in this chapter. For our example, let’s consider cal-
culation of the following series:

n
D
1

The sigma notation is shorthand for a summation. Its use here means to add the values
of 1/2% where i varies from 1 to n. Thatis,add 1/2 + 1/4 + 1/8If you make the
value of n large enough, the sum of this series should approach 1. Let’s experiment with
different values for n to see how close we get.

Program 7.6 prompts for the value of n to be entered and performs the indicated
calculation.

Program 7.6 FractionTest.m

#import "Fraction.h"

int main (int argc, char *argvl])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

153

154 Chapter 7 More on Classes

Fraction *aFraction = [[Fraction alloc] init];
Fraction *sum = [[Fraction alloc] init], *sum2;
int i, n, pow2;

[sum setTo: 0 over: 1]; // set 1lst fraction to 0

NSLog (@"Enter your value for n:");
scanf ("%i", &n);

pow2 = 2;
for (i = 1; i <= n; ++i) {
[aFraction setTo: 1 over: pow2];

sum2 = [sum add: aFraction];

[sum release]; // release previous sum
sum = sum2;

pow2 *= 2;

}

NSLog (@"After %i iterations, the sum is %g", n, [sum convertToNum]) ;
[aFraction release];
[sum releasel;

[pool drain];
return 0;

Program 7.6 Output

Enter your value for n:
5

After 5 iterations, the sum is 0.96875

Program 7.6 Output (Rerun)

Enter your value for n:
10

After 10 iterations, the sum is 0.999023

Program 7.6 Output (Rerun)

Enter your value for n:
15

After 15 iterations, the sum is 0.999969

The Fraction sum is set to the value of 0 by setting its numerator to 0 and its de-
nominator to 1 (what would happen if you set both its numerator and denominator to

Allocating and Returning Objects from Methods

0?). The program then prompts the user to enter a value for n and reads it using scanf.
You then enter a for loop to calculate the sum of the series. First, you initialize the vari-
able pow2 to 2.This variable is used to store the value of 2:. Each time through the loop,
its value is multiplied by 2.

The for loop starts at 1 and goes through n. Each time through the loop, you set
aFraction to 1/pow2, or 1/2% This value is then added to the cumulative sum by using
the previously defined add: method.The result from add: is assigned to sum2 and not
to sum, to avoid memory leakage problems. (What would happen if you assigned it di-
rectly to sum instead?) The old sum is then released, and the new sum, sum2, is assigned to
sum for the next iteration through the loop. Study the way the fractions are released in the
code so that you feel comfortable with the strategy used to avoid memory leakage. Also
realize that if this were a for loop that was executed hundreds or thousands of times and
you weren't judicious about releasing your fractions, you would quickly accumulate a lot
of wasted memory space.

When the for loop is completed, you display the final result as a decimal value using
the convertToNum method.You have just two objects left to release: aFraction and your
final Fraction object stored in sum. Program execution is then complete.

The output shows what happens when we ran the program three separate times on a
MacBook Air. The first time, the sum of the series was calculated and the resulting value
of 0.96875 was displayed. The third time, we ran the program with a value of 15 for n,
which gave us a result very close to 1.

Extending Class Definitions and the Interface File

You’ve now developed a small library of methods for working with fractions. In fact, here
is the interface file, listed in its entirety, so you can see all you’ve accomplished with this
class:

#import <Foundation/Foundation.hs>

// Define the Fraction class

@interface Fraction : NSObject
int numerator;
int denominator;

@property int numerator, denominator;

- (void) print;

- (double) convertToNum;

- (Fraction *) add: (Fraction *) f;
- (void) reduce;

@end

155

156

Chapter 7 More on Classes

You might not need to work with fractions, but these examples have shown how you
can continually refine and extend a class by adding new methods.You could hand this in-
terface file to someone else working with fractions, and it would be sufficient for that
person to be able to write programs to deal with fractions. If that person needed to add a
new method, he could do so either directly, by extending the class definition, or indi-
rectly, by defining his own subclass and adding his own new methods.You’ll learn how to
do that in the next chapter.

Exercises

1. Add the following methods to the Fraction class to round out the arithmetic op-

erations on fractions. Reduce the result within the method in each case:
// Subtract argument from receiver

- (Fraction *) subtract (Fraction *) f;

// Multiply receiver by argument

- (Fraction *) multiply (Fraction *) f;

// Divide receiver by argument

— (Fraction *) divide (Fraction *) f;

Modify the print method from your Fraction class so that it takes an optional
BoOL argument that indicates whether the fraction should be reduced for display. If
it is to be reduced, be sure you don’t make any permanent changes to the fraction
itself.

Modify Program 7.7 to also display the resulting sum as a fraction, not just as a real
number.

. Will your Fraction class work with negative fractions? For example, can you add

-1/4 and -1/2 and get the correct result? When you think you have the answer,
write a test program to try it.

Modify the Fraction's print method to display fractions greater than 1 as mixed
numbers. For example, the fraction 5/3 should be displayed as 1 2/3.

Exercise 7 in Chapter 4, “Data Types and Expressions,” defined a new class called
complex for working with complex imaginary numbers. Add a new method called
add: that can be used to add two complex numbers. To add two complex numbers,
you simply add the real parts and the imaginary parts, as shown here:

(5.3 + 7i) + (2.7 + 4i) = 8 + 11i

Have the add: method store and return the result as a new Complex number, based
on the following method declaration:

- (Complex *) add: (Complex * complexNum) ;

Make sure you address any potential memory leakage issues in your test program.

Given the complex class developed in exercise 7 of Chapter 4 and the extension
made in exercise 6 of this chapter, create separate Complex.h and Complex.m inter-
face and implementation files. Create a separate test program file to test everything.

3

Inheritance

n this chapter, you’ll learn about one of the key principles that makes object-oriented
programming so powerful. Through the concept of inheritance, you will build on existing
class definitions and customize them for your own applications.

It All Begins at the Root

You learned about the idea of a parent class in Chapter 3, “Classes, Objects, and Meth-
ods.” A parent class can itself have a parent. The class that has no parent is at the top of the
hierarchy and is known as a roof class. In Objective-C, you have the capability to define
your own root class, but it’s something you normally won’t want to do. Instead, you’ll
want to take advantage of existing classes. All the classes we've defined up to this point are
descendants of the root class called NSobject, which you specified in your interface file
like this:

@interface Fraction: NSObject
@end
The Fraction class is derived from the Nsobject class. Because NSobject is at the top

of the hierarchy (that is, there are no classes above it), it’s called a root class, as shown in
Figure 8.1.The Fraction class is known as a child or subclass.

| NSObject Irootclass

Y

| Fraction Isubclass

Figure 8.1 Root and subclass

158

Chapter 8 Inheritance

From a terminology point of view, we can speak of classes, child classes, and parent
classes. Analogously, we can talk about classes, subclasses, and superclasses. You should be-
come familiar with both types of terminology.

Whenever a new class (other than a new root class) is defined, the class inherits certain
properties. For example, all the instance variables and the methods from the parent im-
plicitly become part of the new class definition. That means the subclass can access these
methods and instance variables directly, as if they were defined directly within the class
definition.

A simple example, albeit contrived, helps to illustrate this key concept of inheritance.
Here’s a declaration for an object called classa with one method called initvar:

@interface ClassA: NSObject

int X;

-(void) initVar;
@end

The initvar method simply sets the value of classA’s instance variable to 100:

@implementation ClassA
-(void) initvar

@end

Now let’s also define a class called classB:
@interface ClassB: ClassA

-(void) printVar;
@end

The first line of the declaration

@interface ClassB: ClassA

says that instead of classB being a subclass of NSObject, ClassB is a subclass of Classa.
So although classa’s parent (or superclass) is NSObject, ClassB’s parent is ClassA. Figure
8.2 illustrates this.

As you can see from Figure 8.2, the root class has no superclass and classBb, which is at
the bottom of the hierarchy, has no subclass. Therefore, Classa is a subclass of NSobject,
and classB is a subclass of classa and also of NSObject (technically, it’s a sub-subclass, or
grandchild). Also, Nsobject is a superclass of Classa, which is a superclass of classB.
NSObject is also a superclass of classB because it exists farther down its hierarchy.

Here’s the full declaration for classB, which defines one method called printvar:

@interface ClassB: ClassA

It All Begins at the Root

-(void) printvar;
@end

@implementation ClassB
-(void) printvar
{

NSLog (@"x = %i", x);
}
@end

The printvar method prints the value of the instance variable x, yet you haven’t de-
fined any instance variables in classB.That’s because ClassB is a subclass of classa—
therefore, it inherits all of classa’s instance variables (in this case, there’s just one). Figure
8.3 depicts this.

NSObject

subclass superclass

subclass superclass

Figure 8.2 Subclasses and superclasses

Class Instance Variables Methods
NSObject
ClassA X initVvar
ClassB X initvar printVar

Figure 8.3 Inheriting instance variables and methods.

(Of course, Figure 8.3 doesn’t show any of the methods or instance variables that are
inherited from the NsObject class—there are several.)

Let’s see how this works by putting it all together in a complete program example. For
the sake of brevity, we’ll put all the class declarations and definitions into a single file (see
Program 8.1).

159

160 Chapter 8 Inheritance

Program 8.1

// Simple example to illustrate inheritance

#import <Foundation/Foundation.h>
// ClassA declaration and definition
@interface ClassA: NSObject
{
int x;

}

-(void) initvVar;
@end

@implementation ClassA
-(void) initvar

@end

// Class B declaration and definition
@interface ClassB : ClassA

-(void) printvar;

@end

@implementation ClassB
-(void) printvVar

NSLog (@"x = %i", x);
}
@end
int main (int argc, char *argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassB *b = [[ClassB alloc] init];

[b initvar]; // will use inherited method
[b printVar]; // reveal value of x;

[b release];

[pool drain];
return 0;

It All Begins at the Root

Program 8.1 Output
x = 100

You begin by defining b to be a classB object. After allocating and initializing b, you
send a message to apply the initvar method to it. But looking back at the definition of
ClassB, you'll notice that you never defined such a method. initvar was defined in
Classh, and because Classa is the parent of ClassB, ClassB gets to use all of Classa’s
methods. So with respect to ClassB, initVar is an inherited method.

Note
We briefly mentioned it up to this point, but alloc and init are methods you have used all

along that are never defined in your classes. That's because you took advantage of the fact
that they were inherited methods.

After sending the initvar message to b, you invoke the printvar method to display
the value of the instance variable x. The output of x = 100 confirms that printvar was
capable of accessing this instance variable. That’s because, as with the initvar method, it
was inherited.

Remember that the concept of inheritance works all the way down the chain. So if
you defined a new class called classc, whose parent class was classB, like so

@interface ClassC: ClassB;

@end

then classc would inherit all of classB’s methods and instance variables, which in turn
inherited all of classA’s methods and instance variables, which in turn inherited all of
Object’s methods and instance variables.

Be sure you understand that each instance of a class gets it own instance variables, even
if they’re inherited. A classc object and a classB object would therefore each have their
own distinct instance variables.

Finding the Right Method

When you send a message to an object, you might wonder how the correct method is
chosen to apply to that object. The rules are actually quite simple. First, the class to which
the object belongs is checked to see whether a method is explicitly defined in that class
with the specific name. If it is, that’s the method that is used. If it’s not defined there, the
parent class is checked. If the method is defined there, that’s what is used. If not, the search
continues.

Parent classes are checked until one of two things happens: Either you find a class that
contains the specified method or you don’t find the method after going all the way back
to the root class. If the first occurs, you’re all set; if the second occurs, you have a problem,
and a warning message is generated that looks like this:

warning: 'ClassB' may not respond to '-inity'

In this case, you inadvertently are trying to send a message called inity to a variable of
type class classB.The compiler told you that variables of that type of class do not know

161

162

Chapter 8 Inheritance

how to respond to such a method. Again, this was determined after checking classB’s
methods and its parents’ methods back to the root class (which, in this case, is NSObject).

In some cases, a message is not generated if the method is not found. This involves us-
ing something known as forwarding, which is briefly discussed in Chapter 9,“Polymor-
phism, Dynamic Typing, and Dynamic Binding.”

Extension Through Inheritance:
Adding New Methods

Inheritance often is used to extend a class. As an example, let’s assume that you’ve just
been assigned the task of developing some classes to work with 2D graphical objects such
as rectangles, circles, and triangles. For now, we’ll worry about just rectangles. Let’s go back
to exercise 7 from Chapter 4, “Data Types and Expressions,” and start with the
@interface section from that example:

@interface Rectangle: NSObject

{
int width;
int height;

@property int width, height;
-(int) area;

-(int) perimeter;

@end

You’ll have synthesized methods to set the rectangle’s width and height and to return
those values, and your own methods to calculate its area and perimeter. Let’s add a method
that will allow you to set both the width and the height of the rectangle with the same
message call, which is as follows:

-(void) setWidth: (int) w andHeight: (int) h;

Assume that you typed this new class declaration into a file called Rectangle.h. Here’s
what the implementation file Rectangle.m might look like:

#import "Rectangle.h"

@implementation Rectangle
@synthesize width, height;

-(void) setWidth: (int) w andHeight: (int) h
{

width = w;

height = h;

Extension Through Inheritance: Adding New Methods

-(int) area

{
return width * height;
}
-(int) perimeter
{
return (width + height) * 2;
}
@end

Each method definition is straightforward enough. Program 8.2 shows a main routine
to test it.

Program 8.2

#import "Rectangle h"
#import <stdio.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Rectangle *myRect = [[Rectangle alloc] init];
[myRect setWidth: 5 andHeight: 8];

NSLog (w = %i, h = %i",

myRect.width, myRect.height);
NSLog (@"Area = %i, Perimeter = %i",

[myRect area], [myRect perimeter]);
[myRect release];

[pool drain];
return 0;

Program 8.2 Output

Rectangle: w = 5, h =8
Area = 40, Perimeter = 26

myRect is allocated and initialized; then its width is set to 5 and its height to 8.The first
printf call verifies this. Next, the area and the perimeter of the rectangle are calculated
with the appropriate message calls, and the returned values are handed off to NsLog to be
displayed.

163

164

Chapter 8 Inheritance

Suppose that you now need to work with squares.You could define a new class called
Square and define similar methods in it as in your Rectangle class. Alternately, you could
recognize the fact that a square is just a special case of a rectangle whose width and height
just happen to be the same.

Thus, an easy way to handle this is to make a new class called square and have it be a
subclass of Rectangle. That way, you get to use all of Rectangle’s methods and variables,
in addition to defining your own. For now, the only methods you might want to add
would be to set the side of the square to a particular value and retrieve that value. Program
8.3 shows the interface and implementation files for your new Square class.

Program 8.3 square.h Interface File

#import "Rectangle.h"

@interface Square: Rectangle

-(void) setSide: (int) s;
-(int) side;
@end

Program 8.3 Square.m Implementation File

#import "Square.h"

@implementation Square: Rectangle

-(void) setSide: (int) s

{
[self setWidth: s andHeight: s];

-(int) side
{

return width;

}
@end

Notice what you did here.You defined your square class to be a subclass of
Rectangle, which is declared in the header file Rectangle.h.You didn’t need to add any
instance variables here, but you did add new methods called setside: and side.

A square has only one side, but you’re internally representing it as two numbers—that’s
okay. All that is hidden from the user of the Square class.You can always redefine your
Square class later, if necessary; any users of the class don’t have to be concerned with the
internal details because of the notion of data encapsulation discussed earlier.

The setside: method takes advantage of the fact that you already have a method in-
herited from your Rectangle class to set the values of the width and height of a rectangle.

Extension Through Inheritance: Adding New Methods

So setside: calls the setWwidth:andHeight: method from the Rectangle class, passing
the parameter s as the value for both the width and the height.You don’t really have to do
anything else. Someone working with a Square object can now set the dimensions of the
square by using setSide: and can take advantage of the methods from the Rectangle
class to calculate the square’s area, perimeter, and so on. Program 8.3 shows the test pro-
gram and output for your new Square class.

Program 8.3 Test Program

#import "Square.h"
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Square *mySquare = [[Square alloc] init];
[mySquare setSide: 5];
NSLog (@"Square s = %i", [mySquare side]);
NSLog (@"Area = %i, Perimeter = $i",

[mySquare area], [mySquare perimeter]);

[mySquare release];
[pool drain];
return 0;

}

Program 8.3 Output

Square s = 5
Area = 25, Perimeter = 20

The way you defined the square class is a fundamental technique of working with
classes in Objective-C: extending what you or someone else has already done to suit your
needs. In addition, a mechanism known as categories enables you to add new methods to an
existing class definition in a modular fashion—that is, without having to constantly add
new definitions to the same interface and implementation files. This is particularly handy
when you want to do this to a class for which you don’t have access to the source code.
You’ll learn about categories in Chapter 11, “Tying Up Some Loose Ends.”

165

166

Chapter 8 Inheritance

A Point Class and Memory Allocation

The Rectangle class stores only the rectangle’s dimensions. In a real-world graphical ap-
plication, you might need to keep track of all sorts of additional information, such as the
rectangle’s fill color, line color, location (origin) inside a window, and so on.You can easily
extend your class to do this. For now, let’s deal with the idea of the rectangle’s origin. As-
sume that the “origin” means the location of the rectangle’s lower-left corner within some
Cartesian coordinate system (x, y). If you were writing a drawing application, this point
might represent the location of the rectangle inside a window, as depicted in Figure 8.4.

(xy)

0.0)

Figure 8.4 A rectangle drawn in a window

In Figure 8.4, the rectangle’s origin is shown at (x;, yy).

You could extend your Rectangle class to store the X,y coordinate of the rectangle’s
origin as two separate values. Or you might realize that, in the development of your
graphics application, you’ll have to deal with a lot of coordinates and, therefore, decide to
define a class called xYPoint (you might recall this problem from exercise 7 in Chapter 3):

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject
{
int x;
int y;
}
@property int x, y;

-(void) setX: (int) xVal andY: (int) yVal;
@end

Now let’s get back to your Rectangle class.You want to be able to store the rectangle’s
origin, so you’ll add another instance variable, called origin, to the definition of your
Rectangle class:

@interface Rectangle: NSObject
{

Extension Through Inheritance: Adding New Methods

int width;
int height;
XYPoint *origin;

It seems reasonable to add a method to set the rectangle’s origin and to retrieve it. To
illustrate an important point, we’re won’t synthesize the accessor methods for the origin
now. Instead, we’ll write them ourselves.

The @class Directive

Now you can work with rectangles (and squares as well!) with the ability to set their
widths, heights, and origins. First, let’s take a complete look at your Rectangle.h inter-
face file:

#import <Foundation/Foundation.h>

@class XYPoint;
@interface Rectangle: NSObject

{
int width;
int height;
XYPoint *origin;
}

@property int width, height;

-(XYPoint *) origin;
-(void) setOrigin: (XYPoint *) pt;
-(void) setWidth: (int) w andHeight: (int) h

-(int) area;
-(int) perimeter;
@end

You used a new directive in the Rectangle.h header file:

@class XYPoint;

You needed this because the compiler needs to know what an xYPoint is when it en-
counters it as one of the instance variables defined for a Rectangle.The class name is also
used in the argument and return type declarations for your setOrigin: and origin
methods, respectively. You do have another choice. You can import the header file in-
stead, like so:

#import "XYPoint.h"

167

168

Chapter 8 Inheritance

Using the @class directive is more efficient because the compiler doesn’t need to
process the entire XyPoint.h file (even though it is quite small); it just needs to know that
XYPoint is the name of a class. If you need to reference one of the xyPoint classes meth-
ods, the @class directive does not suffice because the compiler would need more infor-
mation; it would need to know how many arguments the method takes, what their types
are, and what the method’s return type is.

Let’s fill in the blanks for your new xyPoint class and Rectangle methods so you can
test everything in a program. First, Program 8.4 shows the implementation file for your
XyPoint class.

First, Program 8.4 shows the new methods for the Rectangle class.

Program 8.4 Rectangle.m Added Methods

#import "XYPoint.h"

-(void) setOrigin: (XYPoint *) pt

origin = pt;

}

-(XYPoint *) origin
{

return origin;

}
@end

Following are the complete XYPoint and Rectangle class definitions, followed by a test
program to try them out.

Program 8.4 XPoint.h Interface File

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject
{
int x;
int y;
}
@property int x, y;

-(void) setX: (int) xVal andY: (int) yVal;
@end

Extension Through Inheritance

Program 8.4 XYPoint .m Implementation File

#import "XYPoint.h"

@implementation XYPoint

@synthesize x, y;
-(void) setX: (int) xVal andY: (int) yval

{
x = xVal;
y = yval;
}
@end

Program 8.4 Rectangle.h Interface File

#import <Foundation/Foundation.h>

@class XYPoint;
@interface Rectangle: NSObject

{
int width;
int height;
XYPoint *origin;
}

@property int width, height;

-(XYPoint *) origin;
-(void) setOrigin: (XYPoint *) pt;
-(void) setWidth: (int) w andHeight: (int) h;

-(int) area;
-(int) perimeter;
@end

Program 8.4 Rectangle.m Implementation File

#import "Rectangle.h"

@implementation Rectangle
@synthesize width, height;

-(void) setWidth: (int) w andHeight: (int) h

: Adding New Methods

169

170

Chapter 8 Inheritance

{
width = w;
height = h;
}
—(void) setOrigin: (Point *) pt
{
origin = pt;
}
—(int) area
{
return width * height;
}

—(int) perimeter

return (width + height) * 2;

}
—(Point *) origin
{

return origin;
}
@end

Program 8.4 Test Program

#import "Rectangle.h"
#import "XYPoint.h"

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]

Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@"Rectangle w = %i, h = %i",
myRect.width, myRect.height);

init];

Extension Through Inheritance: Adding New Methods

NSLog (@"Origin at (%i, %i)",
myRect.origin.x, myRect.origin.y);

NSLog (@"Area = %i, Perimeter = %i",
[myRect area], [myRect perimeter]);
[myRect release];
[myPoint release];

[pool drain];
return 0;

Program 8.4 Output
Rectangle w = 5, h = 8
Origin at (100, 200)

Area = 40, Perimeter = 26

Inside the main routine, you allocated and initialized a rectangle identified as myRect
and a point called myPoint. Using the setX:andy: method, you set myPoint to (100,
200). After setting the width and the height of the rectangle to 5 and 8, respectively, you
invoked the setorigin method to set the rectangle’s origin to the point indicated by
myPoint.The three print£ calls then retrieve and print the values. The expression
myRect.origin.x
takes the XxYPoint object returned by the accessor method origin method and applies the
dot operator to get the x-coordinate of the rectangle’s origin. In a similar manner, the fol-
lowing expression retrieves the y-coordinate of the rectangle’s origin:

myRect.origin.y

Classes Owning Their Objects

Can you explain the output from Program 8.5?

Program 8.5

#import "Rectangle.h"
#import "XYPoint.h"

int main (int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

171

172 Chapter 8 Inheritance

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@"Origin at (%i, %i)",
myRect.origin.x, myRect.origin.y);

[myPoint setX: 50 andY¥: 50];

NSLog (@"Origin at (%i, %i)",
myRect.origin.x, myRect.origin.y);

[myRect release];

[myPoint release];

[pool drain];
return 0;

Program 8.5 Output
Origin at (100, 200)
Origin at (50, 50)

You changed the XYPoint myPoint from (100, 200) in the program to (50, 50),
and apparently it also changed the rectangle’s origin! But why did that happen? You didn’t
explicitly reset the rectangle’s origin, so why did the rectangle’s origin change? If you go
back to the definition of your setorigin: method, perhaps you’ll see why:

-(void) setOrigin: (XYPoint *) pt
{

origin = pt;

When the setorigin: method is invoked with the expression
myRect.origin = myPoint;

the value of myPoint is passed as the argument to the method. This value points to where
this XYPoint object is stored in memory, as depicted in Figure 8.5.

X 100

myPoint

Figure 8.5 The XYPoint myPoint in memory

Extension Through Inheritance: Adding New Methods

That value stored inside myPoint, which is a pointer into memory, is copied into the
local variable pt as defined inside the method. Now both pt and myPoint reference the
same data stored in memory. Figure 8.6 illustrates this.

myPoint
X 100
|_> y 200
pt

Figure 8.6 Passing the rectangle’s origin to the method

When the origin variable is set to pt inside the method, the pointer stored inside pt is
copied into the instance variable origin, as depic ed in Figure 8.7.

myPoint
: X 100
>y 200
pt

h 8

myRect

origin

Figure 8.7 Setting the rectangle’s origin

Because myPoint and the origin variable stored in myRect reference the same area in
memory (as does the local variable pt), when you subsequently change the value of
myPoint to (50, 50), the rectangle’s origin is changed as well.

You can avoid this problem by modifying the setorigin: method so that it allocates
its own point and sets the origin to that point. This is shown here:

-(void) setOrigin: (XYPoint *) pt
{

origin = [[XYPoint alloc] init];

[origin setX: pt.x andY: pt.y];

The method first allocates and initializes a new xyPoint.The message expression

173

174

Chapter 8 Inheritance

[origin setX: pt.x andY: pt.y];

sets the newly allocated XYPoint to the X,y coordinate of the argument to the method.
Study this message expression until you fully understand how it works.

The change to the setOrigin: method means that each Rectangle instance now
owns its origin XYPoint instance. Even though it is now responsible for allocating the
memory for that XYPoint, it should also now become responsible for releasing that mem-
ory. In general, when a class contains other objects, at times you will want to have it own
some or all of those objects. In the case of a rectangle, it makes sense for the Rectangle
class to own its origin because that is a basic attribute of a rectangle.

But how do you release the memory used by your origin? Releasing the rectangle’s
memory does not also release the memory you allocated for the origin. One way to re-
lease the memory is to insert a line such as the following into main:

[[myRect origin] release];

This releases the XxYPoint object that the origin method returns.You must do this be-
fore you release the memory for the Rectangle object itself because none of the variables
contained in an object is valid after an object’s memory is released. So the correct code se-
quence would be as follows:

[[myRect origin] release]; // Release the origin's memory
[myRect release]; // Release the rectangle's memory

It’s a bit of a burden to have to remember to release the origin’s memory yourself. After
all, you weren’t the one who allocated it; the Rectangle class did. In the next section,
“Overriding Methods,” you learn how to have the Rectangle release the memory.

With your modified method, recompiling and rerunning Program 8.5 produces the er-
ror messages shown as Figure 8.8.

Figure 8.8 Compiler error messages

Oops! The problem here is that you’ve used some methods from the xyPoint class in
your modified method, so now the compiler needs more information about it than the
@class directive provides. In this case, you must go back and replace that directive with an
import instead, like so:

#import "XYPoint.h"

Program 8.5B Output

Origin at (100, 200)
Origin at (100, 200)

Overriding Methods

That’s better. This time, changing the value of myPoint to (50, 50) inside main had
no effect on the rectangle’s origin because a copy of the point was created inside the
Rectangle’s setOrigin: method.

Incidentally, we didn’t synthesize the origin methods here because the synthesized set-
ter setOrigin: method would have behaved just like the one you originally wrote. That
is, by default, the action of a synthesized setter is to simply copy the object pointer, not
the object itself.

You can synthesize a different type of setter method that instead does make a copy of
the object. However, to do that, you need to learn how to write a special copying
method. We revisit this topic in Chapter 17, “Memory Management.”

Overriding Methods

We noted earlier in this chapter that you can’t remove or subtract methods through inher-
itance. However, you can change the definition of an inherited method by overriding it.

Returning to your two classes, Classa and ClassB, assume that you want to write
your own initvar method for classB.You already know that classB will inherit the
initvar method defined in classa, but can you make a new method with the same
name to replace the inherited method? The answer is yes, and you do so simply by defin-
ing a new method with the same name. A method defined with the same name as that of
a parent class replaces, or overrides, the inherited definition. Your new method must have
the same return type and take the same number and type of arguments as the method you
are overriding.

Program 8.6 shows a simple example to illustrate this concept.

Program 8.6

// Overriding Methods

#import <Foundation/Foundation.h>
// ClassA declaration and definition

@interface ClassA: NSObject
{

}

int x;

-(void) initvar;
@end

@implementation ClassA
-(void) initvar
{
x = 100;
}

175

176 Chapter 8 Inheritance

@end
// ClassB declaration and definition

@interface ClassB: ClassA
-(void) initVar;

-(void) printvar;

@end

@implementation ClassB
-(void) initvar // added method
{

}

x = 200;

-(void) printvar

NSLog (@"x = %i", x);

}
@end
int main (int argc, char *argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
ClassB *b = [[ClassB alloc] init];
[b initVar]; // uses overriding method in B
[b printVar]; // reveal value of x;
[b release];
[pool drain];
return 0;
}

Program 8.6 Output

x = 200
Clearly, the message
[b initVar];

causes the initvar method defined in classB to be used, and not the one defined in
Classa, as was the case with the previous example. Figure 8.9 illustrates this.

Overriding Methods

Class Instance Variables Methods

Object

ClassA X initvar

ClassB X initVar printvar

Figure 8.9 Overriding the initvar method

Which Method Is Selected?

We covered how the system searches up the hierarchy for a method to apply to an object.
If you have methods in different classes with the same name, the correct method is chosen
based on the class of the receiver of the message. Program 8.7 uses the same class defini-
tion for Classa and ClassB as before.

Program 8.7

#import <Foundation/Foundation.h>

// insert definitions for ClassA and ClassB here

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassA *a = [[ClassA alloc] init];
ClassB *b = [[ClassB alloc] init];

[a initVar]; // uses ClassA method
[a printVar]; // reveal value of x;

[b initvar]; // use overriding ClassB method
[b printVar]; // reveal value of x;

[a release];

[b release];

[pool drain];
return 0;

You'll get this warning message when you build this program:

warning: 'ClassA' may not respond to '-printvar'

‘What happened here? We talked about this in an earlier section. Take a look at the dec-
laration for classa:

// ClassA declaration and definition

177

178 Chapter 8 Inheritance

@interface ClassA: NSObject
{

int x;

-(void) initvVar;
@end

Notice that no printvar method is declared. That method is declared and defined in
ClassB. Therefore, even though classB objects and their descendants can use this method
through inheritance, classa objects cannot because the method is defined farther down
in the hierarchy.

Note

You can coerce the use of this method in some ways, but we don’t go into that here—be-
sides, it’s not good programming practice.

Returning to our example, let’s add a printvar method to classa so you can display
the value of its instance variables:

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x;

-(void) initvar;
-(void) printVar;
@end

@implementation ClassA
-(void) initvar
{

x = 100;

-(void) printvar

{
NSLog (@"x = %i", x);

@end

ClassB’s declaration and definition remain unchanged. Let’s try compiling and running
this program again.

Overriding Methods 179

Program 8.7 Output

x = 100
x = 200

Now we can talk about the actual example. First, a and b are defined to be classa and
ClassB objects, respectively. After allocation and initialization, a message is sent to a asking
it to apply the initvar method.This method is defined in the definition of classa, so
this method is selected. The method simply sets the value of the instance variable x to 100
and returns. The printvar method, which you just added to classa, is invoked next to
display the value of x.

As with the classa object, the classB object b is allocated and initialized, its instance
variable x is set to 200, and finally its value displayed.

Be sure that you understand how the proper method is chosen for a and b based on
which class they belong to. This is a fundamental concept of object-oriented program-
ming in Objective-C.

As an exercise, consider removing the printvar method from classB. Would this
work? Why or why not?

Overriding the dealloc Method and the Keyword super

Now that you know how to override methods, let’s return to Program 8.5B to learn a
better approach to releasing the memory occupied by the origin.The setorigin:
method now allocates its own XYPoint origin object, and you are responsible for releas-
ing its memory. The approach used in Program 8.6 was to have main release that memory
with a statement such as follows:

[[myRect origin] release];

You don’t have to worry about releasing all the individual members of a class; you can
override the inherited dealloc method (it’s inherited from NSobject) and release the
origin’s memory there.

Note

You don’t override the release method—you override dealloc instead. As you'll learn in a
later chapter, release sometimes gives up the memory an object used, and sometimes it
doesn’t. It gives up the memory taken by an object only if no one else is referencing that ob-
ject. And it does this by invoking the object’s dealloc method, the method that actually re-
leases the memory.

If you decide to override dealloec, you also have to be sure to release the memory
taken up not only by your own instance variables, but by any inherited ones as well.

To do this, you need to take advantage of the special keyword super, which refers to the
parent class of the message receiver.You can send a message to super to execute an over-
ridden method. This is the most common use for this keyword. So the message expression

[super release];

180

Chapter 8 Inheritance

when used inside a method invokes the release method that is defined in (or inherited
by) the parent class. The method is invoked on the receiver of the message—in other
words, on self.

Therefore, the strategy for overriding the dealloc method for your Rectangle class is
to first release the memory taken up by your origin and then invoke the dealloc
method from the parent class to complete the job. This releases the memory taken up by
the Rectangle object itself. Here is the new method:

-(id) dealloc

{
if (origin)
[origin release];
return [super dealloc];
}

The dealloc method is defined to return a value of type id.You know this by looking
inside the header file <NSObject.h> where it is declared. Inside the dealloc method, a
test is made to see if origin is nonzero before releasing it. The origin of the rectangle
possibly was never set; in this case, it has its default value of zero. Then we invoke the
dealloc method from the parent class, which is the same method the Rectangle class
would have inherited if it had not been overridden.

You can also write the dealloc method more simply as

-(id) dealloc

{
[origin release];
return [super dealloc];

}

because it’s okay to send a message to a nil object. Also, you're careful to release origin
and not dealloc it here. If no one else is using the origin, the release will end up invok-
ing the dealloc method on the origin anyway to free up its space.

With your new method, you now have to release just the rectangles that you allocate,
without having to worry about the XYPoint objects they contain. The two release mes-
sages shown in Program 8.5 will now suffice to release all the objects you allocated in the
program, including the xYPoint object that setOrigin: creates:

[myRect release];
[myPoint release];

One issue remains: If you set the origin of a single Rectangle object to different values
during the execution of your program, you must release the memory taken up by the old
origin before you allocate and assign the new one. For example, consider the following
code sequence:

myRect.origin = startPoint;

Extension Through Inheritance: Adding New Instance Variables

myRect.origin = endPoint;
[startPoint release];
[endPoint release];
[myRect release];

The copy of the XYPoint startPoint stored in the origin member of myRect will
not be released because it is overwritten by the second origin (endPoint) that is stored
there. That origin is released properly when the rectangle itself is released, based on your
new release method.

You would have to ensure that, before you set a new origin in your rectangle, the old
one was released.You could handle this in the setorigin: method, as follows:

-(void) setOrigin: (XYPoint *) pt

{
if (origin)
[origin release];
origin = [[XYPoint alloc] init];
[origin setX: pt.x andY¥: pt.y];
}

Luckily, when you synthesize your accessor methods, you can also have the compiler
automatically handle this issue for you.

Extension Through Inheritance: Adding New
Instance Variables

Not only can you add new methods to effectively extend the definition of a class, but you
can also add new instance variables. In both cases, the effect is cumulative.You can never
subtract methods or instance variables through inheritance; you can only add—or, in the
case of methods, add or override.

Let’s return to your simple classa and ClassB classes and make some changes. Add a
new instance variable, y, to ClassB, like so:

@interface ClassB: ClassA

{
int y;

-(void) printvar;
@end

Even though classB might appear to have only one instance variable, called y, based
on the previous declaration, it actually has two: It inherits the variable x from classa and
adds its own instance variable y.

181

182 Chapter 8 Inheritance

Note

Of course, it also has instance variables that it inherits from the NSObject class, but we
choose to ignore this detail for now.

Let’s put this together in a simple example to illustrate this concept (see Program 8.8).

Program 8.8

// Extension of instance variables

#import <Foundation/Foundation.h>
// Class A declaration and definition

@interface ClassA: NSObject
{

int x;

-(void) initvar;
@end

@implementation ClassA
-(void) initVar
{
x = 100;
}
@end

// ClassB declaration and definition

@interface ClassB: ClassA
{
int y;
}
-(void) initvar;
-(void) printvar;
@end

@implementation ClassB
-(void) initVar
{
x = 200;
300;

~
]

-(void) printvar

{

Abstract Classes

NSLog (@"x = %i", x);
NSLog (@'y = %i", y);
}
@end

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
ClassB *b = [[ClassB alloc] init];
[b initVar ; // uses overriding method in ClassB
[b printVar]; // reveal values of x and y;
[b release];
[pool drain];
return 0;
}

Program 8.8 Output

x = 200
y = 300

The classB object b is initialized by invoking the initvar method defined within
ClassB. Recall that this method overrides the initvar method from classa.This
method also sets the value of x (which was inherited from classa) to 200 and y (which
was defined in classB) to 300. Next, the printvar method is used to display the value
of these two instance variables.

Many more subtleties surround the idea of choosing the right method in response to a
message, particularly when the receiver can be one of several classes. This is a powerful
concept known as dynamic binding, and it is the topic of the next chapter.

Abstract Classes

What better way to conclude this chapter than with a bit of terminology? We introduce it
here because it’s directly related to the notion of inheritance.

Sometimes classes are created just to make it easier for someone to create a subclass.
For that reason, these classes are called abstract classes or, equivalently, abstract superclasses.
Methods and instance variables are defined in the class, but no one is expected to actually
create an instance from that class. For example, consider the root object Nsobject. Can
you think of any use for defining an object from that class?

The Foundation framework, covered in Part II,“The Foundation Framework,” has
several of these so-called abstract classes. As an example, the Foundation’s NSNumber class
is an abstract class that was created for working with numbers as objects. Integers and

183

184

Chapter 8 Inheritance

floating-point numbers typically have different storage requirements. Separate subclasses
of NSNumber exist for each numeric type. Because these subclasses, unlike their abstract

superclasses, actually exist, they are known as concrete subclasses. Each concrete subclass falls

under the NSNumber class umbrella and is collectively referred to as a cluster. When you

send a message to the NSNumber class to create a new integer object, the appropriate sub-

class is used to allocate the necessary storage for an integer object and to set its value ap-

propriately. These subclasses are actually private.You don’t access them directly yourself;

they are accessed indirectly through the abstract superclass. The abstract superclass gives a

common interface for working with all types of number objects and relieves you of the
burden of having to know which type of number you have stored in your number object

and how to set and retrieve its value.
Admittedly, this discussion might seem a little “abstract” (sorry!); don’t worry—just a
basic grasp of the concept is sufficient here.

Exercises

1.

Add a new class called classc, which is a subclass of classB, to Program 8.1.
Make an initvar method that sets the value of its instance variable x to 300. Write
a test routine that declares classa, ClassB, and ClassC objects and invokes their
corresponding initvar methods.

When dealing with higher-resolution devices, you might need to use a coordinate
system that enables you to specify points as floating-point values instead of as sim-
ple integers. Modify the xYPoint and Rectangle classes from this chapter to deal
with floating-point numbers. The rectangle’s width, height, area, and perimeter
should all work with floating-point numbers as well.

Modify Program 8.1 to add a new class called classB2 that, like classB, is a sub-

class of ClassA.
What can you say about the relationship between classB and classB2?

Identify the hierarchical relationship between the object class, Classa, classB, and
ClassB2.

What is the superclass of classB?

What is the superclass of classB2?

How many subclasses can a class have, and how many superclasses can it have?

Write a Rectangle method called translate: that takes a vector called XYPoint
(X,s ¥y) as its argument. Have it translate the rectangle’s origin by the specified vector.

Define a new class called GraphicObject, and make it a subclass of NSObject. De-
fine instance variables in your new class as follows:

int fillColor; // 32-bit color

BOOL filled; // Is the object filled?

int lineColor; // 32-bit line color

Exercises

Write methods to set and retrieve the variables defined previously.

Make the Rectangle class a subclass of GraphicObject.

Define new classes, circle and Triangle, which are also subclasses of
GraphicObject. Write methods to set and retrieve the various parameters for these
objects and also to calculate the circle’s circumference and area, and the triangle’s
perimeter and area.

. Write a Rectangle method called intersect: that takes a rectangle as an argu-
ment and returns a rectangle representing the overlapping area between the two
rectangles. For example, given the two rectangles shown in Figure 8.10, the method
should return a rectangle whose origin is at (400, 420), whose width is 50, and
whose height is 60.

w =250

h=75
—
(200, 420) h=180

(400,300) w =100

Figure 8.10 Intersecting rectangles

If the rectangles do not intersect, return one whose width and height are zero and
whose origin is at (0,0).

. Write a method for the Rectangle class called draw that draws a rectangle using
dashes and vertical bar characters. The following code sequence

Rectangle *myRect = [[Rectangle alloc] init];
[myRect setWidth: 10 andHeight: 3];

[myRect draw];

[myRect release];

would produce the following output:

|

185

9

Polymorphism, Dynamic
Typing, and Dynamic Binding

n this chapter, you’ll learn about the features of the Objective-C language that make it
such a powerful programming language and that distinguish it from some other object-
oriented programming languages such as C++.This chapter describes three key concepts:
polymorphism, dynamic typing, and dynamic binding. Polymorphism enables programs to
be developed so that objects from different classes can define methods that share the same
name. Dynamic typing defers the determination of the class that an object belongs to until
the program is executing. Dynamic binding defers the determination of the actual method
to invoke on an object until program execution time.

Polymorphism: Same Name, Different Class

Program 9.1 shows the interface file for a class called complex, which is used to represent
complex numbers in a program.

Program 9.1 Interface File Complex.h

// Interface file for Complex class

#import <Foundation/Foundation.h>

@interface Complex: NSObject

{

double real;
double imaginary;

}

@property double real, imaginary;

- (void) print;
- (void) setReal: (double) a andImaginary: (double) b;
- (Complex *) add: (Complex *) f;

@end

188

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

You should have completed the implementation section for this class in Exercise 6
from Chapter 4, “Data Types and Expressions.” We added an additional
setReal:andImaginary: method to enable you to set both the real and imaginary parts
of your number with a single message and also synthesized accessor methods. This is
shown in the following.

Program 9.1 Implementation File Complex.m

// Implementation file for Complex class

#import "Complex.h"
@implementation Complex
@synthesize real, imaginary;
- (void) print

NSLog (@" %g + %gi ", real, imaginary);

- (void) setReal: (double) a andImaginary: (double) b
real = a;
imaginary = b;
- (Complex *) add: (Complex *) f
Complex *result = [[Complex alloc] init];

[result setReal: real + [f reall
andImaginary: imaginary + [f imaginaryl];

return result;

}

@end

Program 9.1 Test Program main.m

// Shared Method Names: Polymorphism

#import "Fraction.h"
#import "Complex.h"

int main (int argc, char *argv(])

{

Polymorphism: Same Name, Different Class

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *fl = [[Fraction alloc] init];

Fraction *f2 = [[Fraction alloc] init];

Fraction *fracResult;

Complex *cl = [[Complex alloc] init];

Complex *c2 = [[Complex alloc] init];

Complex *compResult;

[f1 setTo: 1 over: 10];
[f2 setTo: 2 over: 15];

[cl setReal: 18.0 andImaginary: 2.5];
[c2 setReal: -5.0 andImaginary: 3.2];

// add and print 2 complex numbers

[cl print]; NSLog (e" +"); [c2 print];
NSLog (@"--------- ")

compResult = [cl add:
[compResult print];
NSLog (@"\n");

c2];

[cl release];
[c2 release];
[compResult release];

// add and print 2 fractions

[f1 print]; NSLog (@" +"); [f2 print];
NSLog (@"----");

fracResult = [fl add: f2];

[fracResult print];

[f1 release];
[f2 release];
[fracResult release];

[pool drain];
return 0;

189

190

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Program 9.1 Output

18 + 2.51

13 + 5.71

1/10
+
2/15

7/30

Note that both the Fraction and Complex classes contain add: and print methods.
So when executing the message expressions

compResult = [cl add: c2];
[compResult print];

how does the system know which methods to execute? It’s simple: The Objective-C run-
time knows that c1, the receiver of the first message, is a Complex object. Therefore, it se-
lects the add: method defined for the Complex class.

The Objective-C runtime system also determines that compResult is a Complex ob-
ject, so it selects the print method defined in the complex class to display the result of
the addition. The same discussion applies to the following message expressions:

fracResult = [f1 add: f2];
[fracResult print];

Note

As described more completely in Chapter 13, “Underlying Language Features,” the system
always carries information about the class to which an object belongs. This enables it to
make these key decisions at runtime instead of at compile time.

The corresponding methods from the Fraction class are chosen to evaluate the mes-
sage expression based on the class of £1 and fracResult.

As mentioned, the capability to share the same method name across different classes is
known as polymorphism. Polymorphism enables you to develop a set of classes that each
can respond to the same method name. Each class definition encapsulates the code needed
to respond to that particular method, and this makes it independent of the other class defi-
nitions. This also enables you to later add new classes that can respond to methods with
the same name.

Dynamic Binding and the id Type

Note

Before leaving this section, note that both the Fraction and Complex classes should be re-
sponsible for releasing the results that are produced by their add : methods, and not the
test program. In fact, these objects should be autoreleased. We'll talk about that more in
Chapter 18, “Copying Objects.”

Dynamic Binding and the id Type

Chapter 4 briefly touched on the id data type and noted that it is a generic object type.
That is, id can be used for storing objects that belong to any class. The real power of this
data type is exploited when it’s used this way to store different types of objects in a vari-
able during the execution of a program. Study Program 9.2 and its associated output.

Program 9.2

// Illustrate Dynamic Typing and Binding

#import "Fraction.h"
#import "Complex.h"

int main (int argc, char *argvl(])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
id dataValue;
Fraction *fl = [[Fraction alloc] init];

Complex *cl = [[Complex alloc] init];

[f1 setTo: 2 over: 5];
[cl setReal: 10.0 andImaginary: 2.5];

// first dataValue gets a fraction

datavValue = f1;
[dataValue print];

// now dataValue gets a complex number

datavValue = cl;
[datavalue print];

[cl release];
[f1 release];

[pool drain];
return 0;

191

192

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Program 9.2 Output

2/5
10 + 2.51

The variable datavalue is declared as an id object type. Therefore, datavalue can be
used to hold any type of object in the program. Note that no asterisk is used in the decla-
ration line:

id dataValue;

The Fraction £1 is set to 2/5, and the Complex number c2 isset to (10 + 2.5i).
The assignment

datavalue = f1;

stores the Fraction f1 in datavalue. Now, what can you do with datavalue? Well, you
can invoke any of the methods that you can use on a Fraction object with datavalue,
even though the type of datavalue is an id and not a Fraction. But if datavalue can
store any type of object, how does the system know which method to invoke? That s,
when it encounters the message expression

[dataValue print];

how does it know which print method to invoke? You have print methods defined for
both the Fraction and complex classes.

As noted previously, the answer lies in the fact that the Objective-C system always
keeps track of the class to which an object belongs. It also lies in the concepts of dynamic
typing and dynamic binding—that is, the system makes the decision about the class of the
object, and, therefore, which method to invoke dynamically, at runtime instead of at com-
pile time.

So during execution of the program, before the system sends the print message to
datavalue, it first checks the class of the object stored inside datavalue. In the first case
of Program 9.2, this variable contains a Fraction, so the print method defined in the
Fraction class is used. This is verified by the output from the program.

In the second case, the same thing happens. First, the complex number c1 is assigned to
datavalue. Next, the following message expression is executed:

[dataValue print];

This time, because datavalue contains an object belonging to the complex class, the
corresponding print method from that class is selected for execution.

This is a simple example, but you can extrapolate this concept to more sophisticated
applications. When combined with polymorphism, dynamic binding and dynamic typing
enable you to easily write code that can send the same message to objects from different
classes.

For example, consider a draw method that can be used to paint graphical objects on
the screen.You might have different draw methods defined for each of your graphical ob-
jects, such as text, circles, rectangles, windows, and so on. If the particular object to be

Compile Time Versus Runtime Checking

drawn is stored inside an id variable called currentobject, for example, you could paint
it on the screen simply by sending it the draw message:

[currentObject draw];

You could even test it first to ensure that the object stored in currentobject actually
responds to a draw method.You’ll see how to do that later in this chapter, in the section
called “Asking Questions About Classes.”

Compile Time Versus Runtime Checking

Because the type of object s ored inside an id variable can be indeterminate at compile
time, some tests are deferred until runtime—that is, while the program is executing.
Consider the following sequence of code:

Fraction *fl = [[Fraction alloc] init];
[f1 setReal: 10.0 andImaginary: 2.5 ;

Recalling that the setReal:andImaginary: method applies to complex numbers and
not fractions, the following message is issued when you compile the program containing
these lines:

prog3.m: In function 'main':
prog3.m:13: warning: 'Fraction' does not respond to 'setReal:andImaginary:'

The Objective-C compiler knows that £1 is a Fraction object because it has been de-
clared that way. It also knows that when it sees the message expression

[f1 setReal: 10.0 andImaginary: 2.5];

the Fraction class does not have a setReal:andImaginary: method (and did not inherit
one, either). Therefore, it issues the warning message shown previously.
Now consider the following code sequence:

id dataValue = [[Fraction alloc] init];

[dataValue setReal: 10.0 andImaginary: 2.5];

These lines do not produce a warning message from the compiler because the com-
piler doesn’t know what type of object is stored inside datavalue when processing your
source file.

No error message is reported until you run the program containing these lines. The er-
ror looks something like this:
objc: Fraction: does not recognize selector -setReal:andImaginary:
dynamic3: received signal: Abort trap
When attempting to execute the expression
[dataValue setReal: 10.0 andImaginary: 2.5];

The runtime system first checks the type of object stored inside datavalue. Because
datavalue has a Fraction stored in it, the runtime system checks to ensure that the

193

194

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

method setReal:andImaginary: is one of the methods defined for the class Fraction.
Because it’s not, the error message shown previously is issued and the program is termi-
nated.

The id Data Type and Static Typing

If an id data type can be used to store any object, why don’t you just declare all your ob-
jects as type id? For several reasons, you don’t want to get into the habit of overusing this
generic class data type.

First, when you define a variable to be an object from a particular class, you are using
what’s known as static typing. The word static refers to the fact that the variable is always
used to store objects from the particular class. So the class of the object stored in that type
is predeterminate, or static. When you use static typing, the compiler ensures, to the best of
its ability, that the variable is used consistently throughout the program.The compiler can
check to ensure that a method applied to an object is defined or inherited by that class; if
not, it issues a warning message. Thus, when you declare a Rectangle variable called
myRect in your program, the compiler checks that any methods you invoke on myRect are
defined in the Rectangle class or are inherited from its superclass.

Note

Certain techniques make it possible to invoke methods that are specified by a variable, in
which case the compiler can’t check that for you.

However, if the check is performed for you at runtime anyway, why do you care about
static typing? You care because it’s better to get your errors out during the compilation
phase of your program than during the execution phase. If you leave it until runtime, you
might not even be the one running the program when the error occurs. If your program
is put into production, some poor unsuspecting user might discover when running the
program that a particular object does not recognize a method.

Another reason for using static typing is that it makes your programs more readable.
Consider the following declaration:

id f1;

versus

Fraction *f1;

Which do you think is more understandable—that is, which makes the intended use of
the variable £1 clearer? The combination of static typing and meaningful variable names

(which we intentionally did not choose in the previous example) can go a long way to-
ward making your program more self~-documenting.

Asking Questions About Classes

Argument and Return Types with Dynamic Typing

If you use dynamic typing to invoke a method, note the following rule: If a method with
the same name is implemented in more than one of your classes, each method must agree
on the type of each argument and the type of value it returns so that the compiler can
generate the correct code for your message expressions.

The compiler performs a consistency check among each class declaration it has seen. If
one or more methods conflict in either argument or return type, the compiler issues a
warning message. For example, both the Fraction and complex classes contain add:
methods. However, the Fraction class takes as its argument and returns a Fraction object,
whereas the complex class takes and returns a Complex object. If fracl and myFract are
Fraction objects, and compl and myComplex are Complex objects, statements such as

result = [myFract add: fracl];
and
result = [myComplex add: compl];

do not cause any problems This is because, in both cases, the receiver of the message is
statically typed and the compiler can check for consistent use of the method as it is de-
fined in the receiver’s class.

If datavaluel and datavalue2 are id variables, the statement

result = [dataValuel add: dataValue2];

causes the compiler to generate code to pass the argument to an add: method and handle
its returned value by making assumptions.

At runtime, the Objective-C runtime system will check the actual class of the object
stored inside datavaluel and select the appropriate method from the correct class to ex-
ecute. However, in a more general case, the compiler might generate the incorrect code
to pass arguments to a method or handle its return value. This would happen if one
method took an object as its argument and the other took a floating-point value, for ex-
ample. Or if one method returned an object and the other returned an integer, for exam-
ple. If the inconsistency between two methods is just a different type of object (for
example, the Fraction’s add: method takes a Fraction object as its argument and re-
turns one, and the complex’s add: method takes and returns a Complex object), the com-
piler will still generate the correct code because memory addresses (that is, pointers) are
passed as references to objects anyway.

Asking Questions About Classes

As you start working with variables that can contain objects from different classes, you
might need to ask questions such as the following:

= s this object a rectangle?

= Does this object support a print method?

= s this object a member of the Graphics class or one of its descendants?

195

196

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

You can then use the answers to these questions to execute different sequences of code,
avoid an error, or check the integrity of your program while it’s executing.

Table 9.1 summarizes some of the basic methods that the object class supports for ask-
ing these types of questions. In this table, cZass-obsect is a class object (typically gener-
ated with the class method), and selector is a value of type SEL (typically created with
the eselector directive).

Table 9.1 Methods for Working with Dynamic Types
Method Question or Action

- (BOOL) isKindOfClass: class-object Is the object a member of cZass-object or
a descendant?

- (BOOL) isMemberOfClass: Is the object a member of ciass-object?
class-object

- (BOOL) respondsToSelector: Can the object respond to the method speci-
selector fied by selector?

+(BOOL) instancesRespondToSelector: Can instances of the specified class respond
selector to selector?

+ (BOOL) isSubclassOfClass: Is the object a subclass of the specified
class-object class?

- (id) performSelector: selector Apply the method specified by selector.

- (id) performSelector: Apply the method specified by sezector,
selector withObject: object passing the argument object.

- (id) performSelector: Apply the method specified by seZector with
selector withObject: objectl the arguments object: and object2.

withObject: objectz

Other methods are not covered here. One enables you to ask whether an object con-
forms to a protocol (see Chapter 11, “Tying Up Some Loose Ends”). Others enable you to
ask about dynamically resolving methods (not covered in this text).

To generate a class object from a class name or another object, you send it the class
message. So to get a class object from a class named square, you write the following:

[Square class]
If mySquare is an instance of Square object, you get its class by writing this:
[mySquare class]

To see whether the objects stored in the variables obj1 and obj2 are instances from the

same class, you write this:

if ([objl class] == [obj2 class])

Asking Questions About Classes

To see if my Fraction class, you test the result from the expression, like this:

[myFract isMemberOfClass: [Fraction class]]

To generate one of the so-called selectors listed in Table 9.1, you apply the eselector
directive to a method name. For example, the following produces a value of type SEL for
the method named alloc, which you know is a method inherited from the NSObject
class:

@selector (alloc)

The following expression produces a selector for the setTo:over: method that you
implemented in your Fraction class (remember those colon characters in the method
names):

@selector (setTo:over:)

To see whether an instance of the Fraction class responds to the setTo:over:
method, you can test the return value from the expression, like this:

[Fraction instancesRespondToSelector: @selector (setTo:over:)

Remember, the test covers inherited methods, not just one that is directly defined in
the class definition.

The performselector: method and its variants (not shown in Table 9.1) enable you
to send a message to an object, where the message can be a selector stored inside a vari-
able. For example, consider this code sequence:

SEL action;
id graphicObject;

action = @selector (draw);

[graphicObject performSelector: action];

In this example, the method indicated by the SEL variable action is sent to whatever
graphical object is stored in graphicobject. Presumably, the action might vary during
program execution—perhaps based on the user’s input—even though we’ve shown the
action as draw. To first ensure that the object can respond to the action, you might want to
use something like this:

if ([graphicObject respondsToSelector: action] == YES)
[graphicObject perform: action]

else
// error handling code here

197

198 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Note

You can also catch an error by overriding the doesNotRecognize: method. This method is
invoked whenever an unrecognized message is sent to a class and is passed the unrecog-
nized selector as its argument.

You can employ other strategies as well:You can forward the message to someone else
to handle using the forward: : method, or you can try to send the method anyway and
catch an exception if it occurs. We cover this latter technique shortly.

Program 9.3 asks some questions about the Square and Rectangle classes defined in
Chapter 8, “Inheritance.” Try to predict the results from this program before looking at
the actual output (no peeking!).

Program 9.3

#import "Square.h"

int main (int argc, char *argv(])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Square *mySquare = [[Square alloc] init];

// isMemberOf :

if ([mySquare isMemberOfClass: [Square class]] == YES)
NSLog (@"mySquare is a member of Square class");

if ([mySquare isMemberOfClass: [Rectangle class]] == YES)
NSLog (@"mySquare is a member of Rectangle class");

if ([mySquare isMemberOfClass: [NSObject class]] == YES)
NSLog (@"mySquare is a member of NSObject class");

// isKindOf:

if ([mySquare isKindOfClass: [Square class]] == YES)
NSLog (@"mySquare is a kind of Square");

if ([mySquare isKindOfClass: [Rectangle class]] == YES
NSLog (@"mySquare is a kind of Rectangle");

if ([mySquare isKindOfClass: [NSObject class]] == YES

//

if

if

if

/!

if

if

if

Asking Questions About Classes

NSLog (@"mySquare is a kind of NSObject");
respondsTo:

([mySquare respondsToSelector: @selector (setSide:)] == YES)
NSLog (@"mySquare responds to setSide: method") ;

([mySquare respondsToSelector: @selector (setWidth:andHeight:)] == YES)
NSLog (@"mySquare responds to setWidth:andHeight: method");

([Square respondsToSelector: @selector (alloc)] == YES)
NSLog (@"Square class responds to alloc method");

instancesRespondTo:

([Rectangle instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@"Instances of Rectangle respond to setSide: method");

([Square instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@"Instances of Square respond to setSide: method") ;

([Square isSubclassOfClass: [Rectangle class]] == YES)
NSLog (@"Square is a subclass of a rectangle");

[mySquare releasel];

[pool drain];
return 0;

Make sure you build this program with the implementation files for the square,

Rectangle, and xyPoint classes, which were all presented in Chapter 8, “Inheritance.”

Program 9.3 Output

mySquare is a member of Square class

mySquare is a kind of Square

mySquare is a kind of Rectangle

mySquare is a kind of NSObject

mySquare responds to setSide: method

mySquare responds to setWidth:andHeight: method
Square class responds to alloc method

Instances of Square respond to setSide: method

Square is a subclass of a rectangle

The output from Program 9.3 should be clear. Remember that isMemberofClass:

tests for direct membership in a class, whereas iskindofcClass: checks for membership in

199

200

Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

the inheritance hierarchy. Thus, mySquare is a member of the Square class—but it’s also
“kind of” a Square, Rectangle, and NSObject because it exists in that class hierarchy
(obviously, all objects should return YES for the isKindof: test on the NSObject class,
unless you've defined a new root object).

The test

if ([Square respondsTo: @selector (alloc)] == YES)

tests whether the class square responds to the class method alloc, which it does because
it’s inherited from the root object Nsobject. Realize that you can always use the class
name directly as the receiver in a message expression, and you don’t have to write this in
the previous expression (although you could if you wanted):

[Square class]

That’s the only place you can get away with that. In other places, you need to apply
the class method to obtain the class object.

Exception Handling Using Qtry

Good programming practice dictates that you try to anticipate problems that can occur in
your program.You can do this by testing for conditions that could cause a program to ter-
minate abnormally and handling these situations, perhaps by logging a message and grace-
fully terminating the program or taking some other corrective action. For example, you
saw earlier in this chapter how you can test to see if an object responds to a particular
message. In the case of error avoidance, performing this test while the program is execut-
ing can enable you to avoid sending an unrecognized message to an object. When an at-
tempt is made to send such an unrecognized message, your program will typically
terminate immediately by throwing what’s known as an exception.

Take a look at Program 9.4. We have no method called nosuchMethod defined in
the Fraction class. When you compile the program, you will get warning messages to
that effect.

Program 9.4

#import "Fraction.h"

int main (int argc, char *argv [])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *f = [[Fraction alloc] init];

[f noSuchMethod] ;

NSLog (@"Execution continues!");

[f release];

[pool drain];

return 0;

Exception Handling Using @try 201

You can go ahead and run the program despite the warning messages you receive. If
you do, you can expect to see your program terminate abnormally with errors similar to
these:

Program 9.4 Output

- [Fraction noSuchMethod] : unrecognized selector sent to instance 0x103280
**% Terminating app due to uncaught exception 'NSInvalidArgumentException',
reason: '*** -[Fraction noSuchMethod]: unrecognized selector sent
to instance 0x103280'

Stack: (

2482717003,

2498756859,

2482746186,

2482739532,

2482739730
)

Trace/BPT trap

To avoid abnormal program termination in a case such as this, you can put one or
more statements inside a special statement block, which takes the following format:
etry {

Sstatement
Statement

@catch (NSException *exception) {
statement
statement

Execution proceeds as normal with each statement in the etry block. However, if one
of the statements in the block throws an exception, execution is not terminated but in-
stead goes immediately to the ecatch block, where it continues. Inside that block, you
can handle the exception. One plausible sequence of actions here would be to log an er-
ror message, clean up, and terminate execution.

Program 9.5 illustrates exception handling. It is followed by the program’s output.

Program 9.5 Exception Handling

#import "Fraction.h"

int main (int argc, char *argv [])

{

202 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *f = [[Fraction alloc] init];
etry {

[f noSuchMethod] ;

}
@catch (NSException *exception) {

NSLog (@"Caught %@%@", [exception name], [exception reason]);
}

NSLog (@"Execution continues!");
[f release];

[pool drain];

return 0;

Program 9.5 Output

x - [Fraction noSuchMethod]: wunrecognized selector sent to instance 0x103280
Caught NSInvalidArgumentException: *** -[Fraction noSuchMethod] :
unrecognized selector sent to instance 0x103280

Execution continues!

When the exception occurs, the @catch block gets executed. An NSException object
that contains information about the exception gets passed as the argument into this
block. As you can see, the name method retrieves the name of the exception, and the
reason method gives the reason (which the runtime system also previously printed auto-
matically).

After the last statement in the @catch block is executed (we have only one here), the
program continues execution with the statement immediately following the block. In this
case, we execute an NSLog call to verify that execution has continued and has not been
terminated.

This is a very simple example to illustrate how to catch exceptions in a program. An
@finally block can be used to include code to execute whether or not a statement in a
etry block throws an exception.

An ethrow directive enables you to throw your own exception.You can use it to
throw a specific exception, or inside a @catch block to throw the same exception that
took you into the block like this:

@throw;

You might want to do this after handling an exception yourself (perhaps after per-
forming cleanup work, for example).You can then let the system handle the rest of the
work for you. Finally, you can have multiple ecatch blocks that are sequenced to catch
and handle different type of exceptions.

Exercises 203

Exercises

1. What will happen if you insert the message expression
[compResult reducel;
into Program 9.1 after the addition is performed (but before compResult is re-
leased)? Try it and see.

2. Can the id variable datavalue, as defined in Program 9.2, be assigned a Rectangle
object as you defined it in Chapter 8? That is, is the statement
dataValue = [[Rectangle alloc] init];

valid? Why or why not?

3. Add a print method to your xyPoint class defined in Chapter 8. Have it display
the point in the format (x, y). Then modify Program 9.2 to incorporate an XYPoint
object. Have the modified program create an XyPoint object, set its value, assign it
to the id variable datavalue, and then display its value

4. Based on the discussions about argument and return types in this chapter, modify
both add: methods in the Fraction and Complex classes to take and return id ob-
jects. Then write a program that incorporates the following code sequence:

result = [dataValuel add: dataValue2];
[result print];

Here, result, datavaluel, and datavalue2 are id objects. Make sure you set
datavaluel and datavalue2 appropriately in your program and release all objects
before your program terminates.

5. Given the Fraction and Complex class definitions you have been using in this text
and the following definitions

Fraction *fraction = [[Fraction alloc] init];
Complex *complex = [[Complex alloc] init];
id number = [[Complex alloc] init];

determine the return value from the following message expressions. Then type
them into a program to verify the results.

[fraction isMemberOfClass: [Complex class]];

[complex isMemberOfClass: [NSObject classl];

[complex isKindOfClass: [NSObject class]];

[fraction isKindOfClass: [Fraction class]];

[fraction respondsToSelector: @selector (print)];
[complex respondsToSelector: @selector (print)];
[Fraction instancesRespondToSelector: @selector (print)];
[number respondsToSelector: @selector (print)];

[number isKindOfClass: [Complex class]];

[number respondsToSelector: @selector (release)];

[[number class] respondsToSelector: @selector (alloc)];

204 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

6. Modify the calculator class you developed in the exercise from Chapter 4 so that
division is done in an etry block. If the division throws an exception, log an error
message and continue program execution.

10

More on Variables
and Data Types

n this chapter, we go into more detail about variable scope, initialization methods for
objects, and data types.

The initialization of an object deserves some special attention, which we give it here.

We talked briefly about the scope of instance variables as well as static and local vari-
ables in Chapter 7,“More on Classes.” We talk more about static variables here and intro-
duce the concept of global and external ones. In addition, you can give certain directives
to the Objective-C compiler, to more precisely control the scope of your instance vari-
ables. We cover these directives in this chapter as well.

An enumerated data type enables you to define the name for a data type to be used only
to store a specified list of values. The Objective-C language’s typedef statement lets you
assign your own name to a built-in or derived data type. Finally, in this chapter, we de-
scribe in more detail the precise steps the Objective-C compiler follows when converting
data types in the evaluation of expressions.

Initializing Classes

You've seen the pattern before:You allocate a new instance of an object and then initialize
it, using a familiar sequence like this:

Fraction *myFract = [[Fraction alloc] init];

After these two methods are invoked, you typically assign some values to the new ob-
ject, like this:
[myFract setTo: 1 over: 3];

The process of initializing an object followed by setting it to some initial values is of-
ten combined into a single method. For example, you can define an initwith:: method

that initializes a fraction and sets its numerator and denominator to the two (unnamed)
supplied arguments.

206

Chapter 10 More on Variables and Data Types

A class that contains many methods and instance variables in it commonly has several
initialization methods as well. For example, the Foundation framework’s NsArray class
contains the following six initialization methods:
initWithArray:
initWithArray:copyItems:
initWithContentsOfFile:
initWithContentsOfURL:
initWithObjects:
initWithObjects:count:

An array might be allocated and then initialized with a sequence like this:

myArray = [[NSArray alloc] initWithArray: myOtherArray];

It’s common practice for all the initializers in a class to begin with init....As you
can see, the NSArray’s initializers follow that convention.You should adhere to the follow-
ing two strategies when writing initializers.

If your class contains more than one initializer, one of them should be your designated
initializer and all the other initialization methods should use it. Typically, that is your most
complex initialization method (usually, the one that takes the most arguments). Creating a
designated initializer centralizes your main initialization code in a single method. Anyone
subclassing your class can then override your designated initializer, to ensure that new in-
stances are properly initialized.

Ensure that any inherited instance variables get properly initialized. The easiest way to
do that is to first invoke the parent’s designated initialization method, which is most often
init.After that, you can initialize your own instance variables.

Based on that discussion, your initialization method initWith:: for your Fraction
class might look like this:

-(Fraction *) initWith: (int) n: (int) d
{

self = [super init];

if (self)
[self setTo: n over: dj;

return self;

This method invokes the parent initializer first, which is NSObject’s init method (re-
call that this is Fraction’s parent).You must assign the result back to self because an ini-
tializer has the right to change or move the object in memory.

Following the initialization of super (and its success, as indicated by the return of a
nonzero value) you use the setTo:over: method to set the numerator and denominator
of your Fraction. As with other initialization methods, you are expected to return the
initialized object, which you do here.

Scope Revisited

Program 10.1 tests your new initWith:: initialization method.

Program 10.1

#import "Fraction.h"

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *a, *b;

a
b

[[Fraction alloc] initWith: 1: 3];
[[Fraction alloc] initWith: 3: 7];

[a print];
[b print];

[a release];
[b release];

[pool drain];
return 0;

Program 10.1 Output

1/3
3/7

When your program begins execution, it sends the initialize call method to all your
classes. If you have a class and associated subclasses, the parent class gets the message first.
This message is sent only once to each class, and it is guaranteed to be sent before any
other messages are sent to the class. The purpose is for you to perform any class initializa-
tion at that point. For example, you might want to initialize some static variables associ-
ated with that class at that time.

Scope Revisited

You can influence the scope of the variables in your program in several ways.You can do
this with instance variables as well as with normal variables defined either outside or in-
side functions. In the following discussion, we use the term module to refer to any number
of method or function definitions contained within a single source file.

207

208

Chapter 10 More on Variables and Data Types

Directives for Controlling Instance Variable Scope

You know by now that instance variables have scope that is limited to the instance meth-
ods defined for the class. So any instance method can access its instance variables directly
by name, without having to do anything special.

You also know that instance variables are inherited by a subclass. Inherited instance
variables can also be accessed directly by name from within any method defined in that
subclass. Again, this is without having to do anything special.

You can put four directives in front of your instance variables when they are declared
in the interface section, to more precisely control their scope:

= @protected—Methods defined in the class and any subclasses can directly access
the instance variables that follow. This is the default case.

= @private—Methods defined in the class can directly access the instance variables
that follow, but subclasses cannot.

= @public—Methods defined in the class and any other classes or modules can di-
rectly access the instance variables that follow.

= @package—For 64-bit images, the instance variable can be accessed anywhere
within the image that implements the class.

If you wanted to define a class called Printer that kept two instance variables, called
pageCount and tonerLevel private, and was accessible only by methods in the Printer
class, you might use an interface section that looks like this:

@interface Printer: NSObject

{
@private
int pageCount;
int tonerLevel;
@protected
// other instance variables

}

@end

Anyone subclassing Printer would be incapable of accessing these two instance vari-
ables because they were made private.

These special directives act like “switches”; all variables that appear after one of these
directives (until the right curly brace that marks the end of the variable declarations) have
the specified scope unless another directive is used. In the previous example, the
@protected directive ensures that instance variables that follow, up to the }, will be acces-
sible by subclasses and by the Printer class methods.

The @public directive makes instance variables accessible by other methods or func-
tions through the use of the pointer operator (->), which is covered in Chapter 13,“Un-
derlying C Language Features.” Making an instance variable public is not considered

Scope Revisited

good programming practice because it defeats the concept of data encapsulation (that is, a
class hiding its instance variables).

External Variables
If you write the statement

int gMoveNumber = 0;

at the beginning of your program—outside any method, class definition, or function—its
value can be referenced from anywhere in that module. In such a case, we say that
gMoveNumber is defined as a global variable. By convention, a lowercase g is commonly
used as the first letter of a global variable, to indicate its scope to the program’s reader.

Actually, this same definition of the variable gMoveNumber also makes its value accessi-
ble from other files. Specifically, the preceding statement defines the variable
gMoveNumber not just as a global variable, but as an external global variable.

An external variable is one whose value can be accessed and changed by any other
methods or functions. Inside the module that wants to access the external variable, the
variable is declared in the normal fashion and the keyword extern is placed before the
declaration. This signals to the system that a globally defined variable from another file is
to be accessed. The following is an example of how to declare the variable gMoveNumber
as an external variable:

extern int gMoveNumber;

The module in which the preceding declaration appeared can now access and modify
the value of gMoveNumber. Other modules can also access the value of gMoveNumber by
using a similar extern declaration in the file.

Consider this important rule to follow when working with external variables: The
variable must be defined someplace among your source files. This is done by declaring
the variable outside any method or function and is not preceded by the keyword extern,
like this:

int gMoveNumber;

Here, an initial value can be optionally assigned to the variable, as shown previously.

The second way to define an external variable is to declare the variable outside any
function, placing the keyword extern in front of the declaration and explicitly assigning
an initial value to it, like this:

extern int gMoveNumber = 0;

However, this is not the preferred way to do this, and the compiler warns you that
you’ve declared the variable extern and assigned it a value at the same time. That’s be-
cause using the word extern makes it a declaration for the variable, not a definition. Re-
member, a declaration doesn’t cause storage for a variable to be allocated, but a definition
does. The previous example violates this rule by forcing a declaration to be treated as a
definition (by assigning it an initial value).

209

210

Chapter 10 More on Variables and Data Types

When dealing with external variables, you can declare a variable as extern in many
places, but you can define it only once.

Consider a small program example to illustrate the use of external variables. Suppose
we have defined a class called Foo, and we type the following code into a file called

main.m:

#import "Foo.h"

int gGlobalvar = 5;

int main (int argc, char *argc[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Foo *myFoo = [[Foo alloc] init];
NSLog (@"$i ", gGlobalvar);

[myFoo setgGlobalVar: 100]
NSLog (@"$i", gGlobalVar);
[myFoo release];

[pool drain];

return 0;

The definition of the global variable gGlobalvar in the previous program makes its
value accessible by any method (or function) that uses an appropriate extern declaration.
Suppose your Foo method setgGlobalvar: looks like this:

-(void) setgGlobalvVar: (int) val
{

extern int gGlobalVar;
gGlobalvar = val;

This program would produce the following output:

5
100

This would verify that the method setgGlobalvar: is capable of accessing and chang-
ing the value of the external variable gGlobalvar.

If many methods needed to access the value of gGlobalvar, making the extern decla-
ration just once at the front of the file would be easier. However, if only one method or a
small number of methods needed to access this variable, there would be something to be
said for making separate extern declarations in each such method; it would make the
program more organized and would isolate the use of the particular variable to those
functions that actually used it. Note that if the variable is defined inside the file contain-

Scope Revisited

ing the code that accesses the variable, the individual extern declarations are not re-
quired.

Static Variables

The example just shown goes against the notion of data encapsulation and good object-
oriented programming techniques. However, you might need to work with variables
whose values are shared across different method invocations. Even though it might not
make sense to make gGlobalvVar an instance variable in the Foo class, a better approach
might be to “hide” it within the Foo class by restricting its access to setter and getter
methods defined for that class.

You now know that any variable defined outside a method is not only a global vari-
able, but an external one as well. Many situations arise in which you want to define a
variable to be global but not external. In other words, you want to define a global variable
to be local to a particular module (file). It would make sense to want to define a variable
this way if no methods other than those contained inside a particular class definition
needed access to the particular variable.You can accomplish this by defining the variable
to be static inside the file that contains the implementation for the particular class.

If made outside any method (or function), the following statement makes the value of
gGlobalvar accessible from any subsequent point in the file in which the definition ap-
pears, but not from methods or functions contained in other files:

static int gGlobalVar = 0;

Recall that class methods do not have access to instance variables (you might want to
think about why that’s the case again). However, you might want a class method to be ca-
pable of setting and accessing variables. A simple example is a class allocator method that
you want to keep track of the number of objects it has allocated.You would accomplish
this task by setting up a static variable inside the implementation file for the class. The al-
location method could then access this variable directly because it would not be an in-
stance variable. The users of the class would not need to know about this variable.
Because it’s defined as a static variable in the implementation file, its scope would be re-
stricted to that file. Users thus wouldn’t have direct access to it, and the concept of data
encapsulation would not be violated.You could write a method to retrieve the value of
this variable if access was needed from outside the class.

Program 10.2 extends the Fraction class definition with the addition of two new
methods. The allocF class method allocates a new Fraction and keeps track of how
many Fractions it has allocated, whereas the count method returns that count. Note that
this latter method is also a class method. It could have been implemented as an instance
method as well, but it makes more sense to ask the class how many instances it has allo-
cated instead of sending the message to a particular instance of the class.

These are the declarations for the two new class methods to be added to the
Fraction.h header file:

+(Fraction *) allocF;

211

212

Chapter 10 More on Variables and Data Types

+(int) count;

Notice that the inherited alloc method wasn’t overridden here; instead, you defined
your own allocator method. Your method will take advantage of the inherited alloc
method. Place this code in your Fraction.m implementation file:

static int gCounter;

@implementation Fraction

+(Fraction *) allocF

{
extern int gCounter;
++gCounter;
return [Fraction alloc];
}

+(int) count
extern int gCounter;

return gCounter;

}
// other methods from Fraction class go here

@end

Note

It’s not considered good programming practice to override alloc, as this method deals with
the physical allocation of the memory. You shouldn’t have to get involved at that level.

The static declaration of counter makes it accessible to any method defined in the im-
plementation section, yet it does not make it accessible from outside the file. The allocF
method simply increments the gCounter variable and then uses the alloc method to
create a new Fraction, returning the result. The count method simply returns the value
of the counter, thus isolating its direct access from the user.

Recall that the extern declarations are not required in the two methods because the
gCounter variable is defined within the file. It simply helps the reader of the method un-
derstand that a variable defined outside the method is being accessed. The ¢ prefix for the
variable name also serves the same purpose for the reader; for that reason, most program-
mers typically do not include the extern declarations.

Program 10.2 tests the new methods.

Storage Class Specifiers

Program 10.2

#import "Fraction.h"

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *a, *b, *c;
NSLog (@"Fractions allocated: %i", [Fraction count]);
a = [[Fraction allocF] init]
b = [[Fract on allocF] init]
c = [[Fraction allocF] init];
NSLog (@"Fractions allocated: %i", [Fraction count]);
[a release];
[b release];
[c release];
[pool drain];
return 0;
}

Program 10.2 Output

Fractions allocated: 0
Fractions allocated: 3

When the program begins execution, the value of counter is automatically set to 0
(recall that you can override the inherited class initialize method if you want to per-
form any special initialization of the class as a whole, such as set the value of other static
variables to some nonzero values). After allocating (and then initializing) three Fractions
using the allocF method, the count method retrieves the counter variable, which is
correctly set to 3.You could also add a setter method to the class if you wanted to reset
the counter or set it to a particular value.You don’t need that for this application, though.

Storage Class Specifiers

You've already encountered storage class specifiers that you can place in front of variable
names, such as extern and static. Here we’ll discuss more specifiers that give the com-
piler information about the intended use of a variable in your program.

auto

This keyword is used to declare an automatic local variable, as opposed to a static one.
It is the default for a variable declared inside a function or method—but you’ll never see
anyone using it. Here’s an example:

auto int index;

213

214

Chapter 10 More on Variables and Data Types

This declares index to be an automatic local variable, meaning that it automatically is
allocated when the block (which can be a curly-braced sequence of statements, a method,
or a function) is entered and is automatically deallocated when the block is exited. Be-
cause this is the default inside a block, the statement

int index;

is equivalent to this:

auto int index;

Unlike static variables, which have default initial values of 0, automatic variables are
undefined unless you explicitly assign them values.

const

The compiler enables you to associate the const attribute to variables whose values the
program will not change. That is, this tells the compiler that the specified variables have a
constant value throughout the program’s execution. If you try to assign a value to a const
variable after initializing it or try to increment or decrement it, the compiler issues a
warning message. As an example of the const attribute, the following line declares the
const variable pi:

const double pi = 3.141592654;

This tells the compiler that the program will not modify this variable. Of course, be-
cause the value of a const variable cannot be subsequently modified, you must initialize
it when it is defined.

Defining a variable as a const variable aids in the self~documentation process and tells
the reader of the program that the program will not change the variable’s value.

volatile

This is sort of the inverse to const. It tells the compiler explicitly that the specified vari-
able will change its value. It’s included in the language to prevent the compiler from opti-
mizing away seemingly redundant assignments to a variable or repeated examination of a
variable without its value seemingly changing. A good example to consider is an I/O
port, which involves an understanding of pointers (see Chapter 13).

Let’s say that you have the address of an output port stored in a variable in your pro-
gram called outPort. If you wanted to write two characters to the port—let’s say an O
followed by an N—you might write the following code:

*outPort = '0';
*outPort = 'N';

This first line says to store the character 0 at the memory address specified by outPort.
The second says to then store the character N at the same location. A smart compiler
might notice two successive assignments to the same location and, because outPort isn’t

Enumerated Data Types

being modified in between, simply remove the first assignment from the program.To pre-
vent this from happening, you declare outPort to be a volatile variable, like this:

volatile char *outPort;

Enumerated Data Types

The Objective-C language enables you to specify a range of values that can be assigned to
a variable. An enumerated data type definition is initiated by the keyword enum. Immedi-
ately following this keyword is the name of the enumerated data type, followed by a list of
identifiers (enclosed in a set of curly braces) that define the permissible values that can be
assigned to the type. For example, the following statement defines a data type flag:

enum flag { false, true };

In theory, this data type can be assigned the values true and false inside the program,
and no other values. Unfortunately, the Objective-C compiler does not generate warning
messages if this rule is violated.

To declare a variable to be of type enum flag, you again use the keyword enum, fol-
lowed by the enumerated type name, followed by the variable list. So the following state-
ment defines the two variables endofData and matchFound to be of type flag:

enum flag endOfData, matchFound;
The only values (in theory, that is) that can be assigned to these variables are the names
true and false.Thus, statements such as

endOfData = true;

and
if (matchFound == false)
are valid.

If you want to have a specific integer value associated with an enumeration identifier,
the integer can be assigned to the identifier when the data type is defined. Enumeration
identifiers that subsequently appear in the list are assigned sequential integer values begin-
ning with the specified integer value plus one.

In the following definition, an enumerated data type, direction, is defined with the
values up, down, left, and right:

enum direction { up, down, left = 10, right };

The compiler assigns the value 0 to up because it appears first in the list, assigns 1 to
down because it appears next, assigns 10 to left because it is explicitly assigned this value,
and assigns 11 to right because it is the incremented value of the preceding enum in the
list.

Enumeration identifiers can share the same value. For example, in

215

216

Chapter 10 More on Variables and Data Types

enum boolean { no = 0, false = 0, yes = 1, true =1 };

assigning either the value no or false to an enum boolean variable assigns it the value
0; assigning either yes or true assigns it the value 1.

As another example of an enumerated data type definition, the following defines the
type enum month, with permissible values that can be assigned to a variable of this type
being the names of the months of the year:

enum month { january = 1, february, march, april, may, june, july,
august, september, october, november, december };

The Objective-C compiler actually treats enumeration identifiers as integer constants.
If your program contains these two lines, the value 2 would be assigned to thisMonth
(and not the name february):

enum month thisMonth;

thisMonth = february;

Program 10.3 shows a simple program using enumerated data types. The program
reads a month number and then enters a switch statement to see which month was en-
tered. Recall that the compiler treats enumeration values as integer constants, so they’re
valid case values. The variable days is assigned the number of days in the specified month,
and its value is displayed after the switch is exited. A special test is included to see
whether the month is February.

Program 10.3

// print the number of days in a month
int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

enum month { january = 1, february, march, april, may, june,
july, august, september, october, november,

december };
enum month amonth;
int days;

NSLog (@"Enter month number: ");
scanf ("%i", &amonth);

switch (amonth) {

case january:

case march:

case may:

case july:

case august:

case october:

case december:
days = 31;
break;

case april:

case june:

case september:

case november:

days = 30;
break;
case february:
days = 28;
break;
default:
NSLog (@"bad month number");
days = 0;
break;

}

if (days != 0)
NSLog (@"Number of days is %i", days);

if (amonth == february)
NSLog (@"...or 29 if it's a leap year");

[pool drain];
return 0;

Program 10.3 Output
Enter month number:
5

Number of days is 31

Program 10.3 Output (Rerun)

Enter month number:
2
Number of days is 28

...or 29 if it's a leap year

Enumerated Data Types

217

218

Chapter 10 More on Variables and Data Types

You can explicitly assign an integer value to an enumerated data type variable; you
should do this using the type cast operator. Therefore, if monthvalue were an integer vari-
able that had the value 6, for example, this expression would be permissible:

lastMonth = (enum month) (monthValue - 1);

If you don'’t use the type cast operator, the compiler (unfortunately) won’t complain
about it.

When using programs with enumerated data types, try not to rely on the fact that the
enumerated values are treated as integers. Instead, treat them as distinct data types. The
enumerated data type gives you a way to associate a symbolic name with an integer num-
ber. If you subsequently need to change the value of that number, you must change it
only in the place where the enumeration is defined. If you make assumptions based on the
actual value of the enumerated data type, you defeat this benefit of using an enumeration.

Some variations are permitted when defining an enumerated data type: The name of’
the data type can be omitted, and variables can be declared to be of the particular enu-
merated data type when the type is defined. As an example showing both of these op-
tions, the statement

enum { east, west, south, north } direction;

defines an (unnamed) enumerated data type with values east, west, south, or north and
declares a variable (direction) to be of that type.

Defining an enumerated data type within a block limits the scope of that definition to
the block. On the other hand, defining an enumerated data type at the beginning of the
program, outside any block, makes the definition global to the file.

When defining an enumerated data type, you must make certain that the enumeration
identifiers are unique with respect to other variable names and enumeration identifiers
defined within the same scope.

The typedef Statement

Objective-C provides a capability that enables the programmer to assign an alternative
name to a data type.This is done with a statement known as typedef. The following
statement defines the name Counter to be equivalent to the Objective-C data type int:

typedef int Counter;

You can subsequently declare variables to be of type Counter, as in the following
statement:

Counter j, n;

The Objective-C compiler treats the declaration of the variables j and n, shown previ-
ously, as normal integer variables. The main advantage of the use of the typedef in this
case is in the added readability it lends to the definition of the variables. The definition of
j and n makes clear the intended purpose of these variables in the program. Declaring

The typedef Statement

them to be of type int in the traditional fashion would not have made the intended use
of these variables clear.
The following typedef defines a type named NumberObject to be a Number object:

typedef Number *NumberObject;

Variables subsequently declared to be of type Numberobject, as in

NumberObject myValuel, myValue2, myResult;

are treated as if they were declared in the normal way in your program:

Number *myValuel, *myValue2, *myResult;
To define a new type name with typedef, follow this procedure:
1. Write the statement as if a variable of the desired type were being declared.

2. Where the name of the declared variable would normally appear, substitute the
new type name.

3. In front of everything, place the keyword typedef.

As an example of this procedure, to define a type called Direction to be an enumer-
ated data type that consists of the directions east, west, north, and south, write out the
enumerated type definition and substitute the name Direction where the variable name
would normally appear. Before everything, place the keyword typedef:

typedef enum { east, west, south, north } Direction;

With this typedef in place, you can subsequently declare variables to be of type
Direction, as in the following:
Direction stepl, step2;

The Foundation framework has the following typedef definition for
NSComparisonResult in one of its header files:

typedef enum _NSComparisonResult {
NSOrderedAscending = -1, NSOrderedSame, NSOrderedDescending
} NSComparisonResult;

Some of the methods in the Foundation framework that perform comparisons return
a value of this type. For example, Foundation’s string-comparison method, called
compare:, returns a value of type NSComparisonResult after comparing two strings that
are Nsstring objects. The method is declared like this:

- (NSComparisonResult) compare: (NSString *) string;
To test whether two NSstring objects called userName and savedName are equal, you
might include a line like this in your program:

if ([userName compare: savedName] == NSOrderedSame) {
// The names match

219

220

Chapter 10 More on Variables and Data Types

This actually tests whether the result from the compare: method is zero.

Data Type Conversions

Chapter 4,“Data Types and Expressions,” briefly addressed the fact that sometimes the
system implicitly makes conversions when expressions are evaluated.You examined a case
with the data types £loat and int.You saw how an operation that involves a £loat and
an int was carried out as a floating-point operation, with the integer data item
automatically converted to a floating point.

You also saw how the type cast operator can be used to explicitly dictate a conversion.
So given that total and n are both integer variables

average = (float) total / n;
the value of the variable total is converted to type float before the operation is per-

formed, thereby guaranteeing that the division will be carried out as a floating-point op-
eration.

Conversion Rules

The Objective-C compiler adheres to very strict rules when it comes to evaluating ex-
pressions that consist of different data types.

The following summarizes the order in which conversions take place in the evaluation
of two operands in an expression:

1. If either operand is of type long double, the other is converted to long double,
and that is the type of the result.

2. If either operand is of type double, the other is converted to double, and that is the
type of the result.

3. If either operand is of type float, the other is converted to float, and that is the
type of the result.

4. If either operand is of type _Bool, char, short int,or bit field,' or of an enu-
merated data type, it is converted to int.

5. If either operand is of type long long int,the other is converted to long long
int, and that is the type of the result.

6. If cither operand is of type long int, the other is converted to long int,and that
is the type of the result.

* Chapter 13 briefly discusses bit fields.

Data Type Conversions

7. If'this step is reached, both operands are of type int, and that is the type of the result.

This is actually a simplified version of the steps involved in converting operands in an
expression. The rules get more complicated when unsigned operands are involved. For
the complete set of rules, see Appendix B, “Objective-C Language Summary.”

Realize from this series of steps that whenever you reach a step that says “that is the
type of the result,” you're done with the conversion process.

As an example of how to follow these steps, let’s see how the following expression
would be evaluated, where £ is defined to be a float, i an int,1 a long int,and s a
short int variable:

f*i+1/s

Consider first the multiplication of £ by i, which is the multiplication of a £loat by
an int. From step 3, you know that, because £ is of type £loat, the other operand (i) will
also be converted to type float, and that will be the type of the result of the multiplica-
tion.

Next, 1 is divided by s, which is the division of a long int by a short int. Step 4
tells you that the short int will be promoted to an int. Continuing, step 6 shows that
because one of the operands (1) is a long int, the other operand will be converted to a
long int, which will also be the type of the result. This division will therefore produce a
value of type long int, with any fractional part resulting from the division truncated.

Finally, step 3 indicates that, if one of the operands in an expression is of type float (as
is the result of multiplying £ * i), the other operand will be converted to type float,
which will be the type of the result. Therefore, after the division of 1 by s, the result of the
operation will be converted to type £loat and then added into the product of £ and i.
The final result of the preceding expression will therefore be a value of type float.

Remember, the type cast operator can always be used to explicitly force conversions
and thereby control the way in which a particular expression is evaluated.

Thus, if you didn’t want the result of dividing 1 by s to be truncated in the preceding
expression evaluation, you could have type-cast one of the operands to type f£loat,
thereby forcing the evaluation to be performed as a floating-point division:

f* i+ (float) 1/ s

In this expression, 1 would be converted to float before the division operation was
performed because the type cast operator has higher precedence than the division oper-
ator. Because one of the operands of the division would then be of type float, the
other (s) would be automatically converted to type £loat, and that would be the type
of the result.

Sign Extension

Whenever a signed int or signed short int is converted into an integer of a larger size,
the sign is extended to the left when the conversion is performed. This ensures that a
short int that has a value of -5, for example, will also have the value -5 when converted

221

222

Chapter 10 More on Variables and Data Types

to a long int.Whenever an unsigned integer is converted to an integer of a larger size,
no sign extension occurs, as you would expect.

On some machines (such as on on the Intel processors used in the current Macintosh
line of computers as well as on the ARM processors currenly used in the iPhone and
iTouch), characters are treated as signed quantities. This means that when a character is
converted to an integer, sign extension occurs. As long as characters are used from the
standard ASCII character set, this never poses a problem. However, if a character value is
used that is not part of the standard character set, its sign can be extended when con-
verted to an integer. For example, on a Mac, the character constant ‘\377’ is converted to
the value -1 because its value is negative when treated as a signed 8-bit quantity.

Recall that the Objective-C language permits character variables to be declared un-
signed, thus avoiding this potential problem. That is, an unsigned char variable never
has its sign extended when converted to an integer; its value always is greater than or
equal to zero. For the typical 8-bit character, a signed character variable therefore has the
range of values from —128 to +127, inclusive. An unsigned character variable can range in
value from 0 to 255, inclusive.

If you want to force sign extension on your character variables, you can declare such
variables to be of type signed char.This ensures that sign extension occurs when the
character value is converted to an integer, even on machines that don’t do so by default.

In Chapter 15, “Numbers, Strings, and Collections,” you’ll learn about dealing with
multibyte Unicode characters. This is the preferred way to deal with strings that can con-
tain characters from character sets containing millions of characters.

Exercises

1. Using the Rectangle class from Chapter 8, “Inheritance,” add an initializer method
according to the following declaration:
-(Rectangle *) initWithwidth: (int) w: andHeight: (int) h;

2. Given that you label the method developed in exercise 1 the designated initializer
for the Rectangle class, and based on the square and Rectangle class definitions
from Chapter 8, add an initializer method to the square class according to the fol-

lowing declaration:
-(Square *) initWithSide: (int) side;

3. Add a counter to the Fraction class’s add: method to count the number of times
it is invoked. How can you retrieve the value of the counter?

4. Using typedef and enumerated data types, define a type called pay with the possi-
ble values sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and
Saturday.

Exercises 223

5. Using typedef, define a type called Fractionobj that enables you to write state-
ments such as the following:
FractionObj f1 [[Fraction alloc] init],
£2 [[Fraction alloc] init];

6. Based on the following definitions
float £f =1.00;
short int i = 100;
long int 1 = 500L;
double d = 15.00;
and the seven teps outlined in his chapter for the con ersion of operands in ex-
pressions, determ ne the type and value of the fo lowing expressions:

+

oo b

N

(d + £f)
(i * 2.0)
i / (double) 1

e N a2)
+ N N N O NN

7. Write a program to ascertain whether sign extension is performed on signed char
variables on your machine.

11

Categories and Protocols

In this chapter, you’ll learn about how to add methods to a class in a modular fashion
through the use of categories and how to create a standardized list of methods for others
to implement.

Categories

Sometimes you might be working with a class definition and want to add some new
methods to it. For example, you might decide for your Fraction class that, in addition to
the add: method for adding two fractions, you want to have methods to subtract, multi-
ply, and divide two fractions.

As another example, say you are working on a large programming project and, as part
of that project, your group is defining a new class that contains many different methods.
You have been assigned the task of writing methods for the class that work with the file
system. Other project members have been assigned methods responsible for creating and
initializing instances of the class, performing operations on objects in the class, and draw-
ing representations of objects from the class on the screen.

As a final example, suppose you've learned how to use a class from the library (for ex-
ample, the Foundation framework’s array class called NSArray) and realize that you wish
the class had implemented one or more methods. Of course, you could write a new sub-
class of the NSArray class and implement the new methods, but perhaps an easier way
exists.

A practical solution for all these situations is categories. A category provides an easy way
for you to modularize the definition of a class into groups or categories of related meth-
ods. It also gives you an easy way to extend an existing class definition without even hav-
ing access to the original source code for the class and without having to create a
subclass. This is a powerful yet easy concept for you to learn.

Let’s get back to the first case and show how to add a new category to the Fraction
class to handle the four basic math operations. We first show you the original Fraction
interface section:

#import <Foundation/Foundation.h>

226

Chapter 11 Categories and Protocols

#import <stdio.h>
// Define the Fraction class
@interface Fraction : NSObject

@property int numerator, denominator;
-(void) setTo: (int) n over: (int) d;
-(Fraction *) add: (Fraction *) f;
-(void) reduce;

-(double) convertToNum;

-(void) print;

@end

Next, let’s remove the add: method from this interface section and add it to a new
category, along with the other three math operations you want to implement. Here’s what
the interface section would look like for your new Mathops category:

#import "Fraction.h"

@interface Fraction (MathOps)
-(Fraction *) add: (Fraction *) f;
-(Fraction *) mul: (Fraction *) f;
-(Fraction *) sub: (Fraction *) f;
-(Fraction *) div: (Fraction *) f;
@end

Realize that even though this is an interface section definition, it is an extension to an
existing one. Therefore, you must include the original interface section so that the com-
piler knows about the Fraction class (unless you incorporate the new category directly
into the original Fraction.h header file, which is an option).

After the #import, you see the following line:

@interface Fraction (MathOps)

This tells the compiler that you are defining a new category for the Fraction class
and that its name is Mathops. The category name is enclosed in a pair of parentheses after
the class name. Notice that you don’t list the Fraction’s parent class here; the compiler
already knows it from Fraction.h.Also, you don't tell it about the instance variables, as
you’ve done in all the previous interface sections you’ve defined. In fact, if you try to list
the parent class or the instance variables, you’ll get a syntax error from the compiler.

This interface section tells the compiler you are adding an extension to the class called
Fraction under the category named MathOps.The MathOps category contains four in-
stance methods: add:, mul:, sub:, and div:. Each method takes a fraction as its argument
and returns one as well.

You can put the definitions for all your methods into a single implementation section.
That is, you could define all the methods from the interface section in Fraction.h plus
all the methods from the Mathops category in one implementations section. Alternatively,

Categories

you could define your category’s methods in a separate implementation section. In such a
case, the implementation section for these methods must also identify the category to
which the methods belong. As with the interface section, you do this by enclosing the
category name inside parentheses after the class name, like this:

@implementation Fraction (MathOps)
// code for category methods

@end

In Program 11.1, the interface and implementation sections for the new MathOps cate-
gory are grouped together, along with a test routine, into a single file.

Program 11.1 MathOps Category and Test Program

#import "Fraction.h"

@interface Fraction (MathOps)
-(Fraction *) add: (Fraction *) f
-(Fraction *) mul: (Fraction *) f
-(Fraction *) sub: (Fraction *) f
-(Fraction *) div: (Fraction *) f;
@end

@implementation Fraction (MathOps)
-(Fraction *) add: (Fraction *) f
{

// To add two fractions:

// a/b + c/d = ((a*d) + (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = (numerator * f.denominator) +
(denominator * f.numerator);
resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];

return result;

}

-(Fraction *) sub: (Fraction *) f

{

227

228 Chapter 11 Categories and Protocols

// To sub two fractions:
// a/b - c¢/d = ((a*d) - (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = (numerator * f.denominator) -
(denominator * f.numerator);
resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];

return result;

}
-(Fraction *) mul: (Fraction *) f
{
Fraction *result = [[Fraction alloc] init];
[result setTo: numerator * f.numerator
over: denominator * f.denominator];
[result reduce];
return result;
}
-(Fraction *) div: (Fraction *) f
{
Fraction *result = [[Fraction alloc] init];
[result setTo: numerator * f.denominator
over: denominator * f.numerator];
[result reduce];
return result;
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *a = [[Fraction alloc] init];
Fraction *b = [[Fraction alloc] init];
Fraction *result;

[a setTo: 1 over: 3];
[b setTo: 2 over: 5];

[a print]; NSLog (@" +"); [b print]; NSLog (@"----- "y
result = [a add: b];

[result print];
NSLog (@"\n");
[result release];

[a print]; NSLog (@" -"
result = [a sub: b];
[result print];

NSLog (@"\n");

[result release];

[b print]; NSLog (@"

[a print]; NSLog (@" *"); [b print]; NSLog (@"
result = [a mul: b];

[result print];

NSLog (@"\n");

[result release];

[a print]; NSLog (€" /"); [b print]; NSLog (@"
result = [a div: b];

[result print];

NSLog (@"\n");

[result release];

[a release];

[b release];

[pool drain];
return 0;

Program 11.1 Output

1/

3

Categories

229

230

Chapter 11 Categories and Protocols

Realize once again that it is certainly legal in Objective-C to write a statement such as
this:

[[a div: b] print];

This line directly prints the result of dividing Fraction a by b and thereby avoids the
intermediate assignment to the variable result, as was done in Program 11.1. However,
you need to perform this intermediate assignment so you can capture the resulting
Fraction and subsequently release its memory. Otherwise, your program will leak mem-
ory every time you perform an arithmetic operation on a fraction.

Program 11.1 puts the interface and implementation sections for the new category
into the same file with the test program. As mentioned previously, the interface section
for this category could go either in the original Fraction.h header file so that all meth-
ods would be declared in one place or in its own header file.

If you put your category into a master class definition file, all users of the class have ac-
cess to the methods in the category. If you don’t have the capability to modify the origi-
nal header file directly (consider adding a category to an existing class from a library, as
shown in Part II,“The Foundation Framework”), you have no choice but to keep it sepa-
rate.

Some Notes About Categories

Some points about categories are worth mentioning. First, although a category has access
to the instance variables of the original class, it can’t add any of its own. If you need to do
that, consider subclassing.

Also, a category can override another method in the class, but this is typically consid-
ered poor programming practice. For one thing, after you override a method, you can no
longer access the original method. Therefore, you must be careful to duplicate all the
functionality of the overridden method in your replacement. If you do need to override a
method, subclassing might be the right choice. If you override a method in a subclass, you
can still reference the parent’s method by sending a message to super. So you don’t have
to understand all the intricacies of the method you are overriding; you can simply invoke
the parent’s method and add your own functionality to the subclass’s method.

You can have as many categories as you like, following the rules we’ve outlined here. If
a method is defined in more than one category, the language does not specify which one
will be used.

Unlike a normal interface section, you don'’t need to implement all the methods in a
category. That’s useful for incremental program development because you can declare all
the methods in the category and implement them over time.

Remember that extending a class by adding new methods with a category affects not
just that class, but all its subclasses as well. This can be potentially dangerous if you add
new methods to the root object Nsobject, for example, because everyone will inherit
those new methods, whether or not that was your intention.

Protocols

The new methods you add to an existing class through a category can serve your pur-
poses just fine, but they might be inconsistent with the original design or intentions of
the class. Turning a Square into a Circle (admittedly, an exaggeration), for example, by
adding a new category and some methods muddies the definition of the class and is not
good programming practice.

Also, object/category named pairs must be unique. Only one NSString (Private)
category can exist in a given Objective-C namespace. This can be tricky because the Ob-
jective-C namespace is shared between the program code and all the libraries, frame-
works, and plug-ins. This is especially important for Objective-C programmers writing
screensavers, preference panes, and other plug-ins because their code will be injected into
application or framework code that they do not control.

Protocols

A protocol is a list of methods that is shared among classes. The methods listed in the pro-
tocol do not have corresponding implementations; they’re meant to be implemented by
someone else (like you!). A protocol provides a way to define a set of methods that are
somehow related with a specified name. The methods are typically documented so that
you know how they are to perform and so that you can implement them in your own
class definitions, if desired.

If you decide to implement all of the required methods for a particular protocol, you
are said to conform to or adopt that protocol.

Defining a protocol is easy:You simply use the @protocol directive followed by the
name of the protocol, which is up to you. After that, you declare methods just as you did
with your interface section. All the method declarations, up to the @end directive, become
part of the protocol.

If you choose to work with the Foundation framework, you’ll find that several proto-
cols are defined. One of them, called Nscopying, declares a method that you need to im-
plement if your class is to support copying of objects through the copy (or
copyWithZone:) method. (Chapter 18, “Copying Objects,” covers the topic of copying
objects in detail.)

Here’s how the NScopying protocol is defined in the standard Foundation header file
NSObject.h:

@protocol NSCopying

- (id)copyWithZone: (NSZone *)zone;
@end

231

232

Chapter 11 Categories and Protocols

If you adopt the NScopying protocol in your class, you must implement a method
called copyWithzone:.You tell the compiler that you are adopting a protocol by listing
the protocol name inside a pair of angular brackets (<...>) on the @interface line. The
protocol name comes after the name of the class and its parent class, as in the following:

@interface AddressBook: NSObject <NSCopying>

This says that AddressBook is an object whose parent is NSObject and states that it
conforms to the NsCopying protocol. Because the system already knows about the
method(s) previously defined for the protocol (in this example, it knows from the header
file NsObject.h), you don’t declare the methods in the interface section. However, you
need to define them in your implementation section.

In this example, in the implementation section for AddressBook, the compiler expects
to see the copyWithzZone: method defined.

If your class adopts more than one protocol, just list them inside the angular brackets,
separated by commas:

@interface AddressBook: NSObject <NSCopying, NSCoding>

This tells the compiler that the AddressBook class adopts the NSCopying and
NSCoding protocols. Again, the compiler expects to see all the required methods listed for
those protocols implemented in the AddressBook implementation section.

If you define your own protocol, you don’t have to actually implement it yourself.
However, you're alerting other programmers that if they want to adopt the protocol, they
do have to implement the methods. Those methods can be inherited from a superclass.
Thus, if one class conforms to the NsCopying protocol, its subclasses do as well (although
that doesn’t mean the methods are correctly implemented for that subclass).

You can use a protocol to define methods that you want other people who subclass
your class to implement. Perhaps you could define a brawing protocol for your
GraphicObject class; in it, you could define paint, erase, and outline methods:

@protocol Drawing
-(void) paint;
-(void) erase;
@optional

-(void) outline;
@end

As the creator of the GraphicObject class, you don’t necessarily want to implement
these painting methods. However, you want to specify the methods that someone who
subclasses the GraphicObject class needs to implement to conform to a standard for
drawing objects he’s trying to create.

Protocols

Note

Note the use of the @optional directive here. Any methods that are listed following that di-
rective are optional. That is, an adopter of the brawing protocol does not have to implement
the outline method to conform to the protocol. (And you can subsequently switch back to
listing required methods by using the @required directive inside the protocol definition.)

So if you create a subclass of Graphicobject called Rectangle and advertise (that is,
document) that your Rectangle class conforms to the brawing protocol, users of the class
will know that they can send paint, erase, and (possibly) outline messages to instances
from that class.

Note

Well that’s the theory, anyway. The compiler lets you say that you conform to a protocol and
issues warning messages only if you don’t implement the methods.

Notice that the protocol doesn’t reference any classes; its classless. Any class can con-
form to the Drawing protocol, not just subclasses of Graphicobject.

You can check to see whether an object conforms to a protocol by using the
conformsToProtocol: method. For example, if you had an object called currentobject
and wanted to see whether it conformed to the brawing protocol so you could send it
drawing messages, you could write this:

id currentObject;
if ([currentObject conformsToProtocol: @protocol (Drawing)] == YES)

{

// Send currentObject paint, erase and/or outline msgs

The special @protocol directive as used here takes a protocol name and produces a
Protocol object, which is what the conformsToProtocol: method expects as its argu-
ment.

You can enlist the aid of the compiler to check for conformance with your variables by
including the protocol name inside angular brackets after the type name, like this:

id <Drawing> currentObject;
This tells the compiler that currentobject will contain objects that conform to the
Drawing protocol. If you assign a statically typed object to currentobject that does not

conform to the Drawing protocol (say that you have a square class that does not con-
form), the compiler issues a warning message that looks like this:

warning: class 'Square' does not implement the 'Drawing' protocol

233

234

Chapter 11 Categories and Protocols

This is a compiler check here, so assigning an id variable to currentobject would not
generate this message because the compiler has no way of knowing whether the object
stored inside an id variable conforms to the brawing protocol.

You can list more than one protocol if the variable will hold an object conforming to
more than one protocol, as in this line:

id <NSCopying, NSCoding> myDocument;

When you define a protocol, you can extend the definition of an existing one. This
protocol declaration says that the Drawing3D protocol also adopts the brawing protocol:

@protocol Drawing3D <Drawing>

Thus, whichever class adopts the brawing3D protocol must implement the methods
listed for that protocol, as well as the methods from the brawing protocol.
Finally, a category also can adopt a protocol, like this:

@interface Fraction (Stuff) <NSCopying, NSCoding>

Here Fraction has a category, stuff (okay, not the best choice of names!), that adopts
the NSCopying and NSCoding protocols.
As with class names, protocol names must be unique.

Informal Protocols

You might come across the notion of an informal protocol in your readings. This is really a
category that lists a group of methods but does not implement them. Everyone (or just
about everyone) inherits from the same root object, so informal categories are often de-
fined for the root class. Sometimes informal protocols are also referred to as abstract proto-
cols.

If you look at the header file <NsscriptWhoseTests.h>, you might find some method
declarations that look like this:

@interface NSObject (NSComparisonMethods)
- (BOOL)isEqualTo: (id)object;

- (BOOL)isLessThanOrEqualTo: (id)object;

- (BOOL)isLessThan: (id)object;

- (BOOL)isGreaterThanOrEqualTo: (id)object;
- (BOOL)isGreaterThan: (id)object;

- (BOOL)isNotEqualTo: (id)object;

- (BOOL)doesContain: (id)object;

- (BOOL)isLike: (NSString *)object;

- (BOOL)isCaseInsensitiveLike: (NSString *)object;
@end

This defines a category called NSComparisonMethods for the NSObject class. This in-
formal protocol lists a group of methods (here, nine are listed) that can be implemented as
part of this protocol. An informal protocol is really no more than a grouping of methods

Composite Objects

under a name. This can help somewhat from the point of documentation and modulariza-
tion of methods.

The class that declares the informal protocol doesn’t implement the methods in the
class itself, and a subclass that chooses to implement the methods needs to redeclare them
in its interface section, as well as implement one or more of them. Unlike formal proto-
cols, the compiler gives no help with informal protocols; there’s no concept of confor-
mance or testing by the compiler.

If an object adopts a formal protocol, the object must conform to all the required mes-
sages in the protocol. This can be enforced at runtime as well as compile time. If an object
adopts an informal protocol, the object might not need to adopt all methods in the proto-
col, depending on the protocol. Conformance to an informal protocol can be enforced at
runtime (via respondsToSelector:) but not at compile time.

Note
The previously-described @optional directive that was added the Objective C 2.0 language is

meant to replace the use of informal protocols. You can see this used for several of the
UIKit classes (UlKit is part of the Cocoa Touch frameworks).

Composite Objects

You've learned several ways to extend the definition of a class through techniques such as
subclassing, using categories, and posing. Another technique involves defining a class that
consists of one or more objects from other classes. An object from this new class is known
as a composite object because it is composed of other objects.

As an example, consider the Square class you defined in Chapter 8, “Inheritance.”You
defined this as a subclass of a Rectangle because you recognized that a square was just a
rectangle with equal sides. When you define a subclass, it inherits all the instance variables
and methods of the parent class. In some cases, this is undesirable—for example, some of
the methods defined in the parent class might not be appropriate for use by the subclass.
The Rectangle’s setWidth:andHeight: method is inherited by the square class but re-
ally does not apply to a square (even though it will work properly). Furthermore, when
you create a subclass, you must ensure that all the inherited methods work properly be-
cause users of the class will have access to them.

As an alternative to subclassing, you can define a new class that contains as one of its
instance variables an object from the class you want to extend.Then you have to define
only those methods in the new class that are appropriate for that class. Getting back to the
Square example, here’s an alternative way to define a square:

@interface Square: NSObject
{

Rectangle *rect;
}
-(int) setSide: (int) s;
-(int) side;
-(int) area;

235

236

Chapter 11 Categories and Protocols

-(int) perimeter;
@end

The square class is defined here with four methods. Unlike the subclass version,
which gives you direct access to the Rectangle’s methods (setwWidth:, setHeight:,
setWidth:andHeight:, width, and height), those methods are not in this definition for a
Square. That makes sense here because those methods really don't fit in when you deal
with squares.

If you define your square this way, it becomes responsible for allocating the memory
for the rectangle it contains. For example, without overriding methods, the statement

Square *mySquare = [[Square alloc] init];

allocates a new square object but does not allocate a Rectangle object stored in its
instance variable, rect.

A solution is to override init or add a new method such as initwithside: to do the
allocation. That method can allocate the Rectangle rect and set its side appropriately.
You also need to override the dealloc method (which you saw how to do with the
Rectangle class in Chapter 8) to release the memory used by the Rectangle rect when
the square itself is freed.

When defining your methods in your square class, you can still take advantage of the
Rectangle’s methods. For example, here’s how you could implement the area method:

-(int) area
{

return [rect area];

Implementing the remaining methods is left as an exercise for you (see Exercise 5,

which follows).

Exercises

1. Extend the Mathops category from Program 11.1 to also include an invert
method, which returns a Fraction that is an inversion of the receiver.

2. Add a category to the Fraction class called comparison. In this category, add two
methods according to these declarations:
-(BOOL) isEqualTo: (Fraction *) f;
-(int) compare: (Fraction *) f;
The first method should return YEs if the two fractions are identical and should re-
turn NO otherwise. Be careful about comparing fractions (for example, comparing
3/4 to 6/8 should return YES).
The second method should return —1 if the receiver compares less than the fraction
represented by the argument, return 0 if the two are equal, and return 1 if the re-
ceiver is greater than the argument.

Exercises 237

3. Extend the Fraction class by adding methods that conform to the informal proto-
col NSCcomparisonMethods, as listed earlier in this chapter. Implement the first six
methods from that protocol (isEqualTo:, isLessThanOrEqualTo:, is-
LessThan:, isGreaterThanOrEqualTo:, isGreaterThan:, isNotEqualTo:) and
test them.

4. The functions sin (), cos (), and tan () are part of the Standard Library (as
scanf () is). These functions are declared in the header file <math.h>, which you
should import into your program with the following line:

#import <math.h>

You can use these functions to calculate the sine, cosine, or tangent, respectively, of
their double argument, which is expressed in radians. The result is also returned as a
double precision floating-point value. So you can use this line to calculate the sine
of d, with the angle d expressed in radians:

result = sin (d);

Add a category called Trig to the calculator class defined in Chapter 6, “Making
Decisions.” Add methods to this category to calculate the sine, cosine, and tangent
based on these declarations:

-(double) sin;

-(double) cos;

-(double) tan;

5. Given the discussion on composite objects from this chapter and the following in-
terface section:

@interface Square: Object
{
Rectangle *rect;

}

-(Square*) initWithSide: (int) s;

-(void) setSide: (int) s;

-(int) side;

-(int) area;

-(int) perimeter;

-(id) dealloc; // Override to release the Rectangle object's
memory

@end

write the implementation section for a Square and a test program to check its
methods.

12

The Preprocessor

The preprocessor provides the tools that enable you to develop programs that are easier
to develop, read, modify, and port to different systems.You can also use the preprocessor to
literally customize the Objective-C language to suit a particular programming application
or your own programming style.

The preprocessor is a part of the Objective-C compilation process that recognizes spe-
cial statements that can be interspersed throughout a program. As its name implies, the
preprocessor actually processes these statements before analysis of the Objective-C pro-
gram itself takes place. Preprocessor statements are identified by the presence of a pound
sign (#), which must be the first nonspace character on the line. As you will see, pre-
processor statements have a syntax that is slightly different from that of normal Objective-
C statements. We begin by examining the #define statement.

The #define Statement

One of the primary uses of the #define statement is to assign symbolic names to pro-
gram constants. The preprocessor statement

#define TRUE 1

defines the name TRUE and makes it equivalent to the value 1.The name TRUE can subse-
quently be used anywhere in the program where the constant 1 could be used. Whenever
this name appears, the preprocessor automatically substitutes its defined value of 1 into
the program. For example, you might have the following Objective-C statement that uses
the defined name TRUE:

gameOver = TRUE;
This statement assigns the value of TRUE to gameover.You don’t need to concern
yourself with the actual value you defined for TRUE, but because you do know that you

defined it to be 1, the preceding statement would have the effect of assigning 1 to
gameover. The preprocessor statement

#define FALSE 0

240

Chapter 12 The Preprocessor

defines the name FALSE and makes its subsequent use in the program equivalent to speci-
fying the value 0.Therefore, the statement

gameOver = FALSE;

assigns the value of FALSE to gameOver, and the statement

if (gameOver == FALSE)

compares the value of gameOver against the defined value of FALSE.

A defined name is not a variable. Therefore, you cannot assign a value to it unless the
result of substituting the defined value is a variable. Whenever a defined name is used in a
program, the preprocessor automatically substitutes into the program whatever appears to
the right of the defined name in the #define statement. It’s analogous to doing a search
and replace with a text editor; in this case, the preprocessor replaces all occurrences of the
defined name with its associated text.

Notice that the #define statement has a special syntax: No equals sign is used to assign
the value 1 to TRUE. Furthermore, a semicolon does not appear at the end of the state-
ment. Soon you will understand why this special syntax exists.

#define statements are often placed toward the beginning of the program, after
#import or #include statements. This is not required; they can appear anywhere in the
program. However, a name must be defined before it is referenced by the program. De-
fined names do not behave like variables: There is no such thing as a local define. After a
name has been defined, it can subsequently be used anywhere in the program. Most pro-
grammers place their defines inside header files so they can be used by more than one
source file.

As another example of the use of a defined name, suppose you wanted to write two
methods to find the area and circumference of a circle object. Because both of these
methods need to use the constant T, which is not a particularly easy constant to remem-
ber, it might make sense to define the value of this constant once at the start of the pro-
gram and then use this value where necessary in each method.

So you could include the following in your program:

#define PI 3.141592654

Then you could use it in your two Circle methods (this assumes that the circle class
has an instance variable called radius) like this:

-(double) area

{

return PI * radius * radius;

-(double) circumference

{

return 2.0 * PI * radius;

The #define Statement

Assigning a constant to a symbolic name frees you from having to remember the par-
ticular constant value every time you want to use it in a program. Furthermore, if you
ever need to change the value of the constant (if perhaps you found out that you were us-
ing the wrong value, for example), you would have to change the value in only one place
in the program: in the #define statement. Without this approach, you would have to
search throughout the program and explicitly change the value of the constant whenever
it was used.

You might have realized that all the defines shown so far (TRUE, FALSE, and PI) have
been written in capital letters. This is done to visually distinguish a defined value from a
variable. Some programmers adopt the convention that all defined names be capitalized,
so that determining when a name represents a variable or an object, a class name, or a de-
fined name is easy. Another common convention is to prefix the define with the letter k.
In that case, the following characters of the name are not capitalized. kMaximumvalues
and kSignificantDigits are examples of two defined names that adhere to this conven-
tion.

Using a defined name for a constant value helps make programs more readily extend-
able. For example, when you learn how to work with arrays, instead of hard-coding in the
size of the array you want to allocate, you can define a value as follows:

#define MAXIMUM_DATA_VALUES 1000

Then you can base all references on the array’s size (such as allocation of the array in
memory) and valid indexes into this array on this defined value.

Also, if the program were written to use MAXIMUM_DATA_VALUES in all cases where the
size of the array was used, the preceding definition could be the only statement in the
program that would have to be changed if you later needed to change the array size.

More Advanced Types of Definitions

A definition for a name can include more than a simple constant value. It can include an
expression and, as you will see shortly, just about anything else!
The following defines the name Two_PI as the product of 2.0 and 3.141592654:

#define TWO_PI 2.0 * 3.141592654

You can subsequently use this defined name anywhere in a program where the expres-
sion 2.0 * 3.141592654 would be valid. So you could replace the return statement of
the circumference method from the previous example with the following statement:

return TWO_PI * radius;

Whenever a defined name is encountered in an Objective-C program, everything that
appears to the right of the defined name in the #define statement is literally substituted
for the name at that point in the program.Thus, when the preprocessor encounters the
name TWO_PI in the return statement shown previously, it substitutes for this name
whatever appeared in the #define statement for this name. Therefore, the preprocessors

241

242

Chapter 12 The Preprocessor

literally substitutes 2.0 * 3.141592654 whenever the defined name TWo_PI occurs in
the program.

The fact that the preprocessor performs a literal text substitution whenever the defined
name occurs explains why you don’t usually want to end your #define statement with a
semicolon. If you did, the semicolon would also be substituted into the program wherever
the defined name appeared. If you had defined P1 as

#define PI 3.141592654;

and then written

return 2.0 * PI * r;

the preprocessor would replace the occurrence of the defined name PI by 3.141592654;.
The compiler would therefore see this statement as

return 2.0 * 3.141592654; * r;
after the preprocessor had made its substitution, which would result in a syntax error. Re-
member not to put a semicolon at the end of your define statements unless you're really
sure you want one there.

A preprocessor definition does not have to be a valid Objective-C expression in its
own right, as long as the resulting expression is valid wherever it is used. For instance, you
could set up these definitions:

#define AND &&
#define OR [
Then you could write expressions such as
if (x> 0 AND x < 10)
and
if (y == 0 OR y == value)
You could even include a #define for the equality test:

#define EQUALS ==

Then, you could write the following statement:

if (y EQUALS 0 OR y EQUALS value)

This removes the very real possibility of mistakenly using a single equals sign for the
equality test.

Although these examples illustrate the power of the #define, you should note that it
is commonly considered bad programming practice to redefine the syntax of the underly-
ing language in such a manner. Plus, it makes it harder for someone else to understand
your code.

The #define Statement

To make things even more interesting, a defined value can itself reference another de-
fined value. So these two #define lines are perfectly valid:

#define PI 3.141592654
#define TWO_PI 2.0 * PI

The name Two_PI is defined in terms of the previously defined name PI, thus obviat-
ing the need to spell out the value 3.141592654 again.
Reversing the order of the defines, as in this example, is also valid:

#define TWO_PI 2.0 * PI
#define PI 3.141592654

The rule is that you can reference other defined values in your definitions as long as
everything is defined at the time the defined name is used in the program.

Good use of #defines often reduces the need for comments within the program.
Consider the following statement:

if (year % 4 == 0 && year $ 00 != 0 || year % 400 == 0)

This expression tests whether the variable year is a leap year. Now consider the follow-
ing #define statement and the subsequent if statement:

#define IS_LEAP YEAR year % 4 == 0 && year % 100 != 0 \
|| year % 400 ==

if (IS_LEAP_YEAR)

Normally, the preprocessor assumes that a definition is contained on a single line of
the program. If a second line is needed, the last character on the line must be a backslash
character. This character signals a continuation to the preprocessor and is otherwise ig-
nored. The same holds true for more than one continuation line; each line to be contin-
ued must end with a backslash character.

The preceding if statement is far easier to understand than the one shown directly
before it. No comment is needed because the statement is self-explanatory. Of course, the
definition restricts you to testing the variable year to see whether it’s a leap year. If would
be nice if you could write a definition to see whether any year were a leap year, not just
the variable year. Actually, you can write a definition to take one or more arguments,
which leads us to our next point of discussion.

IS_LEAP_YEAR can be defined to take an argument called y, as follows:

#define IS LEAP YEAR(y) y % 4 == 0 && y % 100 != 0 \
|| y % 400 ==

Unlike in a method definition, you do not define the type of the argument y here be-
cause you are merely performing a literal text substitution—you are not calling a func-

243

244

Chapter 12 The Preprocessor

tion. Note that when defining a name with arguments, no spaces are permitted between
the defined name and the left parenthesis of the argument list.
With the previous definition, you can write a statement such as the following:

if (IS_LEAP_YEAR (year))

This tests whether the value of year is a leap year. Or you could write this to test
whether the value of nextyear is a leap year:
if (IS_LEAP YEAR (nextYear))

In the preceding statement, the definition for IS_LEAP_YEAR is directly substituted in-
side the if statement, with the argument nextYear replacing y wherever it appears in the
definition. So the compiler would actually see the if statement as follows:
if (nextYear % 4 == 0 && nextYear % 100 != 0 || nextYear % 400 == 0)

Definitions are frequently called macros. This terminology is more often applied to def-
initions that take one or more arguments.
This macro, called SQUARE, simply squares its argument:

#define SQUARE(X) x * x

Although the macro definition for SQUARE is straightforward, you must avoid an inter-
esting pitfall when defining macros. As we have described, the statement
y = SQUARE (V);
assigns the value of v* to y. Think about would happen in the case of the following state-
ment:
y = SQUARE (v + 1);

This statement does not assign the value of (v + 1)2 to y, as you would expect. Be-

cause the preprocessor performs a literal text substitution of the argument into the macro
definition, the preceding expression is actually evaluated as follows:

y=v+1l=*xv+l1;

This obviously does not produce the expected results. To handle this situation properly,
parentheses are needed in the definition of the SQUARE macro:
#define SQUARE(x) ((x) * (x))

Even though the previous definition might look strange, remember that the entire ex-

pression as given to the SQUARE macro is literally substituted wherever x appears in the
definition. With your new macro definition for SQUARE, the statement

y = SQUARE (v + 1);

is then correctly evaluated as

The #define Statement

y=((v+1)*(v+1));
The following macro lets you easily create new fractions from your Fraction class on
the fly:

#define MakeFract(x,y) ([[Fraction alloc] initWith: x over: y]])

Then you can write expressions such as

myFract = MakeFract (1, 3); // Make the fraction 1/3

or even
sum = [MakeFract (nl, dl) add: MakeFract (n2, d2)];
to add the fractions n1/d1 and n2/d2.

The conditional expression operator can be particularly handy when defining macros.
The following defines a macro called Max that gives the maximum of two values:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))
This macro enables you to subsequently write statements such as this:
limit = MAX (x + y, minvValue);

This assigns to 1imit the maximum of x + y and minvalue. Parentheses are placed
around the entire MAX definition to ensure that an expression such as this is evaluated

properly:
MAX (x, y) * 100

Parentheses are individually placed around each argument to ensure that expressions
such as the following are correctly evaluated:
MAX (x & y, 2)

The & operator is the bitwise AND operator, and it has lower precedence than the >
operator used in the macro. Without the parentheses in the macro definition, the > opera-

tor would be evaluated before the bitwise AND, producing the incorrect result.
The following macro tests whether a character is a lowercase letter:

#define IS_LOWER CASE(x) (((x) >= 'a') && ((x) <= 'z'))

It thereby permits you to write expressions such as this:
if (IS_LOWER_CASE (c))

You can even use this macro in another macro definition to convert a character from
lower case to upper case, leaving any nonlowercase character unchanged:

#define TO_UPPER(x) (IS_LOWER CASE (x) ? (x) - 'a' + 'A' : (x))
Again, you are dealing with a standard ASCII character set here. When you learn about

Foundation string objects in Part II, you’ll see how to perform case conversion that will
work for international (Unicode) character sets as well.

245

246

Chapter 12 The Preprocessor

The # Operator

If you place a # in front of a parameter in a macro definition, the preprocessor creates a
constant C-style string out of the macro argument when the macro is invoked. For exam-
ple, the definition

#define str(x) # x

causes the subsequent invocation

str (testing)

to be expanded into

"testing"

by the preprocessor. The print£ call
printf (str (Programming in Objective-C is fun.\n));
is therefore equivalent to
printf ("Programming in Objective-C is fun.\n");
The preprocessor inserts double quotation marks around the actual macro argument.
The preprocessor preserves any double quotation marks or backslashes in the argument. So

str ("hello")

produces

"\"hello\""

A more practical example of the # operator might be in the following macro definition:

#define printint(var) printf (# var " = %i\n", var)

This macro is used to display the value of an integer variable. If count is an integer
variable with a value of 100, the statement
printint (count);

is expanded into this:

printf ("count" " = %i\n", count);

The compiler concatenates two adjacent literal strings to make a single string. There-
fore, after concatenation is performed on the two adjacent strings, the statement becomes
the following:

printf ("count = %i\n", count);

The #import Statement

The ## Operator

The ## operator is used in macro definitions to join two tokens. It is preceded (or fol-
lowed) by the name of a parameter to the macro.The preprocessor takes the actual argu-
ment to the macro that is supplied when the macro is invoked and creates a single token
out of that argument and whatever token follows (or precedes) the ##.

Suppose, for example, that you have a list of variables x1 through x100.You can write a
macro called printx that simply takes as its argument an integer value 1-100 and displays
the corresponding x variable, as shown here:

#define printx(n) printf ("%i\n", x ## n)
The portion of the define that reads
x ## n
says to use the tokens that occur before and after the ## (the letter x and the argument n,
respectively) and make a single token out of them. So the call
printx (20);
is expanded into the following:
printf ("%i\n", x20);
The printx macro can even use the previously defined printint macro to get the
variable name as well as its value displayed:
#define printx(n) printint(x ## n)
The invocation
printx (10);
first expands into
printint (x10);
and then into
printf ("x10" " = %i\n", x10);
and finally into the following:
printf ("x10 = %i\n", x10);

The #import Statement

‘When you have programmed in Objective-C for a while, you will find yourself develop-
ing your own set of macros, which you will want to use in each of your programs. But
instead of having to type these macros into each new program you write, the preprocessor
enables you to collect all your definitions into a separate file and then include them in
your program, using the #import statement. These files—similar to the ones you've previ-

247

248

Chapter 12 The Preprocessor

ously encountered but haven’t written yourself—normally end with the characters .h and
are referred to as header or include files.

Suppose you were writing a series of programs for performing various metric conver-
sions.You might want to set up some #define statements for the various constants you
would need for performing your conversions:

#define INCHES_PER CENTIMETER 0.394
#define CENTIMETERS PER _INCH (1 / INCHES_PER CENTIMETER)

#define QUARTS PER LITER 1.057
#define LITERS PER QUART (1 / QUARTS_PER_LITER)
#define OUNCES_PER_GRAM 0.035
#define GRAMS_PER_OUNCE (1 / OUNCES_PER_GRAM)

Suppose you entered the previous definitions into a separate file on the system called
metric.h. Any program that subsequently needed to use any of the definitions contained
in the metric.h file could do so by simply issuing this preprocessor directive:

#import "metric.h"

This statement must appear before any of the #define statements contained in
metric.h are referenced and is typically placed at the beginning of the source file. The
preprocessor looks for the specified file on the system and effectively copies the contents
of the file into the program at the precise point at which the #import statement appears.
So any statements inside the file are treated just as if they had been directly typed into the
program at that point.

The double quotation marks around the header filename instruct the preprocessor to
look for the specified file in one or more file directories (typically, first in the directory
that contains the source file, but the actual places the preprocessor searches can be speci-
fied in Xcode by modifying the appropriate Project Settings).

Enclosing the filename within the characters < and > instead, as in

#import <Foundation/Foundation.h>

causes the preprocessor to look for the include file only in the special “system” header file
directory or directories the current directory will not be searched. Again, with Xcode,
you can alter these directories by selecting Project, Edit Project Settings from the menu.

Note

When compiling programs for this section of the book, the Foundation.h header file was
imported from this directory on my system:
/Developers/SDKs/Mac0SX10.5.sdk/System/Library/Frameworks/Foundation. fr
amework/Versions/C/Headers.

The #import Statement

To see how include files are used in an actual program example, type the six #define
statements given previously into a file called metric.h.Then type and run Program 12.1
in the normal manner.

Program 12.1

/* Illustrate the use of the #import statement
Note: This program assumes that definitions are
set up in a file called metric.h */

#import <Foundation/Foundation.h>
#import "metric.h"

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
float liters, gallons;

NSLog (@"#** Liters to Gallons ***");
NSLog (@"Enter the number of liters:");
scanf ("%f", &liters);

gallons = liters * QUARTS_PER LITER / 4.0;
NSLog (@"%g liters = %g gallons", liters, gallons);

[pool drain];
return 0;

Program 12.1 Output

***% Liters to Gallons ***
Enter the number of liters:
55.75

55.75 liters = 14.7319 gallons.

Program 12.1 is rather simple because it shows only a single defined value
(QUARTS_PER_LITER) being referenced from the include file metric.h. Nevertheless, the
point is well made: After the definitions have been entered into metric.h, they can be
used in any program that uses an appropriate #import statement.

One of the nicest things about the import file capability is that it enables you to cen-
tralize your definitions, thus ensuring that all programs reference the same value. Further-
more, errors discovered in one of the values contained in the include file need be
corrected in only that one spot, thus eliminating the need to correct every program that
uses the value. Any program that referenced the incorrect value would simply have to be
recompiled and would not have to be edited.

249

250

Chapter 12 The Preprocessor

Other system include files contain declarations for various functions stored inside the
underlying C system library. For example, the file 1imits.h contains system-dependent
values that specify the sizes of various characters and integer data types. For instance, the
maximum size of an int is defined by the name INT_MaX inside this file. The maximum
size of an unsigned long int is defined by ULONG_MAX, and so on.

The float.h header file gives information about floating-point data types. For exam-
ple, FLT_MAX specifies the maximum floating-point number, and FLT_DIG specifies the
number of decimal digits of precision for a £loat type.

The file string.h contains declarations for the library routines that perform character
string operations such as copying, comparing, and concatenating. If you’re working with
the Foundation string classes exclusively (discussed in Chapter 15, “Numbers, Strings,
and Collections”), you probably won’t need to use any of these routines in your pro-
grams.

Conditional Compilation

The Objective-C preprocessor offers a feature known as conditional compilation.
Conditional compilation is often used to create one program that can be compiled to
run on different computer systems. It is also often used to switch on or off various state-
ments in the program, such as debugging statements that print the values of variables or
trace the flow of program execution.

The #ifdef, #endif, #else, and #ifndef Statements

Unfortunately, a program sometimes must rely on system-dependent parameters that need
to be specified differently on different processors (for example, Power PC versus Intel) or
on a particular version of the operating system (for example, Tiger versus Leopard).

If you had a large program that had many such dependencies on the particular hard-
ware and/or software of the computer system (you should minimize this as much as pos-
sible), you might end up with many defines whose values would have to be changed
when the program was moved to another computer system.

You can help reduce the problem of having to change these defines when the program
is moved and can incorporate into the program the values of these defines for each differ-
ent machine by using the conditional compilation capabilities of the preprocessor. As a
simple example, the following statements have the eftect of defining DATADIR to
“/uxnl/data’ if the symbol MAC_0s_x has been previously defined, and to “\usr\data”
otherwise:

#ifdef MAC_0S_X

define DATADIR "/uxnl/data"
#else

define DATADIR "\usr\data"
#endif

Conditional Compilation

As you can see here, you are allowed to put one or more spaces after the # that begins a
preprocessor statement.

The #ifdef, #else, and #endif statements behave as you would expect. If the symbol
specified on the #ifdef line has been already defined—through a #define statement or
through the command line when the program is compiled—the compiler processes lines
that follow up to a #else, #elif, or #endif; otherwise, they are ignored.

To define the symbol POWER_PC to the preprocessor, the statement

#define POWER_PC 1

or even just

#define POWER_PC

will suffice. As you can see, no text at all has to appear after the defined name to satisfy
the #ifdef test. The compiler also permits you to define a name to the preprocessor
when the program is compiled by using a special option to the compiler command. The
command line

gcc —framework Foundation -D POWER_PC program.m —

defines the name POWER_PC to the preprocessor, causing all #ifdef POWER_PC statements
inside program.m to evaluate as TRUE (note that you must type the -D POWER_PC before
the program name on the command line). This technique enables you to define names
without having to edit the source program.

In Xcode, you add new defined names and specify their values by selecting Add User-
Defined Setting under Project Settings.

The #ifndef statement follows along the same lines as the #ifdef. This statement is
used in a similar way, except that it causes the subsequent lines to be processed if the indi-
cated symbol is not defined.

As already mentioned, conditional compilation is useful when debugging programs.
You might have many printf calls embedded in your program that are used to display
intermediate results and trace the flow of execution.You can turn on these statements by
conditionally compiling them into the program if a particular name, such as DEBUG, is de-
fined. For example, you could use a sequence of statements such as the following to dis-
play the value of some variables only if the program had been compiled with the name
DEBUG defined:

#ifdef DEBUG
NSLog (@"User name = %s, id = %i", userName, userId);
#endif

You might have many such debugging statements throughout the program.Whenever
the program is being debugged, it can be compiled with the bEBUG defined to have all the
debugging statements compiled. When the program is working correctly, it can be recom-
piled without bEBUG defined. This has the added benefit of reducing the size of the pro-
gram because all your debugging statements are not compiled in.

251

252

Chapter 12 The Preprocessor

The #if and #elif Preprocessor Statements

The #if preprocessor statement offers a more general way of controlling conditional
compilation. The #if statement can be used to test whether a constant expression evalu-
ates to nonzero. If the result of the expression is nonzero, subsequent lines up to a #else,
#elif, or #endif are processed; otherwise, they are skipped.

As an example of how this can be used, the following lines appear in the Foundation
header file NSString.h:

#if MAC_OS_X_VERSION_MIN REQUIRED < MAC_OS_X VERSION_10_5
#define NSMaximumStringLength (INT_MAX-1)
#endif

This tests the value of the defined variable MAC_0S_X_VERSION_MIN_REQUIRED against
the defined variable MAC_0s_x_VERSION_ 10 5. If the former is less than the latter, the
#define that follows is processed; otherwise, it is skipped. Presumably, this sets the maxi-
mum length of a string to the maximum size of an integer minus 1 if the program is be-
ing compiled on MAC OS X 10.5 or later versions.

The special operator

defined (name)

can also be used in #if statements. This set of preprocessor statements does the same
thing:

#if defined (DEBUG)

#endif

and

#ifdef DEBUG

#endif

The following statements appear in the NSObjcRuntime.h header file for the purpose
of defining Ns_INLINE (if it’s not previously defined) based on the particular compiler
that is being used:

#if !defined(NS_INLINE)
#if defined(_ GNUC_)
#define NS_INLINE static _ inline_attribute_((always_inline))
#elif defined(_ MWERKS_) || defined(__cplusplus)
#define NS_INLINE static inline
#elif defined(_MSC_VER)
#define NS_INLINE static _ inline
#elif defined(_ WIN32_)
#define NS_INLINE static _ inline
#endif
#endif

Exercises

Another common use of #if is in code sequences that look like this:

#if defined (DEBUG) && DEBUG

#endif

This causes the statements after the #if and up to the #endif to be processed only if
DEBUG is defined and has a nonzero value.

The #undef Statement

Sometimes you need to cau e a defined name to become undefined.You do this with the
#undef statement. To remove the definition of a particular name, you write the following:

#undef name

Thus, this statement removes the definitio of POWER PC:

#undef POWER_PC

Subsequent #ifdef POWER PC or #if defined (POWER_PC) statements evaluate to
FALSE.

This concludes our discussion on the preprocessor. Appendix B, “Objective-C Lan-
guage Summary,” describes some other preprocessor statements that we didn’t cover here.

Exercises

1. Locate the system header files 1imits.h and float.h on your machine. Examine
the files to see what’s in them. If these files include other header files, be sure to
track them down as well, to examine their contents.

2. Define a macro called MIN that gives the minimum of two values. Then write a pro-
gram to test the macro definition.

3. Define a macro called Max3 that gives the maximum of three values. Write a pro-
gram to test the definition.

4. Write a macro called Is_UPPER_CASE that gives a nonzero value if a character is an
uppercase letter.

5. Write a macro called 1s_ALPHABETIC that gives a nonzero value if a character is an
alphabetic character. Have the macro use the IS_LOWER_CASE macro defined in the
chapter text and the Is_UPPER_CASE macro defined in Exercise 4.

6. Write a macro called Is_DIGIT that gives a nonzero value if a character is a digit 0
through 9. Use this macro in the definition of another macro called 1s_spEcIAL,
which gives a nonzero result if a character is a special character (that is, not alpha-
betic and not a digit). Be sure to use the Is_ALPHABETIC macro developed in Exer-
cise 5.

253

254 Chapter 12 The Preprocessor

7. Write a macro called ABSOLUTE_VALUE that computes the absolute value of its argu-

ment. Make sure that the macro properly evaluates an expression such as this:
ABSOLUTE_VALUE (x + delta)

8. Consider the definition of the printint macro from this chapter:

#define printx(n) printf ("$%i\n", x ## n)
Could the following be used to display the values of the 100 variables x1-x100?
Why or why not?
for (i =1; i <= 100; ++i)
printx (i);

13

Underlying C Language Features

This chapter describes features of the Objective-C language that you don’t necessarily
need to know to write Objective-C programs. In fact, most of these come from the un-
derlying C programming language. Features such as functions, structures, pointers, unions,
and arrays are best learned on a need-to-know basis. Because C is a procedural language,
some of these features go against the grain of object-oriented programming. They can
also interfere with some of the strategies implemented by the Foundation framework,
such as the memory allocation methodology or work with character strings containing
multibyte characters.

Note

There are ways to work with multibyte characters at the Objective-C level, but Foundation pro-
vides a much more elegant solution with its NSString class.

On the other hand, some applications can require you to use a lower-level approach,
perhaps for the sake of optimization. If you're working with large arrays of data, for ex-
ample, you might want to use the built-in array data structures of Objective-C instead of
the array objects of Foundation (which are described in Chapter 15, “Numbers, Strings,
and Collections”). Functions also come in handy if used properly to group repetitive op-
erations and modularize a program.

Skim this chapter to get an overview of the material, and come back after you’ve fin-
ished reading Part II, “The Foundation Framework.” Or you can skip it altogether and go
on to Part II, which covers the Foundation framework. If you end up supporting some-
one else’s code or start digging through some of the Foundation framework header files,
you will encounter some of the constructs covered in this chapter. Several of the Founda-
tion data types, such as NSRange, NSPoint,and NSRect, require a rudimentary under-
standing of structures, which are described here. In such cases, you can return to this
chapter and read the appropriate section to gain an understanding of the concepts.

256

Chapter 13 Underlying C Language Features

Arrays

The Objective-C language enables the user to define a set of ordered data items known
as an array. This section describes how to define and manipulate arrays. Later sections il-
lustrate how arrays work together with functions, structures, character strings, and point-
ers.

Suppose you wanted to read a set of grades into the computer and then perform some
operations on these grades, such as rank them in ascending order, compute their average,
or find their median. In the process of ranking a set of grades, you cannot perform such
an operation until you enter every grade.

In Objective-C, you can define a variable called grades that represents not a single
value of a grade, but an entire set of grades.You can then reference each element of the
set using a number called an index number, or subscript. Whereas in mathematics a sub-
scripted variable, x;, refers to the ith element x in a set, in Objective-C the equivalent no-
tation is this:

x[1]
So the expression
grades [5]
(read as “grades sub 57) refers to element number 5 in the array called grades. In Objec-
tive-C, array elements begin with the number o, so
grades [0]
actually refers to the first element of the array.
You can use an individual array element anywhere that you can use a normal variable.

For example, you can assign an array value to another variable with a statement such as
this:

g = grades[50];
This statement assigns the value contained in grades [50] to g. More generally, if i is
declared to be an integer variable, the statement
g = grades[i];
assigns the value contained in element number i of the grades array to g.

A value can be stored in an element of an array simply by specifying the array element
on the left side of an equals sign. In the statement

grades[100] = 95;
the value 95 is stored in element number 100 of the grades array.

You can easily sequence through the elements in the array by varying the value of a
variable that is used as a subscript into the array. Therefore, the for loop

for (1 =0; i < 100; ++1)
sum += grades[i];

Arrays

sequences through the first 100 elements of the array grades (elements 0—99) and adds
the value of each grade into sum. When the for loop is finished, the variable sum contains
the total of the first 100 values of the grades array (assuming that sum was set to 0 before
the loop was entered).

As with other types of variables, you must declare arrays before you can use them. De-
claring an array involves declaring the type of element that will be contained in the array,
such as int, float, or an object, as well as the maximum number of elements that will be
stored inside the array.

The definition

Fraction *fracts [100];

defines fracts to be an array containing 100 fractions. You can make valid references
to this array by using subscripts 0—99.
The expression

fracts[2] = [fracts[0] add: fracts[1]];

invokes the Fraction’s add: method to add the first two fractions from the fracts array
and stores the result in the third location of the array.

Program 13.1 generates a table of the first 15 Fibonacci numbers. Try to predict its
output. What relationship exists between each number in the table?

Program 13.1

// Program to generate the first 15 Fibonacci numbers
#import <Foundation/Foundation.h>

int main (int argc, char *argvl[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int Fibonacci[15], 1i;

Fibonacci[0] = 0; /* by definition */
Fibonacci[l] = 1; /* ditto */

for (1 =2; i < 15; ++1)
Fibonacci[i] = Fibonacci[i-2] + Fibonaccil[i-1];

for (1 =0; 1 < 15; ++1)
NSLog (@"%i", Fibonacci[i]);

[pool drain];
return 0;

257

258

Chapter 13 Underlying C Language Features

Program 13.1 Output

55
89
144
233

377

The first two Fibonacci numbers, which we call F(y and Fy, are defined to be 0 and 1,
respectively. Thereafter, each successive Fibonacci number F; is defined to be the sum of
the two preceding Fibonacci numbers F;_ and F;_1.So F; is calculated by adding the
values of F(y and Fj.In the preceding program, this corresponds directly to calculating
Fibonacci [2] by adding the values Fibonacci [0] and Fibonacci [1].This calculation is
performed inside the for loop, which calculates the values of Fy—F 4 (or, equivalently,
Fibonacci [2] through Fibonacci [14]).

Initializing Array Elements

Just as you can assign initial values to variables when they are declared, you can assign ini-
tial values to the elements of an array. This is done by simply listing the initial values of
the array, starting from the first element.Values in the list are separated by commas, and
the entire list is enclosed in a pair of braces.

The statement

int integers(s] = { 0, 1, 2, 3, 4 };

sets the value of integers[0] to 0, integers[1] to 1, integers[2] to 2, and so on.
Arrays of characters are initialized in a similar manner; thus, the statement

char letters[5] = { 'a', 'b', '¢', 'd', 'e' };

defines the character array letters and initializes the five elements to the characters ‘a’,
v’,‘c’,‘d’, and ‘e’, respectively.

You don’t have to completely initialize an entire array. If fewer initial values are speci-
fied, only an equal number of elements are initialized; the remaining values in the array

are set to zero. Thus, the declaration

float sample data[500] = { 100.0, 300.0, 500.5 };

Arrays

initializes the first three values of sample data to 100.0,300.0,and 500.5 and sets the
remaining 497 elements to o.

By enclosing an element number in a pair of brackets, you can initialize specific array
elements in any order. For example,

int x = 1233;
int a[]l = { [9] =x+ 1, [2] =3, [1] =2, [0] =1 };

defines a 10-element array called a (based on the highest index in the array) and initial-
izes the last element to the value of x + 1 (1234). In addition, it initializes the first three
elements to 1, 2, and 3, respectively.

Character Arrays

Program 13.2 illustrates how you can use a character array. However, one point is worthy
of discussion. Can you spot it?

Program 13.2

#import <Foundation/Foundation.h>

int main (int argc, char *argv([])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char word[] = { 'H', 'e', '1', '1', 'o', '"1' };
int i;
for (1 =0; 1 < 6; ++1)
NSLog (@"%c", word[il);
[pool drain];
return 0;

Program 13.2 Output

- O HKHO I

The most notable point in the preceding program is the declaration of the character
array word. The array makes no mention of the number of elements. The Objective-C
language enables you to define an array without specifying the number of elements. In
this case, the size of the array is determined automatically based on the number of

259

260

Chapter 13 Underlying C Language Features

initialization elements. Because Program 13.2 has six initial values listed for the array
word, the Objective-C language implicitly dimensions the array to six elements.

This approach works fine as long as you initialize every element in the array at the
point that the array is defined. If this is not to be the case, you must explicitly dimension
the array.

If you put a terminating null character ('\0’) at the end of a character array, you create
what is often called a character string. If you substituted the initialization of word in
Program 13.2 with this line

char word[] = { '®', 'e', '1', '1', 'o', "1', "\0o' };

you could have subsequently displayed the string with a single NsLog call, like this:
NSLog (@"%s", word) ;

This works because the $s format characters tell NsLog to keep displaying characters

until a terminating null character is reached. That’s the character you put at the end of
your word array.

Multidimensional Arrays

The types of arrays you've seen thus far are all linear arrays—that is, they all deal with a
single dimension. The language enables you to define arrays of any dimension. This sec-
tion takes a look at two-dimensional arrays.

One of the most natural applications for a two-dimensional array arises in the case of a
matrix. Consider the 4X5 matrix shown here:

10 5 -3 17 82
9 0 0 8 -7
32 20 1 0 14
0 0 8 7 6

In mathematics, an element of a matrix commonly is referred to by using a double
subscript. If the preceding matrix were called M, the notation M ; would refer to the ele-
ment in the ith row, jth column, where i ranges from 1 through 4 “and j ranges from 1
through 5.The notation M3 5 would refer to the value 20, which is found in the third
row, second column of the matrix. In a similar fashion, My 5 would refer to the element
contained in the fourth row, fifth column (the value).

In Objective-C, an analogous notation is used when referring to elements of a two-di-
mensional array. However, because Objective-C likes to start numbering things at 0, the
first row of the matrix is actually row 0 and the first column of the matrix is column 0.
The preceding matrix would then have row and column designations as shown in the fol-
lowing diagram:

Arrays

Row (i) Column (j)

0 1 2 3 4
0 10 5 -3 17 82
1 9 0 0 8 -7
2 32 20 1 0 14
3 0 0 8 7 6

Whereas in mathematics the notation M; i is used, in Objective-C the equivalent nota-
tion is as follows:

M[i] []]

Remember, the first index number refers to the row number, whereas the second in-
dex number references the column. Therefore, the statement

sum = M[0] [2] + M[2] [4];

adds the value contained in row 0, column 2 (which is -3) to the value contained in row
2, column 4 (which is 14) and assigns the result of 11 to the variable sum.
Two-dimensional arrays are declared the same way that one-dimensional arrays are; thus,

int M[4] [5];

declares the array M to be a two-dimensional array consisting of 4 rows and 5 columns, for

a total of 20 elements. Each position in the array is defined to contain an integer value.
Two-dimensional arrays can be initialized in a manner analogous to their one-dimen-

sional counterparts. When listing elements for initialization, the values are listed by row.

Brace pairs are used to separate the list of initializers for one row from the next. Thus, to

define and initialize the array M to the elements listed in the preceding table, you can use a

statement such as the following:

int M[4][5] = {

10, 5, -3, 17, 82 },

9, 0, 0, 8, -7},

32, 20, 1, 0, 14 },

0, 0, 8 7, 6}

_— e

b

Pay particular attention to the syntax of the previous statement. Note that commas are
required after each brace that closes off a row, except in the case of the last row. The use of
the inner pairs of braces is actually optional. If these aren’t supplied, initialization proceeds
by row. Therefore, the previous statement could also have been written as follows:
int M[4][5] = { 10, 5, -3, 17, 82, 9, 0, 0, 8, -7, 32,

20, 1, 0, 14, 0, 0, 8, 7, 6 };

261

262

Chapter 13 Underlying C Language Features

As with one-dimensional arrays, the entire array need not be initialized. A statement
such as the following initializes only the first three elements of each row of the matrix to
the indicated values:

int M[4] [5] = {

{ 10, 5, -3},
{ 9,0 0},
{ 32, 20, 1},
{ 0,0 8}

b

The remaining values are set to 0. Note that, in this case, the inner pairs of braces are
required to force the correct initialization. Without them, the first two rows and the first
two elements of the third row would have been initialized instead. (Verify for yourself
that this would be the case.)

Functions

The NSLog routine is an example of a function that you have used in every program so

far. Indeed, every program also has used a function called main. Let’s go back to the first
program you wrote (Program 2.1), which displayed the phrase “Programming is fun.” at
the terminal:

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Programming is fun.");
[pool drain];
return 0;

This function, called printMessage, produces the same output:

void printMessage (void)

{
}

The only difference between printMessage and the function main from Program 2.1
is the first line. The first line of a function definition tells the compiler four things about

NSLog (@"Programming is fun.");

the function:

= Who can call it
= The type of value it returns
= [ts name

= The number and type of arguments it takes

Functions

The first line of the printMessage function definition tells the compiler that
printMessage is the name of the function and that it returns no value (the first use of the
keyword void). Unlike methods, you don’t put the function’s return type inside a set of
parentheses. In fact, you get a compiler error message if you do.

After telling the compiler that printMessage doesn’t return a value, the second use of
the keyword void says that it takes no arguments.

Recall that main is a specially recognized name in the Objective-C system that always
indicates where the program is to begin execution. There always must be a main. So you
can add a main function to the preceding code to end up with a complete program, as
shown in Program 13.3.

Program 13.3

#import <Foundation/Foundation.h>

void printMessage (void)

{

NSLog (@"Programming is fun.");

}

int main (int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

printMessage ();
[pool drain];
return 0;

Program 13.4 Output

Programming is fun.

Program 13.3 consists of two functions: printMessage and main. As mentioned ear-
lier, the idea of calling a function is not new. Because printMessage takes no arguments,
you call it simply by listing its name followed by a pair of open and close parentheses.

Arguments and Local Variables

In Chapter 5, “Program Looping,” you developed programs for calculating triangular
numbers. Here you define a function to generate a triangular number and call it, appro-
priately enough, calculateTriangularNumber.As an argument to the function, you
specify which triangular number to calculate. The function then calculates the desired
number and displays the results. Program 13.4 shows the function to accomplish the task
and a main routine to try it.

263

264

Chapter 13 Underlying C Language Features

Program 13.4

#import <Foundation/Foundation.hs>

// Function to calculate the nth triangular number

void calculateTriangularNumber (int n)

{

int i, triangularNumber = 0;

for (1 =1; i <= n; ++1)
triangularNumber += 1i;

NSLog (@"Triangular number %i is %i", n, triangularNumber) ;

int main (int argc, char *argv(])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

calculateTriangularNumber (10);
calculateTriangularNumber (20);
calculateTriangularNumber (50);

[pool drainl];
return 0;

Program 13.4 Output
Triangular number 10 is 55
Triangular number 20 is 210

Triangular number 50 is 1275

The first line of the calculateTriangularNumber function is this:

void calculateTriangularNumber (int n)

It tells the compiler that calculateTriangularNumber is a function that returns no
value (the keyword void) and that it takes a single argument, called n, which is an int.
Note again that you can’t put the argument type inside parentheses, as you are accus-
tomed to doing when you write methods.

The opening curly brace indicates the beginning of the function’s definition. Because
you want to calculate the nth triangular number, you must set up a variable to store the
value of the triangular number as it is being calculated. You also need a variable to act as
your loop index. The variables TriangularNumber and i are defined for these purposes
and are declared to be of type int.You define and initialize these variables in the same
manner that you defined and initialized your variables inside the main routine in previous
programs.

Functions

Local variables in functions behave the same way they do in methods: If an initial
value is given to a variable inside a function, that initial value is assigned to the variable
each time the function is called.

Variables defined inside a function (as in methods) are known as automatic local
variables because they are automatically “created” each time the function is called and
their values are local to the function.

Static local variables are declared with the keyword static, retain their values through
function calls, and have default initial values of o.

The value of a local variable can be accessed only by the function in which the vari-
able is defined. Its value cannot be directly accessed from outside the function.

Returning to our program example, after the local variables have been defined, the
function calculates the triangular number and displays the results at the terminal. The
closed brace then defines the end of the function.

Inside the main routine, the value 10 is passed as the argument in the first call to
calculateTriangularNumber. Execution then transfers directly to the function where
the value 10 becomes the value of the formal parameter n inside the function.The func-
tion then calculates the value of the 10th triangular number and displays the result.

The next time calculateTriangularNumber is called, the argument 20 is passed. In a
similar process, as described earlier, this value becomes the value of n inside the function.
The function then calculates the value of the 20th triangular number and displays the an-
swer.

Returning Function Results

As with methods, a function can return a value. The type of value returned with the
return statement must be consistent with the return type declared for the function. A
function declaration that starts like this

float kmh to_mph (float km_ speed)

begins the definition of a function kmh_to_mph, which takes one float argument called

km_speed and returns a floating-point value. Similarly,

int ged (int u, int v)

defines a function called gecd with integer arguments u and v and returns an integer value.
Let’s rewrite the greatest common divisor algorithm used in Program 5.7 in function

form.The two arguments to the function are the two numbers whose greatest common
divisor (gcd) you want to calculate (see Program 13.5).

Program 13.5

#import <Foundation/Foundation.h>

// This function finds the greatest common divisor of two
// nonnegative integer values and returns the result

265

266

Chapter 13 Underlying C Language Features

int ged (int u, int v)

{

int temp;

while (v != 0

{

temp = u % v;

u = v;
v = temp;
return u;

main ()

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int result;

result = gcd (150, 35);
NSLog (@"The gcd of 150 and 35 is %i", result);

result = gcd (1026, 405);
NSLog (@"The gcd of 1026 and 405 is %i", result);

NSLog (@"The gcd of 83 and 240 is %i", gcd (83, 240));
[pool drain];
return 0;

Program 13.5 Output
The gcd of 150 and 35 is 5
The gcd of 1026 and 405 is 27

The gcd of 83 and 240 is 1

The function ged is defined to take two integer arguments. The function refers to
these arguments through their formal parameter names: u and v. After declaring the vari-
able temp to be of type int, the program displays the values of the arguments u and v, to-
gether with an appropriate message at the terminal. The function then calculates and
returns the greatest common divisor of the two integers.

The statement

result = gcd (150, 35);

says to call the function ged with the arguments 150 and 35, and to store the value that
this function returns in the variable result.

Functions

If the return type declaration for a function is omitted, the compiler assumes that the
function will return an integer—if it returns a value at all. Many programmers take ad-
vantage of this fact and omit the return type declaration for functions that return integers.
However, this is a bad programming habit that you should avoid. The compiler will warn
you that the return type defaults to int, which is an indication that you're doing some-
thing wrong!

The default return type for functions differs from that for methods. Recall that, if no
return type is specified for a method, the compiler assumes that it returns a value of type
id. Again, you should always declare the return type for a method instead of relying on
this fact.

Declaring Return Types and Argument Types

We mentioned earlier that the Objective-C compiler assumes that a function returns a
value of type int as the default case. More specifically, whenever a call is made to a func-
tion, the compiler assumes that the function returns a value of type int unless either of
the following has occurred:

= The function has been defined in the program before the function call is encountered.

= The value returned by the function has been declared before the function call is
encountered. Declaring the return and argument types for a function is known as a
prototype declaration.

The function declaration not only is used to declare the function’s return type, but it
also is used to tell the compiler how many arguments the function takes and what their
types are. This is analogous to declaring methods inside the @einterface section when
defining a new class.

To declare absolutevalue as a function that returns a value of type £loat and that takes
a single argument, also of type f£loat, you could use the following prototype declaration:

float absoluteValue (float);

As you can see, you have to specify just the argument type inside the parentheses, not
its name.You can optionally specify a “dummy” name after the type, if you like:

float absoluteValue (float x);

This name doesn’t have to be the same as the one used in the function definition—the
compiler ignores it anyway.

A foolproof way to write a prototype declaration is to simply make a copy of the first
line from the actual definition of the function. Remember to place a semicolon at the end.
If the function takes a variable number of arguments (such as is the case with NSLog

and scanf), the compiler must be informed. The declaration

void NSLog (NSString *format, ...);

tells the compiler that NSLog takes an NSString object as its first argument and is fol-
lowed by any number of additional arguments (the use of the . . .).NSLog is declared in

267

268

Chapter 13 Underlying C Language Features

the special file Foundation/Foundation.h', which is why you have been placing the fol-
lowing line at the start of each of your programs:

#import <Foundation/Foundation.h>

Without this line, the compiler can assume that NSLog takes a fixed number of argu-
ments, which can result in incorrect code being generated.

The compiler automatically converts your numeric arguments to the appropriate types
when a function is called only if you have placed the function’s definition or have de-
clared the function and its argument types before the call.

Consider some reminders and suggestions about functions:

= By default, the compiler assumes that a function returns an int.
= When defining a function that returns an int, define it as such.
= When defining a function that doesn’t return a value, define it as void.

= The compiler converts your arguments to agree with the ones the function expects
only if you have previously defined or declared the function.

To be safe, declare all functions in your program, even if they are defined before they
are called. (You might decide later to move them someplace else in your file or even to
another file.) A good strategy is to put your function declarations inside a header file and
then just import that file into your modules.

Functions are external by default. That is, the default scope for a function is that it can
be called by any functions or methods contained in any files that are linked with the
function.You can limit the scope of a function by making it static.You do this by placing
the keyword static in front of the function declaration, as shown here:

static int gecd (int u, int v)

{

A static function can be called only by other functions or methods that appear in the
same file that contains the function’s definition.

Functions, Methods, and Arrays

To pass a single array element to a function or method, you specify the array element as
an argument in the normal fashion. So if you had a squareroot function to calculate
square roots and wanted to take the square root of averages [i] and assign the result to a
variable called sq_root result,a statement such as this one would work:

sq_root_result = squareRoot (averages[i]);

* Technically speaking, its defined in the file NSObjCRuntime.h, which is imported from inside the
file Foundation.h

Functions

Passing an entire array to a function or method is an entirely new ballgame.To pass an
array, you need to list only the name of the array, without any subscripts, inside the call to
the function or method invocation. As an example, if you assume that grade_scores has
been declared as an array containing 100 elements, the expression

minimum (grade_scores)

passes the entire 100 elements contained in the array grade_scores to the function
called minimum. Naturally, the minimum function must be expecting an entire array to be
passed as an argument and must make the appropriate formal parameter declaration.

This function finds the minimum integer value in an array containing a specified
number of elements:

// Function to find the minimum in an array

int minimum (int values[], int numElements)

{

int minvalue, i;
minValue = values([0];

for (1 = 1; i < numElements; ++1
if (values[i] < minValue)
minvalue = values[i];

return (minvValue) ;

The function minimum is defined to take two arguments: first, the array whose mini-
mum you want to find and, second, the number of elements in the array. The open and
close brackets that immediately follow values in the function header inform the Ob-
jective-C compiler that values is an array of integers. The compiler doesn’t care how
large it is.

The formal parameter numElements serves as the upper limit inside the for statement.
Thus, the for statement sequences through the array from values[1] through the last el-
ement of the array, which is values [numElements - 1].

If a function or method changes the value of an array element, that change is made to
the original array that was passed to the function or method. This change remains in ef-
fect even after the function or method has completed execution.

The reason an array behaves differently from a simple variable or an array element—
whose value a function or method cannot change—is worthy of a bit of explanation. We
stated that when a function or method is called, the values passed as arguments are copied
into the corresponding formal parameters. This statement is still valid. However, when
dealing with arrays, the entire contents of the array are not copied into the formal param-
eter array. Instead, a pointer is passed indicating where in the computer’s memory the ar-
ray is located. So any changes made to the formal parameter array are actually made to

269

270

Chapter 13 Underlying C Language Features

the original array, not to a copy of the array. Therefore, when the function or method re-
turns, these changes remain in effect.

Multidimensional Arrays
You can pass a multidimensional array element to a function or method just as any ordi-
nary variable or single-dimensional array element can. The statement

result = squareRoot (matrix[i] [j]);

calls the squareRoot function, passing the value contained in matrix[i] [§] as the argu-
ment.

You can pass an entire multidimensional array as an argument the same way you do
with a single-dimensional array:You simply list the name of the array. For example, if the
matrix measuredvalues is declared to be a two-dimensional array of integers, you can
use the Objective-C statement

scalarMultiply (measuredvValues, constant);

to invoke a function that multiplies each element in the matrix by the value of constant.
This implies, of course, that the function itself can change the values contained inside the
measuredvalues array. The discussion pertaining to this topic for single-dimensional ar-
rays also applies here: An assignment made to any element of the formal parameter array
inside the function makes a permanent change to the array that was passed to the func-
tion.

‘We mentioned that, when declaring a single-dimensional array as a formal parameter,
you don’t need the actual dimension of the array. You simply use a pair of empty brackets
to inform the Objective-C compiler that the parameter is an array. This does not totally
apply in the case of multidimensional arrays. For a two-dimensional array, you can omit
the number of rows in the array, but the declaration must contain the number of columns
in the array. The declarations

int arrayValues[100] [50]
and

int arrayValues|[] [50]

are both valid declarations for a formal parameter array called arrayvalues that contains
100 rows by 50 columns. However, the declarations

int arrayValues[100] []

and

int arrayValues[] []

are not valid because you must specify the number of columns in the array.

Structures

Structures

The Objective-C language provides another tool besides arrays for grouping elements.
You also can use structures, which form the basis for the discussions in this section.

Suppose you wanted to store a date—say, 7/18/09—inside a program, perhaps to be
used for the heading of some program output or even for computational purposes. A nat-
ural method for storing the date is to simply assign the month to an integer variable
called month, the day to an integer variable day, and the year to an integer variable year.
So the statements

int month = 7, day = 18, year = 2009;

would work just fine. This is a totally acceptable approach. But what if your program also
needed to store several dates? It would be much better to somehow group these sets of
three variables.

You can define a structure called date in the Objective-C language that consists of
three components that represent the month, day, and year. The syntax for such a definition
is rather straightforward:

struct date

{

int month;
int day;
int year;

}i

The date structure just defined contains three integer members, called month, day,
and year. Essentially, the definition of date defines a new type in the language, in that
variables can subsequently be declared to be of type struct date, as in the following
definition:

struct date today;
You can also define a variable called purchaseDate to be of the same type with a sep-
arate definition:

struct date purchaseDate;

Or you can simply include the two definitions on the same line:
struct date today, purchaseDate;

Unlike variables of type int, float, or char, a special syntax is needed when dealing
with structure variables. A member of a structure is accessed by specifying the variable

name, followed by a period (called the dot operator) and then the member name. For ex-
ample, to set the value of day in the variable today to 21, you would write this:

today.day = 21;

Note that no spaces are permitted between the variable name, the period, and the
member name.

271

272

Chapter 13 Underlying C Language Features

Now, wait a second! Wasn’t this the same operator we used to invoke an property on
an object? Recall that we could write the statement

myRect.width = 12;

to invoke the Rectangle object’s setter method (called setwidth), passing it the argu-
ment value of 12. No confusion arises here: The compiler determines whether it’s a struc-
ture or an object to the left of the dot operator and handles the situation properly.

Returning to the struct date example, to set year in today to 2010, you can use
this expression:

today.year = 2010;

Finally, to test the value of month to see whether it is equal to 12, you can use a state-
ment such as this:
if (today.month == 12)

next_month = 1;

Program 13.6 incorporates the preceding discussions into an actual program.

Program 13.6

#import <Foundation/Foundation.h>

int main (int argc, char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
struct date

int month;

int day;

int year;
}i
struct date today;
today.month = 9;
today.day = 25;
today.year = 2009;

NSLog (@"Today's date is %i/%i/%.2i.", today.month,
today.day, today.year % 100);

[pool drain];
return 0;

Structures 273

Program 13.6 Output

Today's date is 9/25/09.

The first statement inside main defines the structure called date to consist of three integer
members, called month, day, and year. In the second statement, the variable today is declared
to be of type struct date. So the first statement simply defines what a date structure looks
like to the Objective-C compiler and causes no storage to be reserved inside the computer.
The second statement declares a variable to be of type struct date and, therefore, does re-
serve memory for storing the three integer members of the structure variable today.

After the ass gnments, an appropri te NSLog call displays the values contained inside
the structure. The rema nder of today year divided by 100 is calculated before being
passed to the NSLog function so that just 04 displays for the year. The %.2i format charac-
ters in the NSLog call specify a minimum of two characters to be displayed, thus forcing
the display of the leading zero for the year.

When it comes to the evalua ion of expressions, structure members follow the same
rules as ordinary var ables in the Objective-C language. D vision of an integer structure
member by another integer is performed as an integer division, as shown here:

century = today.year / 100 + 1;
Suppose you wanted to write a simple program that accepted today’s date as input and
displayed tomorrow’s date to the user. At first glance, this seems a perfectly simple task to

perform.You can ask the user to enter today’s date and then calculate tomorrow’s date by
a series of statements, like so:

tomorrow.month = today.month;
tomorrow.day = today.day + 1;
tomorrow.year = today.year;

Of course, the previous statements would work fine for most dates, but the following
two cases would not be properly handled:

= If today’s date fell at the end of a month
= If today’s date fell at the end of a year (that is, if today’s date were December 31)

One way to easily determine whether today’s date falls at the end of a month is to set
up an array of integers that corresponds to the number of days in each month. A lookup
inside the array for a particular month then gives the number of days in that month (see
Program 13.7).

Program 13.7

// Program to determine tomorrow's date

#import <Foundation/Foundation.h>

struct date

{

274

Chapter 13 Underlying C Language Features

int month;
int day;
int year;

// Function to calculate tomorrow's date

struct date dateUpdate (struct date today)
struct date tomorrow;
int numberOfDays (struct date d);

if (today.day != numberOfDays (today))
{
tomorrow.day = today.day + 1;
tomorrow.month = today.month;
tomorrow.year = today.year;
}
else if (today.month == 12) // end of year
{
tomorrow.day = 1;
tomorrow.month = 1;
tomorrow.year = today.year + 1;
}
else
{ // end of month
tomorrow.day = 1;
tomorrow.month = today.month + 1;
tomorrow.year = today.year;

return (tomorrow) ;

// Function to find the number of days in a month

int numberOfDays (struct date d)
{
int answer;
BOOL isLeapYear (struct date d);
int daysPerMonth[12] =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

if (isLeapYear (d) == YES && d.month ==)
answer = 29;

else
answer = daysPerMonth[d.month - 1];

Structures

return (answer);

// Function to determine if it's a leap year

BOOL isLeapYear (struct date d)

{
if ((d.year % 4 == 0 && d.year % 100 != 0) ||
d.year % 400 == 0)
return YES;
else
return NO;

}

int main (int argc, char *argv([])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
struct date dateUpdate (struct date today);
struct date thisDay, nextDay;
NSLog (@"Enter today's date (mm dd yyyy): ");
scanf ("%1%i%i", &thisDay.month, &thisDay.day,

&thisDay.year) ;
nextDay = dateUpdate (thisDay);
NSLog (@"Tomorrow's date is %i/%i/%.2i.",nextDay.month,
nextDay.day, nextDay.year % 100);

[pool drain];
return 0;

}

Program 13.7 Output

Enter today's date (mm dd yyyy):
2 28 2012

Tomorrow's date is 2/29/12.

Program 13.7 Output (Rerun)

Enter today's date (mm dd yyyy):
10 2 2009

Tomorrow's date is 10/3/09.

275

276

Chapter 13 Underlying C Language Features

Program 13.7 Output (Rerun)
Enter today's date (mm dd yyyy):
12 31 2010

Tomorrow's date is 1/1/10.

Even though you're not working with any classes in this program, the file Foundation.h
was imported because you wanted to use the BOOL type and the defines YES and No. They're
defined in that file.

Notice that the definition of the date structure appears first and outside of any func-
tion. This is because structure definitions behave much like variables: If a structure is de-
fined within a particular function, only that function knows of its existence. This is a local
structure definition. If you define the structure outside any function, that definition is
global. A global structure definition enables any variables that are subsequently defined in
the program (either inside or outside a function) to be declared as that structure type.
Structure definitions that more than one file share are typically centralized in a header file
and then imported into the files that want to use the structure.

Inside the main routine, the declaration

struct date dateUpdate (struct date today);

tells the compiler that the dateUpdate function takes a date structure as its argument and
returns one as well. You don’t need the declaration here because the compiler has already
seen the actual function definition earlier in the file. However, it’s still good programming
practice. For example, if you subsequently separated the function definition and main into
separate source files, the declaration would be necessary.

As with ordinary variables—and unlike arrays—any changes that the function makes
to the values contained in a structure argument have no effect on the original structure.
They affect only the copy of the structure that is created when the function is called.

After a date has been entered and stored inside the date structure variable thisbay,
the dateUpdate function is called like this:

nextDay = dateUpdate (thisDay);
This statement calls dateUpdate, passing it the value of the date structure thisDay.
Inside the dateUpdate function, the prototype declaration

int numberOfDays (struct date d);
informs the Objective-C compiler that the numberofDays function returns an integer

value and takes a single argument of type struct date.
The statement

if (today.day != numberOfDays (today))

Structures

specifies that the structure today is to be passed as an argument to the numberofDays
function. Inside that function, the appropriate declaration must be made to inform the
system that a structure is expected as an argument, like so:

int numberOfDays (struct date d)

The numberofDays function begins by determining whether it is a leap year and
whether the month is February. The former determination is made by calling another
function called isLeapYear.

The isLeapYear function is straightforward enough; it simply tests the year con-
tained in the date structure given as its argument and returns YES if it is a leap year and
No if it is not.

Make sure that you understand the hierarchy of function calls in Program 13.7:The
main function calls dateUpdate, which calls numberofbays, which itself calls the function

isLeapYear.

Initializing Structures

Initializing structures is similar to initializing arrays—the elements are simply listed inside
a pair of braces, with a comma separating each element.
To initialize the date structure variable today to July 2,2011, you can use this statement:

struct date today = { 7, 2, 2011 };
As with the initialization of an array, fewer values can be listed than the structure con-
tains. So the statement
struct date today = { 7 };
sets today.month to 7 but gives no initial value to today.day or today.year. In such a

case, their default initial values are undefined.
Specific members can be designated for initialization in any order with the notation

.member = value

in the initialization list, as in

struct date today = { .month = 7, .day = 2, .year = 2011 };
and

struct date today = { .year = 2011 };

The last statement just sets the year in the structure to 2011. As you know, the other
two members are undefined.

277

278

Chapter 13 Underlying C Language Features

Arrays of Structures
Working with arrays of structures is pretty straightforward. The definition

struct date birthdays[15];

defines the array birthdays to contain 15 elements of type struct date. Referencing a
particular structure element inside the array is quite natural. To set the second birthday in-
side the birthdays array to February 22, 1996, this sequence of statements works:
birthdays[1] .month = 2;

birthdays[1] .day = 22;

birthdays[1] .year = 1996;

The statement

n = numberOfDays (birthdays[0]);

sends the first date in the array to the numberofDays function to find out how many days
are contained in the month that date specifies.

Structures Within Structures

Objective-C provides an enormous amount of flexibility in defining structures. For in-
stance, you can define a structure that itself contains other structures as one or more of its
members, or you can define structures that contain arrays.

You have seen how to logically group the month, day, and year into a structure called
date. Suppose you had an analogous structure called time that you used to group the
hour, minutes, and seconds representing a time. In some applications, you might need to
logically group both a date and a time. For example, you might need to set up a list of
events that are to occur at a particular date and time.

The previous discussion implies that you want to have a convenient means of associat-
ing both the date and the time.You can do this in Objective-C by defining a new struc-
ture (perhaps called date_and_time) that contains as its members two elements: the date
and the time:

struct date_and time

struct date sdate;
struct time stime;

}i

The first member of this structure is of type struct date and is called sdate, and the
second member of the date_and_time structure is of type struct time and is called
stime.This definition of a date_and_time structure requires that a date structure and a
time structure be previously defined to the compiler.

Variables can now be defined as type struct date_and_time:

struct date_and time event;

To reference the date structure of the variable event, the syntax is the same:

Structures

event.sdate

Therefore, you could call your dateUpdate function with this date as the argument
and assign the result back to the same place by a statement, like so:
event.sdate = dateUpdate (event.sdate);

You can do the same with the time structure contained within your date_and_time
structure:
event.stime = timeUpdate (event.stime);

To reference a particular member inside one of these structures, add a period followed
by the member name to the end:
event.sdate.month = 10;

This statement sets the month of the date structure contained within event to Octo-
ber, and the statement
++event.stime.seconds;
adds 1 to the seconds contained within the time structure.

You can initialize the event variable in the expected manner:
struct date_and time event =

{ { 12, 17, 1989 }, { 3, 30, 0} };

This sets the date in the variable event to December 17, 1989, and sets the time to
3:30:00.

Naturally, you can set up an array of date_and_time structures, as is done with the
following declaration:

struct date_and time events[100];

The array events is declared to contain 100 elements of type struct
date_and_time.The 4th date_and_time contained within the array is referenced in the
usual way as events [3], and the 25th date in the array can be sent to your dateUpdate
function as follows:

events[24] .sdate = dateUpdate (events[24].sdate);
To set the first time in the array to noon, you can use the following series of state-
ments:

events[0] .stime.hour = 12;
events[0] .stime.minutes = 0;
events[0] .stime.seconds = 0;

279

280

Chapter 13 Underlying C Language Features

Additional Details About Structures

We should mention that you have some flexibility in defining a structure. First, you can
declare a variable to be of a particular structure type at the same time that the structure is
defined.You do this simply by including the variable name(s) before the terminating
semicolon of the structure definition. For example, the following statement defines the
structure date and also declares the variables todaysbate and purchaseDate to be of this
type:

struct date

{

int month;
int day;
int year;
} todaysDate, purchaseDate;

You can also assign initial values to the variables in the normal fashion. Thus, the follow-
ing defines the structure date and the variable todaysDate with initial values as indicated:

struct date

{

int month;
int day;
int year;
} todaysDate = { 9, 25, 2010 };

If all the variables of a particular structure type are defined when the structure is de-
fined, you can omit the structure name. So the following statement defines an array called
dates to consist of 100 elements:

struct

{

int month;

int day;

int year;
} dates[100];

Each element is a structure containing three integer members: month, day, and year.
Because you did not supply a name to the structure, the only way to subsequently de-
clare variables of the same type is to explicitly define the structure again.

Bit Fields
Two methods in Objective-C can pack information together. One way is to simply repre-
sent the data inside an integer and then access the desired bits of the integer using the bit
operators described in Chapter 4, “Data Types and Expressions.”

Another way is to define a structure of packed information using an Objective-C con-
struct known as a bit field. This method uses a special syntax in the structure definition
that enables you to define a field of bits and assign a name to that field.

Structures

To define bit field assignments, you can define a structure called packedstruct, for
example, as follows:

struct packedStruct

{
unsigned int f1:1;
unsigned int £2:1;
unsigned int £3:1;
unsigned int type:4;
unsigned int index:9;

}i

The structure packedstruct is defined to contain five members. The first member,
called £1,1s an unsigned int.The :1 that immediately follows the member name speci-
fies that this member is to be stored in 1 bit. The flags £2 and £3 are similarly defined as
being a single bit in length. The member type is defined to occupy 4 bits, whereas the
member index is defined as being 9 bits long.

The compiler automatically packs the preceding bit field definitions together. The nice
thing about this approach is that the fields of a variable defined to be of type
packedStruct can now be referenced in the same convenient way that normal structure
members are referenced. So if you declared a variable called packedpata as follows

struct packedStruct packedData;

you could easily set the type field of packedbata to 7 with this simple statement:

packedData.type = 7;

You could also set this field to the value of n with this similar statement:
packedData.type = n;
In this last case, you needn’t worry about whether the value of n is too large to fit into

the type field; only the low-order 4 bits of n are assigned to packedData.type.
Extraction of the value from a bit field is also automatically handled, so the statement

n = packedData.type;
extracts the type field from packedbata (automatically shifting it into the low-order bits
as required) and assigns it to n.

You can use bit fields in normal expressions and automatically convert them to inte-
gers. Therefore, the statement

i = packedData.index / 5 + 1;
is perfectly valid, as is the following:

if (packedData.f2)

This tests whether flag £2 is on or off. One point worth noting about bit fields is that
no guarantee states whether the fields are internally assigned from left to right or from

281

282

Chapter 13 Underlying C Language Features

right to left. So if bit fields are assigned from right to left, £1 would be in the low-order
bit position, £2 in the bit position immediately to the left of £1, and so on.This should
not present a problem unless you are dealing with data that a different program or a dif-
ferent machine created.

You can also include normal data types within a structure that contains bit fields. So if
you wanted to define a structure that contains an int, a char, and two 1-bit flags, the fol-
lowing definition would be valid:

struct table_entry

{

int count;
char c;
unsigned int f£1:1;
unsigned int f2:1;

bi

Bit fields are packed into units as they appear in the structure definition, where the size
of a unit is defined by the implementation and is most likely a word. The Objective-C
compiler does not rearrange the bit field definitions to try to optimize storage space.

A bit field that has no name can be specified to cause bits inside a word to be skipped.
The following definition defines a structure, x_entry, that contains a 4-bit field called
type and a 9-bit field called count:

struct x_entry

unsigned int type:4;
unsigned int :3;
unsigned int count:9;

}i

The unnamed field specifies that 3 bits separate type from the count field.

A final point on the specification of fields concerns the special case of an unnamed
field of length 0.You can be use this to force alignment of the next field in the structure
at the start of a unit boundary.

Don’t Forget About Object-Oriented Programming!

Now you know how to define a structure to store a date, and you’ve written various rou-
tines to manipulate that date structure. But what about object-oriented programming?
Shouldn’t you have made a class called pate instead and then developed methods to work
with a Date object? Wouldn’t that be a better approach? Well, yes. Hopefully, that entered
your mind when we discussed storing dates in your program.

Certainly, if you have to work with a lot of dates in your programs, defining a class and
methods to work with dates is a better approach. In fact, the Foundation framework has a
couple of classes, called NsDate and NSCalendarDate, defined for such purposes. We leave
it as an exercise for you to implement a Date class to deal with dates as objects instead of
as structures.

Pointers

Pointers

Pointers enable you to effectively represent complex data structures, change values passed
as arguments to functions and methods, and more concisely and efficiently deal with ar-
rays. At the end of this chapter, we also clue you in about how important they are to the
implementation of objects in the Objective-C language.

We introduced the concept of a pointer in Chapter 8, “Inheritance,” when we talked
about the Point and Rectangle classes and stated that you can have multiple references
to the same object.

To understand the way pointers operate, you first must understand the concept of
indirection. We witness this concept in our everyday life For example uppose that I
needed to buy a new toner cartridge for my printer. In the company that I work for, the
purchasing department handles all purchases. So I would call Jim in purchasing and ask
him to order the new cartridge for me. Jim then would call the local supply store to order
the cartridge To obtain my new cartridge, I would take an indirect approach because I
would not be ordering he cartridge directly from the supply store.

This same notion of indirection applies to the way pointers work in Objective-C. A
pointer provides an indirect means of accessing the value of a particular data item. And
just as there are reasons it makes sense to go through the purchasing department to order
new cartridges (I don’t have to know which particular store the cartridges are being or-
dered from, for example), good reasons exist for why sometimes it makes sense to use
pointers in Objective-C.

But enough talk; it’s time to see how pointers actually work. Suppose you've defined a
variable called count as follows:

int count = 10;

You can define another variable, called intPtr, that enables you to indirectly access
the value of count with the following declaration:

int *intPtr;

The asterisk defines to the Objective-C system that the variable intPtr is of type
pointer to int.This means that the program will use intPtr to indirectly access the value
of one or more integer variables.

You have seen how we used the & operator in the scanf calls of previous programs.
This unary operator, known as the address operator, makes a pointer to a variable in Ob-
jective-C. So if x is a variable of a particular type, the expression &x is a pointer to that
variable. If you want, you can assign the expression &x to any pointer variable that has
been declared to be a pointer of the same type as x.

Therefore, with the definitions of count and intPtr as given, you can write a state-
ment such as

intPtr = &count;

283

284

Chapter 13 Underlying C Language Features

to set up the indirect reference between intPtr and count.The address operator assigns
to the variable intPtr not the value of count, but a pointer to the variable count. Figure
13.1 illustrates the link made between intPtr and count.The directed line illustrates the
idea that intPtr does not directly contain the value of count, but contains a pointer to
the variable count.

| ————>]

intPtr count

Figure 13.1 Pointer to an integer

To reference the contents of count through the pointer variable intPtr, you use the
indirection operator, which is the asterisk (). If x were defined to be of type int, the
statement

X = *intPtr;

would assign the value that is indirectly referenced through intpPtr to the variable x. Be-

cause intPtr was previously set pointing to count, this statement would have the effect

of assigning the value contained in the variable count—which is 10—to the variable x.
Program 13.8 incorporates the previous statements and illustrates the two fundamental

pointer operators: the address operator (&) and the indirection operator (*).

Program 13.8

// Program to illustrate pointers

#import <Foundation/Foundation.h>

int main (int argc, char *argvl[])

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int count = 10, Xx;
int *intPtr;

intPtr = &count;
X = *intPtr;

NSLog (@"count = %i, x = %i", count, x);

[pool drain];
return 0;

Program 13.8 Output

count = 10, x = 10

Pointers

The variables count and x are declared to be integer variables in the normal fashion.
On the next line, the variable intPtr is declared to be of type “pointer to int.” Note that
the two lines of declarations could have been combined into a single line:

int count = 10, x, *intPtr;

Next, the address operator is applied to the variable count, which has the effect of cre-
ating a pointer to this variable, which the program then assigns to the variable intptr.
Execution of the next statement in the program

X = *intPtr;

proceeds as follows: The indirection operator tells the Objective-C system to treat the
variable intPtr as containing a pointer to another data item. This pointer is then used to
access the desired data item, whose type is specified by the declaration of the pointer vari-
able. Because you told the compiler when you declared the variable that intPtr points to
integers, the compiler knows that the value referenced by the expression *intptr is an
integer. Also, because you set intPtr to point to the integer variable count in the previ-
ous program statement, this expression indirectly accesses the value of count.

Program 13.9 illustrates some interesting properties of pointer variables. This program
uses a pointer to a character.

Program 13.9

#import <Foundation/Foundation.h>

int main (int argc, char *argv([])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char ¢ = 'Q";
char *charPtr = &c;

NSLog (@"%c %c", ¢, *charPtr);

c="/"

NSLog (@"%c %c", c, *charPtr);
*charPtr = ' (';

NSLog (@"%c %c", c, *charPtr);

[pool drain];
return 0;

Program 13.9 Output

Q0
/7

(

285

286

Chapter 13 Underlying C Language Features

The character variable c is defined and initialized to the character ‘Q’. In the next line
of the program, the variable charptr is defined to be of type “pointer to char,” meaning
that whatever value is stored inside this variable should be treated as an indirect reference
(pointer) to a character. Notice that you can assign an initial value to this variable in the
normal fashion. The value you assign to charptr in the program is a pointer to the vari-
able c, which is obtained by applying the address operator to the variable c. (Note that
this initialization would have generated a compiler error had c been defined after this
statement because a variable must always be declared before its value can be referenced in
an expression.)

The declaration of the variable charptr and the assignment of its initial value could
have been equivalently expressed in two separate statements, as follows

char *charPtr;
charPtr = &c;

(and not by the statements

char *charPtr;
*charPtr = &c;

as might be implied from the single line declaration).

Remember that the value of a pointer in Objective-C is meaningless until it is set to
point to something.

The first NSLog call simply displays the contents of the variable ¢ and the contents of
the variable referenced by charPtr. Because you set charPtr to point to the variable c,
the value displayed is the contents of c, as verified by the first line of the program’s output.

In the next line of the program, the character */’ is assigned to the character variable c.
Because charptr still points to the variable ¢, displaying the value of *charptr in the
subsequent NSLog call correctly displays this new value of c at the terminal. This is an im-
portant concept. Unless the value of charptr changes, the expression *charptr always
accesses the value of c. Thus, as the value of ¢ changes, so does the value of *charptr.

The previous discussion can help you understand how the program statement that ap-
pears next in the program works. We mentioned that unless charptr were changed, the
expression *charPtr would always reference the value of c. Therefore, in the expression

*charPtr = '(';

the left parenthesis character is being assigned to c¢. More formally, the character ' (' is as-
signed to the variable that charptr points to.You know that this variable is ¢ because you
placed a pointer to ¢ in charPtr at the beginning of the program.

The previous concepts are the key to your understanding of pointer operation. Re-
view them at this point if they still seem a bit unclear.

Pointers

Pointers and Structures

You have seen how to define a pointer to point to a basic data type such as an int ora
char. But you can also define a pointer to point to a structure. Earlier in this chapter,
you defined your date structure as follows:

struct date

{

int month;
int day;
int year;
bi
Just as you defined variables to be of type struct date,as in

struct date todaysDate;

you can define a variable to be a pointer to a struct date variable:
struct date *datePtr;

You can then use the variable datePptr, as just defined, in the expected fashion. For
example, you can set it to point to todaysDate with the following assignment statement:
datePtr = &todaysDate;

After such an assignment, you can indirectly access any of the members of the date
structure that datePtr points to in the following way:

(*datePtr) .day = 21;

This statement sets the day of the date structure pointed to by datePtr to 21.The
parentheses are required because the structure member operator . has higher precedence
than the indirection operator *.

To test the value of month stored in the date structure that datePtr points to, you can
use a statement such as this:

if ((*datePtr).month == 12)

Pointers to structures are so often used that the language has a special operator. The
structure pointer operator ->, which is the dash followed by the greater-than sign, permits
expressions that would otherwise be written as

(*x) .y
to be more clearly expressed as
X->y
So you can conveniently write the previous if statement as follows:

if (datePtr->month == 12)

287

288

Chapter 13 Underlying C Language Features

We rewrote Program 13.6, the first program to illustrate structures, using the concept
of structure pointers. Program 13.10 presents this program.

Program 13.10

// Program to illustrate structure pointers
#import <Foundation/Foundation.h>

int main (int argc, char *argvl(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

struct date

{

int month;
int day;
int year;

struct date today, *datePtr;

datePtr = &today;
datePtr->month = 9;
datePtr->day = 25;
datePtr->year = 2009;

NSLog (@"Today's date is %i/%i/%.2i."

datePtr->month, datePtr->day, datePtr->year % 100);
[pool drain];
return 0;

Program 13.10 Output

Today's date is 9/25/09.

Pointers, Methods, and Functions

You can pass a pointer as an argument to a method or function in the normal fashion,
and you can have a function or method return a pointer as its result. When you think
about it, that’s what your alloc and init methods have been doing all along—returning
pointers. We cover that in more detail at the end of this chapter.

Now consider Program 13.11.

Program 13.11

// Pointers as arguments to functions
#import <Foundation/Foundation.h>

void exchange (int *pintl, int *pint2)

Pointers

int temp;

temp = *pintl;
*pintl = *pint2;
*pint2 = temp;

int main (int argc, char *argv([])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void exchange (int *pintl, int *pint2);
int il = -5, i2 = 66, *pl = &il, *p2 = &i2;

NSLog (@"il = %i, i2 = %i", i1, i2);

exchange (pl, p2);
NSLog (@"il = %i, i2 = %i", i1, i2);

exchange (&il, &i2);
NSLog (@"il = %i, i2 = %i", i1, i2);

[pool drain];
return 0;

Program 13.11 Output
i1 = -5, i2 = 66
il = 66, i2 = -5
i1 = -5, i2 = 66

The purpose of the exchange function is to interchange the two integer values that its
two arguments point to. The local integer variable temp is used to hold one of the integer
values while the exchange is made. Its value is set equal to the integer that pint1 points
to. The integer that pint2 points to is then copied into the integer that pint1 points to,
and the value of temp is then stored in the integer that pint2 points to, thus making the
exchange complete.

The main routine defines integers i1 and i2 with values of -5 and 66, respectively.
Two integer pointers, pl and p2, are then defined and set to point to i1 and i2, respec-
tively. The program next displays the values of i1 and i2 and calls the exchange function,
passing the two pointers (p1 and p2) as arguments. The exchange function exchanges the
value contained in the integer that p1 points to with the value contained in the integer
that p2 points to. Because p1 points to i1, and p2 to i2, the function exchanges the values
of 11 and i2.The output from the second NSLog call verifies that the exchange worked

properly.

289

290

Chapter 13 Underlying C Language Features

The second call to exchange is a bit more interesting. This time, the arguments passed
to the function are pointers to i1 and i2 that are manufactured on the spot by applying
the address operator to these two variables. Because the expression &i1 produces a pointer
to the integer variable i1, this is in line with the type of argument your function expects
for the first argument (a pointer to an integer). The same applies for the second argument.
As you can see from the program’s output, the exchange function did its job and switched
the values of i1 and i2 to their original values.

Study Program 13.11 in detail. It illustrates with a small example the key concepts
when dealing with pointers in Objective-C.

Pointers and Arrays

If you have an array of 100 integers called values, you can define a pointer called
valuesPtr, which you can use to access the integers contained in this array with the fol-
lowing statement:

int *valuesPtr;

When you define a pointer that will be used to point to the elements of an array, you
don’t designate the pointer as type “pointer to array”’; instead, you designate the pointer as
pointing to the type of element contained in the array.

If you had an array of Fraction objects called fracts, you could similarly define a
pointer to be used to point to elements in fracts with the following statement:

Fraction *fractsPtr;

Note that this is the same declaration used to define a Fraction object.
To set valuesPtr to point to the first element in the values array, you simply write this:

valuesPtr = values;

The address operator is not used in this case because the Objective-C compiler treats the
occurrence of an array name without a subscript as a pointer to the first element of
the array. Therefore, simply specifying values without a subscript produces a pointer to the
first element of values.

An equivalent way of producing a pointer to the start of values is to apply the address
operator to the first element of the array. Thus, the statement

valuesPtr = &values[0];
serves the same purpose of placing a pointer to the first element of values in the pointer
variable valuesPtr.

To display the Fraction object in the array fracts that fractsPtr points to, you
would write this statement:

[fractsPtr print];

Pointers

The real power of using pointers to arrays comes into play when you want to se-
quence through the elements of an array. If valuesPtr is defined as mentioned previously
and is set pointing to the first element of values, you can use the expression

*valuesPtr
to access the first integer of the values array—that is, values [0] . To reference

values [3] through the valuesPtr variable, you can add 3 to valuesPtr and then apply
the indirection operator:

* (valuesPtr + 3)

In general, you can use the expression
*(valuesPtr + i)
to access the value contained in values[i].
So to set values[10] to 27, you would write the following expression:

values[10] = 27;

Or, using valuesPtr, you would write this:
*(valuesPtr + 10) = 27;

To set valuesPtr to point to the second element of the values array, you apply the
address operator to values[1] and assign the result to valuesPtr:
valuesPtr = &values|[1];

If valuesPtr points to values [0], you can set it to point to values [1] by simply
adding 1 to the value of valuesPtr:
valuesPtr += 1;

This is a perfectly valid expression in Objective-C and can be used for pointers to any
data type.

In general, if a is an array of elements of type x, px is of type “pointer to x,” and i and
n are integer constants of variables, the statement

px = a;
sets px to point to the first element of a, and the expression

*(px + 1)

subsequently references the value contained in a [i]. Furthermore, the statement

pPX += n;

sets px to point to n elements further in the array, no matter what type of element the ar-
ray contains.

Suppose that fractsPtr points to a fraction stored inside an array of fractions. Further
suppose that you want to add it to the fraction contained in the next element of the array

291

292

Chapter 13 Underlying C Language Features

and assign the result to the Fraction object result.You could do this by writing the
following;:

result = [fractsPtr add: fractsPtr + 1];

The increment and decrement operators (++ and - -) are particularly handy when
dealing with pointers. Applying the increment operator to a pointer has the same effect as
adding 1 to the pointer, whereas applying the decrement operator has the same effect as
subtracting 1 from the pointer. So if textPtr were defined as a char pointer and were set
to point to the beginning of an array of chars called text, the statement

++textPtr;

would set textPtr to point to the next character in text, which is text [1].In a similar

fashion, the statement

--textPtr;

would set textPtr to point to the previous character in text (assuming, of course, that

textPtr was not pointing to the beginning of text before this statement executed).
Comparing two pointer variables in Objective-C is perfectly valid. This is particularly

useful when comparing two pointers in the same array. For example, you could test the

pointer valuesPtr to see whether it points past the end of an array containing 100 ele-
ments by comparing it to a pointer to the last element in the array. So the expression

valuesPtr > &values[99]
would be TRUE (nonzero) if valuesPtr was pointing past the last element in the values

array, and it would be FALSE (zero) otherwise. From our earlier discussions, you can re-
place the previous expression with its equivalent:

valuesPtr > values + 99

This is possible because values used without a subscript is a pointer to the beginning
of the values array. (Remember that it’s the same as writing &values[0].)

Program 13.12 illustrates pointers to arrays. The arraysum function calculates the sum
of the elements contained in an array of integers.

Program 13.12

// Function to sum the elements of an integer array

#import <Foundation/Foundation.h>
int arraySum (int array[], int n)

int sum = 0, *ptr;
int *arrayEnd = array + n;

for (ptr = array; ptr < arrayEnd; ++ptr)
sum += *ptr;

Pointers

return (sum);

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int arraySum (int array([], int n);
int values(10] = { 3, 7, -9, 3, 6, -1, 7, 9, 1, -5 };

NSLog (@"The sum is %i", arraySum (values, 10));
[pool drain];
return 0;

Program 13.12 Output

The sum is 21

Inside the arraysum function, the integer pointer arrayEnd is defined and set pointing
immediately fter the la t element of array. A for loop is then set up to sequence
through the elements of array; then the value of ptr is set to point to the beginning of
array when the loop is entered. Each time through the loop, the element of array that
ptr points to is added into sum. The for loop then increments the value of ptr to set it
to point to the next element in array. When ptr points past the end of array, the for
loop is exited and the value of sum is returned to the caller.

Is It an Array, or Is It a Pointer?
To pass an array to a function, you simply specify the name of the array, as you did previ-
ously with the call to the arraysum function. But we also mentioned in this section that
to produce a pointer to an array, you need only specify the name of the array. This implies
that in the call to the arraysum function, a pointer to the array values was passed to the
function. This is precisely the case and explains why you can change the elements of an
array from within a function.

But if a pointer to the array is passed to the function, why isn’t the formal parameter
inside the function declared to be a pointer? In other words, in the declaration of array
in the arraysum function, why isn’t this declaration used?

int *array;

Shouldn’t all references to an array from within a function be made using pointer
variables?

To answer these questions, we must first reiterate what we have already said about
pointers and arrays. We mentioned that if valuesPtr points to the same type of element
as contained in an array called values, the expression * (valuesPtr + i) is in equivalent
to the expression values [i], assuming that valuesPtr has been set to point to the be-

293

294 Chapter 13 Underlying C Language Features

ginning of values. What follows from this is that you can also use the expression

* (values + i) to reference the ith element of the array values—and, in general, if x is
an array of any type, the expression x [i] can always be equivalently expressed in Objec-
tive-C as * (x + 1i).

As you can see, pointers and arrays are intimately related in Objective-C, which is why
you can declare array to be of type “array of ints” inside the arraysum function or to be
of type “pointer to int.” Either declaration works fine in the preceding program—try it
and see.

If you will be using index numbers to reference the elements of an array, declare the
corresponding formal parameter to be an array. This more correctly reflects the function’s
use of the array. Similarly, if you will be using the argument as a pointer to the array, de-
clare it to be of type pointer.

Pointers to Character Strings

One of the most common applications of using a pointer to an array is as a pointer to a
character string. The reasons are ones of notational convenience and efficiency. To show
how easily you can use pointers to character strings, let’s write a function called
copyString to copy one string into another. If you were writing this function using
your normal array-indexing methods, you might code the function as follows:

void copyString (char to[], char from[])

{

int i;

for (i = 0; from[i] != '"\0'; ++1i
to[i] = from[i];

to[i] = "\0';

The for loop is exited before the null character is copied into the to array, thus ex-
plaining the need for the last statement in the function.

If you write copyString using pointers, you no longer need the index variable i.
Program 13.13 shows a pointer version.

Programming 13.13

#import <Foundation/Foundation.h>

void copyString (char *to, char *from)

{
for (; *from != '\0'; ++from, ++to)
*to = *from;

*to = '\0';

Pointers

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void copyString (char *to, char *from);
char stringl[] = "A string to be copied."?;

char string2[50];

copyString (string2, stringl);
NSLog (@"%s", string2);

copyString (string2, "So is this.");
NSLog (@"%s", string2);

[pool drain];
return 0;

Program 13.13 Output

A string to be copied.
So is this.

The copyString function defines the two formal parameters, to and from, as charac-
ter pointers and not as character arrays, as was done in the previous version of
copyString. This reflects how the function will use these two variables.

A for loop is then entered (with no initial conditions) to copy the string that from
points to into the string that to points to. Each time through the loop, the from and to
pointers are each incremented by 1.This sets the from pointer pointing to the next char-
acter that is to be copied from the source string and sets the to pointer pointing to the
location in the destination string where the next character is to be stored.

When the f£rom pointer points to the null character, the for loop is exited. The function
then places the null character at the end of the destination string.

In the main routine, the copyString function is called twice—the first time to copy
the contents of stringl into string2, and the second time to copy the contents of the
constant character string “So is this.” into string2.

2 Note the use of the strings "A string to be copied.” and "So is this” in the program.
These are not string objects, but C-style character strings, as distinguished by the fact that an @
character does not precede the string. The two types are not interchangeable. If a function expects
an array of char as an argument, you may pass it either an array of type char or a literal C-style
character string, but not a character string object.

295

296

Chapter 13 Underlying C Language Features

Constant Character Strings and Pointers
The fact that the call

copyString (string2, "So is this.");

works in the previous program implies that when a constant character string is passed as
an argument to a function, that character string is actually passed to a pointer. Not only is
this true in this case, but it can also be generalized by saying that whenever a constant
character string is used in Objective-C, a pointer to that character string is produced.

This point might sound a bit confusing now, but, as we briefly noted in Chapter 4,
constant character strings that we mention here are called C-style strings. These are not
objects. As you know, a constant character string object is created by putting an @ sign in
front of the string, as in @"This is okay.".You can't substitute one for the other.

So if textPtr is declared to be a character pointer, as in

char *textPtr;

then the statement

textPtr = "A character string.";

assigns to textPtr a pointer to the constant character string “A character string.” Be
careful to make the distinction here between character pointers and character arrays be-

cause the type of assignment shown previously is not valid with a character array. For ex-
ample, if text were defined instead to be an array of chars, with a statement such as

char text[80];

you could not write a statement such as this:
text = "This is not valid.";

The only time Objective-C lets you get away with performing this type of assignment
to a character array is when initializing it:
char text[80] = "This is okay.";

Initializing the text array in this manner does not have the effect of storing a pointer
to the character string “This is okay.’ inside text. Instead, the actual characters them-
selves are followed by a terminating null character, inside corresponding elements of the

text array.
If text were a character pointer, initializing text with the statement

char *text = "This is okay.";

would assign to it a pointer to the character string “This is okay.”

The Increment and Decrement Operators Revisited
Up to this point, whenever you used the increment or decrement operator, that was the
only operator that appeared in the expression. When you write the expression ++x, you

Pointers

know that this adds 1 to the value of the variable x. And as you have just seen, if x is a
pointer to an array, this sets x to point to the next element of the array.

You can use the increment and decrement operators in expressions where other oper-
ators also appear. In such cases, it becomes important to know more precisely how these
operators work.

Whenever you used the increment and decrement operators, you always placed them
before the variables that were being incremented or decremented. So to increment a vari-
able i, you simply wrote the following:

++1;

You can also place the increment operator after the variable, like so:
1++;

Both expressions are valid, and both achieve the same result—incrementing the value
of i.In the first case, where the ++ is placed before its operand, the increment operation
is more precisely identified as a pre-increment. In the second case, where the ++ is placed

after its operand, the operation is identified as a post-increment.
The same discussion applies to the decrement operator. So the statement

—-i;
technically performs a pre-decrement of i, whereas the statement
i--;
performs a post-decrement of i. Both have the same net result of subtracting 1 from the
value of 1.

When the increment and decrement operators are used in more complex expressions,
the distinction between the pre- and post- nature of these operators is realized.

Suppose that you have two integers, called i and §. If you set the value of i to 0 and
then write the statement

j o= ++1;
the value assigned to j is 1—not 0, as you might expect. In the case of the pre-increment
operator, the variable is incremented before its value is used in an expression. Therefore, in

the previous expression, the value of 1 is first incremented from 0 to 1 and then its value
is assigned to 7, as if the following two statements had been written instead:

++1;
j=1;
If you use the post-increment operator in the statement

J o= i++;

297

298

Chapter 13 Underlying C Language Features

i is incremented after its value has been assigned to j. So if i were 0 before the previous
statement were executed, 0 would be assigned to j and then i would be incremented by
1, as if these statements were used instead:

j=1i;

++1;
As another example, if i is equal to 1, the statement
x = a[--1i];

has the effect of assigning the value of a [0] to x because the variable i is decremented
before its value is used to index into a.The statement

x = ali--1;

used instead assigns the value of a[1] to x because i would be decremented after its value
was used to index into a.

As a third example of the distinction between the pre- and post- increment and decre-
ment operators, the function call

NSLog (@"%i", ++1i);

increments i and then sends its value to the NSLog function, whereas the call

NSLog (@"%i", i++);

increments i after its value has been sent to the function. So if i were equal to 100, the
first NSLog call would display 101 at the terminal, whereas the second NsLog call would
display 100. In either case, the value of i would be equal to 101 after the statement had
been executed.

As a final example on this topic before we present a program, if textPtr is a character
pointer, the expression

* (++textPtr)

first increments textPtr and then fetches the character it points to, whereas the expres-
sion

* (textPtr++)

fetches the character that textPtr points to before its value is incremented. In either case,
the parentheses are not required because the * and ++ operators have equal precedence
but associate from right to left.

Let’s go back to the copyString function from Program 13.13 and rewrite it to incor-
porate the increment operations directly into the assignment statement.

Because the to and from pointers are incremented each time after the assignment
statement inside the for loop is executed, they should be incorporated into the assign-
ment statement as post-increment operations. The revised for loop of Program 13.13
then becomes this:
for (; *from != '\0';)

*to++ = *from++;

Pointers 299

Execution of the assignment statement inside the loop would proceed as follows. The
character that £rom points to would be retrieved, and then from would be incremented to
point to the next character in the source string. The referenced character would be stored
inside the location that to points to; then to would be incremented to point to the next
location in the destination string.

The previous for statement hardly seems worthwhile because it has no initial expres-
sion and no looping expression. In fact, the logic would be better served when expressed
in the form of a while loop.This has been done in Program 13.14, which presents the
new version of the copystring function.The while loop uses the fact that the null char-
acter is equal to the value o0, as experienced Objective-C programmers commonly do.

Program 13.14

// Function to copy one string to another
// pointer version 2

#import <Foundation/Foundation.h>
void copyString (char *to, char *from)

while (*from)
*to++ = *from++;
*to = '\0';

}

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void copyString (char *to, char *from);
char stringl[] = "A string to be copied.";

char string2[50];

copyString (string2, stringl);
NSLog (@"%s", string2);

copyString (string2, "So is this.");
NSLog (@"%s", string2);

[pool drain];

return 0;

Program 13.14 Output

A string to be copied.
So is this.

300

Chapter 13 Underlying C Language Features

Operations on Pointers

As you have seen in this chapter, you can add or subtract integer values from pointers.
Furthermore, you can compare two pointers to see whether they are equal or whether
one pointer is less than or greater than another pointer. The only other operation permit-
ted on pointers is the subtraction of two pointers of the same type. The result of subtract-
ing two pointers in Objective-C is the number of elements contained between the two
pointers. Thus, if a points to an array of elements of any type and b points to another ele-
ment somewhere further along in the same array, the expression b - a represents the
number of elements between these two pointers. For example, if p points to some ele-
ment in an array x, the statement

n=p-x;

assigns to the variable n (assumed here to be an integer variable) the index number of the
element inside x that p points to. Therefore, if p had been set pointing to the 100th ele-
ment in x by a statement such as

p = &x[99];

the value of n after the previous subtraction was performed would be 99.

Pointers to Functions

Of a slightly more advanced nature, but presented here for the sake of completeness, is the
notion of a pointer to a function. When working with pointers to functions, the Objec-
tive-C compiler needs to know not only that the pointer variable points to a function,
but also the type of value returned by that function, as well as the number and types of its
arguments. To declare a variable, £nPtr, to be of type “pointer to function that returns an
int and that takes no arguments,” you would write this declaration:

int (*fnPtr) (void);

The parentheses around *£nPtr are required; otherwise, the Objective-C compiler
treats the preceding statement as the declaration of a function called £nPtr that returns a
pointer to an int (because the function call operator () has higher precedence than the
pointer indirection operator *).

To set your function pointer to point to a specific function, you simply assign the name
of the function to it. Therefore, if 1ookup were a function that returned an int and that
took no arguments, the statement

fnPtr = lookup;

would store a pointer to this function inside the function pointer variable £nptr. Writing
a function name without a subsequent set of parentheses is treated in an analogous way to
writing an array name without a subscript. The Objective-C compiler automatically pro-
duces a pointer to the specified function. An ampersand is permitted in front of the func-
tion name, but it’s not required.

Pointers

If the lookup function has not been previously defined in the program, you must de-
clare the function before the previous assignment can be made. A statement such as

int lookup (void);

would be needed before a pointer to this function could be assigned to the variable
fnbtr.

You can call the function indirectly referenced through a pointer variable by applying
the function call operator to the pointer, listing any arguments to the function inside the
parentheses. For example

entry = fnPtr ();

calls the function that £nPtr points to, storing the returned value inside the variable
entry.

One common application for pointers to functions is passing them as arguments to
other functions. The Standard Library uses this in the function gsort, which performs a
quick sort on an array of data elements. This function takes as one of its arguments a
pointer to a function that is called whenever gsort needs to compare two elements in
the array being sorted. In this manner, gsort can be used to sort arrays of any type
because the actual comparison of any two elements in the array is made by a user-sup-
plied function, not by the gsort function itself.

In the Foundation framework, some methods take a function pointer as an argument.
For example, the method sortUsingFunction:context: is defined in the
NSMutableArray class and calls the specified function whenever two elements in an array
to be sorted need to be compared.

Another common application for function pointers is to create dispatch tables.You can’t
store functions themselves inside the elements of an array. However, you can store func-
tion pointers inside an array. Given this, you can create tables that contain pointers to
functions to be called. For example, you might create a table for processing different com-
mands that a user will enter. Each entry in the table could contain both the command
name and a pointer to a function to call to process that particular command. Now, when-
ever the user entered a command, you could look up the command inside the table and
invoke the corresponding function to handle it.

Pointers and Memory Addresses

Before we end this discussion of pointers in Objective-C, we should point out the details
of how they are actually implemented. A computer’s memory can be conceptualized as a
sequential collection of storage cells. Each cell of the computer’s memory has a number,
called an address, associated with it. Typically, the first address of a computer’s memory is
numbered 0. On most computer systems, a cell is 1 byte.

The computer uses memory to store the instructions of your computer program and
to store the values of the variables associated with a program. So if you declare a variable
called count to be of type int, the system would assign location(s) in memory to hold

301

302

Chapter 13 Underlying C Language Features

the value of count while the program is executing. For example, this location might be at
address 1000FF{ ¢ inside the computer’s memory.

Luckily, you don’t need to concern yourself with the particular memory addresses as-
signed to variables—the system automatically handles them. However, the knowledge that
each variable is associated with a unique memory address will help you understand the
way pointers operate.

Whenever you apply the address operator to a variable in Objective-C, the value gen-
erated is the actual address of that variable inside the computer’s memory. (Obviously, this
is where the address operator gets its name.) So the statement

intPtr = &count;

assigns to intPtr the address in the computer’s memory that has been assigned to the
variable count.Thus, if count were located at address 1000FF ¢, this statement would as-
sign the value 0x1000FF to intPtr.

Applying the indirection operator to a pointer variable, as in the expression

*intPtr

has the effect of treating the value contained in the pointer variable as a memory address.
The value stored at that memory address is then fetched and interpreted in accordance
with the type declared for the pointer variable. So if intPtr were of type pointer to int,
the system would interpret the value stored in the memory address given by *intPtr as
an integer.

Unions

One of the more unusual constructs in the Objective-C programming language is the
union. This construct is used mainly in more advanced programming applications when
you need to store different types of data in the same storage area. For example, if you
wanted to define a single variable called x that could be used to store a single character, a
floating-point number, or an integer, you would first define a union, called (perhaps)
mixed, as follows:

union mixed

{

char c;
float f;
int i;

bi

The declaration of a union is identical to that of a structure, except that the keyword
union is used where the keyword struct is otherwise specified. The real difference be-
tween structures and unions has to do with the way memory is allocated. Declaring a
variable to be of type union mixed, as in

union mixed x;

Unions

does not define x to contain three distinct members called c, £, and i;instead, it defines x
to contain a single member that is called either c, £, or i. In this way, you can use the
variable x to store either a char, a £loat, or an int, but not all three (and not even two
of the three).You can store a character in the variable x with the following statement:

x.c = 'K';

To store a floating-point value in x, use the notation x. £:

x.f = 786.3869;

Finally, to store the result of dividing an integer count by 2 into x, use this statement:

x.1 = count / 2;

Because the float, char, and int members of x coexist in the same place in memory,
only one value can be stored in x at a time. Furthermore, you must ensure that the value
retrieved from a union is consistent with the way it was last stored in the union.

When defining a union the name of the union is not required and variables can be
declared at the same time that the union is defined.You can also declare pointers to
unions, and their syntax and rules for performing operations are the same as for struc-
tures. Finally, you can initialize a union variable like so:

union mixed x = { '#' };

This sets the first member of x, which is c, to the character #. A particular member can
also be initialized by name, like this:

union mixed x = {.f=123.4;};

You can initialize an automatic union variable to another union variable of the same
type.

A union enables you to define arrays that you can use to store elements of different
data types. For example, the following statement sets up an array called table, consisting
of kTableEntries elements:

struct
{
char *name;
int type;
union
{
int i;
float f£f;
char c¢;
} data;
} table [kTableEntries];

Each element of the array contains a structure consisting of a character pointer called
name, an integer member called type, and a union member called data. Each data mem-
ber of the array can contain an int, a £loat, or a char.You might use the integer mem-

303

304

Chapter 13 Underlying C Language Features

ber type to keep track of the type of value stored in the member data. For example, you
could assign it the value INTEGER (defined appropriately, we assume) if it contained an
int, FLOATING if it contained a float, and CHARACTER if it contained a char.This infor-
mation would enable you to know how to reference the particular data member of a
particular array element.

To store the character ‘4’ in table[5] and subsequently set the type field to indicate
that a character is stored in that location, you would use the following two statements:

table[5] .data.c = '#';
table[5] .type = CHARACTER;

When sequencing through the elements of table, you could determine the type of
data value stored in each element by setting up an appropriate series of test statements.
For example, the following loop would display each name and its associated value from
table at the terminal:

enum symbolType { INTEGER, FLOATING, CHARACTER };

for (j = 0; j < kTableEntries; ++j)

{

"o "

NSLog (@"%s ", table[j].name);

switch (table[j].type)
{
case INTEGER:
NSLog (@"%i", table[j].data.i);
break;
case FLOATING:
NSLog (@"%g", table[j].data.f);
break;
case CHARACTER:
NSLog (@"%c", table[j].data.c);
break;
default:
NSLog (@"Unknown type (%i), element %i",
table[j].type, J);
break;

The type of application illustrated previously might be practical in storing a symbol
table, which might contain the name of each symbol, its type, and its value (and perhaps
other information about the symbol as well).

Miscellaneous Language Features

They’re Not Objects!

Now you know how to define arrays, structures, character strings, and unions, and how to
manipulate them in your program. Remember one fundamental thing: They’re not objects.
Thus, you can’t send messages to them.You also can’t use them to take maximum advan-
tage of nice things such as the memory-allocation strategy that the Foundation frame-
work provides. That’s one of the reasons I encouraged you to skip this chapter and return
to it later. In general, you’re better served learning how to use the Foundation’s classes
that define arrays and strings as objects than using the ones built into the language. Re-
sort to using the types defined in this chapter only if you really need to—and hopefully
you won't!

Miscellaneous Language Features

Some language features didn’t fit well into any of the other chapters, so we’ve included
them here.

Compound Literals

A compound literal is a type name enclosed in parentheses followed by an initialization list.
It creates an unnamed value of the specified type, which has scope limited to the block in
which it is created or global scope if defined outside any block. In the latter case, the ini-
tializers must all be constant expressions.

Consider an example:

(struct date) {.month = 7, .day = 2, .year = 2004}

This expression produces a structure of type struct date with the specified initial
values.You can assign this to another struct date structure, like so:
theDate = (struct date) {.month = 7, .day = 2, .year = 2004};

Or you can pass it to a function or method that expects an argument of struct date,
like so:
setStartDate ((struct date) {.month = 7, .day = 2, .year = 2004});

In addition, you can define types other than structures. For example, if intPtr is of
type int *, the statement
intPtr = (int [100]) {[0] = 1, [50] = 50, [99] = 99 };
(which can appear anywhere in the program) sets intptr pointing to an array of 100 in-

tegers, whose 3 elements are initialized as specified.
If the size of the array is not specified, the initializer list determines it.

305

306

Chapter 13 Underlying C Language Features

The goto Statement

Executing a goto statement causes a direct branch to be made to a specified point in the
program. To identify where in the program the branch is to be made, a label is needed. A
label is a name formed with the same rules as variable names; it must be immediately fol-
lowed by a colon.The label is placed directly before the statement to which the branch is
to be made and must appear in the same function or method as the goto.

For example, the statement

goto out_of data;

causes the program to branch immediately to the statement that is preceded by the label
out_of_data;.This label can be located anywhere in the function or method, before or
after the goto, and might be used as shown here:

out_of data: NSLog (@"Unexpected end of data.");

Lazy programmers frequently abuse the goto statement to branch to other portions of
their code. The goto statement interrupts the normal sequential flow of a program. As a
result, programs are harder to follow. Using many gotos in a program can make it impos-
sible to decipher. For this reason, goto statements are not considered part of good pro-
gramming style.

The null Statement

Objective-C permits you to place a solitary semicolon wherever a normal program state-
ment can appear. The effect of such a statement, known as the null statement, is that noth-
ing is done. This might seem quite useless, but programmers often do this in while, for,
and do statements. For example, the purpose of the following statement is to store all the
characters read in from standard input (your terminal, by default) in the character array that
text points to until a newline character is encountered. This statement uses the library
routine getchar, which reads and returns a single character at a time from standard input:

while ((*text++ = getchar ()) != "'')

i

All the operations are performed inside the looping conditions part of the while state-
ment. The null statement is needed because the compiler takes the statement that follows
the looping expression as the body of the loop. Without the null statement, the compiler
would treat whatever statement follows in the program as the body of the program loop.

The Comma Operator

At the bottom of the precedence totem pole, so to speak, is the comma operator. In
Chapter 5, “Program Looping,” we pointed out that inside a for statement, you can in-
clude more than one expression in any of the fields by separating each expression with a
comma. For example, the for statement that begins

Miscellaneous Language Features

for (i =0, j = 100; 1 != 10; ++i, j -= 10)

initializes the value of i to 0 and j to 100 before the loop begins, and it increments the
value of i and subtracts 10 from the value of j after the body of the loop is executed.

Because all operators in Objective-C produce a value, the value of the comma opera-
tor is that of the rightmost expression.

The sizeof Operator

Although you should never make assumptions about the size of a data type in your pro-
gram, sometimes you need to know this information. This might be when performing
dynamic memory allocation using library routines such as malloc, or when writing or
archiving data to a file. Objective-C provides an operator called sizeof that you can use
to determine the size of a data type or object. The sizeof operator returns the size of the
specified item in bytes. The argument to the sizeof operator can be a variable, an array
name, the name of a basic data type, an object, the name of a derived data type, or an ex-
pression. For example, writing

sizeof (int)

gives the number of bytes needed to store an integer. On my MacBook Air, this produces a
result of 4 (or 32 bits). If x is declared as an array of 100 ints, the expression

sizeof (x)

would give the amount of storage required to store the 100 integers of x.

Given that myFract is a Fraction object that contains two int instance variables
(numerator and denominator), the expression

sizeof (myFract)
produces the value 4 on any system that represents pointers using 4 bytes. In fact, this is
the value that sizeof yields for any object because here you are asking for the size of the

pointer to the object’s data. To get the size of the actual data structure to store an instance
of a Fraction object, you would instead write the following:

sizeof (*myFract)
On my MacBook Air, this gives me a value of 12. That’s 4 bytes each for the
numerator and denominator, plus another 4 bytes for the inherited isa member men-

tioned in the section “How Things Work,” at the end of this chapter.
The expression

sizeof (struct data_entry)
has as its value the amount of storage required to store one data_entry structure. If data
is defined as an array of struct data_entry elements, the expression

sizeof (data) / sizeof (struct data_entry)

307

308

Chapter 13 Underlying C Language Features

gives the number of elements contained in data (data must be a previously defined array,
not a formal parameter or externally referenced array). The expression

sizeof (data) / sizeof (datal0])

produces the same result.
Use the sizeof operator wherever possible, to avoid having to calculate and hard-code
sizes INto your programs.

Command-Line Arguments

Often a program is developed that requires the user to enter a small amount of informa-
tion at the terminal. This information might consist of a number indicating the triangular
number you want to have calculated or a word you want to have looked up in a diction-
ary.

Instead of having the program request this type of information from the user, you can
supply the information to the program at the time the program is executed. Command-line
arguments provide this capability.

We have pointed out that the only distinguishing quality of the function main is that
its name is special; it specifies where program execution is to begin. In fact, the runtime
system actually calls upon the function main at the start of program execution, just as
you would call a function from within your own program. When main completes execu-
tion, control returns to the runtime system, which then knows that your program has
completed.

When the runtime system calls main, two arguments are passed to the function.The
first argument, called argc by convention (for argument count), is an integer value that
specifies the number of arguments typed on the command line. The second argument to
main is an array of character pointers, called argv by convention (for argument vector). In
addition, arge + 1 character pointers are contained in this array. The first entry in this ar-
ray is either a pointer to the name of the program that is executing or a pointer to a null
string if the program name is not available on your system. Subsequent entries in the ar-
ray point to the values specified in the same line as the command that initiated execution
of the program. The last pointer in the argv array, argv [argc], is defined to be null.

To access the command-line arguments, the main function must be appropriately de-
clared as taking two arguments. The conventional declaration we have used in all the pro-
grams in this book suffices:

int main (int argc, char *argv(])

{

Remember, the declaration of argv defines an array that contains elements of type
“pointer to char.” As a practical use of command-line arguments, suppose that you had
developed a program that looks up a word inside a dictionary and prints its meaning. You

Miscellaneous Language Features

can use command-line arguments so that the word whose meaning you want to find can
be specified at the same time that the program is executed, as in the following command:

lookup aerie

This eliminates the need for the program to prompt the user to enter a word because
it is typed on the command line.

If the previous command were executed, the system would automatically pass to the
main function a pointer to the character string “aerie” in argv[1]. Recall that argv (0]
would contain a pointer to the name of the program, which, in this case, would be
“lookup”.

The main routine might appear as shown:

#include <Foundation/Foundation.h>

int main (int argc, char *argv([])

{

struct entry dictionary[100] =

{ { "aardvark", "a burrowing African mammal" 1
{ "abyss", "a bottomless pit" },
{ "acumen", ‘"mentally sharp; keen" },
{ "addle", "to become confused" },
{ "aerie", "a high nest" },
{ "affix", "to append; attach" b,
{ "agar", "a jelly made from seaweed" b,
{ "ahoy", "a nautical call of greeting" b,
{ "aigrette", "an ornamental cluster of feathers" },
{ "ajar", "partially opened" b}

int entries = 10;

int entryNumber;

int lookup (struct entry dictionary [], char searchl[],
int entries);

if (argc != 2)
NSLog (@"No word typed on the command line.");
return (1);
entryNumber = lookup (dictionary, argv[l], entries);
if (entryNumber != -1
NSLog (@"%s", dictionary[entryNumber] .definition);

else
NSLog (@"Sorry, %s is not in my dictionary.", argv[1]);

309

310

Chapter 13 Underlying C Language Features

return (0);

The main routine tests to ensure that a word was typed after the program name when
the program was executed. If it wasn’t, or if more than one word was typed, the value of
argc is not equal to 2. In that case, the program writes an error message to standard error
and terminates, returning an exit status of 1.

If arge is equal to 2, the lookup function is called to find the word that argv[1]
points to in the dictionary. If the word is found, its definition is displayed.

Remember that command-line arguments are always stored as character strings. So ex-
ecution of the program power with the command-line arguments 2 and 16, as in

power 2 16

P

stores a pointer to the character string “2” inside argv [1] and a pointer to the string “16”
inside argv [2].If the program is to interpret arguments as numbers (as we suspect is the
case in the power program), the program itself must convert them. Several routines are
available in the program library for doing such conversions: sscanf, atof, atoi, strtod,
and strotol. In Part II, you’'ll learn how to use a class called NSProcessInfo to access
the command-line arguments as string objects instead of as C strings.

How Things Work

We would be remiss if we finished this chapter without first tying a couple things to-
gether. Because the Objective-C language has the C language underneath, it’s worth
mentioning some of the connections between the two.You can ignore these implementa-
tion details or use them to better understand how things work, in the same way that
learning about pointers as memory addresses can help you better understand pointers. We
don’t get too detailed here; we just state four facts about the relationship between Objec-
tive-C and C.

Fact #1: Instance Variables are Stored in Structures

When you define a new class and its instance variables, those instance variables are actu-
ally stored inside a structure. That’s how you can manipulate objects; they're really struc-
tures whose members are your instance variables. So the inherited instance variables plus
the ones you added in your class comprise a single structure. When you allocate a new
object using alloc, enough space is reserved to hold one of these structures.

One of the inherited members (it comes from the root object) of the structure is a
protected member called isa that identifies the class to which the object belongs. Be-
cause it’s part of the structure (and, therefore, part of the object), it is carried around with
the object. In that way, the runtime system can always identify the class of an object (even
if you assign it to a generic id object variable) by just looking at its isa member.

You can gain direct access to the members of an object’s structure by making them
@public (see the discussion in Chapter 10,“More on Variables and Data Types”). If you

How Things Work

did that with the numerator and denominator members of your Fraction class, for ex-
ample, you could write expressions such as

myFract->numerator

in your program to directly access the numerator member of the Fraction object
myFract. But we strongly advise against doing that. As we mentioned in Chapter 10, it
goes against the grain of data encapsulation.

Fact #2: An Object Variable is Really a Pointer
When you define an object variable such as a Fraction, as in

Fraction *myFract;

you're really defining a pointer variable called myFract.This variable is defined to point
to something of type Fraction, which is the name of your class. When you allocate a
new instance of a Fraction, with

myFract = [Fraction alloc];

you're allocating space to store a new Fraction object in memory (that is, space for a
structure) and then storing the pointer to that structure that is returned inside the pointer
variable myFract.

When you assign one object variable to another, as in

myFract2 = myFractl;

you're simply copying pointers. Both variables end up pointing to the same structure
stored somewhere in memory. Making a change to one of the members referenced (that
is, pointed to) by myFract2 therefore changes the same instance variable (that is, structure
member) that myFract1 references.

Fact #3: Methods are Functions, and Message Expressions are
Function Calls

Methods are really functions. When you invoke a method, you call a function associated
with the class of the receiver. The arguments passed to the function are the receiver
(self) and the method’s arguments. So all the rules about passing arguments to functions,
return values, and automatic and static variables are the same whether you're talking
about a function or a method. The Objective-C compiler creates a unique name for each
function using a combination of the class name and the method name.

Fact #4: The id Type is a Generic Pointer Type

Because objects are referenced through pointers, which are just memory addresses, you
can freely assign them between id variables. A method that returns an id type conse-
quently just returns a pointer to some object in memory.You can then assign that value to
any object variable. Because the object carries its isa member wherever it goes, its class
can always be identified, even if you store it in a generic object variable of type id.

311

312 Chapter 13 Underlying C Language Features

Exercises

1.

Write a function that calculates the average of an array of 10 floating-point values
and returns the result.

The reduce method from your Fraction class finds the greatest common divisor
of the numerator and denominator to reduce the fraction. Modify that method so
that it uses the ged function from Program 13.5 instead. Where do you think you
should place the function definition? Are there any benefits to making the function
static? Which approach do you think is better, using a ged function or incorporat-
ing the code directly into the method as you did previously? Why?

An algorithm known as the Sieve of Erastosthenes can generate prime numbers. The
algorithm for this procedure is presented here. Write a program that implements
this algorithm. Have the program find all prime numbers up to #n = 150. What can
you say about this algorithm as compared to the ones used in the text for calculat-
ing prime numbers?

Step 1: Define an array of integers 2. Set all elements 7; to0 0,2 <= 7 <= n.
Step 2: Set 7 to 2.

Step 3:If 7 > g, the algorithm terminates.

Step 4:If £, is 0, /1s prime.

Step 5: For all positive integer values of 7, such that iXj<=n, n,set »; . to 1.

J
Step 6:Add 1 to 7 and go to step 3.

Write a function to add all the Fractions passed to it in an array and to return the
result as a Fraction.

Write a typedef definition for a struct date called Date that enables you to
make declarations such as

Date todaysDate;

in your program.

As noted in the text, defining a Date class instead of a date structure is more con-
sistent with the notion of object-oriented programming. Define such a class with
appropriate setter and getter methods. Also add a method called dateUpdate to re-
turn the day after its argument.

Do you see any advantages of defining a Date as a class instead of as a structure?
Do you see any disadvantages?

Exercises 313

7. Given the following definitions

char *message = "Programming in Objective-C is fun";
char message2[] = "You said it";
NSString *format = "x = %i";

int x = 100;

determine whether each NSLog call from the following sets is valid and produces
the same output as other calls from the set.

/*** gset 1 *x%/

NSLog (@"Programming in Objective-C is fun");

NSLog (@"%s" "Programming in Objective C is fun");

NSLog (@"%s" message);

/xx% get 2 xxx/

NSLog (@"You said it");
NSLog (@"%s" message2);
NSLog (@"%s", &message2[0] ;

/*** set 3 ***/

NSLog (@"said it");

NSLog (@"%s", message2 + 4);
NSLog (@"%s", &message2[4]);

8. Write a program that prints all its command-line arguments, one per line at the ter-
minal. Notice the effect of enclosing arguments that contain space characters inside
quotation marks.

9. Which of the following statements produce the output This is a test? Explain.

NSLog (@"This is a test");
NSLog ("This is a test");

NSLog (@"%s", "This is a test");
NSLog (@"%s", @"This is a test");

NSLog ("%s "This is a test");
NSLog ("%s", @"This is a test");
NSLog (@"%@", @"This is a test");

NSLog (@"%@ "This is a test");

14
15
16
17
18
19

Part |l

The Foundation
Framework

Introduction to the Foundation Framework
Numbers, Strings, and Collections
Working with Files

Memory Management

Copying Objects

Archiving

14

Introduction to the Foundation
Framework

A framework is a collection of classes, methods, functions, and documentation logically
grouped together to make developing programs easier. On Mac OS X, more than 80
frameworks are available for developing applications so that you can easily work with the
Mac’s Address Book structure, burn CDs, play back DVDs, play movies with QuickTime,
play songs, and so on.

The framework that provides the base or foundation for all your program development
is called the Foundation framework. This framework, the subject of the second part of this
book, enables you to work with basic objects, such as numbers and strings, and with col-
lections of objects, such as arrays, dictionaries, and sets. Other capabilities provide for
working with dates and times, using automated memory management, working with the
underlying file system, storing (or archiving) objects, and working with geometric data
structures such as points and rectangles.

The Application Kit framework contains an extensive collection of classes and meth-
ods to develop interactive graphical applications. These provide the capability to easily
work with text, menus, toolbars, tables, documents, the pasteboard, and windows. In Mac
OS X, the term Cocoa collectively refers to the Foundation framework and the Applica-
tion Kit framework. The term Cocoa Touch collectively refers to the Foundation frame-
work and the UIKit framework. Part ITI,“Cocoa and the iPhone SDK,” provides some
more detail on this subject. Many resources are also listed in Appendix D, “Resources.”

Foundation Documentation

For reference purposes, you should know where the Foundation header files are stored on
your system. They are kept in the following directory:

/System/Library/Frameworks/Foundation. framework/Headers

318 Chapter 14 Introduction to the Foundation Framework

Note

The header files are actually linked to another directory where they are stored, but that really
makes no difference to you.

Navigate to this directory on your system and familiarize yourself with its contents.
You should also take advantage of the Foundation framework documentation that is
stored on your system (buried deep in the /Develop/Documentation directory) and that
is also available online at Apple’s website. Most documentation exists in the form of’
HTML files for viewing by a browser or as Acrobat pd files. Contained in this documen-
tation is a description of all the Foundation classes and all the implemented methods and
functions.

If you’re using Xcode to develop your programs, you have easy access to documenta-
tion through the Documentation window that is available from Xcode’s Help menu. This
window enables you to easily search and access documentation that is stored locally on
your computer or is available online. Figure 14.1 shows the results of searching for the
string “foundation framework” in the Xcode documentation window. From the pane that
shows the header “Foundation Framework Reference,” you can easily access the docu-
mentation for all Foundation classes.

" Gou Libenry
Core Library

Core Library
| 4= 3 Foundaion Framework Reference 1 <No selecied symboi § Cal
ADC Home » Reference Library » televence » Cona » Objective -C Linguage » H

Foundation Framework Reference

Intiaduction

code 3.1 Release Notes

tramework

Header file directories /%) {Library

Companion guides Cocoa Fundamentals Culde
Foundation Releass Mates

Class Referances Protocol References Other References

NSAHIne Transfoms NsCoding Functions

NSADDEe EvemOe L F IO NSCompalionmerhod Dats Types

NSApoieEwmManager NsCooying Contants

NiAppleSoriot NsBecimaiNumbergehaviors

NSArchiver NSErrorRecoveryAtiempting -

NSArray NSFastEnumaration el

NShasertiontungier NSKeyvaiueCoding Huvisiin ey

NSAtributedString NSy aketObserving Index L

NS Autorele ssePoct WNLocksng ‘

[rr— NiMbsbleCopying It
LL{ o _____ B
Core Uibrary » Cocoa + Otyective-C Language = Foandation Framework Refarence « Foundation Framewsrk Reference Found 4 doruments

Figure 14.1 Using Xcode for Foundation reference documentation

If you’re editing a file in Xcode and you want to get immediate access to the docu-
mentation for a particular header file, method, or class, you can simply highlight the text

Foundation Documentation

in your editor window and right-click it. From the menu that appears, you can either se-
lect Find Selected Text in Documentation or select Find Selected Text in API R eference,
as appropriate. Xcode will search the documentation library and display the results that
match your query.

Let’s see how this works. The NSstring class is a Foundation class that you use to
work with strings. (It is explained in great detail in the next chapter.) Suppose you are
editing a program that uses this class, and you want more information about it and its
methods.You can highlight the word Nsstring wherever it appears in your edit window
and right-click on it. If you then select Find Selected Text in API Reference from the
menu that appears, you’ get a document window displayed that looks similar to that
shown in Figure 14.2.

« Subclasting Nates
= Methodi to Override

DOC SETS | Class - Tyoe Documeniation
w Apple Mac 05 X 105 B3 sSring Obpective-C Class. Core Libeary
Core n NERringlADDKAACIDON) Objective-C Category Core Library
T j 4 - 2 NSSiring Class Relerence § WSbwing § Col_
= ADE Home > Reference Libary > Reference > Coona > Dasa Managemest = MSSiring Class n
NSString Class B>
- T e TOC o poge >
™ or
* Overview H
NSString Class Reference
——

Inherits from HSObjeet
- Aterratives to |
Byinctyinkeny Confarms to NsCoding
Adopted Protocels NsCopying
HSMutabieCopying
» Tasks NSObject (NSObject)
» Class Methods | |
= Instance Mathosds Framework [ystem/Library/Frameworks / Foundation framework.
T Availability Availabie in Mac 05 X v10.0 and later. |
» Appendix A:
pssiring Methods Declared in NSPathiiities.h
Revision History NSString.h
e NSURL®
Companion Guides |o | Companion guides String Programming Cuide for Cocoa L
Sirieg P s | Prapesty List Programming Guide fer Cocoa .
B2 b —— -l K1
‘Cocoa » Duta. * NSSiring Claxs Refersnor + NSSiring Class Reference: Found 2 documents

Figure 14.2 Obtaining documentation for the NSString class.

If you scroll down in the pane labeled NSString Class Reference, you’ll find (among
other things) a list of all the methods this class supports. This is an easy way to find infor-
mation about the methods a class implements, including how they work and their ex-
pected arguments.

You can also access the documentation online at developer.apple.com/referencelibrary
and navigate your way to the Foundation reference documentation (by following the Co-
coa, Frameworks, Foundation Framework Reference links). At this website, you’ll also

319

320

Chapter 14 Introduction to the Foundation Framework

find a wide assortment of documents covering specific programming issues, such as mem-
ory management, strings, and file management.

Unless you subscribe to a particular document set with Xcode, the online documenta-
tion might be more current than that stored on your disk.

This concludes our brief introduction to the Foundation framework. Now it’s time to
learn about some if its classes and how you can put them to work in your applications.

15

Numbers, Strings,
and Collections

This chapter describes how to work with some of the basic objects provided in the
Foundation framework. These include numbers, strings, and collections, which refers to
the capability to work with groups of objects in the form of arrays, dictionaries, and sets.

The Foundation framework contains a plethora of classes, methods, and functions for
you to use. Approximately 125 header files are available under Mac OS X.As a conven-
ience, you can simply use the following import:

#import <Foundation/Foundation.h>

Because the Foundation.h file imports virtually all the other Foundation header files,
you don’t have to worry about whether you are importing the correct header file. Xcode
automatically insert this header file into your program, as you’ve seen in each example
throughout this book.

Using this statement can add significant time to your compiles. However, you can
avoid this extra time by using precompiled headers. These are files that the compiler has
preprocessed. By default, all Xcode projects benefit from precompiled headers.

In this chapter, you use the specific header files for each object you use.This will be a
useful exercise to help you become familiar with what each header file contains.

Note

If you like, you can continue to just import Foundation.h, but if you do import the individ-
ual files shown in each example, you should delete the file project name Prefix.pch
that XCode automatically includes for you when you create a new Foundation Tool project.
When you delete that file from your project, be sure to select “Delete References” when
prompted by Xcode.

322

Chapter 15 Numbers, Strings, and Collections

Number Objects

All the numeric data types we’ve dealt with up to now, such as integers, floats, and longs,
are basic data types in the Objective-C language—that is, they are not objects. For exam-
ple, you can’t send messages to them. Sometimes, though, you need to work with these
values as objects. For example, the Foundation object NSArray enables you to set up an ar-
ray in which you can store values. These values have to be objects, so you can’t directly
store any of your basic data types in these arrays. Instead, to store any of the basic numeric
data types (including the char data type), you can use the NSNumber class to create objects
from these data types. (See Program 15.1.)

Program 15.1

// Working with Numbers

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSValue.hs>

#import <Foundation/NSString.hs>

int main (int argc, char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSNumber *myNumber, *floatNumber, *intNumber;
NSInteger myInt;

// integer value

intNumber = [NSNumber numberWithInteger: 100];
myInt = [intNumber integerValue];

NSLog (@"%1i", (long) myInt);

// long value

myNumber = [NSNumber numberWithLong: Oxabcdef];
NSLog (@"%1x", [myNumber longValue]);

// char value

myNumber = [NSNumber numberWithChar: 'X'];
NSLog (@"%c", [myNumber charValuel);

// float value

floatNumber = [NSNumber numberWithFloat: 100.00];
NSLog (@"%g", [floatNumber floatValue]);

Number Objects

// double

myNumber = [NSNumber numberWithDouble: 12345e+15];
NSLog (@"%1g", [myNumber doubleValue]);

// Wrong access here

NSLog (@"%i", [myNumber integerValuel);

// Test two Numbers for equality

if ([intNumber isEqualToNumber: floatNumber] == YES)
NSLog (@"Numbers are equal');

else
NSLog (@"Numbers are not equal');

// Test if one Number is <, ==, or > second Number

if ([intNumber compare: myNumber] == NSOrderedAscending)
NSLog (@"First number s less than second");

[pool drain];
return 0;

Program 15.1 Output

100

abcdef

X

100

1.2345e+19

0

Numbers are equal

First number is less than second

The file <Foundation/NSValue.h> is needed to work with objects from the NSNumber

class.

A Quick Look at the Autorelease Pool

The first line in Program 15.1 has appeared in every program in this book. The following

line reserves space in memory for an autorelease pool that you assign to pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

323

324

Chapter 15 Numbers, Strings, and Collections

The autorelease pool provides for the automatic release of memory used by objects
that are added to this pool. An object is added to the pool when it is sent an autorelease
message. When the pool is released, so are all the objects that were added to it. Therefore,
all such objects are destroyed unless they have been specified to exist beyond the scope of
the autorelease pool (as indicated by their reference counts).

In general, you don’t need to worry about releasing an object that a Foundation
method returns. Sometimes the object is owned by the method that returns it. Other
times, the object is newly created and added to the autorelease pool by the method. As de-
scribed in detail in Part I,“The Objective-C 2.0 Language,” you still need to release any
objects (including Foundation objects) that you explicitly create using the alloc method
when you’re done using them.

Note

You also need to release objects created by a copy method, as you'll learn in Chapter 17.

Chapter 17,“Memory Management,” fully describes reference counts, the autorelease
pool, and the concept of automatic garbage collection.

Let’s return to Program 15.1. The NSNumber class contains many methods that allow
you to create NSNumber objects with initial values. For example, the line

intNumber = [NSNumber numberWithInteger: 100];

creates an object from an integer whose value is 100.

The value retrieved from an NSNumber object must be consistent with the type of
value that was stored in it. So in the statement that follows in the program, the message
expression

[intNumber integerValue]

retrieves the integer value stored inside intNumber and stores it inside the NSInteger
variable myInt. Note that NSInteger is not an object, but a typedef for basic date type. It
is typedef’ed either to a long for 64-bit builds or to an int for 32-bit builds. A similar
typedef for NSUInteger exists for working with unsigned integers in your program.

In the NSLog call, we cast the NSInteger myInt to a long and use the format charac-
ters %11 to ensure that the value will be passed and displayed correctly even if the program
is compiled for a 32-bit architecture.

For each basic value, a class method allocates an NSNumber object and sets it to a speci-
fied value. These methods begin with numberwith followed by the type, as in
numberWithLong:, numberWithFloat :, and so on. In addition, instance methods can be
used to set a previously allocated NSNumber object to a specified value. These all begin
with initWith, as in initWithLong: and initWithFloat:.

Table 15.1 lists the class and instance methods for setting values for NSNumber objects
and the corresponding instance methods for retrieving their values.

Table 15.1 NSNumber Creation and Retrieval Methods

Creation and Initialization Class
Method

numberWithChar:

numberWithUnsignedChar:
numberWithShort:
numberWithUnsignedShort:

numberWithInteger:

numberWithUnsignedInteger:

numberWithInt:
numberWithUnsignedInt:
numberWithLong:
numberWithUnsignedLong:

numberWithLongLong:

numberWithUnsignedLongLong:

numberWithFloat:
numberWithDouble:

numberWithBool:

Initialization Instance Method

initWithChar:

initWithUnsignedChar:
initwWwithShort:
initWithUnsignedShort:
initWithInteger:
initWithUnsignedInteger:
initWithInt:
initWithUnsignedInt:
initWithLong:
initWithUnsignedLong:

initWithLongLong:

initWithUnsignedLongLong:

initWithFloat:
initWithDouble:

initWithBool:

Number Objects 325

Retrieval Instance Method

charvalue

unsignedCharValue
shortvalue
unsignedShortValue
integervalue
unsignedIntegerValue
intvValueunsigned
unsignedIntValue
longValue
unsignedLongValue
longlongValue
unsignedLongLongValue
floatvalue
doubleValue

boolvValue

Returning to Program 15.1, the program next uses the class methods to create long,
char, float, and double NSNumber objects. Notice what happens after you create a dou-

ble object with the line

myNumber =

[NSNumber numberWithDouble:

12345e+15] ;

and then try to (incorrectly) retrieve and display its value with the following line:

NSLog (@"%i",

You get this output:

[myNumber integerValue]) ;

Also, you get no error message from the system. In general, it’s up to you to ensure that

if you store a value in an NSNumber object, you retrieve it in a consistent manner.

Inside the if statement, the message expression

[intNumber isEqualToNumber: floatNumber]

uses the isEqualToNumber: method to numerically compare two NSNumber objects. The

program tests the Boolean value returned to see whether the two values are equal.
You can use the compare: method to test whether one numeric value is numerically

less than, equal to, or greater than another. The message expression

[intNumber compare: myNumber]

326

Chapter 15 Numbers, Strings, and Collections

returns the value NSOrderedAscending if the numeric value stored in intNumber is less
than the numeric value contained in myNumber, returns the value NSOrderedsSame if the
two numbers are equal, and returns the value NSorderedDescending if the first number is
greater than the second. The values returned are defined in the header file NsObject .h for
you.

Note that you can't reinitialize the value of a previously created NSNumber object. For
example, you can'’t set the value of an integer stored in the NSNumber object myNumber
with a statement such as follows:

[myNumber initWithInt: 1000];

This statement generates an error when the program is executed. All number objects
must be newly created, meaning that you must invoke either one of the methods listed in
the first column of Table 15.1 on the NSNumber class or one of the methods listed in col-
umn 2 with the result from the alloc method:

myNumber = [[NSNumber alloc] initWithInt: 1000];

Of course, based on previous discussions, if you create myNumber this way, you are re-
sponsible for subsequently releasing it when you're done using it with a statement such as
follows:

[myNumber releasel];

You'll encounter NSNumber objects again in programs throughout the remainder of this
chapter.

String Objects

You've encountered string objects in your programs before. Whenever you enclosed a se-
quence of character strings inside a pair of double quotes, as in

@"Programming is fun"

you created a character string object in Objective-C.The Foundation framework supports
a class called NSstring for working with character string objects. Whereas C-style strings
consist of char characters, NSstring objects consist of unichar characters. A unichar
character is a multibyte character according to the Unicode standard. This enables you to
work with character sets that can contain literally millions of characters. Luckily, you don’t
have to worry about the internal representation of the characters in your strings because
the NSstring class automatically handles this for you.' By using the methods from this
class, you can more easily develop applications that can be localized—that is, made to work
in different languages all over the world.

* Currently, unichar characters occupy 16 bits, but the Unicode standard provides for characters
larger than that size.