
Programming in
Objective-C 2.0

Stephen G. Kochan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Programming in Objective-C 2.0
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-56615-7
ISBN-10: 0-321-56615-7

Library of Congress Cataloging-in-Publication Data:
Kochan, Stephen G.

Programming in Objective-C 2.0 / Stephen G. Kochan. -- 2nd ed.
p. cm.

ISBN 978-0-321-56615-7 (pbk.)
1. Objective-C (Computer program language) 2. Object-oriented

programming (Computer science) 3. Macintosh (Computer)--Programming.
I. Title.

QA76.73.O115K63 2009
005.1'17--dc22

2008049771

Printed in the United States of America

First Printing December 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Krista Hansing
Editorial Services,
Inc.

Indexer
Ken Johnson

Proofreader
Arle Writing
and Editing

Technical Editor
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

Table of Contents

Copyright... 1
Developer’s Library... 4
About the Author... 5
About the Technical Reviewers... 5
We Want to Hear from You!.. 6
Reader Services.. 6
Chapter 1. Introduction... 8

What You Will Learn from This Book.. 9
How This Book Is Organized... 10
Acknowledgments... 12

Part I: The Objective-C 2.0 Language... 14
Chapter 2. Programming in Objective-C... 16

Compiling and Running Programs.. 16
Explanation of Your First Program... 25
Displaying the Values of Variables.. 29
Summary... 32
Exercises.. 32

Chapter 3. Classes, Objects, and Methods.. 34
What Is an Object, Anyway?... 34
Instances and Methods... 35
An Objective-C Class for Working with Fractions.. 37
The @interface Section... 40
The @implementation Section... 44
The program Section... 45
Accessing Instance Variables and Data Encapsulation... 51
Summary.. 54
Exercises.. 54

Chapter 4. Data Types and Expressions... 56
Data Types and Constants... 56
Arithmetic Expressions... 63
Assignment Operators... 71
A Calculator Class.. 72
Bit Operators... 74
Types: _Bool, _Complex, and _Imaginary.. 80
Exercises.. 80

Chapter 5. Program Looping.. 84
The for Statement.. 85
The while Statement.. 96
The do Statement... 101
The break Statement... 102
The continue Statement.. 103
Summary.. 103
Exercises.. 103

Chapter 6. Making Decisions.. 106
The if Statement.. 106
The switch Statement... 127
Boolean Variables.. 130
The Conditional Operator.. 135
Exercises.. 136

Chapter 7. More on Classes... 140
Separate Interface and Implementation Files.. 140
Synthesized Accessor Methods.. 146
Accessing Properties Using the Dot Operator... 147
Multiple Arguments to Methods... 148

Local Variables... 153
The self Keyword.. 156
Allocating and Returning Objects from Methods... 157
Exercises.. 163

Chapter 8. Inheritance.. 164
It All Begins at the Root... 164
Extension Through Inheritance: Adding New Methods... 169
Overriding Methods... 182
Extension Through Inheritance: Adding New Instance Variables... 188
Abstract Classes... 190
Exercises... 191

Chapter 9. Polymorphism, Dynamic Typing, and Dynamic Binding... 194
Polymorphism: Same Name, Different Class.. 194
Dynamic Binding and the id Type... 198
Compile Time Versus Runtime Checking... 200
The id Data Type and Static Typing.. 201
Asking Questions About Classes... 202
Exception Handling Using @try... 207
Exercises.. 210

Chapter 10. More on Variables and Data Types... 212
Initializing Classes... 212
Scope Revisited.. 214
Storage Class Specifiers.. 220
Enumerated Data Types.. 222
The typedef Statement.. 225
Data Type Conversions.. 227
Exercises.. 229

Chapter 11. Categories and Protocols... 232
Categories.. 232
Protocols.. 238
Composite Objects... 242
Exercises.. 243

Chapter 12. The Preprocessor... 246
The #define Statement.. 246
The #import Statement... 254
Conditional Compilation... 257
Exercises.. 260

Chapter 13. Underlying C Language Features.. 262
Arrays.. 263
Functions... 269
Structures.. 278
Pointers... 290
Unions... 309
They’re Not Objects!.. 312
Miscellaneous Language Features... 312
How Things Work.. 317
Exercises.. 319

Part II: The Foundation Framework.. 322
Chapter 14. Introduction to the Foundation Framework.. 324

Foundation Documentation.. 324
Chapter 15. Numbers, Strings, and Collections.. 328

Number Objects... 329
String Objects.. 333
Array Objects... 348
Synthesized AddressCard Methods.. 356
Dictionary Objects... 374
Set Objects... 377
Exercises.. 382

Chapter 16. Working with Files.. 384
Managing Files and Directories: NSFileManager.. 385

Working with Paths: NSPathUtilities.h.. 396
Basic File Operations: NSFileHandle... 404
Exercises.. 409

Chapter 17. Memory Management.. 412
The Autorelease Pool... 412
Reference Counting... 413
An Autorelease Example... 425
Summary of Memory-Management Rules... 426
Garbage Collection.. 427
Exercises.. 429

Chapter 18. Copying Objects.. 430
The copy and mutableCopy Methods.. 431
Shallow Versus Deep Copying... 433
Implementing the <NSCopying> Protocol... 436
Copying Objects in Setter and Getter Methods.. 439
Exercises.. 441

Chapter 19. Archiving... 442
Archiving with XML Property Lists.. 442
Archiving with NSKeyedArchiver... 444
Writing Encoding and Decoding Methods... 447
Using NSData to Create Custom Archives.. 454
Using the Archiver to Copy Objects.. 457
Exercises.. 459

Part III: Cocoa and the iPhone SDK.. 460
Chapter 20. Introduction to Cocoa... 462

Framework Layers... 462
Cocoa Touch.. 463

Chapter 21. Writing iPhone Applications... 466
The iPhone SDK.. 466
Your First iPhone Application.. 466
An iPhone Fraction Calculator.. 483
Summary... 498
Exercises.. 499

Part IV: Appendixes.. 502
Glossary... 504
Appendix B. Objective-C 2.0 Language Summary.. 512

Digraphs and Identifiers.. 512
Comments.. 516
Constants.. 517
Data Types and Declarations.. 520
Expressions.. 531
Storage Classes and Scope.. 546
Functions... 550
Classes.. 553
Statements... 563
Exception Handling.. 568
Preprocessor.. 568

Appendix C. Address Book Source Code.. 576
AddressCard Interface File.. 576
AddressBook Interface File... 577
AddressCard Implementation File.. 577
AddressBook Implementation File... 579

Appendix D. Resources... 582
Answers to Exercises, Errata, and Such... 582
Objective-C Language... 582
C Programming Language... 583
Cocoa... 583
iPhone and iTouch Application Development.. 584

❖

To Roy and Ve, two people whom I dearly miss

❖

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

About the Author
Stephen Kochan is the author and coauthor of several bestselling titles on the C lan-
guage, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring the
Unix System (Sams, 1992) and Unix Shell Programming (Sams 2003). He has been pro-
gramming on Macintosh computers since the introduction of the first Mac in 1984, and
he wrote Programming C for the Mac as part of the Apple Press Library. In 2003 Kochan
wrote Programming in Objective-C (Sams, 2003), and followed that with another Mac-
related title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers
Michael Trent has been programming in Objective-C since 1997—and programming
Macs since well before that. He is a regular contributor to Steven Frank’s
www.cocoadev.com Web site, a technical reviewer for numerous books and magazine
articles, and an occasional dabbler in Mac OS X open source projects. Currently, he is
using Objective-C and Apple Computer’s Cocoa frameworks to build professional video
applications for Mac OS X. Michael holds a Bachelor of Science degree in computer
science and a Bachelor of Arts degree in music from Beloit College of Beloit,Wisconsin.
He lives in Santa Clara, California, with his lovely wife,Angela.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.
You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.
E-mail: feedback@developers-library.info
Mail: Mark Taub

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/title/9780321566157 for
convenient access to any updates, downloads, or errata that might be available for this
book.

1
Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in
the early 1970s. However, this programming language did not begin to gain widespread
popularity and support until the late 1970s.This was because, until that time, C compilers
were not readily available for commercial use outside of Bell Laboratories. Initially, this
growth in popularity was also partly spurred by the equal, if not faster, growth in popular-
ity of the UNIX operating system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s.The language was
based on a language called SmallTalk-80. Objective-C was layered on top of the C lan-
guage, meaning that extensions were added to C to create a new programming language
that enabled objects to be created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries
and a development environment called NEXTSTEP. In 1992, Objective-C support was
added to the Free Software Foundation’s GNU development environment.This software
is in the public domain, which means that anyone who wants to learn how to program in
Objective-C can do so by downloading its tools at no charge.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification
of the NEXTSTEP system, called OPENSTEP.The Free Software Foundation’s imple-
mentation of OPENSTEP is called GNUStep.A Linux version, which also includes the
Linux kernel and the GNUStep development environment, is called, appropriately
enough, LinuxSTEP.

On December 20, 1996,Apple Computer announced that it was acquiring NeXT
Software, and the NEXTSTEP/OPENSTEP environment became the basis for the next
major release of Apple’s operating system, OS X.Apple’s version of this development en-
vironment was called Cocoa.With built-in support for the Objective-C language, cou-
pled with development tools such as Project Builder (or its successor Xcode) and
Interface Builder,Apple created a powerful development environment for application de-
velopment on Mac OS X.

In 2007,Apple released an update to the Objective-C language and labeled it
Objective-C 2.0.That version of the language is covered in this second edition of the
book.

2 Chapter 1 Introduction

When the iPhone was released in 2007, developers clamored for the opportunity to
develop applications for this revolutionary device.At first,Apple did not welcome third-
party application development.The company’s way of placating wannabe iPhone devel-
opers was to allow them to develop web-based applications.A web-based application runs
under the iPhone’s built-in Safari web browser and requires the user to connect to the
website that hosts the application in order to run it. Developers were not satisfied with
the many inherent limitations of web-based applications, and Apple shortly thereafter an-
nounced that developers would be able to develop so-called native applications for the
iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s op-
erating system, in the same way that the iPhone’s built-in applications (such as Contacts,
iPod, and Weather) run on the device.The iPhone’s OS is actually a version of Mac OS
X, which meant that applications could be developed and debugged on a MacBook Pro,
for example. In fact,Apple soon provided a powerful Software Development Kit (SDK)
that allowed for rapid iPhone application development and debugging.The availability of
an iPhone simulator made it possible for developers to debug their applications directly
on their development system, obviating the need to download and test the program on an
actual iPhone or iPod Touch device.

What You Will Learn from This Book
When I contemplated writing a tutorial on Objective-C, I had to make a fundamental
decision.As with other texts on Objective-C, I could write mine to assume that the
reader already knew how to write C programs. I could also teach the language from the
perspective of using the rich library of routines, such as the Foundation and Application
Kit frameworks. Some texts also take the approach of teaching how to use the develop-
ment tools, such as the Mac’s Xcode and Interface Builder.

I had several problems adopting this approach. First, learning the entire C language be-
fore learning Objective-C is wrong. C is a procedural language containing many features
that are not necessary for programming in Objective-C, especially at the novice level. In
fact, resorting to some of these features goes against the grain of adhering to a good ob-
ject-oriented programming methodology. It’s also not a good idea to learn all the details
of a procedural language before learning an object-oriented one.This starts the program-
mer in the wrong direction, and gives the wrong orientation and mindset for fostering a
good object-oriented programming style. Just because Objective-C is an extension to the
C language doesn’t mean you have to learn C first.

So I decided neither to teach C first nor to assume prior knowledge of the language.
Instead, I decided to take the unconventional approach of teaching Objective-C and the
underlying C language as a single integrated language, from an object-oriented program-
ming perspective.The purpose of this book is as its name implies: to teach you how to
program in Objective-C 2.0. It does not profess to teach you in detail how to use the de-
velopment tools that are available for entering and debugging programs, or to provide in-

3How This Book Is Organized

depth instructions on how to develop interactive graphical applications with Cocoa.You
can learn all that material in greater detail elsewhere, after you’ve learned how to write
programs in Objective-C. In fact, mastering that material will be much easier when you
have a solid foundation of how to program in Objective-C.This book does not assume
much, if any, previous programming experience. In fact, if you’re a novice programmer,
you should be able to learn Objective-C as your first programming language.

This book teaches Objective-C by example.As I present each new feature of the lan-
guage, I usually provide a small complete program example to illustrate the feature. Just as
a picture is worth a thousand words, so is a properly chosen program example.You are
strongly encouraged to run each program (all of which are available online) and compare
the results obtained on your system to those shown in the text. By doing so, you will
learn the language and its syntax, but you will also become familiar with the process of
compiling and running Objective-C programs.

How This Book Is Organized
This book is divided into three logical parts. Part I,“The Objective-C 2.0 Language,”
teaches the essentials of the language. Part II,“The Foundation Framework,” teaches how
to use the rich assortment of predefined classes that form the Foundation framework. Part
III,“Cocoa Programming and the iPhone SDK,” gives you an overview of Cocoa’s Appli-
cation Kit framework and then walks you through the process of developing a simple
iPhone application using the UIKit framework, and developing and debugging the code
with Xcode and Interface Builder.

A framework is a set of classes and routines that have been logically grouped together to
make developing programs easier. Much of the power of programming in Objective-C
rests on the extensive frameworks that are available.

Chapter 2,“Programming in Objective-C,” begins by teaching you how to write your
first program in Objective-C.

Because this is not a book on Cocoa programming, graphical user interfaces (GUIs)
are not extensively taught and are hardly even mentioned until Part III. So an approach
was needed to get input into a program and produce output. Most of the examples in this
text take input from the keyboard and produce their output in a window: a Terminal
window if you’re using gcc from the command line, or a Console window if you’re using
Xcode.

Chapter 3,“Classes, Objects, and Methods,” covers the fundamentals of object-ori-
ented programming.This chapter introduces some terminology, but it’s kept to a mini-
mum. I also introduce the mechanism for defining a class and the means for sending
messages to instances or objects. Instructors and seasoned Objective-C programmers will
notice that I use static typing for declaring objects. I think this is the best way for the stu-
dent to get started because the compiler can catch more errors, making the programs
more self-documenting and encouraging the new programmer to explicitly declare the
data types when they are known.As a result, the notion of the id type and its power is not
fully explored until Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Binding.”

4 Chapter 1 Introduction

Chapter 4,“Data Types and Expressions,” describes the basic Objective-C data types
and how to use them in your programs.

Chapter 5,“Program Looping,” introduces the three looping statements you can use in
your programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6,
“Making Decisions,” covers the Objective-C language’s if and switch statements in detail.

Chapter 7,“More on Classes,” delves more deeply into working with classes and ob-
jects. Details about methods, multiple arguments to methods, and local variables are dis-
cussed here.

Chapter 8,“Inheritance,” introduces the key concept of inheritance.This feature makes
the development of programs easier because you can take advantage of what comes from
above. Inheritance and the notion of subclasses make modifying and extending existing
class definitions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10–13 round out the discussion of the Objective-C language, covering issues
such as initialization of objects, protocols, categories, the preprocessor, and some of the
underlying C features, including functions, arrays, structures, and pointers.These underly-
ing features are often unnecessary (and often best avoided) when first developing object-
oriented applications. It’s recommended that you skim Chapter 13,“Underlying C
Features,” the first time through the text and return to it only as necessary to learn more
about a particular feature of the language.

Part II begins with Chapter 14,“Introduction to the Foundation Framework,” which
gives an introduction to the Foundation framework and how to access its documentation.

Chapters 15–19 cover important features of the Foundation framework.These include
number and string objects, collections, the file system, memory management, and the
process of copying and archiving objects.

By the time you’re done with Part II, you will be able to develop fairly sophisticated
programs in Objective-C that work with the Foundation framework.

Part III starts with Chapter 20,“Introduction to Cocoa.” Here you’ll get a quick
overview of the Application Kit that provides the classes you need to develop sophisti-
cated graphical applications on the Mac.

Chapter 21,“Writing iPhone Applications,” introduces the iPhone SDK and the UIKit
framework.This chapter illustrates a step-by-step approach to writing a simple iPhone (or
iTouch) application, followed by a calculator application that enables you to use your
iPhone to perform simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology,Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B,“Objective-C Language Summary,” gives a summary of the Objective-C
language, for your quick reference.

Appendix C,“Address Book Source Code,” gives the source code listing for two classes
that are developed and used extensively in Part II of this text.These classes define address

5Acknowledgments

card and address book classes. Methods enable you to perform simple operations such as
adding and removing address cards from the address book, looking up someone, listing
the contents of the address book, and so on.

After you’ve learned how to write Objective-C programs, you can go in several direc-
tions.You might want to lean more about the underlying C programming language—or
you might want to start writing Cocoa programs to run on Mac OS X, or develop more
sophisticated iPhone applications. In any case,Appendix D,“Resources,” will guide you in
the right direction.

Acknowledgments
I would like to acknowledge several people for their help in the preparation of the first
edition of this text. First, I want to thank Tony Iannino and Steven Levy for reviewing the
manuscript. I am also grateful to Mike Gaines for providing his input.

I’d also like to thank my technical editors, Jack Purdum (first edition) and Mike Trent.
I was lucky enough to have Mike review both editions of this text. He provided the most
thorough review of any book I’ve ever written. Not only did he point out weaknesses,
but he was also generous enough to offer his suggestions. Because of Mike’s comments in
the first edition, I changed my approach to teaching memory management and tried to
make sure that every program example in this book was “leak free.” Mike also provided
invaluable input for my chapter on iPhone programming.

From the first edition, Catherine Babin supplied the cover photograph and provided
me with many wonderful pictures to choose from. Having the cover art from a friend
made the book even more special.

I am so grateful to Mark Taber from Pearson for putting up with all delays and for be-
ing kind enough to work around my schedule and to tolerate my consistent missing of
deadlines while working on this second edition. From Pearson I’d also like to thank my
development editor, Michael Thurston, my copy editor, Krista Hansing, and my project
editor, Mandie Frank, who expertly managed the mad dash to the finish line.

As always, my children showed an incredible amount of maturity and patience while I
pulled this book together over the summer (and then into the fall)! To Gregory, Linda,
and Julia, I love you!

Stephen G. Kochan
October 2008

Part I
The Objective-C 2.0

Language

1 Introduction

2 Programming in Objective-C

3 Classes, Objects, and Methods

4 Data Types and Expressions

5 Program Looping

6 Making Decisions

7 More on Classes

8 Inheritance

9 Polymorphism, Dynamic Typing,
and Dynamic Binding

10 More on Variables and Data Types

11 Categories and Protocols

12 The Preprocessor

13 Underlying C Language Features

2
Programming in

Objective-C

In this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won’t work with objects just yet; that’s the topic of the next chapter.We want you
to understand the steps involved in keying in a program and compiling and running it.We
give special attention to this process both under Windows and on a Macintosh computer.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen.Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task:

Program 2.1

// First program example

#import Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog (@”Programming is fun!”);

[pool drain];
return 0;

}

Compiling and Running Programs
Before we go into a detailed explanation of this program, we need to cover the steps in-
volved in compiling and running it.You can both compile and run your program using
Xcode, or you can use the GNU Objective-C compiler in a Terminal window. Let’s go
through the sequence of steps using both methods.Then you can decide how you want
to work with your programs throughout the rest of this book.

10 Chapter 2 Programming in Objective-C

Note
These tools should be preinstalled on all Macs that came with OS X. If you separately in-
stalled OS X, make sure you install the Developer Tools as well.

Using Xcode
Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile.We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical ap-
plication with it.

First, Xcode is located in the Developer folder inside a subfolder called Applications.
Figure 2.1 shows its icon.

Start Xcode. Under the File menu, select New Project (see Figure 2.2).

A window appears, as shown in Figure 2.3.

Figure 2.1 Xcode Icon

Figure 2.2 Starting a new project

11Compiling and Running Programs

Scroll down the left pane until you get to Command Line Utility. In the upper-right
pane, highlight Foundation Tool.Your window should now appear as shown in Figure 2.4.

Click Choose.This brings up a new window, shown in Figure 2.5.

Figure 2.3 Starting a new project: selecting the application type

Figure 2.4 Starting a new project: creating a Foundation tool

12 Chapter 2 Programming in Objective-C

We’ll call the first program prog1, so type that into the Save As field.You may want to
create a separate folder to store all your projects in. On my system, I keep the projects for
this book in a folder called ObjC Progs.

Click the Save button to create your new project.This gives you a project window
such as the one shown in Figure 2.6. Note that your window might display differently if
you’ve used Xcode before or have changed any of its options.

Now it’s time to type in your first program. Select the file prog1.m in the upper-right
pane.Your Xcode window should now appear as shown in Figure 2.7.

Objective-C source files use .m as the last two characters of the filename (known as its
extension).Table 2.1 lists other commonly used filename extensions.

Figure 2.5 Xcode file list window

Table 2.1 Common Filename Extensions

Extension Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.mm Objective-C++ source file

.pl Perl source file

.o Object (compiled) file

13Compiling and Running Programs

Figure 2.6 Xcode prog1 project window

Figure 2.7 File prog1.m and edit window

14 Chapter 2 Programming in Objective-C

Returning to your Xcode project window, the bottom-right side of the window shows
the file called prog1.m and contains the following lines:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// insert code here...

NSLog (@”Hello World!”);
[pool drain];

return 0;

}

Note
If you can’t see the file’s contents displayed, you might have to click and drag up the bottom-
right pane to get the edit window to appear. Again, this might be the case if you’ve previously
used Xcode.

You can edit your file inside this window. Xcode has created a template file for you to
use.

Make changes to the program shown in the Edit window to match Program 2.1.The
line you add at the beginning of prog1.m that starts with two slash characters (//) is called
a comment; we talk more about comments shortly.

Your program in the edit window should now look like this:

// First program example

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);

[pool drain];

return 0;

}

Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
build and run.You need to save your program first, however, by selecting Save from the File
menu. If you try to compile and run your program without first saving your file, Xcode
asks whether you want to save it.

15Compiling and Running Programs

Under the Build menu, you can select either Build or Build and Run. Select the latter
because that automatically runs the program if it builds without any errors.You can also
click the Build and Go icon that appears in the toolbar.

Note
Build and Go means “Build and then do the last thing I asked you to do,” which might be
Run, Debug, Run with Shark or Instruments, and so on. The first time you use this for a proj-
ect, Build and Go means to build and run the program, so you should be fine using this op-
tion. However, just be aware of the distinction between “Build and Go” and “Build and Run.”

If you made mistakes in your program, you’ll see error messages listed during this step.
In this case, go back, fix the errors, and repeat the process.After all the errors have been
removed from the program, a new window appears, labeled prog1 – Debugger Console.
This window contains the output from your program and should look similar to Figure
2.8. If this window doesn’t automatically appear, go to the main menu bar and select Con-
sole from the Run menu.We discuss the actual contents of the Console window shortly.

You’re now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!).The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.

2. If this is a new project, select File, New Project.

3. For the type of application, select Command Line Utility, Foundation Tool, and
click Choose.

Figure 2.8 Xcode Debugger Console window

16 Chapter 2 Programming in Objective-C

4. Select a name for your project, and optionally a directory to store your project files
in. Click Save.

5. In the top-right pane, you will see the file prog1.m (or whatever name you assigned
to your project, followed by .m. Highlight that file.Type your program into the edit
window that appears directly below that pane.

6. Save the changes you’ve entered by selecting File, Save.

7. Build and run your application by selecting Build, Build and Run, or by clicking
the Build and Go Button.

8. If you get any compiler errors or the output is not what you expected, make your
changes to the program and repeat steps 6 and 7.

Using Terminal
Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you’re used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here
we examine how to go about doing that.

The first step is to start the Terminal application on your Mac.The Terminal application
is located in the Applications folder, stored under Utilities. Figure 2.9 shows its icon.

Start the Terminal application.You’ll see a window that looks like Figure 2.10.

You type commands after the $ (or %, depending on how your Terminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this
straightforward.

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples.Then you must run a text edi-
tor, such as vi or emacs, to enter your program:

sh-2.05a$ mkdir Progs Create a directory to store programs in
sh-2.05a$ cd Progs Change to the new directory
sh-2.05a$ vi prog1.m Start up a text editor to enter program
..

Figure 2.9 Terminal program icon

17Compiling and Running Programs

Figure 2.10 Terminal window

Note
In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you’ve entered your program into a file, you can use the GNU Objective-C
compiler, which is called gcc, to compile and link your program.This is the general format
of the gcc command:

gcc –framework Foundation files -o progname

This option says to use information about the Foundation framework:

-framework Foundation

Just remember to use this option on your command line. files is the list of files to be
compiled. In our example, we have only one such file, and we’re calling it prog1.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program prog1; here, then, is the command line to compile your first
Objective-C program:

$ gcc –framework Foundation prog1.m -o prog1 Compile prog1.m & call it prog1
$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name prog1 at the command prompt:

$ prog1 Execute prog1

18 Chapter 2 Programming in Objective-C

sh: prog1: command not found

$

This is the result you’ll probably get unless you’ve used Terminal before.The UNIX
shell (which is the application running your program) doesn’t know where prog1 is lo-
cated (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute.The other is to add the directory in
which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./prog1 Execute prog1
2008-06-08 18:48:44.210 prog1[7985:10b] Programming is fun!

$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iPhone applications, there’s more to just the executable file that needs to be
“packaged” into an application bundle. It’s not easy to do that from the Terminal applica-
tion, and it’s one of Xcode’s specialties.Therefore, I suggest you start learning to use
Xcode to develop your programs.There is a learning curve to do this, but the effort will
be well worth it in the end.

Explanation of Your First Program
Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

// First program example

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);
[pool drain];

return 0;

}

In Objective-C, lowercase and uppercase letters are distinct.Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first line of the program introduces the concept of the comment:

// First program example

19Explanation of Your First Program

A comment statement is used in a program to document a program and enhance its
readability. Comments tell the reader of the program—whether it’s the programmer or
someone else whose responsibility it is to maintain the program—just what the program-
mer had in mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//).The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the be-
ginning of the comment.These types of comments have to be terminated.To end the
comment, you use the characters * and /, again without any embedded spaces.All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler.This form of comment is
often used when comments span many lines of code, as in the following:

/*

This file implements a class called Fraction, which

represents fractional numbers. Methods allow manipulation of

fractions, such as addition, subtraction, etc.

For more information, consult the document:

/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or
type it into the computer, for three good reasons. First, documenting the program while
the particular program logic is still fresh in your mind is far easier than going back and re-
thinking the logic after the program has been completed. Second, by inserting comments
into the program at such an early stage of the game, you can reap the benefits of the com-
ments during the debug phase, when program logic errors are isolated and debugged. Not
only can a comment help you (and others) read through the program, but it also can help
point the way to the source of the logic mistake. Finally, I haven’t yet discovered a pro-
grammer who actually enjoys documenting a program. In fact, after you’ve finished de-
bugging your program, you will probably not relish the idea of going back to the program
to insert comments. Inserting comments while developing the program makes this some-
times tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or in-
clude the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

20 Chapter 2 Programming in Objective-C

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char *argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion.The reserved word int that precedes main specifies the type of value main returns,
which is an integer (more about that soon).We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon.The system treats all the program statements included
between the braces as part of the main routine. Program 2.1 has four statements.

The first statement in Program 2.1 reads

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

It reserves space in memory for an autorelease pool.We discuss this thoroughly in
Chapter 17,“Memory Management.” Xcode puts this line into your program automati-
cally as part of the template, so just leave it there for now.

The next statement specifies that a routine named NSLog is to be invoked, or called.The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@”Programming is fun!”

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NSString object.

Note
If you have C programming experience, you might be puzzled by the leading @ character.
Without that leading @ character, you are writing a constant C-style string; with it, you are
writing an NSString string object.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here.Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

21Explanation of Your First Program

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

Before you exit your program, you should release the allocated memory pool (and ob-
jects that are associated with it) with a line such as the following:

[pool drain];

Again, Xcode automatically inserts this line into your program for you.Again, we defer
detailed explanation of what this does until later.

The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of 0.
By convention, 0 means that the program ended normally.Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

If you’re using Xcode and you glance back to your Debug Console window (refer to
Figure 2.8), you’ll recall that the following displayed after the line of output from NSLog:

The Debugger has exited with status 0.

You should understand what that message means now.
Now that we have finished discussing your first program, let’s modify it to also display

the phrase “And programming in Objective-C is even more fun!”You can do this by sim-
ply adding another call to the NSLog routine, as shown in Program 2.2. Remember that
every Objective-C program statement must be terminated by a semicolon.

Program 2.2

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);
NSLog (@”Programming in Objective-C is even more fun!”);

[pool drain];
return 0;

}

22 Chapter 2 Programming in Objective-C

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the out-
put):

Program 2.2 Output

Programming is fun!

Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence.The backslash (\) and the letter
n are known collectively as the newline character.A newline character tells the system to
do precisely what its name implies: go to a new line.Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you ex-
amine the output (no cheating, now!).

Program 2.3

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Testing...\n..1\n...2\n....3”);
[pool drain];
return 0;

}

Program 2.3 Output

Testing...
..1
...2

....3

Displaying the Values of Variables
Not only can simple phrases be displayed with NSLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

23Displaying the Values of Variables

Program 2.4

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int sum;

sum = 50 + 25;
NSLog (@”The sum of 50 and 25 is %i”, sum);
[pool drain];

return 0;

}

Program 2.4 Output

The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can
use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it.The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable de-
fined as type int can be used to hold only integral values—that is, values without decimal
places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal places, such
as 2.14, 2.455, and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the re-
sult is stored (as indicated by the assignment operator, the equals sign) in the variable sum.

The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses.These arguments are separated by a comma.The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of
the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

24 Chapter 2 Programming in Objective-C

The percent character inside the first argument is a special character recognized by the
NSLog function.The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after “The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int value1, value2, sum;

value1 = 50;
value2 = 25;
sum = value1 + value2;

NSLog (@”The sum of %i and %i is %i”, value1, value2, sum);

[pool drain];
return 0;

}

Program 2.5 Output

The sum of 50 and 25 is 75

The second program statement inside main defines three variables called value1,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int value1;

int value2;

int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable value1 and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

25Exercises

The call to the NSLog routine now contains four arguments. Once again, the first argu-
ment, commonly called the format string, describes to the system how the remaining argu-
ments are to be displayed.The value of value1 is to be displayed immediately following
the phrase “The sum of.” Similarly, the values of value2 and sum are to be printed at the
points indicated by the next two occurrences of the %i characters in the format string.

Summary
After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you be-
gin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program.

2. Write a program that displays the following text:
In Objective-C, lowercase letters are significant.

main is where program execution begins.

Open and closed braces enclose program statements in a routine.

All program statements must be terminated by a semicolon.

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init;

int i;

i = 1;

NSLog (@”Testing...”);
NSLog (@”....%i”, i);
NSLog (@”...%i”, i + 1);
NSLog (@”..%i”, i + 2);

[pool drain];

return 0;

}

26 Chapter 2 Programming in Objective-C

4. Write a program that subtracts the value 15 from 87 and displays the result,
together with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]);

(

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

INT sum;

/* COMPUTE RESULT //

sum = 25 + 37 - 19

/ DISPLAY RESULTS /

NSLog (@’The answer is %i’ sum);

[pool drain];

return 0;

}

6. What output would you expect from the following program?

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]))

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int answer, result;

answer = 100;

result = answer - 10;

NSLog (@”The result is %i\n”, result + 5);

[pool drain];

return 0;

}

3
Classes, Objects, and Methods

In this chapter, you’ll learn about some key concepts in object-oriented programming
and start working with classes in Objective-C.You’ll need to learn a little bit of terminol-
ogy, but we keep it fairly informal.We also cover only some of the basic terms here be-
cause you can easily get overwhelmed. Refer to Appendix A,“Glossary,” at the end of this
book, for more precise definitions of these terms.

What Is an Object, Anyway?
An object is a thing.Think about object-oriented programming as a thing and something
you want to do to that thing.This is in contrast to a programming language such as C,
known as a procedural programming language. In C, you typically think about what you
want to do first and then you worry about the objects, almost the opposite of object ori-
entation.

Consider an example from everyday life. Let’s assume that you own a car, which is ob-
viously an object, and one that you own.You don’t have just any car; you have a particular
car that was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe
someplace else.Your car has a vehicle identification number (VIN) that uniquely identi-
fies that car.

In object-oriented parlance, your car is an instance of a car. Continuing with the termi-
nology, car is the name of the class from which this instance was created. So each time a
new car is manufactured, a new instance from the class of cars is created, and each in-
stance of the car is referred to as an object.

Your car might be silver, have a black interior, be a convertible or hardtop, and so on.
Additionally, you perform certain actions with your car. For example, you drive your car,
fill it with gas, (hopefully) wash it, take it in for service, and so on.Table 3.1 depicts this.

The actions listed inTable 3.1 can be done with you car, and they can be done with
other cars as well. For example, your sister drives her car, washes it, fills it with gas, and so on.

28 Chapter 3: Classes, Objects, and Methods

Instances and Methods
A unique occurrence of a class is an instance, and the actions that are performed on the in-
stance are called methods. In some cases, a method can be applied to an instance of the class
or to the class itself. For example, washing you car applies to an instance (in fact, all the
methods listed in Table 3.1 can be considered instance methods). Finding out how many
types of cars a manufacturer makes would apply to the class, so it would be a class method.

Suppose you have two cars that came off the assembly line and are seemingly identical:
They both have the same interior, same paint color, and so on.They might start out the
same, but as each car is used by its respective owner, it acquires its own unique character-
istics. For example, one car might end up with a scratch on it and the other might have
more miles on it. Each instance or object contains not only information about its initial
characteristics acquired from the factory, but also its current characteristics.Those charac-
teristics can change dynamically.As you drive your car, the gas tank becomes depleted, the
car gets dirtier, and the tires get a little more worn.

Applying a method to an object can affect the state of that object. If your method is to
“fill up my car with gas,” after that method is performed, your car’s gas tank will be full.
The method then will have affected the state of the car’s gas tank.

The key concepts here are that objects are unique representations from a class, and
each object contains some information (data) that is typically private to that object.The
methods provide the means of accessing and changing that data.

The Objective-C programming language has the following particular syntax for ap-
plying methods to classes and instances:

[ClassOrInstance method];

In this syntax, a left bracket is followed by the name of a class or instance of that class,
which is followed by one or more spaces, which is followed by the method you want to
perform. Finally, it is closed off with a right bracket and a terminating semicolon.When
you ask a class or an instance to perform some action, you say that you are sending it a
message; the recipient of that message is called the receiver. So another way to look at the
general format described previously is as follows:

[receiver message] ;

Let’s go back to the previous list and write everything in this new syntax. Before you
do that, though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

Table 3.1 Actions on Objects

Object What You Do with It

Your car Drive it

Fill it with gas

Wash it

Service it

29Instances and Methods

You send a message to the Car class (the receiver of the message) asking it to give you
a new car.The resulting object (which represents your unique car) is then stored in the
variable yourCar. From now on, yourCar can be used to refer to your instance of the car,
which you got from the factory.

Because you went to the factory to get the car, the method new is called a factory or
class method.The rest of the actions on your new car will be instance methods because
they apply to your car. Here are some sample message expressions you might write for
your car:

[yourCar prep]; get it ready for first-time use
[yourCar drive]; drive your car
[yourCar wash]; wash your car
[yourCar getGas]; put gas in your car if you need it
[yourCar service]; service your car

[yourCar topDown]; if it’s a convertible
[yourCar topUp];

currentMileage = [suesCar currentOdometer];

This last example shows an instance method that returns information—presumably, the
current mileage, as indicated on the odometer. Here we store that information inside a
variable in our program called currentMileage.

Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];

[suesCar wash];

[suesCar getGas];

Applying the same methods to different objects is one of the key concepts of object-
oriented programming, and you’ll learn more about it later.

You probably won’t need to work with cars in your programs.Your objects will likely
be computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a
calculator or a playlist of songs.And just like the methods used for your cars, your meth-
ods might look similar, as in the following:

[myWindow erase]; Clear the window

[myRect getArea]; Calculate the area of the rectangle

[userText spellCheck]; Spell-check some text

[deskCalculator clearEntry]; Clear the last entry

[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber dial]; Dial a phone number

30 Chapter 3: Classes, Objects, and Methods

An Objective-C Class for Working with Fractions
Now it’s time to define an actual class in Objective-C and learn how to work with in-
stances of the class.

Once again, you’ll learn procedure first.As a result, the actual program examples might
not seem very practical.We get into more practical stuff later.

Suppose you need to write a program to work with fractions. Maybe you need to deal
with adding, subtracting, multiplying, and so on. If you didn’t know about classes, you
might start with a simple program that looked like this:

Program 3.1

// Simple program to work with fractions
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int numerator = 1;
int denominator = 3;
NSLog (@”The fraction is %i/%i”, numerator, denominator);

[pool drain];
return 0;

}

Program 3.1 Output

The fraction is 1/3

In Program 3.1 the fraction is represented in terms of its numerator and denominator.
After the autorelease pool is created, the two lines in main both declare the variables
numerator and denominator as integers and assign them initial values of 1 and 3, respec-
tively.This is equivalent to the following lines:

int numerator, denominator;

numerator = 1;

denominator = 3;

We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the
variable denominator. If you needed to store a lot of fractions in your program, this could
be cumbersome. Each time you wanted to refer to the fraction, you’d have to refer to the
corresponding numerator and denominator.And performing operations on these fractions
would be just as awkward.

31An Objective-C Class for Working with Fractions

It would be better if you could define a fraction as a single entity and collectively refer
to its numerator and denominator with a single name, such as myFraction.You can do
that in Objective-C, and it starts by defining a new class.

Program 3.2 duplicates the functionality of Program 3.1 using a new class called
Fraction. Here, then, is the program, followed by a detailed explanation of how it works.

Program 3.2

// Program to work with fractions – class version

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

32 Chapter 3: Classes, Objects, and Methods

@end

//---- program section ----

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@”The value of myFraction is:”);
[myFraction print];
[myFraction release];

[pool drain];
return 0;

}

Program 3.2 Output

The value of myFraction is:

1/3

As you can see from the comments in Program 3.2, the program is logically divided
into three sections:

n @interface section
n @implementation section
n program section

The @interface section describes the class, its data components, and its methods,
whereas the @implementation section contains the actual code that implements these
methods. Finally, the program section contains the program code to carry out the in-
tended purpose of the program.

33The @interface Section

Each of these sections is a part of every Objective-C program, even though you might
not need to write each section yourself.As you’ll see, each section is typically put in its
own file. For now, however, we keep it all together in a single file.

The @interface Section
When you define a new class, you have to do a few things. First, you have to tell the Ob-
jective-C compiler where the class came from.That is, you have to name its parent class.
Second, you have to specify what type of data is to be stored in the objects of this class.
That is, you have to describe the data that members of the class will contain.These mem-
bers are called the instance variables. Finally, you need to define the type of operations, or
methods, that can be used when working with objects from this class.This is all done in a
special section of the program called the @interface section.The general format of this
section looks like this:

@interface NewClassName: ParentClassName
{

memberDeclarations;
}

methodDeclarations;
@end

By convention, class names begin with an uppercase letter, even though it’s not re-
quired.This enables someone reading your program to distinguish class names from other
types of variables by simply looking at the first character of the name. Let’s take a short
diversion to talk a little about forming names in Objective-C.

Choosing Names
In Chapter 2,“Programming in Objective-C,” you used several variables to store integer
values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

The Objective-C language allows you to store data types other than just integers in
variables as well, as long as the proper declaration for the variable is made before it is used
in the program.Variables can be used to store floating-point numbers, characters, and even
objects (or, more precisely, references to objects).

The rules for forming names are quite simple:They must begin with a letter or under-
score (_), and they can be followed by any combination of letters (upper- or lowercase),
underscores, or the digits 0–9.The following is a list of valid names:

n sum

n pieceFlag

34 Chapter 3: Classes, Objects, and Methods

n i

n myLocation

n numberOfMoves

n _sysFlag

n ChessBoard

On the other hand, the following names are not valid for the stated reasons:

n sum$value $—is not a valid character.
n piece flag—Embedded spaces are not permitted.
n 3Spencer—Names can’t start with a number.
n int—This is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the
Objective-C compiler.This use is known as a reserved name or reserved word. In general, any
name that has special significance to the Objective-C compiler cannot be used as a vari-
able name.Appendix B,“Objective-C 2.0 Language Summary,” provides a complete list of
such reserved names.

Always remember that upper- and lowercase letters are distinct in Objective-C.There-
fore, the variable names sum, Sum, and SUM each refer to a different variable.As noted,
when naming a class, start it with a capital letter. Instance variables, objects, and method
names, on the other hand, typically begin with lowercase letters.To aid readability, capital
letters are used inside names to indicate the start of a new word, as in the following ex-
amples:

n AddressBook—This could be a class name.
n currentEntry—This could be an object.
n current_entry—Some programmers use underscores as word separators.
n addNewEntry—This could be a method name.

When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick
names that reflect the intended use of the variable or object.The reasons are obvious. Just
as with the comment statement, meaningful names can dramatically increase the readabil-
ity of a program and will pay off in the debug and documentation phases. In fact, the
documentation task will probably be much easier because the program will be more self-
explanatory.

Here, again, is the @interface section from Program 3.2:

//---- @interface section ----

@interface Fraction: NSObject

{

int numerator;

35The @interface Section

int denominator;

}

-(void) print;

-(void) setNumerator: (int) n;

-(void) setDenominator: (int) d;

@end

The name of the new class (NewClassName) is Fraction, and its parent class is
NSObject. (We talk in greater detail about parent classes in Chapter 8,“Inheritance.”) The
NSObject class is defined in the file NSObject.h, which is automatically included in your
program whenever you import Foundation.h.

Instance Variables
The memberDeclarations section specifies what types of data are stored in a Fraction,
along with the names of those data types.As you can see, this section is enclosed inside its
own set of curly braces. For your Fraction class, these declarations say that a Fraction
object has two integer members, called numerator and denominator:

int numerator;

int denominator;

The members declared in this section are known as the instance variables.As you’ll
see, each time you create a new object, a new and unique set of instance variables also is
created.Therefore, if you have two Fractions, one called fracA and another called
fracB, each will have its own set of instance variables.That is, fracA and fracB each will
have its own separate numerator and denominator.The Objective-C system automati-
cally keeps track of this for you, which is one of the nicer things about working with
objects.

Class and Instance Methods
You have to define methods to work with your Fractions.You need to be able to set the
value of a fraction to a particular value. Because you won’t have direct access to the inter-
nal representation of a fraction (in other words, direct access to its instance variables), you
must write methods to set the numerator and denominator.You’ll also write a method
called print that will display the value of a fraction. Here’s what the declaration for the
print method looks like in the interface file:

-(void) print;

The leading minus sign (-) tells the Objective-C compiler that the method is an in-
stance method.The only other option is a plus sign (+), which indicates a class method.A
class method is one that performs some operation on the class itself, such as creating a

36 Chapter 3: Classes, Objects, and Methods

new instance of the class.This is similar to manufacturing a new car, in that the car is the
class and you want to create a new one, which would be a class method.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the car
example, after you have manufactured the car, you might need to fill it with gas.The op-
eration of filling it with gas is performed on a particular car, so it is analogous to an in-
stance method.

Return Values
When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns.You do this by enclos-
ing the return type in parentheses after the leading minus or plus sign. So this declaration
specifies that the instance method called retrieveNumerator returns an integer value:

–(int) retrieveNumerator;

Similarly, this line declares a method that returns a double precision value. (You’ll learn
more about this data type in Chapter 4,“Data Types and Expressions.”)

–(double) retrieveDoubleValue;

A value is returned from a method using the Objective-C return statement, similar to
the way in which we returned a value from main in previous program examples.

If the method returns no value, you indicate that using the type void, as in the following:

–(void) print;

This declares an instance method called print that returns no value. In such a case,
you do not need to execute a return statement at the end of your method.Alternatively,
you can execute a return without any specified value, as in the following:

return;

You don’t need to specify a return type for your methods, although it’s better pro-
gramming practice if you do. If you don’t specify a type, id is the default.You’ll learn
more about the id data type in Chapter 9,“Polymorphism, Dynamic Typing, and Dy-
namic Binding.” Basically, you can use the id type to refer to any type of object.

Method Arguments
Two other methods are declared in the @interface section from Program 3.2:

–(void) setNumerator: (int) n;

–(void) setDenominator: (int) d;

These are both instance methods that return no value. Each method takes an integer
argument, which is indicated by the (int) in front of the argument name. In the case of
setNumerator, the name of the argument is n.This name is arbitrary and is the name the
method uses to refer to the argument.Therefore, the declaration of setNumerator speci-
fies that one integer argument, called n, will be passed to the method and that no value

37The @implementation Section

will be returned.This is similar for setDenominator, except that the name of its argu-
ment is d.

Notice the syntax of the declaration for these methods. Each method name ends with
a colon, which tells the Objective-C compiler that the method expects to see an argu-
ment. Next, the type of the argument is specified, enclosed in a set of parentheses, in
much the same way the return type is specified for the method itself. Finally, the symbolic
name to be used to identify that argument in the method is specified.The entire declara-
tion is terminated with a semicolon. Figure 3.1 depicts this syntax.

When a method takes an argument, you also append a colon to the method name
when referring to the method.Therefore, setNumerator: and setDenominator: is the
correct way to identify these two methods, each of which takes a single argument.Also,
identifying the print method without a trailing colon indicates that this method does not
take any arguments. In Chapter 7,“More on Classes,” you’ll see how methods that take
more than one argument are identified.

The @implementation Section
As noted, the @implementation section contains the actual code for the methods you de-
clared in the @interface section. Just as a point of terminology, you say that you declare
the methods in the @interface section and that you define them (that is, give the actual
code) in the @implementation section.

The general format for the @implementation section is as follows:

@implementation NewClassName
methodDefinitions;

@end

NewClassName is the same name that was used for the class in the @interface section.
You can use the trailing colon followed by the parent class name, as we did in the
@interface section:

@implementation Fraction: NSObject

However, this is optional and typically not done.
The methodDefinitions part of the @implementation section contains the code for

each method specified in the @interface section. Similar to the @interface section,
each method’s definition starts by identifying the type of method (class or instance), its

- (void) setNumerator: (int) n;

method
type

return
type

method
name

method
takes

argument

argument
type

argument
name

Figure 3.1 Declaring a method

38 Chapter 3: Classes, Objects, and Methods

return type, and its arguments and their types. However, instead of the line ending with a
semicolon, the code for the method follows, enclosed inside a set of curly braces.

Consider the @implementation section from Program 3.2:

//---- @implementation section ----

@implementation Fraction

–(void) print

{

NSLog (“%i/%i”, numerator, denominator);
}

–(void) setNumerator: (int) n

{

numerator = n;

}

–(void) setDenominator: (int) d

{

denominator = d;

}

@end

The print method uses NSLog to display the values of the instance variables
numerator and denominator. But to which numerator and denominator does this
method refer? It refers to the instance variables contained in the object that is the receiver
of the message.That’s an important concept, and we return to it shortly.

The setNumerator: method stores the integer argument you called n in the instance
variable numerator. Similarly, setDenominator: stores the value of its argument d in the
instance variable denominator.

The program Section
The program section contains the code to solve your particular problem, which can be
spread out across many files, if necessary. Somewhere you must have a routine called main,
as we’ve previously noted.That’s where your program always begins execution. Here’s the
program section from Program 3.2:

//---- program section ----

int main (int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

39The @program Section

Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];

myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@”The value of myFraction is:”);
[myFraction print];

[myFraction release];

[pool drain];

return 0;

}

Inside main, you define a variable called myFraction with the following line:

Fraction *myFraction;

This line says that myFraction is an object of type Fraction; that is, myFraction is
used to store values from your new Fraction class.The asterisk (*) in front of
myFraction is required, but don’t worry about its purpose now.Technically, it says that
myFraction is actually a reference (or pointer) to a Fraction.

Now that you have an object to store a Fraction, you need to create one, just as you
ask the factory to build you a new car.This is done with the following line:

myFraction = [Fraction alloc];

alloc is short for allocate.You want to allocate memory storage space for a new frac-
tion.This expression sends a message to your newly created Fraction class:

[Fraction alloc]

You are asking the Fraction class to apply the alloc method, but you never defined
an alloc method, so where did it come from? The method was inherited from a parent
class. Chapter 8,“Classes, Objects, and Methods” deals with this topic in detail.

When you send the alloc message to a class, you get back a new instance of that class.
In Program 3.2, the returned value is stored inside your variable myFraction.The alloc
method is guaranteed to zero out all of an object’s instance variables. However, that doesn’t

40 Chapter 3: Classes, Objects, and Methods

mean that the object has been properly initialized for use.You need to initialize an object
after you allocate it.

This is done with the next statement in Program 3.2, which reads as follows:

myFraction = [myFraction init];

Again, you are using a method here that you didn’t write yourself.The init method
initializes the instance of a class. Note that you are sending the init message to
myFraction.That is, you want to initialize a specific Fraction object here, so you don’t
send it to the class—you send it to an instance of the class. Make sure you understand this
point before continuing.

The init method also returns a value—namely, the initialized object.You store the re-
turn value in your Fraction variable myFraction.

The two-line sequence of allocating a new instance of class and then initializing it is
done so often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

This inner message expression is evaluated first:

[Fraction alloc]

As you know, the result of this message expression is the actual Fraction that is allo-
cated. Instead of storing the result of the allocation in a variable, as you did before, you
directly apply the init method to it. So, again, first you allocate a new Fraction and
then you initialize it.The result of the initialization is then assigned to the myFraction

variable.
As a final shorthand technique, the allocation and initialization is often incorporated

directly into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

We use this coding style often throughout the remainder of this book, so it’s important
that you understand it.You’ve seen in every program up to this point with the allocation
of the autorelease pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Here an alloc message is sent to the NSAutoreleasePool class requesting that a new
instance be created.The init message then is sent to the newly created object to get it
initialized.

Returning to Program 3.2, you are now ready to set the value of your fraction.These
program lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

41The program Section

The first message statement sends the setNumerator: message to myFraction.The ar-
gument that is supplied is the value 1. Control is then sent to the setNumerator: method
you defined for your Fraction class.The Objective-C system knows that it is the method
from this class to use because it knows that myFraction is an object from the Fraction
class.

Inside the setNumerator: method, the passed value of 1 is stored inside the variable n.
The single program line in that method stores that value in the instance variable
numerator. So you have effectively set the numerator of myFraction to 1.

The message that invokes the setDenominator: method on myFraction follows next.
The argument of 3 is assigned to the variable d inside the setDenominator: method.This
value is then stored inside the denominator instance variable, thus completing the assign-
ment of the value 1/3 to myFraction. Now you’re ready to display the value of your
fraction, which you do with the following lines of code from Program 3.2:

// display the fraction using the print method

NSLog (@”The value of myFraction is:”);
[myFraction print];

The NSLog call simply displays the following text:

The value of myFraction is:

The following message expression invokes the print method:

[myFraction print];

Inside the print method, the values of the instance variables numerator and
denominator are displayed, separated by a slash character.

The message in the program releases or frees the memory that was used for the
Fraction object:

[myFraction release];

This is a critical part of good programming style.Whenever you create a new object,
you are asking for memory to be allocated for that object.Also, when you’re done with
the object, you are responsible for releasing the memory it uses.Although it’s true that the
memory will be released when your program terminates anyway, after you start develop-
ing more sophisticated applications, you can end up working with hundreds (or thou-
sands) of objects that consume a lot of memory.Waiting for the program to terminate for
the memory to be released is wasteful of memory, can slow your program’s execution, and
is not good programming style. So get into the habit of releasing memory when you can
right now.

The Apple runtime system provides a mechanism known as garbage collection that facili-
tates automatic cleanup of memory. However, it’s best to learn how to manage your
memory usage yourself instead of relying on this automated mechanism. In fact, you can’t

42 Chapter 3: Classes, Objects, and Methods

rely on garbage collection when programming for certain platforms on which garbage
collection is not supported, such as the iPhone. For that reason, we don’t talk about
garbage collection until much later in this book.

It seems as if you had to write a lot more code to duplicate in Program 3.2 what you
did in Program 3.1.That’s true for this simple example here; however, the ultimate goal in
working with objects is to make your programs easier to write, maintain, and extend.
You’ll realize that later.

The last example in this chapter shows how you can work with more than one frac-
tion in your program. In Program 3.3, you set one fraction to 2/3, set another to 3/7, and
display them both.

Program 3.3

// Program to work with fractions – cont’d

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

43The @program Section

denominator = d;
}

@end

//---- program section ----

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *frac1 = [[Fraction alloc] init];
Fraction *frac2 = [[Fraction alloc] init];

// Set 1st fraction to 2/3

[frac1 setNumerator: 2];
[frac1 setDenominator: 3];

// Set 2nd fraction to 3/7

[frac2 setNumerator: 3];
[frac2 setDenominator: 7];

// Display the fractions

NSLog (@”First fraction is:”);
[frac1 print];

NSLog (@”Second fraction is:”);
[frac2 print];

[frac1 release];
[frac2 release];

[pool drain];
return 0;

}

Program 3.3 Output

First fraction is:
2/3
Second fraction is:

3/7

The @interface and @implementation sections remain unchanged from Program
3.2.The program creates two Fraction objects, called frac1 and frac2, and then assigns
the value 2/3 to the first fraction and 3/7 to the second. Realize that when the
setNumerator: method is applied to frac1 to set its numerator to 2, the instance vari-
able frac1 gets its instance variable numerator set to 2.Also, when frac2 uses the same
method to set its numerator to 3, its distinct instance variable numerator is set to the

44 Chapter 3: Classes, Objects, and Methods

Object

Instance
Variables

frac1

numerator 2
denominator 3

frac2

numerator 3
denominator 7

Figure 3.2 Unique instance variables

value 3. Each time you create a new object, it gets its own distinct set of instance vari-
ables. Figure 3.2 depicts this.

Based on which object is getting sent the message, the correct instance variables are
referenced.Therefore, here frac1’s numerator is referenced whenever setNumerator:
uses the name numerator inside the method:

[frac1 setNumerator: 2];

That’s because frac1 is the receiver of the message.

Accessing Instance Variables and Data
Encapsulation
You’ve seen how the methods that deal with fractions can access the two instance vari-
ables numerator and denominator directly by name. In fact, an instance method can al-
ways directly access its instance variables.A class method can’t, however, because it’s
dealing only with the class itself, not with any instances of the class (think about that for a
second). But what if you wanted to access your instance variables from someplace else—
for example, from inside your main routine? You can’t do that directly because they are
hidden.The fact that they are hidden from you is a key concept called data encapsulation. It
enables someone writing class definitions to extend and modify the class definitions,
without worrying about whether programmers (that is, users of the class) are tinkering
with the internal details of the class. Data encapsulation provides a nice layer of insulation
between the programmer and the class developer.

You can access your instance variables in a clean way by writing special methods to re-
trieve their values. For example, you’ll create two new methods called, appropriately
enough, numerator and denominator to access the corresponding instance variables of
the Fraction that is the receiver of the message.The result is the corresponding integer
value, which you return. Here are the declarations for your two new methods:

–(int) numerator;

–(int) denominator;

And here are the definitions:

–(int) numerator

{

return numerator;

}

45Accessing Instance Variables and Data Encapsulation

–(int) denominator

{

return denominator;

}

Note that the names of the methods and the instance variables they access are the
same.There’s no problem doing this; in fact, it is common practice. Program 3.4 tests your
two new methods.

Program 3.4

// Program to access instance variables – cont’d

#import <Foundation/Foundation.h>
//---- @interface section ----

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;

@end

//---- @implementation section ----

@implementation Fraction
-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

46 Chapter 3: Classes, Objects, and Methods

-(int) denominator
{

return denominator;
}

@end

//---- program section ----

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using our two new methods

NSLog (@”The value of myFraction is: %i/%i”,
[myFraction numerator], [myFraction denominator]);

[myFraction release];
[pool drain];

return 0;

}

Program 3.4 Output

The value of myFraction is 1/3

This NSLog statement displays the results of sending two messages to myFraction: the
first to retrieve the value of its numerator, and the second the value of its denominator:

NSLog (@”The value of myFraction is: %i/%i”,
[myFraction numerator], [myFraction denominator]);

Incidentally, methods that set the values of instance variables are often collectively re-
ferred to as setters, and methods used to retrieve the values of instance variables are called
getters. For the Fraction class, setNumerator: and setDenominator: are the setters, and
numerator and denominator are the getters.

Note
Soon you’ll learn a convenient feature of Objective-C 2.0 that allows for the automatic cre-
ation of getter and setter methods.

47Exercises

We should also point out that there’s also a method called new that combines the ac-
tions of an alloc and init. So this line could be used to allocate and initialize a new
Fraction:

Fraction *myFraction = [Fraction new];

It’s generally better to use the two-step allocation and initialization approach so you
conceptually understand that two distinct events are occurring:You’re first creating a new
object and then you’re initializing it.

Summary
Now you know how to define your own class, create objects or instances of that class, and
send messages to those objects.We return to the Fraction class in later chapters.You’ll
learn how to pass multiple arguments to your methods, how to divide your class defini-
tions into separate files, and also how to use key concepts such as inheritance and dy-
namic binding. However, now it’s time to learn more about data types and writing
expressions in Objective-C. First, try the exercises that follow to test your understanding
of the important points covered in this chapter.

Exercises
1. Which of the following are invalid names? Why?

Int playNextSong 6_05

_calloc Xx alphaBetaRoutine

clearScreen _1312 z

ReInitialize _ A$

2. Based on the example of the car in this chapter, think of an object you use every
day. Identify a class for that object and write five actions you do with that object.

3. Given the list in exercise 2, use the following syntax to rewrite your list in this format:
[instance method];

4. Imagine that you owned a boat and a motorcycle in addition to a car. List the ac-
tions you would perform with each of these. Do you have any overlap between
these actions?

5. Based on question 4, imagine that you had a class called Vehicle and an object
called myVehicle that could be either Car, Motorcycle, or Boat. Imagine that
you wrote the following:
[myVehicle prep];
[myVehicle getGas];
[myVehicle service];

Do you see any advantages of being able to apply an action to an object that could
be from one of several classes?

48 Chapter 3: Classes, Objects, and Methods

6. In a procedural language such as C, you think about actions and then write code to
perform the action on various objects. Referring to the car example, you might
write a procedure in C to wash a vehicle and then inside that procedure write code
to handle washing a car, washing a boat, washing a motorcycle, and so on. If you
took that approach and then wanted to add a new vehicle type (see the previous
exercise), do you see advantages or disadvantages to using this procedural approach
over an object-oriented approach?

7. Define a class called XYPoint that will hold a Cartesian coordinate (x, y), where x
and y are integers. Define methods to individually set the x and y coordinates of a
point and retrieve their values.Write an Objective-C program to implement your
new class and test it.

4
Data Types and Expressions

In this chapter, we take a look at the basic data types and describe some fundamental
rules for forming arithmetic expressions in Objective-C.

Data Types and Constants
You have already been exposed to the Objective-C basic data type int.As you will recall,
a variable declared to be of type int can be used to contain integral values only—that is,
values that do not contain decimal places.

The Objective-C programming language provides three other basic data types: float,
double, and char.A variable declared to be of type float can be used for storing float-
ing-point numbers (values containing decimal places).The double type is the same as
type float, only with roughly twice the accuracy. Finally, the char data type can be used
to store a single character, such as the letter a, the digit character 6, or a semicolon (more
on this later).

In Objective-C, any number, single character, or character string is known as a constant.
For example, the number 58 represents a constant integer value.The string
@”Programming in Objective-C is fun.\n” is an example of a constant character
string object. Expressions consisting entirely of constant values are called constant expres-
sions. So this expression is a constant expression because each of the terms of the expres-
sion is a constant value:

128 + 7 - 17

But if i were declared to be an integer variable, this expression would not represent a
constant expression:

128 + 7 – i

Type int
In Objective-C, an integer constant consists of a sequence of one or more digits.A minus
sign preceding the sequence indicates that the value is negative.The values 158, –10, and 0
are all valid examples of integer constants. No embedded spaces are permitted between

50 Chapter 4 Data Types and Expressions

the digits, and values larger than 999 cannot be expressed using commas. (So the value
12,000 is not a valid integer constant and must be written as 12000.)

Two special formats in Objective-C enable integer constants to be expressed in a base
other than decimal (base 10). If the first digit of the integer value is 0, the integer is con-
sidered to be expressed in octal notation—that is, in base 8. In this case, the remaining dig-
its of the value must be valid base 8 digits and, therefore, must be 0–7. So to express the
value 50 in base 8 in Objective-C, which is equivalent to the value 40 in decimal, the no-
tation 050 is used. Similarly, the octal constant 0177 represents the decimal value 127 (1 ×
64 + 7 × 8 + 7).An integer value can be displayed in octal notation by using the format
characters %o in the format string of an NSLog call. In such a case, the value is displayed in
octal without a leading zero.The format character %#o does cause a leading zero to be
displayed before an octal value.

If an integer constant is preceded by a 0 and a letter x (either lower case or upper
case), the value is considered to be expressed in hexadecimal (base 16) notation. Immedi-
ately following the x are the digits of the hexadecimal value, which can be composed of
the digits 0–9 and the letters a–f (or A–F).The letters represent the values 10–15, respec-
tively. So to assign the hexadecimal value FFEF0D to an integer variable called rgbColor,
you can use this statement:

rgbColor = 0xFFEF0D;

The format characters %x display a value in hexadecimal format without the leading
0x and using lowercase letters a–f for hexidecimal digits.To display the value with the
leading 0x, you use the format characters %#x, as in the following:

NSLog (“Color is %#x\n”, rgbColor);

An uppercase X, as in %X or %#X, can be used to display the leading x and hexidecimal
digits that follow using uppercase letters.

Every value, whether it’s a character, an integer, or a floating-point number, has a range
of values associated with it.This range has to do with the amount of storage allocated to
store a particular type of data. In general, that amount is not defined in the language; it
typically depends on the computer you’re running on and is therefore called
implementation or machine dependent. For example, an integer can take 32 bits on your com-
puter, or perhaps it might be stored in 64.

You should never write programs that make assumptions about the size of your data
types. However, you are guaranteed that a minimum amount of storage will be set aside
for each basic data type. For example, it’s guaranteed that an integer value will be stored
in a minimum of 32 bits of storage. However, once again, it’s not guaranteed. See Table
B.2 in Appendix B,“Objective-C Language Summary,” for more information about data
type sizes.

51Data Types and Constants

Type float
You can use a variable declared to be of type float to store values containing decimal
places.A floating-point constant is distinguished by the presence of a decimal point.You
can omit digits before the decimal point or digits after the decimal point, but, obviously,
you can’t omit both.The values 3., 125.8, and -.0001 are all valid examples of floating-
point constants.To display a floating-point value, the NSLog conversion characters %f are
used.

Floating-point constants can also be expressed in so-called scientific notation.The value
1.7e4 is a floating-point value expressed in this notation that represents the value 1.7 ×
10-4.The value before the letter e is known as the mantissa, whereas the value that follows
is called the exponent.This exponent, which can be preceded by an optional plus or minus
sign, represents the power of 10 by which the mantissa is to be multiplied. So in the con-
stant 2.25e-3, the 2.25 is the value of the mantissa and -3 is the value of the exponent.
This constant represents the value 2.25 × 10-3, or 0.00225. Incidentally, the letter e,
which separates the mantissa from the exponent, can be written in either lower case or
upper case.

To display a value in scientific notation, the format characters %e should be specified in
the NSLog format string.The format characters %g can be used to let NSLog decide
whether to display the floating-point value in normal floating-point notation or in scien-
tific notation.This decision is based on the value of the exponent: If it’s less than –4 or
greater than 5, %e (scientific notation) format is used; otherwise, %f format is used.

A hexadecimal floating constant consists of a leading 0x or 0X, followed by one or
more decimal or hexadecimal digits, followed by a p or P, followed by an optionally
signed binary exponent. For example, 0x0.3p10 represents the value 3/16 × 210 = 0.5.

Type double
The type double is similar to the type float, but it is used whenever the range provided
by a float variable is not sufficient.Variables declared to be of type double can store
roughly twice as many significant digits as can a variable of type float. Most computers
represent double values using 64 bits.

Unless told otherwise, the Objective-C compiler considers all floating-point constants
to be double values.To explicitly express a float constant, append either f or F to the
end of the number, like so:

12.5f

To display a double value, you can use the format characters %f, %e, or %g, which are
the same format characters used to display a float value.

Type char
You can use a char variable to store a single character.A character constant is formed by
enclosing the character within a pair of single quotation marks. So ’a’, ’;’, and ’0’ are
all valid examples of character constants.The first constant represents the letter a, the sec-

52 Chapter 4 Data Types and Expressions

ond is a semicolon, and the third is the character zero—which is not the same as the
number zero. Do not confuse a character constant, which is a single character enclosed in
single quotes, with a C-style character string, which is any number of characters enclosed
in double quotes.As mentioned in the last chapter, a string of characters enclosed in a pair
of double quotes that is preceded by an @ character is an NSString character string ob-
ject.

Note
Appendix B discusses methods for storing characters from extended character sets, through
special escape sequences, universal characters, and wide characters.

The character constant ’\n’, the newline character, is a valid character constant even
though it seems to contradict the rule cited previously.The reason for this is that the
backslash character is a special character in the Objective-C system and does not actually
count as a character. In other words, the Objective-C compiler treats the character ’\n’ as
a single character, even though it is actually formed by two characters. Other special char-
acters are initiated with the backslash character. See Appendix B for a complete list.The
format characters %c can be used in an NSLog call to display the value of a char variable.

Program 4.1 uses the basic Objective-C data types.

Program 4.1

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int integerVar = 100;
float floatingVar = 331.79;
double doubleVar = 8.44e+11;
char charVar = ‘W’;

NSLog (@”integerVar = %i”, integerVar);
NSLog (@”floatingVar = %f”, floatingVar);
NSLog (@”doubleVar = %e”, doubleVar);
NSLog (@”doubleVar = %g”, doubleVar);
NSLog (@”charVar = %c”, charVar);

[pool drain];
return 0;

}

Program 4.1 Output

integerVar = 100
floatingVar = 331.790009

53Data Types and Constants

doubleVar = 8.440000e+11
doubleVar = 8.44e+11

charVar = 'W'

In the second line of the program’s output, notice that the value of 331.79, which is as-
signed to floatingVar, is actually displayed as 331.790009.The reason for this inaccuracy
is the particular way in which numbers are internally represented inside the computer.You
have probably come across the same type of inaccuracy when dealing with numbers on
your calculator. If you divide 1 by 3 on your calculator, you get the result .33333333, with
perhaps some additional 3s tacked on at the end.The string of 3s is the calculator’s approx-
imation to one third.Theoretically, there should be an infinite number of 3s. But the cal-
culator can hold only so many digits, thus the inherent inaccuracy of the machine.The
same type of inaccuracy applies here: Certain floating-point values cannot be exactly rep-
resented inside the computer’s memory.

Qualifiers: long, long long, short, unsigned, and signed
If the qualifier long is placed directly before the int declaration, the declared integer vari-
able is of extended range on some computer systems.An example of a long int declara-
tion might be this:

long int factorial;

This declares the variable factorial to be a long integer variable.As with floats and
doubles, the particular accuracy of a long variable depends on your particular computer
system. On many systems, an int and a long int both have the same range and can be
used to store integer values up to 32 bits wide (231 – 1, or 2,147,483,647).

A constant value of type long int is formed by optionally appending the letter L (in
upper or lower case) onto the end of an integer constant. No spaces are permitted be-
tween the number and the L. So the declaration declares the variable numberOfPoints to
be of type long int with an initial value of 131,071,100:

long int numberOfPoints = 131071100L;

To display the value of a long int using NSLog, the letter l is used as a modifier be-
fore the integer format characters i, o, and x.This means that the format characters %li
can be used to display the value of a long int in decimal format, the characters %lo can
display the value in octal format, and the characters %lx can display the value in hexadec-
imal format.

A long long integer data type can be used like this:

long long int maxAllowedStorage;

This declares the indicated variable to be of the specified extended accuracy, which is
guaranteed to be at least 64 bits wide. Instead of using a single letter l, two ls are used in
the NSLog string to display long long integers, as in “%lli”.

The long qualifier is also allowed in front of a double declaration, like so:

long double US_deficit_2004;

54 Chapter 4 Data Types and Expressions

A long double constant is written as a floating constant with an l or L immediately
following, like so:

1.234e+7L

To display a long double, you use the L modifier. So %Lf would display a long dou-
ble value in floating-point notation, %Le would display the same value in scientific nota-
tion, and %Lg would tell NSLog to choose between %Lf and %Le.

The qualifier short, when placed in front of the int declaration, tells the Objective-C
compiler that the particular variable being declared is used to store fairly small integer val-
ues.The motivation for using short variables is primarily one of conserving memory
space, which can be an issue when the program needs a lot of memory and the amount of
available memory is limited.

On some machines, a short int takes up half the amount of storage as a regular int
variable does. In any case, you are guaranteed that the amount of space allocated for a
short int will not be less than 16 bits.

No way exists to explicitly write a constant of type short int in Objective-C.To dis-
play a short int variable, place the letter h in front of any of the normal integer-conver-
sion characters: %hi, %ho, or %hx.Alternatively, you can use any of the integer-conversion
characters to display short ints because they can be converted into integers when they
are passed as arguments to the NSLog routine.

The final qualifier that can be placed in front of an int variable is used when an inte-
ger variable will be used to store only positive numbers.The following declares to the
compiler that the variable counter is used to contain only positive values:

unsigned int counter;

Restricting the use of an integer variable to the exclusive storage of positive integers
extends the accuracy of the integer variable.

An unsigned int constant is formed by placing a u or U after the constant, like so:

0x00ffU

You can combine the u (or U) and l (or L) when writing an integer constant, so this
tells the compiler to treat the constant 20000 as unsigned long:

20000UL

An integer constant that’s not followed by any of the letters u, U, l, or L and that is too
large to fit into a normal-sized int is treated as an unsigned int by the compiler. If it’s
too small to fit into an unsigned int, the compiler treats it as a long int. If it still can’t
fit inside a long int, the compiler makes it an unsigned long int.

When declaring variables to be of type long int, short int, or unsigned int, you
can omit the keyword int.Therefore, the unsigned variable counter could have been
equivalently declared as follows:

unsigned counter;

You can also declare char variables to be unsigned.

55Data Types and Constants

The signed qualifier can be used to explicitly tell the compiler that a particular vari-
able is a signed quantity. Its use is primarily in front of the char declaration, and further
discussion is beyond the scope of this book.

Type id
The id data type is used to store an object of any type. In a sense, it is a generic object
type. For example, this line declares number to be a variable of type id:

id number;

Methods can be declared to return values of type id, like so:

-(id) newObject: (int) type;

This declares an instance method called newObject that takes a single integer argument
called type and returns a value of type id. Note that id is the default type for return and
argument type declarations. So, the following declares a class method that returns a value
of type id:

+allocInit;

The id data type is an important data type used often in this book.We mention it in
passing here for the sake of completeness.The id type is the basis for very important fea-
tures in Objective-C know as polymorphism and dynamic binding, which Chapter 9,“Poly-
morphism, Dynamic Typing, and Dynamic Binding,” discusses extensively.

Table 4.1 summarizes the basic data types and qualifiers.

Table 4.1 Basic Data Types

Type Constant Examples NSLog chars

char ’a’, ’\n’ %c

short int — %hi, %hx, %ho

unsigned short int — %hu, %hx, %ho

int 12, -97, 0xFFE0, 0177 %i, %x, %o

unsigned int 12u, 100U, 0XFFu %u, %x, %o

long int 12L, -2001, 0xffffL %li, %lx, %lo

unsigned long int 12UL, 100ul, 0xffeeUL %lu, %lx, %lo

long long int 0xe5e5e5e5LL, 500ll %lli, %llx, &llo

unsigned long long int 12ull, 0xffeeULL %llu, %llx, %llo

float 12.34f, 3.1e-5f,
0x1.5p10, 0x1P-1

%f, %e, %g, %a

double 12.34, 3.1e-5, 0x.1p3 %f, %e, %g, %a

long double 12.341, 3.1e-5l %Lf, $Le, %Lg

id nil %p

56 Chapter 4 Data Types and Expressions

Arithmetic Expressions
In Objective-C, just as in virtually all programming languages, the plus sign (+) is used
to add two values, the minus sign (-) is used to subtract two values, the asterisk (*) is
used to multiply two values, and the slash (/) is used to divide two values.These opera-
tors are known as binary arithmetic operators because they operate on two values or
terms.

Operator Precedence
You have seen how a simple operation such as addition can be performed in Objective-C.
The following program further illustrates the operations of subtraction, multiplication, and
division.The last two operations performed in the program introduce the notion that one
operator can have a higher priority, or precedence, over another operator. In fact, each oper-
ator in Objective-C has a precedence associated with it.

This precedence is used to determine how an expression that has more than one oper-
ator is evaluated:The operator with the higher precedence is evaluated first. Expressions
containing operators of the same precedence are evaluated either from left to right or
from right to left, depending on the operator.This is known as the associative property of
an operator.Appendix B provides a complete list of operator precedences and their rules
of association.

Program 4.2

// Illustrate the use of various arithmetic operators

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int a = 100;
int b = 2;
int c = 25;
int d = 4;
int result;

result = a - b; //subtraction
NSLog (@”a - b = %i”, result);

result = b * c; //multiplication
NSLog (@”b * c = %i”, result);

result = a / c; //division
NSLog (@”a / c = %i”, result);

57Arithmetic Expressions

result = a + b * c; //precedence
NSLog (@”a + b * c = %i”, result);

NSLog (@”a * b + c * d = %i”, a * b + c * d);

[pool drain];
return 0;

}

Program 4.2 Output

a - b = 98
b * c = 50
a / c = 4
a + b * c = 150

a * b + c * d = 300

After declaring the integer variables a, b, c, d, and result, the program assigns the re-
sult of subtracting b from a to result and then displays its value with an appropriate
NSLog call.

The next statement has the effect of multiplying the value of b by the value of c and
storing the product in result:

result = b * c;

The result of the multiplication is then displayed using a NSLog call that should be fa-
miliar to you by now.

The next program statement introduces the division operator, the slash.The NSLog
statement displays the result of 4, obtained by dividing 100 by 25, immediately following
the division of a by c.

Attempting to divide a number by zero results in abnormal termination or an excep-
tion when the division is attempted. Even if the program does not terminate abnormally,
the results obtained by such a division will be meaningless. In Chapter 6,“Making Deci-
sions,” you will see how you can check for division by zero before the division operation
is performed. If the divisor is determined to be zero, an appropriate action can be taken
and the division operation can be averted.

This expression does not produce the result of 2550 (102 × 25); instead, the result dis-
played by the corresponding NSLog statement is shown as 150:

a + b * c

This is because Objective-C, like most other programming languages, has rules for the
order of evaluating multiple operations or terms in an expression. Evaluation of an expres-
sion generally proceeds from left to right. However, the operations of multiplication and
division are given precedence over the operations of addition and subtraction.Therefore,
the system evaluates the expression

58 Chapter 4 Data Types and Expressions

a + b * c

as follows:

a + (b * c)

(This is the same way this expression would be evaluated if you applied the basic rules
of algebra.)

If you want to alter the order of evaluation of terms inside an expression, you can use
parentheses. In fact, the expression listed previously is a perfectly valid Objective-C expres-
sion.Thus, the following statement could have been substituted in Program 4.2 to achieve
identical results:

result = a + (b * c);

However, if this expression were used instead, the value assigned to result would be
2550:

result = (a + b) * c;

This is because the value of a (100) would be added to the value of b (2) before multi-
plication by the value of Objective-C (25) would take place. Parentheses can also be
nested, in which case evaluation of the expression proceeds outward from the innermost
set of parentheses. Just be sure to have as many closed parentheses as you have open ones.

Notice from the last statement in Program 4.2 that it is perfectly valid to give an ex-
pression as an argument to NSLog without having to first assign the result of the expression
evaluation to a variable.The expression

a * b + c * d

is evaluated according to the rules stated previously as

(a * b) + (c * d)

or

(100 * 2) + (25 * 4)

The result of 300 is handed to the NSLog routine.

Integer Arithmetic and the Unary Minus Operator
Program 4.3 reinforces what we have just discussed and introduces the concept of integer
arithmetic.

Program 4.3

// More arithmetic expressions

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

59Arithmetic Expressions

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int a = 25;
int b = 2;
int result;
float c = 25.0;
float d = 2.0;

NSLog (@”6 + a / 5 * b = %i”, 6 + a / 5 * b);
NSLog (@”a / b * b = %i”, a / b * b);
NSLog (@”c / d * d = %f”, c / d * d);
NSLog (@”-a = %i”, -a);

[pool drain];
return 0;

}

Program 4.3 Output

6 + a / 5 * b = 16
a / b * b = 24
c / d * d = 25.000000

-a = -25

We inserted extra blank spaces between int and the declaration of a, b, and result in
the first three statements to align the declaration of each variable.This helps make the pro-
gram more readable.You also might have noticed in each program presented thus far that
a blank space was placed around each operator.This, too, is not required and is done solely
for aesthetic reasons. In general, you can add extra blank spaces just about anywhere that a
single blank space is allowed.A few extra presses of the spacebar will prove worthwhile if
the resulting program is easier to read.

The expression in the first NSLog call of Program 4.3 reinforces the notion of operator
precedence. Evaluation of this expression proceeds as follows:

1. Because division has higher precedence than addition, the value of a (25) is divided
by 5 first.This gives the intermediate result of 4.

2. Because multiplication also has higher precedence than addition, the intermediate re-
sult of 5 is next multiplied by 2, the value of b, giving a new intermediate result of 10.

3. Finally, the addition of 6 and 10 is performed, giving a final result of 16.

The second NSLog statement introduces a new twist.You would expect that dividing a
by b and then multiplying by b would return the value of a, which has been set to 25. But
this does not seem to be the case, as shown by the output display of 24. Did the computer
lose a bit somewhere along the way? Very unlikely.The fact of the matter is that this ex-
pression was evaluated using integer arithmetic.

60 Chapter 4 Data Types and Expressions

If you glance back at the declarations for the variables a and b, you will recall that both
were declared to be of type int.Whenever a term to be evaluated in an expression con-
sists of two integers, the Objective-C system performs the operation using integer arith-
metic. In such a case, all decimal portions of numbers are lost.Therefore, when the value
of a is divided by the value of b, or 25 is divided by 2, you get an intermediate result of
12, and not 12.5, as you might expect. Multiplying this intermediate result by 2 gives the
final result of 24, thus explaining the “lost” digit.

As you can see from the next-to-last NSLog statement in Program 4.3, if you perform
the same operation using floating-point values instead of integers, you obtain the ex-
pected result.

The decision of whether to use a float variable or an int variable should be made
based on the variable’s intended use. If you don’t need any decimal places, use an integer
variable.The resulting program will be more efficient—that is, it will execute more
quickly on many computers. On the other hand, if you need the decimal place accuracy,
the choice is clear.The only question you then must answer is whether to use a float or
a double.The answer to this question depends on the desired accuracy of the numbers
you are dealing with, as well as their magnitude.

In the last NSLog statement, the value of the variable a is negated by use of the unary
minus operator.A unary operator is one that operates on a single value, as opposed to a bi-
nary operator, which operates on two values.The minus sign actually has a dual role:As a
binary operator, it is used for subtracting two values; as a unary operator, it is used to
negate a value.

The unary minus operator has higher precedence than all other arithmetic operators,
except for the unary plus operator (+), which has the same precedence. So the following
expression results in the multiplication of -a by b:

c = -a * b;

Once again, you will find a table in Appendix B summarizing the various operators
and their precedences.

The Modulus Operator
The last arithmetic operator to be presented in this chapter is the modulus operator,
which is symbolized by the percent sign (%).Try to determine how this operator works by
analyzing the output from Program 4.4.

Program 4.4

// The modulus operator

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

61Arithmetic Expressions

int a = 25, b = 5, c = 10, d = 7;

NSLog (@”a %% b = %i”, a % b);
NSLog (@”a %% c = %i”, a % c);
NSLog (@”a %% d = %i”, a % d);
NSLog (@”a / d * d + a %% d = %i”, a / d * d + a % d);

[pool drain];
return 0;

}

Program 4.4 Output

a % b = 0
a % c = 5
a % d = 4

a / d * d + a % d = 25

Note the statement inside main that defines and initializes the variables a, b, c, and d in
a single statement.

As you know, NSLog uses the character that immediately follows the percent sign to de-
termine how to print its next argument. However, if it is another percent sign that fol-
lows, the NSLog routine takes this as an indication that you really intend to display a
percent sign and inserts one at the appropriate place in the program’s output.

You are correct if you concluded that the function of the modulus operator % is to give
the remainder of the first value divided by the second value. In the first example, the re-
mainder, after 25 is divided by 5, is displayed as 0. If you divide 25 by 10, you get a remain-
der of 5, as verified by the second line of output. Dividing 25 by 7 gives a remainder of 4,
as shown in the third output line.

Let’s now turn our attention to the last arithmetic expression evaluated in the last state-
ment.You will recall that any operations between two integer values in Objective-C are
performed with integer arithmetic.Therefore, any remainder resulting from the division of
two integer values is simply discarded. Dividing 25 by 7, as indicated by the expression a
/ d, gives an intermediate result of 3. Multiplying this value by the value of d, which is 7,
produces the intermediate result of 21. Finally, adding the remainder of dividing a by d, as
indicated by the expression a % d, leads to the final result of 25. It is no coincidence that
this value is the same as the value of the variable a. In general, this expression will always
equal the value of a, assuming, of course, that a and b are both integer values:

a / b * b + a % b

In fact, the modulus operator % is defined to work only with integer values.
As far as precedence is concerned, the modulus operator has equal precedence to the

multiplication and division operators.This implies, of course, that an expression such as

table + value % TABLE_SIZE

will be evaluated as

table + (value % TABLE_SIZE)

62 Chapter 4 Data Types and Expressions

Integer and Floating-Point Conversions
To effectively develop Objective-C programs, you must understand the rules used for the
implicit conversion of floating-point and integer values in Objective-C. Program 4.5
demonstrates some of the simple conversions between numeric data types.

Program 4.5

// Basic conversions in Objective-C

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
float f1 = 123.125, f2;
int i1, i2 = -150;

i1 = f1; // floating to integer conversion
NSLog (@”%f assigned to an int produces %i”, f1, i1);

f1 = i2; // integer to floating conversion
NSLog (@”%i assigned to a float produces %f”, i2, f1);

f1 = i2 / 100; // integer divided by integer
NSLog (@”%i divided by 100 produces %f”, i2, f1);

f2 = i2 / 100.0; // integer divided by a float
NSLog (@”%i divided by 100.0 produces %f”, i2, f2);

f2 = (float) i2 / 100; // type cast operator
NSLog (@”(float) %i divided by 100 produces %f”, i2, f2);

[pool drain];
return 0;

}

Program 4.5 Output

123.125000 assigned to an int produces 123
-150 assigned to a float produces -150.000000
-150 divided by 100 produces -1.000000
-150 divided by 100.0 produces -1.500000

(float) -150 divided by 100 produces -1.500000

Whenever a floating-point value is assigned to an integer variable in Objective-C, the
decimal portion of the number gets truncated. So when the value of f1 is assigned to i1
in the previous program, the number 123.125 is truncated, which means that only its inte-

63Arithmetic Expressions

ger portion, or 123, is stored in i1.The first line of the program’s output verifies that this
is the case.

Assigning an integer variable to a floating variable does not cause any change in the
value of the number; the system simply converts the value and stores it in the floating
variable.The second line of the program’s output verifies that the value of i2 (–150) was
correctly converted and stored in the float variable f1.

The next two lines of the program’s output illustrate two points to remember when
forming arithmetic expressions.The first has to do with integer arithmetic, which we have
already discussed in this chapter.Whenever two operands in an expression are integers
(and this applies to short, unsigned, and long integers as well), the operation is carried
out under the rules of integer arithme ic Therefore, any decimal portion resulting from a
division operation is discarded, even if the result is assigned to a floating variable (as we
did in the program).When the integer variable i2 is divided by the integer constant 100,
the system performs the division as an integer division.The result of dividing –150 by 100,
which is –1, is, therefore the value tha is stored in the float variable f1

The next division pe formed in the previous program involves an integer variable and
a floating-point constant.Any operation between two values in Objective-C is performed
as a floating-point operation if either value is a floating-point variable or constant.There-
fore, when the value of i2 is divided by 100.0, the system treats the division as a floating-
point division and produces the result of –1.5, which is assigned to the float variable f1.

The Type Cast Operator
You’ve already seen how enclosing a type inside a set of parentheses is used to declare the
return and argument types when declaring and defining methods. It serves a different pur-
pose when used inside expressions.

The last division operation from Program 4.5 that reads as follows introduces the type
cast operator:

f2 = (float) i2 / 100; // type cast operator

The type cast operator has the effect of converting the value of the variable i2 to type
float for purposes of evaluating the expression. In no way does this operator perma-
nently affect the value of the variable i2; it is a unary operator that behaves like other
unary operators. Just as the expression -a has no permanent effect on the value of a, nei-
ther does the expression (float) a.

The type cast operator has a higher precedence than all the arithmetic operators except
the unary minus and unary plus. Of course, if necessary, you can always use parentheses in
an expression to force the terms to be evaluated in any desired order.

As another example of the use of the type cast operator, the expression

(int) 29.55 + (int) 21.99

is evaluated in Objective-C as

29 + 21

Licensed by
David Mease

64 Chapter 4 Data Types and Expressions

because the effect of casting a floating value to an integer is one of truncating the float-
ing-point value.The expression

(float) 6 / (float) 4

produces a result of 1.5, as does the following expression:

(float) 6 / 4

The type cast operator is often used to coerce an object that is a generic id type into
an object of a particular class. For example, the following lines convert the value of the id
variable myNumber to a Fraction object:

id myNumber;

Fraction *myFraction;

...

myFraction = (Fraction *) myNumber;

The result of the conversion is assigned to the Fraction variable myFraction.

Assignment Operators
The Objective-C language permits you to combine the arithmetic operators with the as-
signment operator using the following general format:

op=

In this format, op is any of the arithmetic operators, including +, -, *, /, or %. In addi-
tion, op can be any of the bit operators for shifting and masking, discussed later.

Consider this statement:

count += 10;

The effect of the so-called “plus equals” operator += is to add the expression on the
right side of the operator to the expression on the left side of the operator, and to store
the result back into the variable on the left side of the operator. So the previous statement
is equivalent to this statement:

count = count + 10;

The following expression uses the “minus equals” assignment operator to subtract 5
from the value of counter:

counter -= 5

It is equivalent to this expression:

counter = counter - 5

This is a slightly more involved expression:

a /= b + c

It divides a by whatever appears to the right of the equals sign—or by the sum of b
and c—and stores the result in a.The addition is performed first because the addition op-

65A Calculator Class

erator has higher precedence than the assignment operator. In fact, all operators but the
comma operator have higher precedence than the assignment operators, which all have
the same precedence.

In this case, this expression is identical to the following:

a = a / (b + c)

The motivation for using assignment operators is threefold. First, the program state-
ment becomes easier to write because what appears on the left side of the operator does
not have to be repeated on the right side. Second, the resulting expression is usually easier
to read.Third, the use of these operators can result in programs that execute more quickly
because the compiler can sometimes generate less code to evaluate an expression.

A Calculator Class
It’s time now to define a new class.We’re going to make a Calculator class, which will be
a simple four-function calculator you can use to add, multiply, subtract, and divide num-
bers. Similar to a regular calculator, this one must keep track of the running total, or
what’s usually called the accumulator. So methods must let you set the accumulator to a
specific value, clear it (or set it to zero), and retrieve its value when you’re done. Program
4.6 includes the new class definition and a test program to try your calculator.

Program 4.6

// Implement a Calculator class

#import <Foundation/Foundation.h>

@interface Calculator: NSObject
{

double accumulator;
}

// accumulator methods
-(void) setAccumulator: (double) value;
-(void) clear;
-(double) accumulator;

// arithmetic methods
-(void) add: (double) value;
-(void) subtract: (double) value;
-(void) multiply: (double) value;
-(void) divide: (double) value;
@end

@implementation Calculator
-(void) setAccumulator: (double) value
{

66 Chapter 4 Data Types and Expressions

accumulator = value;
}

-(void) clear
{

accumulator = 0;
}

-(double) accumulator
{

return accumulator;
}

-(void) add: (double) value
{

accumulator += value;
}

-(void) subtract: (double) value
{

accumulator -= value;
}

-(void) multiply: (double) value
{

accumulator *= value;
}

-(void) divide: (double) value
{

accumulator /= value;
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Calculator *deskCalc;

deskCalc = [[Calculator alloc] init];

[deskCalc clear];
[deskCalc setAccumulator: 100.0];
[deskCalc add: 200.];
[deskCalc divide: 15.0];
[deskCalc subtract: 10.0];
[deskCalc multiply: 5];
NSLog (@”The result is %g”, [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

}

67Bit Operators

Program 4.6 Output
The result is 50

The Calculator class has only one instance variable, a double value that holds the
value of the accumulator.The method definitions themselves are quite straightforward.

Notice the message that invokes the multiply method:

[deskCalc multiply: 5];

The argument to the method is an integer, yet the method expects a double. No prob-
lem arises here because numeric arguments to methods are automatically converted to
match the type expected.A double is expected by multiply:, so the integer value 5 auto-
matically is converted to a double precision floating value when the function is called.
Even though this automatic conversion takes place, it’s better programming practice to
supply the correct argument types when invoking methods.

Realize that, unlike the Fraction class, in which you might work with many different
fractions, you might want to work with only a single Calculator object in your program.
Yet it still makes sense to define a new class to make working with this object easy.At
some point, you might want to add a graphical front end to your calculator so the user
can actually click buttons on the screen, such as the calculator application you probably
have installed on your system or phone.

In several of the exercises that follow, you’ll see that one additional benefit of defining a
Calculator class has to do with the ease of extending it.

Bit Operators
Various operators in the Objective-C language work with the particular bits inside a
number.Table 4.2 presents these operators.

Table 4.2 Bit Operators

Symbol Operation

& Bitwise AND

| Bitwise inclusive-OR

^ Bitwise OR

~ Ones complement

<< Left shift

>> Right shift

68 Chapter 4 Data Types and Expressions

All the operators listed in Table 4.2, with the exception of the ones complement opera-
tor (~), are binary operators and, as such, take two operands. Bit operations can be per-
formed on any type of integer value but cannot be performed on floating-point values.

The Bitwise AND Operator
When two values are ANDed, the binary representations of the values are compared bit by
bit. Each corresponding bit that is a 1 in the first value and a 1 in the second value pro-
duce a 1 in the corresponding bit position of the result; anything else produces a 0. If b1
and b2 represent corresponding bits of the two operands, the following table, called a truth
table, shows the result of b1 ANDed with b2 for all possible values of b1 and b2.

b1 b2 b1 & b2

————————————————————————

0 0 0

0 1 0

1 0 0

1 1 1

For example, if w1 and w2 are defined as short ints, and w1 is set equal to hexadecimal
15 and w2 is set equal to hexadecimal 0c, then the following C statement assigns the value
0x04 to w3:

w3 = w1 & w2;

You can see this more easily by treating the values of w1, w2, and w3 as binary numbers.
Assume that you are dealing with a short int size of 16 bits:

w1 0000 0000 0001 0101 0x15

w2 0000 0000 0000 1100 & 0x0c

———————————————————————————————————

w3 0000 0000 0000 0100 0x04

Bitwise ANDing is frequently used for masking operations.That is, this operator can be
used to easily set specific bits of a data item to 0. For example, the following statement as-
signs to w3 the value of w1 bitwise ANDed with the constant 3.

w3 = w1 & 3;

This has the effect of setting all the bits in w3, other than the rightmost 2 bits, to 0, and
of preserving the rightmost 2 bits from w1.

As with all binary arithmetic operators in Objective-C, the binary bit operators can
also be used as assignment operators by tacking on an equals sign. So the statement

word &= 15;

will perform the same function as

word = word & 15;

and will have the effect of setting all but the rightmost 4 bits of word to 0.

69Bit Operators

The Bitwise Inclusive-OR Operator
When two values are bitwise Inclusive-ORed in Objective-C, the binary representation
of the two values is once again compared bit by bit.This time, each bit that is a 1 in the
first value or a 1 in the second value will produce a 1 in the corresponding bit of the re-
sult.The truth table for the Inclusive-OR operator is shown next.

b1 b2 b1 | b2

————————————————————————

0 0 0

0 1 1

1 0 1

1 1 1

So if w1 is a short int equal to hexadecimal 19 and w2 is a short int equal to hexa-
decimal 6a, then a bitwise Inclusive-OR of w1 and w2 will produce a result of hexadeci-
mal 7b, as shown:

w1 0000 0000 0001 1001 0x19

w2 0000 0000 0110 1010 | 0x6a

—————————————————————————————————————

0000 0000 0111 1011 0x7b

Bitwise Inclusive-ORing, frequently called just bitwise ORing, is used to set some
specified bits of a word to 1. For example, the following statement sets the three rightmost
bits of w1 to 1, regardless of the state of these bits before the operation was performed.

w1 = w1 | 07;

Of course, you could have used a special assignment operator in the statement, as in
this statement:

w1 |= 07;

We defer a program example that illustrates the use of the Inclusive-OR operator un-
til later.

The Bitwise Exclusive-OR Operator
The bitwise Exclusive-OR operator, which is often called the XOR operator, works as
follows: For corresponding bits of the two operands, if either bit is a 1—but not both
bits—the corresponding bit of the result is a 1; otherwise, it is a 0.The truth table for this
operator is as shown.

b1 b2 b1 ^ b2

———————————————————————

0 0 0

0 1 1

1 0 1

1 1 0

70 Chapter 4 Data Types and Expressions

If w1 and w2, were set equal to hexadecimal 5e and d6, respectively, the result of w1 Ex-
clusive-ORed with w2 would be hexadecimal e8, as illustrated:

w1 0000 0000 0101 1110 0x5e

w2 0000 0000 1011 0110 ^ 0xd6

————————————————————————————————————

0000 0000 1110 1000 0xe8

The Ones Complement Operator
The ones complement operator is a unary operator, and its effect is to simply “flip” the
bits of its operand. Each bit of the operand that is a 1 is changed to a 0, and each bit that is
a 0 is changed to a 1.The truth table is provided here simply for the sake of completeness.

b1 ~b1

————————

0 1

1 0

If w1 is a short int that is 16 bits long and is set equal to hexadecimal a52f, then tak-
ing the ones complement of this value produces a result of hexadecimal 5ab0:

w1 1010 0101 0010 1111 0xa52f

~w1 0101 1010 1101 0000 0x5ab0

The ones complement operator is useful when you don’t know the precise bit size of
the quantity that you are dealing with in an operation, and its use can help make a pro-
gram less dependent on the particular size of an integer data type. For example, to set the
low-order bit of an int called w1 to 0, you can AND w1 with an int consisting of all 1s
except for a single 0 in the rightmost bit. So a statement in C such as this one works fine
on machines on which an integer is represented by 32 bits:

w1 &= 0xFFFFFFFE;

If you replace the preceding statement with this one, w1 will be ANDed with the cor-
rect value on any machine:

w1 &= ~1;

This is because the ones complement of 1 will be calculated and will consist of as
many leftmost 1 bits as necessary to fill the size of an int (31 leftmost bits on a 32-bit in-
teger system).

Now it is time to show an actual program example that illustrates the use of the vari-
ous bit operators (see Program 4.7).

Program 4.7

// Bitwise operators illustrated

#import <Foundation/Foundation.h>

71Bit Operators

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

unsigned int w1 = 0xA0A0A0A0, w2 = 0xFFFF0000,
w3 = 0x00007777;

NSLog (@”%x %x %x”, w1 & w2, w1 | w2, w1 ^ w2);
NSLog (@”%x %x %x”, ~w1, ~w2, ~w3);
NSLog (@”%x %x %x”, w1 ^ w1, w1 & ~w2, w1 | w2 | w3);
NSLog (@”%x %x”, w1 | w2 & w3, w1 | w2 & ~w3);
NSLog (@”%x %x”, ~(~w1 & ~w2), ~(~w1 | ~w2));

[pool drain];
return 0;

}

Program 4.7 Output

a0a00000 ffffa0a0 5f5fa0a0
5f5f5f5f ffff ffff8888
0 a0a0 fffff7f7
a0a0a0a0 ffffa0a0

ffffa0a0 a0a00000

Work out each of the operations from Program 4.7 to verify that you understand how
the results were obtained.

In the fourth NSLog call, it is important to note that the bitwise AND operator has
higher precedence than the bitwise OR because this fact influences the resulting value of
the expression. For a summary of operator precedence, see Appendix B.

The fifth NSLog call illustrates DeMorgan’s rule: ~(~a & ~b) is equal to a | b, and
~(~a | ~b) is equal to a & b.The sequence of statements that follows next in the pro-
gram verifies that the exchange operation works as discussed in the section on the exclu-
sive-OR operator.

The Left Shift Operator
When a left shift operation is performed on a value, the bits contained in the value are lit-
erally shifted to the left.Associated with this operation is the number of places (bits) that
the value is to be shifted. Bits that are shifted out through the high-order bit of the data
item are lost, and 0s are always shifted in through the low-order bit of the value. So if w1 is
equal to 3, then the expression

w1 = w1 << 1;

which can also be expressed as

w1 <<= 1;

72 Chapter 4 Data Types and Expressions

will result in 3 being shifted one place to the left, which will result in 6 being assigned to
w1:

w1 ... 0000 0011 0x03

w1 << 1 ... 0000 0110 0x06

The operand on the left of the << operator is the value to be shifted, while the operand
on the right is the number of bit positions the value is to be shifted by. If we were to shift
w1 one more place to the left, we would end up with hexadecimal 0c:

w1 ... 0000 0110 0x06

w1 << 1 ... 0000 1100 0x0c

The Right Shift Operator
As implied from its name, the right shift operator >> shifts the bits of a value to the right.
Bits shifted out of the low-order bit of the value are lost. Right-shifting an unsigned value
always results in 0s being shifted in on the left—that is, through the high-order bits.What
is shifted in on the left for signed values depends on the sign of the value that is being
shifted and also on how this operation is implemented on your computer system. If the
sign bit is 0 (meaning the value is positive), 0s will be shifted in no matter what machine is
used. However, if the sign bit is 1, on some machines 1s will be shifted in, and on others 0s
will be shifted in.This former type of operation is known as an arithmetic right shift, while
the latter is known as a logical right shift.

Caution
Never make any assumptions about whether a system implements an arithmetic or a logical
right shift. A program that shifts signed values right might work correctly on one system and
then fail on another due to this type of assumption.

If w1 is an unsigned int, which is represented in 32 bits, and w1 is set equal to hexa-
decimal F777EE22, then shifting w1 one place to the right with the statement

w1 >>= 1;

will set w1 equal to hexadecimal 7BBBF711, as shown:

w1 1111 0111 0111 0111 1110 1110 0010 0010 0xF777EE22

w1 >> 1 0111 1011 1011 1011 1111 0111 0001 0001 0x7BBBF711

If w1 were declared to be a (signed) short int, the same result would be produced on
some computers; on others, the result would be FBBBF711 if the operation were per-
formed as an arithmetic right shift.

It should be noted that the Objective-C language does not produce a defined result if
an attempt is made to shift a value to the left or right by an amount that is greater than or
equal to the number of bits in the size of the data item. So on a machine that represents

73Exercises

integers in 32 bits, for example, shifting an integer to the left or right by 32 or more bits
is not guaranteed to produce a defined result in your program.You should also note that if
you shift a value by a negative amount, the result is similarly undefined.

Types: _Bool, _Complex, and _Imaginary
Before leaving this chapter, we should mention three other types in the language: _Bool,
for working with Boolean (that is, 0 or 1) values, and _Complex and _Imaginary, for
working with complex and imaginary numbers, respectively.

Objective-C programmers tend to use the BOOL data type instead of _Bool for working
with Boolean values in their programs.This “data type” is actually not a data type unto it-
self, but is another name for the char data type.This is done with the language’s special
typedef keyword, which is described in Chapter 10,“More onVariables and Data Types.”

Exercises
1. Which of the following are invalid constants.Why?

123.456 0x10.5 0X0G1

0001 0xFFFF 123L

0Xab05 0L -597.25

123.5e2 .0001 +12

98.6F 98.7U 17777s

0996 -12E-12 07777

1234uL 1.2Fe-7 15,000

1.234L 197u 100U

0XABCDEFL 0xabcu +123

2. Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius
(C) using the following formula:

C = (F - 32) / 1.8

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

char c, d;

c = ‘d’;
d = c;

NSLog (@”d = %c”, d);

[pool drain];

return 0;

}

74 Chapter 4 Data Types and Expressions

4. Write a program to evaluate the polynomial shown here:

3x3 - 5x2 + 6
for x = 2.55

5. Write a program that evaluates the following expression and displays the results (re-
member to use exponential format to display the result):

(3.31 x 10-8 x + 2.01 x 10-7) / (7.16 x 10-6 + 2.01 x 10-8)

6. Complex numbers are numbers that contain two components: a real part and an
imaginary part. If a is the real component and b is the imaginary component, this
notation is used to represent the number:

a + b i

Write an Objective-C program that defines a new class called Complex. Following
the paradigm established for the Fraction class, define the following methods for
your new class:

-(void) setReal: (double) a;
-(void) setImaginary: (double) b;
-(void) print; // display as a + bi
-(double) real;
-(double) imaginary;

Write a test program to test your new class and methods.

7. Suppose you are developing a library of routines to manipulate graphical objects.
Start by defining a new class called Rectangle. For now, just keep track of the rec-
tangle’s width and height. Develop methods to set the rectangle’s width and height,
retrieve these values, and calculate the rectangle’s area and perimeter.Assume that
these rectangle objects describe rectangles on an integral grid, such as a computer
screen. In that case, assume that the width and height of the rectangle are integer
values.

Here is the @interface section for the Rectangle class:
@interface Rectangle: NSObject
{

int width;
int height;

}

-(void) setWidth: (int) w;
-(void) setHeight: (int) h;
-(int) width;
-(int) height;
-(int) area;
-(int) perimeter;

@end

Write the implementation section and a test program to test your new class and
methods.

75Exercises

8. Modify the add:, subtract:, multiply:, and divide: methods from Program
4.6 to return the resulting value of the accumulator.Test the new methods.

9. After completing exercise 8, add the following methods to the Calculator class
and test them:
-(double) changeSign; // change sign of accumulator

-(double) reciprocal; // 1/accumulator

-(double) xSquared; // accumulator squared

10. Add a memory capability to the Calculator class from Program 4.6. Implement
the following method declarations and test them:
-(double) memoryClear; // clear memory

-(double) memoryStore; // set memory to accumulator

-(double) memoryRecall; // set accumulator to memory

-(double) memoryAdd; // add accumulator to memory

-(double) memorySubtract; // subtract accumulator from memory

Have each method return the value of the accumulator.

Figure 5.1 Triangle arrangement example

5
Program Looping

In Objective-C, you can repeatedly execute a sequence of code in several ways.These
looping capabilities are the subject of this chapter, and they consist of the following:

n The for statement
n The while statement
n The do statement

We start with a simple example: counting numbers.
If you were to arrange 15 marbles into the shape of a triangle, you would end up with

an arrangement that might look something like Figure 5.1.

The first row of the triangle contains one marble, the second row contains two mar-
bles, and so on. In general, the number of marbles required to form a triangle containing
n rows would be the sum of the integers from 1 through n.This sum is known as a
triangular number.

If you started at 1, the fourth triangular number would be the sum of the consecutive
integers 1–4 (1 + 2 + 3 + 4), or 10.

Suppose you wanted to write a program that calculated and displayed the value of the
eighth triangular number at the terminal. Obviously, you could easily calculate this num-
ber in your head, but for the sake of argument, let’s assume you wanted to write a pro-
gram in Objective-C to perform this task. Program 5.1 illustrates such a program.

78 Chapter 5 Program Looping

Program 5.1

#import <Foundation/Foundation.h>

// Program to calculate the eighth triangular number

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int triangularNumber;

triangularNumber = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8;

NSLog (@”The eighth triangular number is %i”, triangularNumber);

[pool drain];
return 0;

}

Program 5.1 Output

The eighth triangular number is 36

The technique of Program 5.1 works fine for calculating relatively small triangular
numbers, but what would happen if you needed to find the value of the 200th triangular
number, for example? It certainly would be tedious to have to modify Program 5.1 to ex-
plicitly add up all the integers from 1 to 200. Luckily, there is an easier way.

One of the fundamental properties of a computer is its capability to repetitively exe-
cute a set of statements.These looping capabilities enable programmers to develop concise
programs containing repetitive processes that could otherwise require thousands or even
millions of program statements to perform.The Objective-C language contains three pro-
gram statements for program looping.

The for Statement
Let’s take a look at a program that uses the for statement.The purpose of Program 5.2 is
to calculate the 200th triangular number. See whether you can determine how the for
statement works.

Program 5.2

// Program to calculate the 200th triangular number
// Introduction of the for statement

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

79The for Statement

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, triangularNumber;

triangularNumber = 0;

for (n = 1; n <= 200; n = n + 1)
triangularNumber += n;

NSLog (@”The 200th triangular number is %i”, triangularNumber);

[pool drain];
return 0;

}

Program 5.2 Output

The 200th triangular number is 20100

Some explanation is needed for Program 5.2.The method employed to calculate the
200th triangular number is really the same as that used to calculate the 8th triangular
number in the previous program:The integers from 1 to 200 are summed.

The variable triangularNumber is set equal to 0 before the for statement is reached.
In general, you need to initialize all variables to some value (just like your objects) before
you use them in your program.As you’ll learn later, certain types of variables are given
default initial values, but it’s safer not to rely on those and you should set them anyway.

The for statement enables you to avoid having to explicitly write each integer from 1
to 200. In a sense, this statement generates these numbers for you.

The general format of the for statement is as follows:

for (init_expression; loop_condition; loop_expression)

program statement

The three expressions enclosed within the parentheses—init_expression,
loop_condition, and loop_expression—set up the environment for the program loop.
The program statement that immediately follows (which is, of course, terminated by a semi-
colon) can be any valid Objective-C program statement and constitutes the body of the
loop.This statement is executed as many times as specified by the parameters set up in the
for statement.

The first component of the for statement, labeled init_expression, is used to set the
initial values before the loop begins. In Program 5.2, this portion of the for statement is
used to set the initial value of n to 1.As you can see, an assignment is a valid form of an
expression.

The second component of the for statement specifies the condition(s) necessary for
the loop to continue. In other words, looping continues as long as this condition is satis-
fied.Again referring to Program 5.2, the loop_condition of the for is specified by the
following relational expression:

n <= 200

80 Chapter 5 Program Looping

Table 5.1 Relational Operators

Operator Meaning Example

== Equal to count == 10

!= Not equal to flag != DONE

< Less than a < b

<= Less than or equal to low <= high

> Greater than points > POINT_MAX

>= Greater than or equal to j >= 0

This expression can be read as “n less than or equal to 200.” The “less than or equal
to” operator (which is the less than character [<] followed immediately by the equals sign
[=]) is only one of several relational operators provided in the Objective-C programming
language.These operators are used to test specific conditions.The answer to the test is yes
(or TRUE) if the condition is satisfied and no (or FALSE) if the condition is not satisfied.

Table 5.1 lists all the relational operators available in Objective-C.

The relational operators have lower precedence than all arithmetic operators.This
means, for example, that an expression such as

a < b + c

is evaluated as

a < (b + c)

This is as you would expect. It would be TRUE if the value of a were less than the value
of b + c, and FALSE otherwise.

Pay particular attention to the “is equal to” operator (==) and do not confuse its use
with the assignment operator (=).The expression

a == 2

tests whether the value of a is equal to 2, whereas the expression

a = 2

assigns the number 2 to the variable a.
The choice of which relational operator to use depends on the particular test being

made and, in some instances, on your particular preferences. For example, the relational
expression

n <= 200

can be equivalently expressed as

n < 201

81The for Statement

Returning to the previous example, the program statement that forms the body of the
for loop—triangularNumber += n;—is repetitively executed as long as the result of the
relational test is TRUE, or, in this case, as long as the value of n is less than or equal to 200.
This program statement has the effect of adding the value of n to the value of
triangularNumber.

When the loop_condition is no longer satisfied, execution of the program continues
with the program statement immediately following the for loop. In this program, execu-
tion continues with the NSLog statement after the loop has terminated.

The final component of the for statement contains an expression that is evaluated
each time after the body of the loop is executed. In Program 5.2, this loop_expression
adds 1 to the value of n.Therefore, the value of n is incremented by 1 each time after its
value has been added into the value of triangularNumber, and it ranges in value from 1
through 201.

It is worth noting that the last value that n attains, 201, is not added into the value of
triangularNumber because the loop is terminated as soon as the looping condition is no
longer satisfied, or as soon as n equals 201.

In summary, execution of the for statement proceeds as follows:

1. The initial expression is evaluated first.This expression usually sets a variable that is
used inside the loop, generally referred to as an index variable, to some initial value
(such as 0 or 1).

2. The looping condition is evaluated. If the condition is not satisfied (the expression
is FALSE), the loop immediately terminates. Execution continues with the program
statement that immediately follows the loop.

3. The program statement that constitutes the body of the loop is executed.

4. The looping expression is evaluated.This expression is generally used to change the
value of the index variable, frequently by adding 1 to it or subtracting 1 from it.

5. Return to step 2.

Remember that the looping condition is evaluated immediately on entry into the
loop, before the body of the loop has executed one time.Also remember not to put a
semicolon after the closed parenthesis at the end of the loop because this immediately
ends the loop.

Program 5.2 actually generates all the first 200 triangular numbers on its way to its fi-
nal goal, so it might be nice to generate a table of these numbers.To save space, however,
let’s assume that you want to print a table of just the first 10 triangular numbers. Program
5.3 performs this task.

Program 5.3

// Program to generate a table of triangular numbers

#import <Foundation/Foundation.h>

82 Chapter 5 Program Looping

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, triangularNumber;

NSLog (@”TABLE OF TRIANGULAR NUMBERS””);
NSLog (@” n Sum from 1 to n”);
NSLog (@”-- --------””);

triangularNumber = 0;

for (n = 1; n <= 10; ++n) {
triangularNumber += n;
NSLog (@” %i %i”, n, triangularNumber);

}

[pool drain];
return 0;

}

Program 5.3 Output

TABLE OF TRIANGULAR NUMBERS
n Sum from 1 to n

-- ------------------
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45

10 55

In Program 5.3, the purpose of the first three NSLog statements is simply to provide a
general heading and to label the columns of the output.

After the appropriate headings have been displayed, the program calculates the first 10
triangular numbers.The variable n is used to count the current number whose sum from
1 to n you are computing, and the variable triangularNumber is used to store the value
of triangular number n.

Execution of the for statement commences by setting the value of the variable n to 1.
As mentioned earlier, the program statement immediately following the for statement
constitutes the body of the program loop. But what happens if you want to repetitively

83The for Statement

execute not just a single program statement, but a group of program statements? This can
be accomplished by enclosing all such program statements within a pair of braces.The
system then treats this group, or block, of statements as a single entity. In general, any place
in a Objective-C program that a single statement is permitted, a block of statements can
be used, provided that you remember to enclose the block within a pair of braces.

Therefore, in Program 5.3, both the expression that adds n into the value of
triangularNumber and the NSLog statement that immediately follows constitute the
body of the program loop. Pay particular attention to the way the program statements are
indented.At a quick glance, you can easily determine which statements form part of the
for loop.You should also note that programmers use different coding styles; some prefer
to type the loop this way:

for (n = 1; n <= 10; ++n)

{

triangularNumber += n;

NSLog (@” %i %i”, n, triangularNumber);
}

Here, the opening brace is placed on the line following the for.This is strictly a mat-
ter of taste and has no effect on the program.

The next triangular number is calculated by simply adding the value of n to the previ-
ous triangular number.The first time through the for loop, the previous triangular num-
ber is 0, so the new value of triangularNumber when n is equal to 1 is simply the value
of n, or 1.The values of n and triangularNumber are then displayed, with an appropriate
number of blank spaces inserted into the format string to ensure that the values of the
two variables line up under the appropriate column headings.

Because the body of the loop has now been executed, the looping expression is evalu-
ated next.The expression in this for statement appears a bit strange, however. Surely you
must have made a typographical mistake and meant to insert n = n + 1 instead of this
funny-looking expression:

++n

But ++n is actually a perfectly valid Objective-C expression. It introduces a new (and
rather unique) operator in the Objective-C programming language: the increment operator.
The function of the double plus sign, or the increment operator, is to add 1 to its
operand.Addition by 1 is such a common operation in programs that a special operator
was created solely for this purpose.Therefore, the expression ++n is equivalent to the ex-
pression n = n + 1.At first glance, it might appear that n = n + 1 is more readable, but
you will soon get used to the function of this operator and even learn to appreciate its
succinctness.

Of course, no programming language that offers an increment operator to add 1
would be complete without a corresponding operator to subtract 1.As you would guess,
the name of this operator is the decrement operator, and it is symbolized by the double mi-
nus sign. So an expression in Objective-C that reads

bean_counter = bean_counter – 1

84 Chapter 5 Program Looping

can be equivalently expressed using the decrement operator, like so:

--bean_counter

Some programmers prefer to put the ++ or -- after the variable name, as in n++ or
bean_counter--.This is acceptable and is a matter of personal preference.

You might have noticed that the last line of output from Program 5.3 doesn’t line up.
You can correct this minor annoyance by substituting the following NSLog statement in
place of the corresponding statement from Program 5.3:

NSLog (“%2i %i”, n, triangularNumber);

To verify that this change solves the problem, here’s the output from the modified pro-
gram (called Program 5.3A).

Program 5.3A Output

TABLE OF TRIANGULAR NUMBERS

n Sum from 1 to n
—- —————————————————
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45

10 55

The primary change made to the NSLog statement is the inclusion of a field width
specification.The characters %2i tell the NSLog routine not only that you want to display
the value of an integer at that particular point, but also that the size of the integer to be
displayed should take up at least two columns in the display. Any integer that would nor-
mally take up less than two columns (that is, the integers 0–9) will be displayed with a
leading space.This is known as right justification.

Thus, by using a field width specification of %2i, you guarantee that at least two
columns will be used for displaying the value of n; you also ensure that the values of
triangularNumber will be aligned.

Keyboard Input
Program 5.2 calculates the 200th triangular number, and nothing more.What if you
wanted to calculate the 50th or the 100th triangular number instead? Well, if that were
the case, you would have to change the program so that the for loop would be executed

85The for Statement

the correct number of times.You would also have to change the NSLog statement to dis-
play the correct message.

An easier solution might be to somehow have the program ask you which triangular
number you want to calculate.Then, after you had given your answer, the program could
calculate the desired triangular number.You can effect such a solution by using a routine
called scanf.The scanf routine is similar in concept to the NSLog routine.Whereas the
NSLog routine is used to display values, the purpose of the scanf routine is to enable the
programmer to type values into the program. Of course, if you’re writing an Objective-C
program that uses a graphical User Interface (UI), such as a Cocoa or iPhone application,
you likely won’t be using NSLog or scanf at all in your program.

Program 5.4 asks the user which triangular number should be calculated, calculates
that number, and then displays the results.

Program 5.4

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int n, number, triangularNumber;

NSLog (@”What triangular number do you want?”);
scanf (“%i”, &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@”Triangular number %i is %i\n”, number, triangularNumber);

[pool drain];
return 0;

}

In the program output that follows, the number typed in by the user (100) is set in
bold type, to distinguish it from the output displayed by the program.

Program 5.4 Output

What triangular number do you want?
100

Triangular number 100 is 5050

According to the output, the user typed the number 100.The program then calculated
the 100th triangular number and displayed the result of 5050 at the terminal.The user

86 Chapter 5 Program Looping

could have just as easily typed in the number 10 or 30, for example, if he or she wanted to
calculate those particular triangular numbers.

The first NSLog statement in Program 5.4 is used to prompt the user to type in a num-
ber. Of course, it is always nice to remind the user of what you want entered.After the
message is printed, the scanf routine is called.The first argument to scanf is the format
string, which does not begin with the @ character. Unlike NSLog, whose first argument is
always an NSString object, the first argument to scanf is a C-style string.As noted earlier
in this text, C-style character strings are not preceded by the @ character.

The format string tells scanf what types of values are to be read in from the console
(or terminal window, if you’re compiling your programs using the Terminal application).
As with NSLog, the %i characters are used to specify an integer value.

The second argument to the scanf routine specifies where the value that the user
types in is to be stored.The & character before the variable number is necessary in this
case. Don’t worry about its function here, though.We discuss this character, which is actu-
ally an operator, in great detail when we talk about pointers in Chapter 13,“Underlying
C Language Features.”

Given the preceding discussion, you can now see that the scanf call from Program 5.4
specifies that an integer value is to be read and stored into the variable number.This value
represents the particular triangular number the user wants to have calculated.

After the user has typed in this number (and pressed the Enter key on the keyboard to
signal that typing of the number is completed), the program calculates the requested tri-
angular number.This is done in the same way as in Program 5.2; the only difference is
that, instead of using 200 as the limit, number is used as the limit.

After the desired triangular number has been calculated, the results are displayed. Exe-
cution of the program is then complete.

Nested for Loops
Program 5.4 gives the user the flexibility to have the program calculate any triangular
number that is desired. But suppose the user had a list of five triangular numbers to be
calculated? In such a case, the user could simply execute the program five times, each time
typing in the next triangular number from the list to be calculated.

Another way to accomplish the same goal, and a far more interesting method, as far as
learning about Objective-C is concerned, is to have the program handle the situation.
This can best be accomplished by inserting a loop into the program to repeat the entire
series of calculations five times.You can use the for statement to set up such a loop.
Program 5.5 and its associated output illustrate this technique.

Program 5.5

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

87The for Statement

int n, number, triangularNumber, counter;

for (counter = 1; counter <= 5; ++counter) {
NSLog (@”What triangular number do you want?”);
scanf (“%i”, &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@”Triangular number %i is %i”, number, triangularNumber);

}

[pool drain];
return 0;

}

Program 5.5 Output

What triangular number do you want?
12
Triangular number 12 is 78

What triangular number do you want?
25
Triangular number 25 is 325

What triangular number do you want?
50
Triangular number 50 is 1275

What triangular number do you want?
75
Triangular number 75 is 2850

What triangular number do you want?
83

Triangular number 83 is 3486

The program consists of two levels of for statements.The outermost for statement is
as follows:

for (counter = 1; counter <= 5; ++counter)

88 Chapter 5 Program Looping

This specifies that the program loop is to be executed precisely five times.The value of
counter is initially set to 1 and is incremented by 1 until it is no longer less than or equal
to 5 (in other words, until it reaches 6).

Unlike the previous program examples, the variable counter is not used anywhere else
within the program. Its function is solely as a loop counter in the for statement. Never-
theless, because it is a variable, you must declare it in the program.

The program loop actually consists of all the remaining program statements, as indi-
cated by the braces.You might be able to more easily comprehend the way this program
operates if you conceptualize it as follows:

For 5 times

{

Get the number from the user.
Calculate the requested triangular number.
Display the results.

}

The portion of the loop referred to in the preceding as Calculate the requested triangular
number actually consists of setting the value of the variable triangularNumber to 0 plus
the for loop that calculates the triangular number.Thus, a for statement is actually contained
within another for statement.This is perfectly valid in Objective-C, and nesting can con-
tinue even further to any desired level.

The proper use of indentation becomes even more critical when dealing with more
sophisticated program constructs, such as nested for statements.At a quick glance, you
can easily determine which statements are contained within each for statement.

for Loop Variants
Before leaving this discussion of the for loop, we should mention some of the syntactic
variations that are permitted in forming this loop.When writing a for loop, you might
discover that you want to initialize more than one variable before the loop begins, or per-
haps you want to evaluate more than one expression each time through the loop.You can
include multiple expressions in any of the fields of the for loop, as long as you separate
such expressions by commas. For example, in the for statement that begins

for (i = 0, j = 0; i < 10; ++i)

...

the value of i is set to 0 and the value of j is set to 0 before the loop begins.The two
expressions i = 0 and j = 0 are separated from each other by a comma, and both expres-
sions are considered part of the init_expression field of the loop.As another example,
the for loop that starts

for (i = 0, j = 100; i < 10; ++i, j -= 10)

...

89The while Statement

sets up two index variables: i and j, which initialize to 0 and 100, respectively, before
the loop begins. Each time after the body of the loop is executed, the value of i is incre-
mented by 1 and the value of j is decremented by 10.

Just as you might need to include more than one expression in a particular field of the
for statement, you also might need to omit one or more fields from the statement.You
can do this simply by omitting the desired field and marking its place with a semicolon.
The most common application for the omission of a field in the for statement occurs
when no initial expression needs to be evaluated.You can simply leave the
init_expression field blank in such a case, as long as you still include the semicolon:

for (; j != 100; ++j)

...

This statement might be used if j were already set to some initial value before the
loop was entered.

A for loop that has its looping_condition field omitted effectively sets up an infinite
loop—that is, a loop that theoretically will be executed forever. Such a loop can be used
as long as some other means is used to exit from the loop (such as executing a return,
break, or goto statement, as discussed later in this book).

You can also define variables as part of your initial expression inside a for loop.This is
done using the typical ways we’ve defined variables in the past. For example, the follow-
ing can be used to set up a for loop with an integer variable counter both defined and
initialized to the value 1, like so:

for (int counter = 1; counter <= 5; ++counter)

The variable counter is known only throughout the execution of the for loop (it’s
called a local variable) and cannot be accessed outside the loop.As another example, the
following for loop defines two integer variables and sets their values accordingly:

for (int n = 1, triangularNumber = 0; n <= 200; ++n)

triangularNumber += n;

A final for loop variant, for performing what’s known as fast enumerations on collec-
tions of objects is described in detail in Chapter 15,“Numbers, Strings, and Collections.”

The while Statement
The while statement further extends the Objective-C language’s repertoire of looping
capabilities.The syntax of this frequently used construct is as follows:

while (expression)

program statement

The expression specified inside the parentheses is evaluated. If the result of the
expression evaluation is TRUE, the program statement that immediately follows is exe-
cuted.After execution of this statement (or statements, if enclosed in braces), expression

90 Chapter 5 Program Looping

is again evaluated. If the result of the evaluation is TRUE, the program statement is again
executed.This process continues until expression finally evaluates FALSE, at which point
the loop is terminated. Execution of the program then continues with the statement that
follows program statement.

As an example of its use, the following program sets up a while loop, which merely
counts from 1 to 5.

Program 5.6

// This program introduces the while statement

#import <Foundation/Foundation.h>

#import <stdio.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int count = 1;

while (count <= 5) {
NSLog (@”%i”, count);
++count;

}

[pool drain];

return 0;

}

Program 5.6 Output

1
2
3
4

5

The program initially sets the value of count to 1; execution of the while loop then
begins. Because the value of count is less than or equal to 5, the statement that immedi-
ately follows is executed.The braces define both the NSLog statement and the statement
that increments count as the body of the while loop. From the output of the program,
you can see that this loop is executed five times or until the value of count reaches 5.

You might have realized from this program that you could have readily accomplished
the same task by using a for statement. In fact, a for statement can always be translated
into an equivalent while statement, and vice versa. For example, the general for statement

91The while Statement

for (init_expression; loop_condition; loop_expression)

program statement

can be equivalently expressed in the form of a while statement, like so:

init_expression;
while (loop_condition)

{

program statement
loop_expression;

}

When you become familiar with the use of the while statement, you will gain a bet-
ter feel for when it seems more logical to use a while statement and when you should
use a for statement. In general, a loop executed a predetermined number of times is a
prime candidate for implementation as a for statement.Also, if the initial expression,
looping expression, and looping condition all involve the same variable, the for statement
is probably the right choice.

The next program provides another example of the use of the while statement.The
program computes the greatest common divisor of two integer values.The greatest com-
mon divisor (we abbreviate it hereafter as gcd) of two integers is the largest integer value
that evenly divides the two integers. For example, the gcd of 10 and 15 is 5 because 5 is
the largest integer that evenly divides both 10 and 15.

A procedure, or algorithm, that can be followed to arrive at the gcd of two arbitrary
integers is based on a procedure originally developed by Euclid around 300 B.C. It can be
stated as follows:
Problem: Find the greatest common divisor of two nonnegative integers u and v.
Step 1: If v equals 0, then we are done and the gcd is equal to u.
Step 2: Calculate temp = u % v, u = v, v = temp and go back to step 1.

Don’t concern yourself with the details of how the previous algorithm works—simply
take it on faith.We are more concerned here with developing a program to find the
greatest common divisor than in performing an analysis of how the algorithm works.

After expressing the solution to the problem of finding the greatest common divisor in
terms of an algorithm, developing the computer program becomes a much simpler task.
An analysis of the steps of the algorithm reveals that step 2 is repetitively executed as long
as the value of v is not equal to 0.This realization leads to the natural implementation of
this algorithm in Objective-C with the use of a while statement.

Program 5.7 finds the gcd of two nonnegative integer values typed in by the user.

Program 5.7

// This program finds the greatest common divisor
// of two nonnegative integer values

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

92 Chapter 5 Program Looping

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
unsigned int u, v, temp;

NSLog (@”Please type in two nonnegative integers.”);
scanf (“%u%u”, &u, &v);

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

NSLog (@”Their greatest common divisor is %u”, u);

[pool drain];

return 0;

}

Program 5.7 Output

Please type in two nonnegative integers.
150 35

Their greatest common divisor is 5

Program 5.7 Output (Rerun)

Please type in two nonnegative integers.
1026 540

Their greatest common divisor is 54

After the two integer values have been entered and stored in the variables u and v (us-
ing the %u format characters to read in an unsigned integer value), the program enters a
while loop to calculate their greatest common divisor.After the while loop is exited, the
value of u, which represents the gcd of v and of the original value of u, is displayed with
an appropriate message.

You will use the algorithm for finding the greatest common divisor again in Chapter
7,“More on Classes,” when you return to working with fractions.

For the next program that illustrates the use of the while statement, let’s consider the
task of reversing the digits of an integer that is entered from the terminal. For example, if
the user types in the number 1234, the program should reverse the digits of this number
and display the result of 4321.

Note
Using NSLog calls will cause each digit to appear on a separate line of the output. C pro-
grammers who are familiar with the printf function can use that routine instead to get the
digits to appear consecutively.

93The while Statement

To write such a program, you first must come up with an algorithm that accomplishes
the stated task. Frequently, analyzing your own method for solving the problem leads to
an algorithm. For the task of reversing the digits of a number, the solution can be simply
stated as “successively read the digits of the number from right to left.” You can have a
computer program successively read the digits of the number by developing a procedure
to successively isolate or extract each digit of the number, beginning with the rightmost
digit.The extracted digit can be subsequently displayed at the terminal as the next digit of
the reversed number.

You can extract the rightmost digit from an integer number by taking the remainder
of the integer after it is divided by 10. For example, 1234 % 10 gives the value 4, which is
the rightmost digit of 1234 and is also the first digit of the reversed number. (Remember
that the modulus operator gives the remainder of one integer divided by another.) You
can get the next digit of the number by using the same process if you first divide the
number by 10, bearing in mind the way integer division works.Thus, 1234 % 10 gives a
result of 123, and 123 % 10 gives you 3, which is the next digit of the reversed number.

You can continue this procedure until you’ve extracted the last digit. In the general
case, you know that the last digit of the number has been extracted when the result of the
last integer division by 10 is 0.

Program 5.8 prompts the user to enter a number and then proceeds to display the dig-
its from that number from the rightmost to leftmost digit.

Program 5.8

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int number, right_digit;

NSLog (@”Enter your number.”);
scanf (“%i”, &number);

while (number != 0) {
right_digit = number % 10;
NSLog (@”%i”, right_digit);
number /= 10;

}

[pool drain];
return 0;

}

94 Chapter 5 Program Looping

Program 5.8 Output

Enter your number.
13579
9
7
5
3

1

The do Statement
The two looping constructs discussed thus far in this chapter both test the conditions be-
fore the loop is executed.Therefore, the body of the loop might never be executed if the
conditions are not satisfied.When developing programs, you sometimes want to have the
test made at the end of the loop instead of at the beginning. Naturally, the Objective-C
language provides a special language construct to handle such a situation, known as the do
statement.The syntax of this statement is as follows:

do

program statement
while (expression);

Execution of the do statement proceeds as follows: program statement is executed
first. Next, the expression inside the parentheses is evaluated. If the result of evaluating
expression is TRUE, the loop continues and program statement is again executed.As
long as the evaluation of expression continues to be TRUE, program statement is re-
peatedly executed.When the evaluation of the expression proves FALSE, the loop is termi-
nated and the next statement in the program is executed in the normal sequential
manner.

The do statement is simply a transposition of the while statement, with the looping
conditions placed at the end of the loop instead of at the beginning.

Program 5.8 used a while statement to reverse the digits of a number. Go back to that
program and try to determine what would happen if the user had typed in the number 0
instead of 13579.The loop of the while statement would never have been executed, and
nothing would have been displayed for output. If you were to use a do statement instead
of a while statement, you would be assured that the program loop would be executed at
least once, thus guaranteeing the display of at least one digit in all cases. Program 5.9 illus-
trates the use of the do statement.

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number, right_digit;

95The break Statement

NSLog (@”Enter your number.”);
scanf (“%i”, &number);

do {
right_digit = number % 10;
NSLog (@”%i”, right_digit);
number /= 10;

}
while (number != 0);

[pool drain];
return 0;

}

Program 5.9 Output

Enter your number.
135
5
3

1

Program 5.9 Output (Rerun)

Enter your number.
0

0

As you can see from the program’s output, when 0 is keyed into the program, the pro-
gram correctly displays the digit 0.

The break Statement
Sometimes when executing a loop, you’ll want to leave the loop as soon as a certain con-
dition occurs—for instance, maybe you detect an error condition or reach the end of
your data prematurely.You can use the break statement for this purpose. Execution of the
break statement causes the program to immediately exit from the loop it is executing,
whether it’s a for, while, or do loop. Subsequent statements in the loop are skipped and
execution of the loop is terminated. Execution continues with whatever statement fol-
lows the loop.

If a break is executed from within a set of nested loops, only the innermost loop in
which the break is executed is terminated.

96 Chapter 5 Program Looping

The format of the break statement is simply the keyword break followed by a semi-
colon, like so:

break;

The continue Statement
The continue statement is similar to the break statement, except that it doesn’t cause the
loop to terminate.At the point that the continue statement is executed, any statements
that appear after the continue statement up to the end of the loop are skipped. Execu-
tion of the loop otherwise continues as normal.

The continue statement is most often used to bypass a group of statements inside a
loop based on some condition, but then to otherwise continue executing the loop.The
format of the continue statement is as follows:

continue;

Don’t use the break or continue statements until you become very familiar with
writing program loops and gracefully exiting from them.These statements are too easy to
abuse and can result in programs that are hard to follow.

Summary
Now that you are familiar with all the basic looping constructs the Objective-C language
provides, you’re ready to learn about another class of language statements that enables you
to make decisions during the execution of a program.The next chapter describes these
decision-making capabilities in detail.

Exercises
1. Write a program to generate and display a table of n and n2, for integer values of n

ranging from 1 through 10. Be sure to print the appropriate column headings.

2. A triangular number can also be generated for any integer value of n by this formula:
triangularNumber = n (n + 1) / 2

For example, the 10th triangular number,55, can be calculated by substituting 10
as the value for n into the previous formula.Write a program that generates a table
of triangular numbers using the previous formula. Have the program generate every
fifth triangular number between 5 and 50 (that is, 5, 10, 15, ..., 50).

3. The factorial of an integer n, written n!, is the product of the consecutive integers
1 through n. For example, 5 factorial is calculated as follows:
5! = 5 x 4 x 3 x 2 x 1 = 120

Write a program to generate and print a table of the first 10 factorials.

97Exercises

4. A minus sign placed in front of a field width specification causes the field to be dis-
played left-justified. Substitute the following NSLog statement for the correspon-
ding statement in Program 5.2, run the program, and compare the outputs produced
by both programs:

NSLog (@”%-2i %i”, n, triangularNumber);

5. Program 5.5 allows the user to type in only five different numbers. Modify that
program so that the user can type in the number of triangular numbers to be calcu-
lated.

6. Rewrite Programs 5.2 through 5.5, replacing all uses of the for statement with
equivalent while statements. Run each program to verify that both versions are
identical.

7. What would happen if you typed a negative number into Program 5.8? Try it and
see.

8. Write a program that calculates the sum of the digits of an integer. For example, the
sum of the digits of the number 2155 is 2 + 1 + 5 + 5, or 13. The program
should accept any arbitrary integer the user types.

6
Making Decisions

A fundamental feature of any programming language is its capability to make decisions.
Decisions were made when executing the looping statements to determine when to ter-
minate a loop.The Objective-C programming language also provides several other deci-
sion-making constructs, which are covered in this chapter:

n The if statement
n The switch statement
n The conditional operator

The if Statement
The Objective-C programming language provides a general decision-making capability in
the form of a language construct known as the if statement.The general format of this
statement is shown here:

if (expression)

program statement

Imagine that you could translate a statement such as “If it is not raining, then I will go
swimming” into the Objective-C language. Using the previous format for the if state-
ment, this might be “written” in Objective-C as follows:

if (it is not raining)

I will go swimming

The if statement is used to stipulate execution of a program statement (or statements,
if enclosed in braces) based on specified conditions. I will go swimming if it is not rain-
ing. Similarly, in the program statement

if (count > MAXIMUM_SONGS)

[playlist maxExceeded];

the maxExceeded message is sent to playlist only if the value of count is greater
than the value of MAXIMUM_SONGS; otherwise, it is ignored.

100 Chapter 6: Making Decisions

An actual program example will help drive the point home. Suppose you want to
write a program that accepts an integer entered from the keyboard and then displays the
absolute value of that integer.A straightforward way to calculate the absolute value of an
integer is to simply negate the number if it is less than zero.The phrase “if it is less than
zero” in the previous sentence signals that the program must make a decision.This deci-
sion can be affected by the use of an if statement, as shown in the program that follows.

Program 6.1

// Calculate the absolute value of an integer

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number;

NSLog (@”Type in your number: “);
scanf (“%i”, &number);

if (number < 0)
number = -number;

NSLog (@”The absolute value is %i”, number);

[pool drain];
return 0;

}

Program 6.1 Output

Type in your number:
-100

The absolute value is 100

Program 6.1 Output (Rerun)

Type in your number:
2000

The absolute value is 2000

The program was run twice to verify that it is functioning properly. Of course, it
might be desirable to run the program several more times to get a higher level of confi-

101The if Statement

dence so that you know it is indeed working correctly, but at least you know that you
have checked both possible outcomes of the program’s decision.

After a message is displayed to the user and the integer value that is entered is stored in
number, the program tests the value of number to see whether it is less than zero. If it is,
the following program statement, which negates the value of number, is executed. If the
value of number is not less than zero, this program statement is automatically skipped. (If it
is already positive, you don’t want to negate it.) The absolute value of number is then dis-
played by the program, and program execution ends.

Let’s look at another program that uses the if statement.We’ll add one more method
to the Fraction class, called convertToNum.This method will provide the value of a frac-
tion expressed as a real number. In other words, it will divide the numerator by the de-
nominator and return the result as a double precision value. So if you have the fraction
1/2, you want the method to return the value 0.5.

The declaration for such a method might look like this:

-(double) convertToNum;

This is how you could write its definition:

-(double) convertToNum

{

return numerator / denominator;

}

Well, not quite.As it’s defined, this method actually has two serious problems.Can you spot
them? The first has to do with arithmetic conversions.Recall that numerator and
denominator are both integer instance variables. So what happens when you divide two inte-
gers? Correct, it is done as an integer division! If you wanted to convert the fraction 1/2, the
previous code would give you zero! This is easily corrected by using the type cast operator to
convert one or both of the operands to a floating-point value before the division takes place:

(double) numerator / denominator

Recalling the relatively high precedence of this operator, the value of numerator is
first converted to double before the division occurs. Furthermore, you don’t need to con-
vert the denominator because the rules of arithmetic conversion take care of that for you.

The second problem with this method is that you should check for division by zero
(you should always check for that!).The invoker of this method could inadvertently have
forgotten to set the denominator of the fraction or might have set the denominator of the
fraction to zero, and you don’t want your program to terminate abnormally.

The modified version of the convertToNum method appears here:

-(double) convertToNum

{

if (denominator != 0)

return (double) numerator / denominator;

else

return 0.0;

}

102 Chapter 6: Making Decisions

We arbitrarily decided to return 0.0 if the denominator of the fraction is zero. Other
options are available (such as printing an error message, throwing an exception, and so
on), but we won’t go into them here.

Let’s put this new method to use in Program 6.2.

Program 6.2

#import <Foundation/Foundation.h>

@interface Fraction: NSObject
{

int numerator;
int denominator;

}

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;
-(double) convertToNum;
@end

@implementation Fraction
-(void) print
{

NSLog (@” %i/%i “, numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

-(int) denominator
{

103The if Statement

return denominator;
}

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return 0.0;

}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

[aFraction setNumerator: 1]; // 1st fraction is 1/4
[aFraction setDenominator: 4];

[aFraction print];
NSLog (@” =”);
NSLog (@”%g”, [aFraction convertToNum]);

[bFraction print]; // never assigned a value
NSLog (@” =”);
NSLog (@”%g”, [bFraction convertToNum]);
[aFraction release];
[bFraction release];

[pool drain];
return 0;

}

Program 6.2 Output

1/4
=

0.25
0/0
=

0

104 Chapter 6: Making Decisions

After setting aFraction to 1/4, the program uses the convertToNum method to con-
vert the fraction to a decimal value.This value is then displayed as 0.25.

In the second case, the value of bFraction is not explicitly set, so its numerator and
denominator are initialized to zero, which is the default for instance variables.This ex-
plains the result from the print method. It also causes the if statement inside the
convertToNum method to return the value 0, as verified from the output.

The if-else Construct
If someone asks you whether a particular number is even or odd, you will most likely
make the determination by examining the last digit of the number. If this digit is 0, 2, 4,
6, or 8, you will readily state that the number is even. Otherwise, you will claim that the
number is odd.

An easier way for a computer to determine whether a particular number is even or
odd is effected not by examining the last digit of the number to see whether it is 0, 2, 4,
6, or 8, but by simply determining whether the number is evenly divisible by 2. If it is, the
number is even; otherwise, it is odd.

You have already seen how the modulus operator % is used to compute the remainder
of one integer divided by another.This makes it the perfect operator to use in determin-
ing whether an integer is evenly divisible by 2. If the remainder after division by 2 is 0, it
is even; otherwise, it is odd.

Now let’s write a program that determines whether an integer value that the user
types in is even or odd and then displays an appropriate message at the terminal—see
Program 6.3.

Program 6.3

// Program to determine if a number is even or odd

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number_to_test, remainder;

NSLog (@”Enter your number to be tested: “);
scanf (“%i”, &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)
NSLog (@”The number is even.”);

105The if Statement

if (remainder != 0)
NSLog (@”The number is odd.”);

[pool drain];
return 0;

}

Program 6.3 Output

Enter your number to be tested:
2455

The number is odd.

Program 6.3 Output (Rerun)

Enter your number to be tested:
1210

The number is even.

After the number is typed in, the remainder after division by 2 is calculated.The first
if statement tests the value of this remainder to see whether it is equal to zero. If it is, the
message “The number is even” displays.

The second if statement tests the remainder to see if it’s not equal to zero and, if that’s
the case, displays a message stating that the number is odd.

Whenever the first if statement succeeds, the second one must fail, and vice versa. If
you recall from our discussions of even/odd numbers at the beginning of this section, we
said that if the number is evenly divisible by 2, it is even; otherwise, it is odd.

When writing programs, this “else” concept is so frequently required that almost all
modern programming languages provide a special construct to handle this situation. In
Objective-C, this is known as the if-else construct, and the general format is as follows:

if (expression)

program statement 1
else

program statement 2

The if-else is actually just an extension of the general format of the if statement. If
the result of the expression’s evaluation is TRUE, then program statement 1, which imme-
diately follows, is executed; otherwise, program statement 2 is executed. In either case,
either program statement 1 or program statement 2 will be executed, but not both.

You can incorporate the if-else statement into the previous program, replacing the
two if statements by a single if-else statement.You will see how this new program
construct actually helps reduce the program’s complexity somewhat and also improves its
readability.

106 Chapter 6: Making Decisions

Program 6.4

// Determine if a number is even or odd (Ver. 2)

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number_to_test, remainder;

NSLog (@”Enter your number to be tested:”);
scanf (“%i”, &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)
NSLog (@”The number is even.”);

else
NSLog (@”The number is odd.”);

[pool drain];
return 0;

}

Program 6.4 Output

Enter your number to be tested:
1234

The number is even.

Program 6.4 Output (Rerun)

Enter your number to be tested:
6551

The number is odd.

Don’t forget that the double equals sign (==) is the equality test, and the single equals
sign is the assignment operator. Forgetting this and inadvertently using the assignment
operator inside the if statement can lead to a lot of headaches.

Compound Relational Tests
The if statements you’ve used so far in this chapter set up simple relational tests between
two numbers. Program 6.1 compared the value of number against zero, whereas Program
6.2 compared the denominator of the fraction to zero. Sometimes it becomes desirable, if
not necessary, to set up more sophisticated tests. Suppose, for example, that you want to
count the number of grades from an exam that were between 70 and 79, inclusive. In

107The if Statement

such a case, you would want to compare the value of a grade not merely against one
limit, but against the two limits 70 and 79 to ensure that it fell within the specified range.

The Objective-C language provides the mechanisms necessary to perform these types
of compound relational tests.A compound relational test is simply one or more simple rela-
tional tests joined by either the logical AND or the logical OR operator.These operators are
represented by the character pairs && and || (two vertical bar characters), respectively.As
an example, the following Objective-C statement increments the value of
grades_70_to_79 only if the value of grade is greater than or equal to 70 and less than
or equal to 79:

if (grade >= 70 && grade <= 79)

++grades_70_to_79;

In a similar manner, the following statement causes execution of the NSLog statement
if index is less than 0 or greater than 99:

if (index < 0 || index > 99)

NSLog (@”Error - index out of range”);

The compound operators can be used to form extremely complex expressions in Ob-
jective-C.The Objective-C language grants the programmer the ultimate flexibility in
forming expressions, but this flexibility is a capability that programmers often abuse. Sim-
pler expressions are almost always easier to read and debug.

When forming compound relational expressions, liberally use parentheses to aid read-
ability of the expression and avoid getting into trouble because of a mistaken assumption
about the precedence of the operators in the or expression. (The && operator has lower
precedence than any arithmetic or relational operator but higher precedence than the ||
operator.) Blank spaces also can aid in the expression’s readability.An extra blank space
around the && and || operators visually sets these operators apart from the expressions
they are joining.

To illustrate the use of a compound relational test in an actual program example, let’s
write a program that tests whether a year is a leap year.We all know that a year is a leap
year if it is evenly divisible by 4.What you might not realize, however, is that a year that is
divisible by 100 is not a leap year unless it is also divisible by 400.

Try to think how you would go about setting up a test for such a condition. First, you
could compute the remainders of the year after division by 4, 100, and 400, and assign
these values to appropriately named variables, such as rem_4, rem_100, and rem_400, re-
spectively.Then you could test these remainders to determine whether the desired criteria
for a leap year were met.

If we rephrase our previous definition of a leap year, we can say that a year is a leap
year if it is evenly divisible by 4 and not by 100 or if it is evenly divisible by 400. Stop for
a moment to reflect on this last sentence and to verify to yourself that it is equivalent to
the previously stated definition. Now that we have reformulated our definition in these

108 Chapter 6: Making Decisions

terms, it becomes a relatively straightforward task to translate it into a program statement,
as follows:

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)

NSLog (@”It’s a leap year.”);

The parentheses around the following subexpression are not required:

rem_4 == 0 && rem_100 != 0

This is because the expression will be evaluated that way anyway: Remember that &&
has higher precedence than ||.

In fact, in this particular example, the following test would work just as well:

if (rem_4 == 0 && (rem_100 != 0 || rem_400 == 0))

If you add a few statements in front of the test to declare the variables and to enable
the user to key in the year from the terminal, you end up with a program that determines
whether a year is a leap year, as shown in Program 6.5.

Program 6.5

// This program determines if a year is a leap year

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int year, rem_4, rem_100, rem_400;

NSLog (@”Enter the year to be tested: “);
scanf (“%i”, &year);

rem_4 = year % 4;
rem_100 = year % 100;
rem_400 = year % 400;

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)
NSLog (@”It’s a leap year.”);

else
NSLog (@”Nope, it’s not a leap year.”);

[pool drain];
return 0;

}

Program 6.5 Output

Enter the year to be tested:
1955

Nope, it’s not a leap year.

109The if Statement

Program 6.5 Output (Rerun)

Enter the year to be tested:
2000

It’s a leap year.

Program 6.5 Output (Rerun)

Enter the year to be tested:
1800

Nope, it’s not a leap year.

The previous examples use a year that is not a leap year because it isn’t evenly divisible
by 4 (1955), a year that is a leap year because it is evenly divisible by 400 (2000), and a
year that isn’t a leap year because it is evenly divisible by 100 but not by 400 (1800).To
complete the run of test cases, you should also try a year that is evenly divisible by 4 and
not by 100.This is left as an exercise for you.

We mentioned that Objective-C gives the programmer a tremendous amount of flexi-
bility in forming expressions. For instance, in the previous program, you did not have to
calculate the intermediate results rem_4, rem_100, and rem_400—you could have per-
formed the calculation directly inside the if statement, as follows:

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

Using blank spaces to set off the various operators still makes the previous expression
readable. If you decided to ignore this and removed the unnecessary set of parentheses,
you could end up with an expression that looked like this:

if(year%4==0&&year%100!=0)||year%400==0)

This expression is perfectly valid and, believe it or not, executes identically to the ex-
pression shown immediately before it. Obviously, those extra blanks go a long way toward
aiding our understanding of complex expressions.

Nested if Statements
In discussions of the general format of the if statement, we indicated that if the result of
evaluating the expression inside the parentheses is TRUE, the statement that immediately
follows is executed. It is perfectly valid for this program statement to be another if state-
ment, as in the following statement:

if ([chessGame isOver] == NO)

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

If the value returned by sending the isOver message to chessGame is NO, the following
statement is executed; this statement, in turn, is another if statement.This if statement
compares the value returned from the whoseTurn method against YOU. If the two values
are equal, the yourMove message is sent to the chessGame object.Therefore, the yourMove

110 Chapter 6: Making Decisions

message is sent only if both the game is not done and it’s your turn. In fact, this statement
could have been equivalently formulated using compound relationals, like so:

if ([chessGame isOver] == NO && [chessGame whoseTurn] == YOU)

[chessGame yourMove];

A more practical example of nested if statements might involve adding an else clause
to the previous example, as shown here:

if ([chessGame isOver] == NO)

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

else

[chessGame myMove];

Executing this statement proceeds as described previously. However, if the game is not
over and it’s not your move, the else clause is executed.This sends the message myMove to
chessGame. If the game is over, the entire if statement that follows, including its associ-
ated else clause, is skipped.

Notice how the else clause is associated with the if statement that tests the value re-
turned from the whoseTurn method, not with the if statement that tests whether the
game is over.The general rule is that an else clause is always associated with the last if
statement that doesn’t contain an else.

You can go one step further and add an else clause to the outermost if statement in
the preceding example.This else clause is executed if the game is over:

if ([chessGame isOver] == NO)

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

else

[chessGame myMove];

else

[chessGame finish];

Of course, even if you use indentation to indicate the way you think a statement will
be interpreted in the Objective-C language, it might not always coincide with the way
the system actually interprets the statement. For instance, removing the first else clause
from the previous example will not result in the statement being interpreted as its format
indicates:

if ([chessGame isOver] == NO)

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

else

[chessGame finish];

Instead, this statement will be interpreted as follows:

if ([chessGame isOver] == NO)

111The if Statement

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

else

[chessGame finish];

This is because the else clause is associated with the last un-elsed if.You can use
braces to force a different association when an innermost if does not contain an else but
an outer if does.The braces have the effect of closing off the if statement.Thus, the fol-
lowing statement achieves the desired effect:

if ([chessGame isOver] == NO) {

if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

}

else

[chessGame finish];

The else if Construct
You have seen how the else statement comes into play when you have a test against two
possible conditions—either the number is even or it is odd; either the year is a leap year
or it is not. However, programming decisions you have to make are not always so black
and white. Consider the task of writing a program that displays –1 if a number the user
types is less than zero, 0 if the number is equal to zero, and 1 if the number is greater than
zero. (This is actually an implementation of what is commonly called the sign function.)
Obviously, you must make three tests in this case to determine whether the number that
is keyed in is negative, zero, or positive.The simple if-else construct will not work. Of
course, in this case, you can always resort to three separate if statements, but this solution
does not always work—especially if the tests are not mutually exclusive.

You can handle the situation just described by adding an if statement to your else
clause.We mentioned that the statement that follows an else could be any valid Objec-
tive-C program statement, so why not another if? Thus, in the general case, you could
write the following:

if (expression 1)

program statement 1

else

if (expression 2)

program statement 2
else

program statement 3

This effectively extends the if statement from a two-valued logic decision to a three-
valued logic decision.You can continue to add if statements to the else clauses, in the
manner just shown, to effectively extend the decision to an n-valued logic decision.

112 Chapter 6: Making Decisions

The preceding construct is so frequently used that it is generally referred to as an else
if construct and is usually formatted differently from that shown previously:

if (expression 1)

program statement 1
else if (expression 2)

program statement 2
else

program statement 3

This latter method of formatting improves the readability of the statement and makes
it clearer that a three-way decision is being made.

The next program illustrates the use of the else if construct by implementing the
sign function discussed earlier.

Program 6.6

// Program to implement the sign function

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int number, sign;

NSLog (@”Please type in a number: “);
scanf (“%i”, &number);

if (number < 0)
sign = -1;

else if (number == 0)
sign = 0;

else // Must be positive
sign = 1;

NSLog (@”Sign = %i”, sign);
[pool drain];
return 0;

}

Program 6.6 Output

Please type in a number:
1121

Sign = 1

113The if Statement

Program 6.6 Output (Rerun)

Please type in a number:
-158

Sign = -1

Program 6.6 Output (Rerun)

Please type in a number:
0

Sign = 0

If the number that is entered is less than zero, sign is assigned the value -1; if the
number is equal to zero, sign is assigned the value 0; otherwise, the number must be
greater than zero, so sign is assigned the value 1.

The next program analyzes a character that is typed in from the terminal and classifies
it as either an alphabetic character (a–z or A–Z), a digit (0–9), or a special character (any-
thing else).To read a single character from the terminal, the format characters %c are used
in the scanf call.

Program 6.7

// This program categorizes a single character
// that is entered from the keyboard

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char c;

NSLog (@”Enter a single character:”);
scanf (“%c”, &c);

if ((c >= ‘a’ && c <= ‘z’) || (c >= ‘A’ && c <= ‘Z’))
NSLog (@”It’s an alphabetic character.”);

else if (c >= ‘0’ && c <= ‘9’)
NSLog (@”It’s a digit.”);

else
NSLog (@”It’s a special character.”);

[pool drain];
return 0;

}

114 Chapter 6: Making Decisions

Program 6.7 Output

Enter a single character:
&

It’s a special character.

Program 6.7 Output (Rerun)

Enter a single character:
8

It’s a digit.

Program 6.7 Output (Rerun)

Enter a single character:
B

It’s an alphabetic character.

The first test that is made after the character is read in determines whether the char
variable c is an alphabetic character.This is done by testing whether the character is a
lowercase letter or an uppercase letter.The former test is made by the following expres-
sion:

(c >= ‘a’ && c <= ‘z’)

This expression is TRUE if c is within the range of characters ’a’ through ’z’; that is, if
c is a lowercase letter.The latter test is made by this expression:

(c >= ‘A’ && c <= ‘Z’)

This expression is TRUE if c is within the range of characters ’A’ through ’Z’; that is, if
c is an uppercase letter.These tests work on computer systems that store characters inside
the machine in a format known as ASCII.

If the variable c is an alphabetic character, the first if test succeeds and the message
“It’s an alphabetic character.” is displayed. If the test fails, the else if clause is executed.
This clause determines whether the character is a digit. Note that this test compares the
character c against the characters ’0’ and ’9’ and not the integers 0 and 9.This is because a
character was read in from the terminal, and the characters ’0’ to ’9’ are not the same as
the numbers 0–9. In fact, in ASCII, the character ’0’ is actually represented internally as
the number 48, the character ’1’ as the number 49, and so on.

If c is a digit character, the phrase “It’s a digit.” is displayed. Otherwise, if c is not al-
phabetic and is not a digit, the final else clause is executed and displays the phrase “It’s a
special character” at the terminal. Execution of the program is then complete.

Note that even though scanf is used here to read just a single character, you still must
press the Enter key after the character is typed to send the input to the program. In gen-
eral, whenever you’re reading data from the terminal, the program doesn’t see any of the
data typed on the line until the Enter key is pressed.

115The if Statement

Let’s suppose for the next example that you want to write a program that allows the
user to type in simple expressions of the following form:[[STYLE_FIRST]]

number operator number

The program will evaluate the expression and display the results at the terminal.The
operators you want to have recognized are the normal operators for addition, subtraction,
multiplication, and division. Let’s use the Calculator class from Program 4.6 in Chapter
4,“Data Types and Expressions,” here. Each expression will be given to the calculator for
computation.

The following program uses a large if statement with many else if clauses to deter-
mine which operation is to be performed.

Note
It’s better to use routines in the standard library called islower and isupper, and avoid
the internal representation issue entirely. To do that, include the line #import <ctype.h>
in your program. However, we’ve put this here for illustrative purposes only.

Program 6.8

// Program to evaluate simple expressions of the form
// number operator number

// Implement a Calculator class

#import <Foundation/Foundation.h>

@interface Calculator: NSObject
{

double accumulator;
}

// accumulator methods
-(void) setAccumulator: (double) value;
-(void) clear;
-(double) accumulator;

// arithmetic methods
-(void) add: (double) value;
-(void) subtract: (double) value;
-(void) multiply: (double) value;
-(void) divide: (double) value;
@end

@implementation Calculator
-(void) setAccumulator: (double) value
{

accumulator = value;
}

116 Chapter 6: Making Decisions

-(void) clear
{

accumulator = 0;
}

-(double) accumulator
{

return accumulator;
}

-(void) add: (double) value
{

accumulator += value;
}

-(void) subtract: (double) value
{

accumulator -= value;
}

-(void) multiply: (double) value
{

accumulator *= value;
}

-(void) divide: (double) value
{

accumulator /= value;
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
double value1, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@”Type in your expression.”);
scanf (“%lf %c %lf”, &value1, &operator, &value2);

[deskCalc setAccumulator: value1];
if (operator == ‘+’)

[deskCalc add: value2];
else if (operator == ‘-’)

117The if Statement

[deskCalc subtract: value2];
else if (operator == ‘*’)

[deskCalc multiply: value2];
else if (operator == ‘/’)

[deskCalc divide: value2];

NSLog (@”%.2f”, [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

}

Program 6.8 Output

Type in your expression.
123.5 + 59.3

182.80

Program 6.8 Output (Rerun)

Type in your expression.
198.7 / 26

7.64

Program 6.8 Output (Rerun)

Type in your expression.
89.3 * 2.5

223.25

The scanf call specifies that three values are to be read into the variables value1,
operator, and value2.A double value can be read in with the %lf format characters.This
is the format used to read in the value of the variable value1, which is the first operand of
the expression.

Next, you read in the operator. Because the operator is a character (’+’, ’-’, ’*’, or
’/’) and not a number, you read it into the character variable operator.The %c format
characters tell the system to read in the next character from the terminal.The blank spaces
inside the format string indicate that an arbitrary number of blank spaces are to be per-
mitted on the input.This enables you to separate the operands from the operator with
blank spaces when you type in these values.

After the two values and the operator have been read in, the program stores the first
value in the calculator’s accumulator. Next, you test the value of operator against the four
permissible operators.When a correct match is made, the corresponding message is sent to

118 Chapter 6: Making Decisions

the calculator to perform the operation. In the last NSLog, the value of the accumulator is
retrieved for display. Execution of the program is then complete.

A few words about program thoroughness are in order at this point.Although the pre-
ceding program does accomplish the task that we set out to perform, the program is not
really complete because it does not account for user mistakes. For example, what would
happen if the user typed in a ? for the operator by mistake? The program would simply
fall through the if statement and no messages would ever appear at the terminal to alert
the user that he had incorrectly typed in his expression.

Another overlooked case is when the user types in a division operation with zero as
the divisor.You know by now that you should never attempt to divide a number by zero
in Objective-C.The program should check for this case.

Trying to predict the ways in which a program can fail or produce unwanted results
and then taking preventive measures to account for such situations is a necessary part of
producing good, reliable programs. Running a sufficient number of test cases against a
program can often point a finger to portions of the program that do not account for cer-
tain cases. But it goes further than that. It must become a matter of self-discipline while
coding a program to always ask,“What would happen if...?” and to insert the necessary
program statements to handle the situation properly.

Program 6.8A, a modified version of Program 6.8, accounts for division by zero and
the keying in of an unknown operator.

Program 6.8A

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
double value1, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@”Type in your expression.”);
scanf (“%lf %c %lf”, &value1, &operator, &value2);

[deskCalc setAccumulator: value1];

if (operator == ‘+’)
[deskCalc add: value2];

else if (operator == ‘-’)

119The if Statement

[deskCalc subtract: value2];
else if (operator == ‘*’)

[deskCalc multiply: value2];
else if (operator == ‘/’)

if (value2 == 0)
NSLog (@”Division by zero.”);

else
[deskCalc divide: value2];

else
NSLog (@”Unknown operator.”);

NSLog (@”%.2f”, [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

}

Program 6.8A Output

Type in your expression.
123.5 + 59.3

182.80

Program 6.8A Output (Rerun)

Type in your expression.
198.7 / 0
Division by zero.

198.7

Program 6.8A Output (Rerun)

Type in your expression.
125 $ 28
Unknown operator.

125

When the operator that is typed in is the slash, for division, another test is made to de-
termine whether value2 is 0. If it is, an appropriate message is displayed at the terminal;
otherwise, the division operation is carried out and the results are displayed. Pay careful at-
tention to the nesting of the if statements and the associated else clauses in this case.

The else clause at the end of the program catches any fall-throughs.Therefore, any
value of operator that does not match any of the four characters tested causes this else
clause to be executed, resulting in the display of “Unknown operator.” at the terminal.

120 Chapter 6: Making Decisions

A better way to handle the division-by-zero problem is to perform the test inside the
method that handles division.You can modify your divide: method as shown here:

-(void) divide: (double) value

{

if (value != 0.0)

accumulator /= value;

else {

NSLog (@”Division by zero.”);
accumulator = 99999999.;

}

}

If value is nonzero, you perform the division; otherwise, you display the message and
set the accumulator to 99999999.This is arbitrary; you could have set it to zero or perhaps
set a special variable to indicate an error condition. In general, it’s better to have the
method handle special cases than rely on the resourcefulness of the programmer using the
method.

The switch Statement
The type of if-else statement chain you encountered in the last program example—
with the value of a variable successively compared against different values—is so com-
monly used when developing programs that a special program statement exists in the
Objective-C language for performing precisely this function.The name of the statement is
the switch statement, and its general format is as follows:

switch (expression)
{

case value1:
program statement
program statement

...
break;

case value2:
program statement
program statement

...
break;

...
case valuen:

program statement
program statement

...
break;

default:
program statement
program statement

...

121The switch Statement

break;
}

The expression enclosed within parentheses is successively compared against the val-
ues value1, value2, ..., valuen, which must be simple constants or constant expressions.
If a case is found whose value is equal to the value of expression, the program statements
that follow the case are executed. Note that when more than one such program statement
is included, they do not have to be enclosed within braces.

The break statement signals the end of a particular case and causes execution of the
switch statement to be terminated. Remember to include the break statement at the end
of every case. Forgetting to do so for a particular case causes program execution to con-
tinue into the next case whenever that case is executed. Sometimes this is done intention-
ally; if you elect to do so, be sure to insert comments to alert others of your purpose.

The special optional case called default is executed if the value of expression does
not match any of the case values.This is conceptually equivalent to the catchall else used
in the previous example. In fact, the general form of the switch statement can be equiva-
lently expressed as an if statement, as follows:

if (expression == value1)
{

program statement
program statement

...
}
else if (expression == value2)
{

program statement
program statement

...
}

...
else if (expression == valuen)
{

program statement
program statement

...
}
else
{

program statement
program statement

...
}

Bearing in mind the previous code, you can translate the big if statement from
Program 6.8A into an equivalent switch statement.This is shown in Program 6.9.

122 Chapter 6: Making Decisions

Program 6.9

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

double value1, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@”Type in your expression.”);
scanf (“%lf %c %lf”, &value1, &operator, &value2);

[deskCalc setAccumulator: value1];

switch (operator) {
case ‘+’:

[deskCalc add: value2];
break;

case ‘-’:
[deskCalc subtract: value2];
break;

case ‘*’:
[deskCalc multiply: value2];
break;

case ‘/’:
[deskCalc divide: value2];
break;

default:
NSLog (@”Unknown operator.”);
break;

}

NSLog (@”%.2f”, [deskCalc accumulator]);
[deskCalc release];

[pool drain];
return 0;

}

123Boolean Variables

Program 6.9 Output

Type in your expression.
178.99 - 326.8

-147.81

After the expression has been read in, the value of operator is successively compared
against the values specified by each case.When a match is found, the statements contained
inside the case are executed.The break statement then sends execution out of the switch
statement, where execution of the program is completed. If none of the cases matches the
value of operator, the default case, which displays “Unknown operator.”, is executed.

The break s atement in the defau t case s actually unnecessary in the preceding pro-
gram because no statements follow this case inside the switch. Nevertheless, it is a good
programming habit to remember to include the break at the end of every case.

When writing a switch statement, bear in mind that no two case values can be the
same. However, you can associate more than one case value with a particular set of program
statements.This is done simply by l sting the multiple case values (with the keyword case

before the value and a colon after the value in each case) before the common statements
that are to be executed.As an example, in the switch statement that follows, the multiply:

method is executed if operator is equal to an asterisk or to the lowercase letter x:

switch (operator)

{

...

case ‘*’:
case ‘x’:

[deskCalc multiply: value2];

break;

...

}

Boolean Variables
Just about anyone learning to program soon faces the task of having to write a program to
generate a table of prime numbers.To refresh your memory, a positive integer, p, is a
prime number if it is not evenly divisible by any other integers other than 1 and itself.The
first prime integer is defined to be 2.The next prime is 3 because it is not evenly divisible
by any integers other than 1 and 3; and 4 is not prime because it is evenly divisible by 2.

You can take several approaches to generate a table of prime numbers. If you had the
task of generating all prime numbers up to 50, for example, the most straightforward (and
simplest) algorithm to generate such a table would simply test each integer, p, for
divisibility by all integers from 2 through p-1. If any such integer evenly divided p, then p
would not be prime; otherwise, it would be a prime number.

Program 6.10 generates a list of prime numbers from 2 to 50.

124 Chapter 6: Making Decisions

Program 6.10

// Program to generate a table of prime numbers

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int p, d, isPrime;

for (p = 2; p <= 50; ++p) {
isPrime = 1;

for (d = 2; d < p; ++d)
if (p % d == 0)

isPrime = 0;

if (isPrime != 0)
NSLog (@”%i “, p);

}

[pool drain];
return 0;

}

Program 6.10 Output

2
3
5
7
11
13
17
19
23
29
31
37
41
43

47

Several points are worth noting about Program 6.10.The outermost for statement sets
up a loop to cycle through the integers 2–50.The loop variable p represents the value you

125Boolean Variables

are currently testing to see whether it is prime.The first statement in the loop assigns the
value 1 to the variable isPrime.The use of this variable will become apparent shortly.

A second loop is set up to divide p by the integers 2 through p-1. Inside the loop, a test
is performed to see whether the remainder of p divided by d is 0. If it is, you know that p
cannot be prime because an integer other than 1 and itself evenly divides it.To signal that
p is no longer a candidate as a prime number, the value of the variable isPrime is set
equal to 0.

When the innermost loop finishes execution, the value of isPrime is tested. If its value
is not equal to zero, no integer was found that evenly divided p; therefore, p must be a
prime number, and its value is displayed.

You might have noticed that the variable isPrime takes on either 0 or 1, and no other
values. Its value is 1 as long as p still qualifies as a prime number. But as soon as a single
even divisor is found, its value is set to 0 to indicate that p no longer satisfies the criteria
for being prime.Variables used in such a manner are generally referred to as Boolean vari-
ables.A flag typically assumes only one of two different values. Furthermore, the value of a
flag usually is tested at least once in the program to see whether it is on (TRUE or YES) or
off (FALSE or NO), and some particular action is taken based on the results of the test.

In Objective-C, the notion of a flag being TRUE or FALSE is most naturally translated
into the values 1 and 0, respectively. So in Program 6.10, when you set the value of
isPrime to 1 inside the loop, you are effectively setting it as TRUE to indicate that p “is
prime.” During the course of execution of the inner for loop, if an even divisor is found,
the value of isPrime is set FALSE to indicate that p no longer “is prime.”

It is no coincidence that the value 1 is typically used to represent the TRUE or on state
and 0 is used to represent the FALSE or off state.This representation corresponds to the
notion of a single bit inside a computer.When the bit is on, its value is 1; when it is off, its
value is 0. But in Objective-C, there is an even more convincing argument in favor of
these logic values. It has to do with the way the Objective-C language treats the concept
of TRUE and FALSE.

When we began our discussions in this chapter, we noted that if the conditions speci-
fied inside the if statement are satisfied, the program statement that immediately followed
is executed. But what exactly does satisfied mean? In the Objective-C language, satisfied
means nonzero, and nothing more.Thus, the statement

if (100)

NSLog (@”This will always be printed.”);

results in the execution of the NSLog statement because the condition in the if state-
ment (in this case, simply the value 100) is nonzero and, therefore, is satisfied.

In each of the programs in this chapter, we used the notions of “nonzero means satis-
fied” and “zero means not satisfied.”This is because, whenever a relational expression is
evaluated in Objective-C, it is given the value 1 if the expression is satisfied and 0 if the
expression is not satisfied. So, evaluation of the statement

if (number < 0)

number = -number;

126 Chapter 6: Making Decisions

actually proceeds as follows:The relational expression number < 0 is evaluated. If the
condition is satisfied—that is, if number is less than 0—the value of the expression is 1;
otherwise, its value is 0.

The if statement tests the result of the expression evaluation. If the result is nonzero,
the statement that immediately follows is executed; otherwise, the statement is skipped.

The preceding discussion also applies to the evaluation of conditions inside the for,
while, and do statements. Evaluation of compound relational expressions such as in the
following statement also proceeds as outlined previously:

while (char != ‘e’ && count != 80)

If both specified conditions are valid, the result is 1, but if either condition is not valid,
the result of the evaluation is 0.The results of the evaluation are then checked. If the result
is 0, the while loop terminates; otherwise, it continues.

Returning to Program 6.10 and the notion of flags, it is perfectly valid in Objective-C
to test whether the value of a flag is TRUE using an expression such as this one:

if (isPrime)

This expression is equivalent to the following:

if (isPrime != 0)

To easily test whether the value of a flag is FALSE, you use the logical negation opera-
tor, !. In the expression that follows, the logical negation operator is used to test whether
the value of isPrime is FALSE (read this statement as “if not isPrime”):

if (! isPrime)

In general, an expression such as this one negates the logical value of expression:

! expression

So if expression is 0, the logical negation operator produces a 1.And if the result of
the evaluation of expression is nonzero, the negation operator yields a 0.

The logical negation operator can be used to easily flip the value of a flag, as in the fol-
lowing expression:

my_move = ! my_move;

As you might expect, this operator has the same precedence as the unary minus opera-
tor, which means that it has higher precedence than all binary arithmetic operators and all
relational operators.To test whether the value of a variable x is not less than the value of a
variable y, such as in

! (x < y)

the parentheses are required to ensure proper evaluation of the expression. Of course,
you could have equivalently expressed the previous statement as follows:

x >= y

127Boolean Variables

A couple of built-in features in Objective-C make working with Boolean variables a
little easier. One is the special type BOOL, which can be used to declare variables that will
contain either a true or a false value.The other is the built-in values YES and NO. Using
these predefined values in your programs can make them easier to write and read.Take a
look at Program 6.10, rewritten to take advantage of these features.

Note
The type BOOL is really added by a mechanism known as the preprocessor.

Program 6.10A
// Program to generate a table of prime numbers
// second version using BOOL type and predefined values

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int p, d;
BOOL isPrime;

for (p = 2; p <= 50; ++p) {
isPrime = YES;

for (d = 2; d < p; ++d)
if (p % d == 0)

isPrime = NO;

if (isPrime == YES)
NSLog (@”%i “, p);

}

[pool drain];
return 0;

}

Program 6.10A Output

2
3
5
7
11
13
17

128 Chapter 6: Making Decisions

19
23
29
31
37
41
43

47

The Conditional Operator
Perhaps the most unusual operator in the Objective-C language is one called the condi-
tional operator. Unlike all other operators in Objective-C—which are either unary or bi-
nary operators—the conditional operator is a ternary operator; that is, it takes three
operands.The two symbols used to denote this operator are the question mark (?) and
the colon (:).The first operand is placed before the ?, the second between the ? and the
:, and the third after the :.

The general format of the conditional expression is shown here:

condition ? expression1 : expression2

In this syntax, condition is an expression, usually a relational expression, that the Ob-
jective-C system evaluates first whenever it encounters the conditional operator. If the re-
sult of the evaluation of condition is TRUE (that is, nonzero), expression1 is evaluated
and the result of the evaluation becomes the result of the operation. If condition evalu-
ates FALSE (that is, zero), expression2 is evaluated and its result becomes the result of the
operation.

A conditional expression is most often used to assign one of two values to a variable,
depending on some condition. For example, suppose you have an integer variable x and
another integer variable s. If you wanted to assign -1 to s if x were less than 0, and the
value of x2 to s otherwise, you could write the following statement:

s = (x < 0) ? -1 : x * x;

The condition x < 0 is first tested when the previous statement is executed. Parenthe-
ses are generally placed around the condition expression to aid in the statement’s readabil-
ity.This is usually not required, though, because the precedence of the conditional
operator is very low—lower, in fact, than all other operators but the assignment operators
and the comma operator.

If the value of x is less than zero, the expression immediately following the ? is evalu-
ated.This expression is simply the constant integer value -1, which is assigned to the vari-
able s if x is less than zero.

129The Conditional Operator

If the value of x is not less than zero, the expression immediately following the : is
evaluated and assigned to s. So if x is greater than or equal to zero, the value of x * x, or
x2, is assigned to s.

As another example of the conditional operator, the following statement assigns to the
variable max_value the maximum of a and b:

max_value = (a > b) ? a : b;

If the expression after the : (the “else” part) consists of another conditional operator,
you can achieve the effects of an else if clause. For example, the sign function imple-
mented in Program 6.6 can be written in one program line using two conditional opera-
tors, as follows:

sign = (number < 0) ? -1 : ((number == 0) ? 0 : 1);

If number is less than zero, sign is assigned the value -1; if number is equal to zero,
sign is assigned the value 0; otherwise, it is assigned the value 1.The parentheses around
the “else” part of the previous expression are actually unnecessary.This is because the con-
ditional operator associates from right to left, meaning that multiple uses of this operator
in a single expression, such as in

e1 ? e2 : e3 ? e4 : e5

group from right to left and therefore are evaluated as follows:

e1 ? e2 : (e3 ? e4 : e5)

Conditional expressions don’t have to be used on the right side of an assignment—
they can be used in any situation in which expressions can be used.This means you can
display the sign of the variable number without first assigning it to a variable using a
NSLog statement, as shown here:

NSLog (@”Sign = %i”, (number < 0) ? -1
: (number == 0) ? 0 : 1);

The conditional operator is very handy when writing preprocessor macros in Objec-
tive-C.You can see this in detail in Chapter 12,“The Preprocessor.”

Exercises
1. Write a program that asks the user to type in two integer values.Test these two

numbers to determine whether the first is evenly divisible by the second and then
display an appropriate message at the terminal.

2. Program 6.8A displays the value in the accumulator even if an invalid operator is
entered or division by zero is attempted. Fix that problem.

3. Modify the print method from the Fraction class so that whole numbers are dis-
played as such (so the fraction 5/1 should display as simply 5).Also modify the
method to display fractions with a numerator of 0 as simply zero.

130 Chapter 6: Making Decisions

4. Write a program that acts as a simple printing calculator.The program should allow
the user to type in expressions of the following form:

number operator

The program should recognize the following operators:

+ - * / S E

The S operator tells the program to set the accumulator to the typed-in number,
and the E operator tells the program that execution is to end.The arithmetic opera-
tions are performed on the contents of the accumulator, with the number that was
keyed in acting as the second operand.The following is a sample run showing how
the program should operate:

Begin Calculations

10 S Set Accumulator to 10
= 10.000000 Contents of Accumulator
2 / Divide by 2
= 5.000000 Contents of Accumulator
55 - Subtract 55
-50.000000

100.25 S Set Accumulator to 100.25
= 100.250000

4 * Multiply by 4
= 401.000000

0 E End of program
= 401.000000

End of Calculations.

Make sure that the program detects division by 0 and also checks for unknown op-
erators. Use the Calculator class developed in Program 6.8 for performing your
calculations.

5. We developed Program 5.9 to reverse the digits of an integer typed in from the ter-
minal. However, this program does not function well if you type in a negative num-
ber. Find out what happens in such a case, and then modify the program so that
negative numbers are correctly handled. By this, we mean that if the number -8645
were typed in, for example, the output of the program should be 5468-.

6. Write a program that takes an integer keyed in from the terminal and extracts and
displays each digit of the integer in English. So if the user types in 932, the pro-
gram should display the following:

nine

three

two

131Exercises

(Remember to display zero if the user types in just 0.) Note:This exercise is a hard
one!

7. Program 6.10 has several inefficiencies. One inefficiency results from checking even
numbers. Because any even number greater than 2 obviously cannot be prime, the
program could simply skip all even numbers as possible primes and as possible divi-
sors.The inner for loop is also inefficient because the value of p is always divided
by all values of d from 2 through p 1. You can avoid this inefficiency if you add a
test for the value of isPrime in the conditions of the for loop. In this manner, you
can set up the for loop to continue as long as no divisor is found and the value of
d is less than p. Modify Program 6.10 to incorporate these two changes; then run
the program to verify its operation.

7
More on Classes

In this chapter, you’ll continue learning how to work with classes and write methods.
You’ll also apply some of the concept you learned in the previous chapter, such as com-
pleting program looping, making deci ions, and working with expr s ions. First we talk
about splitting your program into multiple files to make working with larger programs
easier.

Separate Interface and Implementation Files
It’s time to get used to putting your class declarations and definitions in separate files.

If you’re using Xcode, start a new project called FractionTest.Type the following
program into the file FractionTest.m:

Program 7.1 Main Test Program: FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// display the fraction

NSLog (@”The value of myFraction is:”);
[myFraction print];
[myFraction release];

[pool drain];
return 0;

}

134 Chapter 7 More on Classes

Figure 7.1 Xcode New File menu.

Note that this file does not include the definition of the Fraction class. However, it
does import a file called Fraction.h.

Typically, a class declaration (that is, the @interface section) is placed in its own file,
called class.h.The definition (that is, the @implementation section) is normally placed
in a file of the same name, using the extension .m instead. So let’s put the declaration of
the Fraction class in the file Fraction.h and the definition in Fraction.m.

To do this in Xcode, select New File from the File menu. In the left pane, select
Cocoa. In the top-right pane, select Objective-C class.Your window should appear as
shown in Figure 7.1.

Click Next.Type in Fraction.m for the file name. Leave the box that reads Also Create
Fraction.h checked.The location for this file should be the same folder that contains the
FractionTest.m file.Your window should look like Figure 7.2.

Now click Finish. Xcode has added two files to your project: Fraction.h and
Fraction.m. Figure 7.3 shows this.

We’re not working with Cocoa here, so change the line in the file Fraction.h that reads

#import <Cocoa/Cocoa.h>

to read

#import <Foundation/Foundation.h>

135Separate Interface and Implementation Files

Figure 7.2 Adding a new class to your project.

Figure 7.3 Xcode creates files for the new class.

In that same file (Fraction.h), you will now enter your interface section for the
Fraction class, as shown in Program 7.1:

136 Chapter 7 More on Classes

Program 7.2 Interface File Fraction.h

//
// Fraction.h
// FractionTest
//
// Created by Steve Kochan on 7/5/08.
// Copyright 2008 __MyCompanyName__. All rights reserved.
//

#import <Foundation/Foundation.h>

// The Fraction class

@interface Fraction : NSObject
{

int numerator;
int denominator;

}
-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;
-(double) convertToNum;

@end

The interface file tells the compiler (and other programmers, as you’ll learn later) what
a Fraction looks like: It contains two instance variables called numerator and
denominator, which are both integers. It also has six instance methods: print,
setNumerator:, setDenominator:, numerator, denominator, and convertToNum.The
first three methods don’t return a value, the next two return an int, and the last one re-
turns a double.The setNumerator: and setDenominator: methods each take an integer
argument.

The details of the implementation for the Fraction class are in the file Fraction.m.

Program 7.1 Implementation File: Fraction.m

//
// Fraction.m
// FractionTest
//
// Created by Steve Kochan on 7/5/08.
// Copyright 2008 __MyCompanyName__. All rights reserved.
//

#import “Fraction.h”

137Separate Interface and Implementation Files

@implementation Fraction
-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

-(int) denominator
{

return denominator;
}

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return 1.0;

}

@end

Note that the interface file is imported into the implementation file with the follow-
ing statement:

#import “Fraction.h”

This is done so that the compiler knows about the class and methods you declared for
your Fraction class and so that it can also ensure consistency between the two files. Re-
call also that you don’t normally redeclare the class’s instance variables inside the imple-
mentation section (although you can), so the compiler needs to get that information from
the interface section contained in Fraction.h.

Another thing you should note is that the file that is imported is enclosed in a set of
double quotes, not < and > characters, as was the case with <Foundation/Foundation.h>.
The double quotes are used for local files (files that you create) instead of system files, and

138 Chapter 7 More on Classes

they tell the compiler where to look for the specified file.When you use double quotes,
the compiler typically looks for the specified file first inside your current directory and
then in a list of other places. If necessary, you can specify the actual places for the com-
piler to search.

Here is the test program for our example, which we have typed into the file
FractionTest.m.

Program 7.1 Main Test Program: FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *myFraction = [[Fraction alloc] init];

// set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// display the fraction

NSLog (@”The value of myFraction is:”);
[myFraction print];
[myFraction release];

[pool drain];
return 0;

}

Note again that the test program, FractionTest.m, includes the interface file
Fraction.h, not the implementation file Fraction.m. Now you have your program split
into three separate files.This might seem like a lot of work for a small program example,
but the usefulness will become apparent when you start dealing with larger programs and
sharing class declarations with other programmers.

You can now compile and run your program the same way you did before: Select
Build and Go from the Build menu, or click the Build and Go icon in your main Xcode
window.

If you’re compiling your programs from the command line, give the Objective-C
compiler both “.m” filenames. Using gcc, the command line looks like this:

gcc –framework Foundation Fraction.m FractionTest.m –o FractionTest

139Synthesized Accessor Methods

This builds an executable file called FractionTest. Here’s the output after running
the program:

Program 7.1 FractionTest Output

The value of myFraction is:

1/3

Synthesized Accessor Methods
As of Objective-C 2.0, you can have your setter and getter methods (collectively known
as accessor methods) automatically generated for you.We haven’t shown you how to do this
up to this point because it was important for you to learn how to write these methods on
your own. However, it’s a nice convenience provided in the language, so it’s time for you
to learn how to take advantage of this feature.

The first step is to use the @property directive in your interface section to identify
your properties.These properties are often your instance variables. In the case of our
Fraction class, the two instance variables numerator and denominator fall into this cate-
gory. Following is the new interface section with the new @property directive added.

@interface Fraction : NSObject

{

int numerator;

int denominator;

}

@property int numerator, denominator;

-(void) print;

-(void) setTo: (int) n over: (int) d;

-(double) convertToNum;

@end

Note that we no longer include the definitions for our getter and setter methods:
numerator, denominator, setNumerator:, and setDenominator:.We’re going to have
the Objective-C compiler automatically generate or synthesize these for us. How is that
done? Simply by using the @synthesize directive in the implementation section, as
shown.

#import “Fraction.h”

@implementation Fraction

@synthesize numerator, denominator;

-(void) print

140 Chapter 7 More on Classes

{

NSLog (@”%i/%i”, numerator, denominator);
}

-(double) convertToNum

{

if (denominator != 0)

return (double) numerator / denominator;

else

return 1.0;

}

@end

The following line tells the Objective-C compiler to generate a pair of getter and set-
ter methods for each of the two listed instance variables, numerator and denominator:

@synthesize numerator, denominator;

In general, if you have an instance variable called x, including the following line in
your implementation section causes the compiler to automatically synthesize a getter
method called x and a setter method called setX:.

@synthesize x;

Even though this might not seem like a big deal here, having the compiler do this for
you is worthwhile because the accessor methods that are generated will be efficient and
will run safely with multiple threads, on multiple machines, with multiple cores.

Now go back to Program 7.1 and make the changes to the interface and implementa-
tion sections as indicated so that the accessor methods are synthesized for you.Verify that
you still get the same output from the program without making any changes to
FractionTest.m.

Accessing Properties Using the Dot Operator
The Objective-C language allows you to access properties using a more convenient syn-
tax.To get the value of the numerator stored in myFraction, you could write this:

[myFraction numerator]

This sends the numerator message to the myFraction object, resulting in the return of
the desired value.As of Objective-C 2.0, you can now also write the following equivalent
expression using the dot operator:

myFraction.numerator

The general format here is:

instance.property

141Multiple Arguments to Methods

You can use a similar syntax to assign values as well:

instance.property = value

This is equivalent to writing the following expression:[instance setProperty: value]

In Program 7.1 you set the numerator and denominator of your fraction to 1/3 using
the following two lines of code:

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

Here’s an equivalent way to write the same two lines:

myFraction.numerator = 1;

myFraction.denominator = 3;

We use these new features for synthesizing methods and accessing properties through-
out the remainder of this text.

Multiple Arguments to Methods
Let’s continue to work with the Fraction class and make some additions.You have de-
fined six methods. It would be nice to have a method to set both the numerator and the
denominator with a single message.You define methods that take multiple arguments
simply by listing each successive argument followed by a colon.This becomes part of the
method name. For example, the method named addEntryWithName:andEmail: takes two
arguments, presumably a name and an email address.The method
addEntryWithName:andEmail:andPhone: takes three arguments: a name, an email ad-
dress, and a phone number.

A method to set both the numerator and the denominator could be named
setNumerator:andDenominator:, and you might use it like this:

[myFraction setNumerator: 1 andDenominator: 3];

That’s not bad.And that was actually the first choice for the method name. But we can
come up with a more readable method name. For example, how about setTo:over:?
That might not look too appealing at first glance, but compare this message to set
myFraction to 1/3 with the previous one:

[myFraction setTo: 1 over: 3];

I think that reads a little better, but the choice is up to you (some might actually prefer
the first name because it explicitly references the instance variable names contained in the
class).Again, choosing good method names is important for program readability.Writing
out the actual message expression can help you pick a good one.

Let’s put this new method to work. First, add the declaration of setTo:over: to the
interface file, as shown in Program 7.2.

142 Chapter 7 More on Classes

Program 7.2 Interface File: Fraction.h

#import <Foundation/Foundation.h>

// Define the Fraction class

@interface Fraction : NSObject
{

int numerator;
int denominator;

}

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(double) convertToNum;

@end

Next, add the definition for the new method to the implementation file.

Program 7.2 Implementation File: Fraction.m

#import “Fraction.h”

@implementation Fraction

@synthesize numerator, denominator;

-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return 1.0;

}

-(void) setTo: (int) n over: (int) d
{

numerator = n;
denominator = d;

}

@end

143Multiple Arguments to Methods

The new setTo:over: method simply assigns its two integer arguments, n and d, to
the corresponding instance variables for the fraction, numerator, and denominator.

Here’s a test program to try your new method.

Program 7.2 Test File: FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

Fraction *aFraction = [[Fraction alloc] init];
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

[aFraction setTo: 100 over: 200];
[aFraction print];

[aFraction setTo: 1 over: 3];
[aFraction pr nt];
[aFraction rele se];

[pool drain];
return 0;

}

Program 7.2 Output

100/200

1/3

Methods Without Argument Names
When creating the name for a method, the argument names are actually optional. For ex-
ample, you can declare a method like this:

-(int) set: (int) n: (int) d;

Note that, unlike in previous examples, no name is given for the second argument to
the method here.This method is named set::, and the two colons mean the method
takes two arguments, even though they’re not all named.

To invoke the set:: method, you use the colons as argument delimiters, as shown here:

[aFraction set: 1 : 3];

144 Chapter 7 More on Classes

It’s generally not good programming style to omit argument names when writing new
methods because it makes the program harder to follow and makes the purpose of the
method’s actual parameters less intuitive.

Operations on Fractions
Let’s continue to work with the Fraction class. First, you’ll write a method that will en-
able you to add one fraction to another.You’ll name the method add:, and you’ll have it
take a fraction as an argument. Here’s the declaration for the new method:

-(void) add: (Fraction *) f;

Note the declaration for the argument f:

(Fraction *) f

This says that the argument to the add: method is of type class Fraction.The asterisk
is necessary, so the following declaration is not correct:

(Fraction) f

You will be passing one fraction as an argument to your add: method, and you’ll have
the method add it to the receiver of the message; the following message expression adds
the Fraction bFraction to the Fraction aFraction:

[aFraction add: bFraction];

Just as a quick math refresher, to add the fractions a/b and c/d, you perform the calcu-
lation as follows:

a
b

+
c
d

ad + bc
bd

You put this code for the new method into the @implementation section:

// add a Fraction to the receiver

- (void) add: (Fraction *) f

{

// To add two fractions:

// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = numerator * f.denominator

+ denominator * f.numerator;

denominator = denominator * f.denominator;

}

145Multiple Arguments to Methods

Don’t forget that you can refer to the Fraction that is the receiver of the message by
its fields: numerator and denominator. On the other hand, you can’t directly refer to the
instance variables of the argument f that way. Instead, you have to obtain them by apply-
ing the dot operator to f (or by sending an appropriate message to f).

Let’s assume that you added the previous declarations and definitions for your new
add: method to your interface and implementation files. Program 7.3 is a sample test
program and output.

Program 7.3 Test File: FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

// Set two fractions to 1/4 and 1/2 and add them together

[aFraction setTo: 1 over: 4];
[bFraction setTo: 1 over: 2];

// Print the results

[aFraction print];
NSLog (@”+”);
[bFraction print];
NSLog (@”=”);

[aFraction add: bFraction];
[aFraction print];
[aFraction release];
[bFraction release];

[pool drain];
return 0;

}

Program 7.3 Output

1/4
+
1/2
=

6/8

146 Chapter 7 More on Classes

The test program is straightforward enough.Two Fractions, called aFraction and
bFraction, are allocated and initialized.Then they are set to the values 1/4 and 1/2, re-
spectively. Next, the Fraction bFraction is added to the Fraction aFraction; the re-
sult of the addition is then displayed. Note again that the add: method adds the argument
to the object of the message, so the object gets modified.This is verified when you print
the value of aFraction at the end of main.You had to print the value of aFraction before
invoking the add: method to get its value displayed before the method changed it. Later
in this chapter, you’ll redefine the add: method so that add: does not affect the value of
its argument.

Local Variables
You might have noticed that the result of adding 1/4 to 1/2 was displayed as 6/8, not as
3/4, which you might have preferred (or even expected!).That’s because your addition
routine just does the math and no more—it doesn’t worry about reducing the result. So
to continue our exercise of adding new methods to work with fractions, let’s make a new
reduce method to reduce a fraction to its simplest terms.

Reaching back to your high school math again, you can reduce a fraction by finding
the largest number that evenly divides both the numerator and the denominator of your
fraction and then dividing them by that number.Technically, you want to find the greatest
common divisor (gcd) of the numerator and denominator.You already know how to do
that from Program 5.7.You might want to refer to that program example just to refresh
your memory.

With the algorithm in hand, you can now write your new reduce method:

- (void) reduce

{

int u = numerator;

int v = denominator;

int temp;

while (v != 0) {

temp = u % v;

u = v;

v = temp;

}

numerator /= u;

denominator /= u;

}

Notice something new about this reduce method: It declares three integer variables
called u, v, and temp.These variables are local variables, meaning that their values exist
only during execution of the reduce method and that they can be accessed only from within
the method in which they are defined. In that sense, they are similar to the variables you have

147Local Variables

been declaring inside your main routine; those variables were also local to main and could
be accessed directly only from within the main routine. None of the methods you devel-
oped could directly access those variables defined in main.

Local variables have no default initial value, so you must set them to some value before
using them.The three local variables in the reduce method are set to values before they
are used, so that’s not a problem here.And unlike your instance variables (which retain
their values through method calls), these local variables have no memory.Therefore, after
the method returns, the values of these variables disappear. Each time a method is called,
each local variable defined in that method is initialized to the value specified (if any) with
the variable’s declaration.

Method Arguments
The names you use to refer to a method’s arguments are also local variables.When the
method is executed, whatever arguments are passed to the method are copied into these
variables. Because the method is dealing with a copy of the arguments, it cannot change the
original values passed to the method. This is an important concept. Suppose you had a
method called calculate:, defined as follows:

-(void) calculate: (double) x

{

x *= 2;

...

}

Also suppose that you used the following message expression to invoke it:

[myData calculate: ptVal];

Whatever value was contained in the variable ptVal would be copied into the local
variable x when the calculate method was executed. So changing the value of x inside
calculate: would have no effect on the value of ptVal—only on the copy of its value
stored inside x.

Incidentally, in the case of arguments that are objects, you can change the instance
variables stored in that object.You’ll learn more about that in the next chapter.

The static Keyword
You can have a local variable retain its value through multiple invocations of a method by
placing the keyword static in front of the variable’s declaration. For example, the fol-
lowing declares the integer hitCount to be a static variable:

static int hitCount = 0;

Unlike other normal local variables, a static one does have an initial value of 0, so the
initialization shown previously is redundant. Furthermore, they are initialized only once
when program execution begins and retain their values through successive method calls.

148 Chapter 7 More on Classes

The following code sequence might appear inside a showPage method that wanted to
keep track of the number of times it was invoked (or, in this case, perhaps the number of
pages that have been printed, for example):

-(void) showPage

{

static int pageCount = 0;

...

++pageCount;

...

}

The local static variable would be set to 0 only once when the program started and
would retain its value through successive invocations of the showPage method.

Note the difference between making pageCount a local static variable and making it
an instance variable. In the former case, pageCount could count the number of pages
printed by all objects that invoked the showPage method. In the latter case, the variable
would count the number of pages printed by each individual object because each object
would have its own copy of pageCount.

Remember that static or local variables can be accessed only from within the method
in which they’re defined. So even the static pageCount variable can be accessed only from
within showPage.You can move the declaration of the variable outside any method decla-
ration (typically near the beginning of your implementation file) to make it accessible to
any methods, like so:

#import “Printer.h”
static int pageCount;

@implementation Printer

...

@end

Now any instance or class method contained in the file can access the pageCount vari-
able. Chapter 10,“More on Variables and Data Types,” covers this topic of variable scope
in greater detail.

Returning to fractions, you can incorporate the code for the reduce method into
your Fraction.m implementation file. Don’t forget to declare the reduce method in your
Fraction.h interface file as well.With that done, you can test your new method in
Program 7.4.

Program 7.4 Test File FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

149The self Keyword

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

[aFraction setTo: 1 over: 4]; // set 1st fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2

[aFraction print];
NSLog (@”+”);
[bFraction print];
NSLog (@”=”);

[aFraction add: bFraction];

// reduce the result of the addition and print the result

[aFraction reduce];
[aFraction print];

[aFraction release];
[bFraction release];

[pool drain];
return 0;

}

Program 7.4 Output

1/4
+
1/2
=

3/4

That’s better!

The self Keyword
In Program 7.4, we decided to reduce the fraction outside of the add: method.We could
have done it inside add: as well; the decision was completely arbitrary. However, how
would we go about identifying the fraction to be reduced to our reduce method? We

150 Chapter 7 More on Classes

know how to identify instance variables inside a method directly by name, but we don’t
know how to directly identify the receiver of the message.

You can use the keyword self to refer to the object that is the receiver of the current
method. If inside your add: method you wrote

[self reduce];

the reduce method would be applied to the Fraction that was the receiver of the add:
method, which is what you want.You will see throughout this book how useful the self
keyword can be. For now, use it in your add: method. Here’s what the modified method
looks like:

- (void) add: (Fraction *) f

{

// To add two fractions:

// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = (numerator * [f denominator]) +

(denominator * [f numerator]);

denominator = denominator * [f denominator];

[self reduce];

}

After the addition is performed, the fraction is reduced.

Allocating and Returning Objects from Methods
We noted that the add: method changes the value of the object that is receiving the mes-
sage. Let’s create a new version of add: that will instead make a new fraction to store the
result of the addition. In this case, we need to return the new Fraction to the message
sender. Here is the definition for the new add: method:

-(Fraction *) add: (Fraction *) f

{

// To add two fractions:

// a/b + c/d = ((a*d) + (b*c)) / (b * d)

// result will store the result of the addition

Fraction *result = [[Fraction alloc] init];

int resultNum, resultDenom;

resultNum = numerator * f.denominator +

denominator * f.numerator;

resultDenom = denominator * f.denominator;

151Allocating and Returning Objects from Methods

[result setTo: resultNum over: resultDenom];

[result reduce];

return result;

}

The first line of your method definition is this:

-(Fraction *) add: (Fraction *) f;

It says that your add: method will return a Fraction object and that it will take one
as its argument as well.The argument will be added to the receiver of the message, which
is also a Fraction.

The method allocates and initializes a new Fraction object called result and then
defines two local variables called resultNum and resultDenom.These will be used to
store the resulting numerator and denominators from your addition.

After performing the addition as before and assigning the resulting numerators and
denominators to your local variables, you can set result with the following message
expression:

[result setTo: resultNum over: resultDenom];

After reducing the result, you return its value to the sender of the message with the
return statement.

Note that the memory occupied by the Fraction result that is allocated inside the
add: method is returned and does not get released.You can’t release it from the add:
method because the invoker of the method needs it.Therefore, it is imperative that the
user of this method know that the object being returned is a new instance and must be
subsequently released.This can be communicated through suitable documentation that is
made available to users of the class.

Program 7.5 tests your new add: method.

Program 7.5 Test File main.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

Fraction *resultFraction;

152 Chapter 7 More on Classes

[aFraction setTo: 1 over: 4]; // set 1st fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2

[aFraction print];
NSLog (@”+”);
[bFraction print];
NSLog (@”=”);

resultFaction = [aFraction add: bFraction];
[resultFraction print];

// This time give the result directly to print
// memory leakage here!

[[aFraction add: bFraction] print];
[aFraction release];
[bFraction release];
[resultFraction release];

[pool drain];
return 0;

}

Program 7.5 Output

1/4
+
1/2
=
3/4

3/4

Some explanation is in order here. First, you define two Fractions—aFraction and
bFraction—and set their values to 1/4 and 1/2, respectively.You also define a Fraction
called resultFraction (why doesn’t it have to be allocated and initialized?).This variable
will store the result of your addition operations that follow.

The following lines of code first send the add: message to aFraction, passing along
the Fraction bFraction as its argument:

resultFraction = [aFraction add: bFraction];

[resultFraction print];

The resulting Fraction that the method returns is stored in resultFraction and
then displayed by passing it a print message. Note that you must be careful at the end of
the program to release resultFraction, even though you didn’t allocate it yourself in

153Allocating and Returning Objects from Methods

main.The add: method allocated it, but it’s still your responsibility to clean it up.The fol-
lowing message expression might look nice, but it actually creates a problem:

[[aFraction add: bFraction] print];

Because you take the Fraction that add: returns and send it a message to print, you
have no way of subsequently releasing the Fraction object that add: created.This is an
example of memory leakage. If you do this type of nested messaging many times in your
program, you’ll end up accumulating storage for fractions whose memory will not be re-
leased. Each time, you would be adding, or leaking, just a little bit more memory that you
could not direc ly recover.

One solution to the problem is to have the print method return its receiver, which
you could then release. But that seems a little roundabout.A better solution is to divide
the nested messages into two separate messages, as was done earlier in the program.

By the way you could have avoided using the temporary variables resultNum and
resultDenom complete y in your add method Instead, this s ngle message call would
have done the trick:

[result setTo: numerator * f.denominator + denominator * f.numerator

over: denominator * f.denominator;

We’re not suggesting that you write such concise code. However, you might see it
when you examine other programmers’ code, so it is useful to learn how to read and un-
derstand these powerful expressions.

Let’s take one last look at fractions in this chapter. For our example, let’s consider cal-
culation of the following series:

1/2i

i 1

n

Σ

The sigma notation is shorthand for a summation. Its use here means to add the values
of 1/2i, where i varies from 1 to n. That is, add 1/2 + 1/4 + 1/8 …. If you make the
value of n large enough, the sum of this series should approach 1. Let’s experiment with
different values for n to see how close we get.

Program 7.6 prompts for the value of n to be entered and performs the indicated
calculation.

Program 7.6 FractionTest.m

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

154 Chapter 7 More on Classes

Fraction *aFraction = [[Fraction alloc] init];
Fraction *sum = [[Fraction alloc] init], *sum2;
int i, n, pow2;

[sum setTo: 0 over: 1]; // set 1st fraction to 0

NSLog (@”Enter your value for n:”);
scanf (“%i”, &n);

pow2 = 2;
for (i = 1; i <= n; ++i) {

[aFraction setTo: 1 over: pow2];
sum2 = [sum add: aFraction];
[sum release]; // release previous sum
sum = sum2;
pow2 *= 2;

}

NSLog (@”After %i iterations, the sum is %g”, n, [sum convertToNum]);
[aFraction release];
[sum release];

[pool drain];
return 0;

}

Program 7.6 Output

Enter your value for n:
5

After 5 iterations, the sum is 0.96875

Program 7.6 Output (Rerun)

Enter your value for n:
10

After 10 iterations, the sum is 0.999023

Program 7.6 Output (Rerun)

Enter your value for n:
15

After 15 iterations, the sum is 0.999969

The Fraction sum is set to the value of 0 by setting its numerator to 0 and its de-
nominator to 1 (what would happen if you set both its numerator and denominator to

155Allocating and Returning Objects from Methods

0?).The program then prompts the user to enter a value for n and reads it using scanf.
You then enter a for loop to calculate the sum of the series. First, you initialize the vari-
able pow2 to 2.This variable is used to store the value of 2i. Each time through the loop,
its value is multiplied by 2.

The for loop starts at 1 and goes through n. Each time through the loop, you set
aFraction to 1/pow2, or 1/2i.This value is then added to the cumulative sum by using
the previously defined add: method.The result from add: is assigned to sum2 and not
to sum, to avoid memory leakage problems. (What would happen if you assigned it di-
rectly to sum instead?) The old sum is then released, and the new sum, sum2, is assigned to
sum for the next iteration through the loop. Study the way the fractions are released in the
code so that you feel comfortable with the strategy used to avoid memory leakage.Also
realize that if this were a for loop that was executed hundreds or thousands of times and
you weren’t judicious about releasing your fractions, you would quickly accumulate a lot
of wasted memory space.

When the for loop is completed, you display the final result as a decimal value using
the convertToNum method.You have just two objects left to release: aFraction and your
final Fraction object stored in sum. Program execution is then complete.

The output shows what happens when we ran the program three separate times on a
MacBook Air.The first time, the sum of the series was calculated and the resulting value
of 0.96875 was displayed.The third time, we ran the program with a value of 15 for n,
which gave us a result very close to 1.

Extending Class Definitions and the Interface File
You’ve now developed a small library of methods for working with fractions. In fact, here
is the interface file, listed in its entirety, so you can see all you’ve accomplished with this
class:

#import <Foundation/Foundation.h>

// Define the Fraction class

@interface Fraction : NSObject

{

int numerator;

int denominator;

}

@property int numerator, denominator;

-(void) print;

-(double) convertToNum;

-(Fraction *) add: (Fraction *) f;

-(void) reduce;

@end

156 Chapter 7 More on Classes

You might not need to work with fractions, but these examples have shown how you
can continually refine and extend a class by adding new methods.You could hand this in-
terface file to someone else working with fractions, and it would be sufficient for that
person to be able to write programs to deal with fractions. If that person needed to add a
new method, he could do so either directly, by extending the class definition, or indi-
rectly, by defining his own subclass and adding his own new methods.You’ll learn how to
do that in the next chapter.

Exercises
1. Add the following methods to the Fraction class to round out the arithmetic op-

erations on fractions. Reduce the result within the method in each case:
// Subtract argument from receiver

–(Fraction *) subtract (Fraction *) f;

// Multiply receiver by argument

–(Fraction *) multiply (Fraction *) f;

// Divide receiver by argument

–(Fraction *) divide (Fraction *) f;

2. Modify the print method from your Fraction class so that it takes an optional
BOOL argument that indicates whether the fraction should be reduced for display. If
it is to be reduced, be sure you don’t make any permanent changes to the fraction
itself.

3. Modify Program 7.7 to also display the resulting sum as a fraction, not just as a real
number.

4. Will your Fraction class work with negative fractions? For example, can you add
–1/4 and –1/2 and get the correct result? When you think you have the answer,
write a test program to try it.

5. Modify the Fraction’s print method to display fractions greater than 1 as mixed
numbers. For example, the fraction 5/3 should be displayed as 1 2/3.

6. Exercise 7 in Chapter 4,“Data Types and Expressions,” defined a new class called
Complex for working with complex imaginary numbers.Add a new method called
add: that can be used to add two complex numbers.To add two complex numbers,
you simply add the real parts and the imaginary parts, as shown here:
(5.3 + 7i) + (2.7 + 4i) = 8 + 11i

Have the add: method store and return the result as a new Complex number, based
on the following method declaration:
-(Complex *) add: (Complex * complexNum);

Make sure you address any potential memory leakage issues in your test program.

7. Given the Complex class developed in exercise 7 of Chapter 4 and the extension
made in exercise 6 of this chapter, create separate Complex.h and Complex.m inter-
face and implementation files. Create a separate test program file to test everything.

root class

subclass

NSObject

Fraction

Figure 8.1 Root and subclass

8
Inheritance

In this chapter, you’ll learn about one of the key principles that makes object-oriented
programming so powerful.Through the concept of inheritance, you will build on existing
class definitions and customize them for your own applications.

It All Begins at the Root
You learned about the idea of a parent class in Chapter 3,“Classes, Objects, and Meth-
ods.”A parent class can itself have a parent.The class that has no parent is at the top of the
hierarchy and is known as a root class. In Objective-C, you have the capability to define
your own root class, but it’s something you normally won’t want to do. Instead, you’ll
want to take advantage of existing classes.All the classes we’ve defined up to this point are
descendants of the root class called NSObject, which you specified in your interface file
like this:

@interface Fraction: NSObject

...

@end

The Fraction class is derived from the NSObject class. Because NSObject is at the top
of the hierarchy (that is, there are no classes above it), it’s called a root class, as shown in
Figure 8.1.The Fraction class is known as a child or subclass.

158 Chapter 8 Inheritance

From a terminology point of view, we can speak of classes, child classes, and parent
classes.Analogously, we can talk about classes, subclasses, and superclasses.You should be-
come familiar with both types of terminology.

Whenever a new class (other than a new root class) is defined, the class inherits certain
properties. For example, all the instance variables and the methods from the parent im-
plicitly become part of the new class definition.That means the subclass can access these
methods and instance variables directly, as if they were defined directly within the class
definition.

A simple example, albeit contrived, helps to illustrate this key concept of inheritance.
Here’s a declaration for an object called ClassA with one method called initVar:

@interface ClassA: NSObject

{

int x;

}

-(void) initVar;

@end

The initVar method simply sets the value of ClassA’s instance variable to 100:

@implementation ClassA

-(void) initVar

{

x = 100;

}

@end

Now let’s also define a class called ClassB:

@interface ClassB: ClassA

-(void) printVar;

@end

The first line of the declaration

@interface ClassB: ClassA

says that instead of ClassB being a subclass of NSObject, ClassB is a subclass of ClassA.
So although ClassA’s parent (or superclass) is NSObject, ClassB’s parent is ClassA. Figure
8.2 illustrates this.

As you can see from Figure 8.2, the root class has no superclass and ClassB, which is at
the bottom of the hierarchy, has no subclass.Therefore, ClassA is a subclass of NSObject,
and ClassB is a subclass of ClassA and also of NSObject (technically, it’s a sub-subclass, or
grandchild).Also, NSObject is a superclass of ClassA, which is a superclass of ClassB.
NSObject is also a superclass of ClassB because it exists farther down its hierarchy.

Here’s the full declaration for ClassB, which defines one method called printVar:

@interface ClassB: ClassA

159It All Begins at the Root

superclass

superclass

subclass

subclass

NSObject

ClassA

ClassB

Figure 8.2 Subclasses and superclasses

Class Instance Variables Methods

NSObject

ClassA

ClassB

x

x

initVar

initVar printVar

Figure 8.3 Inheriting instance variables and methods.

-(void) printVar;

@end

@implementation ClassB

-(void) printVar

{

NSLog (@”x = %i”, x);
}

@end

The printVar method prints the value of the instance variable x, yet you haven’t de-
fined any instance variables in ClassB.That’s because ClassB is a subclass of ClassA—
therefore, it inherits all of ClassA’s instance variables (in this case, there’s just one). Figure
8.3 depicts this.

(Of course, Figure 8.3 doesn’t show any of the methods or instance variables that are
inherited from the NSObject class—there are several.)

Let’s see how this works by putting it all together in a complete program example. For
the sake of brevity, we’ll put all the class declarations and definitions into a single file (see
Program 8.1).

160 Chapter 8 Inheritance

Program 8.1

// Simple example to illustrate inheritance

#import <Foundation/Foundation.h>

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

@implementation ClassA
-(void) initVar
{

x = 100;
}
@end

// Class B declaration and definition

@interface ClassB : ClassA
-(void) printVar;
@end

@implementation ClassB
-(void) printVar
{

NSLog (@”x = %i”, x);
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassB *b = [[ClassB alloc] init];

[b initVar]; // will use inherited method
[b printVar]; // reveal value of x;

[b release];

[pool drain];
return 0;

}

161It All Begins at the Root

Program 8.1 Output

x = 100

You begin by defining b to be a ClassB object.After allocating and initializing b, you
send a message to apply the initVar method to it. But looking back at the definition of
ClassB, you’ll notice that you never defined such a method. initVar was defined in
ClassA, and because ClassA is the parent of ClassB, ClassB gets to use all of ClassA’s
methods. So with respect to ClassB, initVar is an inherited method.

Note
We briefly mentioned it up to this point, but alloc and init are methods you have used all
along that are never defined in your classes. That’s because you took advantage of the fact
that they were inherited methods.

After sending the initVar message to b, you invoke the printVar method to display
the value of the instance variable x.The output of x = 100 confirms that printVar was
capable of accessing this instance variable.That’s because, as with the initVar method, it
was inherited.

Remember that the concept of inheritance works all the way down the chain. So if
you defined a new class called ClassC, whose parent class was ClassB, like so

@interface ClassC: ClassB;

...

@end

then ClassC would inherit all of ClassB’s methods and instance variables, which in turn
inherited all of ClassA’s methods and instance variables, which in turn inherited all of
Object’s methods and instance variables.

Be sure you understand that each instance of a class gets it own instance variables, even
if they’re inherited.A ClassC object and a ClassB object would therefore each have their
own distinct instance variables.

Finding the Right Method
When you send a message to an object, you might wonder how the correct method is
chosen to apply to that object.The rules are actually quite simple. First, the class to which
the object belongs is checked to see whether a method is explicitly defined in that class
with the specific name. If it is, that’s the method that is used. If it’s not defined there, the
parent class is checked. If the method is defined there, that’s what is used. If not, the search
continues.

Parent classes are checked until one of two things happens: Either you find a class that
contains the specified method or you don’t find the method after going all the way back
to the root class. If the first occurs, you’re all set; if the second occurs, you have a problem,
and a warning message is generated that looks like this:

warning: ‘ClassB’ may not respond to ‘-inity’

In this case, you inadvertently are trying to send a message called inity to a variable of
type class ClassB.The compiler told you that variables of that type of class do not know

162 Chapter 8 Inheritance

how to respond to such a method.Again, this was determined after checking ClassB’s
methods and its parents’ methods back to the root class (which, in this case, is NSObject).

In some cases, a message is not generated if the method is not found.This involves us-
ing something known as forwarding, which is briefly discussed in Chapter 9,“Polymor-
phism, Dynamic Typing, and Dynamic Binding.”

Extension Through Inheritance:
Adding New Methods
Inheritance often is used to extend a class.As an example, let’s assume that you’ve just
been assigned the task of developing some classes to work with 2D graphical objects such
as rectangles, circles, and triangles. For now, we’ll worry about just rectangles. Let’s go back
to exercise 7 from Chapter 4,“Data Types and Expressions,” and start with the
@interface section from that example:

@interface Rectangle: NSObject

{

int width;

int height;

}

@property int width, height;

-(int) area;

-(int) perimeter;

@end

You’ll have synthesized methods to set the rectangle’s width and height and to return
those values, and your own methods to calculate its area and perimeter. Let’s add a method
that will allow you to set both the width and the height of the rectangle with the same
message call, which is as follows:

-(void) setWidth: (int) w andHeight: (int) h;

Assume that you typed this new class declaration into a file called Rectangle.h. Here’s
what the implementation file Rectangle.m might look like:

#import “Rectangle.h”

@implementation Rectangle

@synthesize width, height;

-(void) setWidth: (int) w andHeight: (int) h

{

width = w;

height = h;

}

163Extension Through Inheritance: Adding New Methods

-(int) area

{

return width * height;

}

-(int) perimeter

{

return (width + height) * 2;

}

@end

Each method definition is straightforward enough. Program 8.2 shows a main routine
to test it.

Program 8.2

#import “Rectangle h”
#import <stdio.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Rectangle *myRect = [[Rectangle alloc] init];

[myRect setWidth: 5 andHeight: 8];

NSLog (w = %i, h = %i”,
myRect.width, myRect.height);

NSLog (@”Area = %i, Perimeter = %i”,
[myRect area], [myRect perimeter]);

[myRect release];

[pool drain];
return 0;

}

Program 8.2 Output

Rectangle: w = 5, h = 8

Area = 40, Perimeter = 26

myRect is allocated and initialized; then its width is set to 5 and its height to 8.The first
printf call verifies this. Next, the area and the perimeter of the rectangle are calculated
with the appropriate message calls, and the returned values are handed off to NSLog to be
displayed.

164 Chapter 8 Inheritance

Suppose that you now need to work with squares.You could define a new class called
Square and define similar methods in it as in your Rectangle class.Alternately, you could
recognize the fact that a square is just a special case of a rectangle whose width and height
just happen to be the same.

Thus, an easy way to handle this is to make a new class called Square and have it be a
subclass of Rectangle.That way, you get to use all of Rectangle’s methods and variables,
in addition to defining your own. For now, the only methods you might want to add
would be to set the side of the square to a particular value and retrieve that value. Program
8.3 shows the interface and implementation files for your new Square class.

Program 8.3 Square.h Interface File

#import “Rectangle.h”

@interface Square: Rectangle

-(void) setSide: (int) s;
-(int) side;

@end

Program 8.3 Square.m Implementation File

#import “Square.h”

@implementation Square: Rectangle

-(void) setSide: (int) s
{

[self setWidth: s andHeight: s];
}

-(int) side
{

return width;
}

@end

Notice what you did here.You defined your Square class to be a subclass of
Rectangle, which is declared in the header file Rectangle.h.You didn’t need to add any
instance variables here, but you did add new methods called setSide: and side.

A square has only one side, but you’re internally representing it as two numbers—that’s
okay.All that is hidden from the user of the Square class.You can always redefine your
Square class later, if necessary; any users of the class don’t have to be concerned with the
internal details because of the notion of data encapsulation discussed earlier.

The setSide: method takes advantage of the fact that you already have a method in-
herited from your Rectangle class to set the values of the width and height of a rectangle.

165Extension Through Inheritance: Adding New Methods

So setSide: calls the setWidth:andHeight: method from the Rectangle class, passing
the parameter s as the value for both the width and the height.You don’t really have to do
anything else. Someone working with a Square object can now set the dimensions of the
square by using setSide: and can take advantage of the methods from the Rectangle
class to calculate the square’s area, perimeter, and so on. Program 8.3 shows the test pro-
gram and output for your new Square class.

Program 8.3 Test Program

#import “Square.h”
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Square *mySquare = [[Square alloc] init];

[mySquare setSide: 5];

NSLog (@”Square s = %i”, [mySquare side]);
NSLog (@”Area = %i, Perimeter = %i”,

[mySquare area], [mySquare perimeter]);
[mySquare release];

[pool drain];
return 0;

}

Program 8.3 Output

Square s = 5

Area = 25, Perimeter = 20

The way you defined the Square class is a fundamental technique of working with
classes in Objective-C: extending what you or someone else has already done to suit your
needs. In addition, a mechanism known as categories enables you to add new methods to an
existing class definition in a modular fashion—that is, without having to constantly add
new definitions to the same interface and implementation files.This is particularly handy
when you want to do this to a class for which you don’t have access to the source code.
You’ll learn about categories in Chapter 11,“Tying Up Some Loose Ends.”

166 Chapter 8 Inheritance

myRect

(x1, y1)

(x,y)

(0,0)

Figure 8.4 A rectangle drawn in a window

A Point Class and Memory Allocation
The Rectangle class stores only the rectangle’s dimensions. In a real-world graphical ap-
plication, you might need to keep track of all sorts of additional information, such as the
rectangle’s fill color, line color, location (origin) inside a window, and so on.You can easily
extend your class to do this. For now, let’s deal with the idea of the rectangle’s origin.As-
sume that the “origin” means the location of the rectangle’s lower-left corner within some
Cartesian coordinate system (x, y). If you were writing a drawing application, this point
might represent the location of the rectangle inside a window, as depicted in Figure 8.4.

In Figure 8.4, the rectangle’s origin is shown at (x1, y1).
You could extend your Rectangle class to store the x, y coordinate of the rectangle’s

origin as two separate values. Or you might realize that, in the development of your
graphics application, you’ll have to deal with a lot of coordinates and, therefore, decide to
define a class called XYPoint (you might recall this problem from exercise 7 in Chapter 3):

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject

{

int x;

int y;

}

@property int x, y;

-(void) setX: (int) xVal andY: (int) yVal;

@end

Now let’s get back to your Rectangle class.You want to be able to store the rectangle’s
origin, so you’ll add another instance variable, called origin, to the definition of your
Rectangle class:

@interface Rectangle: NSObject

{

167Extension Through Inheritance: Adding New Methods

int width;

int height;

XYPoint *origin;

}

...

It seems reasonable to add a method to set the rectangle’s origin and to retrieve it.To
illustrate an important point, we’re won’t synthesize the accessor methods for the origin
now. Instead, we’ll write them ourselves.

The @class Directive
Now you can work with rectangles (and squares as well!) with the ability to set their
widths, heights, and origins. First, let’s take a complete look at your Rectangle.h inter-
face file:

#import <Foundation/Foundation.h>

@class XYPoint;

@interface Rectangle: NSObject

{

int width;

int height;

XYPoint *origin;

}

@property int width, height;

-(XYPoint *) origin;

-(void) setOrigin: (XYPoint *) pt;

-(void) setWidth: (int) w andHeight: (int) h

-(int) area;

-(int) perimeter;

@end

You used a new directive in the Rectangle.h header file:

@class XYPoint;

You needed this because the compiler needs to know what an XYPoint is when it en-
counters it as one of the instance variables defined for a Rectangle.The class name is also
used in the argument and return type declarations for your setOrigin: and origin

methods, respectively. You do have another choice. You can import the header file in-
stead, like so:

#import “XYPoint.h”

168 Chapter 8 Inheritance

Using the @class directive is more efficient because the compiler doesn’t need to
process the entire XYPoint.h file (even though it is quite small); it just needs to know that
XYPoint is the name of a class. If you need to reference one of the XYPoint classes meth-
ods, the @class directive does not suffice because the compiler would need more infor-
mation; it would need to know how many arguments the method takes, what their types
are, and what the method’s return type is.

Let’s fill in the blanks for your new XYPoint class and Rectangle methods so you can
test everything in a program. First, Program 8.4 shows the implementation file for your
XYPoint class.

First, Program 8.4 shows the new methods for the Rectangle class.

Program 8.4 Rectangle.m Added Methods

#import “XYPoint.h”

-(void) setOrigin: (XYPoint *) pt
{

origin = pt;
}

-(XYPoint *) origin
{

return origin;
}

@end

Following are the complete XYPoint and Rectangle class definitions, followed by a test
program to try them out.

Program 8.4 XPoint.h Interface File

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject
{

int x;
int y;

}
@property int x, y;

-(void) setX: (int) xVal andY: (int) yVal;

@end

169Extension Through Inheritance: Adding New Methods

Program 8.4 XYPoint.m Implementation File

#import “XYPoint.h”

@implementation XYPoint

@synthesize x, y;
-(void) setX: (int) xVal andY: (int) yVal
{

x = xVal;
y = yVal;

}

@end

Program 8.4 Rectangle.h Interface File

#import <Foundation/Foundation.h>

@class XYPoint;
@interface Rectangle: NSObject
{

int width;
int height;
XYPoint *origin;

}

@property int width, height;

-(XYPoint *) origin;
-(void) setOrigin: (XYPoint *) pt;
-(void) setWidth: (int) w andHeight: (int) h;
-(int) area;
-(int) perimeter;

@end

Program 8.4 Rectangle.m Implementation File

#import “Rectangle.h”

@implementation Rectangle

@synthesize width, height;

-(void) setWidth: (int) w andHeight: (int) h

170 Chapter 8 Inheritance

{
width = w;
height = h;

}

–(void) setOrigin: (Point *) pt
{

origin = pt;
}

–(int) area
{

return width * height;
}

–(int) perimeter
{

return (width + height) * 2;
}

–(Point *) origin
{

return origin;
}

@end

Program 8.4 Test Program

#import “Rectangle.h”
#import “XYPoint.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@”Rectangle w = %i, h = %i”,
myRect.width, myRect.height);

171Extension Through Inheritance: Adding New Methods

NSLog (@”Origin at (%i, %i)”,
myRect.origin.x, myRect.origin.y);

NSLog (@”Area = %i, Perimeter = %i”,
[myRect area], [myRect perimeter]);
[myRect release];

[myPoint release];

[pool drain];
return 0;

}

Program 8.4 Output

Rectangle w = 5, h = 8
Origin at (100, 200)

Area = 40, Perimeter = 26

Inside the main routine, you allocated and initialized a rectangle identified as myRect
and a point called myPoint. Using the setX:andY: method, you set myPoint to (100,

200).After setting the width and the height of the rectangle to 5 and 8, respectively, you
invoked the setOrigin method to set the rectangle’s origin to the point indicated by
myPoint.The three printf calls then retrieve and print the values.The expression

myRect.origin.x

takes the XYPoint object returned by the accessor method origin method and applies the
dot operator to get the x-coordinate of the rectangle’s origin. In a similar manner, the fol-
lowing expression retrieves the y-coordinate of the rectangle’s origin:

myRect.origin.y

Classes Owning Their Objects
Can you explain the output from Program 8.5?

Program 8.5

#import “Rectangle.h”
#import “XYPoint.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

172 Chapter 8 Inheritance

100

200

x

y

myPoint

Figure 8.5 The XYPoint myPoint in memory

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@”Origin at (%i, %i)”,
myRect.origin.x, myRect.origin.y);

[myPoint setX: 50 andY: 50];
NSLog (@”Origin at (%i, %i)”,

myRect.origin.x, myRect.origin.y);
[myRect release];
[myPoint release];

[pool drain];
return 0;

}

Program 8.5 Output

Origin at (100, 200)

Origin at (50, 50)

You changed the XYPoint myPoint from (100, 200) in the program to (50, 50),
and apparently it also changed the rectangle’s origin! But why did that happen? You didn’t
explicitly reset the rectangle’s origin, so why did the rectangle’s origin change? If you go
back to the definition of your setOrigin: method, perhaps you’ll see why:

-(void) setOrigin: (XYPoint *) pt

{

origin = pt;

}

When the setOrigin: method is invoked with the expression

myRect.origin = myPoint;

the value of myPoint is passed as the argument to the method.This value points to where
this XYPoint object is stored in memory, as depicted in Figure 8.5.

173Extension Through Inheritance: Adding New Methods

100

200

x

y

myPoint

pt

Figure 8.6 Passing the rectangle’s origin to the method

That value stored inside myPoint, which is a pointer into memory, is copied into the
local variable pt as defined inside the method. Now both pt and myPoint reference the
same data stored in memory. Figure 8.6 illustrates this.

When the origin variable is set to pt inside the method, the pointer stored inside pt is
copied into the instance variable origin, as depic ed in Figure 8.7.

Because myPoint and the origin variable stored in myRect reference the same area in
memory (as does the local variable pt), when you subsequently change the value of
myPoint to (50, 50), the rectangle’s origin is changed as well.

You can avoid this problem by modifying the setOrigin: method so that it allocates
its own point and sets the origin to that point.This is shown here:

-(void) setOrigin: (XYPoint *) pt

{

origin = [[XYPoint alloc] init];

[origin setX: pt.x andY: pt.y];

}

The method first allocates and initializes a new XYPoint.The message expression

100

200

x

y

5

8

w

h

origin

myPoint

pt

myRect

Figure 8.7 Setting the rectangle’s origin

174 Chapter 8 Inheritance

Figure 8.8 Compiler error messages

[origin setX: pt.x andY: pt.y];

sets the newly allocated XYPoint to the x, y coordinate of the argument to the method.
Study this message expression until you fully understand how it works.

The change to the setOrigin: method means that each Rectangle instance now
owns its origin XYPoint instance. Even though it is now responsible for allocating the
memory for that XYPoint, it should also now become responsible for releasing that mem-
ory. In general, when a class contains other objects, at times you will want to have it own
some or all of those objects. In the case of a rectangle, it makes sense for the Rectangle
class to own its origin because that is a basic attribute of a rectangle.

But how do you release the memory used by your origin? Releasing the rectangle’s
memory does not also release the memory you allocated for the origin. One way to re-
lease the memory is to insert a line such as the following into main:

[[myRect origin] release];

This releases the XYPoint object that the origin method returns.You must do this be-
fore you release the memory for the Rectangle object itself because none of the variables
contained in an object is valid after an object’s memory is released. So the correct code se-
quence would be as follows:

[[myRect origin] release]; // Release the origin’s memory
[myRect release]; // Release the rectangle’s memory

It’s a bit of a burden to have to remember to release the origin’s memory yourself.After
all, you weren’t the one who allocated it; the Rectangle class did. In the next section,
“Overriding Methods,” you learn how to have the Rectangle release the memory.

With your modified method, recompiling and rerunning Program 8.5 produces the er-
ror messages shown as Figure 8.8.

Oops! The problem here is that you’ve used some methods from the XYPoint class in
your modified method, so now the compiler needs more information about it than the
@class directive provides. In this case, you must go back and replace that directive with an
import instead, like so:

#import “XYPoint.h”

Program 8.5B Output

Origin at (100, 200)

Origin at (100, 200)

175Overriding Methods

That’s better.This time, changing the value of myPoint to (50, 50) inside main had
no effect on the rectangle’s origin because a copy of the point was created inside the
Rectangle’s setOrigin: method.

Incidentally, we didn’t synthesize the origin methods here because the synthesized set-
ter setOrigin: method would have behaved just like the one you originally wrote.That
is, by default, the action of a synthesized setter is to simply copy the object pointer, not
the object itself.

You can synthesize a different type of setter method that instead does make a copy of
the object. However, to do that, you need to learn how to write a special copying
method.We revisit this topic in Chapter 17,“Memory Management.”

Overriding Methods
We noted earlier in this chapter that you can’t remove or subtract methods through inher-
itance. However, you can change the definition of an inherited method by overriding it.

Returning to your two classes, ClassA and ClassB, assume that you want to write
your own initVar method for ClassB.You already know that ClassB will inherit the
initVar method defined in ClassA, but can you make a new method with the same
name to replace the inherited method? The answer is yes, and you do so simply by defin-
ing a new method with the same name.A method defined with the same name as that of
a parent class replaces, or overrides, the inherited definition.Your new method must have
the same return type and take the same number and type of arguments as the method you
are overriding.

Program 8.6 shows a simple example to illustrate this concept.

Program 8.6

// Overriding Methods

#import <Foundation/Foundation.h>

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

@implementation ClassA
-(void) initVar
{

x = 100;
}

176 Chapter 8 Inheritance

@end

// ClassB declaration and definition

@interface ClassB: ClassA
-(void) initVar;
-(void) printVar;
@end

@implementation ClassB
-(void) initVar // added method
{

x = 200;
}

-(void) printVar
{

NSLog (@”x = %i”, x);
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassB *b = [[ClassB alloc] init];

[b initVar]; // uses overriding method in B

[b printVar]; // reveal value of x;
[b release];

[pool drain];
return 0;

}

Program 8.6 Output

x = 200

Clearly, the message

[b initVar];

causes the initVar method defined in ClassB to be used, and not the one defined in
ClassA, as was the case with the previous example. Figure 8.9 illustrates this.

177Overriding Methods

Class Instance Variables Methods

Object

ClassA

ClassB

x

x

initVar

initVar printVar

Figure 8.9 Overriding the initVar method

Which Method Is Selected?
We covered how the system searches up the hierarchy for a method to apply to an object.
If you have methods in different classes with the same name, the correct method is chosen
based on the class of the receiver of the message. Program 8.7 uses the same class defini-
tion for ClassA and ClassB as before.

Program 8.7

#import <Foundation/Foundation.h>

// insert definitions for ClassA and ClassB here

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassA *a = [[ClassA alloc] init];
ClassB *b = [[ClassB alloc] init];

[a initVar]; // uses ClassA method
[a printVar]; // reveal value of x;

[b initVar]; // use overriding ClassB method
[b printVar]; // reveal value of x;
[a release];
[b release];

[pool drain];
return 0;

}

You’ll get this warning message when you build this program:

warning: ‘ClassA’ may not respond to ‘-printVar’

What happened here? We talked about this in an earlier section.Take a look at the dec-
laration for ClassA:

// ClassA declaration and definition

178 Chapter 8 Inheritance

@interface ClassA: NSObject

{

int x;

}

-(void) initVar;

@end

Notice that no printVar method is declared.That method is declared and defined in
ClassB.Therefore, even though ClassB objects and their descendants can use this method
through inheritance, ClassA objects cannot because the method is defined farther down
in the hierarchy.

Note
You can coerce the use of this method in some ways, but we don’t go into that here—be-
sides, it’s not good programming practice.

Returning to our example, let’s add a printVar method to ClassA so you can display
the value of its instance variables:

// ClassA declaration and definition

@interface ClassA: NSObject

{

int x;

}

-(void) initVar;

-(void) printVar;

@end

@implementation ClassA

-(void) initVar

{

x = 100;

}

-(void) printVar

{

NSLog (@”x = %i”, x);
}

@end

ClassB’s declaration and definition remain unchanged. Let’s try compiling and running
this program again.

179Overriding Methods

Program 8.7 Output

x = 100

x = 200

Now we can talk about the actual example. First, a and b are defined to be ClassA and
ClassB objects, respectively.After allocation and initialization, a message is sent to a asking
it to apply the initVar method.This method is defined in the definition of ClassA, so
this method is selected.The method simply sets the value of the instance variable x to 100

and returns.The printVar method, which you just added to ClassA, is invoked next to
display the value of x.

As with the ClassA object, the ClassB object b is allocated and initialized, its instance
variable x is set to 200, and finally its value displayed.

Be sure that you understand how the proper method is chosen for a and b based on
which class they belong to.This is a fundamental concept of object-oriented program-
ming in Objective-C.

As an exercise, consider removing the printVar method from ClassB.Would this
work? Why or why not?

Overriding the dealloc Method and the Keyword super
Now that you know how to override methods, let’s return to Program 8.5B to learn a
better approach to releasing the memory occupied by the origin.The setOrigin:
method now allocates its own XYPoint origin object, and you are responsible for releas-
ing its memory.The approach used in Program 8.6 was to have main release that memory
with a statement such as follows:

[[myRect origin] release];

You don’t have to worry about releasing all the individual members of a class; you can
override the inherited dealloc method (it’s inherited from NSObject) and release the
origin’s memory there.

Note
You don’t override the release method—you override dealloc instead. As you’ll learn in a
later chapter, release sometimes gives up the memory an object used, and sometimes it
doesn’t. It gives up the memory taken by an object only if no one else is referencing that ob-
ject. And it does this by invoking the object’s dealloc method, the method that actually re-
leases the memory.

If you decide to override dealloc, you also have to be sure to release the memory
taken up not only by your own instance variables, but by any inherited ones as well.

To do this, you need to take advantage of the special keyword super, which refers to the
parent class of the message receiver.You can send a message to super to execute an over-
ridden method.This is the most common use for this keyword. So the message expression

[super release];

180 Chapter 8 Inheritance

when used inside a method invokes the release method that is defined in (or inherited
by) the parent class.The method is invoked on the receiver of the message—in other
words, on self.

Therefore, the strategy for overriding the dealloc method for your Rectangle class is
to first release the memory taken up by your origin and then invoke the dealloc
method from the parent class to complete the job.This releases the memory taken up by
the Rectangle object itself. Here is the new method:

-(id) dealloc

{

if (origin)

[origin release];

return [super dealloc];

}

The dealloc method is defined to return a value of type id.You know this by looking
inside the header file <NSObject.h> where it is declared. Inside the dealloc method, a
test is made to see if origin is nonzero before releasing it.The origin of the rectangle
possibly was never set; in this case, it has its default value of zero.Then we invoke the
dealloc method from the parent class, which is the same method the Rectangle class
would have inherited if it had not been overridden.

You can also write the dealloc method more simply as

-(id) dealloc

{

[origin release];

return [super dealloc];

}

because it’s okay to send a message to a nil object.Also, you’re careful to release origin
and not dealloc it here. If no one else is using the origin, the release will end up invok-
ing the dealloc method on the origin anyway to free up its space.

With your new method, you now have to release just the rectangles that you allocate,
without having to worry about the XYPoint objects they contain.The two release mes-
sages shown in Program 8.5 will now suffice to release all the objects you allocated in the
program, including the XYPoint object that setOrigin: creates:

[myRect release];

[myPoint release];

One issue remains: If you set the origin of a single Rectangle object to different values
during the execution of your program, you must release the memory taken up by the old
origin before you allocate and assign the new one. For example, consider the following
code sequence:

myRect.origin = startPoint;

...

181Extension Through Inheritance: Adding New Instance Variables

myRect.origin = endPoint;

...

[startPoint release];

[endPoint release];

[myRect release];

The copy of the XYPoint startPoint stored in the origin member of myRect will
not be released because it is overwritten by the second origin (endPoint) that is stored
there.That origin is released properly when the rectangle itself is released, based on your
new release method.

You would have to ensure that, before you set a new origin in your rectangle, the old
one was released.You could handle this in the setOrigin: method, as follows:

-(void) setOrigin: (XYPoint *) pt

{

if (origin)

[origin release];

origin = [[XYPoint alloc] init];

[origin setX: pt.x andY: pt.y];

}

Luckily, when you synthesize your accessor methods, you can also have the compiler
automatically handle this issue for you.

Extension Through Inheritance: Adding New
Instance Variables
Not only can you add new methods to effectively extend the definition of a class, but you
can also add new instance variables. In both cases, the effect is cumulative.You can never
subtract methods or instance variables through inheritance; you can only add—or, in the
case of methods, add or override.

Let’s return to your simple ClassA and ClassB classes and make some changes.Add a
new instance variable, y, to ClassB, like so:

@interface ClassB: ClassA

{

int y;

}

-(void) printVar;

@end

Even though ClassB might appear to have only one instance variable, called y, based
on the previous declaration, it actually has two: It inherits the variable x from ClassA and
adds its own instance variable y.

182 Chapter 8 Inheritance

Note
Of course, it also has instance variables that it inherits from the NSObject class, but we
choose to ignore this detail for now.

Let’s put this together in a simple example to illustrate this concept (see Program 8.8).

Program 8.8

// Extension of instance variables

#import <Foundation/Foundation.h>

// Class A declaration and definition

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

@implementation ClassA
-(void) initVar
{

x = 100;
}
@end

// ClassB declaration and definition

@interface ClassB: ClassA
{

int y;
}
-(void) initVar;
-(void) printVar;
@end

@implementation ClassB
-(void) initVar
{

x = 200;
y = 300;

}

-(void) printVar
{

183Abstract Classes

NSLog (@”x = %i”, x);
NSLog (@”y = %i”, y);

}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

ClassB *b = [[ClassB alloc] init];

[b initVar ; // uses overriding method in ClassB
[b printVar]; // reveal values of x and y;

[b release];
[pool drain];
return 0;

}

Program 8.8 Output

x = 200

y = 300

The ClassB object b is initialized by invoking the initVar method defined within
ClassB. Recall that this method overrides the initVar method from ClassA.This
method also sets the value of x (which was inherited from ClassA) to 200 and y (which
was defined in ClassB) to 300. Next, the printVar method is used to display the value
of these two instance variables.

Many more subtleties surround the idea of choosing the right method in response to a
message, particularly when the receiver can be one of several classes.This is a powerful
concept known as dynamic binding, and it is the topic of the next chapter.

Abstract Classes
What better way to conclude this chapter than with a bit of terminology? We introduce it
here because it’s directly related to the notion of inheritance.

Sometimes classes are created just to make it easier for someone to create a subclass.
For that reason, these classes are called abstract classes or, equivalently, abstract superclasses.
Methods and instance variables are defined in the class, but no one is expected to actually
create an instance from that class. For example, consider the root object NSObject. Can
you think of any use for defining an object from that class?

The Foundation framework, covered in Part II,“The Foundation Framework,” has
several of these so-called abstract classes.As an example, the Foundation’s NSNumber class
is an abstract class that was created for working with numbers as objects. Integers and

184 Chapter 8 Inheritance

floating-point numbers typically have different storage requirements. Separate subclasses
of NSNumber exist for each numeric type. Because these subclasses, unlike their abstract
superclasses, actually exist, they are known as concrete subclasses. Each concrete subclass falls
under the NSNumber class umbrella and is collectively referred to as a cluster.When you
send a message to the NSNumber class to create a new integer object, the appropriate sub-
class is used to allocate the necessary storage for an integer object and to set its value ap-
propriately.These subclasses are actually private.You don’t access them directly yourself;
they are accessed indirectly through the abstract superclass.The abstract superclass gives a
common interface for working with all types of number objects and relieves you of the
burden of having to know which type of number you have stored in your number object
and how to set and retrieve its value.

Admittedly, this discussion might seem a little “abstract” (sorry!); don’t worry—just a
basic grasp of the concept is sufficient here.

Exercises
1. Add a new class called ClassC, which is a subclass of ClassB, to Program 8.1.

Make an initVar method that sets the value of its instance variable x to 300.Write
a test routine that declares ClassA, ClassB, and ClassC objects and invokes their
corresponding initVar methods.

2. When dealing with higher-resolution devices, you might need to use a coordinate
system that enables you to specify points as floating-point values instead of as sim-
ple integers. Modify the XYPoint and Rectangle classes from this chapter to deal
with floating-point numbers.The rectangle’s width, height, area, and perimeter
should all work with floating-point numbers as well.

3. Modify Program 8.1 to add a new class called ClassB2 that, like ClassB, is a sub-
class of ClassA.
What can you say about the relationship between ClassB and ClassB2?

Identify the hierarchical relationship between the Object class, ClassA, ClassB, and
ClassB2.
What is the superclass of ClassB?

What is the superclass of ClassB2?

How many subclasses can a class have, and how many superclasses can it have?

4. Write a Rectangle method called translate: that takes a vector called XYPoint
(xv, yv) as its argument. Have it translate the rectangle’s origin by the specified vector.

5. Define a new class called GraphicObject, and make it a subclass of NSObject. De-
fine instance variables in your new class as follows:
int fillColor; // 32-bit color

BOOL filled; // Is the object filled?

int lineColor; // 32-bit line color

185Exercises

Write methods to set and retrieve the variables defined previously.
Make the Rectangle class a subclass of GraphicObject.

Define new classes, Circle and Triangle, which are also subclasses of
GraphicObject. Write methods to set and retrieve the various parameters for these
objects and also to calculate the circle’s circumference and area, and the triangle’s
perimeter and area.

6. Write a Rectangle method called intersect: that takes a rectangle as an argu-
ment and returns a rectangle representing the overlapping area between the two
rectangles. For example, given the two rectangles shown in Figure 8.10, the method
should return a rectangle whose origin is at (400, 420), whose width is 50, and
whose height is 60.

If the rectangles do not intersect, return one whose width and height are zero and
whose origin is at (0,0).

7. Write a method for the Rectangle class called draw that draws a rectangle using
dashes and vertical bar characters.The following code sequence

Rectangle *myRect = [[Rectangle alloc] init];

[myRect setWidth: 10 andHeight: 3];

[myRect draw];

[myRect release];

would produce the following output:
—————

| |

| |

| |

—————

w = 250

w = 100

h = 75

h = 180(200, 420)

(400, 300)

Figure 8.10 Intersecting rectangles

9
Polymorphism, Dynamic

Typing, and Dynamic Binding

In this chapter, you’ll learn about the features of the Objective-C language that make it
such a powerful programming language and that distinguish it from some other object-
oriented programming languages such as C++.This chapter describes three key concepts:
polymorphism, dynamic typing, and dynamic binding. Polymorphism enables programs to
be developed so that objects from different classes can define methods that share the same
name. Dynamic typing defers the determination of the class that an object belongs to until
the program is executing. Dynamic binding defers the determination of the actual method
to invoke on an object until program execution time.

Polymorphism: Same Name, Different Class
Program 9.1 shows the interface file for a class called Complex, which is used to represent
complex numbers in a program.

Program 9.1 Interface File Complex.h

// Interface file for Complex class

#import <Foundation/Foundation.h>

@interface Complex: NSObject
{

double real;
double imaginary;

}

@property double real, imaginary;
-(void) print;
-(void) setReal: (double) a andImaginary: (double) b;
-(Complex *) add: (Complex *) f;

@end

188 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

You should have completed the implementation section for this class in Exercise 6
from Chapter 4,“Data Types and Expressions.”We added an additional
setReal:andImaginary: method to enable you to set both the real and imaginary parts
of your number with a single message and also synthesized accessor methods.This is
shown in the following.

Program 9.1 Implementation File Complex.m

// Implementation file for Complex class

#import “Complex.h”

@implementation Complex

@synthesize real, imaginary;

-(void) print
{

NSLog (@” %g + %gi “, real, imaginary);
}

-(void) setReal: (double) a andImaginary: (double) b
{

real = a;
imaginary = b;

}

-(Complex *) add: (Complex *) f
{

Complex *result = [[Complex alloc] init];

[result setReal: real + [f real]
andImaginary: imaginary + [f imaginary]];

return result;
}

@end

Program 9.1 Test Program main.m

// Shared Method Names: Polymorphism

#import “Fraction.h”
#import “Complex.h”

int main (int argc, char *argv[])
{

189Polymorphism: Same Name, Different Class

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *f1 = [[Fraction alloc] init];
Fraction *f2 = [[Fraction alloc] init];
Fraction *fracResult;
Complex *c1 = [[Complex alloc] init];
Complex *c2 = [[Complex alloc] init];
Complex *compResult;

[f1 setTo: 1 over: 10];
[f2 setTo: 2 over: 15];

[c1 setReal: 18.0 andImaginary: 2.5];
[c2 setReal: -5.0 andImaginary: 3.2];

// add and print 2 complex numbers

[c1 print]; NSLog (@” +”); [c2 print];
NSLog (@”---------”);
compResult = [c1 add: c2];
[compResult print];
NSLog (@”\n”);

[c1 release];
[c2 release];
[compResult release];

// add and print 2 fractions
[f1 print]; NSLog (@” +”); [f2 print];
NSLog (@”----”);
fracResult = [f1 add: f2];
[fracResult print];

[f1 release];
[f2 release];
[fracResult release];

[pool drain];
return 0;

}

190 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Program 9.1 Output

18 + 2.5i
+

-5 + 3.2i

13 + 5.7i

1/10
+

2/15

7/30

Note that both the Fraction and Complex classes contain add: and print methods.
So when executing the message expressions

compResult = [c1 add: c2];

[compResult print];

how does the system know which methods to execute? It’s simple:The Objective-C run-
time knows that c1, the receiver of the first message, is a Complex object.Therefore, it se-
lects the add: method defined for the Complex class.

The Objective-C runtime system also determines that compResult is a Complex ob-
ject, so it selects the print method defined in the Complex class to display the result of
the addition.The same discussion applies to the following message expressions:

fracResult = [f1 add: f2];

[fracResult print];

Note
As described more completely in Chapter 13, “Underlying Language Features,” the system
always carries information about the class to which an object belongs. This enables it to
make these key decisions at runtime instead of at compile time.

The corresponding methods from the Fraction class are chosen to evaluate the mes-
sage expression based on the class of f1 and fracResult.

As mentioned, the capability to share the same method name across different classes is
known as polymorphism. Polymorphism enables you to develop a set of classes that each
can respond to the same method name. Each class definition encapsulates the code needed
to respond to that particular method, and this makes it independent of the other class defi-
nitions.This also enables you to later add new classes that can respond to methods with
the same name.

191Dynamic Binding and the id Type

Note
Before leaving this section, note that both the Fraction and Complex classes should be re-
sponsible for releasing the results that are produced by their add:methods, and not the
test program. In fact, these objects should be autoreleased. We’ll talk about that more in
Chapter 18, “Copying Objects.”

Dynamic Binding and the id Type
Chapter 4 briefly touched on the id data type and noted that it is a generic object type.
That is, id can be used for storing objects that belong to any class.The real power of this
data type is exploited when it’s used this way to store different types of objects in a vari-
able during the execution of a program. Study Program 9.2 and its associated output.

Program 9.2

// Illustrate Dynamic Typing and Binding

#import “Fraction.h”
#import “Complex.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

id dataValue;
Fraction *f1 = [[Fraction alloc] init];
Complex *c1 = [[Complex alloc] init];

[f1 setTo: 2 over: 5];
[c1 setReal: 10.0 andImaginary: 2.5];

// first dataValue gets a fraction

dataValue = f1;
[dataValue print];

// now dataValue gets a complex number

dataValue = c1;
[dataValue print];

[c1 release];
[f1 release];

[pool drain];
return 0;

}

192 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Program 9.2 Output

2/5

10 + 2.5i

The variable dataValue is declared as an id object type.Therefore, dataValue can be
used to hold any type of object in the program. Note that no asterisk is used in the decla-
ration line:

id dataValue;

The Fraction f1 is set to 2/5, and the Complex number c2 is set to (10 + 2.5i).
The assignment

dataValue = f1;

stores the Fraction f1 in dataValue. Now, what can you do with dataValue? Well, you
can invoke any of the methods that you can use on a Fraction object with dataValue,
even though the type of dataValue is an id and not a Fraction. But if dataValue can
store any type of object, how does the system know which method to invoke? That is,
when it encounters the message expression

[dataValue print];

how does it know which print method to invoke? You have print methods defined for
both the Fraction and Complex classes.

As noted previously, the answer lies in the fact that the Objective-C system always
keeps track of the class to which an object belongs. It also lies in the concepts of dynamic
typing and dynamic binding—that is, the system makes the decision about the class of the
object, and, therefore, which method to invoke dynamically, at runtime instead of at com-
pile time.

So during execution of the program, before the system sends the print message to
dataValue, it first checks the class of the object stored inside dataValue. In the first case
of Program 9.2, this variable contains a Fraction, so the print method defined in the
Fraction class is used.This is verified by the output from the program.

In the second case, the same thing happens. First, the Complex number c1 is assigned to
dataValue. Next, the following message expression is executed:

[dataValue print];

This time, because dataValue contains an object belonging to the Complex class, the
corresponding print method from that class is selected for execution.

This is a simple example, but you can extrapolate this concept to more sophisticated
applications.When combined with polymorphism, dynamic binding and dynamic typing
enable you to easily write code that can send the same message to objects from different
classes.

For example, consider a draw method that can be used to paint graphical objects on
the screen.You might have different draw methods defined for each of your graphical ob-
jects, such as text, circles, rectangles, windows, and so on. If the particular object to be

193Compile Time Versus Runtime Checking

drawn is stored inside an id variable called currentObject, for example, you could paint
it on the screen simply by sending it the draw message:

[currentObject draw];

You could even test it first to ensure that the object stored in currentObject actually
responds to a draw method.You’ll see how to do that later in this chapter, in the section
called “Asking Questions About Classes.”

Compile Time Versus Runtime Checking
Because the type of object s ored inside an id variable can be indeterminate at compile
time, some tests are deferred until runtime—that is, while the program is executing.

Consider the following sequence of code:

Fraction *f1 = [[Fraction alloc] init];

[f1 setReal: 10.0 andImaginary: 2.5 ;

Recalling that the setReal:andImaginary: method applies to complex numbers and
not fractions, the following message is issued when you compile the program containing
these lines:

prog3.m: In function ‘main’:
prog3.m:13: warning: ‘Fraction’ does not respond to ‘setReal:andImaginary:’

The Objective-C compiler knows that f1 is a Fraction object because it has been de-
clared that way. It also knows that when it sees the message expression

[f1 setReal: 10.0 andImaginary: 2.5];

the Fraction class does not have a setReal:andImaginary: method (and did not inherit
one, either).Therefore, it issues the warning message shown previously.

Now consider the following code sequence:

id dataValue = [[Fraction alloc] init];

...

[dataValue setReal: 10.0 andImaginary: 2.5];

These lines do not produce a warning message from the compiler because the com-
piler doesn’t know what type of object is stored inside dataValue when processing your
source file.

No error message is reported until you run the program containing these lines.The er-
ror looks something like this:

objc: Fraction: does not recognize selector -setReal:andImaginary:

dynamic3: received signal: Abort trap

When attempting to execute the expression

[dataValue setReal: 10.0 andImaginary: 2.5];

The runtime system first checks the type of object stored inside dataValue. Because
dataValue has a Fraction stored in it, the runtime system checks to ensure that the

194 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

method setReal:andImaginary: is one of the methods defined for the class Fraction.
Because it’s not, the error message shown previously is issued and the program is termi-
nated.

The id Data Type and Static Typing
If an id data type can be used to store any object, why don’t you just declare all your ob-
jects as type id? For several reasons, you don’t want to get into the habit of overusing this
generic class data type.

First, when you define a variable to be an object from a particular class, you are using
what’s known as static typing.The word static refers to the fact that the variable is always
used to store objects from the particular class. So the class of the object stored in that type
is predeterminate, or static.When you use static typing, the compiler ensures, to the best of
its ability, that the variable is used consistently throughout the program.The compiler can
check to ensure that a method applied to an object is defined or inherited by that class; if
not, it issues a warning message.Thus, when you declare a Rectangle variable called
myRect in your program, the compiler checks that any methods you invoke on myRect are
defined in the Rectangle class or are inherited from its superclass.

Note
Certain techniques make it possible to invoke methods that are specified by a variable, in
which case the compiler can’t check that for you.

However, if the check is performed for you at runtime anyway, why do you care about
static typing? You care because it’s better to get your errors out during the compilation
phase of your program than during the execution phase. If you leave it until runtime, you
might not even be the one running the program when the error occurs. If your program
is put into production, some poor unsuspecting user might discover when running the
program that a particular object does not recognize a method.

Another reason for using static typing is that it makes your programs more readable.
Consider the following declaration:

id f1;

versus

Fraction *f1;

Which do you think is more understandable—that is, which makes the intended use of
the variable f1 clearer? The combination of static typing and meaningful variable names
(which we intentionally did not choose in the previous example) can go a long way to-
ward making your program more self-documenting.

195Asking Questions About Classes

Argument and Return Types with Dynamic Typing
If you use dynamic typing to invoke a method, note the following rule: If a method with
the same name is implemented in more than one of your classes, each method must agree
on the type of each argument and the type of value it returns so that the compiler can
generate the correct code for your message expressions.

The compiler performs a consistency check among each class declaration it has seen. If
one or more methods conflict in either argument or return type, the compiler issues a
warning message. For example, both the Fraction and Complex classes contain add:

methods. However, the Fraction class takes as its argument and returns a Fraction object,
whereas the Complex class takes and returns a Complex object. If frac1 and myFract are
Fraction objects, and comp1 and myComplex are Complex objects, statements such as

result = [myFract add: frac1];

and

result = [myComplex add: comp1];

do not cause any problems This is because, in both cases, the receiver of the message is
statically typed and the compiler can check for consistent use of the method as it is de-
fined in the receiver’s class.

If dataValue1 and dataValue2 are id variables, the statement

result = [dataValue1 add: dataValue2];

causes the compiler to generate code to pass the argument to an add: method and handle
its returned value by making assumptions.

At runtime, the Objective-C runtime system will check the actual class of the object
stored inside dataValue1 and select the appropriate method from the correct class to ex-
ecute. However, in a more general case, the compiler might generate the incorrect code
to pass arguments to a method or handle its return value.This would happen if one
method took an object as its argument and the other took a floating-point value, for ex-
ample. Or if one method returned an object and the other returned an integer, for exam-
ple. If the inconsistency between two methods is just a different type of object (for
example, the Fraction’s add: method takes a Fraction object as its argument and re-
turns one, and the Complex’s add: method takes and returns a Complex object), the com-
piler will still generate the correct code because memory addresses (that is, pointers) are
passed as references to objects anyway.

Asking Questions About Classes
As you start working with variables that can contain objects from different classes, you
might need to ask questions such as the following:

n Is this object a rectangle?
n Does this object support a print method?
n Is this object a member of the Graphics class or one of its descendants?

196 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Table 9.1 Methods for Working with Dynamic Types

Method Question or Action

-(BOOL) isKindOfClass: class-object Is the object a member of class-object or
a descendant?

-(BOOL) isMemberOfClass:

class-object
Is the object a member of class-object?

-(BOOL) respondsToSelector:

selector
Can the object respond to the method speci-
fied by selector?

+(BOOL) instancesRespondToSelector:

selector
Can instances of the specified class respond
to selector?

+(BOOL)isSubclassOfClass:

class-object
Is the object a subclass of the specified
class?

-(id) performSelector: selector Apply the method specified by selector.

-(id) performSelector:

selector withObject: object
Apply the method specified by selector,
passing the argument object.

-(id) performSelector:

selector withObject: object1
withObject: object2

Apply the method specified by selector with
the arguments object1 and object2.

You can then use the answers to these questions to execute different sequences of code,
avoid an error, or check the integrity of your program while it’s executing.

Table 9.1 summarizes some of the basic methods that the Object class supports for ask-
ing these types of questions. In this table, class-object is a class object (typically gener-
ated with the class method), and selector is a value of type SEL (typically created with
the @selector directive).

Other methods are not covered here. One enables you to ask whether an object con-
forms to a protocol (see Chapter 11,“Tying Up Some Loose Ends”). Others enable you to
ask about dynamically resolving methods (not covered in this text).

To generate a class object from a class name or another object, you send it the class
message. So to get a class object from a class named Square, you write the following:

[Square class]

If mySquare is an instance of Square object, you get its class by writing this:

[mySquare class]

To see whether the objects stored in the variables obj1 and obj2 are instances from the
same class, you write this:

if ([obj1 class] == [obj2 class])

...

197Asking Questions About Classes

To see if my Fraction class, you test the result from the expression, like this:

[myFract isMemberOfClass: [Fraction class]]

To generate one of the so-called selectors listed in Table 9.1, you apply the @selector
directive to a method name. For example, the following produces a value of type SEL for
the method named alloc, which you know is a method inherited from the NSObject
class:

@selector (alloc)

The following expression produces a selector for the setTo:over: method that you
implemented in your Fraction class (remember those colon characters in the method
names):

@selector (setTo:over:)

To see whether an instance of the Fraction class responds to the setTo:over:
method, you can test the return value from the expression, like this:

[Fraction instancesRespondToSelector: @selector (setTo:over:)]

Remember, the test covers inherited methods, not just one that is directly defined in
the class definition.

The performSelector: method and its variants (not shown in Table 9.1) enable you
to send a message to an object, where the message can be a selector stored inside a vari-
able. For example, consider this code sequence:

SEL action;

id graphicObject;

...

action = @selector (draw);

...

[graphicObject performSelector: action];

In this example, the method indicated by the SEL variable action is sent to whatever
graphical object is stored in graphicObject. Presumably, the action might vary during
program execution—perhaps based on the user’s input—even though we’ve shown the
action as draw.To first ensure that the object can respond to the action, you might want to
use something like this:

if ([graphicObject respondsToSelector: action] == YES)

[graphicObject perform: action]

else

// error handling code here

198 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Note
You can also catch an error by overriding the doesNotRecognize: method. This method is
invoked whenever an unrecognized message is sent to a class and is passed the unrecog-
nized selector as its argument.

You can employ other strategies as well:You can forward the message to someone else
to handle using the forward:: method, or you can try to send the method anyway and
catch an exception if it occurs.We cover this latter technique shortly.

Program 9.3 asks some questions about the Square and Rectangle classes defined in
Chapter 8,“Inheritance.”Try to predict the results from this program before looking at
the actual output (no peeking!).

Program 9.3

#import “Square.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Square *mySquare = [[Square alloc] init];

// isMemberOf:

if ([mySquare isMemberOfClass: [Square class]] == YES)
NSLog (@”mySquare is a member of Square class”);

if ([mySquare isMemberOfClass: [Rectangle class]] == YES)
NSLog (@”mySquare is a member of Rectangle class”);

if ([mySquare isMemberOfClass: [NSObject class]] == YES)
NSLog (@”mySquare is a member of NSObject class”);

// isKindOf:

if ([mySquare isKindOfClass: [Square class]] == YES)
NSLog (@”mySquare is a kind of Square”);

if ([mySquare isKindOfClass: [Rectangle class]] == YES)
NSLog (@”mySquare is a kind of Rectangle”);

if ([mySquare isKindOfClass: [NSObject class]] == YES)

199Asking Questions About Classes

NSLog (@”mySquare is a kind of NSObject”);

// respondsTo:

if ([mySquare respondsToSelector: @selector (setSide:)] == YES)
NSLog (@”mySquare responds to setSide: method”);

if ([mySquare respondsToSelector: @selector (setWidth:andHeight:)] == YES)
NSLog (@”mySquare responds to setWidth:andHeight: method”);

if ([Square respondsToSelector: @selector (alloc)] == YES)
NSLog (@”Square class responds to alloc method”);

// instancesRespondTo:

if ([Rectangle instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@”Instances of Rectangle respond to setSide: method”);

if ([Square instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@”Instances of Square respond to setSide: method”);

if ([Square isSubclassOfClass: [Rectangle class]] == YES)
NSLog (@”Square is a subclass of a rectangle”);

[mySquare release];

[pool drain];
return 0;

}

Make sure you build this program with the implementation files for the Square,
Rectangle, and XYPoint classes, which were all presented in Chapter 8,“Inheritance.”

Program 9.3 Output
mySquare is a member of Square class
mySquare is a kind of Square
mySquare is a kind of Rectangle
mySquare is a kind of NSObject
mySquare responds to setSide: method
mySquare responds to setWidth:andHeight: method
Square class responds to alloc method
Instances of Square respond to setSide: method

Square is a subclass of a rectangle

The output from Program 9.3 should be clear. Remember that isMemberOfClass:
tests for direct membership in a class, whereas isKindOfClass: checks for membership in

200 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

the inheritance hierarchy.Thus, mySquare is a member of the Square class—but it’s also
“kind of” a Square, Rectangle, and NSObject because it exists in that class hierarchy
(obviously, all objects should return YES for the isKindOf: test on the NSObject class,
unless you’ve defined a new root object).

The test

if ([Square respondsTo: @selector (alloc)] == YES)

tests whether the class Square responds to the class method alloc, which it does because
it’s inherited from the root object NSObject. Realize that you can always use the class
name directly as the receiver in a message expression, and you don’t have to write this in
the previous expression (although you could if you wanted):

[Square class]

That’s the only place you can get away with that. In other places, you need to apply
the class method to obtain the class object.

Exception Handling Using @try
Good programming practice dictates that you try to anticipate problems that can occur in
your program.You can do this by testing for conditions that could cause a program to ter-
minate abnormally and handling these situations, perhaps by logging a message and grace-
fully terminating the program or taking some other corrective action. For example, you
saw earlier in this chapter how you can test to see if an object responds to a particular
message. In the case of error avoidance, performing this test while the program is execut-
ing can enable you to avoid sending an unrecognized message to an object.When an at-
tempt is made to send such an unrecognized message, your program will typically
terminate immediately by throwing what’s known as an exception.

Take a look at Program 9.4.We have no method called noSuchMethod defined in
the Fraction class.When you compile the program, you will get warning messages to
that effect.

Program 9.4

#import “Fraction.h”

int main (int argc, char *argv [])

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *f = [[Fraction alloc] init];
[f noSuchMethod];
NSLog (@”Execution continues!”);
[f release];
[pool drain];
return 0;

}

201Exception Handling Using @try

You can go ahead and run the program despite the warning messages you receive. If
you do, you can expect to see your program terminate abnormally with errors similar to
these:

Program 9.4 Output

-[Fraction noSuchMethod]: unrecognized selector sent to instance 0x103280
*** Terminating app due to uncaught exception ‘NSInvalidArgumentException’,

reason: ‘*** -[Fraction noSuchMethod]: unrecognized selector sent
to instance 0x103280’

Stack: (
2482717003,
2498756859,
2482746186,
2482739532,
2482739730

)

Trace/BPT trap

To avoid abnormal program termination in a case such as this, you can put one or
more statements inside a special statement block, which takes the following format:

@try {

statement
statement
...

}

@catch (NSException *exception) {

statement
statement
...

}

Execution proceeds as normal with each statement in the @try block. However, if one
of the statements in the block throws an exception, execution is not terminated but in-
stead goes immediately to the @catch block, where it continues. Inside that block, you
can handle the exception. One plausible sequence of actions here would be to log an er-
ror message, clean up, and terminate execution.

Program 9.5 illustrates exception handling. It is followed by the program’s output.

Program 9.5 Exception Handling

#import “Fraction.h”

int main (int argc, char *argv [])

{

202 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *f = [[Fraction alloc] init];

@try {
[f noSuchMethod];

}
@catch (NSException *exception) {

NSLog(@”Caught %@%@”, [exception name], [exception reason]);
}
NSLog (@”Execution continues!”);
[f release];
[pool drain];
return 0;

}

Program 9.5 Output

*** -[Fraction noSuchMethod]: unrecognized selector sent to instance 0x103280
Caught NSInvalidArgumentException: *** -[Fraction noSuchMethod]:
unrecognized selector sent to instance 0x103280

Execution continues!

When the exception occurs, the @catch block gets executed.An NSException object
that contains information about the exception gets passed as the argument into this
block.As you can see, the name method retrieves the name of the exception, and the
reason method gives the reason (which the runtime system also previously printed auto-
matically).

After the last statement in the @catch block is executed (we have only one here), the
program continues execution with the statement immediately following the block. In this
case, we execute an NSLog call to verify that execution has continued and has not been
terminated.

This is a very simple example to illustrate how to catch exceptions in a program.An
@finally block can be used to include code to execute whether or not a statement in a
@try block throws an exception.

An @throw directive enables you to throw your own exception.You can use it to
throw a specific exception, or inside a @catch block to throw the same exception that
took you into the block like this:

@throw;

You might want to do this after handling an exception yourself (perhaps after per-
forming cleanup work, for example).You can then let the system handle the rest of the
work for you. Finally, you can have multiple @catch blocks that are sequenced to catch
and handle different type of exceptions.

203Exercises

Exercises
1. What will happen if you insert the message expression

[compResult reduce];

into Program 9.1 after the addition is performed (but before compResult is re-
leased)? Try it and see.

2. Can the id variable dataValue, as defined in Program 9.2, be assigned a Rectangle
object as you defined it in Chapter 8? That is, is the statement

dataValue = [[Rectangle alloc] init];

valid? Why or why not?

3. Add a print method to your XYPoint class defined in Chapter 8. Have it display
the point in the format (x, y).Then modify Program 9.2 to incorporate an XYPoint

object. Have the modified program create an XYPoint object, set its value, assign it
to the id variable dataValue, and then display its value

4. Based on the discussions about argument and return types in this chapter, modify
both add: methods in the Fraction and Complex classes to take and return id ob-
jects.Then write a program that incorporates the following code sequence:

result = [dataValue1 add: dataValue2];

[result print];

Here, result, dataValue1, and dataValue2 are id objects. Make sure you set
dataValue1 and dataValue2 appropriately in your program and release all objects
before your program terminates.

5. Given the Fraction and Complex class definitions you have been using in this text
and the following definitions

Fraction *fraction = [[Fraction alloc] init];

Complex *complex = [[Complex alloc] init];

id number = [[Complex alloc] init];

determine the return value from the following message expressions.Then type
them into a program to verify the results.

[fraction isMemberOfClass: [Complex class]];

[complex isMemberOfClass: [NSObject class]];

[complex isKindOfClass: [NSObject class]];

[fraction isKindOfClass: [Fraction class]];

[fraction respondsToSelector: @selector (print)];

[complex respondsToSelector: @selector (print)];

[Fraction instancesRespondToSelector: @selector (print)];

[number respondsToSelector: @selector (print)];

[number isKindOfClass: [Complex class]];

[number respondsToSelector: @selector (release)];

[[number class] respondsToSelector: @selector (alloc)];

6. Modify the Calculator class you developed in the exercise from Chapter 4 so that
division is done in an @try block. If the division throws an exception, log an error
message and continue program execution.

204 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

10
More on Variables

and Data Types

In this chapter, we go into more detail about variable scope, initialization methods for
objects, and data types.

The initialization of an object deserves some special attention, which we give it here.
We talked briefly about the scope of instance variables as well as static and local vari-

ables in Chapter 7,“More on Classes.”We talk more about static variables here and intro-
duce the concept of global and external ones. In addition, you can give certain directives
to the Objective-C compiler, to more precisely control the scope of your instance vari-
ables.We cover these directives in this chapter as well.

An enumerated data type enables you to define the name for a data type to be used only
to store a specified list of values.The Objective-C language’s typedef statement lets you
assign your own name to a built-in or derived data type. Finally, in this chapter, we de-
scribe in more detail the precise steps the Objective-C compiler follows when converting
data types in the evaluation of expressions.

Initializing Classes
You’ve seen the pattern before:You allocate a new instance of an object and then initialize
it, using a familiar sequence like this:

Fraction *myFract = [[Fraction alloc] init];

After these two methods are invoked, you typically assign some values to the new ob-
ject, like this:

[myFract setTo: 1 over: 3];

The process of initializing an object followed by setting it to some initial values is of-
ten combined into a single method. For example, you can define an initWith:: method
that initializes a fraction and sets its numerator and denominator to the two (unnamed)
supplied arguments.

206 Chapter 10 More on Variables and Data Types

A class that contains many methods and instance variables in it commonly has several
initialization methods as well. For example, the Foundation framework’s NSArray class
contains the following six initialization methods:

initWithArray:

initWithArray:copyItems:

initWithContentsOfFile:

initWithContentsOfURL:

initWithObjects:

initWithObjects:count:

An array might be allocated and then initialized with a sequence like this:

myArray = [[NSArray alloc] initWithArray: myOtherArray];

It’s common practice for all the initializers in a class to begin with init....As you
can see, the NSArray’s initializers follow that convention.You should adhere to the follow-
ing two strategies when writing initializers.

If your class contains more than one initializer, one of them should be your designated
initializer and all the other initialization methods should use it.Typically, that is your most
complex initialization method (usually, the one that takes the most arguments). Creating a
designated initializer centralizes your main initialization code in a single method.Anyone
subclassing your class can then override your designated initializer, to ensure that new in-
stances are properly initialized.

Ensure that any inherited instance variables get properly initialized.The easiest way to
do that is to first invoke the parent’s designated initialization method, which is most often
init.After that, you can initialize your own instance variables.

Based on that discussion, your initialization method initWith:: for your Fraction
class might look like this:

-(Fraction *) initWith: (int) n: (int) d

{

self = [super init];

if (self)

[self setTo: n over: d];

return self;

}

This method invokes the parent initializer first, which is NSObject’s init method (re-
call that this is Fraction’s parent).You must assign the result back to self because an ini-
tializer has the right to change or move the object in memory.

Following the initialization of super (and its success, as indicated by the return of a
nonzero value) you use the setTo:over: method to set the numerator and denominator
of your Fraction.As with other initialization methods, you are expected to return the
initialized object, which you do here.

207Scope Revisited

Program 10.1 tests your new initWith:: initialization method.

Program 10.1

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *a, *b;

a = [[Fraction alloc] initWith: 1: 3];
b = [[Fraction alloc] initWith: 3: 7];

[a print];
[b print];

[a release];
[b release];

[pool drain];
return 0;

}

Program 10.1 Output

1/3

3/7

When your program begins execution, it sends the initialize call method to all your
classes. If you have a class and associated subclasses, the parent class gets the message first.
This message is sent only once to each class, and it is guaranteed to be sent before any
other messages are sent to the class.The purpose is for you to perform any class initializa-
tion at that point. For example, you might want to initialize some static variables associ-
ated with that class at that time.

Scope Revisited
You can influence the scope of the variables in your program in several ways.You can do
this with instance variables as well as with normal variables defined either outside or in-
side functions. In the following discussion, we use the term module to refer to any number
of method or function definitions contained within a single source file.

208 Chapter 10 More on Variables and Data Types

Directives for Controlling Instance Variable Scope
You know by now that instance variables have scope that is limited to the instance meth-
ods defined for the class. So any instance method can access its instance variables directly
by name, without having to do anything special.

You also know that instance variables are inherited by a subclass. Inherited instance
variables can also be accessed directly by name from within any method defined in that
subclass.Again, this is without having to do anything special.

You can put four directives in front of your instance variables when they are declared
in the interface section, to more precisely control their scope:

n @protected—Methods defined in the class and any subclasses can directly access
the instance variables that follow.This is the default case.

n @private—Methods defined in the class can directly access the instance variables
that follow, but subclasses cannot.

n @public—Methods defined in the class and any other classes or modules can di-
rectly access the instance variables that follow.

n @package—For 64-bit images, the instance variable can be accessed anywhere
within the image that implements the class.

If you wanted to define a class called Printer that kept two instance variables, called
pageCount and tonerLevel private, and was accessible only by methods in the Printer
class, you might use an interface section that looks like this:

@interface Printer: NSObject

{

@private

int pageCount;

int tonerLevel;

@protected

// other instance variables

}

...

@end

Anyone subclassing Printer would be incapable of accessing these two instance vari-
ables because they were made private.

These special directives act like “switches”; all variables that appear after one of these
directives (until the right curly brace that marks the end of the variable declarations) have
the specified scope unless another directive is used. In the previous example, the
@protected directive ensures that instance variables that follow, up to the }, will be acces-
sible by subclasses and by the Printer class methods.

The @public directive makes instance variables accessible by other methods or func-
tions through the use of the pointer operator (->), which is covered in Chapter 13,“Un-
derlying C Language Features.” Making an instance variable public is not considered

209Scope Revisited

good programming practice because it defeats the concept of data encapsulation (that is, a
class hiding its instance variables).

External Variables
If you write the statement

int gMoveNumber = 0;

at the beginning of your program—outside any method, class definition, or function—its
value can be referenced from anywhere in that module. In such a case, we say that
gMoveNumber is defined as a global variable. By convention, a lowercase g is commonly
used as the first letter of a global variable, to indicate its scope to the program’s reader.

Actually, this same definition of the variable gMoveNumber also makes its value accessi-
ble from other files. Specifically, the preceding statement defines the variable
gMoveNumber not just as a global variable, but as an external global variable.

An external variable is one whose value can be accessed and changed by any other
methods or functions. Inside the module that wants to access the external variable, the
variable is declared in the normal fashion and the keyword extern is placed before the
declaration.This signals to the system that a globally defined variable from another file is
to be accessed.The following is an example of how to declare the variable gMoveNumber

as an external variable:

extern int gMoveNumber;

The module in which the preceding declaration appeared can now access and modify
the value of gMoveNumber. Other modules can also access the value of gMoveNumber by
using a similar extern declaration in the file.

Consider this important rule to follow when working with external variables:The
variable must be defined someplace among your source files.This is done by declaring
the variable outside any method or function and is not preceded by the keyword extern,
like this:

int gMoveNumber;

Here, an initial value can be optionally assigned to the variable, as shown previously.
The second way to define an external variable is to declare the variable outside any

function, placing the keyword extern in front of the declaration and explicitly assigning
an initial value to it, like this:

extern int gMoveNumber = 0;

However, this is not the preferred way to do this, and the compiler warns you that
you’ve declared the variable extern and assigned it a value at the same time.That’s be-
cause using the word extern makes it a declaration for the variable, not a definition. Re-
member, a declaration doesn’t cause storage for a variable to be allocated, but a definition
does.The previous example violates this rule by forcing a declaration to be treated as a
definition (by assigning it an initial value).

210 Chapter 10 More on Variables and Data Types

When dealing with external variables, you can declare a variable as extern in many
places, but you can define it only once.

Consider a small program example to illustrate the use of external variables. Suppose
we have defined a class called Foo, and we type the following code into a file called
main.m:

#import “Foo.h”

int gGlobalVar = 5;

int main (int argc, char *argc[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Foo *myFoo = [[Foo alloc] init];

NSLog (@”%i “, gGlobalVar);

[myFoo setgGlobalVar: 100]

NSLog (@”%i”, gGlobalVar);
[myFoo release];

[pool drain];

return 0;

}

The definition of the global variable gGlobalVar in the previous program makes its
value accessible by any method (or function) that uses an appropriate extern declaration.
Suppose your Foo method setgGlobalVar: looks like this:

-(void) setgGlobalVar: (int) val

{

extern int gGlobalVar;

gGlobalVar = val;

}

This program would produce the following output:

5

100

This would verify that the method setgGlobalVar: is capable of accessing and chang-
ing the value of the external variable gGlobalVar.

If many methods needed to access the value of gGlobalVar, making the extern decla-
ration just once at the front of the file would be easier. However, if only one method or a
small number of methods needed to access this variable, there would be something to be
said for making separate extern declarations in each such method; it would make the
program more organized and would isolate the use of the particular variable to those
functions that actually used it. Note that if the variable is defined inside the file contain-

211Scope Revisited

ing the code that accesses the variable, the individual extern declarations are not re-
quired.

Static Variables
The example just shown goes against the notion of data encapsulation and good object-
oriented programming techniques. However, you might need to work with variables
whose values are shared across different method invocations. Even though it might not
make sense to make gGlobalVar an instance variable in the Foo class, a better approach
might be to “hide” it within the Foo class by restricting its access to setter and getter
methods defined for that class.

You now know that any variable defined outside a method is not only a global vari-
able, but an external one as well. Many situations arise in which you want to define a
variable to be global but not external. In other words, you want to define a global variable
to be local to a particular module (file). It would make sense to want to define a variable
this way if no methods other than those contained inside a particular class definition
needed access to the particular variable.You can accomplish this by defining the variable
to be static inside the file that contains the implementation for the particular class.

If made outside any method (or function), the following statement makes the value of
gGlobalVar accessible from any subsequent point in the file in which the definition ap-
pears, but not from methods or functions contained in other files:

static int gGlobalVar = 0;

Recall that class methods do not have access to instance variables (you might want to
think about why that’s the case again). However, you might want a class method to be ca-
pable of setting and accessing variables.A simple example is a class allocator method that
you want to keep track of the number of objects it has allocated.You would accomplish
this task by setting up a static variable inside the implementation file for the class.The al-
location method could then access this variable directly because it would not be an in-
stance variable.The users of the class would not need to know about this variable.
Because it’s defined as a static variable in the implementation file, its scope would be re-
stricted to that file. Users thus wouldn’t have direct access to it, and the concept of data
encapsulation would not be violated.You could write a method to retrieve the value of
this variable if access was needed from outside the class.

Program 10.2 extends the Fraction class definition with the addition of two new
methods.The allocF class method allocates a new Fraction and keeps track of how
many Fractions it has allocated, whereas the count method returns that count. Note that
this latter method is also a class method. It could have been implemented as an instance
method as well, but it makes more sense to ask the class how many instances it has allo-
cated instead of sending the message to a particular instance of the class.

These are the declarations for the two new class methods to be added to the
Fraction.h header file:

+(Fraction *) allocF;

212 Chapter 10 More on Variables and Data Types

+(int) count;

Notice that the inherited alloc method wasn’t overridden here; instead, you defined
your own allocator method.Your method will take advantage of the inherited alloc
method. Place this code in your Fraction.m implementation file:

static int gCounter;

@implementation Fraction

+(Fraction *) allocF

{

extern int gCounter;

++gCounter;

return [Fraction alloc];

}

+(int) count

{

extern int gCounter;

return gCounter;

}

// other methods from Fraction class go here

...

@end

Note
It’s not considered good programming practice to override alloc, as this method deals with
the physical allocation of the memory. You shouldn’t have to get involved at that level.

The static declaration of counter makes it accessible to any method defined in the im-
plementation section, yet it does not make it accessible from outside the file.The allocF
method simply increments the gCounter variable and then uses the alloc method to
create a new Fraction, returning the result.The count method simply returns the value
of the counter, thus isolating its direct access from the user.

Recall that the extern declarations are not required in the two methods because the
gCounter variable is defined within the file. It simply helps the reader of the method un-
derstand that a variable defined outside the method is being accessed.The g prefix for the
variable name also serves the same purpose for the reader; for that reason, most program-
mers typically do not include the extern declarations.

Program 10.2 tests the new methods.

213Storage Class Specifiers

Program 10.2

#import “Fraction.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *a, *b, *c;

NSLog (@”Fractions allocated: %i”, [Fraction count]);

a = [[Fraction allocF] init]
b = [[Fract on allocF] init]
c = [[Fraction allocF] init];

NSLog (@”Fractions allocated: %i”, [Fraction count]);
[a release];
[b release];
[c release];

[pool drain];
return 0;

}

Program 10.2 Output

Fractions allocated: 0

Fractions allocated: 3

When the program begins execution, the value of counter is automatically set to 0
(recall that you can override the inherited class initialize method if you want to per-
form any special initialization of the class as a whole, such as set the value of other static
variables to some nonzero values).After allocating (and then initializing) three Fractions
using the allocF method, the count method retrieves the counter variable, which is
correctly set to 3.You could also add a setter method to the class if you wanted to reset
the counter or set it to a particular value.You don’t need that for this application, though.

Storage Class Specifiers
You’ve already encountered storage class specifiers that you can place in front of variable
names, such as extern and static. Here we’ll discuss more specifiers that give the com-
piler information about the intended use of a variable in your program.

auto
This keyword is used to declare an automatic local variable, as opposed to a static one.
It is the default for a variable declared inside a function or method—but you’ll never see
anyone using it. Here’s an example:

auto int index;

214 Chapter 10 More on Variables and Data Types

This declares index to be an automatic local variable, meaning that it automatically is
allocated when the block (which can be a curly-braced sequence of statements, a method,
or a function) is entered and is automatically deallocated when the block is exited. Be-
cause this is the default inside a block, the statement

int index;

is equivalent to this:

auto int index;

Unlike static variables, which have default initial values of 0, automatic variables are
undefined unless you explicitly assign them values.

const
The compiler enables you to associate the const attribute to variables whose values the
program will not change.That is, this tells the compiler that the specified variables have a
constant value throughout the program’s execution. If you try to assign a value to a const
variable after initializing it or try to increment or decrement it, the compiler issues a
warning message.As an example of the const attribute, the following line declares the
const variable pi:

const double pi = 3.141592654;

This tells the compiler that the program will not modify this variable. Of course, be-
cause the value of a const variable cannot be subsequently modified, you must initialize
it when it is defined.

Defining a variable as a const variable aids in the self-documentation process and tells
the reader of the program that the program will not change the variable’s value.

volatile
This is sort of the inverse to const. It tells the compiler explicitly that the specified vari-
able will change its value. It’s included in the language to prevent the compiler from opti-
mizing away seemingly redundant assignments to a variable or repeated examination of a
variable without its value seemingly changing.A good example to consider is an I/O
port, which involves an understanding of pointers (see Chapter 13).

Let’s say that you have the address of an output port stored in a variable in your pro-
gram called outPort. If you wanted to write two characters to the port—let’s say an O
followed by an N—you might write the following code:

*outPort = ‘O’;
*outPort = ‘N’;

This first line says to store the character O at the memory address specified by outPort.
The second says to then store the character N at the same location.A smart compiler
might notice two successive assignments to the same location and, because outPort isn’t

215Enumerated Data Types

being modified in between, simply remove the first assignment from the program.To pre-
vent this from happening, you declare outPort to be a volatile variable, like this:

volatile char *outPort;

Enumerated Data Types
The Objective-C language enables you to specify a range of values that can be assigned to
a variable.An enumerated data type definition is initiated by the keyword enum. Immedi-
ately following this keyword is the name of the enumerated data type, followed by a list of
identifiers (enclosed in a set of curly braces) that define the permissible values that can be
assigned to the type. For example, the following statement defines a data type flag:

enum flag { false, true };

In theory, this data type can be assigned the values true and false inside the program,
and no other values. Unfortunately, the Objective-C compiler does not generate warning
messages if this rule is violated.

To declare a variable to be of type enum flag, you again use the keyword enum, fol-
lowed by the enumerated type name, followed by the variable list. So the following state-
ment defines the two variables endOfData and matchFound to be of type flag:

enum flag endOfData, matchFound;

The only values (in theory, that is) that can be assigned to these variables are the names
true and false.Thus, statements such as

endOfData = true;

and

if (matchFound == false)

...

are valid.
If you want to have a specific integer value associated with an enumeration identifier,

the integer can be assigned to the identifier when the data type is defined. Enumeration
identifiers that subsequently appear in the list are assigned sequential integer values begin-
ning with the specified integer value plus one.

In the following definition, an enumerated data type, direction, is defined with the
values up, down, left, and right:

enum direction { up, down, left = 10, right };

The compiler assigns the value 0 to up because it appears first in the list, assigns 1 to
down because it appears next, assigns 10 to left because it is explicitly assigned this value,
and assigns 11 to right because it is the incremented value of the preceding enum in the
list.

Enumeration identifiers can share the same value. For example, in

216 Chapter 10 More on Variables and Data Types

enum boolean { no = 0, false = 0, yes = 1, true = 1 };

assigning either the value no or false to an enum boolean variable assigns it the value
0; assigning either yes or true assigns it the value 1.

As another example of an enumerated data type definition, the following defines the
type enum month, with permissible values that can be assigned to a variable of this type
being the names of the months of the year:

enum month { january = 1, february, march, april, may, june, july,

august, september, october, november, december };

The Objective-C compiler actually treats enumeration identifiers as integer constants.
If your program contains these two lines, the value 2 would be assigned to thisMonth
(and not the name february):

enum month thisMonth;

...

thisMonth = february;

Program 10.3 shows a simple program using enumerated data types.The program
reads a month number and then enters a switch statement to see which month was en-
tered. Recall that the compiler treats enumeration values as integer constants, so they’re
valid case values.The variable days is assigned the number of days in the specified month,
and its value is displayed after the switch is exited.A special test is included to see
whether the month is February.

Program 10.3

// print the number of days in a month
int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

enum month { january = 1, february, march, april, may, june,
july, august, september, october, november,
december };

enum month amonth;
int days;

NSLog (@”Enter month number: “);
scanf (“%i”, &amonth);

217Enumerated Data Types

switch (amonth) {
case january:
case march:
case may:
case july:
case august:
case october:
case december:

days = 31;
break;

case april:
case june:
case september:
case november:

days = 30;
break;

case february:
days = 28;
break;

default:
NSLog (@”bad month number”);
days = 0;
break;

}

if (days != 0)
NSLog (@”Number of days is %i”, days);

if (amonth == february)
NSLog (@”...or 29 if it’s a leap year”);

[pool drain];
return 0;

}

Program 10.3 Output

Enter month number:
5

Number of days is 31

Program 10.3 Output (Rerun)

Enter month number:
2
Number of days is 28

...or 29 if it’s a leap year

218 Chapter 10 More on Variables and Data Types

You can explicitly assign an integer value to an enumerated data type variable; you
should do this using the type cast operator.Therefore, if monthValue were an integer vari-
able that had the value 6, for example, this expression would be permissible:

lastMonth = (enum month) (monthValue - 1);

If you don’t use the type cast operator, the compiler (unfortunately) won’t complain
about it.

When using programs with enumerated data types, try not to rely on the fact that the
enumerated values are treated as integers. Instead, treat them as distinct data types.The
enumerated data type gives you a way to associate a symbolic name with an integer num-
ber. If you subsequently need to change the value of that number, you must change it
only in the place where the enumeration is defined. If you make assumptions based on the
actual value of the enumerated data type, you defeat this benefit of using an enumeration.

Some variations are permitted when defining an enumerated data type:The name of
the data type can be omitted, and variables can be declared to be of the particular enu-
merated data type when the type is defined.As an example showing both of these op-
tions, the statement

enum { east, west, south, north } direction;

defines an (unnamed) enumerated data type with values east, west, south, or north and
declares a variable (direction) to be of that type.

Defining an enumerated data type within a block limits the scope of that definition to
the block. On the other hand, defining an enumerated data type at the beginning of the
program, outside any block, makes the definition global to the file.

When defining an enumerated data type, you must make certain that the enumeration
identifiers are unique with respect to other variable names and enumeration identifiers
defined within the same scope.

The typedef Statement
Objective-C provides a capability that enables the programmer to assign an alternative
name to a data type.This is done with a statement known as typedef.The following
statement defines the name Counter to be equivalent to the Objective-C data type int:

typedef int Counter;

You can subsequently declare variables to be of type Counter, as in the following
statement:

Counter j, n;

The Objective-C compiler treats the declaration of the variables j and n, shown previ-
ously, as normal integer variables.The main advantage of the use of the typedef in this
case is in the added readability it lends to the definition of the variables.The definition of
j and n makes clear the intended purpose of these variables in the program. Declaring

219The typedef Statement

them to be of type int in the traditional fashion would not have made the intended use
of these variables clear.

The following typedef defines a type named NumberObject to be a Number object:

typedef Number *NumberObject;

Variables subsequently declared to be of type NumberObject, as in

NumberObject myValue1, myValue2, myResult;

are treated as if they were declared in the normal way in your program:

Number *myValue1, *myValue2, *myResult;

To define a new type name with typedef, follow this procedure:

1. Write the statement as if a variable of the desired type were being declared.

2. Where the name of the declared variable would normally appear, substitute the
new type name.

3. In front of everything, place the keyword typedef.

As an example of this procedure, to define a type called Direction to be an enumer-
ated data type that consists of the directions east, west, north, and south, write out the
enumerated type definition and substitute the name Direction where the variable name
would normally appear. Before everything, place the keyword typedef:

typedef enum { east, west, south, north } Direction;

With this typedef in place, you can subsequently declare variables to be of type
Direction, as in the following:

Direction step1, step2;

The Foundation framework has the following typedef definition for
NSComparisonResult in one of its header files:

typedef enum _NSComparisonResult {

NSOrderedAscending = -1, NSOrderedSame, NSOrderedDescending

} NSComparisonResult;

Some of the methods in the Foundation framework that perform comparisons return
a value of this type. For example, Foundation’s string-comparison method, called
compare:, returns a value of type NSComparisonResult after comparing two strings that
are NSString objects.The method is declared like this:

-(NSComparisonResult) compare: (NSString *) string;

To test whether two NSString objects called userName and savedName are equal, you
might include a line like this in your program:

if ([userName compare: savedName] == NSOrderedSame) {

// The names match

220 Chapter 10 More on Variables and Data Types

...

}

This actually tests whether the result from the compare: method is zero.

Data Type Conversions
Chapter 4,“Data Types and Expressions,” briefly addressed the fact that sometimes the
system implicitly makes conversions when expressions are evaluated.You examined a case
with the data types float and int.You saw how an operation that involves a float and
an int was carried out as a floating-point operation, with the integer data item
automatically converted to a floating point.

You also saw how the type cast operator can be used to explicitly dictate a conversion.
So given that total and n are both integer variables

average = (float) total / n;

the value of the variable total is converted to type float before the operation is per-
formed, thereby guaranteeing that the division will be carried out as a floating-point op-
eration.

Conversion Rules
The Objective-C compiler adheres to very strict rules when it comes to evaluating ex-
pressions that consist of different data types.

The following summarizes the order in which conversions take place in the evaluation
of two operands in an expression:

1. If either operand is of type long double, the other is converted to long double,
and that is the type of the result.

2. If either operand is of type double, the other is converted to double, and that is the
type of the result.

3. If either operand is of type float, the other is converted to float, and that is the
type of the result.

4. If either operand is of type _Bool, char, short int, or bit field,1 or of an enu-
merated data type, it is converted to int.

5. If either operand is of type long long int, the other is converted to long long
int, and that is the type of the result.

6. If either operand is of type long int, the other is converted to long int, and that
is the type of the result.

1 Chapter 13 briefly discusses bit fields.

221Data Type Conversions

7. If this step is reached, both operands are of type int, and that is the type of the result.

This is actually a simplified version of the steps involved in converting operands in an
expression.The rules get more complicated when unsigned operands are involved. For
the complete set of rules, see Appendix B,“Objective-C Language Summary.”

Realize from this series of steps that whenever you reach a step that says “that is the
type of the result,” you’re done with the conversion process.

As an example of how to follow these steps, let’s see how the following expression
would be evaluated, where f is defined to be a float, i an int, l a long int, and s a
short int variable:

f * i + l / s

Consider first the multiplication of f by i, which is the multiplication of a float by
an int. From step 3, you know that, because f is of type float, the other operand (i) will
also be converted to type float, and that will be the type of the result of the multiplica-
tion.

Next, l is divided by s, which is the division of a long int by a short int. Step 4
tells you that the short int will be promoted to an int. Continuing, step 6 shows that
because one of the operands (l) is a long int, the other operand will be converted to a
long int, which will also be the type of the result.This division will therefore produce a
value of type long int, with any fractional part resulting from the division truncated.

Finally, step 3 indicates that, if one of the operands in an expression is of type float (as
is the result of multiplying f * i), the other operand will be converted to type float,
which will be the type of the result.Therefore, after the division of l by s, the result of the
operation will be converted to type float and then added into the product of f and i.
The final result of the preceding expression will therefore be a value of type float.

Remember, the type cast operator can always be used to explicitly force conversions
and thereby control the way in which a particular expression is evaluated.

Thus, if you didn’t want the result of dividing l by s to be truncated in the preceding
expression evaluation, you could have type-cast one of the operands to type float,
thereby forcing the evaluation to be performed as a floating-point division:

f * i + (float) l / s

In this expression, l would be converted to float before the division operation was
performed because the type cast operator has higher precedence than the division oper-
ator. Because one of the operands of the division would then be of type float, the
other (s) would be automatically converted to type float, and that would be the type
of the result.

Sign Extension
Whenever a signed int or signed short int is converted into an integer of a larger size,
the sign is extended to the left when the conversion is performed.This ensures that a
short int that has a value of -5, for example, will also have the value -5 when converted

222 Chapter 10 More on Variables and Data Types

to a long int.Whenever an unsigned integer is converted to an integer of a larger size,
no sign extension occurs, as you would expect.

On some machines (such as on on the Intel processors used in the current Macintosh
line of computers as well as on the ARM processors currenly used in the iPhone and
iTouch), characters are treated as signed quantities.This means that when a character is
converted to an integer, sign extension occurs.As long as characters are used from the
standard ASCII character set, this never poses a problem. However, if a character value is
used that is not part of the standard character set, its sign can be extended when con-
verted to an integer. For example, on a Mac, the character constant ‘\377’ is converted to
the value -1 because its value is negative when treated as a signed 8-bit quantity.

Recall that the Objective-C language permits character variables to be declared un-
signed, thus avoiding this potential problem.That is, an unsigned char variable never
has its sign extended when converted to an integer; its value always is greater than or
equal to zero. For the typical 8-bit character, a signed character variable therefore has the
range of values from –128 to +127, inclusive.An unsigned character variable can range in
value from 0 to 255, inclusive.

If you want to force sign extension on your character variables, you can declare such
variables to be of type signed char.This ensures that sign extension occurs when the
character value is converted to an integer, even on machines that don’t do so by default.

In Chapter 15,“Numbers, Strings, and Collections,” you’ll learn about dealing with
multibyte Unicode characters.This is the preferred way to deal with strings that can con-
tain characters from character sets containing millions of characters.

Exercises
1. Using the Rectangle class from Chapter 8,“Inheritance,” add an initializer method

according to the following declaration:
-(Rectangle *) initWithWidth: (int) w: andHeight: (int) h;

2. Given that you label the method developed in exercise 1 the designated initializer
for the Rectangle class, and based on the Square and Rectangle class definitions
from Chapter 8, add an initializer method to the Square class according to the fol-
lowing declaration:
-(Square *) initWithSide: (int) side;

3. Add a counter to the Fraction class’s add: method to count the number of times
it is invoked. How can you retrieve the value of the counter?

4. Using typedef and enumerated data types, define a type called Day with the possi-
ble values Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and
Saturday.

223Exercises

5. Using typedef, define a type called FractionObj that enables you to write state-
ments such as the following:
FractionObj f1 = [[Fraction alloc] init],

f2 = [[Fraction alloc] init];

6. Based on the following definitions
float f = 1.00;

short int i = 100;

long int l = 500L;

double d = 15.00;

and the seven teps outlined in his chapter for the con ersion of operands in ex-
pressions, determ ne the type and value of the fo lowing expressions:
f + i

l / d

i / l + f

l * i

f / 2

i / (d + f)

l / (i * 2.0)

l + i / (double) l

7. Write a program to ascertain whether sign extension is performed on signed char
variables on your machine.

11
Categories and Protocols

In this chapter, you’ll learn about how to add methods to a class in a modular fashion
through the use of categories and how to create a standardized list of methods for others
to implement.

Categories
Sometimes you might be working with a class definition and want to add some new
methods to it. For example, you might decide for your Fraction class that, in addition to
the add: method for adding two fractions, you want to have methods to subtract, multi-
ply, and divide two fractions.

As another example, say you are working on a large programming project and, as part
of that project, your group is defining a new class that contains many different methods.
You have been assigned the task of writing methods for the class that work with the file
system. Other project members have been assigned methods responsible for creating and
initializing instances of the class, performing operations on objects in the class, and draw-
ing representations of objects from the class on the screen.

As a final example, suppose you’ve learned how to use a class from the library (for ex-
ample, the Foundation framework’s array class called NSArray) and realize that you wish
the class had implemented one or more methods. Of course, you could write a new sub-
class of the NSArray class and implement the new methods, but perhaps an easier way
exists.

A practical solution for all these situations is categories.A category provides an easy way
for you to modularize the definition of a class into groups or categories of related meth-
ods. It also gives you an easy way to extend an existing class definition without even hav-
ing access to the original source code for the class and without having to create a
subclass.This is a powerful yet easy concept for you to learn.

Let’s get back to the first case and show how to add a new category to the Fraction
class to handle the four basic math operations.We first show you the original Fraction
interface section:

#import <Foundation/Foundation.h>

226 Chapter 11 Categories and Protocols

#import <stdio.h>

// Define the Fraction class

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) setTo: (int) n over: (int) d;

-(Fraction *) add: (Fraction *) f;

-(void) reduce;

-(double) convertToNum;

-(void) print;

@end

Next, let’s remove the add: method from this interface section and add it to a new
category, along with the other three math operations you want to implement. Here’s what
the interface section would look like for your new MathOps category:

#import “Fraction.h”
@interface Fraction (MathOps)

-(Fraction *) add: (Fraction *) f;

-(Fraction *) mul: (Fraction *) f;

-(Fraction *) sub: (Fraction *) f;

-(Fraction *) div: (Fraction *) f;

@end

Realize that even though this is an interface section definition, it is an extension to an
existing one.Therefore, you must include the original interface section so that the com-
piler knows about the Fraction class (unless you incorporate the new category directly
into the original Fraction.h header file, which is an option).

After the #import, you see the following line:

@interface Fraction (MathOps)

This tells the compiler that you are defining a new category for the Fraction class
and that its name is MathOps.The category name is enclosed in a pair of parentheses after
the class name. Notice that you don’t list the Fraction’s parent class here; the compiler
already knows it from Fraction.h.Also, you don’t tell it about the instance variables, as
you’ve done in all the previous interface sections you’ve defined. In fact, if you try to list
the parent class or the instance variables, you’ll get a syntax error from the compiler.

This interface section tells the compiler you are adding an extension to the class called
Fraction under the category named MathOps.The MathOps category contains four in-
stance methods: add:, mul:, sub:, and div:. Each method takes a fraction as its argument
and returns one as well.

You can put the definitions for all your methods into a single implementation section.
That is, you could define all the methods from the interface section in Fraction.h plus
all the methods from the MathOps category in one implementations section.Alternatively,

227Categories

you could define your category’s methods in a separate implementation section. In such a
case, the implementation section for these methods must also identify the category to
which the methods belong.As with the interface section, you do this by enclosing the
category name inside parentheses after the class name, like this:

@implementation Fraction (MathOps)

// code for category methods

...

@end

In Program 11.1, the interface and implementation sections for the new MathOps cate-
gory are grouped together, along with a test routine, into a single file.

Program 11.1 MathOps Category and Test Program

#import “Fraction.h”

@interface Fraction (MathOps)
-(Fraction *) add: (Fraction *) f;
-(Fraction *) mul: (Fraction *) f;
-(Fraction *) sub: (Fraction *) f;
-(Fraction *) div: (Fraction *) f;
@end

@implementation Fraction (MathOps)
-(Fraction *) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = (numerator * f.denominator) +
(denominator * f.numerator);

resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];

return result;
}

-(Fraction *) sub: (Fraction *) f
{

228 Chapter 11 Categories and Protocols

// To sub two fractions:
// a/b - c/d = ((a*d) - (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = (numerator * f.denominator) -
(denominator * f.numerator);

resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];

return result;
}

-(Fraction *) mul: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

[result setTo: numerator * f.numerator
over: denominator * f.denominator];

[result reduce];

return result;
}

-(Fraction *) div: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

[result setTo: numerator * f.denominator
over: denominator * f.numerator];

[result reduce];

return result;
}

@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Fraction *a = [[Fraction alloc] init];
Fraction *b = [[Fraction alloc] init];
Fraction *result;

[a setTo: 1 over: 3];
[b setTo: 2 over: 5];

[a print]; NSLog (@” +”); [b print]; NSLog (@”-----”);
result = [a add: b];

229Categories

[result print];
NSLog (@”\n”);
[result release];

[a print]; NSLog (@” -”); [b print]; NSLog (@”-----”);
result = [a sub: b];
[result print];
NSLog (@”\n”);
[result release];

[a print]; NSLog (@” *”); [b print]; NSLog (@”-----”);
result = [a mul: b];
[result print];
NSLog (@”\n”);
[result release];

[a print]; NSLog (@” /”); [b print]; NSLog (@”-----”);
result = [a div: b];
[result print];
NSLog (@”\n”);
[result release];
[a release];
[b release];

[pool drain];
return 0;

}

Program 11.1 Output

1/3
+

2/5

11/15

1/3
-

2/5

-1/15

1/3
*

2/5

2/15

1/3
/

2/5

5/6

230 Chapter 11 Categories and Protocols

Realize once again that it is certainly legal in Objective-C to write a statement such as
this:

[[a div: b] print];

This line directly prints the result of dividing Fraction a by b and thereby avoids the
intermediate assignment to the variable result, as was done in Program 11.1. However,
you need to perform this intermediate assignment so you can capture the resulting
Fraction and subsequently release its memory. Otherwise, your program will leak mem-
ory every time you perform an arithmetic operation on a fraction.

Program 11.1 puts the interface and implementation sections for the new category
into the same file with the test program.As mentioned previously, the interface section
for this category could go either in the original Fraction.h header file so that all meth-
ods would be declared in one place or in its own header file.

If you put your category into a master class definition file, all users of the class have ac-
cess to the methods in the category. If you don’t have the capability to modify the origi-
nal header file directly (consider adding a category to an existing class from a library, as
shown in Part II,“The Foundation Framework”), you have no choice but to keep it sepa-
rate.

Some Notes About Categories
Some points about categories are worth mentioning. First, although a category has access
to the instance variables of the original class, it can’t add any of its own. If you need to do
that, consider subclassing.

Also, a category can override another method in the class, but this is typically consid-
ered poor programming practice. For one thing, after you override a method, you can no
longer access the original method.Therefore, you must be careful to duplicate all the
functionality of the overridden method in your replacement. If you do need to override a
method, subclassing might be the right choice. If you override a method in a subclass, you
can still reference the parent’s method by sending a message to super. So you don’t have
to understand all the intricacies of the method you are overriding; you can simply invoke
the parent’s method and add your own functionality to the subclass’s method.

You can have as many categories as you like, following the rules we’ve outlined here. If
a method is defined in more than one category, the language does not specify which one
will be used.

Unlike a normal interface section, you don’t need to implement all the methods in a
category.That’s useful for incremental program development because you can declare all
the methods in the category and implement them over time.

Remember that extending a class by adding new methods with a category affects not
just that class, but all its subclasses as well.This can be potentially dangerous if you add
new methods to the root object NSObject, for example, because everyone will inherit
those new methods, whether or not that was your intention.

231Protocols

The new methods you add to an existing class through a category can serve your pur-
poses just fine, but they might be inconsistent with the original design or intentions of
the class.Turning a Square into a Circle (admittedly, an exaggeration), for example, by
adding a new category and some methods muddies the definition of the class and is not
good programming practice.

Also, object/category named pairs must be unique. Only one NSString (Private)
category can exist in a given Objective-C namespace.This can be tricky because the Ob-
jective-C namespace is shared between the program code and all the libraries, frame-
works, and plug-ins.This is especially important for Objective-C programmers writing
screensavers, preference panes, and other plug-ins because their code will be injected into
application or framework code that they do not control.

Protocols
A protocol is a list of methods that is shared among classes.The methods listed in the pro-
tocol do not have corresponding implementations; they’re meant to be implemented by
someone else (like you!).A protocol provides a way to define a set of methods that are
somehow related with a specified name.The methods are typically documented so that
you know how they are to perform and so that you can implement them in your own
class definitions, if desired.

If you decide to implement all of the required methods for a particular protocol, you
are said to conform to or adopt that protocol.

Defining a protocol is easy:You simply use the @protocol directive followed by the
name of the protocol, which is up to you.After that, you declare methods just as you did
with your interface section.All the method declarations, up to the @end directive, become
part of the protocol.

If you choose to work with the Foundation framework, you’ll find that several proto-
cols are defined. One of them, called NSCopying, declares a method that you need to im-
plement if your class is to support copying of objects through the copy (or
copyWithZone:) method. (Chapter 18,“Copying Objects,” covers the topic of copying
objects in detail.)

Here’s how the NSCopying protocol is defined in the standard Foundation header file
NSObject.h:

@protocol NSCopying

- (id)copyWithZone: (NSZone *)zone;

@end

232 Chapter 11 Categories and Protocols

If you adopt the NSCopying protocol in your class, you must implement a method
called copyWithZone:.You tell the compiler that you are adopting a protocol by listing
the protocol name inside a pair of angular brackets (<...>) on the @interface line.The
protocol name comes after the name of the class and its parent class, as in the following:

@interface AddressBook: NSObject <NSCopying>

This says that AddressBook is an object whose parent is NSObject and states that it
conforms to the NSCopying protocol. Because the system already knows about the
method(s) previously defined for the protocol (in this example, it knows from the header
file NSObject.h), you don’t declare the methods in the interface section. However, you
need to define them in your implementation section.

In this example, in the implementation section for AddressBook, the compiler expects
to see the copyWithZone: method defined.

If your class adopts more than one protocol, just list them inside the angular brackets,
separated by commas:

@interface AddressBook: NSObject <NSCopying, NSCoding>

This tells the compiler that the AddressBook class adopts the NSCopying and
NSCoding protocols.Again, the compiler expects to see all the required methods listed for
those protocols implemented in the AddressBook implementation section.

If you define your own protocol, you don’t have to actually implement it yourself.
However, you’re alerting other programmers that if they want to adopt the protocol, they
do have to implement the methods.Those methods can be inherited from a superclass.
Thus, if one class conforms to the NSCopying protocol, its subclasses do as well (although
that doesn’t mean the methods are correctly implemented for that subclass).

You can use a protocol to define methods that you want other people who subclass
your class to implement. Perhaps you could define a Drawing protocol for your
GraphicObject class; in it, you could define paint, erase, and outline methods:

@protocol Drawing

-(void) paint;

-(void) erase;

@optional

-(void) outline;

@end

As the creator of the GraphicObject class, you don’t necessarily want to implement
these painting methods. However, you want to specify the methods that someone who
subclasses the GraphicObject class needs to implement to conform to a standard for
drawing objects he’s trying to create.

233Protocols

Note
Note the use of the @optional directive here. Any methods that are listed following that di-
rective are optional. That is, an adopter of the Drawing protocol does not have to implement
the outline method to conform to the protocol. (And you can subsequently switch back to
listing required methods by using the @required directive inside the protocol definition.)

So if you create a subclass of GraphicObject called Rectangle and advertise (that is,
document) that your Rectangle class conforms to the Drawing protocol, users of the class
will know that they can send paint, erase, and (possibly) outline messages to instances
from that class.

Note
Well that’s the theory, anyway. The compiler lets you say that you conform to a protocol and
issues warning messages only if you don’t implement the methods.

Notice that the protocol doesn’t reference any classes; it s classless.Any class can con-
form to the Drawing protocol, not just subclasses of GraphicObject.

You can check to see whether an object conforms to a protocol by using the
conformsToProtocol: method. For example, if you had an object called currentObject
and wanted to see whether it conformed to the Drawing protocol so you could send it
drawing messages, you could write this:

id currentObject;

...

if ([currentObject conformsToProtocol: @protocol (Drawing)] == YES)

{

// Send currentObject paint, erase and/or outline msgs

...

}

The special @protocol directive as used here takes a protocol name and produces a
Protocol object, which is what the conformsToProtocol: method expects as its argu-
ment.

You can enlist the aid of the compiler to check for conformance with your variables by
including the protocol name inside angular brackets after the type name, like this:

id <Drawing> currentObject;

This tells the compiler that currentObject will contain objects that conform to the
Drawing protocol. If you assign a statically typed object to currentObject that does not
conform to the Drawing protocol (say that you have a Square class that does not con-
form), the compiler issues a warning message that looks like this:

warning: class ‘Square’ does not implement the ‘Drawing’ protocol

234 Chapter 11 Categories and Protocols

This is a compiler check here, so assigning an id variable to currentObject would not
generate this message because the compiler has no way of knowing whether the object
stored inside an id variable conforms to the Drawing protocol.

You can list more than one protocol if the variable will hold an object conforming to
more than one protocol, as in this line:

id <NSCopying, NSCoding> myDocument;

When you define a protocol, you can extend the definition of an existing one.This
protocol declaration says that the Drawing3D protocol also adopts the Drawing protocol:

@protocol Drawing3D <Drawing>

Thus, whichever class adopts the Drawing3D protocol must implement the methods
listed for that protocol, as well as the methods from the Drawing protocol.

Finally, a category also can adopt a protocol, like this:

@interface Fraction (Stuff) <NSCopying, NSCoding>

Here Fraction has a category, Stuff (okay, not the best choice of names!), that adopts
the NSCopying and NSCoding protocols.

As with class names, protocol names must be unique.

Informal Protocols
You might come across the notion of an informal protocol in your readings.This is really a
category that lists a group of methods but does not implement them. Everyone (or just
about everyone) inherits from the same root object, so informal categories are often de-
fined for the root class. Sometimes informal protocols are also referred to as abstract proto-
cols.

If you look at the header file <NSScriptWhoseTests.h>, you might find some method
declarations that look like this:

@interface NSObject (NSComparisonMethods)

- (BOOL)isEqualTo:(id)object;

- (BOOL)isLessThanOrEqualTo:(id)object;

- (BOOL)isLessThan:(id)object;

- (BOOL)isGreaterThanOrEqualTo:(id)object;

- (BOOL)isGreaterThan:(id)object;

- (BOOL)isNotEqualTo:(id)object;

- (BOOL)doesContain:(id)object;

- (BOOL)isLike:(NSString *)object;

- (BOOL)isCaseInsensitiveLike:(NSString *)object;

@end

This defines a category called NSComparisonMethods for the NSObject class.This in-
formal protocol lists a group of methods (here, nine are listed) that can be implemented as
part of this protocol.An informal protocol is really no more than a grouping of methods

235Composite Objects

under a name.This can help somewhat from the point of documentation and modulariza-
tion of methods.

The class that declares the informal protocol doesn’t implement the methods in the
class itself, and a subclass that chooses to implement the methods needs to redeclare them
in its interface section, as well as implement one or more of them. Unlike formal proto-
cols, the compiler gives no help with informal protocols; there’s no concept of confor-
mance or testing by the compiler.

If an object adopts a formal protocol, the object must conform to all the required mes-
sages in the protocol.This can be enforced at runtime as well as compile time. If an object
adopts an informal protocol, the object might not need to adopt all methods in the proto-
col, depending on the protocol. Conformance to an informal protocol can be enforced at
runtime (via respondsToSelector:) but not at compile time.

Note
The previously-described @optional directive that was added the Objective C 2.0 language is
meant to replace the use of informal protocols. You can see this used for several of the
UIKit classes (UIKit is part of the Cocoa Touch frameworks).

Composite Objects
You’ve learned several ways to extend the definition of a class through techniques such as
subclassing, using categories, and posing.Another technique involves defining a class that
consists of one or more objects from other classes.An object from this new class is known
as a composite object because it is composed of other objects.

As an example, consider the Square class you defined in Chapter 8,“Inheritance.”You
defined this as a subclass of a Rectangle because you recognized that a square was just a
rectangle with equal sides.When you define a subclass, it inherits all the instance variables
and methods of the parent class. In some cases, this is undesirable—for example, some of
the methods defined in the parent class might not be appropriate for use by the subclass.
The Rectangle’s setWidth:andHeight: method is inherited by the Square class but re-
ally does not apply to a square (even though it will work properly). Furthermore, when
you create a subclass, you must ensure that all the inherited methods work properly be-
cause users of the class will have access to them.

As an alternative to subclassing, you can define a new class that contains as one of its
instance variables an object from the class you want to extend.Then you have to define
only those methods in the new class that are appropriate for that class. Getting back to the
Square example, here’s an alternative way to define a Square:

@interface Square: NSObject

{

Rectangle *rect;

}

-(int) setSide: (int) s;

-(int) side;

-(int) area;

236 Chapter 11 Categories and Protocols

-(int) perimeter;

@end

The Square class is defined here with four methods. Unlike the subclass version,
which gives you direct access to the Rectangle’s methods (setWidth:, setHeight:,
setWidth:andHeight:, width, and height), those methods are not in this definition for a
Square.That makes sense here because those methods really don’t fit in when you deal
with squares.

If you define your Square this way, it becomes responsible for allocating the memory
for the rectangle it contains. For example, without overriding methods, the statement

Square *mySquare = [[Square alloc] init];

allocates a new Square object but does not allocate a Rectangle object stored in its
instance variable, rect.

A solution is to override init or add a new method such as initWithSide: to do the
allocation.That method can allocate the Rectangle rect and set its side appropriately.
You also need to override the dealloc method (which you saw how to do with the
Rectangle class in Chapter 8) to release the memory used by the Rectangle rect when
the Square itself is freed.

When defining your methods in your Square class, you can still take advantage of the
Rectangle’s methods. For example, here’s how you could implement the area method:

-(int) area

{

return [rect area];

}

Implementing the remaining methods is left as an exercise for you (see Exercise 5,
which follows).

Exercises
1. Extend the MathOps category from Program 11.1 to also include an invert

method, which returns a Fraction that is an inversion of the receiver.

2. Add a category to the Fraction class called Comparison. In this category, add two
methods according to these declarations:
-(BOOL) isEqualTo: (Fraction *) f;

-(int) compare: (Fraction *) f;

The first method should return YES if the two fractions are identical and should re-
turn NO otherwise. Be careful about comparing fractions (for example, comparing
3/4 to 6/8 should return YES).

The second method should return –1 if the receiver compares less than the fraction
represented by the argument, return 0 if the two are equal, and return 1 if the re-
ceiver is greater than the argument.

237Exercises

3. Extend the Fraction class by adding methods that conform to the informal proto-
col NSComparisonMethods, as listed earlier in this chapter. Implement the first six
methods from that protocol (isEqualTo:, isLessThanOrEqualTo:, is-

LessThan:, isGreaterThanOrEqualTo:, isGreaterThan:, isNotEqualTo:) and
test them.

4. The functions sin (), cos (), and tan () are part of the Standard Library (as
scanf () is).These functions are declared in the header file <math.h>, which you
should import into your program with the following line:

#import <math.h>

You can use these functions to calculate the sine, cosine, or tangent, respectively, of
their double argument, which is expressed in radians.The result is also returned as a
double precision floating-point value. So you can use this line to calculate the sine
of d, with the angle d expressed in radians:

result = sin (d);

Add a category called Trig to the Calculator class defined in Chapter 6, “Making
Decisions.”Add methods to this category to calculate the sine, cosine, and tangent
based on these declarations:

-(double) sin;

-(double) cos;

-(double) tan;

5. Given the discussion on composite objects from this chapter and the following in-
terface section:

@interface Square: Object

{

Rectangle *rect;

}

-(Square*) initWithSide: (int) s;

-(void) setSide: (int) s;

-(int) side;

-(int) area;

-(int) perimeter;

-(id) dealloc; // Override to release the Rectangle object’s
memory

@end

write the implementation section for a Square and a test program to check its
methods.

12
The Preprocessor

The preprocessor provides the tools that enable you to develop programs that are easier
to develop, read, modify, and port to different systems.You can also use the preprocessor to
literally customize the Objective-C language to suit a particular programming application
or your own programming style.

The preprocessor is a part of the Objective-C compilation process that recognizes spe-
cial statements that can be interspersed throughout a program.As its name implies, the
preprocessor actually processes these statements before analysis of the Objective-C pro-
gram itself takes place. Preprocessor statements are identified by the presence of a pound
sign (#), which must be the first nonspace character on the line.As you will see, pre-
processor statements have a syntax that is slightly different from that of normal Objective-
C statements.We begin by examining the #define statement.

The #define Statement
One of the primary uses of the #define statement is to assign symbolic names to pro-
gram constants.The preprocessor statement

#define TRUE 1

defines the name TRUE and makes it equivalent to the value 1.The name TRUE can subse-
quently be used anywhere in the program where the constant 1 could be used.Whenever
this name appears, the preprocessor automatically substitutes its defined value of 1 into
the program. For example, you might have the following Objective-C statement that uses
the defined name TRUE:

gameOver = TRUE;

This statement assigns the value of TRUE to gameOver.You don’t need to concern
yourself with the actual value you defined for TRUE, but because you do know that you
defined it to be 1, the preceding statement would have the effect of assigning 1 to
gameOver.The preprocessor statement

#define FALSE 0

240 Chapter 12 The Preprocessor

defines the name FALSE and makes its subsequent use in the program equivalent to speci-
fying the value 0.Therefore, the statement

gameOver = FALSE;

assigns the value of FALSE to gameOver, and the statement

if (gameOver == FALSE)

...

compares the value of gameOver against the defined value of FALSE.
A defined name is not a variable.Therefore, you cannot assign a value to it unless the

result of substituting the defined value is a variable.Whenever a defined name is used in a
program, the preprocessor automatically substitutes into the program whatever appears to
the right of the defined name in the #define statement. It’s analogous to doing a search
and replace with a text editor; in this case, the preprocessor replaces all occurrences of the
defined name with its associated text.

Notice that the #define statement has a special syntax: No equals sign is used to assign
the value 1 to TRUE. Furthermore, a semicolon does not appear at the end of the state-
ment. Soon you will understand why this special syntax exists.

#define statements are often placed toward the beginning of the program, after
#import or #include statements.This is not required; they can appear anywhere in the
program. However, a name must be defined before it is referenced by the program. De-
fined names do not behave like variables:There is no such thing as a local define.After a
name has been defined, it can subsequently be used anywhere in the program. Most pro-
grammers place their defines inside header files so they can be used by more than one
source file.

As another example of the use of a defined name, suppose you wanted to write two
methods to find the area and circumference of a Circle object. Because both of these
methods need to use the constant �, which is not a particularly easy constant to remem-
ber, it might make sense to define the value of this constant once at the start of the pro-
gram and then use this value where necessary in each method.

So you could include the following in your program:

#define PI 3.141592654

Then you could use it in your two Circle methods (this assumes that the Circle class
has an instance variable called radius) like this:

-(double) area

{

return PI * radius * radius;

}

-(double) circumference

{

return 2.0 * PI * radius;

}

241The #define Statement

Assigning a constant to a symbolic name frees you from having to remember the par-
ticular constant value every time you want to use it in a program. Furthermore, if you
ever need to change the value of the constant (if perhaps you found out that you were us-
ing the wrong value, for example), you would have to change the value in only one place
in the program: in the #define statement.Without this approach, you would have to
search throughout the program and explicitly change the value of the constant whenever
it was used.

You might have realized that all the defines shown so far (TRUE, FALSE, and PI) have
been written in capital letters.This is done to visually distinguish a defined value from a
variable. Some programmers adopt the convention that all defined names be capitalized,
so that determining when a name represents a variable or an object, a class name, or a de-
fined name is easy.Another common convention is to prefix the define with the letter k.
In that case, the following characters of the name are not capitalized. kMaximumValues
and kSignificantDigits are examples of two defined names that adhere to this conven-
tion.

Using a defined name for a constant value helps make programs more readily extend-
able. For example, when you learn how to work with arrays, instead of hard-coding in the
size of the array you want to allocate, you can define a value as follows:

#define MAXIMUM_DATA_VALUES 1000

Then you can base all references on the array’s size (such as allocation of the array in
memory) and valid indexes into this array on this defined value.

Also, if the program were written to use MAXIMUM_DATA_VALUES in all cases where the
size of the array was used, the preceding definition could be the only statement in the
program that would have to be changed if you later needed to change the array size.

More Advanced Types of Definitions
A definition for a name can include more than a simple constant value. It can include an
expression and, as you will see shortly, just about anything else!

The following defines the name TWO_PI as the product of 2.0 and 3.141592654:

#define TWO_PI 2.0 * 3.141592654

You can subsequently use this defined name anywhere in a program where the expres-
sion 2.0 * 3.141592654 would be valid. So you could replace the return statement of
the circumference method from the previous example with the following statement:

return TWO_PI * radius;

Whenever a defined name is encountered in an Objective-C program, everything that
appears to the right of the defined name in the #define statement is literally substituted
for the name at that point in the program.Thus, when the preprocessor encounters the
name TWO_PI in the return statement shown previously, it substitutes for this name
whatever appeared in the #define statement for this name.Therefore, the preprocessors

242 Chapter 12 The Preprocessor

literally substitutes 2.0 * 3.141592654 whenever the defined name TWO_PI occurs in
the program.

The fact that the preprocessor performs a literal text substitution whenever the defined
name occurs explains why you don’t usually want to end your #define statement with a
semicolon. If you did, the semicolon would also be substituted into the program wherever
the defined name appeared. If you had defined PI as

#define PI 3.141592654;

and then written

return 2.0 * PI * r;

the preprocessor would replace the occurrence of the defined name PI by 3.141592654;.
The compiler would therefore see this statement as

return 2.0 * 3.141592654; * r;

after the preprocessor had made its substitution, which would result in a syntax error. Re-
member not to put a semicolon at the end of your define statements unless you’re really
sure you want one there.

A preprocessor definition does not have to be a valid Objective-C expression in its
own right, as long as the resulting expression is valid wherever it is used. For instance, you
could set up these definitions:

#define AND &&

#define OR ||

Then you could write expressions such as

if (x > 0 AND x < 10)

...

and

if (y == 0 OR y == value)

...

You could even include a #define for the equality test:

#define EQUALS ==

Then, you could write the following statement:

if (y EQUALS 0 OR y EQUALS value)

...

This removes the very real possibility of mistakenly using a single equals sign for the
equality test.

Although these examples illustrate the power of the #define, you should note that it
is commonly considered bad programming practice to redefine the syntax of the underly-
ing language in such a manner. Plus, it makes it harder for someone else to understand
your code.

243The #define Statement

To make things even more interesting, a defined value can itself reference another de-
fined value. So these two #define lines are perfectly valid:

#define PI 3.141592654

#define TWO_PI 2.0 * PI

The name TWO_PI is defined in terms of the previously defined name PI, thus obviat-
ing the need to spell out the value 3.141592654 again.

Reversing the order of the defines, as in this example, is also valid:

#define TWO_PI 2.0 * PI

#define PI 3.141592654

The rule is that you can reference other defined values in your definitions as long as
everything is defined at the time the defined name is used in the program.

Good use of #defines often reduces the need for comments within the program.
Consider the following statement:

if (year % 4 == 0 && year % 00 != 0 || year % 400 == 0)

...

This expression tests whether the variable year is a leap year. Now consider the follow-
ing #define statement and the subsequent if statement:

#define IS_LEAP_YEAR year % 4 == 0 && year % 100 != 0 \

|| year % 400 == 0

...

if (IS_LEAP_YEAR)

...

Normally, the preprocessor assumes that a definition is contained on a single line of
the program. If a second line is needed, the last character on the line must be a backslash
character.This character signals a continuation to the preprocessor and is otherwise ig-
nored.The same holds true for more than one continuation line; each line to be contin-
ued must end with a backslash character.

The preceding if statement is far easier to understand than the one shown directly
before it. No comment is needed because the statement is self-explanatory. Of course, the
definition restricts you to testing the variable year to see whether it’s a leap year. If would
be nice if you could write a definition to see whether any year were a leap year, not just
the variable year.Actually, you can write a definition to take one or more arguments,
which leads us to our next point of discussion.

IS_LEAP_YEAR can be defined to take an argument called y, as follows:

#define IS_LEAP_YEAR(y) y % 4 == 0 && y % 100 != 0 \

|| y % 400 == 0

Unlike in a method definition, you do not define the type of the argument y here be-
cause you are merely performing a literal text substitution—you are not calling a func-

244 Chapter 12 The Preprocessor

tion. Note that when defining a name with arguments, no spaces are permitted between
the defined name and the left parenthesis of the argument list.

With the previous definition, you can write a statement such as the following:

if (IS_LEAP_YEAR (year))

...

This tests whether the value of year is a leap year. Or you could write this to test
whether the value of nextYear is a leap year:

if (IS_LEAP_YEAR (nextYear))

...

In the preceding statement, the definition for IS_LEAP_YEAR is directly substituted in-
side the if statement, with the argument nextYear replacing y wherever it appears in the
definition. So the compiler would actually see the if statement as follows:

if (nextYear % 4 == 0 && nextYear % 100 != 0 || nextYear % 400 == 0)

...

Definitions are frequently called macros.This terminology is more often applied to def-
initions that take one or more arguments.

This macro, called SQUARE, simply squares its argument:

#define SQUARE(x) x * x

Although the macro definition for SQUARE is straightforward, you must avoid an inter-
esting pitfall when defining macros.As we have described, the statement

y = SQUARE (v);

assigns the value of v2 to y.Think about would happen in the case of the following state-
ment:

y = SQUARE (v + 1);

This statement does not assign the value of (v + 1)2 to y, as you would expect. Be-
cause the preprocessor performs a literal text substitution of the argument into the macro
definition, the preceding expression is actually evaluated as follows:

y = v + 1 * v + 1;

This obviously does not produce the expected results.To handle this situation properly,
parentheses are needed in the definition of the SQUARE macro:

#define SQUARE(x) ((x) * (x))

Even though the previous definition might look strange, remember that the entire ex-
pression as given to the SQUARE macro is literally substituted wherever x appears in the
definition.With your new macro definition for SQUARE, the statement

y = SQUARE (v + 1);

is then correctly evaluated as

245The #define Statement

y = ((v + 1) * (v + 1));

The following macro lets you easily create new fractions from your Fraction class on
the fly:

#define MakeFract(x,y) ([[Fraction alloc] initWith: x over: y]])

Then you can write expressions such as

myFract = MakeFract (1, 3); // Make the fraction 1/3

or even

sum = [MakeFract (n1, d1) add: MakeFract (n2, d2)];

to add the fractions n1/d1 and n2/d2.
The conditional expression operator can be particularly handy when defining macros.

The following defines a macro called MAX that gives the maximum of two values:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

This macro enables you to subsequently write statements such as this:

limit = MAX (x + y, minValue);

This assigns to limit the maximum of x + y and minValue. Parentheses are placed
around the entire MAX definition to ensure that an expression such as this is evaluated
properly:

MAX (x, y) * 100

Parentheses are individually placed around each argument to ensure that expressions
such as the following are correctly evaluated:

MAX (x & y, z)

The & operator is the bitwise AND operator, and it has lower precedence than the >
operator used in the macro.Without the parentheses in the macro definition, the > opera-
tor would be evaluated before the bitwise AND, producing the incorrect result.

The following macro tests whether a character is a lowercase letter:

#define IS_LOWER_CASE(x) (((x) >= ‘a’) && ((x) <= ‘z’))

It thereby permits you to write expressions such as this:

if (IS_LOWER_CASE (c))

...

You can even use this macro in another macro definition to convert a character from
lower case to upper case, leaving any nonlowercase character unchanged:

#define TO_UPPER(x) (IS_LOWER_CASE (x) ? (x) - ‘a’ + ‘A’ : (x))

Again, you are dealing with a standard ASCII character set here.When you learn about
Foundation string objects in Part II, you’ll see how to perform case conversion that will
work for international (Unicode) character sets as well.

246 Chapter 12 The Preprocessor

The # Operator
If you place a # in front of a parameter in a macro definition, the preprocessor creates a
constant C-style string out of the macro argument when the macro is invoked. For exam-
ple, the definition

#define str(x) # x

causes the subsequent invocation

str (testing)

to be expanded into

”testing”

by the preprocessor.The printf call

printf (str (Programming in Objective-C is fun.\n));

is therefore equivalent to

printf (”Programming in Objective-C is fun.\n”);

The preprocessor inserts double quotation marks around the actual macro argument.
The preprocessor preserves any double quotation marks or backslashes in the argument. So

str (“hello”)

produces

”\”hello\””

A more practical example of the # operator might be in the following macro definition:

#define printint(var) printf (# var “ = %i\n”, var)

This macro is used to display the value of an integer variable. If count is an integer
variable with a value of 100, the statement

printint (count);

is expanded into this:

printf (”count” “ = %i\n”, count);

The compiler concatenates two adjacent literal strings to make a single string.There-
fore, after concatenation is performed on the two adjacent strings, the statement becomes
the following:

printf (”count = %i\n”, count);

247The #import Statement

The ## Operator
The ## operator is used in macro definitions to join two tokens. It is preceded (or fol-
lowed) by the name of a parameter to the macro.The preprocessor takes the actual argu-
ment to the macro that is supplied when the macro is invoked and creates a single token
out of that argument and whatever token follows (or precedes) the ##.

Suppose, for example, that you have a list of variables x1 through x100.You can write a
macro called printx that simply takes as its argument an integer value 1–100 and displays
the corresponding x variable, as shown here:

#define printx(n) printf (”%i\n”, x ## n)

The portion of the define that reads

x ## n

says to use the tokens that occur before and after the ## (the letter x and the argument n,
respectively) and make a single token out of them. So the call

printx (20);

is expanded into the following:

printf (”%i\n”, x20);

The printx macro can even use the previously defined printint macro to get the
variable name as well as its value displayed:

#define printx(n) printint(x ## n)

The invocation

printx (10);

first expands into

printint (x10);

and then into

printf (”x10” “ = %i\n”, x10);

and finally into the following:

printf (”x10 = %i\n”, x10);

The #import Statement
When you have programmed in Objective-C for a while, you will find yourself develop-
ing your own set of macros, which you will want to use in each of your programs. But
instead of having to type these macros into each new program you write, the preprocessor
enables you to collect all your definitions into a separate file and then include them in
your program, using the #import statement.These files—similar to the ones you’ve previ-

248 Chapter 12 The Preprocessor

ously encountered but haven’t written yourself—normally end with the characters .h and
are referred to as header or include files.

Suppose you were writing a series of programs for performing various metric conver-
sions.You might want to set up some #define statements for the various constants you
would need for performing your conversions:

#define INCHES_PER_CENTIMETER 0.394

#define CENTIMETERS_PER_INCH (1 / INCHES_PER_CENTIMETER)

#define QUARTS_PER_LITER 1.057

#define LITERS_PER_QUART (1 / QUARTS_PER_LITER)

#define OUNCES_PER_GRAM 0.035

#define GRAMS_PER_OUNCE (1 / OUNCES_PER_GRAM)

...

Suppose you entered the previous definitions into a separate file on the system called
metric.h.Any program that subsequently needed to use any of the definitions contained
in the metric.h file could do so by simply issuing this preprocessor directive:

#import “metric.h”

This statement must appear before any of the #define statements contained in
metric.h are referenced and is typically placed at the beginning of the source file.The
preprocessor looks for the specified file on the system and effectively copies the contents
of the file into the program at the precise point at which the #import statement appears.
So any statements inside the file are treated just as if they had been directly typed into the
program at that point.

The double quotation marks around the header filename instruct the preprocessor to
look for the specified file in one or more file directories (typically, first in the directory
that contains the source file, but the actual places the preprocessor searches can be speci-
fied in Xcode by modifying the appropriate Project Settings).

Enclosing the filename within the characters < and > instead, as in

#import <Foundation/Foundation.h>

causes the preprocessor to look for the include file only in the special “system” header file
directory or directories the current directory will not be searched.Again, with Xcode,
you can alter these directories by selecting Project, Edit Project Settings from the menu.

Note
When compiling programs for this section of the book, the Foundation.h header file was
imported from this directory on my system:
/Developers/SDKs/MacOSX10.5.sdk/System/Library/Frameworks/Foundation.fr
amework/Versions/C/Headers.

249The #import Statement

To see how include files are used in an actual program example, type the six #define
statements given previously into a file called metric.h.Then type and run Program 12.1
in the normal manner.

Program 12.1

/* Illustrate the use of the #import statement
Note: This program assumes that definitions are
set up in a file called metric.h */

#import <Foundation/Foundation.h>
#import “metric.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
float liters, gallons;

NSLog (@”*** Liters to Gallons ***”);
NSLog (@”Enter the number of liters:”);
scanf (“%f”, &liters);

gallons = liters * QUARTS_PER_LITER / 4.0;
NSLog (@”%g liters = %g gallons”, liters, gallons);

[pool drain];
return 0;

}

Program 12.1 Output

*** Liters to Gallons ***
Enter the number of liters:
55.75

55.75 liters = 14.7319 gallons.

Program 12.1 is rather simple because it shows only a single defined value
(QUARTS_PER_LITER) being referenced from the include file metric.h. Nevertheless, the
point is well made:After the definitions have been entered into metric.h, they can be
used in any program that uses an appropriate #import statement.

One of the nicest things about the import file capability is that it enables you to cen-
tralize your definitions, thus ensuring that all programs reference the same value. Further-
more, errors discovered in one of the values contained in the include file need be
corrected in only that one spot, thus eliminating the need to correct every program that
uses the value.Any program that referenced the incorrect value would simply have to be
recompiled and would not have to be edited.

250 Chapter 12 The Preprocessor

Other system include files contain declarations for various functions stored inside the
underlying C system library. For example, the file limits.h contains system-dependent
values that specify the sizes of various characters and integer data types. For instance, the
maximum size of an int is defined by the name INT_MAX inside this file.The maximum
size of an unsigned long int is defined by ULONG_MAX, and so on.

The float.h header file gives information about floating-point data types. For exam-
ple, FLT_MAX specifies the maximum floating-point number, and FLT_DIG specifies the
number of decimal digits of precision for a float type.

The file string.h contains declarations for the library routines that perform character
string operations such as copying, comparing, and concatenating. If you’re working with
the Foundation string classes exclusively (discussed in Chapter 15,“Numbers, Strings,
and Collections”), you probably won’t need to use any of these routines in your pro-
grams.

Conditional Compilation
The Objective-C preprocessor offers a feature known as conditional compilation.
Conditional compilation is often used to create one program that can be compiled to
run on different computer systems. It is also often used to switch on or off various state-
ments in the program, such as debugging statements that print the values of variables or
trace the flow of program execution.

The #ifdef, #endif, #else, and #ifndef Statements
Unfortunately, a program sometimes must rely on system-dependent parameters that need
to be specified differently on different processors (for example, Power PC versus Intel) or
on a particular version of the operating system (for example,Tiger versus Leopard).

If you had a large program that had many such dependencies on the particular hard-
ware and/or software of the computer system (you should minimize this as much as pos-
sible), you might end up with many defines whose values would have to be changed
when the program was moved to another computer system.

You can help reduce the problem of having to change these defines when the program
is moved and can incorporate into the program the values of these defines for each differ-
ent machine by using the conditional compilation capabilities of the preprocessor.As a
simple example, the following statements have the effect of defining DATADIR to
“/uxn1/data” if the symbol MAC_OS_X has been previously defined, and to “\usr\data”
otherwise:

#ifdef MAC_OS_X

define DATADIR “/uxn1/data”
#else

define DATADIR “\usr\data”
#endif

251Conditional Compilation

As you can see here, you are allowed to put one or more spaces after the # that begins a
preprocessor statement.

The #ifdef, #else, and #endif statements behave as you would expect. If the symbol
specified on the #ifdef line has been already defined—through a #define statement or
through the command line when the program is compiled—the compiler processes lines
that follow up to a #else, #elif, or #endif; otherwise, they are ignored.

To define the symbol POWER_PC to the preprocessor, the statement

#define POWER_PC 1

or even just

#define POWER_PC

will suffice.As you can see, no text at all has to appear after the defined name to satisfy
the #ifdef test.The compiler also permits you to define a name to the preprocessor
when the program is compiled by using a special option to the compiler command.The
command line

gcc –framework Foundation -D POWER_PC program.m –

defines the name POWER_PC to the preprocessor, causing all #ifdef POWER_PC statements
inside program.m to evaluate as TRUE (note that you must type the -D POWER_PC before
the program name on the command line).This technique enables you to define names
without having to edit the source program.

In Xcode, you add new defined names and specify their values by selecting Add User-
Defined Setting under Project Settings.

The #ifndef statement follows along the same lines as the #ifdef.This statement is
used in a similar way, except that it causes the subsequent lines to be processed if the indi-
cated symbol is not defined.

As already mentioned, conditional compilation is useful when debugging programs.
You might have many printf calls embedded in your program that are used to display
intermediate results and trace the flow of execution.You can turn on these statements by
conditionally compiling them into the program if a particular name, such as DEBUG, is de-
fined. For example, you could use a sequence of statements such as the following to dis-
play the value of some variables only if the program had been compiled with the name
DEBUG defined:

#ifdef DEBUG

NSLog (@”User name = %s, id = %i”, userName, userId);
#endif

You might have many such debugging statements throughout the program.Whenever
the program is being debugged, it can be compiled with the DEBUG defined to have all the
debugging statements compiled.When the program is working correctly, it can be recom-
piled without DEBUG defined.This has the added benefit of reducing the size of the pro-
gram because all your debugging statements are not compiled in.

252 Chapter 12 The Preprocessor

The #if and #elif Preprocessor Statements
The #if preprocessor statement offers a more general way of controlling conditional
compilation.The #if statement can be used to test whether a constant expression evalu-
ates to nonzero. If the result of the expression is nonzero, subsequent lines up to a #else,
#elif, or #endif are processed; otherwise, they are skipped.

As an example of how this can be used, the following lines appear in the Foundation
header file NSString.h:

#if MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_5

#define NSMaximumStringLength (INT_MAX-1)

#endif

This tests the value of the defined variable MAC_OS_X_VERSION_MIN_REQUIRED against
the defined variable MAC_OS_X_VERSION_10_5. If the former is less than the latter, the
#define that follows is processed; otherwise, it is skipped. Presumably, this sets the maxi-
mum length of a string to the maximum size of an integer minus 1 if the program is be-
ing compiled on MAC OS X 10.5 or later versions.

The special operator

defined (name)

can also be used in #if statements.This set of preprocessor statements does the same
thing:

#if defined (DEBUG)

...

#endif

and

#ifdef DEBUG

...

#endif

The following statements appear in the NSObjcRuntime.h header file for the purpose
of defining NS_INLINE (if it’s not previously defined) based on the particular compiler
that is being used:

#if !defined(NS_INLINE)

#if defined(__GNUC__)

#define NS_INLINE static __inline_attribute_((always_inline))

#elif defined(__MWERKS__) || defined(__cplusplus)

#define NS_INLINE static inline

#elif defined(_MSC_VER)

#define NS_INLINE static __inline

#elif defined(__WIN32__)

#define NS_INLINE static __inline__

#endif

#endif

253Exercises

Another common use of #if is in code sequences that look like this:

#if defined (DEBUG) && DEBUG

...

#endif

This causes the statements after the #if and up to the #endif to be processed only if
DEBUG is defined and has a nonzero value.

The #undef Statement
Sometimes you need to cau e a defined name to become undefined.You do this with the
#undef statement.To remove the definition of a particular name, you write the following:

#undef name

Thus, this statement removes the definitio of POWER_PC:

#undef POWER_PC

Subsequent #ifdef POWER_PC or #if defined (POWER_PC) statements evaluate to
FALSE.

This concludes our discussion on the preprocessor.Appendix B,“Objective-C Lan-
guage Summary,” describes some other preprocessor statements that we didn’t cover here.

Exercises
1. Locate the system header files limits.h and float.h on your machine. Examine

the files to see what’s in them. If these files include other header files, be sure to
track them down as well, to examine their contents.

2. Define a macro called MIN that gives the minimum of two values.Then write a pro-
gram to test the macro definition.

3. Define a macro called MAX3 that gives the maximum of three values.Write a pro-
gram to test the definition.

4. Write a macro called IS_UPPER_CASE that gives a nonzero value if a character is an
uppercase letter.

5. Write a macro called IS_ALPHABETIC that gives a nonzero value if a character is an
alphabetic character. Have the macro use the IS_LOWER_CASE macro defined in the
chapter text and the IS_UPPER_CASE macro defined in Exercise 4.

6. Write a macro called IS_DIGIT that gives a nonzero value if a character is a digit 0
through 9. Use this macro in the definition of another macro called IS_SPECIAL,
which gives a nonzero result if a character is a special character (that is, not alpha-
betic and not a digit). Be sure to use the IS_ALPHABETIC macro developed in Exer-
cise 5.

254 Chapter 12 The Preprocessor

7. Write a macro called ABSOLUTE_VALUE that computes the absolute value of its argu-
ment. Make sure that the macro properly evaluates an expression such as this:
ABSOLUTE_VALUE (x + delta)

8. Consider the definition of the printint macro from this chapter:

#define printx(n) printf (“%i\n”, x ## n)

Could the following be used to display the values of the 100 variables x1–x100?

Why or why not?
for (i = 1; i <= 100; ++i)

printx (i);

13
Underlying C Language Features

This chapter describes features of the Objective-C language that you don’t necessarily
need to know to write Objective-C programs. In fact, most of these come from the un-
derlying C programming language. Features such as functions, structures, pointers, unions,
and arrays are best learned on a need-to-know basis. Because C is a procedural language,
some of these features go against the grain of object-oriented programming.They can
also interfere with some of the strategies implemented by the Foundation framework,
such as the memory allocation methodology or work with character strings containing
multibyte characters.

Note
There are ways to work with multibyte characters at the Objective-C level, but Foundation pro-
vides a much more elegant solution with its NSString class.

On the other hand, some applications can require you to use a lower-level approach,
perhaps for the sake of optimization. If you’re working with large arrays of data, for ex-
ample, you might want to use the built-in array data structures of Objective-C instead of
the array objects of Foundation (which are described in Chapter 15,“Numbers, Strings,
and Collections”). Functions also come in handy if used properly to group repetitive op-
erations and modularize a program.

Skim this chapter to get an overview of the material, and come back after you’ve fin-
ished reading Part II,“The Foundation Framework.” Or you can skip it altogether and go
on to Part II, which covers the Foundation framework. If you end up supporting some-
one else’s code or start digging through some of the Foundation framework header files,
you will encounter some of the constructs covered in this chapter. Several of the Founda-
tion data types, such as NSRange, NSPoint, and NSRect, require a rudimentary under-
standing of structures, which are described here. In such cases, you can return to this
chapter and read the appropriate section to gain an understanding of the concepts.

256 Chapter 13 Underlying C Language Features

Arrays
The Objective-C language enables the user to define a set of ordered data items known
as an array.This section describes how to define and manipulate arrays. Later sections il-
lustrate how arrays work together with functions, structures, character strings, and point-
ers.

Suppose you wanted to read a set of grades into the computer and then perform some
operations on these grades, such as rank them in ascending order, compute their average,
or find their median. In the process of ranking a set of grades, you cannot perform such
an operation until you enter every grade.

In Objective-C, you can define a variable called grades that represents not a single
value of a grade, but an entire set of grades.You can then reference each element of the
set using a number called an index number, or subscript.Whereas in mathematics a sub-
scripted variable, xi, refers to the ith element x in a set, in Objective-C the equivalent no-
tation is this:

x[i]

So the expression

grades[5]

(read as “grades sub 5”) refers to element number 5 in the array called grades. In Objec-
tive-C, array elements begin with the number 0, so

grades[0]

actually refers to the first element of the array.
You can use an individual array element anywhere that you can use a normal variable.

For example, you can assign an array value to another variable with a statement such as
this:

g = grades[50];

This statement assigns the value contained in grades[50] to g. More generally, if i is
declared to be an integer variable, the statement

g = grades[i];

assigns the value contained in element number i of the grades array to g.
A value can be stored in an element of an array simply by specifying the array element

on the left side of an equals sign. In the statement

grades[100] = 95;

the value 95 is stored in element number 100 of the grades array.
You can easily sequence through the elements in the array by varying the value of a

variable that is used as a subscript into the array.Therefore, the for loop

for (i = 0; i < 100; ++i)

sum += grades[i];

257Arrays

sequences through the first 100 elements of the array grades (elements 0–99) and adds
the value of each grade into sum.When the for loop is finished, the variable sum contains
the total of the first 100 values of the grades array (assuming that sum was set to 0 before
the loop was entered).

As with other types of variables, you must declare arrays before you can use them. De-
claring an array involves declaring the type of element that will be contained in the array,
such as int, float, or an object, as well as the maximum number of elements that will be
stored inside the array.

The definition

Fraction *fracts [100];

defines fracts to be an array containing 100 fractions.You can make valid references
to this array by using subscripts 0–99.

The expression

fracts[2] = [fracts[0] add: fracts[1]];

invokes the Fraction’s add: method to add the first two fractions from the fracts array
and stores the result in the third location of the array.

Program 13.1 generates a table of the first 15 Fibonacci numbers.Try to predict its
output.What relationship exists between each number in the table?

Program 13.1

// Program to generate the first 15 Fibonacci numbers
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int Fibonacci[15], i;

Fibonacci[0] = 0; /* by definition */
Fibonacci[1] = 1; /* ditto */

for (i = 2; i < 15; ++i)
Fibonacci[i] = Fibonacci[i-2] + Fibonacci[i-1];

for (i = 0; i < 15; ++i)
NSLog (@”%i”, Fibonacci[i]);

[pool drain];
return 0;

}

258 Chapter 13 Underlying C Language Features

Program 13.1 Output

0
1
1
2
3
5
8
13
21
34
55
89
144
233

377

The first two Fibonacci numbers, which we call F0 and F1, are defined to be 0 and 1,
respectively.Thereafter, each successive Fibonacci number Fi is defined to be the sum of
the two preceding Fibonacci numbers Fi-2 and Fi-1. So F2 is calculated by adding the
values of F0 and F1. In the preceding program, this corresponds directly to calculating
Fibonacci[2] by adding the values Fibonacci[0] and Fibonacci[1].This calculation is
performed inside the for loop, which calculates the values of F2–F14 (or, equivalently,
Fibonacci[2] through Fibonacci[14]).

Initializing Array Elements
Just as you can assign initial values to variables when they are declared, you can assign ini-
tial values to the elements of an array.This is done by simply listing the initial values of
the array, starting from the first element.Values in the list are separated by commas, and
the entire list is enclosed in a pair of braces.

The statement

int integers[5] = { 0, 1, 2, 3, 4 };

sets the value of integers[0] to 0, integers[1] to 1, integers[2] to 2, and so on.
Arrays of characters are initialized in a similar manner; thus, the statement

char letters[5] = { ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ };

defines the character array letters and initializes the five elements to the characters ‘a’,
‘b’, ‘c’, ‘d’, and ‘e’, respectively.

You don’t have to completely initialize an entire array. If fewer initial values are speci-
fied, only an equal number of elements are initialized; the remaining values in the array
are set to zero.Thus, the declaration

float sample_data[500] = { 100.0, 300.0, 500.5 };

259Arrays

initializes the first three values of sample_data to 100.0, 300.0, and 500.5 and sets the
remaining 497 elements to 0.

By enclosing an element number in a pair of brackets, you can initialize specific array
elements in any order. For example,

int x = 1233;

int a[] = { [9] = x + 1, [2] = 3, [1] = 2, [0] = 1 };

defines a 10-element array called a (based on the highest index in the array) and initial-
izes the last element to the value of x + 1 (1234). In addition, it initializes the first three
elements to 1, 2, and 3, respectively.

Character Arrays
Program 13.2 illustrates how you can use a character array. However, one point is worthy
of discussion. Can you spot it?

Program 13.2

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char word[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’ };
int i;

for (i = 0; i < 6; ++i)
NSLog (@”%c”, word[i]);

[pool drain];
return 0;

}

Program 13.2 Output

H
e
l
l
o

!

The most notable point in the preceding program is the declaration of the character
array word.The array makes no mention of the number of elements.The Objective-C
language enables you to define an array without specifying the number of elements. In
this case, the size of the array is determined automatically based on the number of

260 Chapter 13 Underlying C Language Features

10 5 –3 17 82

9 0 0 8 –7

32 20 1 0 14

0 0 8 7 6

initialization elements. Because Program 13.2 has six initial values listed for the array
word, the Objective-C language implicitly dimensions the array to six elements.

This approach works fine as long as you initialize every element in the array at the
point that the array is defined. If this is not to be the case, you must explicitly dimension
the array.

If you put a terminating null character (’\0’) at the end of a character array, you create
what is often called a character string. If you substituted the initialization of word in
Program 13.2 with this line

char word[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’, ‘\0’ };

you could have subsequently displayed the string with a single NSLog call, like this:

NSLog (@”%s”, word);

This works because the %s format characters tell NSLog to keep displaying characters
until a terminating null character is reached.That’s the character you put at the end of
your word array.

Multidimensional Arrays
The types of arrays you’ve seen thus far are all linear arrays—that is, they all deal with a
single dimension.The language enables you to define arrays of any dimension.This sec-
tion takes a look at two-dimensional arrays.

One of the most natural applications for a two-dimensional array arises in the case of a
matrix. Consider the 4×5 matrix shown here:

In mathematics, an element of a matrix commonly is referred to by using a double
subscript. If the preceding matrix were called M, the notation Mi,j would refer to the ele-
ment in the ith row, jth column, where i ranges from 1 through 4 and j ranges from 1
through 5.The notation M3,2 would refer to the value 20, which is found in the third
row, second column of the matrix. In a similar fashion, M4,5 would refer to the element
contained in the fourth row, fifth column (the value 6).

In Objective-C, an analogous notation is used when referring to elements of a two-di-
mensional array. However, because Objective-C likes to start numbering things at 0, the
first row of the matrix is actually row 0 and the first column of the matrix is column 0.
The preceding matrix would then have row and column designations as shown in the fol-
lowing diagram:

261Arrays

Row (i) Column (j)

0 1 2 3 4

0 10 5 –3 17 82

1 9 0 0 8 –7

2 32 20 1 0 14

3 0 0 8 7 6

Whereas in mathematics the notation Mi,j is used, in Objective-C the equivalent nota-
tion is as follows:

M[i][j]

Remember, the first index number refers to the row number, whereas the second in-
dex number references the column.Therefore, the statement

sum = M[0][2] + M[2][4];

adds the value contained in row 0, column 2 (which is -3) to the value contained in row
2, column 4 (which is 14) and assigns the result of 11 to the variable sum.

Two-dimensional arrays are declared the same way that one-dimensional arrays are; thus,

int M[4][5];

declares the array M to be a two-dimensional array consisting of 4 rows and 5 columns, for
a total of 20 elements. Each position in the array is defined to contain an integer value.

Two-dimensional arrays can be initialized in a manner analogous to their one-dimen-
sional counterparts.When listing elements for initialization, the values are listed by row.
Brace pairs are used to separate the list of initializers for one row from the next.Thus, to
define and initialize the array M to the elements listed in the preceding table, you can use a
statement such as the following:
int M[4][5] = {

{ 10, 5, -3, 17, 82 },
{ 9, 0, 0, 8, -7 },
{ 32, 20, 1, 0, 14 },
{ 0, 0, 8, 7, 6 }

};

Pay particular attention to the syntax of the previous statement. Note that commas are
required after each brace that closes off a row, except in the case of the last row.The use of
the inner pairs of braces is actually optional. If these aren’t supplied, initialization proceeds
by row.Therefore, the previous statement could also have been written as follows:

int M[4][5] = { 10, 5, -3, 17, 82, 9, 0, 0, 8, -7, 32,

20, 1, 0, 14, 0, 0, 8, 7, 6 };

262 Chapter 13 Underlying C Language Features

As with one-dimensional arrays, the entire array need not be initialized.A statement
such as the following initializes only the first three elements of each row of the matrix to
the indicated values:
int M[4][5] = {

{ 10, 5, -3 },
{ 9, 0, 0 },
{ 32, 20, 1 },
{ 0, 0, 8 }

};

The remaining values are set to 0. Note that, in this case, the inner pairs of braces are
required to force the correct initialization.Without them, the first two rows and the first
two elements of the third row would have been initialized instead. (Verify for yourself
that this would be the case.)

Functions
The NSLog routine is an example of a function that you have used in every program so
far. Indeed, every program also has used a function called main. Let’s go back to the first
program you wrote (Program 2.1), which displayed the phrase “Programming is fun.” at
the terminal:
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun.”);
[pool drain];
return 0;

}

This function, called printMessage, produces the same output:
void printMessage (void)
{

NSLog (@”Programming is fun.”);
}

The only difference between printMessage and the function main from Program 2.1
is the first line.The first line of a function definition tells the compiler four things about
the function:

n Who can call it
n The type of value it returns
n Its name
n The number and type of arguments it takes

263Functions

The first line of the printMessage function definition tells the compiler that
printMessage is the name of the function and that it returns no value (the first use of the
keyword void). Unlike methods, you don’t put the function’s return type inside a set of
parentheses. In fact, you get a compiler error message if you do.

After telling the compiler that printMessage doesn’t return a value, the second use of
the keyword void says that it takes no arguments.

Recall that main is a specially recognized name in the Objective-C system that always
indicates where the program is to begin execution.There always must be a main. So you
can add a main function to the preceding code to end up with a complete program, as
shown in Program 13.3.

Program 13.3

#import <Foundation/Foundation.h>

void printMessage (void)
{

NSLog (@”Programming is fun.”);
}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

printMessage ();
[pool drain];
return 0;

}

Program 13.4 Output

Programming is fun.

Program 13.3 consists of two functions: printMessage and main.As mentioned ear-
lier, the idea of calling a function is not new. Because printMessage takes no arguments,
you call it simply by listing its name followed by a pair of open and close parentheses.

Arguments and Local Variables
In Chapter 5,“Program Looping,” you developed programs for calculating triangular
numbers. Here you define a function to generate a triangular number and call it, appro-
priately enough, calculateTriangularNumber.As an argument to the function, you
specify which triangular number to calculate.The function then calculates the desired
number and displays the results. Program 13.4 shows the function to accomplish the task
and a main routine to try it.

264 Chapter 13 Underlying C Language Features

Program 13.4

#import <Foundation/Foundation.h>

// Function to calculate the nth triangular number

void calculateTriangularNumber (int n)
{

int i, triangularNumber = 0;

for (i = 1; i <= n; ++i)
triangularNumber += i;

NSLog (@”Triangular number %i is %i”, n, triangularNumber);
}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

calculateTriangularNumber (10);
calculateTriangularNumber (20);
calculateTriangularNumber (50);

[pool drain];
return 0;

}

Program 13.4 Output
Triangular number 10 is 55
Triangular number 20 is 210

Triangular number 50 is 1275

The first line of the calculateTriangularNumber function is this:

void calculateTriangularNumber (int n)

It tells the compiler that calculateTriangularNumber is a function that returns no
value (the keyword void) and that it takes a single argument, called n, which is an int.
Note again that you can’t put the argument type inside parentheses, as you are accus-
tomed to doing when you write methods.

The opening curly brace indicates the beginning of the function’s definition. Because
you want to calculate the nth triangular number, you must set up a variable to store the
value of the triangular number as it is being calculated.You also need a variable to act as
your loop index.The variables TriangularNumber and i are defined for these purposes
and are declared to be of type int.You define and initialize these variables in the same
manner that you defined and initialized your variables inside the main routine in previous
programs.

265Functions

Local variables in functions behave the same way they do in methods: If an initial
value is given to a variable inside a function, that initial value is assigned to the variable
each time the function is called.

Variables defined inside a function (as in methods) are known as automatic local
variables because they are automatically “created” each time the function is called and
their values are local to the function.

Static local variables are declared with the keyword static, retain their values through
function calls, and have default initial values of 0.

The value of a local variable can be accessed only by the function in which the vari-
able is defined. Its value cannot be directly accessed from outside the function.

Returning to our program example, after the local variables have been defined, the
function calculates the triangular number and displays the results at the terminal.The
closed brace then defines the end of the function.

Inside the main routine, the value 10 is passed as the argument in the first call to
calculateTriangularNumber. Execution then transfers directly to the function where
the value 10 becomes the value of the formal parameter n inside the function.The func-
tion then calculates the value of the 10th triangular number and displays the result.

The next time calculateTriangularNumber is called, the argument 20 is passed. In a
similar process, as described earlier, this value becomes the value of n inside the function.
The function then calculates the value of the 20th triangular number and displays the an-
swer.

Returning Function Results
As with methods, a function can return a value.The type of value returned with the
return statement must be consistent with the return type declared for the function.A
function declaration that starts like this

float kmh_to_mph (float km_speed)

begins the definition of a function kmh_to_mph, which takes one float argument called
km_speed and returns a floating-point value. Similarly,

int gcd (int u, int v)

defines a function called gcd with integer arguments u and v and returns an integer value.
Let’s rewrite the greatest common divisor algorithm used in Program 5.7 in function

form.The two arguments to the function are the two numbers whose greatest common
divisor (gcd) you want to calculate (see Program 13.5).

Program 13.5

#import <Foundation/Foundation.h>

// This function finds the greatest common divisor of two
// nonnegative integer values and returns the result

266 Chapter 13 Underlying C Language Features

int gcd (int u, int v)
{

int temp;

while (v != 0)
{

temp = u % v;
u = v;
v = temp;

}

return u;
}

main ()
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int result;

result = gcd (150, 35);
NSLog (@”The gcd of 150 and 35 is %i”, result);

result = gcd (1026, 405);
NSLog (@”The gcd of 1026 and 405 is %i”, result);

NSLog (@”The gcd of 83 and 240 is %i”, gcd (83, 240));
[pool drain];
return 0;

}

Program 13.5 Output
The gcd of 150 and 35 is 5
The gcd of 1026 and 405 is 27

The gcd of 83 and 240 is 1

The function gcd is defined to take two integer arguments.The function refers to
these arguments through their formal parameter names: u and v.After declaring the vari-
able temp to be of type int, the program displays the values of the arguments u and v, to-
gether with an appropriate message at the terminal.The function then calculates and
returns the greatest common divisor of the two integers.

The statement

result = gcd (150, 35);

says to call the function gcd with the arguments 150 and 35, and to store the value that
this function returns in the variable result.

267Functions

If the return type declaration for a function is omitted, the compiler assumes that the
function will return an integer—if it returns a value at all. Many programmers take ad-
vantage of this fact and omit the return type declaration for functions that return integers.
However, this is a bad programming habit that you should avoid.The compiler will warn
you that the return type defaults to int, which is an indication that you’re doing some-
thing wrong!

The default return type for functions differs from that for methods. Recall that, if no
return type is specified for a method, the compiler assumes that it returns a value of type
id.Again, you should always declare the return type for a method instead of relying on
this fact.

Declaring Return Types and Argument Types
We mentioned earlier that the Objective-C compiler assumes that a function returns a
value of type int as the default case. More specifically, whenever a call is made to a func-
tion, the compiler assumes that the function returns a value of type int unless either of
the following has occurred:

n The function has been defined in the program before the function call is encountered.
n The value returned by the function has been declared before the function call is

encountered. Declaring the return and argument types for a function is known as a
prototype declaration.

The function declaration not only is used to declare the function’s return type, but it
also is used to tell the compiler how many arguments the function takes and what their
types are.This is analogous to declaring methods inside the @interface section when
defining a new class.

To declare absoluteValue as a function that returns a value of type float and that takes
a single argument, also of type float, you could use the following prototype declaration:

float absoluteValue (float);

As you can see, you have to specify just the argument type inside the parentheses, not
its name.You can optionally specify a “dummy” name after the type, if you like:

float absoluteValue (float x);

This name doesn’t have to be the same as the one used in the function definition—the
compiler ignores it anyway.

A foolproof way to write a prototype declaration is to simply make a copy of the first
line from the actual definition of the function. Remember to place a semicolon at the end.

If the function takes a variable number of arguments (such as is the case with NSLog
and scanf), the compiler must be informed.The declaration

void NSLog (NSString *format, ...);

tells the compiler that NSLog takes an NSString object as its first argument and is fol-
lowed by any number of additional arguments (the use of the ...). NSLog is declared in

268 Chapter 13 Underlying C Language Features

the special file Foundation/Foundation.h1, which is why you have been placing the fol-
lowing line at the start of each of your programs:

#import <Foundation/Foundation.h>

Without this line, the compiler can assume that NSLog takes a fixed number of argu-
ments, which can result in incorrect code being generated.

The compiler automatically converts your numeric arguments to the appropriate types
when a function is called only if you have placed the function’s definition or have de-
clared the function and its argument types before the call.

Consider some reminders and suggestions about functions:

n By default, the compiler assumes that a function returns an int.
n When defining a function that returns an int, define it as such.
n When defining a function that doesn’t return a value, define it as void.
n The compiler converts your arguments to agree with the ones the function expects

only if you have previously defined or declared the function.

To be safe, declare all functions in your program, even if they are defined before they
are called. (You might decide later to move them someplace else in your file or even to
another file.) A good strategy is to put your function declarations inside a header file and
then just import that file into your modules.

Functions are external by default.That is, the default scope for a function is that it can
be called by any functions or methods contained in any files that are linked with the
function.You can limit the scope of a function by making it static.You do this by placing
the keyword static in front of the function declaration, as shown here:

static int gcd (int u, int v)

{

...

}

A static function can be called only by other functions or methods that appear in the
same file that contains the function’s definition.

Functions, Methods, and Arrays
To pass a single array element to a function or method, you specify the array element as
an argument in the normal fashion. So if you had a squareRoot function to calculate
square roots and wanted to take the square root of averages[i] and assign the result to a
variable called sq_root_result, a statement such as this one would work:

sq_root_result = squareRoot (averages[i]);

1 Technically speaking, its defined in the file NSObjCRuntime.h, which is imported from inside the

file Foundation.h

269Functions

Passing an entire array to a function or method is an entirely new ballgame.To pass an
array, you need to list only the name of the array, without any subscripts, inside the call to
the function or method invocation.As an example, if you assume that grade_scores has
been declared as an array containing 100 elements, the expression

minimum (grade_scores)

passes the entire 100 elements contained in the array grade_scores to the function
called minimum. Naturally, the minimum function must be expecting an entire array to be
passed as an argument and must make the appropriate formal parameter declaration.

This function finds the minimum integer value in an array containing a specified
number of elements:

// Function to find the minimum in an array

int minimum (int values[], int numElements)

{

int minValue, i;

minValue = values[0];

for (i = 1; i < numElements; ++i)

if (values[i] < minValue)

minValue = values[i];

return (minValue);

}

The function minimum is defined to take two arguments: first, the array whose mini-
mum you want to find and, second, the number of elements in the array.The open and
close brackets that immediately follow values in the function header inform the Ob-
jective-C compiler that values is an array of integers.The compiler doesn’t care how
large it is.

The formal parameter numElements serves as the upper limit inside the for statement.
Thus, the for statement sequences through the array from values[1] through the last el-
ement of the array, which is values[numElements - 1].

If a function or method changes the value of an array element, that change is made to
the original array that was passed to the function or method.This change remains in ef-
fect even after the function or method has completed execution.

The reason an array behaves differently from a simple variable or an array element—
whose value a function or method cannot change—is worthy of a bit of explanation.We
stated that when a function or method is called, the values passed as arguments are copied
into the corresponding formal parameters.This statement is still valid. However, when
dealing with arrays, the entire contents of the array are not copied into the formal param-
eter array. Instead, a pointer is passed indicating where in the computer’s memory the ar-
ray is located. So any changes made to the formal parameter array are actually made to

270 Chapter 13 Underlying C Language Features

the original array, not to a copy of the array.Therefore, when the function or method re-
turns, these changes remain in effect.

Multidimensional Arrays
You can pass a multidimensional array element to a function or method just as any ordi-
nary variable or single-dimensional array element can.The statement

result = squareRoot (matrix[i][j]);

calls the squareRoot function, passing the value contained in matrix[i][j] as the argu-
ment.

You can pass an entire multidimensional array as an argument the same way you do
with a single-dimensional array:You simply list the name of the array. For example, if the
matrix measuredValues is declared to be a two-dimensional array of integers, you can
use the Objective-C statement

scalarMultiply (measuredValues, constant);

to invoke a function that multiplies each element in the matrix by the value of constant.
This implies, of course, that the function itself can change the values contained inside the
measuredValues array.The discussion pertaining to this topic for single-dimensional ar-
rays also applies here:An assignment made to any element of the formal parameter array
inside the function makes a permanent change to the array that was passed to the func-
tion.

We mentioned that, when declaring a single-dimensional array as a formal parameter,
you don’t need the actual dimension of the array.You simply use a pair of empty brackets
to inform the Objective-C compiler that the parameter is an array.This does not totally
apply in the case of multidimensional arrays. For a two-dimensional array, you can omit
the number of rows in the array, but the declaration must contain the number of columns
in the array.The declarations

int arrayValues[100][50]

and

int arrayValues[][50]

are both valid declarations for a formal parameter array called arrayValues that contains
100 rows by 50 columns. However, the declarations

int arrayValues[100][]

and

int arrayValues[][]

are not valid because you must specify the number of columns in the array.

271Structures

Structures
The Objective-C language provides another tool besides arrays for grouping elements.
You also can use structures, which form the basis for the discussions in this section.

Suppose you wanted to store a date—say, 7/18/09—inside a program, perhaps to be
used for the heading of some program output or even for computational purposes.A nat-
ural method for storing the date is to simply assign the month to an integer variable
called month, the day to an integer variable day, and the year to an integer variable year.
So the statements

int month = 7, day = 18, year = 2009;

would work just fine.This is a totally acceptable approach. But what if your program also
needed to store several dates? It would be much better to somehow group these sets of
three variables.

You can define a structure called date in the Objective-C language that consists of
three components that represent the month, day, and year.The syntax for such a definition
is rather straightforward:

struct date

{

int month;

int day;

int year;

};

The date structure just defined contains three integer members, called month, day,
and year. Essentially, the definition of date defines a new type in the language, in that
variables can subsequently be declared to be of type struct date, as in the following
definition:

struct date today;

You can also define a variable called purchaseDate to be of the same type with a sep-
arate definition:

struct date purchaseDate;

Or you can simply include the two definitions on the same line:

struct date today, purchaseDate;

Unlike variables of type int, float, or char, a special syntax is needed when dealing
with structure variables.A member of a structure is accessed by specifying the variable
name, followed by a period (called the dot operator) and then the member name. For ex-
ample, to set the value of day in the variable today to 21, you would write this:

today.day = 21;

Note that no spaces are permitted between the variable name, the period, and the
member name.

272 Chapter 13 Underlying C Language Features

Now, wait a second! Wasn’t this the same operator we used to invoke an property on
an object? Recall that we could write the statement

myRect.width = 12;

to invoke the Rectangle object’s setter method (called setWidth), passing it the argu-
ment value of 12. No confusion arises here:The compiler determines whether it’s a struc-
ture or an object to the left of the dot operator and handles the situation properly.

Returning to the struct date example, to set year in today to 2010, you can use
this expression:

today.year = 2010;

Finally, to test the value of month to see whether it is equal to 12, you can use a state-
ment such as this:

if (today.month == 12)

next_month = 1;

Program 13.6 incorporates the preceding discussions into an actual program.

Program 13.6

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

struct date
{

int month;
int day;
int year;

};

struct date today;

today.month = 9;
today.day = 25;
today.year = 2009;

NSLog (@”Today’s date is %i/%i/%.2i.”, today.month,
today.day, today.year % 100);

[pool drain];
return 0;

}

273Structures

Program 13.6 Output

Today’s date is 9/25/09.

The first statement inside main defines the structure called date to consist of three integer
members, called month, day, and year. In the second statement, the variable today is declared
to be of type struct date. So the first statement simply defines what a date structure looks
like to the Objective-C compiler and causes no storage to be reserved inside the computer.
The second statement declares a variable to be of type struct date and, therefore, does re-
serve memory for storing the three integer members of the structure variable today.

After the ass gnments, an appropri te NSLog call displays the values contained inside
the structure.The rema nder of today year divided by 100 is calculated before being
passed to the NSLog function so that just 04 displays for the year.The %.2i format charac-
ters in the NSLog call specify a minimum of two characters to be displayed, thus forcing
the display of the leading zero for the year.

When it comes to the evalua ion of expressions, structure members follow the same
rules as ordinary var ables in the Objective-C language. D vision of an integer structure
member by another integer is performed as an integer division, as shown here:

century = today.year / 100 + 1;

Suppose you wanted to write a simple program that accepted today’s date as input and
displayed tomorrow’s date to the user.At first glance, this seems a perfectly simple task to
perform.You can ask the user to enter today’s date and then calculate tomorrow’s date by
a series of statements, like so:

tomorrow.month = today.month;

tomorrow.day = today.day + 1;

tomorrow.year = today.year;

Of course, the previous statements would work fine for most dates, but the following
two cases would not be properly handled:

n If today’s date fell at the end of a month
n If today’s date fell at the end of a year (that is, if today’s date were December 31)

One way to easily determine whether today’s date falls at the end of a month is to set
up an array of integers that corresponds to the number of days in each month.A lookup
inside the array for a particular month then gives the number of days in that month (see
Program 13.7).

Program 13.7

// Program to determine tomorrow’s date

#import <Foundation/Foundation.h>

struct date
{

274 Chapter 13 Underlying C Language Features

int month;
int day;
int year;

};

// Function to calculate tomorrow’s date

struct date dateUpdate (struct date today)
{

struct date tomorrow;
int numberOfDays (struct date d);

if (today.day != numberOfDays (today))
{

tomorrow.day = today.day + 1;
tomorrow.month = today.month;
tomorrow.year = today.year;

}
else if (today.month == 12) // end of year
{

tomorrow.day = 1;
tomorrow.month = 1;
tomorrow.year = today.year + 1;

}
else
{ // end of month

tomorrow.day = 1;
tomorrow.month = today.month + 1;
tomorrow.year = today.year;

}

return (tomorrow);
}

// Function to find the number of days in a month

int numberOfDays (struct date d)
{

int answer;
BOOL isLeapYear (struct date d);
int daysPerMonth[12] =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

if (isLeapYear (d) == YES && d.month == 2)
answer = 29;

else
answer = daysPerMonth[d.month - 1];

275Structures

return (answer);
}

// Function to determine if it’s a leap year

BOOL isLeapYear (struct date d)
{
if ((d.year % 4 == 0 && d.year % 100 != 0) ||

d.year % 400 == 0)
return YES;

else
return NO;

}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
struct date dateUpdate (struct date today);
struct date thisDay, nextDay;

NSLog (@”Enter today’s date (mm dd yyyy): “);
scanf (“%i%i%i”, &thisDay.month, &thisDay.day,

&thisDay.year);

nextDay = dateUpdate (thisDay);

NSLog (@”Tomorrow’s date is %i/%i/%.2i.”,nextDay.month,
nextDay.day, nextDay.year % 100);

[pool drain];
return 0;

}

Program 13.7 Output

Enter today’s date (mm dd yyyy):
2 28 2012

Tomorrow’s date is 2/29/12.

Program 13.7 Output (Rerun)

Enter today’s date (mm dd yyyy):
10 2 2009

Tomorrow’s date is 10/3/09.

276 Chapter 13 Underlying C Language Features

Program 13.7 Output (Rerun)

Enter today’s date (mm dd yyyy):
12 31 2010

Tomorrow’s date is 1/1/10.

Even though you’re not working with any classes in this program, the file Foundation.h
was imported because you wanted to use the BOOL type and the defines YES and NO.They’re
defined in that file.

Notice that the definition of the date structure appears first and outside of any func-
tion.This is because structure definitions behave much like variables: If a structure is de-
fined within a particular function, only that function knows of its existence.This is a local
structure definition. If you define the structure outside any function, that definition is
global.A global structure definition enables any variables that are subsequently defined in
the program (either inside or outside a function) to be declared as that structure type.
Structure definitions that more than one file share are typically centralized in a header file
and then imported into the files that want to use the structure.

Inside the main routine, the declaration

struct date dateUpdate (struct date today);

tells the compiler that the dateUpdate function takes a date structure as its argument and
returns one as well.You don’t need the declaration here because the compiler has already
seen the actual function definition earlier in the file. However, it’s still good programming
practice. For example, if you subsequently separated the function definition and main into
separate source files, the declaration would be necessary.

As with ordinary variables—and unlike arrays—any changes that the function makes
to the values contained in a structure argument have no effect on the original structure.
They affect only the copy of the structure that is created when the function is called.

After a date has been entered and stored inside the date structure variable thisDay,
the dateUpdate function is called like this:

nextDay = dateUpdate (thisDay);

This statement calls dateUpdate, passing it the value of the date structure thisDay.
Inside the dateUpdate function, the prototype declaration

int numberOfDays (struct date d);

informs the Objective-C compiler that the numberOfDays function returns an integer
value and takes a single argument of type struct date.

The statement

if (today.day != numberOfDays (today))

277Structures

specifies that the structure today is to be passed as an argument to the numberOfDays
function. Inside that function, the appropriate declaration must be made to inform the
system that a structure is expected as an argument, like so:

int numberOfDays (struct date d)

The numberOfDays function begins by determining whether it is a leap year and
whether the month is February.The former determination is made by calling another
function called isLeapYear.

The isLeapYear function is straightforward enough; it simply tests the year con-
tained in the date structure given as its argument and returns YES if it is a leap year and
NO if it is not.

Make sure that you understand the hierarchy of function calls in Program 13.7:The
main function calls dateUpdate, which calls numberOfDays, which itself calls the function
isLeapYear.

Initializing Structures
Initializing structures is similar to initializing arrays—the elements are simply listed inside
a pair of braces, with a comma separating each element.

To initialize the date structure variable today to July 2, 2011, you can use this statement:

struct date today = { 7, 2, 2011 };

As with the initialization of an array, fewer values can be listed than the structure con-
tains. So the statement

struct date today = { 7 };

sets today.month to 7 but gives no initial value to today.day or today.year. In such a
case, their default initial values are undefined.

Specific members can be designated for initialization in any order with the notation

.member = value

in the initialization list, as in

struct date today = { .month = 7, .day = 2, .year = 2011 };

and

struct date today = { .year = 2011 };

The last statement just sets the year in the structure to 2011.As you know, the other
two members are undefined.

278 Chapter 13 Underlying C Language Features

Arrays of Structures
Working with arrays of structures is pretty straightforward.The definition

struct date birthdays[15];

defines the array birthdays to contain 15 elements of type struct date. Referencing a
particular structure element inside the array is quite natural.To set the second birthday in-
side the birthdays array to February 22, 1996, this sequence of statements works:

birthdays[1].month = 2;

birthdays[1].day = 22;

birthdays[1].year = 1996;

The statement

n = numberOfDays (birthdays[0]);

sends the first date in the array to the numberOfDays function to find out how many days
are contained in the month that date specifies.

Structures Within Structures
Objective-C provides an enormous amount of flexibility in defining structures. For in-
stance, you can define a structure that itself contains other structures as one or more of its
members, or you can define structures that contain arrays.

You have seen how to logically group the month, day, and year into a structure called
date. Suppose you had an analogous structure called time that you used to group the
hour, minutes, and seconds representing a time. In some applications, you might need to
logically group both a date and a time. For example, you might need to set up a list of
events that are to occur at a particular date and time.

The previous discussion implies that you want to have a convenient means of associat-
ing both the date and the time.You can do this in Objective-C by defining a new struc-
ture (perhaps called date_and_time) that contains as its members two elements: the date
and the time:

struct date_and_time

{

struct date sdate;

struct time stime;

};

The first member of this structure is of type struct date and is called sdate, and the
second member of the date_and_time structure is of type struct time and is called
stime.This definition of a date_and_time structure requires that a date structure and a
time structure be previously defined to the compiler.

Variables can now be defined as type struct date_and_time:

struct date_and_time event;

To reference the date structure of the variable event, the syntax is the same:

279Structures

event.sdate

Therefore, you could call your dateUpdate function with this date as the argument
and assign the result back to the same place by a statement, like so:

event.sdate = dateUpdate (event.sdate);

You can do the same with the time structure contained within your date_and_time
structure:

event.stime = timeUpdate (event.stime);

To reference a particular member inside one of these structures, add a period followed
by the member name to the end:

event.sdate.month = 10;

This statement sets the month of the date structure contained within event to Octo-
ber, and the statement

++event.stime.seconds;

adds 1 to the seconds contained within the time structure.
You can initialize the event variable in the expected manner:

struct date_and_time event =

{ { 12, 17, 1989 }, { 3, 30, 0 } };

This sets the date in the variable event to December 17, 1989, and sets the time to
3:30:00.

Naturally, you can set up an array of date_and_time structures, as is done with the
following declaration:

struct date_and_time events[100];

The array events is declared to contain 100 elements of type struct
date_and_time.The 4th date_and_time contained within the array is referenced in the
usual way as events[3], and the 25th date in the array can be sent to your dateUpdate
function as follows:

events[24].sdate = dateUpdate (events[24].sdate);

To set the first time in the array to noon, you can use the following series of state-
ments:

events[0].stime.hour = 12;

events[0].stime.minutes = 0;

events[0].stime.seconds = 0;

280 Chapter 13 Underlying C Language Features

Additional Details About Structures
We should mention that you have some flexibility in defining a structure. First, you can
declare a variable to be of a particular structure type at the same time that the structure is
defined.You do this simply by including the variable name(s) before the terminating
semicolon of the structure definition. For example, the following statement defines the
structure date and also declares the variables todaysDate and purchaseDate to be of this
type:

struct date

{

int month;

int day;

int year;

} todaysDate, purchaseDate;

You can also assign initial values to the variables in the normal fashion.Thus, the follow-
ing defines the structure date and the variable todaysDate with initial values as indicated:

struct date

{

int month;

int day;

int year;

} todaysDate = { 9, 25, 2010 };

If all the variables of a particular structure type are defined when the structure is de-
fined, you can omit the structure name. So the following statement defines an array called
dates to consist of 100 elements:

struct

{

int month;

int day;

int year;

} dates[100];

Each element is a structure containing three integer members: month, day, and year.
Because you did not supply a name to the structure, the only way to subsequently de-
clare variables of the same type is to explicitly define the structure again.

Bit Fields
Two methods in Objective-C can pack information together. One way is to simply repre-
sent the data inside an integer and then access the desired bits of the integer using the bit
operators described in Chapter 4,“Data Types and Expressions.”

Another way is to define a structure of packed information using an Objective-C con-
struct known as a bit field.This method uses a special syntax in the structure definition
that enables you to define a field of bits and assign a name to that field.

281Structures

To define bit field assignments, you can define a structure called packedStruct, for
example, as follows:

struct packedStruct

{

unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

unsigned int type:4;

unsigned int index:9;

};

The structure packedStruct is defined to contain five members.The first member,
called f1, is an unsigned int.The :1 that immediately follows the member name speci-
fies that this member is to be stored in 1 bit.The flags f2 and f3 are similarly defined as
being a single bit in length.The member type is defined to occupy 4 bits, whereas the
member index is defined as being 9 bits long.

The compiler automatically packs the preceding bit field definitions together.The nice
thing about this approach is that the fields of a variable defined to be of type
packedStruct can now be referenced in the same convenient way that normal structure
members are referenced. So if you declared a variable called packedData as follows

struct packedStruct packedData;

you could easily set the type field of packedData to 7 with this simple statement:

packedData.type = 7;

You could also set this field to the value of n with this similar statement:

packedData.type = n;

In this last case, you needn’t worry about whether the value of n is too large to fit into
the type field; only the low-order 4 bits of n are assigned to packedData.type.

Extraction of the value from a bit field is also automatically handled, so the statement

n = packedData.type;

extracts the type field from packedData (automatically shifting it into the low-order bits
as required) and assigns it to n.

You can use bit fields in normal expressions and automatically convert them to inte-
gers.Therefore, the statement

i = packedData.index / 5 + 1;

is perfectly valid, as is the following:

if (packedData.f2)

...

This tests whether flag f2 is on or off. One point worth noting about bit fields is that
no guarantee states whether the fields are internally assigned from left to right or from

282 Chapter 13 Underlying C Language Features

right to left. So if bit fields are assigned from right to left, f1 would be in the low-order
bit position, f2 in the bit position immediately to the left of f1, and so on.This should
not present a problem unless you are dealing with data that a different program or a dif-
ferent machine created.

You can also include normal data types within a structure that contains bit fields. So if
you wanted to define a structure that contains an int, a char, and two 1-bit flags, the fol-
lowing definition would be valid:

struct table_entry

{

int count;

char c;

unsigned int f1:1;

unsigned int f2:1;

};

Bit fields are packed into units as they appear in the structure definition, where the size
of a unit is defined by the implementation and is most likely a word.The Objective-C
compiler does not rearrange the bit field definitions to try to optimize storage space.

A bit field that has no name can be specified to cause bits inside a word to be skipped.
The following definition defines a structure, x_entry, that contains a 4-bit field called
type and a 9-bit field called count:

struct x_entry

{

unsigned int type:4;

unsigned int :3;

unsigned int count:9;

};

The unnamed field specifies that 3 bits separate type from the count field.
A final point on the specification of fields concerns the special case of an unnamed

field of length 0.You can be use this to force alignment of the next field in the structure
at the start of a unit boundary.

Don’t Forget About Object-Oriented Programming!
Now you know how to define a structure to store a date, and you’ve written various rou-
tines to manipulate that date structure. But what about object-oriented programming?
Shouldn’t you have made a class called Date instead and then developed methods to work
with a Date object? Wouldn’t that be a better approach? Well, yes. Hopefully, that entered
your mind when we discussed storing dates in your program.

Certainly, if you have to work with a lot of dates in your programs, defining a class and
methods to work with dates is a better approach. In fact, the Foundation framework has a
couple of classes, called NSDate and NSCalendarDate, defined for such purposes.We leave
it as an exercise for you to implement a Date class to deal with dates as objects instead of
as structures.

283Pointers

Pointers
Pointers enable you to effectively represent complex data structures, change values passed
as arguments to functions and methods, and more concisely and efficiently deal with ar-
rays.At the end of this chapter, we also clue you in about how important they are to the
implementation of objects in the Objective-C language.

We introduced the concept of a pointer in Chapter 8,“Inheritance,” when we talked
about the Point and Rectangle classes and stated that you can have multiple references
to the same object.

To understand the way pointers operate, you first must understand the concept of
indirection.We witness this concept in our everyday life For example uppose that I
needed to buy a new toner cartridge for my printer. In the company that I work for, the
purchasing department handles all purchases. So I would call Jim in purchasing and ask
him to order the new cartridge for me. Jim then would call the local supply store to order
the cartridge To obtain my new cartridge, I would take an indirect approach because I
would not be ordering he cartridge directly from the supply store.

This same notion of indirection applies to the way pointers work in Objective-C.A
pointer provides an indirect means of accessing the value of a particular data item.And
just as there are reasons it makes sense to go through the purchasing department to order
new cartridges (I don’t have to know which particular store the cartridges are being or-
dered from, for example), good reasons exist for why sometimes it makes sense to use
pointers in Objective-C.

But enough talk; it’s time to see how pointers actually work. Suppose you’ve defined a
variable called count as follows:

int count = 10;

You can define another variable, called intPtr, that enables you to indirectly access
the value of count with the following declaration:

int *intPtr;

The asterisk defines to the Objective-C system that the variable intPtr is of type
pointer to int.This means that the program will use intPtr to indirectly access the value
of one or more integer variables.

You have seen how we used the & operator in the scanf calls of previous programs.
This unary operator, known as the address operator, makes a pointer to a variable in Ob-
jective-C. So if x is a variable of a particular type, the expression &x is a pointer to that
variable. If you want, you can assign the expression &x to any pointer variable that has
been declared to be a pointer of the same type as x.

Therefore, with the definitions of count and intPtr as given, you can write a state-
ment such as

intPtr = &count;

284 Chapter 13 Underlying C Language Features

10

intPtr count

Figure 13.1 Pointer to an integer

to set up the indirect reference between intPtr and count.The address operator assigns
to the variable intPtr not the value of count, but a pointer to the variable count. Figure
13.1 illustrates the link made between intPtr and count.The directed line illustrates the
idea that intPtr does not directly contain the value of count, but contains a pointer to
the variable count.

To reference the contents of count through the pointer variable intPtr, you use the
indirection operator, which is the asterisk (*). If x were defined to be of type int, the
statement

x = *intPtr;

would assign the value that is indirectly referenced through intPtr to the variable x. Be-
cause intPtr was previously set pointing to count, this statement would have the effect
of assigning the value contained in the variable count—which is 10—to the variable x.

Program 13.8 incorporates the previous statements and illustrates the two fundamental
pointer operators: the address operator (&) and the indirection operator (*).

Program 13.8

// Program to illustrate pointers

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int count = 10, x;
int *intPtr;

intPtr = &count;
x = *intPtr;

NSLog (@”count = %i, x = %i”, count, x);

[pool drain];
return 0;

}

Program 13.8 Output

count = 10, x = 10

285Pointers

The variables count and x are declared to be integer variables in the normal fashion.
On the next line, the variable intPtr is declared to be of type “pointer to int.” Note that
the two lines of declarations could have been combined into a single line:

int count = 10, x, *intPtr;

Next, the address operator is applied to the variable count, which has the effect of cre-
ating a pointer to this variable, which the program then assigns to the variable intPtr.

Execution of the next statement in the program

x = *intPtr;

proceeds as follows:The indirection operator tells the Objective-C system to treat the
variable intPtr as containing a pointer to another data item.This pointer is then used to
access the desired data item, whose type is specified by the declaration of the pointer vari-
able. Because you told the compiler when you declared the variable that intPtr points to
integers, the compiler knows that the value referenced by the expression *intPtr is an
integer.Also, because you set intPtr to point to the integer variable count in the previ-
ous program statement, this expression indirectly accesses the value of count.

Program 13.9 illustrates some interesting properties of pointer variables.This program
uses a pointer to a character.

Program 13.9

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
char c = ‘Q’;
char *charPtr = &c;

NSLog (@”%c %c”, c, *charPtr);

c = ‘/’;
NSLog (@”%c %c”, c, *charPtr);

*charPtr = ‘(‘;
NSLog (@”%c %c”, c, *charPtr);

[pool drain];
return 0;

}

Program 13.9 Output

Q Q
/ /

((

286 Chapter 13 Underlying C Language Features

The character variable c is defined and initialized to the character ‘Q’. In the next line
of the program, the variable charPtr is defined to be of type “pointer to char,” meaning
that whatever value is stored inside this variable should be treated as an indirect reference
(pointer) to a character. Notice that you can assign an initial value to this variable in the
normal fashion.The value you assign to charPtr in the program is a pointer to the vari-
able c, which is obtained by applying the address operator to the variable c. (Note that
this initialization would have generated a compiler error had c been defined after this
statement because a variable must always be declared before its value can be referenced in
an expression.)

The declaration of the variable charPtr and the assignment of its initial value could
have been equivalently expressed in two separate statements, as follows

char *charPtr;

charPtr = &c;

(and not by the statements

char *charPtr;

*charPtr = &c;

as might be implied from the single line declaration).
Remember that the value of a pointer in Objective-C is meaningless until it is set to

point to something.
The first NSLog call simply displays the contents of the variable c and the contents of

the variable referenced by charPtr. Because you set charPtr to point to the variable c,
the value displayed is the contents of c, as verified by the first line of the program’s output.

In the next line of the program, the character ‘/’ is assigned to the character variable c.
Because charPtr still points to the variable c, displaying the value of *charPtr in the
subsequent NSLog call correctly displays this new value of c at the terminal.This is an im-
portant concept. Unless the value of charPtr changes, the expression *charPtr always
accesses the value of c.Thus, as the value of c changes, so does the value of *charPtr.

The previous discussion can help you understand how the program statement that ap-
pears next in the program works.We mentioned that unless charPtr were changed, the
expression *charPtr would always reference the value of c.Therefore, in the expression

*charPtr = ‘(‘;

the left parenthesis character is being assigned to c. More formally, the character ’(’ is as-
signed to the variable that charPtr points to.You know that this variable is c because you
placed a pointer to c in charPtr at the beginning of the program.

The previous concepts are the key to your understanding of pointer operation. Re-
view them at this point if they still seem a bit unclear.

287Pointers

Pointers and Structures
You have seen how to define a pointer to point to a basic data type such as an int or a
char. But you can also define a pointer to point to a structure. Earlier in this chapter,
you defined your date structure as follows:

struct date

{

int month;

int day;

int year;

};

Just as you defined variables to be of type struct date, as in

struct date todaysDate;

you can define a variable to be a pointer to a struct date variable:

struct date *datePtr;

You can then use the variable datePtr, as just defined, in the expected fashion. For
example, you can set it to point to todaysDate with the following assignment statement:

datePtr = &todaysDate;

After such an assignment, you can indirectly access any of the members of the date
structure that datePtr points to in the following way:

(*datePtr).day = 21;

This statement sets the day of the date structure pointed to by datePtr to 21.The
parentheses are required because the structure member operator . has higher precedence
than the indirection operator *.

To test the value of month stored in the date structure that datePtr points to, you can
use a statement such as this:

if ((*datePtr).month == 12)

...

Pointers to structures are so often used that the language has a special operator.The
structure pointer operator ->, which is the dash followed by the greater-than sign, permits
expressions that would otherwise be written as

(*x).y

to be more clearly expressed as

x–>y

So you can conveniently write the previous if statement as follows:

if (datePtr–>month == 12)

...

288 Chapter 13 Underlying C Language Features

We rewrote Program 13.6, the first program to illustrate structures, using the concept
of structure pointers. Program 13.10 presents this program.

Program 13.10

// Program to illustrate structure pointers
#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

struct date
{

int month;
int day;
int year;

};

struct date today, *datePtr;

datePtr = &today;
datePtr->month = 9;
datePtr->day = 25;
datePtr->year = 2009;

NSLog (@”Today’s date is %i/%i/%.2i.”,
datePtr->month, datePtr->day, datePtr->year % 100);

[pool drain];
return 0;

}

Program 13.10 Output

Today’s date is 9/25/09.

Pointers, Methods, and Functions
You can pass a pointer as an argument to a method or function in the normal fashion,
and you can have a function or method return a pointer as its result.When you think
about it, that’s what your alloc and init methods have been doing all along—returning
pointers.We cover that in more detail at the end of this chapter.

Now consider Program 13.11.

Program 13.11

// Pointers as arguments to functions
#import <Foundation/Foundation.h>

void exchange (int *pint1, int *pint2)

289Pointers

{
int temp;

temp = *pint1;
*pint1 = *pint2;
*pint2 = temp;

}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void exchange (int *pint1, int *pint2);
int i1 = -5, i2 = 66, *p1 = &i1, *p2 = &i2;

NSLog (@”i1 = %i, i2 = %i”, i1, i2);

exchange (p1, p2);
NSLog (@”i1 = %i, i2 = %i”, i1, i2);

exchange (&i1, &i2);
NSLog (@”i1 = %i, i2 = %i”, i1, i2);

[pool drain];
return 0;

}

Program 13.11 Output

i1 = -5, i2 = 66
i1 = 66, i2 = -5

i1 = -5, i2 = 66

The purpose of the exchange function is to interchange the two integer values that its
two arguments point to.The local integer variable temp is used to hold one of the integer
values while the exchange is made. Its value is set equal to the integer that pint1 points
to.The integer that pint2 points to is then copied into the integer that pint1 points to,
and the value of temp is then stored in the integer that pint2 points to, thus making the
exchange complete.

The main routine defines integers i1 and i2 with values of -5 and 66, respectively.
Two integer pointers, p1 and p2, are then defined and set to point to i1 and i2, respec-
tively.The program next displays the values of i1 and i2 and calls the exchange function,
passing the two pointers (p1 and p2) as arguments.The exchange function exchanges the
value contained in the integer that p1 points to with the value contained in the integer
that p2 points to. Because p1 points to i1, and p2 to i2, the function exchanges the values
of i1 and i2.The output from the second NSLog call verifies that the exchange worked
properly.

290 Chapter 13 Underlying C Language Features

The second call to exchange is a bit more interesting.This time, the arguments passed
to the function are pointers to i1 and i2 that are manufactured on the spot by applying
the address operator to these two variables. Because the expression &i1 produces a pointer
to the integer variable i1, this is in line with the type of argument your function expects
for the first argument (a pointer to an integer).The same applies for the second argument.
As you can see from the program’s output, the exchange function did its job and switched
the values of i1 and i2 to their original values.

Study Program 13.11 in detail. It illustrates with a small example the key concepts
when dealing with pointers in Objective-C.

Pointers and Arrays
If you have an array of 100 integers called values, you can define a pointer called
valuesPtr, which you can use to access the integers contained in this array with the fol-
lowing statement:

int *valuesPtr;

When you define a pointer that will be used to point to the elements of an array, you
don’t designate the pointer as type “pointer to array”; instead, you designate the pointer as
pointing to the type of element contained in the array.

If you had an array of Fraction objects called fracts, you could similarly define a
pointer to be used to point to elements in fracts with the following statement:

Fraction *fractsPtr;

Note that this is the same declaration used to define a Fraction object.
To set valuesPtr to point to the first element in the values array, you simply write this:

valuesPtr = values;

The address operator is not used in this case because the Objective-C compiler treats the
occurrence of an array name without a subscript as a pointer to the first element of
the array.Therefore, simply specifying values without a subscript produces a pointer to the
first element of values.

An equivalent way of producing a pointer to the start of values is to apply the address
operator to the first element of the array.Thus, the statement

valuesPtr = &values[0];

serves the same purpose of placing a pointer to the first element of values in the pointer
variable valuesPtr.

To display the Fraction object in the array fracts that fractsPtr points to, you
would write this statement:

[fractsPtr print];

291Pointers

The real power of using pointers to arrays comes into play when you want to se-
quence through the elements of an array. If valuesPtr is defined as mentioned previously
and is set pointing to the first element of values, you can use the expression

*valuesPtr

to access the first integer of the values array—that is, values[0].To reference
values[3] through the valuesPtr variable, you can add 3 to valuesPtr and then apply
the indirection operator:

*(valuesPtr + 3)

In general, you can use the expression

*(valuesPtr + i)

to access the value contained in values[i].
So to set values[10] to 27, you would write the following expression:

values[10] = 27;

Or, using valuesPtr, you would write this:

*(valuesPtr + 10) = 27;

To set valuesPtr to point to the second element of the values array, you apply the
address operator to values[1] and assign the result to valuesPtr:

valuesPtr = &values[1];

If valuesPtr points to values[0], you can set it to point to values[1] by simply
adding 1 to the value of valuesPtr:

valuesPtr += 1;

This is a perfectly valid expression in Objective-C and can be used for pointers to any
data type.

In general, if a is an array of elements of type x, px is of type “pointer to x,” and i and
n are integer constants of variables, the statement

px = a;

sets px to point to the first element of a, and the expression

*(px + i)

subsequently references the value contained in a[i]. Furthermore, the statement

px += n;

sets px to point to n elements further in the array, no matter what type of element the ar-
ray contains.

Suppose that fractsPtr points to a fraction stored inside an array of fractions. Further
suppose that you want to add it to the fraction contained in the next element of the array

292 Chapter 13 Underlying C Language Features

and assign the result to the Fraction object result.You could do this by writing the
following:

result = [fractsPtr add: fractsPtr + 1];

The increment and decrement operators (++ and --) are particularly handy when
dealing with pointers.Applying the increment operator to a pointer has the same effect as
adding 1 to the pointer, whereas applying the decrement operator has the same effect as
subtracting 1 from the pointer. So if textPtr were defined as a char pointer and were set
to point to the beginning of an array of chars called text, the statement

++textPtr;

would set textPtr to point to the next character in text, which is text[1]. In a similar
fashion, the statement

--textPtr;

would set textPtr to point to the previous character in text (assuming, of course, that
textPtr was not pointing to the beginning of text before this statement executed).

Comparing two pointer variables in Objective-C is perfectly valid.This is particularly
useful when comparing two pointers in the same array. For example, you could test the
pointer valuesPtr to see whether it points past the end of an array containing 100 ele-
ments by comparing it to a pointer to the last element in the array. So the expression

valuesPtr > &values[99]

would be TRUE (nonzero) if valuesPtr was pointing past the last element in the values
array, and it would be FALSE (zero) otherwise. From our earlier discussions, you can re-
place the previous expression with its equivalent:

valuesPtr > values + 99

This is possible because values used without a subscript is a pointer to the beginning
of the values array. (Remember that it’s the same as writing &values[0].)

Program 13.12 illustrates pointers to arrays.The arraySum function calculates the sum
of the elements contained in an array of integers.

Program 13.12

// Function to sum the elements of an integer array

#import <Foundation/Foundation.h>

int arraySum (int array[], int n)
{

int sum = 0, *ptr;
int *arrayEnd = array + n;

for (ptr = array; ptr < arrayEnd; ++ptr)
sum += *ptr;

293Pointers

return (sum);
}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int arraySum (int array[], int n);
int values[10] = { 3, 7, -9, 3, 6, -1, 7, 9, 1, -5 };

NSLog (@”The sum is %i”, arraySum (values, 10));
[pool drain];
return 0;

}

Program 13.12 Output

The sum is 21

Inside the arraySum function, the integer pointer arrayEnd is defined and set pointing
immediately fter the la t element of array.A for loop is then set up to sequence
through the elements of array; then the value of ptr is set to point to the beginning of
array when the loop is entered. Each time through the loop, the element of array that
ptr points to is added into sum.The for loop then increments the value of ptr to set it
to point to the next element in array.When ptr points past the end of array, the for
loop is exited and the value of sum is returned to the caller.

Is It an Array, or Is It a Pointer?
To pass an array to a function, you simply specify the name of the array, as you did previ-
ously with the call to the arraySum function. But we also mentioned in this section that
to produce a pointer to an array, you need only specify the name of the array.This implies
that in the call to the arraySum function, a pointer to the array values was passed to the
function.This is precisely the case and explains why you can change the elements of an
array from within a function.

But if a pointer to the array is passed to the function, why isn’t the formal parameter
inside the function declared to be a pointer? In other words, in the declaration of array
in the arraySum function, why isn’t this declaration used?

int *array;

Shouldn’t all references to an array from within a function be made using pointer
variables?

To answer these questions, we must first reiterate what we have already said about
pointers and arrays.We mentioned that if valuesPtr points to the same type of element
as contained in an array called values, the expression *(valuesPtr + i) is in equivalent
to the expression values[i], assuming that valuesPtr has been set to point to the be-

294 Chapter 13 Underlying C Language Features

ginning of values.What follows from this is that you can also use the expression
*(values + i) to reference the ith element of the array values—and, in general, if x is
an array of any type, the expression x[i] can always be equivalently expressed in Objec-
tive-C as *(x + i).

As you can see, pointers and arrays are intimately related in Objective-C, which is why
you can declare array to be of type “array of ints” inside the arraySum function or to be
of type “pointer to int.” Either declaration works fine in the preceding program—try it
and see.

If you will be using index numbers to reference the elements of an array, declare the
corresponding formal parameter to be an array.This more correctly reflects the function’s
use of the array. Similarly, if you will be using the argument as a pointer to the array, de-
clare it to be of type pointer.

Pointers to Character Strings
One of the most common applications of using a pointer to an array is as a pointer to a
character string.The reasons are ones of notational convenience and efficiency.To show
how easily you can use pointers to character strings, let’s write a function called
copyString to copy one string into another. If you were writing this function using
your normal array-indexing methods, you might code the function as follows:

void copyString (char to[], char from[])

{

int i;

for (i = 0; from[i] != ‘\0’; ++i)
to[i] = from[i];

to[i] = ‘\0’;
}

The for loop is exited before the null character is copied into the to array, thus ex-
plaining the need for the last statement in the function.

If you write copyString using pointers, you no longer need the index variable i.
Program 13.13 shows a pointer version.

Programming 13.13

#import <Foundation/Foundation.h>

void copyString (char *to, char *from)
{

for (; *from != ‘\0’; ++from, ++to)
*to = *from;

*to = ‘\0’;
}

295Pointers

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void copyString (char *to, char *from);
char string1[] = “A string to be copied.”2;
char string2[50];

copyString (string2, string1);
NSLog (@”%s”, string2);

copyString (string2, “So is this.”);
NSLog (@”%s”, string2);

[pool drain];
return 0;

}

Program 13.13 Output

A string to be copied.

So is this.

The copyString function defines the two formal parameters, to and from, as charac-
ter pointers and not as character arrays, as was done in the previous version of
copyString.This reflects how the function will use these two variables.

A for loop is then entered (with no initial conditions) to copy the string that from
points to into the string that to points to. Each time through the loop, the from and to

pointers are each incremented by 1.This sets the from pointer pointing to the next char-
acter that is to be copied from the source string and sets the to pointer pointing to the
location in the destination string where the next character is to be stored.
When the from pointer points to the null character, the for loop is exited.The function
then places the null character at the end of the destination string.

In the main routine, the copyString function is called twice—the first time to copy
the contents of string1 into string2, and the second time to copy the contents of the
constant character string “So is this.” into string2.

2 Note the use of the strings ”A string to be copied.” and ”So is this” in the program.

These are not string objects, but C-style character strings, as distinguished by the fact that an @

character does not precede the string. The two types are not interchangeable. If a function expects

an array of char as an argument, you may pass it either an array of type char or a literal C-style

character string, but not a character string object.

296 Chapter 13 Underlying C Language Features

Constant Character Strings and Pointers
The fact that the call

copyString (string2, “So is this.”);

works in the previous program implies that when a constant character string is passed as
an argument to a function, that character string is actually passed to a pointer. Not only is
this true in this case, but it can also be generalized by saying that whenever a constant
character string is used in Objective-C, a pointer to that character string is produced.

This point might sound a bit confusing now, but, as we briefly noted in Chapter 4,
constant character strings that we mention here are called C-style strings.These are not
objects.As you know, a constant character string object is created by putting an @ sign in
front of the string, as in @”This is okay.”.You can’t substitute one for the other.

So if textPtr is declared to be a character pointer, as in

char *textPtr;

then the statement

textPtr = “A character string.”;

assigns to textPtr a pointer to the constant character string “A character string.” Be
careful to make the distinction here between character pointers and character arrays be-
cause the type of assignment shown previously is not valid with a character array. For ex-
ample, if text were defined instead to be an array of chars, with a statement such as

char text[80];

you could not write a statement such as this:

text = “This is not valid.”;

The only time Objective-C lets you get away with performing this type of assignment
to a character array is when initializing it:

char text[80] = “This is okay.”;

Initializing the text array in this manner does not have the effect of storing a pointer
to the character string “This is okay.” inside text. Instead, the actual characters them-
selves are followed by a terminating null character, inside corresponding elements of the
text array.

If text were a character pointer, initializing text with the statement

char *text = “This is okay.”;

would assign to it a pointer to the character string “This is okay.”

The Increment and Decrement Operators Revisited
Up to this point, whenever you used the increment or decrement operator, that was the
only operator that appeared in the expression.When you write the expression ++x, you

297Pointers

know that this adds 1 to the value of the variable x.And as you have just seen, if x is a
pointer to an array, this sets x to point to the next element of the array.

You can use the increment and decrement operators in expressions where other oper-
ators also appear. In such cases, it becomes important to know more precisely how these
operators work.

Whenever you used the increment and decrement operators, you always placed them
before the variables that were being incremented or decremented. So to increment a vari-
able i, you simply wrote the following:

++i;

You can also place the increment operator after the variable, like so:

i++;

Both expressions are valid, and both achieve the same result—incrementing the value
of i. In the first case, where the ++ is placed before its operand, the increment operation
is more precisely identified as a pre-increment. In the second case, where the ++ is placed
after its operand, the operation is identified as a post-increment.

The same discussion applies to the decrement operator. So the statement

--i;

technically performs a pre-decrement of i, whereas the statement

i--;

performs a post-decrement of i. Both have the same net result of subtracting 1 from the
value of i.

When the increment and decrement operators are used in more complex expressions,
the distinction between the pre- and post- nature of these operators is realized.

Suppose that you have two integers, called i and j. If you set the value of i to 0 and
then write the statement

j = ++i;

the value assigned to j is 1—not 0, as you might expect. In the case of the pre-increment
operator, the variable is incremented before its value is used in an expression.Therefore, in
the previous expression, the value of i is first incremented from 0 to 1 and then its value
is assigned to j, as if the following two statements had been written instead:

++i;

j = i;

If you use the post-increment operator in the statement

j = i++;

298 Chapter 13 Underlying C Language Features

i is incremented after its value has been assigned to j. So if i were 0 before the previous
statement were executed, 0 would be assigned to j and then i would be incremented by
1, as if these statements were used instead:

j = i;

++i;

As another example, if i is equal to 1, the statement

x = a[--i];

has the effect of assigning the value of a[0] to x because the variable i is decremented
before its value is used to index into a.The statement

x = a[i--];

used instead assigns the value of a[1] to x because i would be decremented after its value
was used to index into a.

As a third example of the distinction between the pre- and post- increment and decre-
ment operators, the function call

NSLog (@”%i”, ++i);

increments i and then sends its value to the NSLog function, whereas the call

NSLog (@”%i”, i++);

increments i after its value has been sent to the function. So if i were equal to 100, the
first NSLog call would display 101 at the terminal, whereas the second NSLog call would
display 100. In either case, the value of i would be equal to 101 after the statement had
been executed.

As a final example on this topic before we present a program, if textPtr is a character
pointer, the expression

*(++textPtr)

first increments textPtr and then fetches the character it points to, whereas the expres-
sion

*(textPtr++)

fetches the character that textPtr points to before its value is incremented. In either case,
the parentheses are not required because the * and ++ operators have equal precedence
but associate from right to left.

Let’s go back to the copyString function from Program 13.13 and rewrite it to incor-
porate the increment operations directly into the assignment statement.

Because the to and from pointers are incremented each time after the assignment
statement inside the for loop is executed, they should be incorporated into the assign-
ment statement as post-increment operations.The revised for loop of Program 13.13
then becomes this:

for (; *from != ‘\0’;)
*to++ = *from++;

299Pointers

Execution of the assignment statement inside the loop would proceed as follows.The
character that from points to would be retrieved, and then from would be incremented to
point to the next character in the source string.The referenced character would be stored
inside the location that to points to; then to would be incremented to point to the next
location in the destination string.

The previous for statement hardly seems worthwhile because it has no initial expres-
sion and no looping expression. In fact, the logic would be better served when expressed
in the form of a while loop.This has been done in Program 13.14, which presents the
new version of the copyString function.The while loop uses the fact that the null char-
acter is equal to the value 0, as experienced Objective-C programmers commonly do.

Program 13.14

// Function to copy one string to another
// pointer version 2

#import <Foundation/Foundation.h>
void copyString (char *to, char *from)
{

while (*from)
*to++ = *from++;

*to = ‘\0’;
}

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
void copyString (char *to, char *from);
char string1[] = “A string to be copied.”;
char string2[50];

copyString (string2, string1);
NSLog (@”%s”, string2);

copyString (string2, “So is this.”);
NSLog (@”%s”, string2);
[pool drain];
return 0;

}

Program 13.14 Output

A string to be copied.

So is this.

300 Chapter 13 Underlying C Language Features

Operations on Pointers
As you have seen in this chapter, you can add or subtract integer values from pointers.
Furthermore, you can compare two pointers to see whether they are equal or whether
one pointer is less than or greater than another pointer.The only other operation permit-
ted on pointers is the subtraction of two pointers of the same type.The result of subtract-
ing two pointers in Objective-C is the number of elements contained between the two
pointers.Thus, if a points to an array of elements of any type and b points to another ele-
ment somewhere further along in the same array, the expression b - a represents the
number of elements between these two pointers. For example, if p points to some ele-
ment in an array x, the statement

n = p - x;

assigns to the variable n (assumed here to be an integer variable) the index number of the
element inside x that p points to.Therefore, if p had been set pointing to the 100th ele-
ment in x by a statement such as

p = &x[99];

the value of n after the previous subtraction was performed would be 99.

Pointers to Functions
Of a slightly more advanced nature, but presented here for the sake of completeness, is the
notion of a pointer to a function.When working with pointers to functions, the Objec-
tive-C compiler needs to know not only that the pointer variable points to a function,
but also the type of value returned by that function, as well as the number and types of its
arguments.To declare a variable, fnPtr, to be of type “pointer to function that returns an
int and that takes no arguments,” you would write this declaration:

int (*fnPtr) (void);

The parentheses around *fnPtr are required; otherwise, the Objective-C compiler
treats the preceding statement as the declaration of a function called fnPtr that returns a
pointer to an int (because the function call operator () has higher precedence than the
pointer indirection operator *).

To set your function pointer to point to a specific function, you simply assign the name
of the function to it.Therefore, if lookup were a function that returned an int and that
took no arguments, the statement

fnPtr = lookup;

would store a pointer to this function inside the function pointer variable fnPtr.Writing
a function name without a subsequent set of parentheses is treated in an analogous way to
writing an array name without a subscript.The Objective-C compiler automatically pro-
duces a pointer to the specified function.An ampersand is permitted in front of the func-
tion name, but it’s not required.

301Pointers

If the lookup function has not been previously defined in the program, you must de-
clare the function before the previous assignment can be made.A statement such as

int lookup (void);

would be needed before a pointer to this function could be assigned to the variable
fnPtr.

You can call the function indirectly referenced through a pointer variable by applying
the function call operator to the pointer, listing any arguments to the function inside the
parentheses. For example

entry = fnPtr ();

calls the function that fnPtr points to, storing the returned value inside the variable
entry.

One common application for pointers to functions is passing them as arguments to
other functions.The Standard Library uses this in the function qsort, which performs a
quick sort on an array of data elements.This function takes as one of its arguments a
pointer to a function that is called whenever qsort needs to compare two elements in
the array being sorted. In this manner, qsort can be used to sort arrays of any type
because the actual comparison of any two elements in the array is made by a user-sup-
plied function, not by the qsort function itself.

In the Foundation framework, some methods take a function pointer as an argument.
For example, the method sortUsingFunction:context: is defined in the
NSMutableArray class and calls the specified function whenever two elements in an array
to be sorted need to be compared.

Another common application for function pointers is to create dispatch tables.You can’t
store functions themselves inside the elements of an array. However, you can store func-
tion pointers inside an array. Given this, you can create tables that contain pointers to
functions to be called. For example, you might create a table for processing different com-
mands that a user will enter. Each entry in the table could contain both the command
name and a pointer to a function to call to process that particular command. Now, when-
ever the user entered a command, you could look up the command inside the table and
invoke the corresponding function to handle it.

Pointers and Memory Addresses
Before we end this discussion of pointers in Objective-C, we should point out the details
of how they are actually implemented.A computer’s memory can be conceptualized as a
sequential collection of storage cells. Each cell of the computer’s memory has a number,
called an address, associated with it.Typically, the first address of a computer’s memory is
numbered 0. On most computer systems, a cell is 1 byte.

The computer uses memory to store the instructions of your computer program and
to store the values of the variables associated with a program. So if you declare a variable
called count to be of type int, the system would assign location(s) in memory to hold

302 Chapter 13 Underlying C Language Features

the value of count while the program is executing. For example, this location might be at
address 1000FF16 inside the computer’s memory.

Luckily, you don’t need to concern yourself with the particular memory addresses as-
signed to variables—the system automatically handles them. However, the knowledge that
each variable is associated with a unique memory address will help you understand the
way pointers operate.

Whenever you apply the address operator to a variable in Objective-C, the value gen-
erated is the actual address of that variable inside the computer’s memory. (Obviously, this
is where the address operator gets its name.) So the statement

intPtr = &count;

assigns to intPtr the address in the computer’s memory that has been assigned to the
variable count.Thus, if count were located at address 1000FF16, this statement would as-
sign the value 0x1000FF to intPtr.

Applying the indirection operator to a pointer variable, as in the expression

*intPtr

has the effect of treating the value contained in the pointer variable as a memory address.
The value stored at that memory address is then fetched and interpreted in accordance
with the type declared for the pointer variable. So if intPtr were of type pointer to int,
the system would interpret the value stored in the memory address given by *intPtr as
an integer.

Unions
One of the more unusual constructs in the Objective-C programming language is the
union.This construct is used mainly in more advanced programming applications when
you need to store different types of data in the same storage area. For example, if you
wanted to define a single variable called x that could be used to store a single character, a
floating-point number, or an integer, you would first define a union, called (perhaps)
mixed, as follows:

union mixed

{

char c;

float f;

int i;

};

The declaration of a union is identical to that of a structure, except that the keyword
union is used where the keyword struct is otherwise specified.The real difference be-
tween structures and unions has to do with the way memory is allocated. Declaring a
variable to be of type union mixed, as in

union mixed x;

303Unions

does not define x to contain three distinct members called c, f, and i; instead, it defines x
to contain a single member that is called either c, f, or i. In this way, you can use the
variable x to store either a char, a float, or an int, but not all three (and not even two
of the three).You can store a character in the variable x with the following statement:

x.c = ‘K’;

To store a floating-point value in x, use the notation x.f:

x.f = 786.3869;

Finally, to store the result of dividing an integer count by 2 into x, use this statement:

x.i = count / 2;

Because the float, char, and int members of x coexist in the same place in memory,
only one value can be stored in x at a time. Furthermore, you must ensure that the value
retrieved from a union is consistent with the way it was last stored in the union.

When defining a union the name of the union is not required and variables can be
declared at the same time that the union is defined.You can also declare pointers to
unions, and their syntax and rules for performing operations are the same as for struc-
tures. Finally, you can initialize a union variable like so:

union mixed x = { ‘#’ };

This sets the first member of x, which is c, to the character #.A particular member can
also be initialized by name, like this:

union mixed x = {.f=123.4;};

You can initialize an automatic union variable to another union variable of the same
type.

A union enables you to define arrays that you can use to store elements of different
data types. For example, the following statement sets up an array called table, consisting
of kTableEntries elements:

struct

{

char *name;

int type;

union

{

int i;

float f;

char c;

} data;

} table [kTableEntries];

Each element of the array contains a structure consisting of a character pointer called
name, an integer member called type, and a union member called data. Each data mem-
ber of the array can contain an int, a float, or a char.You might use the integer mem-

304 Chapter 13 Underlying C Language Features

ber type to keep track of the type of value stored in the member data. For example, you
could assign it the value INTEGER (defined appropriately, we assume) if it contained an
int, FLOATING if it contained a float, and CHARACTER if it contained a char.This infor-
mation would enable you to know how to reference the particular data member of a
particular array element.

To store the character ‘#’ in table[5] and subsequently set the type field to indicate
that a character is stored in that location, you would use the following two statements:

table[5].data.c = ‘#’;
table[5].type = CHARACTER;

When sequencing through the elements of table, you could determine the type of
data value stored in each element by setting up an appropriate series of test statements.
For example, the following loop would display each name and its associated value from
table at the terminal:

enum symbolType { INTEGER, FLOATING, CHARACTER };

...

for (j = 0; j < kTableEntries; ++j)

{

NSLog (@”%s “, table[j].name);

switch (table[j].type)

{

case INTEGER:

NSLog (@”%i”, table[j].data.i);
break;

case FLOATING:

NSLog (@”%g”, table[j].data.f);
break;

case CHARACTER:

NSLog (@”%c”, table[j].data.c);
break;

default:

NSLog (@”Unknown type (%i), element %i”,
table[j].type, j);

break;

}

}

The type of application illustrated previously might be practical in storing a symbol
table, which might contain the name of each symbol, its type, and its value (and perhaps
other information about the symbol as well).

305Miscellaneous Language Features

They’re Not Objects!
Now you know how to define arrays, structures, character strings, and unions, and how to
manipulate them in your program. Remember one fundamental thing: They’re not objects.
Thus, you can’t send messages to them.You also can’t use them to take maximum advan-
tage of nice things such as the memory-allocation strategy that the Foundation frame-
work provides.That’s one of the reasons I encouraged you to skip this chapter and return
to it later. In general, you’re better served learning how to use the Foundation’s classes
that define arrays and strings as objects than using the ones built into the language. Re-
sort to using the types defined in this chapter only if you really need to—and hopefully
you won’t!

Miscellaneous Language Features
Some language features didn’t fit well into any of the other chapters, so we’ve included
them here.

Compound Literals
A compound literal is a type name enclosed in parentheses followed by an initialization list.
It creates an unnamed value of the specified type, which has scope limited to the block in
which it is created or global scope if defined outside any block. In the latter case, the ini-
tializers must all be constant expressions.

Consider an example:

(struct date) {.month = 7, .day = 2, .year = 2004}

This expression produces a structure of type struct date with the specified initial
values.You can assign this to another struct date structure, like so:

theDate = (struct date) {.month = 7, .day = 2, .year = 2004};

Or you can pass it to a function or method that expects an argument of struct date,
like so:

setStartDate ((struct date) {.month = 7, .day = 2, .year = 2004});

In addition, you can define types other than structures. For example, if intPtr is of
type int *, the statement

intPtr = (int [100]) {[0] = 1, [50] = 50, [99] = 99 };

(which can appear anywhere in the program) sets intptr pointing to an array of 100 in-
tegers, whose 3 elements are initialized as specified.

If the size of the array is not specified, the initializer list determines it.

306 Chapter 13 Underlying C Language Features

The goto Statement
Executing a goto statement causes a direct branch to be made to a specified point in the
program.To identify where in the program the branch is to be made, a label is needed.A
label is a name formed with the same rules as variable names; it must be immediately fol-
lowed by a colon.The label is placed directly before the statement to which the branch is
to be made and must appear in the same function or method as the goto.

For example, the statement

goto out_of_data;

causes the program to branch immediately to the statement that is preceded by the label
out_of_data;.This label can be located anywhere in the function or method, before or
after the goto, and might be used as shown here:

out_of_data: NSLog (@”Unexpected end of data.”);
...

Lazy programmers frequently abuse the goto statement to branch to other portions of
their code.The goto statement interrupts the normal sequential flow of a program.As a
result, programs are harder to follow. Using many gotos in a program can make it impos-
sible to decipher. For this reason, goto statements are not considered part of good pro-
gramming style.

The null Statement
Objective-C permits you to place a solitary semicolon wherever a normal program state-
ment can appear.The effect of such a statement, known as the null statement, is that noth-
ing is done.This might seem quite useless, but programmers often do this in while, for,
and do statements. For example, the purpose of the following statement is to store all the
characters read in from standard input (your terminal, by default) in the character array that
text points to until a newline character is encountered.This statement uses the library
routine getchar, which reads and returns a single character at a time from standard input:

while ((*text++ = getchar ()) != ‘’)

;

All the operations are performed inside the looping conditions part of the while state-
ment.The null statement is needed because the compiler takes the statement that follows
the looping expression as the body of the loop.Without the null statement, the compiler
would treat whatever statement follows in the program as the body of the program loop.

The Comma Operator
At the bottom of the precedence totem pole, so to speak, is the comma operator. In
Chapter 5,“Program Looping,” we pointed out that inside a for statement, you can in-
clude more than one expression in any of the fields by separating each expression with a
comma. For example, the for statement that begins

307Miscellaneous Language Features

for (i = 0, j = 100; i != 10; ++i, j -= 10)

...

initializes the value of i to 0 and j to 100 before the loop begins, and it increments the
value of i and subtracts 10 from the value of j after the body of the loop is executed.

Because all operators in Objective-C produce a value, the value of the comma opera-
tor is that of the rightmost expression.

The sizeof Operator
Although you should never make assumptions about the size of a data type in your pro-
gram, sometimes you need to know this information.This might be when performing
dynamic memory allocation using library routines such as malloc, or when writing or
archiving data to a file. Objective-C provides an operator called sizeof that you can use
to determine the size of a data type or object.The sizeof operator returns the size of the
specified item in bytes.The argument to the sizeof operator can be a variable, an array
name, the name of a basic data type, an object, the name of a derived data type, or an ex-
pression. For example, writing

sizeof (int)

gives the number of bytes needed to store an integer. On my MacBook Air, this produces a
result of 4 (or 32 bits). If x is declared as an array of 100 ints, the expression

sizeof (x)

would give the amount of storage required to store the 100 integers of x.
Given that myFract is a Fraction object that contains two int instance variables

(numerator and denominator), the expression

sizeof (myFract)

produces the value 4 on any system that represents pointers using 4 bytes. In fact, this is
the value that sizeof yields for any object because here you are asking for the size of the
pointer to the object’s data.To get the size of the actual data structure to store an instance
of a Fraction object, you would instead write the following:

sizeof (*myFract)

On my MacBook Air, this gives me a value of 12.That’s 4 bytes each for the
numerator and denominator, plus another 4 bytes for the inherited isa member men-
tioned in the section “How Things Work,” at the end of this chapter.

The expression

sizeof (struct data_entry)

has as its value the amount of storage required to store one data_entry structure. If data
is defined as an array of struct data_entry elements, the expression

sizeof (data) / sizeof (struct data_entry)

308 Chapter 13 Underlying C Language Features

gives the number of elements contained in data (data must be a previously defined array,
not a formal parameter or externally referenced array).The expression

sizeof (data) / sizeof (data[0])

produces the same result.
Use the sizeof operator wherever possible, to avoid having to calculate and hard-code

sizes into your programs.

Command-Line Arguments
Often a program is developed that requires the user to enter a small amount of informa-
tion at the terminal.This information might consist of a number indicating the triangular
number you want to have calculated or a word you want to have looked up in a diction-
ary.

Instead of having the program request this type of information from the user, you can
supply the information to the program at the time the program is executed. Command-line
arguments provide this capability.

We have pointed out that the only distinguishing quality of the function main is that
its name is special; it specifies where program execution is to begin. In fact, the runtime
system actually calls upon the function main at the start of program execution, just as
you would call a function from within your own program.When main completes execu-
tion, control returns to the runtime system, which then knows that your program has
completed.

When the runtime system calls main, two arguments are passed to the function.The
first argument, called argc by convention (for argument count), is an integer value that
specifies the number of arguments typed on the command line.The second argument to
main is an array of character pointers, called argv by convention (for argument vector). In
addition, argc + 1 character pointers are contained in this array.The first entry in this ar-
ray is either a pointer to the name of the program that is executing or a pointer to a null
string if the program name is not available on your system. Subsequent entries in the ar-
ray point to the values specified in the same line as the command that initiated execution
of the program.The last pointer in the argv array, argv[argc], is defined to be null.

To access the command-line arguments, the main function must be appropriately de-
clared as taking two arguments.The conventional declaration we have used in all the pro-
grams in this book suffices:

int main (int argc, char *argv[])

{

...

}

Remember, the declaration of argv defines an array that contains elements of type
“pointer to char.”As a practical use of command-line arguments, suppose that you had
developed a program that looks up a word inside a dictionary and prints its meaning.You

309Miscellaneous Language Features

can use command-line arguments so that the word whose meaning you want to find can
be specified at the same time that the program is executed, as in the following command:

lookup aerie

This eliminates the need for the program to prompt the user to enter a word because
it is typed on the command line.

If the previous command were executed, the system would automatically pass to the
main function a pointer to the character string “aerie” in argv[1]. Recall that argv[0]
would contain a pointer to the name of the program, which, in this case, would be
“lookup”.

The main routine might appear as shown:

#include <Foundation/Foundation.h>

int main (int argc, char *argv[])

{

struct entry dictionary[100] =

{ { “aardvark”, “a burrowing African mammal” },

{ “abyss”, “a bottomless pit” },

{ “acumen”, “mentally sharp; keen” },

{ “addle”, “to become confused” },

{ “aerie”, “a high nest” },

{ “affix”, “to append; attach” },

{ “agar”, “a jelly made from seaweed” },

{ “ahoy”, “a nautical call of greeting” },

{ “aigrette”, “an ornamental cluster of feathers” },

{ “ajar”, “partially opened” } };

int entries = 10;

int entryNumber;

int lookup (struct entry dictionary [], char search[],

int entries);

if (argc != 2)

{

NSLog (@”No word typed on the command line.”);
return (1);

}

entryNumber = lookup (dictionary, argv[1], entries);

if (entryNumber != -1)

NSLog (@”%s”, dictionary[entryNumber].definition);
else

NSLog (@”Sorry, %s is not in my dictionary.”, argv[1]);

310 Chapter 13 Underlying C Language Features

return (0);

}

The main routine tests to ensure that a word was typed after the program name when
the program was executed. If it wasn’t, or if more than one word was typed, the value of
argc is not equal to 2. In that case, the program writes an error message to standard error
and terminates, returning an exit status of 1.

If argc is equal to 2, the lookup function is called to find the word that argv[1]
points to in the dictionary. If the word is found, its definition is displayed.

Remember that command-line arguments are always stored as character strings. So ex-
ecution of the program power with the command-line arguments 2 and 16, as in

power 2 16

stores a pointer to the character string “2” inside argv[1] and a pointer to the string “16”
inside argv[2]. If the program is to interpret arguments as numbers (as we suspect is the
case in the power program), the program itself must convert them. Several routines are
available in the program library for doing such conversions: sscanf, atof, atoi, strtod,
and strotol. In Part II, you’ll learn how to use a class called NSProcessInfo to access
the command-line arguments as string objects instead of as C strings.

How Things Work
We would be remiss if we finished this chapter without first tying a couple things to-
gether. Because the Objective-C language has the C language underneath, it’s worth
mentioning some of the connections between the two.You can ignore these implementa-
tion details or use them to better understand how things work, in the same way that
learning about pointers as memory addresses can help you better understand pointers.We
don’t get too detailed here; we just state four facts about the relationship between Objec-
tive-C and C.

Fact #1: Instance Variables are Stored in Structures
When you define a new class and its instance variables, those instance variables are actu-
ally stored inside a structure.That’s how you can manipulate objects; they’re really struc-
tures whose members are your instance variables. So the inherited instance variables plus
the ones you added in your class comprise a single structure.When you allocate a new
object using alloc, enough space is reserved to hold one of these structures.

One of the inherited members (it comes from the root object) of the structure is a
protected member called isa that identifies the class to which the object belongs. Be-
cause it’s part of the structure (and, therefore, part of the object), it is carried around with
the object. In that way, the runtime system can always identify the class of an object (even
if you assign it to a generic id object variable) by just looking at its isa member.

You can gain direct access to the members of an object’s structure by making them
@public (see the discussion in Chapter 10,“More on Variables and Data Types”). If you

311How Things Work

did that with the numerator and denominator members of your Fraction class, for ex-
ample, you could write expressions such as

myFract->numerator

in your program to directly access the numerator member of the Fraction object
myFract. But we strongly advise against doing that.As we mentioned in Chapter 10, it
goes against the grain of data encapsulation.

Fact #2: An Object Variable is Really a Pointer
When you define an object variable such as a Fraction, as in

Fraction *myFract;

you’re really defining a pointer variable called myFract.This variable is defined to point
to something of type Fraction, which is the name of your class.When you allocate a
new instance of a Fraction, with

myFract = [Fraction alloc];

you’re allocating space to store a new Fraction object in memory (that is, space for a
structure) and then storing the pointer to that structure that is returned inside the pointer
variable myFract.

When you assign one object variable to another, as in

myFract2 = myFract1;

you’re simply copying pointers. Both variables end up pointing to the same structure
stored somewhere in memory. Making a change to one of the members referenced (that
is, pointed to) by myFract2 therefore changes the same instance variable (that is, structure
member) that myFract1 references.

Fact #3: Methods are Functions, and Message Expressions are
Function Calls
Methods are really functions.When you invoke a method, you call a function associated
with the class of the receiver.The arguments passed to the function are the receiver
(self) and the method’s arguments. So all the rules about passing arguments to functions,
return values, and automatic and static variables are the same whether you’re talking
about a function or a method.The Objective-C compiler creates a unique name for each
function using a combination of the class name and the method name.

Fact #4: The id Type is a Generic Pointer Type
Because objects are referenced through pointers, which are just memory addresses, you
can freely assign them between id variables.A method that returns an id type conse-
quently just returns a pointer to some object in memory.You can then assign that value to
any object variable. Because the object carries its isa member wherever it goes, its class
can always be identified, even if you store it in a generic object variable of type id.

312 Chapter 13 Underlying C Language Features

Exercises
1. Write a function that calculates the average of an array of 10 floating-point values

and returns the result.

2. The reduce method from your Fraction class finds the greatest common divisor
of the numerator and denominator to reduce the fraction. Modify that method so
that it uses the gcd function from Program 13.5 instead.Where do you think you
should place the function definition? Are there any benefits to making the function
static? Which approach do you think is better, using a gcd function or incorporat-
ing the code directly into the method as you did previously? Why?

3. An algorithm known as the Sieve of Erastosthenes can generate prime numbers.The
algorithm for this procedure is presented here.Write a program that implements
this algorithm. Have the program find all prime numbers up to n = 150.What can
you say about this algorithm as compared to the ones used in the text for calculat-
ing prime numbers?

Step 1: Define an array of integers P. Set all elements Pi to 0, 2 <= i <= n.

Step 2: Set i to 2.

Step 3: If i > n, the algorithm terminates.

Step 4: If Pi is 0, i is prime.

Step 5: For all positive integer values of j, such that i×j<=n, n, set Pixj to 1.

Step 6:Add 1 to i and go to step 3.

4. Write a function to add all the Fractions passed to it in an array and to return the
result as a Fraction.

5. Write a typedef definition for a struct date called Date that enables you to
make declarations such as
Date todaysDate;

in your program.

6. As noted in the text, defining a Date class instead of a date structure is more con-
sistent with the notion of object-oriented programming. Define such a class with
appropriate setter and getter methods.Also add a method called dateUpdate to re-
turn the day after its argument.

Do you see any advantages of defining a Date as a class instead of as a structure?
Do you see any disadvantages?

313Exercises

7. Given the following definitions
char *message = “Programming in Objective-C is fun”;
char message2[] = “You said it”;
NSString *format = “x = %i”;
int x = 100;

determine whether each NSLog call from the following sets is valid and produces
the same output as other calls from the set.
/*** set 1 ***/

NSLog (@”Programming in Objective-C is fun”);
NSLog (@”%s” “Programming in Objective C is fun”);
NSLog (@”%s” message);

/*** set 2 ***/

NSLog (@”You said it”);
NSLog (@”%s” message2);

NSLog (@”%s”, &message2[0] ;

/*** set 3 ***/

NSLog (@”said it”);
NSLog (@”%s”, message2 + 4);
NSLog (@”%s”, &message2[4]);

8. Write a program that prints all its command-line arguments, one per line at the ter-
minal. Notice the effect of enclosing arguments that contain space characters inside
quotation marks.

9. Which of the following statements produce the output This is a test? Explain.

NSLog (@”This is a test”);
NSLog (“This is a test”);

NSLog (@”%s”, “This is a test”);
NSLog (@”%s”, @”This is a test”);

NSLog (“%s”, “This is a test”);
NSLog (“%s”, @”This is a test”);

NSLog (@”%@”, @”This is a test”);
NSLog (@”%@”, ”This is a test”);

Part II
The Foundation

Framework

14 Introduction to the Foundation Framework

15 Numbers, Strings, and Collections

16 Working with Files

17 Memory Management

18 Copying Objects

19 Archiving

14
Introduction to the Foundation

Framework

A framework is a collection of classes, methods, functions, and documentation logically
grouped together to make developing programs easier. On Mac OS X, more than 80
frameworks are available for developing applications so that you can easily work with the
Mac’s Address Book structure, burn CDs, play back DVDs, play movies with QuickTime,
play songs, and so on.

The framework that provides the base or foundation for all your program development
is called the Foundation framework.This framework, the subject of the second part of this
book, enables you to work with basic objects, such as numbers and strings, and with col-
lections of objects, such as arrays, dictionaries, and sets. Other capabilities provide for
working with dates and times, using automated memory management, working with the
underlying file system, storing (or archiving) objects, and working with geometric data
structures such as points and rectangles.

The Application Kit framework contains an extensive collection of classes and meth-
ods to develop interactive graphical applications.These provide the capability to easily
work with text, menus, toolbars, tables, documents, the pasteboard, and windows. In Mac
OS X, the term Cocoa collectively refers to the Foundation framework and the Applica-
tion Kit framework.The term Cocoa Touch collectively refers to the Foundation frame-
work and the UIKit framework. Part III,“Cocoa and the iPhone SDK,” provides some
more detail on this subject. Many resources are also listed in Appendix D,“Resources.”

Foundation Documentation
For reference purposes, you should know where the Foundation header files are stored on
your system.They are kept in the following directory:

/System/Library/Frameworks/Foundation.framework/Headers

318 Chapter 14 Introduction to the Foundation Framework

Note
The header files are actually linked to another directory where they are stored, but that really
makes no difference to you.

Navigate to this directory on your system and familiarize yourself with its contents.
You should also take advantage of the Foundation framework documentation that is
stored on your system (buried deep in the /Develop/Documentation directory) and that
is also available online at Apple’s website. Most documentation exists in the form of
HTML files for viewing by a browser or as Acrobat pdf files. Contained in this documen-
tation is a description of all the Foundation classes and all the implemented methods and
functions.

If you’re using Xcode to develop your programs, you have easy access to documenta-
tion through the Documentation window that is available from Xcode’s Help menu.This
window enables you to easily search and access documentation that is stored locally on
your computer or is available online. Figure 14.1 shows the results of searching for the
string “foundation framework” in the Xcode documentation window. From the pane that
shows the header “Foundation Framework Reference,” you can easily access the docu-
mentation for all Foundation classes.

If you’re editing a file in Xcode and you want to get immediate access to the docu-
mentation for a particular header file, method, or class, you can simply highlight the text

Figure 14.1 Using Xcode for Foundation reference documentation

319Foundation Documentation

in your editor window and right-click it. From the menu that appears, you can either se-
lect Find Selected Text in Documentation or select Find Selected Text in API Reference,
as appropriate. Xcode will search the documentation library and display the results that
match your query.

Let’s see how this works.The NSString class is a Foundation class that you use to
work with strings. (It is explained in great detail in the next chapter.) Suppose you are
editing a program that uses this class, and you want more information about it and its
methods.You can highlight the word NSString wherever it appears in your edit window
and right-click on it. If you then select Find Selected Text in API Reference from the
menu that appears, you’ get a document window displayed that looks similar to that
shown in Figure 14.2.

If you scroll down in the pane labeled NSString Class Reference, you’ll find (among
other things) a list of all the methods this class supports.This is an easy way to find infor-
mation about the methods a class implements, including how they work and their ex-
pected arguments.

You can also access the documentation online at developer.apple.com/referencelibrary
and navigate your way to the Foundation reference documentation (by following the Co-
coa, Frameworks, Foundation Framework Reference links).At this website, you’ll also

Figure 14.2 Obtaining documentation for the NSString class.

320 Chapter 14 Introduction to the Foundation Framework

find a wide assortment of documents covering specific programming issues, such as mem-
ory management, strings, and file management.

Unless you subscribe to a particular document set with Xcode, the online documenta-
tion might be more current than that stored on your disk.

This concludes our brief introduction to the Foundation framework. Now it’s time to
learn about some if its classes and how you can put them to work in your applications.

15
Numbers, Strings,

and Collections

This chapter describes how to work with some of the basic objects provided in the
Foundation framework.These include numbers, strings, and collections, which refers to
the capability to work with groups of objects in the form of arrays, dictionaries, and sets.

The Foundation framework contains a plethora of classes, methods, and functions for
you to use.Approximately 125 header files are available under Mac OS X.As a conven-
ience, you can simply use the following import:

#import <Foundation/Foundation.h>

Because the Foundation.h file imports virtually all the other Foundation header files,
you don’t have to worry about whether you are importing the correct header file. Xcode
automatically insert this header file into your program, as you’ve seen in each example
throughout this book.

Using this statement can add significant time to your compiles. However, you can
avoid this extra time by using precompiled headers.These are files that the compiler has
preprocessed. By default, all Xcode projects benefit from precompiled headers.

In this chapter, you use the specific header files for each object you use.This will be a
useful exercise to help you become familiar with what each header file contains.

Note
If you like, you can continue to just import Foundation.h, but if you do import the individ-
ual files shown in each example, you should delete the file project_name_Prefix.pch
that XCode automatically includes for you when you create a new Foundation Tool project.
When you delete that file from your project, be sure to select “Delete References” when
prompted by Xcode.

322 Chapter 15 Numbers, Strings, and Collections

Number Objects
All the numeric data types we’ve dealt with up to now, such as integers, floats, and longs,
are basic data types in the Objective-C language—that is, they are not objects. For exam-
ple, you can’t send messages to them. Sometimes, though, you need to work with these
values as objects. For example, the Foundation object NSArray enables you to set up an ar-
ray in which you can store values.These values have to be objects, so you can’t directly
store any of your basic data types in these arrays. Instead, to store any of the basic numeric
data types (including the char data type), you can use the NSNumber class to create objects
from these data types. (See Program 15.1.)

Program 15.1

// Working with Numbers

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSValue.h>

#import <Foundation/NSString.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSNumber *myNumber, *floatNumber, *intNumber;
NSInteger myInt;

// integer value

intNumber = [NSNumber numberWithInteger: 100];
myInt = [intNumber integerValue];
NSLog (@”%li”, (long) myInt);

// long value

myNumber = [NSNumber numberWithLong: 0xabcdef];
NSLog (@”%lx”, [myNumber longValue]);

// char value

myNumber = [NSNumber numberWithChar: ‘X’];
NSLog (@”%c”, [myNumber charValue]);

// float value

floatNumber = [NSNumber numberWithFloat: 100.00];
NSLog (@”%g”, [floatNumber floatValue]);

323Number Objects

// double

myNumber = [NSNumber numberWithDouble: 12345e+15];
NSLog (@”%lg”, [myNumber doubleValue]);

// Wrong access here

NSLog (@”%i”, [myNumber integerValue]);

// Test two Numbers for equality

if ([intNumber isEqualToNumber: floatNumber] == YES)
NSLog (@”Numbers are equal”);

else
NSLog (@”Numbers are not equal”);

// Test if one Number is <, ==, or > second Number

if ([intNumber compare: myNumber] == NSOrderedAscending)
NSLog (@”First number s less than second”);

[pool drain];
return 0;

}

Program 15.1 Output

100
abcdef
X
100
1.2345e+19
0
Numbers are equal
First number is less than second

The file <Foundation/NSValue.h> is needed to work with objects from the NSNumber
class.

A Quick Look at the Autorelease Pool
The first line in Program 15.1 has appeared in every program in this book.The following
line reserves space in memory for an autorelease pool that you assign to pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

324 Chapter 15 Numbers, Strings, and Collections

The autorelease pool provides for the automatic release of memory used by objects
that are added to this pool.An object is added to the pool when it is sent an autorelease
message.When the pool is released, so are all the objects that were added to it.Therefore,
all such objects are destroyed unless they have been specified to exist beyond the scope of
the autorelease pool (as indicated by their reference counts).

In general, you don’t need to worry about releasing an object that a Foundation
method returns. Sometimes the object is owned by the method that returns it. Other
times, the object is newly created and added to the autorelease pool by the method.As de-
scribed in detail in Part I,“The Objective-C 2.0 Language,” you still need to release any
objects (including Foundation objects) that you explicitly create using the alloc method
when you’re done using them.

Note
You also need to release objects created by a copy method, as you’ll learn in Chapter 17.

Chapter 17,“Memory Management,” fully describes reference counts, the autorelease
pool, and the concept of automatic garbage collection.

Let’s return to Program 15.1.The NSNumber class contains many methods that allow
you to create NSNumber objects with initial values. For example, the line

intNumber = [NSNumber numberWithInteger: 100];

creates an object from an integer whose value is 100.
The value retrieved from an NSNumber object must be consistent with the type of

value that was stored in it. So in the statement that follows in the program, the message
expression

[intNumber integerValue]

retrieves the integer value stored inside intNumber and stores it inside the NSInteger
variable myInt. Note that NSInteger is not an object, but a typedef for basic date type. It
is typedef’ed either to a long for 64-bit builds or to an int for 32-bit builds.A similar
typedef for NSUInteger exists for working with unsigned integers in your program.

In the NSLog call, we cast the NSInteger myInt to a long and use the format charac-
ters %li to ensure that the value will be passed and displayed correctly even if the program
is compiled for a 32-bit architecture.

For each basic value, a class method allocates an NSNumber object and sets it to a speci-
fied value.These methods begin with numberWith followed by the type, as in
numberWithLong:, numberWithFloat:, and so on. In addition, instance methods can be
used to set a previously allocated NSNumber object to a specified value.These all begin
with initWith, as in initWithLong: and initWithFloat:.

Table 15.1 lists the class and instance methods for setting values for NSNumber objects
and the corresponding instance methods for retrieving their values.

325Number Objects

Table 15.1 NSNumber Creation and Retrieval Methods

Creation and Initialization Class
Method

Initialization Instance Method Retrieval Instance Method

numberWithChar: initWithChar: charValue

numberWithUnsignedChar: initWithUnsignedChar: unsignedCharValue

numberWithShort: initWithShort: shortValue

numberWithUnsignedShort: initWithUnsignedShort: unsignedShortValue

numberWithInteger: initWithInteger: integerValue

numberWithUnsignedInteger: initWithUnsignedInteger: unsignedIntegerValue

numberWithInt: initWithInt: intValueunsigned

numberWithUnsignedInt: initWithUnsignedInt: unsignedIntValue

numberWithLong: initWithLong: longValue

numberWithUnsignedLong: initWithUnsignedLong: unsignedLongValue

numberWithLongLong: initWithLongLong: longlongValue

numberWithUnsignedLongLong: initWithUnsignedLongLong: unsignedLongLongValue

numberWithFloat: initWithFloat: floatValue

numberWithDouble: initWithDouble: doubleValue

numberWithBool: initWithBool: boolValue

Returning to Program 15.1, the program next uses the class methods to create long,
char, float, and double NSNumber objects. Notice what happens after you create a dou-
ble object with the line

myNumber = [NSNumber numberWithDouble: 12345e+15];

and then try to (incorrectly) retrieve and display its value with the following line:

NSLog (@”%i”, [myNumber integerValue]);

You get this output:

0

Also, you get no error message from the system. In general, it’s up to you to ensure that
if you store a value in an NSNumber object, you retrieve it in a consistent manner.

Inside the if statement, the message expression

[intNumber isEqualToNumber: floatNumber]

uses the isEqualToNumber: method to numerically compare two NSNumber objects.The
program tests the Boolean value returned to see whether the two values are equal.

You can use the compare: method to test whether one numeric value is numerically
less than, equal to, or greater than another.The message expression

[intNumber compare: myNumber]

326 Chapter 15 Numbers, Strings, and Collections

returns the value NSOrderedAscending if the numeric value stored in intNumber is less
than the numeric value contained in myNumber, returns the value NSOrderedSame if the
two numbers are equal, and returns the value NSOrderedDescending if the first number is
greater than the second.The values returned are defined in the header file NSObject.h for
you.

Note that you can’t reinitialize the value of a previously created NSNumber object. For
example, you can’t set the value of an integer stored in the NSNumber object myNumber
with a statement such as follows:

[myNumber initWithInt: 1000];

This statement generates an error when the program is executed.All number objects
must be newly created, meaning that you must invoke either one of the methods listed in
the first column of Table 15.1 on the NSNumber class or one of the methods listed in col-
umn 2 with the result from the alloc method:

myNumber = [[NSNumber alloc] initWithInt: 1000];

Of course, based on previous discussions, if you create myNumber this way, you are re-
sponsible for subsequently releasing it when you’re done using it with a statement such as
follows:

[myNumber release];

You’ll encounter NSNumber objects again in programs throughout the remainder of this
chapter.

String Objects
You’ve encountered string objects in your programs before.Whenever you enclosed a se-
quence of character strings inside a pair of double quotes, as in

@”Programming is fun”

you created a character string object in Objective-C.The Foundation framework supports
a class called NSString for working with character string objects.Whereas C-style strings
consist of char characters, NSString objects consist of unichar characters.A unichar
character is a multibyte character according to the Unicode standard.This enables you to
work with character sets that can contain literally millions of characters. Luckily, you don’t
have to worry about the internal representation of the characters in your strings because
the NSString class automatically handles this for you.1 By using the methods from this
class, you can more easily develop applications that can be localized—that is, made to work
in different languages all over the world.

1 Currently, unichar characters occupy 16 bits, but the Unicode standard provides for characters

larger than that size. So in the future, unichar characters might be larger than 16 bits. The bottom

line is to never make an assumption about the size of a Unicode character.

327String Objects

As you know, you create a constant character string object in Objective-C by putting
the @ character in front of the string of double-quoted characters. So the expression

@”Programming is fun”

creates a constant character string object. In particular, it is a constant character string that
belongs to the class NSConstantString. NSConstantString is a subclass of the string ob-
ject class NSString.To use string objects in your program, include the following line:

#import <Foundation/NSString.h>

More on the NSLog Function
Program 15.2, which follows, shows how to define an NSString object and assign an ini-
tial value to it. It also shows how to use the format characters %@ to display an NSString
object.

Program 15.2

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *str = @”Programming is fun”;

NSLog (@”%@”, str);

[pool drain];
return 0;

}

Program 15.2 Output

Programming is fun

In the line

NSString *str = @”Programming is fun”;

the constant string object Programming is fun is assigned to the NSString variable str.
Its value is then displayed using NSLog.

The NSLog format characters %@ can be used to display not just NSString objects, but
any object. For example, given the following

NSNumber *intNumber = [NSNumber numberWithInteger: 100];

the NSLog call

NSLog (@”%@”, intNumber);

328 Chapter 15 Numbers, Strings, and Collections

produces the following output:

100

You can even use the %@ format characters to display the entire contents of arrays, dic-
tionaries, and sets. In fact, they can display your own class objects as well, as long as you
override the description method inherited by your class. If you don’t override the
method, NSLog simply displays the name of the class and the address of your object in
memory (that’s the default implementation for the description method that is inherited
from the NSObject class).

Mutable Versus Immutable Objects
When you create a string object by writing an expression such as

@”Programming is fun”

you create an object whose contents cannot be changed.This is referred to as an
immutable object.The NSString class deals with immutable strings. Frequently, you’ll want
to deal with strings and change characters within the string. For example, you might want
to delete some characters from a string or perform a search-and-replace operation on a
string.These types of strings are handled through the NSMutableString class.

Program 15.3 shows basic ways to work with immutable character strings in your
programs.

Program 15.3

// Basic String Operations

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString *str1 = @”This is string A”;
NSString *str2 = @”This is string B”;
NSString *res;
NSComparisonResult compareResult;

// Count the number of characters

NSLog (@”Length of str1: %lu”, [str1 length]);

// Copy one string to another

res = [NSString stringWithString: str1];
NSLog (@”copy: %@”, res);

329String Objects

// Copy one string to the end of another

str2 = [str1 stringByAppendingString: str2];
NSLog (@”Concatentation: %@”, str2);

// Test if 2 strings are equal

if ([str1 isEqualToString: res] == YES)
NSLog (@”str1 == res”);

else
NSLog (@”str1 != res”);

// Test if one string is <, == or > than another

compareResult = [str1 compare: str2];

if (compareResult == NSOrderedAscending)
NSLog (@”str1 < str2”);

else if (compareResult == NSOrderedSame)
NSLog (@”str1 == str2”);

else // NSOrderedDescending
NSLog (@”str1 > str2”);

// Convert a string to uppercase

res = [str1 uppercaseString];
NSLog (@”Uppercase conversion: %s”, [res UTF8String]);

// Convert a string to lowercase

res = [str1 lowercaseString];
NSLog (@”Lowercase conversion: %@”, res);

NSLog (@”Original string: %@”, str1);

[pool drain];
return 0;

}

Program 15.3 Output

Length of str1: 16
Copy: This is string A
Concatentation: This is string AThis is string B
str1 == res
str1 < str2
Uppercase conversion: THIS IS STRING A
Lowercase conversion: this is string a
Original string: This is string A

330 Chapter 15 Numbers, Strings, and Collections

Program 15.3 first declares three immutable NSString objects: str1, str2, and res.
The first two are initialized to constant character string objects.The declaration

NSComparisonResult compareResult;

declares compareResult to hold the result of the string comparison that will be per-
formed later in the program.

You can use the length method to count the number of characters in a string. It re-
turns an unsigned integer value of type NSUInteger.The output verifies that the string

@”This is string A”

contains 16 characters.The statement

res = [NSString stringWithString: str1];

shows how to create a new character string with the contents of another.The resulting
NSString object is assigned to res and is then displayed to verify the results.An actual
copy of the string contents is made here, not just another reference to the same string in
memory.That means that str1 and res refer to two different string objects, which is dif-
ferent than simply performing a simple assignment, as follows:

res = str1;

This simply creates another reference to the same object in memory.
The stringByAppendingString: method can join two character strings. So the ex-

pression

[str1 stringByAppendingString: str2]

creates a new string object that consists of the characters str1 followed by str2, returning
the result.The original string objects, str1 and str2, are not affected by this operation
(they can’t be because they’re both immutable string objects).

The isEqualToString: method is used next to test to see whether two character
strings are equal—that is, whether they contain the same characters.You can use the
compare: method instead if you need to determine the ordering of two character
strings—for example, if you wanted to sort an array of them. Similar to the compare:
method you used earlier for comparing two NSNumber objects, the result of the compari-
son is NSOrderedAscending if the first string is lexically less than the second string,
NSOrderedSame if the two strings are equal, and NSOrderedDescending if the first string is
lexically greater than the second. If you don’t want to perform a case-sensitive compari-
son, use the caseInsensitiveCompare: method instead of compare: to compare two
strings. In such a case, the two string objects @”Gregory” and @”gregory” would compare
as equal with caseInsensitiveCompare:.

The uppercaseString and lowercaseString are the last two NSString methods used
in Program 15.3 to convert strings to upper case and lower case, respectively.Again, the
conversion does not affect the original strings, as the last line of output verifies.

331String Objects

Program 15.4 illustrates additional methods for dealing with strings.These methods en-
able you to extract substrings from a string, as well as search one string for the occurrence
of another.

Some methods require that you identify a substring by specifying a range.A range con-
sists of a starting index number plus a character count. Index numbers begin with zero, so
the first three characters in a string would be specified by the pair of numbers {0, 3}.
Some methods of the NSString class (and other Foundation classes as well) use the special
data type NSRange to create a range specification. It is defined in
<Foundation/NSRange.h> (which is included for you from inside
<Foundation/NSString.h>) and is actually a typedef definition for a structure that has
two members, location and length, each of which is defined as type NSUinteger.
Program 15.4 uses this data type.

Note
You can read about structures in Chapter 13, “Underlying C Language Features.” However,
you can probably gain enough information to work with them from the discussion that fol-
lows in this chapter.

Program 15.4

// Basic String Operations – Continued

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString *str1 = @”This is string A”;
NSString *str2 = @”This is string B”;
NSString *res;
NSRange subRange;

// Extract first 4 chars from string

res = [str1 substringToIndex: 3];
NSLog (@”First 3 chars of str1: %@”, res);

// Extract chars to end of string starting at index 6

res = [str1 substringFromIndex: 5];
NSLog (@”Chars from index 5 of str1: %@”, res);

// Extract chars from index 8 through 13 (6 chars)

res = [[str1 substringFromIndex: 8] substringToIndex: 6];
NSLog (@”Chars from index 8 through 13: %@”, res);

// An easier way to do the same thing

res = [str1 substringWithRange: NSMakeRange (8, 6)];

332 Chapter 15 Numbers, Strings, and Collections

NSLog (@”Chars from index 8 through 13: %@”, res);

// Locate one string inside another

subRange = [str1 rangeOfString: @”string A”];
NSLog (@”String is at index %lu, length is %lu”,

subRange.location, subRange.length);

subRange = [str1 rangeOfString: @”string B”];

if (subRange.location == NSNotFound)
NSLog (@”String not found”);

else
NSLog (@”String is at index %lu, length is %lu”,

subRange.location, subRange.length);

[pool drain];
return 0;

}

Program 15.4 Output

First 3 chars of str1: Thi
Chars from index 5 of str1: is string A
Chars from index 8 through 13: string
Chars from index 8 through 13: string
String is at index 8, length is 8
String not found

The substringToIndex: method creates a substring from the leading characters in a
string up to but not including the specified index number. Because indexing begins at 0,
the argument of 3 extracts characters 0, 1, and 2 from the string and returns the resulting
string object. For any of the string methods that take an index number as one of their ar-
guments, you get a “Range or index out of bounds” error message if you provide an in-
valid index number in the string.

The substringFromIndex: method returns a substring from the receiver beginning
with the character at the specified index and up through the end of the string.

The expression

res = [[str1 substringFromIndex: 8] substringToIndex: 6];

shows how the two methods can be combined to extract a substring of characters from
inside a string.The substringFromIndex: method is first used to extract characters from
index number 8 through the end of the string; then substringToIndex: is applied to the
result to get the first six characters.The net result is a substring representing the range of
characters {8, 6} from the original string.

333String Objects

The substringWithRange: method does in one step what we just did in two: It takes
a range and returns a character in the specified range.The special function

NSMakeRange (8, 6)

creates a range from its argument and returns the result.This is given as the argument to
the substringWithRange: method.

To locate one string inside another, you can use the rangeOfString: method. If the
specified string is found inside the receiver, the returned range specifies precisely where in
the string it was found. However, if the string is not found, the range that is returned has
its location member set to NSNotFound

So the statement

subRange = [str1 rangeOfString: @”string A”];

assigns the NSRange structure returned by the method to the NSRange variable subRange.
Be sure to note that subRange i not an object va iable, but a structure variable (the decla-
ration for subRange in he prog am also does not contain an asterisk) Its members can be
retrieved by using the structure member operator dot (.). So the expression subRange.
location gives the value of the location member of the structure, and subRange.
length gives the length member.These values are passed to the NSLog function to be
displayed.

Mutable Strings
The NSMutableString class can be used to create string objects whose characters can be
changed. Because this class is a subclass of NSString, all NSString’s methods can be used
as well.

When we speak of mutable versus immutable string objects, we talk about changing
the actual characters within the string. Either a mutable or an immutable string object can
always be set to a completely different string object during execution of the program. For
example, consider the following:

str1 = @”This is a string”;
...

str1 = [str1 stringFromIndex: 5];

In this case, str1 is first set to a constant character string object. Later in the program,
it is set to a substring. In such a case, str1 can be declared as either a mutable or an im-
mutable string object. Be sure you understand this point.

Program 15.5 shows some ways to work with mutable strings in your programs.

334 Chapter 15 Numbers, Strings, and Collections

Program 15.5

// Basic String Operations - Mutable Strings

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *str1 = @”This is string A”;
NSString *search, *replace;
NSMutableString *mstr;
NSRange substr;

// Create immutable string from nonmutable

mstr = [NSMutableString stringWithString: str1];
NSLog (@”%@”, mstr);

// Insert characters

[mstr insertString: @” mutable” atIndex: 7];
NSLog (@”%@”, mstr);

// Effective concatentation if insert at end

[mstr insertString: @” and string B” atIndex: [mstr length]];
NSLog (@”%@”, mstr);

// Or can use appendString directly

[mstr appendString: @” and string C”];
NSLog (@”%@”, mstr);

// Delete substring based on range

[mstr deleteCharactersInRange: NSMakeRange (16, 13)];
NSLog (@”%@”, mstr);

// Find range first and then use it for deletion

substr = [mstr rangeOfString: @”string B and “];

335String Objects

if (substr.location != NSNotFound) {
[mstr deleteCharactersInRange: substr];
NSLog (@”%@”, mstr);

}

// Set the mutable string directly

[mstr setString: @”This is string A”];
NSLog (@”%@”, mstr);

// Now let’s replace a range of chars with another

[mstr replaceCharactersInRange: NSMakeRange(8, 8)
withString: @”a mutable string”];

NSLog (@”%@”, mstr);

// Search and replace

search = @”This is”;
replace = @”An example of”;

substr = [mstr rangeOfString: search];

if (substr.location != NSNotFound) {
[mstr replaceCharactersInRange: substr

withString: replace];
NSLog (@”%@”, mstr);

}

// Search and replace all occurrences

search = @”a”;
replace = @”X”;

substr = [mstr rangeOfString: search];

while (substr.location != NSNotFound) {
[mstr replaceCharactersInRange: substr

withString: replace];
substr = [mstr rangeOfString: search];

}

NSLog (@”%@”, mstr);

[pool drain];
return 0;

}

336 Chapter 15 Numbers, Strings, and Collections

0Index # 16

13 chars

28

This is mutable string A and string B and string C

Figure 15.1 Indexing into a string

Program 15.5 Output

This is string A
This is mutable string A
This is mutable string A and string B
This is mutable string A and string B and string C
This is mutable string B and string C
This is mutable string C
This is string A
This is a mutable string
An example of a mutable string
An exXmple of X mutXble string

The declaration

NSMutableString *mstr;

declares mstr to be a variable that holds a character string object whose contents might
change during execution of the program.The line

mstr = [NSMutableString stringWithString: str1];

sets mstr to the string object whose contents are a copy of the characters in str1, or
“This is string A”.When the stringWithString: method is sent to the
NSMutableString class, a mutable string object is returned.When it’s sent to the
NSString class, as in Program 15.5, you get an immutable string object instead.

The insertString:atIndex: method inserts the specified character string into the
receiver beginning at the specified index number. In this case, you insert the string @”
mutable” into the string beginning at index number 7, or in front of the eighth character
in the string. Unlike the immutable string object methods, no value is returned here be-
cause the receiver is modified—you can do that because it’s a mutable string object.

The second insertString:atIndex: invocation uses the length method to insert
one character string at the end of another.The appendString: method makes this task a
little simpler.

By using the deleteCharactersInRange: method, you can remove a specified num-
ber of characters from a string.The range {16, 13}, when applied to the string

This is mutable string A and string B and string C

deletes the 13 characters “string A and” beginning with index number 16 (or the 17th
character in the string).This is depicted in Figure 15.1.

This is mutable string A and string B and string C

337String Objects

The rangeOfString: method is used in the lines that follow in Program 15.5 to show
how a string can first be located and then deleted.After first verifying that the string
@”string B and” does exist in mstr, the deleteCharactersInRange: method is used to
delete the characters, using the range returned from the rangeOfString: method as its
argument.

You can use the setString: method to directly set the contents of a mutable string
object.After using this method to set mstr to the string @”This is string A”, the
replaceCharactersInRange: method replaces some of the characters in the string with
another string.The sizes of the strings do not have to be the same; you can replace one
string with another of equal or unequal sizes. So in the statement

[mstr replaceCharactersInRange: NSMakeRange(8, 8)

withString: @”a mutable string”];

the 8 characters “string A” are replaced with the 16 characters “a mutable string”.
The remaining lines in the program example show how to perform a search and re-

place. First, you locate the string @”This is” inside the string mstr, which contains
The program next sets up a loop to illustrate how to implement a search-and-replace-

all operation.The search string is set to @”a” and the replacement string is set to
If the replacement string also contains the search string (for example, consider replac-

ing the string ”a” with the string ”aX”), you end up with an infinite loop.
Second, if the replacement string is empty (that is, if it contains no characters), you ef-

fectively delete all occurrences of the search string.An empty constant character string
object is specified by an adjacent pair of quotation marks, with no intervening spaces:

replace = @””;

Of course, if you just wanted to delete an occurrence of a string, you could use the
deleteCharactersInRange: method instead, as you’ve already seen.

Finally, the NSString class also contains a method called
replaceOccurrencesOfString:withString:options:range: that you can use to do a
search-and-replace-all on a string. In fact, you could have replaced the while loop from
Program 15.5 with this single statement:

[mstr replaceOccurrencesOfString: search

withString: replace

options: nil

range: NSMakeRange (0, [mstr length])];

This achieves the same result and averts the potential of an infinite loop because the
method prevents such a thing from happening.

338 Chapter 15 Numbers, Strings, and Collections

Table 15.2 Common NSString Methods

Method Description

+(id) stringWithContentsOfFile:

path encoding: enc error: err
Creates a new string and sets it to the path con-
tents of a file specified by path using character
encoding enc, returning error in err if non-nil

+(id) stringWithContentsOfURL:

url encoding: enc error: err
Creates a new string and sets it to the contents
of url using character encoding enc, returning
error in err if non-nil

+(id) string Creates a new empty string

+(id) stringWithString: nsstring Creates a new string, setting it to nsstring

-(id) initWithString: nsstring Sets a newly allocated string to nsstring

-(id) initWithContentsOfFile:

path encoding: enc error: err
Sets a string to the contents of a file specified by
path

Where Are All Those Objects Going?
Programs 15.4 and 15.5 deal with many string objects that various NSString and
NSMutableString methods create and return.As discussed at the beginning of this chap-
ter, you are not responsible for releasing the memory these objects use; the objects’ cre-
ators are. Presumably, the creators have added all these objects to the autorelease pool, and
the objects will be freed when the pool is released. However, be aware that if you are de-
veloping a program that creates a lot of temporary objects, the memory these objects use
can accumulate. In such cases, you might need to adopt different strategies that allow for
memory to be released during your program’s execution, not just at the end. Chapter 17
describes this concept. For now, just realize that these objects take up memory that can
expand as your program executes.

The NSString class contains more than 100 methods that can work with immutable
string objects.Table 15.2 summarizes some of the more commonly used ones, and Table
15.3 lists some of the additional methods that the NSMutableString class provides. Some
other NSString methods (such as working with pathnames and reading the contents of a
file into a string) are introduced to you throughout the remainder of this book.

In Tables 15.2 and 15.3, url is an NSURL object, path is an NSString object specifying
the path to a file, nsstring is an NSString object, i is an NSUInteger value representing a
valid character number in a string, enc is an NSStringEncoding object that specifies the
character encoding, err is an NSError object that describes an error if one occurs, size and
opts are NSUIntegers, and range is an NSRange object indicating a valid range of charac-
ters within a string.

339String Objects

Table 15.2 Common NSString Methods

Method Description

-(id) initWithContentsOfURL:

url encoding enc error: err
Sets a string to the contents of url (NSURL *)

url using character encoding enc, returning er-
ror in err if non-nil

-(NSUInteger) length Returns the number of characters in the string

-(unichar) characterAtIndex: i Returns the Unicode character at index i

-(NSString *)

substringFromIndex: i
Returns a substring from the character at i to
the end

-(NSString *)

substringWithRange: range
Returns a substring based on a specified range

-(NSString *) substringToIndex:

i
Returns a substring from the start of the string up
to the character at index i

-(NSComparator *)

caseInsensitiveCompare: nsstring
Compares two strings, ignoring case

-(NSComparator *) compare:

nsstring
Compares two strings

-(BOOL) hasPrefix: nsstring Tests whether a string begins with nsstring

-(BOOL) hasSuffix: nsstring Tests whether a string ends with nsstring

-(BOOL) isEqualToString:

nsstring
Tests whether two strings are equal

-(NSString *) capitalizedString Returns a string with the first letter of every word
capitalized (and the remaining letters in each
word converted to lower case)

-(NSString *) lowercaseString Returns a string converted to lower case

-(NSString *) uppercaseString Returns a string converted to upper case

-(const char *) UTF8String Returns a string converted to a UTF-8 C-style char-
acter string

-(double) doubleValue Returns a string converted to a double

-(float) floatValue Returns a string converted to a floating value

-(NSInteger) integerValue Returns a string converted to an NSInteger
integer

-(int) intValue Returns a string converted to an integer

340 Chapter 15 Numbers, Strings, and Collections

Table 15.3 Common NSMutableString Methods

Method Description

+(id) stringWithCapacity: size Creates a string initially containing size char-
acters.

-(id) initWithCapacity: size Initializes a string with an initial capacity of
size characters.

-(void) setString: nsstring Sets a string to nsstring.

-(void) appendString: nsstring Appends nsstring to the end of the receiver.

-(void) deleteCharactersInRange:

range
Deletes characters in a specified range.

-(void) insertString: nstring
atIndex: i

Inserts nsstring into the receiver starting at
index i.

-(void) replaceCharactersInRange:

range withString: nsstring
Replaces characters in a specified range with
nsstring.

-(void) replaceOccurrencesOf

String: nsstring withString:

nsstring2 options: opts range:

range

Replaces all occurrences of nsstring with
nsstring2 within a specified range and ac-
cording to options opts. Options can include
a bitwise-ORed combination of
NSBackwardsSearch (the search starts from
the end of range), NSAnchoredSearch
(nsstring must match from the beginning of
the range only), NSLiteralSearch (performs
a byte-by-byte comparison), and
NSCaseInsensitiveSearch.

NSString objects are used extensively throughout the remainder of this text. If you
need to parse strings into tokens, you can take a look at Foundation’s NSScanner class.

The methods in Table 15.3 either create or modify NSMutableString objects.

341Array Objects

Array Objects
A Foundation array is an ordered collection of objects. Most often, elements in an array
are of one particular type, but that’s not required. Just as there are mutable and immutable
strings, are there mutable and immutable arrays. Immutable arrays are handled by the
NSArray class, whereas mutable ones are handled by NSMutableArray.The latter is a sub-
class of the former, which means it inherits its methods.To work with array objects in
your programs, include the following line:

#import <Foundation/NSArray.h>

Program 15.6 sets up an array to store the names of the months of the year and then
prints them.

Program 15.6

#import <Foundation/NSObject.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

int i;
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// Create an array to contain the month names

NSArray *monthNames = [NSArray arrayWithObjects:
@”January”, @”February”, @”March”, @”April”,
@”May”, @”June”, @”July”, @”August”, @”September”,
@”October”, @”November”, @”December”, nil];

// Now list all the elements in the array

NSLog (@”Month Name”);
NSLog (@”===== ====”);

for (i = 0; i < 12; ++i)
NSLog (@” %2i %@”, i + 1, [monthNames objectAtIndex: i]);

[pool drain];
return 0;

}

342 Chapter 15 Numbers, Strings, and Collections

Program 15.6 Output

Month Name
===== ====

1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December

You can use the class method arrayWithObjects: can be to create an array with a list
of objects as its elements. In such a case, the objects are listed in order and are separated
by commas.This is a special syntax used by methods that can take a variable number of
arguments.To mark the end of the list, nil must be specified as the last value in the list—
it isn’t actually stored inside the array.

In Program 15.7 monthNames is set to the 12 string values specified by the arguments
to arrayWithObjects:.

Elements are identified in an array by their index numbers. Similar to NSString ob-
jects, indexing begins with zero. So an array containing 12 elements has valid index num-
bers 0–11.To retrieve an element of an array using its index number, you use the
objectAtIndex: method.

The program simply executes a for loop to extract each element from the array using
the objectAtIndex: method. Each retrieved element is converted to a C string and then
displayed with printf.

Program 15.7 generates a table of prime numbers. Because you will be adding prime
numbers to your array as they are generated, a mutable array is required.The
NSMutableArray primes is allocated using the arrayWithCapacity: method.The argu-
ment of 20 that you give specifies the initial capacity of the array; a mutable array’s capac-
ity automatically increases as necessary while the program is running.

Even though prime numbers are integers, you can’t directly store int values inside
your array.Your array can hold only objects.Thus, you need to store NSNumber integer
objects inside your primes array.

Program 15.7

#import <Foundation/NSObject.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSValue.h>

#define MAXPRIME 50

343Array Objects

int main (int argc, char *argv[])
{

int i, p, prevPrime;
BOOL isPrime;
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// Create an array to store the prime numbers

NSMutableArray *primes =
[NSMutableArray arrayWithCapacity: 20];

// Store the first two primes (2 and 3) into the array

[primes addObject: [NSNumber numberWithInteger: 2]]
[primes addObject: [NSNumber numberWithInteger: 3]];

// Calculate the remaining primes

for (p = 5; p <= MAXPRIME; p = 2) {
// we’re testing to see if p is prime

isPrime = YES;

i = 1;

do {
prevPrime = [[primes objectAtIndex: i] integerValue];

if (p % prevPrime == 0)
isPrime = NO;

++i;
} while (isPrime == YES && p / prevPrime >= prevPrime);

if (isPrime)
[primes addObject: [NSNumber numberWithInteger: p]];

}

// Display the results

for (i = 0; i < [primes count]; ++i)
NSLog (@”%li”, (long) [[primes objectAtIndex: i] integerValue]);

[pool drain];
return 0;

}

344 Chapter 15 Numbers, Strings, and Collections

Program 15.7 Output

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

You define kMaxPrime to the maximum prime number you want the program to cal-
culate, which, in this case, is 50.

After allocating your primes array, you set the first two elements of the array using
these statements:

[primes addObject: [NSNumber numberWithInteger: 2]];

[primes addObject: [NSNumber numberWithInteger: 3]];

The addObject: method adds an object to the end of an array. Here you add the
NSNumber objects created from the integer values 2 and 3, respectively.

The program then enters a for loop to find prime numbers starting with 5, going up
to kMaxPrime and skipping the even numbers in between (p += 2).

For each possible prime candidate p, you want to see whether it is evenly divisible by
the previously discovered primes. If it is, it’s not prime.As an added optimization, you test
the candidate for even division only by earlier primes up to its square root.That’s because
if a number is not prime, it must be divisible by a prime number that is less than or equal
to its square root (ahh, back to high school math again!). So the expression

p / prevPrime >= prevPrime

remains true only as long as prevPrime is less than the square root of p.
If the do-while loop exits with the flag isPrime still equal to YES, you have found an-

other prime number. In that case, the candidate p is added to the primes array and execu-
tion continues.

Just a comment about program efficiency here:The Foundation classes for working
with arrays provide many conveniences. However, in the case of manipulating large arrays
of numbers with complex algorithms, learning how to perform such a task using the

345Array Objects

lower-level array constructs provided by the language might be more efficient, in terms of
both memory usage and execution speed. Refer to the section titled “Arrays” in Chapter
13 for more information.

Making an Address Book
Let’s take a look at an example that starts to combine a lot of what you’ve learned to this
point by creating an address book.2Your address book will contain address cards. For the
sake of simplicity, your address cards will contain only a person’s name and email address.
Extend this concept to other information, such as address and phone number, is straight-
forward, but we leave that as an exercise for you at the end of this chapter.

Creating an Address Card
We start by defining a new class called AddressCard.You’ll want the capability to create a
new address card, set its name and email fields, retrieve those fields, and print the card. In
a graphics environment, you could use some nice routines such as those provided by the
Application Kit framework to draw your card onscreen. But here you stick to a simple
Console interface to display your address cards.

Program 15.8 shows the interface file for your new AddressCard class.We’re not go-
ing to synthesize the accessor methods yet; writing them yourself offers valuable lessons.

Program 15.8 Interface File AddressCard.h

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>

@interface AddressCard: NSObject
{

NSString *name;
NSString *email;

}

-(void) setName: (NSString *) theName;
-(void) setEmail: (NSString *) theEmail;

-(NSString *) name;
-(NSString *) email;

-(void) print;

@end

2 Mac OS X provides an entire Address Book framework, which offers extremely powerful capabilities

for working with address books.

346 Chapter 15 Numbers, Strings, and Collections

This is straightforward, as is the implementation file in Program 15.8.

Program 15.8 Implementation File AddressCard.m

#import “AddressCard.h”

@implementation AddressCard

-(void) setName: (NSString *) theName
{

name = [[NSString alloc] initWithString: theName];
}

-(void) setEmail: (NSString *) theEmail
{

email = [[NSString alloc] initWithString: theEmail];
}

-(NSString *) name
{

return name;
}

-(NSString *) email
{

return email;
}

-(void) print
{

NSLog (@”====================================”);
NSLog (@”| |”);
NSLog (@”| %-31s |”, [name UTF8String]);
NSLog (@”| %-31s |”, [email UTF8String]);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| O O |”);
NSLog (@”====================================”);

}
@end

You could have the setName: and setEmail: methods store the objects directly in their
respective instance variables with method definitions like these:

-(void) setName: (NSString *) theName

{

name = theName;

}

347Array Objects

-(void) setEmail: (NSString *) theEmail

{

email = theEmail;

}

But the AddressCard object would not own its member objects.We talked about the
motivation for an object to take ownership with respect to the Rectangle class owning
its origin object in Chapter 8,“Inheritance.”

Defining the two methods in the following way would also be an incorrect approach
because the AddressCard methods would still not own their name and email objects—
NSString would own them:

-(void) setName: (NSString *) theName

{

name = [NSString stringWithString: theName];

}

-(void) setEmail: (NSString *) theEmail

{

email = [NSString stringWithString: theEmail];

}

Returning to Program 15.8, the print method tries to present the user with a nice
display of an address card in a format resembling a Rolodex card (remember those?).The
%-31s characters to NSLog indicate to display a UTF8 C-string within a field width of 31
characters, left-justified.This ensures that the right edges of your address card line up in
the output. It’s used in this example strictly for cosmetic reasons.

With your AddressCard class in hand, you can write a test program to create an address
card, set its values, and display it (see Program 15.8).

Program 15.8 Test Program

#import “AddressCard.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
AddressCard *card1 = [[AddressCard alloc] init];

348 Chapter 15 Numbers, Strings, and Collections

[card1 setName: aName];
[card1 setEmail: aEmail];

[card1 print];

[card1 release];
[pool drain];
return 0;

}

Program 15.8 Output

=====================================
| |
| Julia Kochan |
| jewls337@axlc.com |
| |
| |
| |
| O O |
=====================================

In this program, the line

[card1 release];

is used to release the memory your address card uses.You should realize from previous
discussions that releasing an AddressCard object this way does not also release the mem-
ory you allocated for its name and email members.To make the AddressCard leak free,
you need to override the dealloc method to release these members whenever the mem-
ory for an AddressCard object is released.

This is the dealloc method for your AddressCard class:

-(void) dealloc

{

[name release];

[email release];

[super dealloc];

}

The dealloc method must release its own instance variables before using super to
destroy the object itself.That’s because an object is no longer valid after it has been
deallocated.

To make your AddressCard leak free, you must also modify your setName: and
setEmail: methods to release the memory used by the objects stored in their respective
instance variables. If someone changes the name on a card, you need to release the
memory that the old name takes up before you replace it with the new one. Similarly,

349Synthesized AddressCard Methods

for the email address, you must release the memory it uses before you replace it with the
new one.

These are the new setName: and setEmail: methods that ensure that we have a class
that handles memory management properly:

-(void) setName: (NSString *) theName

{

[name release];

name = [[NSString alloc] initWithString: theName];

}

-(void) setEmail: (NSString *) theEmail

{

[email release];

email = [[NSString alloc] initWithString: theEmail];

}

You can send a message to a nil object; therefore, the message expressions

[name release];

and

[email release];

are okay even if name or email have not been previously set.

Synthesized AddressCard Methods
Now that we’ve discussed the correct way to write the accessor methods setName: and
setEmail:, and you understand the important principles, we can go back and let the sys-
tem generate the accessor methods for you. Consider the second version of the
AddressCard interface file:

#import <Foundation/NSObject.h>

#import <Foundation/NSString.h>

@interface AddressCard: NSObject

{

NSString *name;

NSString *email;

}

@property (copy, nonatomic) NSString *name, *email;

-(void) print;

@end

The line

@property (copy, nonatomic) NSString *name, *email;

350 Chapter 15 Numbers, Strings, and Collections

lists the attributes copy and nonatomic for the properties.The copy attribute says to make
a copy of the instance variable in its setter method, as you did in the version you wrote.
The default action is not to make a copy, but to instead perform a simple assignment
(that’s the default attribute assign), an incorrect approach that we recently discussed.

The nonatomic attribute specifies that the getter method should not retain or
autorelease the instance variable before returning its value. Chapter 18 discusses this topic
in greater detail.

Program 15.9 is the new AddressCard implementation file that specifies that the acces-
sor methods be synthesized.

Program 15.9 Implementation File AddressCard.m with Synthesized Methods

#import “AddressCard.h”

@implementation AddressCard

@synthesize name, email;
-(void) print
{

NSLog (@”====================================”);
NSLog (@”| |”);
NSLog (@”| %-31s |”, [name UTF8String]);
NSLog (@”| %-31s |”, [email UTF8String]);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| O O |”);
NSLog (@”====================================”);

}
@end

We leave it as an exercise to you to verify that the new AddressCard definition with
its synthesized accessor methods works with the test program shown in Program 15.9.

Now let’s add another method to your AddressCard class.You might want to set both
the name and email fields of your card with one call.To do so, add a new method,
setName:andEmail:.3 The new method looks like this:

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail

{

self.name = theName;

self.email = theEmail;

}

3 You also might want an initWithName:andEmail: initialization method, but we don’t show that

here.

351Synthesized AddressCard Methods

By relying on the synthesized setter methods to set the appropriate instance variables
(instead of setting them directly inside the method yourself), you add a level of abstraction
and, therefore, make the program slightly more independent of its internal data structures.
You also take advantage of the synthesized method’s properties, which in this case, copy
instead of assign the value to the instance variable.

Program 15.9 tests your new method.

Program 15.9 Test Program

#import <Foundation/Foundation.h>
#import “AddressCard.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];

[card1 print];
[card2 print];
[card1 release];
[card2 release];
[pool drain];
return 0;

}

Program 15.9 Output

====================================
| |
| Julia Kochan |
| jewls337@axlc.com |
| |
| |
| |
| O O |
====================================

352 Chapter 15 Numbers, Strings, and Collections

====================================
| |
| Tony Iannino |
| tony.iannino@techfitness.com |
| |
| |
| |
| O O |
====================================

Your AddressCard class seems to be working okay.What if you wanted to work with a
lot of AddressCards? It would make sense to collect them together, which is exactly what
you’ll do by defining a new class called AddressBook.The AddressBook class will store
the name of an address book and a collection of AddressCards, which you’ll store in an
array object.To start, you’ll want the ability to create a new address book, add new address
cards to it, find out how many entries are in it, and list its contents. Later, you’ll want to
be able to search the address book, remove entries, possibly edit existing entries, sort it, or
even make a copy of its contents.

Let’s get started with a simple interface file (see Program 15.10).

Program 15.10 Addressbook.h Interface File

#import <Foundation/NSArray.h>
#import “AddressCard.h”

@interface AddressBook: NSObject
{

NSString *bookName;
NSMutableArray *book;

}

-(id) initWithName: (NSString *) name;
-(void) addCard: (AddressCard *) theCard;
-(int) entries;
-(void) list;
-(void) dealloc;

@end

The initWithName: method sets up the initial array to hold the address cards and
store the name of the book, whereas the addCard: method adds an AddressCard to the
book.The entries method reports the number of address cards in your book, and the
list method gives a concise listing of its entire contents. Program 15.10 shows the im-
plementation file for your AddressBook class.

353Synthesized AddressCard Methods

Program 15.10 Addressbook.m Implementation File

#import “AddressBook.h”

@implementation AddressBook;

// set up the AddressBook’s name and an empty book

-(id) initWithName: (NSString *) name
{

self = [super init];

if (self) {
bookName = [NSString alloc] initWithString: name];
book = [[NSMutableArray alloc] init];

}

return self;
}

-(void) addCard: (AddressCard *) theCard
{

[book addObject: theCard];
}

-(int) entries
{

return [book count];
}

-(void) list
{

NSLog (@”======== Contents of: %@ =========”, bookName);

for (AddressCard *theCard in book)
NSLog (@”%-20s %-32s”, [theCard.name UTF8String],

[theCard.email UTF8String]);

NSLog (@”==”);
}

-(void) dealloc
{

[bookName release];
[book release];
[super dealloc];

}
@end

354 Chapter 15 Numbers, Strings, and Collections

The initWithName: method first calls the init method for the superclass to perform
its initialization. Next, it creates a string object (using alloc so it owns it) and sets it to
the name of the address book passed in as name.This is followed by the allocation and ini-
tialization of an empty mutable array that is stored in the instance variable book.

You defined initWithName: to return an id object, instead of an AddressBook one. If
AddressBook is subclassed, the argument to initWithName: isn’t an AddressBook object;
its type is that of the subclass. For that reason, you define the return type as a generic ob-
ject type.

Notice also that in initWithName:, you take ownership of the bookName and book in-
stance variables by using alloc. For example, if you created the array for book using the
NSMutableArray array method, as in

book = [NSMutableArray array];

you would still not be the owner of the book array; NSMutableArray would own it.Thus,
you wouldn’t be able to release its memory when you freed up the memory for an
AddressBook object.

The addCard: method takes the AddessCard object given as its argument and adds it
to the address book.

The count method gives the number of elements in an array.The entries method
uses this to return the number of address cards stored in the address book.

Fast Enumeration
The list method’s for loop shows a construct you haven’t seen before:

for (AddressCard *theCard in book)

NSLog (@”%-20s %-32s”, [theCard.name UTF8String],
[theCard.email UTF8String]);

This uses a technique known as fast enumeration to sequence through each element of
the book array.The syntax is simple enough:You define a variable that will hold each ele-
ment in the array in turn (AddressCard *theCard).You follow that with the keyword
in, and then you list the name of the array.When the for loop executes, it assigns the first
element in the array to the specified variable and then executes the body of the loop.
Then it assigns the second element in the array to the variable and executes the body of
the loop.This continues in sequence until all elements of the array have been assigned to
the variable and the body of the loop has executed each time.

Note that if theCard had been previously defined as an AddressCard object, the for
loop would more simply become this:

for (theCard in book)

...

355Synthesized AddressCard Methods

Program 15.10 is a test program for your new AddressBook class.

Program 15.10 Test Program

#import “AddressBook.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;
NSString *cName = @”Stephen Kochan”;
NSString *cEmail = @”steve@kochan-wood.com”;
NSString *dName = @”Jamie Baker”;
NSString *dEmail = @”jbaker@kochan-wood.com”;

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

// Now initialize the address book

myBook = [myBook initWithName: @”Linda’s Address Book”];

NSLog (@”Entries in address book after creation: %i”,
[myBook entries]);

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

356 Chapter 15 Numbers, Strings, and Collections

NSLog (@”Entries in address book after adding cards: %i”,
[myBook entries]);

// List all the entries in the book now

[myBook list];

[card1 release];
[card2 release];
[card3 release];
[card4 release];
[myBook release];
[pool drain];
return 0;

}

Program 15.10 Output

Entries in address book after creation: 0
Entries in address book after adding cards: 4

======== Contents of: Linda’s Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Stephen Kochan steve@kochan-wood.com
Jamie Baker jbaker@kochan-wood.com
==

The program sets up four address cards and then creates a new address book called
Linda’s Address Book.The four cards are then added to the address book using the
addCard: method, and the list method is used to list the and verify that contents of the
address book.

Looking Up Someone in the Address Book
When you have a large address book, you don’t want to list its complete contents each
time you want to look up someone.Therefore, adding a method to do that for you makes
sense. Let’s call the method lookup: and have it take as its argument the name to locate.
The method will search the address book for a match (ignoring case) and return the
matching entry, if found. If the name does not appear in the phone book, you’ll have it
return nil.

Here’s the new lookup: method:

// lookup address card by name — assumes an exact match

-(AddressCard *) lookup: (NSString *) theName

{

357Synthesized AddressCard Methods

for (AddressCard *nextCard in book)

if ([[nextCard name] caseInsensitiveCompare: theName] == NSOrderedSame)

return nextCard;

return nil;

}

If you put the declaration for this method in your interface file and the definition in
the implementation file, you can write a test program to try your new method. Program
15.11 shows such a program, followed immediately by its output.

Program 15.11 Test Program

#import “AddressBook.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;
NSString *cName = @”Stephen Kochan”;
NSString *cEmail = @”steve@kochan-wood.com”;
NSString *dName = @”Jamie Baker”;
NSString *dEmail = @”jbaker@kochan-wood.com”;
AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];
AddressCard *myCard;

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @”Linda’s Address Book”];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];

358 Chapter 15 Numbers, Strings, and Collections

[myBook addCard: card3];
[myBook addCard: card4];

// Look up a person by name

NSLog (@”Stephen Kochan”);
myCard = [myBook lookup: @”stephen kochan”];

if (myCard != nil)
[myCard print];

else
NSLog (@”Not found!”);

// Try another lookup

NSLog (@”Lookup:Haibo Zhang”);
myCard = [myBook lookup: @”Haibo Zhang”];

if (myCard != nil)
[myCard print];

else
NSLog (@”Not found!”);

[card1 release];
[card2 release];
[card3 release];
[card4 release];
[myBook release];

[pool drain];
return 0;

}

Program 15.11 Output

Lookup: Stephen Kochan
====================================
| |
| Stephen Kochan |
| steve@kochan-wood.com |
| |
| |
| |
| O O |
====================================

Lookup: Haibo Zhang
Not found!

359Synthesized AddressCard Methods

When the lookup: method located Stephen Kochan in the address book (taking ad-
vantage of the fact that a non-case-sensitive match was made), the method gave the re-
sulting address card to the AddressCard’s print method for display. In the case of the
second lookup, the name Haibo Zhang was not found.

This lookup message is very primitive because it needs to find an exact match of the
entire name.A better method would perform partial matches and be able to handle mul-
tiple matches. For example, the message expression

[myBook lookup: @”steve”]

could match entries for “Steve Kochan”,“Fred Stevens”, and “steven levy”. Because mul-
tiple matches would exist, a good approach might be to create an array containing all the
matches and return the array to the method caller (see exercise 2 at the end of this chap-
ter), like so:

matches = [myBook lookup: @”steve”];

Removing Someone from the Address Book
No address book manager that enables you to add an entry would be complete without
the capability to also remove an entry.You can make a removeCard: method to remove a
particular AddressCard from the address book.Another possibility would be to create a
remove: method that removes someone based on name (see exercise 6 at the end of this
chapter).

Because you’ve made a couple changes to your interface file, Program 15.12 shows it
again with the new removeCard: method. It’s followed by your new removeCard: method.

Program 15.12 Addressbook.h Interface File

#import <Foundation/NSArray.h>
#import “AddressCard.h”

@interface AddressBook: NSObject
{

NSString *bookName;
NSMutableArray *book;

}

-(AddressBook *) initWithName: (NSString *) name;

-(void) addCard: (AddressCard *) theCard;
-(void) removeCard: (AddressCard *) theCard;

-(AddressCard *) lookup: (NSString *) theName;
-(int) entries;
-(void) list;

@end

360 Chapter 15 Numbers, Strings, and Collections

Here’s the new removeCard method:

-(void) removeCard: (AddressCard *) theCard

{

[book removeObjectIdenticalTo: theCard];

}

For purposes of what’s considered an identical object, we are using the idea of the same
location in memory. So the removeObjectIdenticalTo: method does not consider two
address cards that contain the same information but are located in different places in
memory (which might happen if you made a copy of an AddressCard, for example) to
be identical.

Incidentally, the removeObjectIdenticalTo: method removes all objects identical to
its argument. However, that’s an issue only if you have multiple occurrences of the same
object in your arrays.

You can get more sophisticated with your approach to equal objects by using the
removeObject: method and then writing your own isEqual: method for testing
whether two objects are equal. If you use removeObject:, the system automatically in-
vokes the isEqual: method for each element in the array, giving it the two elements to
compare. In this case, because your address book contains AddressCard objects as its ele-
ments, you would have to add an isEqual: method to that class (you would be overrid-
ing the method that the class inherits from NSObject).The method could then decide for
itself how to determine equality. It would make sense to compare the two corresponding
names and emails. If both were equal, you could return YES from the method; otherwise,
you could return NO.Your method might look like this:

-(BOOL) isEqual (AddressCard *) theCard

{

if ([name isEqualToString: theCard.name] == YES &&

[email isEqualToString: theCard.email] == YES)

return YES;

else

return NO;

}

Note that other NSArray methods, such as containsObject: and indexOfObject:,
also rely on this isEqual: strategy for determining whether two objects are considered
equal.

Program 15.12 tests the new removeCard: method.

361Synthesized AddressCard Methods

Program 15.12 Test Program

#import “AddressBook.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;
NSString *cName = @”Stephen Kochan”;
NSString *cEmail = @”steve@kochan-wood.com”;
NSString *dName = @”Jamie Baker”;
NSString *dEmail = @”jbaker@kochan-wood.com”;

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];
AddressCard *myCard

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @”Linda’s Address Book”];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

// Look up a person by name

NSLog (@”Stephen Kochan”);
myCard = [myBook lookup: @”Stephen Kochan”];

if (myCard != nil)
[myCard print];

else
NSLog (@”Not found!”);

362 Chapter 15 Numbers, Strings, and Collections

// Now remove the entry from the phone book

[myBook removeCard: myCard];
[myBook list]; // verify it’s gone

[card1 release];
[card2 release];
[card3 release];
[card4 release];
[myBook release];
[pool drain];

return 0;
}

Program 15.12 Output

Lookup: Stephen Kochan
====================================
| |
| Stephen Kochan |
| steve@kochan-wood.com |
| |
| |
| |
| O O |
====================================

======== Contents of: Linda’s Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Jamie Baker jbaker@kochan-wood.com
===

After looking up Stephen Kochan in the address book and verifying that he’s there,
you pass the resulting AddressCard to your new removeCard: method to be removed.
The resulting listing of the address book verifies the removal.

Sorting Arrays
If your address book contains a lot of entries, alphabetizing it might be convenient.You
can easily do this by adding a sort method to your AddressBook class and by taking ad-
vantage of an NSMutableArray method called sortUsingSelector:.This method takes
as its argument a selector that the sortUsingSelector: method uses to compare two el-
ements.Arrays can contain any type of objects in them, so the only way to implement a

363Synthesized AddressCard Methods

generic sorting method is to have you decide whether elements in the array are in order.
To do this, you must add a method to compare two elements in the array.4 The result re-
turned from that method is to be of type NSComparisonResult. It should return
NSOrderedAscending if you want the sorting method to place the first element before
the second in the array, return NSOrderedSame if the two elements are considered equal,
or return NSOrderedDescending if the first element should come after the second ele-
ment in the sorted array.

First, here’s the new sort method from your AddressBook class:

-(void) sort

{
[book sortUsingSelector: @selector(compareNames:)];

}

As you learned in Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Bind-
ing,” the exp ession

@selector (compareNames:)

creates a selector, which is of type SEL, from a specified method name; this is the method
sortUsingSelector: uses to compare two elements in the array.When it needs to make
such a comparison, it invokes the specified method, sending the message to the first ele-
ment in the array (the receiver) to be compared against its argument.The returned value
should be of type NSComparisonResult, as previously described.

Because the elements of your address book are AddressCard objects, the comparison
method must be added to the AddressCard class.You must go back to your AddressCard
class and add a compareNames: method to it.This is shown here:

// Compare the two names from the specified address cards

-(NSComparisonResult) compareNames: (id) element

{

return [name compare: [element name]];

}

Because you are doing a string comparison of the two names from the address book,
you can use the NSString compare: method to do the work for you.

4 A method called sortUsingFunction:context: lets you use a function instead of a method to

perform the comparison.

364 Chapter 15 Numbers, Strings, and Collections

If you add the sort method to the AddressBook class and the compareNames:
method to the AddressCard class, you can write a test program to test it (see Program
15.13).

Program 15.13 Test Program

#import “AddressBook.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;
NSString *cName = @”Stephen Kochan”;
NSString *cEmail = @”steve@kochan-wood.com”;
NSString *dName = @”Jamie Baker”;
NSString *dEmail = @”jbaker@kochan-wood.com”;

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @”Linda’s Address Book”];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

// List the unsorted book

[myBook list];

// Sort it and list it again

365Synthesized AddressCard Methods

[myBook sort];
[myBook list];

[card1 release];
[card2 release];
[card3 release];
[card4 release];
[myBook release];
[pool drain];
return 0;

}

Program 15.13 Output

======== Contents of: Linda’s Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Stephen Kochan steve@kochan-wood.com
Jamie Baker jbaker@kochan-wood.com
===

======== Contents of: Linda’s Address Book =========
Jamie Baker jbaker@kochan-wood.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@kochan-wood.com
Tony Iannino tony.iannino@techfitness.com
===

Note that the sort is an ascending one. However, you can easily perform a descending
sort by modifying the compareNames: method in the AddressCard class to reverse the
sense of the values that are returned.

More than 50 methods are available for working with array objects.Tables 15.4 and
15.5 list some commonly used methods for working with immutable and mutable arrays,
respectively. Because NSMutableArray is a subclass of NSArray, the former inherits the
methods of the latter.

366 Chapter 15 Numbers, Strings, and Collections

In Tables 15.4 and 15.5, obj, obj1, and obj2 are any objects; i is an NSUInteger inte-
ger representing a valid index number into the array; selector is a selector object of type
SEL; and size is an NSUInteger integer.

Table 15.4 Common NSArray Methods

Method Description

+(id) arrayWithObjects:

obj1, obj2, ... nil
Creates a new array with obj1, obj2, ... as its ele-
ments

-(BOOL) containsObject: obj Determines whether the array contains obj (uses
the isEqual: method)

-(NSUInteger) count Indicates the number of elements in the array

-(NSUInteger) indexOfObject:

obj
Specifies the index number of the first element that
contains obj (uses the isEqual: method)

-(id) objectAtIndex: i Indicates the object stored in element i

-(void) makeObjectsPerform

Selector: (SEL) selector
Sends the message indicated by selector to every
element of the array

-(NSArray *) sortedArrayUsing

Selector: (SEL) selector
Sorts the array according to the comparison method
specified by selector

-(BOOL) writeToFile: path
automically: (BOOL) flag

Writes the array to the specified file, creating a tem-
porary file first if flag is YES

Table 15.5 Common NSMutableArray Methods

Method Description

+(id) array Creates an empty array

+(id) arrayWithCapacity: size Creates an array with a specified initial size

-(id) initWithCapacity: size Initializes a newly allocated array with a specified initial
size

-(void) addObject: obj Adds obj to the end of the array

-(void) insertObject: obj
atIndex: i

Inserts obj into element i of the array

-(void) replaceObjectAtIndex:

i withObject: obj
Replaces element i of the array with obj

-(void) removeObject: obj Removes all occurrences of obj from the array

-(void) removeObjectAtIndex: i Removes element i from the array, moving down
elements i+1 through the end of the array

-(void) sortUsingSelector:

(SEL) selector
Sorts the array based on the comparison method
indicated by selector

367Dictionary Objects

Dictionary Objects
A dictionary is a collection of data consisting of key-object pairs. Just as you would look up
the definition of a word in a dictionary, you obtain the value (object) from an Objective-
C dictionary by its key.The keys in a dictionary must be unique, and they can be of any
object type, although they are typically strings.The value associated with the key can also
be of any object type, but it cannot be nil.

Dictionaries can be mutable or immutable; mutable ones can have entries dynamically
added and removed. Dictionaries can be searched based on a particular key, and their con-
tents can be enumerated. Program 15.14 sets up a mutable dictionary to be used as a glos-
sary of Objective-C terms and fills in the first three entries.

To use dictionaries in your programs, include the following line:

#import <Foundation/NSDictionary.h>

Program 15.14

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSMutableDictionary *glossary = [NSMutableDictionary dictionary];

// Store three entries in the glossary

[glossary setObject: @”A class defined so other classes can inherit from it”
forKey: @”abstract class”];

[glossary setObject: @”To implement all the methods defined in a protocol”
forKey: @”adopt”];

[glossary setObject: @”Storing an object for later use”
forKey: @”archiving”];

// Retrieve and display them

NSLog (@”abstract class: %@”, [glossary objectForKey: @”abstract class”]);
NSLog (@”%@”, [glossary objectForKey: @”adopt”]);
NSLog (@”%@”, [glossary objectForKey: @”archiving”]);

368 Chapter 15 Numbers, Strings, and Collections

[pool drain];
return 0;

}

Program 15.14 Output
abstract class: A class defined so other classes can inherit from it
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use

The expression

[NSMutableDictionary dictionary]

creates an empty mutable dictionary.You can add key-value pairs to the dictionary using
the setObject:forKey: method.After the dictionary has been constructed, you can re-
trieve the value for a given key using the objectForKey: method. Program 15.14 shows
how the three entries in the glossary were retrieved and displayed. In a more practical ap-
plication, the user would type in the word to define and the program would search the
glossary for its definition.

Enumerating a Dictionary
Program 15.15 illustrates how a dictionary can be defined with initial key-value pairs us-
ing the dictionaryWithObjectsAndKeys: method.An immutable dictionary is created,
and the program also shows how a fast enumeration loop can be used to retrieve each el-
ement from a dictionary one key at a time. Unlike array objects, dictionary objects are
not ordered, so the first key-object pair placed in a dictionary might not be the first key
extracted when the dictionary is enumerated.

Program 15.15

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSDictionary *glossary =
[NSDictionary dictionaryWithObjectsAndKeys:
@”A class defined so other classes can inherit from it”,
@”abstract class”,
@”To implement all the methods defined in a protocol”,
@”adopt”,
@”Storing an object for later use”,
@”archiving”,
nil

];

369Dictionary Objects

// Print all key-value pairs from the dictionary

for (NSString *key in glossary)
NSLog (@”%@%@”, key, [glossary objectForKey: key]);

[pool drain];
return 0;

}

Program 15.15 Output
abstract class: A class defined so other classes can inherit from it
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use

The argument to dictionaryWithObjectsAndKeys: is a list of object-key pairs (yes,
in that order!), each separated by a comma.The list must be terminated with the special
nil object.

After the program creates the dictionary, it sets up a loop to enumerate its contents.As
noted, the keys are retrieved from the dictionary in turn, in no special order. If you
wanted to display the contents of a dictionary in alphabetical order, you could retrieve all
the keys from the dictionary, sort them, and then retrieve all the values for those sorted
keys in order.The method keysSortedByValueUsingSelector: does half of the work
for you, returning the sorted keys in an array based on your sorting criteria.

We have just shown some basic operations with dictionaries here.Tables 15.6 and 15.7
summarize some of the more commonly used methods for working with immutable and
mutable dictionaries, respectively. Because NSMutableDictionary is a subset of
NSDictionary, it inherits its methods.

In Tables 15.6 and 15.7, key, key1, key2, obj, obj1, and obj2 are any objects, and size
is an NSUInteger unsigned integer.

Table 15.6 Common NSDictionary Methods

Method Description

+(id) dictionaryWithObjectsAndKeys:

obj1, key1, obj2, key2, ..., nil

Creates a dictionary with key-object pairs
{key1, obj1}, {key2, obj2}, ...

-(id) initWithObjectsAndKeys: obj1,
key1, obj2, key2,..., nil

Initializes a newly allocated dictionary with
key-object pairs {key1, obj1}, {key2,
obj2}, ...

-(unsigned int) count Returns the number of entries in the
dictionary

370 Chapter 15 Numbers, Strings, and Collections

Table 15.6 Common NSDictionary Methods

Method Description

-(NSEnumerator *) keyEnumerator Returns an NSEnumerator object for all the
keys in the dictionary

-(NSArray *)

keysSortedByValueUsingSelector:

(SEL) selector

Returns an array of keys in the dictionary
sorted according to the comparison method
selector specifies

-(NSEnumerator *) objectEnumerator Returns an NSEnumerator object for all the
values in the dictionary

-(id) objectForKey: key Returns the object for the specified key

Set Objects
A set is a collection of unique objects, and it can be mutable or immutable. Operations in-
clude searching, adding, and removing members (mutable sets); comparing two sets; and
finding the intersection and union of two sets.

To work with sets in your program, include the following line:

#import <Foundation/NSSet.h>

Table 15.7 Common NSMutableDictionary Methods

Method Description

+(id) dictionaryWithCapacity: size Creates a mutable dictionary with an initial
specified size

-(id) initWithCapacity: size Initializes a newly allocated dictionary to be of
an initial specified size

-(void) removeAllObjects Removes all entries from the dictionary

-(void) removeObjectForKey: key Removes the entry for the specified key from
the dictionary

-(void) setObject: obj forKey: key Adds obj to the dictionary for the key key
and replaces the value if key already exists

371Set Objects

Program 15.16 shows some basic operations on sets. Say you wanted to display the
contents of your sets several times during execution of the program.You therefore have
decided to create a new method called print.You add the print method to the NSSet
class by creating a new category called Printing. NSMutableSet is a subclass of NSSet, so
mutable sets can use the new print method as well.

Program 15.16

#import <Foundation/NSObject.h>
#import <Foundation/NSSet.h>
#import <Foundation/NSValue.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>

// Create an integer object
#define INTOBJ(v) [NSNumber numberWithInteger: v]

// Add a print method to NSSet with the Printing category

@interface NSSet (Printing);
-(void) print;
@end

@implementation NSSet (Printing);
-(void) print {

printf (“{“);

for (NSNumber *element in self)
printf (“ %li “, (long) [element integerValue]);

printf (“}\n”);
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSMutableSet *set1 = [NSMutableSet setWithObjects:
INTOBJ(1), INTOBJ(3), INTOBJ(5), INTOBJ(10), nil];

NSSet *set2 = [NSSet setWithObjects:
INTOBJ(-5), INTOBJ(100), INTOBJ(3), INTOBJ(5), nil];

NSSet *set3 = [NSSet setWithObjects:
INTOBJ(12), INTOBJ(200), INTOBJ(3), nil];

372 Chapter 15 Numbers, Strings, and Collections

NSLog (@”set1: “);
[set1 print];
NSLog (@”set2: “);
[set2 print];

// Equality test
if ([set1 isEqualToSet: set2] == NO)

NSLog (@”set1 equals set2”);
else

NSLog (@”set1 is not equal to set2”);

// Membership test

if ([set1 containsObject: INTOBJ(10)] == YES)
NSLog (@”set1 contains 10”);

else
NSLog (@”set1 does not contain 10”);

if ([set2 containsObject: INTOBJ(10)] == YES)
NSLog (@”set2 contains 10”);

else
NSLog (@”set2 does not contain 10”);

// add and remove objects from mutable set set1

[set1 addObject: INTOBJ(4)];
[set1 removeObject: INTOBJ(10)];
NSLog (@”set1 after adding 4 and removing 10: “);
[set1 print];

// get intersection of two sets

[set1 intersectSet: set2];
NSLog (@”set1 intersect set2: “);
[set1 print];

// union of two sets

[set1 unionSet:set3];
NSLog (@”set1 union set3: “);
[set1 print];

[pool drain];
return 0;

}

373Set Objects

Program 15.16 Output

set1:
{ 3 10 1 5 }
set2:
{ 100 3 -5 5 }
set1 is not equal to set2
set1 contains 10
set2 does not contain 10
set1 after adding 4 and removing 10:
{ 3 1 5 4 }
set1 intersect set2:
{ 3 5 }
set1 union set :
{ 12 3 5 200 }

The print method uses the fast enumeration technique previously described to re-
trieve each element from the set.You also defined a macro called INTOBJ to create an ob-
ject from an nteger value This enables you to make your program more concise and saves
some unnecessary typing. Of course, your print me hod is not tha general because it
works only with sets that have integer members in them. But it’s a good reminder here of
how to add methods to a class through a category.5 (Note that the C library’s printf rou-
tine is used in the print method to display the elements of each set on a single line.)

setWithObjects: creates a new set from a nil-terminated list of objects.After creat-
ing three sets, the program displays the first two using your new print method.The
isEqualToSet: method then tests whether set1 is equal to set2—it isn’t.

The containsObject: method sees first whether the integer 10 is in set1 and then
whether it is in set2.The Boolean values the method returns verify that it is in the first
set, not in the second.

The program next uses the addObject: and removeObject: methods to add and re-
move 4 and 10 from set1, respectively. Displaying the contents of the set verifies that the
operations were successful.

You can use the intersect: and union: methods to calculate the intersection and
union of two sets. In both cases, the result of the operation replaces the receiver of the
message.

The Foundation framework also provides a class called NSCountedSet.These sets can
represent more than one occurrence of the same object; however, instead of the object
appearing multiple times in the set, a count of the number of times is maintained. So the
first time an object is added to the set, its count is 1. Subsequently adding the object to

5 A more general method could invoke each object’s description method for displaying each mem-

ber of the set. That would allow sets containing any types of objects to be displayed in a readable for-

mat. Also note that you can display the contents of any collection with a single call to NSLog, using

the “print object” format characters ”%@”.

374 Chapter 15 Numbers, Strings, and Collections

the set increments the count, whereas removing the object from the set decrements the
count. If it reaches zero, the actual object itself is removed from the set.The
countForObject: retrieves the count for a specified object in a set.

One application for a counted set might be a word counter application. Each time a
word is found in some text, it can be added to the counted set.When the scan of the text
is complete, each word can be retrieved from the set along with its count, which indicates
the number of times the word appeared in the text.

We have just shown some basic operations with sets.Tables 15.8 and 15.9 summarize
commonly used methods for working with immutable and mutable sets, respectively. Be-
cause NSMutableSet is a subclass of NSSet, it inherits its methods.

In Tables 15.8 and 15.9, obj, obj1, and obj2 are any objects; nsset is an NSSet or
NSMutableSet object; and size is an NSUInteger integer.

Table 15.8 Common NSSet Methods

Method Description

+(id) setWithObjects: obj1,
obj2, ..., nil

Creates a new set from the list of objects

-(id) initWithObjects: obj1,
obj2, ..., nil

Initializes a newly allocated set with a list of objects

-(NSUInteger) count Returns the number of members in the set

-(BOOL) containsObject: obj Determines whether the set contains obj

-(BOOL) member: obj Determines whether the set contains obj (using the
isEqual: method)

-(NSEnumerator *)

objectEnumerator

Returns an NSEnumerator object for all the objects
in the set

-(BOOL) isSubsetOfSet: nsset Determines whether every member of the receiver is
present in nsset

-(BOOL) intersectsSet: nsset Determines whether at least one member of the
receiver appears in nsset

-(BOOL) isEqualToSet: nsset Determines whether the two sets are equal

Table 15.9 Common NSMutableSet Methods

Method Description

-(id) setWithCapacity: size Creates a new set with an initial capacity to store
size members

-(id) initWithCapacity: size Sets the initial capacity of a newly allocated set to
size members

-(void) addObject: obj Adds obj to the set

375Exercises

Exercises
1. Look up the NSCalendarDate class in your documentation.Then add a new cate-

gory to NSCalendarDate called ElapsedDays. In that new category, add a method
based on the following method declaration:
-(unsigned long) numberOfElapsedDays: (NSCalendarDate *) theDate;

Have the new method return the number of elapsed days between the receiver and
the argument to the method.Write a test program to test your new method. (Hint:
Look at the years:months:days:hours:minutes:seconds:sinceDate: method.)

2. Modify the lookup: method developed in this chapter for the AddressBook class so
that partial matches of a name can be made.The message expression [myBook

lookup: @”steve”] should match an entry that contains the string steve anywhere
within the name.

3. Modify the lookup: method developed in this chapter for the AddressBook class to
search the address book for all matches. Have the method return an array of all such
matching address cards, or nil if no match is made.

4. Add new fields of your choice to the AddressCard class. Some suggestions are sep-
arating the name field into first and last name fields, and adding address (perhaps
with separate state, city, zip, and country fields) and phone number fields.Write ap-
propriate setter and getter methods, and ensure that the print and list methods
properly display the fields.

5. After completing exercise 3, modify the lookup: method from exercise 2 to per-
form a search on all the fields of an address card. Can you think of a way to design
your AddressCard and AddressBook classes so that the latter does not have to
know all the fields stored in the former?

6. Add the method removeName: to the AddressBook class to remove someone from
the address book given this declaration for the method:
-(BOOL) removeName: (NSString *) theName;

Use the lookup: method developed in exercise 2. If the name is not found or if
multiple entries exist, have the method return NO. If the person is successfully re-
moved, have it return YES.

-(void) removeObject: obj Removes obj from the set

-(void) removeAllObjects Removes all members of the receiver

-(void) unionSet: nsset Adds each member of nsset to the receiver

-(void) minusSet: nsset Removes all members of nsset from the receiver

-(void) intersectSet: nsset Removes all members from the receiver that are not
also in nsset

376 Chapter 15 Numbers, Strings, and Collections

7. Using the Fraction class defined in Part I, set up an array of fractions with some
arbitrary values.Then write some code that finds the sum of all the fractions stored
in the array.

8. Using the Fraction class defined in Part I, set up a mutable array of fractions with
arbitrary values.Then sort the array using the sortUsingSelector: method from
the NSMutableArray class.Add a Comparison category to the Fraction class and
implement your comparison method in that category.

9. Define three new classes, called Song, PlayList, and MusicCollection. A Song

object will contain information about a particular song, such as its title, artist, al-
bum, and playing time.A PlayList object will contain the name of the playlist and
a collection of songs.A MusicCollection object will contain a collection of
playlists, including a special master playlist called library that contains every song
in the collection. Define these three classes and write methods to do the following:
n Create a Song object and set its information.
n Create a Playlist object, and add songs to and remove songs from a playlist.A

new song should be added to the master playlist if it’s not already there. Make
sure that if a song is removed from the master playlist, it is removed from all
playlists in the music collection as well.

n Create a MusicCollection object, and add playlists to and remove playlists from
the collection.

n Search and display the information about any song, any playlist, or the entire
music collection.

Make sure all your classes do not leak memory!

10. Write a program that takes an array of NSInteger objects and produces a frequency
chart that lists each integer and how many times it occurs in the array. Use an
NSCountedSet object to construct your frequency counts.

16
Working with Files

The Foundation framework enables you to get access to the file system to perform basic
operations on files and directories.This is provided by NSFileManager, whose methods
include the capability to

n Create a new file
n Read from an existing file
n Write data to a file
n Rename a file
n Remove (delete) a file
n Test for the existence of a file
n Determine the size of a file as well as other attributes
n Make a copy of a file
n Test two files to see whether their contents are equal

Many of these operations can also be performed on directories. For example, you can
create a directory, read its contents, or delete it.Another feature is the ability to link files.
That is, the ability to have the same file exist under two different names, perhaps even in
different directories.

To open a file and perform multiple read-and-write operations on the file, you use the
methods provided by NSFileHandle.The methods in this class enable you to

n Open a file for reading, writing, or updating (reading and writing)
n Seek to a specified position within a file
n Read or write a specified number of bytes from and to a file

The methods provided by NSFileHandle can also be applied to devices or sockets.
However, we will focus only on dealing with ordinary files in this chapter.

378 Chapter 16: Working with Files

Table 16.1 Common NSFileManager File Methods

Method Description

-(NSData *) contentsAtPath: path Reads data from a file

-(NSData *) createFileAtPath: path
contents: (NSData *) data
attributes: attr

Writes data to a file

Managing Files and Directories:
NSFileManager
A file or directory is uniquely identified to NSFileManager using a pathname to the file.A
pathname is an NSString object that can either be a relative or full pathname.A relative
pathname is one that is relative to the current directory. So, the filename copy1.m would
mean the file copy1.m in the current directory. Slash characters separate a list of directo-
ries in a path.The filename ch16/copy1.m is also a relative pathname, identifying the file
copy1.m stored in the directory ch16, which is contained in the current directory.

Full pathnames, also known as absolute pathnames, begin with a leading /. Slash is actu-
ally a directory, called the root directory. On my Mac, the full pathname to my home di-
rectory is /Users/stevekochan.This pathname specifies three directories: / (the root
directory), Users, and stevekochan.

The special tilde character (~) is used as an abbreviation for a user’s home directory.
~linda would, therefore, be an abbreviation for the user linda’s home directory, which
might be the path /Users/linda.A solitary tilde character indicates the current user’s
home directory, meaning the pathname ~/copy1.m would reference the file copy1.m
stored in the current user’s home directory. Other special UNIX-style pathname charac-
ters, such as . for the current directory and .. for the parent directory, should be re-
moved from pathnames before they’re used by any of the Foundation file-handling
methods.An assortment of path utilities are available that you can use for this, and they’re
discussed later in this chapter.

You should try to avoid hard-coding pathnames into your programs.As you’ll see in
this chapter, methods and functions are available that enable you to obtain the pathname
for the current directory, a user’s home directory, and a directory that can be used for cre-
ating temporary files.You should avail yourself of these as much as possible.You’ll see later
in this chapter that Foundation has a function for obtaining a list of special directories,
such as a user’s Documents directory.

Table 16.1 summarizes some basic NSFileManager methods for working with files. In
that table, path, path1, path2, from, and to are all NSString objects; attr is an
NSDictionary object; and handler is a callback handler that you can provide to handle
errors in your own way. If you specify nil for handler, the default action will be taken,
which for methods that return a BOOL is to return YES if the operation succeeds and NO if
it fails.We won’t be getting into writing your own handler in this chapter.

379Managing Files and Directories: NSFileManager

Table 16.1 Common NSFileManager File Methods

Method Description

-(BOOL) removeFileAtPath: path
handler: handler

Removes a file

-(BOOL) movePath: from toPath: to
handler: handler

Renames or moves a file (to cannot
already exist)

-(BOOL) copyPath: from toPath: to
handler: handler

Copies a file (to cannot already exist)

-(BOOL) contentsEqualAtPath: path1
andPath: path2

Compares contents of two files

-(BOOL) fileExistsAtPath: path Tests for file existence

-(BOOL) isReadableFileAtPath: path Tests whether file exists and can be read

-(BOOL) isWritableFileAtPath: path Tests whether file exists and can be written

-(NSDictionary *)

fileAttributesAtPath: path
traverseLink: (BOOL) flag

Gets attributes for file

-(BOOL) changeFileAttributes: attr
atPath: path

Changes file attributes

Each of the file methods is invoked on an NSFileManager object that is created by
sending a defaultManager message to the class, like so:

NSFileManager *fm;

...

fm = [NSFileManager defaultManager];

For example, to delete a file called todolist from the current directory, you would
first create the NSFileManager object as shown previously and then invoke the
removeFileAtPath: method, like so:

[fm removeFileAtPath: @”todolist” handler: nil];

You can test the result that is returned to ensure that the file removal succeeds:

if ([fm removeFileAtPath: @”todolist” handler: nil] == NO) {

NSLog (@”Couldn’t remove file todolist”);
return 1;

}

The attributes dictionary enables you to specify, among other things, the permissions
for a file you are creating or to obtain or change information for an existing file. For file
creation, if you specify nil for this parameter, the default permissions are set for the file.
The fileAttributesAtPath:traverseLink: method returns a dictionary containing

380 Chapter 16: Working with Files

the specified file’s attributes.The traverseLink: parameter is YES or NO for symbolic
links. If the file is a symbolic link and YES is specified, the attributes of the linked-to file
are returned; if NO is specified, the attributes of the link itself are returned.

For preexisting files, the attributes dictionary includes information such as the file’s
owner, its size, its creation date, and so on. Each attribute in the dictionary can be ex-
tracted based on its key, all of which are defined in <Foundation/NSFileManager.h>. For
example, NSFileSize is the key for a file’s size.

Program 16.1 shows some basic operations with files.This example assumes you have a
file called testfile in your current directory with the following three lines of text:

This is a test file with some data in it.

Here’s another line of data.
And a third.

Program 16.1

// Basic file operations
// Assumes the existence of a file called “testfile”
// in the current working directory

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSDictionary.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *fName = @”testfile”;
NSFileManager *fm;
NSDictionary *attr;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Let’s make sure our test file exists first

if ([fm fileExistsAtPath: fName] == NO) {
NSLog (@”File doesn’t exist!”);
return 1;

}

// Now let’s make a copy

381Managing Files and Directories: NSFileManager

if ([fm copyPath: fName toPath: @”newfile” handler: nil] == NO) {
NSLog (@”File copy failed!”);
return 2;

}

// Let’s test to see if the two files are identical

if ([fm contentsEqualAtPath: fName andPath: @”newfile”] == NO) {
NSLog (@”Files are not equal!”);
return 3;

}

// Now let’s rename the copy

if ([fm movePath: @”newfile” toPath: @”newfile2”
handler: nil] == NO) {

NSLog (@”File rename failed!”);
return 4;

}

// Get the size of newfile2

if ((attr = [fm fileAttributesAtPath: @”newfile2”
traverseLink: NO]) == nil) {

NSLog (@”Couldn’t get file attributes!”);
return 5;

}

NSLog (@”File size is %i bytes”,
[[attr objectForKey: NSFileSize] intValue]);

// And finally, let’s delete the original file

if ([fm removeFileAtPath: fName handler: nil] == NO) {
NSLog (@”File removal failed!”);
return 6;

}

NSLog (@”All operations were successful!”);

// Display the contents of the newly-created file

NSLog(@”%@” [NSString stringWithContentsOfFile: @”newfile2”]);

[pool drain];
return 0;

}

382 Chapter 16: Working with Files

Program 16.1 Output

File size is 84 bytes
All operations were successful!

This is a test file with some data in it.
Here’s another line of data.
And a third.

The program first tests whether testfile exists. If it does, it makes a copy of it and
then tests the two files for equality. Experienced UNIX users should note that you can’t
move or copy a file into a directory simply by specifying the destination directory for the
copyPath:toPath: and movePath:toPath: methods; the filename within that directory
must be explicitly specified.

Note
You can create testfile with Xcode by selecting New File... from the File menu. In the left
pane that appears, highlight Other, and then select Empty File in the right pane. Enter
testfile as the name of the file and be sure to create it in the same directory as your exe-
cutable file. This will be in your project’s Build/Debug folder.

The movePath:toPath: method can be used to move a file from one directory to an-
other. (It can also be used to move entire directories.) If the two paths reference files in
the same directory (as in our example), the effect is to simply rename the file. So, in
Program 16.1, you use this method to rename the file newfile to newfile2.

As noted in Table 16.1, when performing copying, renaming, or moving operations,
the destination file cannot already exist. If it does, the operation will fail.

The size of newfile2 is determined by using the
fileAttributesAtPath:traverseLink: method.You test to make sure a non-nil dic-
tionary is returned and then use the NSDictionary method objectForKey: to get the
file’s size from the dictionary using the key NSFileSize.The integer value from the dic-
tionary is then displayed.

The program uses the removeFileAtPath:handler: method to remove your original
file testfile.

Finally, NSString’s stringWithContentsOfFile: method is used to read the contents
of the file newfile2 into a string object, which is then passed as an argument to NSLog to
be displayed.

Each of the file operations is tested for success in Program 16.1. If any fails, an error is
logged using NSLog, and the program exits by returning a nonzero exit status. Each
nonzero value, which by convention indicates program failure, is unique based on the
type of error. If you write command-line tools, this is a useful technique because another
program can test the return value, such as from within a shell script.

383Managing Files and Directories: NSFileManager

Working with the NSData Class
When working with files, you frequently need to read data into a temporary storage area,
often called a buffer.When collecting data for subsequent output to a file, a storage area is
also often used. Foundation’s NSData class provides an easy way to set up a buffer, read the
contents of the file into it, or write the contents of a buffer out to a file.And just in case
you’re wondering, for a 32-bit application, an NSDATA buffer can store up to 2GB. For a
64-bit application, it can hold up to 8EB (that’s exabytes) or 8,000GB of data!

As you would expect, you can define either immutable (NSData) or mutable
(NSMutableData) storage areas.We introduce methods from his class in this chapter and
in succeeding chapters as well

Program 16.2 shows how easily you can read the contents of a file into a buffer in
memory.

The program reads the contents of your file newfile2 and writes it to a new file called
newfile3. In a sense, it implements a file copy operation, although not in as straightfor-
ward a fashion as the copyPath toPath:handler method.

Program 16.2

// Make a copy of a file

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSData.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSFileManager *fm;
NSData *fileData;

fm = [NSFileManager defaultManager];

// Read the file newfile2

fileData = [fm contentsAtPath: @”newfile2”];

if (fileData == nil) {
NSLog (@”File read failed!”);
return 1;

}

// Write the data to newfile3

if ([fm createFileAtPath: @”newfile3” contents: fileData
attributes: nil] == NO) {

NSLog (@”Couldn’t create the copy!”);
return 2;

384 Chapter 16: Working with Files

Table 16.2 Common NSFileManager Directory Methods

Method Description

-(NSString *) currentDirectoryPath Gets the current directory

-(BOOL)

changeCurrentDirectoryPath: path
Changes the current directory

-(BOOL) copyPath: from toPath:

to handler: handler
Copies a directory structure; to cannot
previously exist

-(BOOL) createDirectoryAtPath:

path attributes: attr
Creates a new directory

}

NSLog (@”File copy was successful!”);

[pool drain];
return 0;

}

Program 16.2 Output

File copy was successful!

The NSData contentsAtPath: method simply takes a pathname and reads the con-
tents of the specified file into a storage area that it creates, returning the storage area ob-
ject as the result or nil if the read fails (for example, if the file doesn’t exist or can’t be
read by you).

The createFileAtPath:contents:attributes: method creates a file with the speci-
fied attributes (or uses the default if nil is supplied for the attributes argument).The
contents of the specified NSData object are then written to the file. In our example, this
data area contains the contents of the previously read file.

Working with Directories
Table 16.2 summarizes some of the methods provided by NSFileManager for working
with directories. Many of these methods are the same as are used for ordinary files, as
listed in Table 16.1.

385Managing Files and Directories: NSFileManager

Table 16.2 Common NSFileManager Directory Methods

Method Description

-(BOOL) fileExistsAtPath: path
isDirectory: (BOOL *) flag

Tests whether the file is a directory (YES/NO
result is stored in flag)

-(NSArray *)

directoryContentsAtPath: path
Lists the contents of the directory

-(NSDirectoryEnumerator *)

enumeratorAtPath: path
Enumerates the contents of the directory

-(BOOL) removeFileAtPath: path
handler: handler

Deletes an empty directory

-(BOOL) movePath: from toPath:

to handler: handler
Renames or moves a directory; to cannot
previously exist

Program 16.3 shows basic operations with directories.

Program 16.3

// Some basic directory operations

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *dirName = @”testdir”;
NSString *path;
NSFileManager *fm;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Get current directory

path = [fm currentDirectoryPath];
NSLog (@”Current directory path is %@”, path);

// Create a new directory

386 Chapter 16: Working with Files

if ([fm createDirectoryAtPath: dirName attributes: nil] == NO) {
NSLog (@”Couldn’t create directory!”);
return 1;

}

// Rename the new directory

if ([fm movePath: dirName toPath: @”newdir” handler: nil] == NO) {
NSLog (@”Directory rename failed!”);
return 2;

}

// Change directory into the new directory

if ([fm changeCurrentDirectoryPath: @”newdir”] == NO) {
NSLog (@”Change directory failed!”);
return 3;

}

// Now get and display current working directory

path = [fm currentDirectoryPath];
NSLog (@”Current directory path is %@”, path);

NSLog (@”All operations were successful!”);

[pool drain];
return 0;

}

Program 16.3 Output

Current directory path is /Users/stevekochan/progs/ch16
Current directory path is /Users/stevekochan/progs/ch16/newdir
All operations were successful!

Program 16.3 is relatively self-explanatory.The current directory path is first obtained
for informative purposes. Next, a new directory called testdir is created in the current
directory.The program then uses the movePath:toPath:handler: method to rename the
new directory from testdir to newdir. Remember that this method can also be used to
move an entire directory structure (that means including its contents) from one place in
the file system to another.

After renaming the new directory, the program makes that new directory the current
directory using the changeCurrentDirectoryPath: method.The current directory path
is then displayed to verify that the change was successful.

387Managing Files and Directories: NSFileManager

Enumerating the Contents of a Directory
Sometimes you need to get a list of the contents of a directory.This enumeration process
can be accomplished using either the enumeratorAtPath: or the
directoryContentsAtPath: method. In the former case, each file in the specified direc-
tory is enumerated one at a time and, by default, if one of those files is a directory, its
contents are also recursively enumerated. During this process you can dynamically prevent
this recursion by sending a skipDescendants message to an enumeration object so that
its contents will not be enumerated.

In the case of directoryContentsAtPath:, the contents of the specified directory are
enumerated, and the file list is returned in an array by the method. If any of the files con-
tained in a directory is itself a directory, its contents are not recursively enumerated by
this method.

Program 16.4 shows how you can use either method in your programs.

Program 16.4

// Enumerate the contents of a directory

#import <Foundation/NSString.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSArray.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *path;
NSFileManager *fm;
NSDirectoryEnumerator *dirEnum;
NSArray *dirArray;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Get current working directory path

path = [fm currentDirectoryPath];

// Enumerate the directory

dirEnum = [fm enumeratorAtPath: path];

NSLog (@”Contents of %@:”, path);

388 Chapter 16: Working with Files

while ((path = [dirEnum nextObject]) != nil)
NSLog (@”%@”, path);

// Another way to enumerate a directory
dirArray = [fm directoryContentsAtPath:

[fm currentDirectoryPath]];
NSLog (@”Contents using directoryContentsAtPath:”);

for (path in dirArray)
NSLog (@”%@”, path);

[pool drain];
return 0;

}

Program 16.4 Output

Contents of /Users/stevekochan/mysrc/ch16:
a.out
dir1.m
dir2.m
file1.m
newdir
newdir/file1.m
newdir/output
path1.m
testfile

Contents using directoryContentsAtPath:
a.out
dir1.m
dir2.m
file1.m
newdir
path1.m
testfile

Let’s take a closer look at the following code sequence:

dirEnum = [fm enumeratorAtPath: path];

NSLog (@”Contents of %@:”, path;

while ((path = [dirEnum nextObject]) != nil)

NSLog (@”%@”, path);

389Working with Paths: NSPathUtilities.h

You begin enumeration of a directory by sending an enumerationAtPath: message to
a file manager object, in this case fm.An NSDirectortyEnumerator object gets returned
by the enumeratorAtPath: method, which is stored inside dirNum. Now, each time you
send a nextObject message to this object, you get returned a path to the next file in the
directory you are enumerating.When no more files are left to enumerate, you get nil re-
turned.

You can see the difference between the two enumeration techniques from the output
of Program 16.4.The enumeratorAtPath: method lists the contents of the newdir direc-
tory, whereas directoryContentsAtPath: does not. If newdir had contained subdirecto-
ries, they too would have been enumerated by enumeratorAtPath:.

As noted, during execution of the while loop in Program 16.4, you could have pre-
vented enumeration of any subdirectories by making the following change to the code:

while ((path = [dirEnum nextObject]) != nil) {

NSLog (@”%@”, path);

[fm fileExistsAtPath: path isDirectory: &flag];

if (flag == YES)

[dirEnum skipDescendents];

}

Here flag is a BOOL variable.The fileExistsAtPath: stores YES in flag if the speci-
fied path is a directory; otherwise, it stores NO.

Incidentally, as a reminder, you can display the entire dirArray contents with this sin-
gle NSLog call

NSLog (“%@”, dirArray);

instead of using fast enumeration as was done in the program.

Working with Paths: NSPathUtilities.h
NSPathUtilities.h includes functions and category extensions to NSString to enable
you to manipulate pathnames.You should use these whenever possible to make your pro-
gram more independent of the structure of the file system and locations of particular files
and directories. Program 16.5 shows how to use several of the functions and methods
provided by NSPathUtilities.h.

Program 16.5

// Some basic path operations

#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSPathUtilities.h>

390 Chapter 16: Working with Files

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *fName = @”path.m”;
NSFileManager *fm;
NSString *path, *tempdir, *extension, *homedir, *fullpath;
NSString *upath = @”~stevekochan/progs/../ch16/./path.m”;

NSArray *components;

fm = [NSFileManager defaultManager];

// Get the temporary working directory

tempdir = NSTemporaryDirectory ();

NSLog (@”Temporary Directory is %@”, tempdir);

// Extract the base directory from current directory

path = [fm currentDirectoryPath];
NSLog (@”Base dir is %@”, [path lastPathComponent]);

// Create a full path to the file fName in current directory

fullpath = [path stringByAppendingPathComponent: fName];
NSLog (@”fullpath to %@ is %@”, fName, fullpath);

// Get the file name extension

extension = [fullpath pathExtension];
NSLog (@”extension for %@ is %@”, fullpath, extension);

// Get user’s home directory

homedir = NSHomeDirectory ();
NSLog (@”Your home directory is %@”, homedir);

// Divide a path into its components

components = [homedir pathComponents];

for (path in components)

391Working with Paths: NSPathUtilities.h

NSLog (@”%@”, path);

// “Standardize” a path

NSLog (@”%@ => %@”, upath ,
[upath stringByStandardizingPath]);

[pool drain];
return 0;

}

Program 16.5 Output

Temporary Directory is /var/folders/HT/HTyGLvSNHTuNb6NrMuo7QE+++TI/-Tmp-/
Base dir is examples
fullpath to path.m is /Users/stevekochan/progs/examples/path.m
extension for /Users/stevekochan/progs/examples/path.m is m
Your home directory is /Users/stevekochan
/
Users
stevekochan
~stevekochan/progs/../ch16/./path.m => ~stevekochan/ch16/path.m

The function NSTemporaryDirectory returns the pathname of a directory on the sys-
tem you can use for the creation of temporary files. If you create temporary files in this
directory, be sure to remove them when you’re done.Also, make sure that your filenames
are unique, particularly if more than one instance of your application might be running at
the same time. (See Exercise 5 at the end of this chapter.) This can easily happen if more
than one user logged on to your system is running the same application.

The lastPathComponent method extracts the last file in a path.This is useful when
you have an absolute pathname and just want to get the base filename from it.

The stringByAppendingPathComponent: is useful for tacking on a filename to the
end of a path. If the pathname specified as the receiver doesn’t end in a slash, the method
inserts one in the pathname to separate it from the appended filename. By combining the
currentDirectory method with the method stringByAppendingPathComponent:, you
can create a full pathname to a file in the current directory.That technique is shown in
Program 16.5.

The pathExtension method gives the file extension for the provided pathname. In
the example, the extension for the file path.m is m, which is returned by the method. If
the file does not have an extension, the method simply returns an empty string.

The NSHomeDirectory function returns the home directory for the current user.You
can get the home directory for any particular user by using the
NSHomeDirectoryForUser function instead, supplying the user’s name as the argument to
the function.

392 Chapter 16: Working with Files

Table 16.3 Common Path Utility Methods

Method Description

+(NSString *) pathWithComponents:

components
Constructs a valid path from elements in
components

-(NSArray *) pathComponents Deconstructs a path into its constituent
components

-(NSString *) lastPathComponent Extracts the last component in a path

-(NSString *) pathExtension Extracts the extension from the last component
in a path

-(NSString *)

stringByAppendingPathComponent:

path

Adds path to the end of an existing path

-(NSString *)

stringByAppendingPathExtension:

ext

Adds the specified extension to the last
component in the path

-(NSString *)

stringByDeletingLastPathComponent

Removes the last path component

-(NSString *)

stringByDeletingPathExtension

Removes the extension from the last path
component

-(NSString *)

stringByExpandingTildeInPath

Expands any tildes in the path to the user’s home
directory (~) or a specified user’s home directory
(~user)

The pathComponents method returns an array containing each of the components of
the specified path. Program 16.5 sequences through each element of the returned array
and displays each path component on a separate line of output.

Finally, sometimes pathnames contain tilde (~) characters, as we’ve previously dis-
cussed.The FileManager methods accept ~ as an abbreviation for the user’s home direc-
tory or ~user for a specified user’s home directory. If your pathnames might contain tilde
characters, you can resolve them by using the stringByStandardizingPath method.This
method returns a path with these special characters eliminated, or standardized.You can
also use the stringByExpandingTildeInPath method to expand just a tilde character if
it appears in a pathname.

Common Methods for Working with Paths
Table 16.3 summarizes many of the commonly used methods for working with paths. In
this table, components is an NSArray object containing string objects for each component
in a path; path is a string object specifying a path to a file; and ext is a string object indi-
cating a path extension (for example, @”mp4”).

393Working with Paths: NSPathUtilities.h

Table 16.4 Common Path Util ty Functions

Function Description

NSString *NSUserName (void) Returns the current user’s login name

NSString *NSFullUserName (void) Returns the current user’s full username

NSString *NSHomeDirectory (void) Returns the path to the current user’s home
directory

NSString *NSHomeDirectoryForUser

(NSString *user)
Returns the home directory for user

NSString *NSTemporaryDirectory

(void)

Returns the path to a directory that can be used
for creating a temporary file

Table 16.3 Common Path Utility Methods

Method Description

-(NSString *)

stringByResolvingSymlinksInPath

Attempts to resolve symbolic links in the path

-(NSString *)

stringByStandardizingPath

Standardizes a path by attempting to resolve
~, ..(parent directory), .(current directory), and
symbolic links

Table 16.4 presents he functions available to obtain information about a user, her home
directory, and a directory for storing temporary files.

You also might want to look at the Foundation function NSSearchPathForDirectories
InDomains, which you can use to locate special directories on the system, such as the
Application directory.

Copying Files and Using the NSProcessInfo Class
Program 16.6 illustrates a command-line tool to implement a simple file copy operation.
Usage of this command is as follows:

copy from-file to-file

Unlike NSFileManager’s copyPath:toPath:handler: method, your command-line
tool enables to-file to be a directory name. In that case, the file is copied into the to-
file directory under the name from-file.Also unlike the method, if to-file already
exists, you allow its contents to be overwritten.This is more in line with the standard
UNIX copy command cp.

394 Chapter 16: Working with Files

Table 16.5 NSProcessInfo Methods

Method Description

+(NSProcessInfo *) processInfo Returns information about the current process

–(NSArray *) arguments Returns the arguments to the current process as
an array of NSString objects

–(NSDictionary *) environment Returns a dictionary of variable/value pairs repre-
senting the current environment variables (such as
PATH and HOME) and their values

–(int) processIdentifier Returns the process identifier, which is a unique
number assigned by the operating system to iden-
tify each running process

–(NSString *) processName Returns the name of the current executing process

–(NSString *)

globallyUniqueString

Returns a different unique string each time it is in-
voked. This could be used for generating unique
temporary filenames (see Exercise 5)

–(NSString *) hostName Returns the name of the host system (returns
Steve-Kochans-Computer.local on my Mac OS
X system)

–(NSUInteger) operatingSystem Returns a number indicating the operating system
(returns the value 5 on my Mac)

–(NSString *)

operatingSystemName

Returns the name of the operating system (returns
the constant NSMACHOperatingSystem on my
Mac, where the possible return values are defined
in NSProcessInfo.h)

–(NSString *)

operatingSystemVersionString

Returns the current version of the operating system
(returns Version 10.5.4 (Build 9E17 on my
Mac OS X system)

–(void) setProcessName:

(NSString *) name
Sets the name of the current process to name.
Should be used with caution because some as-
sumptions can be made about the name of your
process (for example, by the user default settings)

You can get the filenames from the command line by using the argc and argv argu-
ments to main.These two arguments are populated, respectively, with the number of ar-
guments types on the command line (including the command name), and a pointer to an
array of C-style character strings.

Instead of having to deal with C strings, which is what you have to do when you
work with argv, use instead a Foundation class called NSProcessInfo. NSProcessInfo
contains methods that allow you to set and retrieve various types of information about
your running application (that is, your process).These methods are summarized in Table
16.5.

395Working with Paths: NSPathUtilities.h

Program 16.6

// Implement a basic copy utility

#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSPathUtilities.h>
#import <Foundation/NSProcessInfo.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSFileManager *fm;
NSString *source, *dest;
BOOL isDir;
NSProcessInfo *proc = [NSProcessInfo processInfo];
NSArray *args = [proc arguments];

fm = [NSFileManager defaultManager];

// Check for two arguments on the command line

if ([args count] != 3) {
NSLog (@”Usage: %@ src dest”, [proc processName]);
return 1;

}

source = [args objectAtIndex: 1];
dest = [args objectAtIndex: 2];

// Make sure the source file can be read

if ([fm isReadableFileAtPath: source] == NO) {
NSLog (@”Can’t read %@”, source);
return 2;

}

// See if the destination file is a directory
// if it is, add the source to the end of the destination

[fm fileExistsAtPath: dest isDirectory: &isDir];

if (isDir == YES)
dest = [dest stringByAppendingPathComponent:

[source lastPathComponent]];

// Remove the destination file if it already exists

[fm removeFileAtPath: dest handler: nil];

// Okay, time to perform the copy

396 Chapter 16: Working with Files

if ([fm copyPath: source toPath: dest handler: nil] == NO) {
NSLog (@”Copy failed!”);
return 3;

}

NSLog (@”Copy of %@ to %@ succeeded!”, source, dest);

[pool drain];
return 0;

}

Program 16.6 Output

$ ls –l see what files we have
total 96
-rwxr-xr-x 1 stevekoc staff 19956 Jul 24 14:33 copy
-rw-r--r-- 1 stevekoc staff 1484 Jul 24 14:32 copy.m
-rw-r--r-- 1 stevekoc staff 1403 Jul 24 13:00 file1.m
drwxr-xr-x 2 stevekoc staff 68 Jul 24 14:40 newdir
-rw-r--r-- 1 stevekoc staff 1567 Jul 24 14:12 path1.m
-rw-r--r-- 1 stevekoc staff 84 Jul 24 13:22 testfile
$ copy try with no args
Usage: copy from-file to-file
$ copy foo copy2
Can’t read foo
$ copy copy.m backup.m
Copy of copy.m to backup.m succeeded!
$ diff copy.m backup.m compare the files
$ copy copy.m newdir try copy into directory
Copy of copy.m to newdir/copy.m succeeeded!
$ ls –l newdir
total 8
-rw-r--r-- 1 stevekoc staff 1484 Jul 24 14:44 copy.m
$

NSProcessInfo’s arguments method returns an array of string objects.The first ele-
ment of the array is the name of the process, and the remaining elements contain the ar-
guments typed on the command line.

You first check to ensure that two arguments were typed on the command line.This is
done by testing the size of the array args that is returned from the arguments method. If
this test succeeds, the program then extracts the source and destination filenames from the
args array, assigning their values to source and dest, respectively.

The program next checks to ensure that the source file can be read, issuing an error
message and exiting if it can’t.

The statement

[fm fileExistsAtPath: dest isDirectory: &isDir];

397Basic File Operations: NSFileHandle

checks the file specified by dest to see whether it is a directory.As you’ve seen previ-
ously, the answer—YES or NO—is stored in the variable isDir.

If dest is a directory, you want to append the last path component of the source file-
name to the end of the directory’s name.You use the path utility method
stringByAppendingPathComponent: to do this. So, if the value of source is the string
ch16/copy1.m and the value of dest is /Users/stevekochan/progs and the latter is a
directory, you change the value of dest to /Users/stevekochan/ progs/copy1.m.

The copyPath:ToPath:handler: method doesn’t allow files to be overwritten.Thus,
to avoid an error, the program tries to remove the destination file first by using the
removeFileAtPath:handler: method. It doesn’t really matter whether this method suc-
ceeds because it will fail anyway if the destination file doesn’t exist.

Upon reaching the end of the program, you can assume all went well and issue a mes-
sage to that effect.

Basic File Operations: NSFileHandle
The methods provided by NSFileHandle enable you to work more closely with files.At
the beginning of this chapter, we listed some of the things you can do with these methods.

In general follow these three steps when working with a file:

1. Open the file and obtain an NSFileHandle object to reference the file in subse-
quent I/O operations.

2. Perform your I/O operations on the open file.

3. Close the file.

Table 16.6 summarizes some commonly used NSFileHandle methods. In this table fh
is an NSFileHandle object, data is an NSData object, path is an NSString object, and
offset is an unsigned long long.

Table 16.6 Common NSFileHandle Methods

Method Description

+(NSFileHandle *)

fileHandleForReadingAtPath: path
Opens a file for reading

+(NSFileHandle *)

fileHandleForWritingAtPath: path
Opens a file for writing

+(NSFileHandle *)

fileHandleForUpdatingAtPath: path
Opens a file for updating
(reading and writing)

-(NSData *) availableData Returns data available for reading from a
device or channel

398 Chapter 16: Working with Files

Table 16.6 Common NSFileHandle Methods

Method Description

-(NSData *) readDataToEndOfFile Reads the remaining data up to the end of
the file (UINT_MAX) bytes max

-(NSData *) readDataOfLength:

(NSUInteger) bytes
Reads a specified number of bytes from
the file

-(void) writeData: data Writes data to the file

-(unsigned long long) offsetInFile Obtains the current file offset

-(void) seekToFileOffset: offset Sets the current file offset

-(void) seekToEndOfFile Positions the current file offset at the end
of the file

-(void) truncateFileAtOffset:

offset
Sets the file size to offset bytes (pad if
needed)

-(void) closeFile Closes the file

Not shown here are methods for obtaining NSFileHandles for standard input, stan-
dard output, standard error, and the null device.These are of the form
fileHandleWithDevice, where Device can be StandardInput, StandardOutput,
StandardError, or NullDevice.

Also not shown here are methods for reading and writing data in the background, that
is, asynchronously.

You should note that the FileHandle class does not provide for the creation of files.
That has to be done with FileManager methods, as we’ve already described. So, both
fileHandleForWritingAtPath: and fileHandleForUpdatingAtPath: assume the file
exists and return nil if it doesn’t. In both cases, the file offset is set to the beginning of
the file, so writing (or reading for update mode) begins at the start of the file.Also, if
you’re used to programming under UNIX, you should note that opening a file for writ-
ing does not truncate the file.You have to do that yourself if that’s your intention.

Program 16.7 opens the original testfile file you created at the start of this chapter,
reads in its contents, and copies it to a file called testout.

Program 16.7

// Some basic file handle operations
// Assumes the existence of a file called “testfile”
// in the current working directory

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSFileHandle.h>
#import <Foundation/NSFileManager.h>

399Basic File Operations: NSFileHandle

#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSData.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSFileHandle *inFile, *outFile;
NSData *buffer;

// Open the file testfile for reading

inFile = [NSFileHandle fileHandleForReadingAtPath: @”testfile”];

if (inFile == nil) {
NSLog (@”Open of testfile for reading failed”);
return 1;

}

// Create the output file first if necessary

[[NSFileManager defaultManager] createFileAtPath: @”testout”
contents: nil attributes: nil];

// Now open outfile for writing

outFile = [NSFileHandle fileHandleForWritingAtPath: @”testout”];

if (outFile == nil) {
NSLog (@”Open of testout for writing failed”);
return 2;

}

// Truncate the output file since it may contain data

[outFile truncateFileAtOffset: 0];

// Read the data from inFile and write it to outFile

buffer = [inFile readDataToEndOfFile];

[outFile writeData: buffer];

// Close the two files

[inFile closeFile];
[outFile closeFile];

// Verify the file’s contents

NSLog(@”%@”, [NSString StringWithContentOfFile: @”testout”]);

[pool drain];
return 0;

}

400 Chapter 16: Working with Files

Program 16.7 Output

This is a test file with some data in it.
Here’s another line of data.
And a third.

The method readDataToEndOfFile: reads up to UINT_MAX bytes of data at a time,
which is defined in <limits.h> and equal to FFFFFFFF16.This will be large enough for
any application you’ll have to write.You can also break up the operation to perform
smaller-sized reads and writes.You can even set up a loop to transfer a buffer full of bytes
between the files at a time, using the readDataOfLength: method.Your buffer size might
be 8,192 (8kb) or 131,072 (128kb) bytes, for example.A power of 2 is normally used be-
cause the underlying operating system typically performs its I/O operations in chunks of
data of such sizes.You might want to experiment with different values on your system to
see what works best.

If a read method reaches the end of the file without reading any data, it returns an
empty NSData object (that is, a buffer with no bytes in it).You can apply the length
method to the buffer and test for equality with zero to see whether any data remains to
be read from the file.

If you open a file for updating, the file offset is set to the beginning of the file.You can
change that offset by seeking within a file and then perform your read or write opera-
tions on the file. So, to seek to the 10th byte in a file whose handle is databaseHandle,
you can write the following message expression:

[databaseHandle seekToFileOffset: 10];

Relative file positioning is done by obtaining the current file offset and then adding to
or subtracting from it. So, to skip over the next 128 bytes in the file, write the following:

[databaseHandle seekToFileOffet:

[databaseHandle offsetInFile] + 128];

And to move back the equivalent of five integers in the file, write this:

[databaseHandle seekToFileOffet:

[databaseHandle offsetInFile] – 5 * sizeof (int)];

Program 16.8 appends the contents of one file to another. It does this by opening the
second file for writing, seeking to the end of the file, and then writing the contents of the
first file to the second.

Program 16.8

// Append the file “fileA” to the end of “fileB”

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>

401Basic File Operations: NSFileHandle

#import <Foundation/NSFileHandle.h>
#import <Foundation/NSFileManager.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSData.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSFileHandle *inFile, *outFile;
NSData *buffer;

// Open the file fileA for reading

inFile = [NSFileHandle fileHandleForReadingAtPath: @”fileA”];

if (inFile == nil) {
NSLog (@”Open of fileA for reading failed”);
return 1;

}

// Open the file fileB for updating

outFile = [NSFileHandle fileHandleForWritingAtPath: @”fileB”];

if (outFile == nil) {
NSLog (@”Open of fileB for writing failed”);
return 2;

}

// Seek to the end of outFile

[outFile seekToEndOfFile];

// Read inFile and write its contents to outFile

buffer = [inFile readDataToEndOfFile];
[outFile writeData: buffer];

// Close the two files

[inFile closeFile];
[outFile closeFile];

[pool drain];
return 0;

}

Contents of FileA before running Program 16.8

This is line 1 in the first file.
This is line 2 in the first file.

402 Chapter 16: Working with Files

Contents of FileB before running Program 16.8

This is line 1 in the second file.
This is line 2 in the second file.

Program 16.8 Output

Contents of fileB
This is line 1 in the second file.
This is line 2 in the second file.
This is line 1 in the first file.
This is line 2 in the first file.

You can see from the output that the contents of the first file were successfully ap-
pended to the end of the second file. Incidentally, seekToEndOfFile returns the current
file offset after the seek is performed.We chose to ignore that value; you can use that in-
formation to obtain the size of a file in your program if you need it.

Exercises
1. Modify the copy program developed in Program 16.6 so that it can accept more

than one source file to be copied into a directory, like the standard UNIX cp com-
mand. So, the command
$ copy copy1.m file1.m file2.m progs

should copy the three files copy1.m, file1.m, and file2.m into the directory
progs. Be sure that when more than one source file is specified, the last argument is,
in fact, an existing directory.

2. Write a command-line tool called myfind that takes two arguments.The first is a
starting directory to begin the search, and the second is a filename to locate. So, the
command line
$ myfind /Users proposal.doc

/Users/stevekochan/MyDocuments/proposals/proposal.doc

$

begins searching the file system from /Users to locate the file proposal.doc.
Print either a full path to the file if it’s found (as shown) or an appropriate message
if it’s not.

403Exercises

3. Write your own version of the standard UNIX tools basename and dirname.

4. Using NSProcessInfo, write a program to display all the information returned by
each of its getter methods.

5. Given the NSPathUtilities.h function NSTemporaryDirectory and the
NSProcessInfo method globallyUniqueString described in this chapter, add a
category called TempFiles to NSString, and in it define a method called
temporaryFileName that returns a different, unique filename every time it is in-
voked.

6. Modify Program 16.7 so that the file is read and written kBufSize bytes at a time,
where kBufSize is defined at the beginning of your program Be sure to test the
program on large files (that is, files larger than kBufSize bytes).

7. Open a file, read its contents 128 bytes at a time, and write it to the terminal. Use
FileHandle’s fileHandleWithStandardOutput method to obtain a handle for
the terminal’s output.

17
Memory Management

We have focused on the topic of memory management throughout this book.You
should understand by now when you are responsible for releasing objects and when you
are not. Even though the examples in this book have all been small, we have emphasized
the importance of paying attention to memory management, to teach good programming
practice and to develop leak-free programs.

Depending on the type of application you’re writing, judicious use of memory can be
critical. For example, if you’re writing an interactive drawing application that creates
many objects during the execution of the program, you must take care that your program
doesn’t continue to consume more memory resources as it runs. In such cases, it becomes
your responsibility to intelligently manage those resources and free them when they’re no
longer needed.This means freeing resources during the program’s execution instead of
just waiting until the end.

In this chapter, you will learn about Foundation’s memory-allocation strategy in more
detail.This involves a more thorough discussion of the autorelease pool and the idea of
retaining objects.You will also learn about an object’s reference count. Finally, we talk
about a mechanism known as garbage collection that alleviates the burden of having to re-
tain and subsequently release your objects when you’re done using them. However, as
you’ll see, garbage collection cannot be used for iPhone applications, so you still must un-
derstand the techniques for memory management described throughout this book (and
in more detail in this chapter).

The Autorelease Pool
You are familiar with the autorelease pool from previous program examples in this second
part of the book.When dealing with Foundation programs, you must set up this pool to
use the Foundation objects.This pool is where the system keeps track of your objects for
later release.As you’ve seen, your application can set up the pool with a call like so:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

406 Chapter 17 Memory Management

When the pool is set up, Foundation automatically adds certain arrays, strings, diction-
aries, and other objects to this pool.When you’re done using the pool, you can release the
memory it uses by sending it a drain message:

[pool drain];

The autorelease pool gets its name from the fact that any objects that have been
marked as autorelease and, therefore, added to the pool are automatically released when
the pool itself is released. In fact, you can have more than one autorelease pool in your
program, and they can be nested as well.

If your program generates a lot of temporary objects (which can easily happen when
executing code inside a loop), you might need to create multiple autorelease pools in your
program. For example, the following code fragment illustrates how you can set up autore-
lease pools to release the temporary objects created by each iteration of the for loop:

NSAutoreleasePool *tempPool;

...

for (i = 0; i < n; ++i) {

tempPool = [[NSAutoReleasePool alloc] init];

... // lots of work with temporary objects here

[tempPool drain];

}

Note that the autorelease pool doesn’t contain the actual objects themselves—only a
reference to the objects that are to be released when the pool is drained.

You can add an object to the current autorelease pool for later release by sending it an
autorelease message:

[myFraction autorelease];

The system then adds myFraction to the autorelease pool for automatic release later.
As you’ll see, the autorelease method is useful for marking objects from inside a
method, for later disposal.

Reference Counting
When we talked about the basic Objective-C object class NSObject, we noted that mem-
ory is allocated with the alloc method and can subsequently be released with a release
message. Unfortunately, it’s not always that simple.A running application can reference an
object that you create in several places; an object also can be stored in an array or refer-
enced by an instance variable someplace else, for example.You can’t free up the memory
an object uses until you are certain that everyone is done using that object.

Luckily, the Foundation framework provides an elegant solution for keeping track of
the number of references to an object. It involves a fairly straightforward technique called
reference counting.The concept is as follows:When an object is created, its reference count
is set to 1. Each time you need to ensure that the object be kept around, you increment
its reference count by 1 by sending it a retain message, like so:

407Reference Counting

[myFraction retain];

Some of the methods in the Foundation framework also increment this reference
count, such as when an object is added to an array.

When you no longer need an object, you decrement its reference count by 1 by send-
ing it a release message, like this:

[myFraction release];

When the reference count of an object reaches 0, the system knows that the object is
no longer needed (because, in theory, it is no longer referenced), so it frees up (deallocates)
its memory.This is done by sending the object a dealloc message.

Successful operation of this strategy requires diligence by you, the programmer, to en-
sure that the reference count is appropriately incremented and decremented during pro-
gram execution.The system handles some, but not all, of this, as you’ll see.

Let’s take a look at reference counting in a little more detail.The retainCount mes-
sage can be sent to an object to obtain its reference (or retain) count.You will normally
never need to use this method, but it’s useful here for illustrative purposes (see Program
17.1). Note that it returns an unsigned integer of type NSUInteger.

Program 17.1

// Introduction to reference counting

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSValue.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSNumber *myInt = [NSNumber numberWithInteger: 100];
NSNumber *myInt2;
NSMutableArray *myArr = [NSMutableArray array];

NSLog (@”myInt retain count = %lx”,
(unsigned long) [myInt retainCount]);

[myArr addObject: myInt];
NSLog (@”after adding to array = %lx”,

(unsigned long) [myInt retainCount]);

myInt2 = myInt;
NSLog (@”after asssignment to myInt2 = %lx”,

(unsigned long) [myInt retainCount]);

[myInt retain];
NSLog (@”myInt after retain = %lx”,

(unsigned long) [myInt retainCount]);

408 Chapter 17 Memory Management

NSLog (@”myInt2 after retain = %lx”,
(unsigned long) [myInt2 retainCount]);

[myInt release];
NSLog (@”after release = %lx”,

(unsigned long) [myInt retainCount]);

[myArr removeObjectAtIndex: 0];
NSLog (@”after removal from array = %lx”,

(unsigned long) [myInt retainCount]);

[pool drain];
return 0;

}

Program 17.1 Output

myInt retain count = 1
after adding to array = 2
after asssignment to myInt2 = 2
myInt after retain = 3
myInt2 after retain = 3
after release = 2
after removal from array = 1

The NSNumber object myInt is set to the integer value 100, and the output shows that
it has an initial retain count of 1. Next, the object is added to the array myArr using the
addObject: method. Note that its reference count then goes to 2.The addObject:
method does this automatically; if you check your documentation for the addObject:
method, you will see this fact described there.Adding an object to any type of collection
increments its reference count.That means if you subsequently release the object you’ve
added, it will still have a valid reference from within the array and won’t be deallocated.

Next, you assign myInt to myInt2. Note that this doesn’t increment the reference
count—this could mean potential trouble later. For example, if the reference count for
myInt were decremented to 0 and its space were released, myInt2 would have an invalid
object reference (remember that the assignment of myInt to myInt2 doesn’t copy the ac-
tual object—only the pointer in memory to where the object is located).

Because myInt now has another reference (through myInt2), you increment its refer-
ence count by sending it a retain message.This is done in the next line of Program 17.1.
As you can see, after sending it the retain message, its reference count becomes 3.The
first reference is the actual object itself, the second is from the array, and the third is from
the assignment.Although storing the element in the array creates an automatic increase in

409Reference Counting

the reference count, assigning it to another variable does not, so you must do that your-
self. Notice from the output that both myInt and myInt2 have a reference count of 3;
that’s because they both reference the same object in memory.

Let’s assume that you’re finished using the myInt object in your program.You can tell
the system that by sending a release message to the object.As you can see, its reference
count then goes from 3 back down to 2. Because it’s not 0, the other references to the
object (from the array and through myInt2) remain valid.The system does not deallocate
the memory the object used as long as it has a nonzero reference count.

If you remove the first element from the array myArr using the
removeObjectAtIndex: method, you’ll note that the reference count for myInt is auto-
matically decremented to 1. In general, removing an object from any collection has the
side effect of decrementing its reference count.This implies that the following code se-
quence could lead to trouble:

myInt = [myArr ObjectAtIndex: 0];

...

[myArr removeObjectAtIndex: 0]

...

That’s because, in this case, the object referenced by myInt can become invalid after
the removeObjectAtIndex: method is invoked if its reference count is decremented to 0.
The solution here, of course, is to retain myInt after it is retrieved from the array so that it
won’t matter what happens to its reference from other places.

Reference Counting and Strings
Program 17.2 shows how reference counting works for string objects.

Program 17.2

// Reference counting with string objects

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *myStr1 = @”Constant string”;
NSString *myStr2 = [NSString stringWithString: @”string 2”];
NSMutableString *myStr3 = [NSMutableString stringWithString: @”string 3”];
NSMutableArray *myArr = [NSMutableArray array];

NSLog (@”Retain count: myStr1: %lx, myStr2: %lx, myStr3: %lx”,
(unsigned long) [myStr1 retainCount],
(unsigned long) [myStr2 retainCount],
(unsigned long) [myStr3 retainCount]);

[myArr addObject: myStr1];

410 Chapter 17 Memory Management

[myArr addObject: myStr2];
[myArr addObject: myStr3];

NSLog (@”Retain count: myStr1: %lx, myStr2: %lx, myStr3: %lx”,
(unsigned long) [myStr1 retainCount],
(unsigned long) [myStr2retainCount],

(unsigned long) [myStr3 retainCount]);

[myArr addObject: myStr1];
[myArr addObject: myStr2];
[myArr addObject: myStr3];

NSLog (@”Retain count: myStr1: %lx, myStr2: %lx, myStr3: %lx”,
(unsigned long) [myStr1 retainCount],
(unsigned long) [myStr2retainCount],

(unsigned long) [myStr3 retainCount]);

[myStr1 retain];
[myStr2 retain];
[myStr3 retain];

NSLog (@"Retain count: myStr1: %lx, myStr2: %lx, myStr3: %lx",
(unsigned long) [myStr1 retainCount],
(unsigned long) [myStr2 retainCount],

(unsigned long) [myStr3 retainCount]);

// Bring the reference count of myStr3 back down to 2
[myStr3 release];

[pool drain];
return 0;

}

Program 17.2 Output

Retain count: myStr1: ffffffff, myStr2: ffffffff, myStr3: 1
Retain count: myStr1: ffffffff, myStr2: ffffffff, myStr3: 2
Retain count: myStr1: ffffffff, myStr2: ffffffff, myStr3: 3

The NSString object myStr1 is assigned the NSConstantString @”Constant

string”. Space for constant strings is allocated differently in memory than for other ob-
jects. Constant strings have no reference-counting mechanism because they can never be
released.This is why when the retainCount message is sent to myStr1, it returns a value
of 0xffffffff. (This value is actually defined as the largest possible unsigned integer
value, or UINT_MAX, in the standard header file <limits.h>.)

Note
Apparently, on some systems, the retain count that is returned for the constant strings in
Program 17.2 is 0x7fffffff (and not 0xffffffff), which is the largest possible signed
integer value, or INT_MAX.

Notice that the same applies to an immutable string object that is initialized with a con-
stant string: It, too, has no retain count, as verified by the retain count displayed for myStr2.

411Reference Counting

Note
Here the system is clever and determines that the immutable string object is being initial-
ized by a constant string object. Before the release of Leopard, this optimization was not
done, and mystr2 would have had a retain count.

In the statement

NSMutableString *myStr3 = [NSMutableString stringWithString: @”string 3”];

the variable myStr3 is set to a string made from a copy of the constant character string
@”string 3”.A copy of the string had to be made because the message
stringWithString: was sent to the NSMutableString class, indicating that the string’s
contents might have changed during the course of the program’s execution.And because
constant character strings can’t have their contents changed, the system can’t just set the
myStr3 variable to point to the constant string @”string 3”, as was done with myStr2.

So the string object myStr3 does have a reference count, as verified by the output.The
reference count can be changed by adding this string to an array or by sending it a retain
message, as verified by the output from the last two NSLog calls. Foundation’s
stringWithString: method added this object to the autorelease pool when it was cre-
ated. Foundation’s array method also added the array myArr to the pool.

Before the autorelease pool itself is released, myStr3 is released.This brings its reference
count down to 2.The release of the autorelease pool then decrements the reference count
of this object to 0, which causes it to be deallocated. How does that happen? When the
autorelease pool is released, each of the objects in the pool gets a release message sent to
it for each time it was sent an autorelease message. Because the string object myStr3 was
added to the autorelease pool when the stringWithString: method created it, it is sent a
release message.That brings its reference count down to 1.When an array in the autore-
lease pool is released, each of its elements also is released.Therefore, when myArr is re-
leased from the pool, each of its elements—which includes myStr3—is sent release
messages.This brings its reference count down to 0, which then causes it to be deallocated.

You must be careful not to over-release an object. In Program 17.2, if you brought the
reference count of mystr3 below 2 before the pool was released, the pool would contain a
reference to an invalid object.Then when the pool was released, the reference to the in-
valid object would most likely cause the program to terminate abnormally with a segmen-
tation fault error.

Reference Counting and Instance Variables
You also must pay attention to reference counts when you deal with instance variables.
For example, recall the setName: method from your AddressCard class:

-(void) setName: (NSString *) theName

{

[name release];

name = [[NSString alloc] initWithString: theName];

}

412 Chapter 17 Memory Management

Suppose we had defined setName: this way instead and did not have it take ownership
of its name object:

-(void) setName: (NSString *) theName

{

name = theName;

}

This version of the method takes a string representing the person’s name and stores it
in the name instance variable. It seems straightforward enough, but consider the following
method call:

NSString *newName;

...

[myCard setName: newName];

Suppose newName is a temporary storage space for the name of the person you want to
add to the address card and that later you want to release it.What do you think would
happen to the name instance variable in myCard? Its name field would no longer be valid
because it would reference an object that had been destroyed.That’s why your classes need
to own their own member objects:You don’t have to worry about those objects inadver-
tently being deallocated or modified.

The next few examples illustrate this point in more detail. Let’s start by defining a new
class called ClassA that has one instance variable: a string object called str.You’ll just
write setter and getter methods for this variable.We don’t synthesize the methods here,
but we write them ourselves so it’s clear precisely what’s going on.

Program 17.3

// Introduction to reference counting

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>

@interface ClassA: NSObject
{

NSString *str;
}

-(void) setStr: (NSString *) s;
-(NSString *) str;
@end

@implementation ClassA
-(void) setStr: (NSString *) s
{

str = s;

413Reference Counting

}

-(NSString *) str
{

return str;
}
@end

int main (int argc, char *argv[])
{

NSAutorelea ePool * pool = [[NSAutoreleasePool alloc] init];
NSMutableString *myStr = [NSMutableSt ing stringWithString: @”A string”];
ClassA *myA = [[ClassA alloc] init];

NSLog (@”myStr retain count: %x”, [myStr retainCount]);

[myA setStr: myStr];
NSLog (@”myStr retain count: %x”, [myStr retainCount] ;

[myA release];
[pool drain];
return 0;

}

Program 17.3 Output

myStr retain count: 1
myStr retain count: 1

The program simply allocates a ClassA object called myA and then invokes the setter
method to set it to the NSString object specified by myStr.The reference count for
myStr is 1 both before and after the setStr method is invoked, as you would expect, be-
cause the method simply stores the value of its argument in its instance variable str. Once
again, however, if the program released myStr after calling the setStr method, the value
stored inside the str instance variable would become invalid because its reference count
would be decremented to 0 and the memory space occupied by the object it references
would be deallocated.

This happens in Progam 17.3 when the autorelease pool is released. Even though we
didn’t add it to that pool explicitly ourselves, when we created the string object myStr us-
ing the stringWithString: method, that method added it to the autorelease pool.When
the pool was released, so was myStr.Any attempt to access it after the pool was released
would therefore be invalid.

Program 17.4 makes a change to the setStr: method to retain the value of str.This
protects you from someone else later releasing the object str references.

414 Chapter 17 Memory Management

Program 17.4

// Retaining objects

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>

@interface ClassA: NSObject
{

NSString *str;
}

-(void) setStr: (NSString *) s;
-(NSString *) str;
@end

@implementation ClassA
-(void) setStr: (NSString *) s
{

str = s;
[str retain];

}

-(NSString *) str
{

return str;
}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *myStr = [NSMutableString stringWithString: @”A string”];
ClassA *myA = [[ClassA alloc] init];

NSLog (@”myStr retain count: %x”, [myStr retainCount]);

[myA setStr: myStr];
NSLog (@”myStr retain count: %x”, [myStr retainCount]);

[myStr release];
NSLog (@”myStr retain count: %x”, [myStr retainCount]);

[myA release];
[pool drain];
return 0;

}

415Reference Counting

Program 17.4 Output

myStr retain count: 1
myStr retain count: 2
myStr retain count: 1

You can see that the reference count for myStr is bumped to 2 after the setStr:
method is invoked, so this particular problem has been solved. Subsequently releasing
myStr in the program makes its reference through the instance variable still valid because
its reference count is still 1.

Because you allocated myA in the program using alloc, you are still responsible for re-
leasing it yourself. Instead of having to worry about releasing it yourself, you could have
added it to the autorelease pool by sending it an autorelease message:

[myA autorelease];

You can do this immediately after the object is allocated, if you want. Remember,
adding an object to the autorelease pool doesn’t release it or invalidate it; it just marks it
for later release.You can continue to use the object until it is deallocated, which happens
when the pool is released if the reference count of the object becomes 0 at that time.

You are still left with some potential problems that you might have spotted.Your
setStr: method does its job of retaining the string object it gets as its argument, but
when does that string object get released? Also, what about the old value of the instance
variable str that you are overwriting? Shouldn’t you release its value to free up its mem-
ory? Program 17.5 provides a solution to this problem.

Program 17.5

// Introduction to reference counting

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSArray.h>

@interface ClassA: NSObject
{

NSString *str;
}

-(void) setStr: (NSString *) s;
-(NSString *) str;
-(void) dealloc;
@end

@implementation ClassA
-(void) setStr: (NSString *) s
{

416 Chapter 17 Memory Management

// free up old object since we’re done with it
[str autorelease];

// retain argument in case someone else releases it
str = [s retain];

}

-(NSString *) str
{

return str;
}

-(void) dealloc {
NSLog (@”ClassA dealloc”);
[str release];
[super dealloc];

}
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *myStr = [NSMutableString stringWithString: @”A string”];
ClassA *myA = [[ClassA alloc] init];

NSLog (@”myStr retain count: %x”, [myStr retainCount]);
[myA autorelease];

[myA setStr: myStr];
NSLog (@”myStr retain count: %x”, [myStr retainCount]);

[pool drain];
return 0;

}

Program 17.5 Output

myStr retain count: 1
myStr retain count: 2
ClassA dealloc

The setStr: method first takes whatever is currently stored in the str instance vari-
able and autoreleases it.That is, it makes it available for later release.This is important if the
method might be called many times throughout the execution of a program to set the
same field to different values. Each time a new value is stored, the old value should be

417Reference Counting

marked for release.After the old value is released, the new one is retained and stored in the
str field.The message expression

str = [s retain];

takes advantage of the fact that the retain method returns its receiver.

Note
If the str variable is nil, that’s not a problem. The Objective-C runtime initializes all instance
variables to nil, and it’s okay to send a message to nil.

The dealloc method is not new; you encountered it in Chapter 15,“Numbers,
Strings, and Collections,” with your AddressBook and AddressCard classes. Overriding
dealloc provides a tidy way for you to dispose of the last object your str instance vari-
able references when its memory is to be released (that is, when its reference count be-
comes 0). In such a case, the system calls the dealloc method, which is inherited from
NSObject and which you normally don’t want to override. In the case of objects you re-
tain, allocate with alloc, or copy (with one of the copy methods discussed in the next
chapter) inside your methods, you might need to override dealloc so that you get a
chance to free them up.The statements

[str release];

[super dealloc];

first release the str instance variable and then call the parent’s dealloc method to finish
the job.

The NSLog call was placed inside the dealloc method to display a message when it is
called.We did this just to verify that the ClassA object is deallocated properly when the
autorelease pool is released.

You might have spotted one last pitfall with the setter method setStr.Take another
look at Program 17.5. Suppose that myStr were a mutable string instead of an immutable
one, and further suppose that one or more characters in myStr were changed after invok-
ing setStr. Changes to the string referenced by myStr would also affect the string refer-
enced by the instance variable because they reference the same object. Reread that last
sentence to make sure you understand that point.Also realize that setting myStr to a com-
pletely new string object does not cause this problem.The problem occurs only if one or
more characters of the string are modified in some way.

The solution to this particular problem is to make a new copy of the string inside the
setter if you want to protect it and make it completely independent of the setter’s argu-
ment.This is why you chose to make a copy of the name and email members in the
setName: and setEmail: AddressCard methods in Chapter 15.

418 Chapter 17 Memory Management

An Autorelease Example
Let’s take a look at one last program example in this chapter to ensure that you really un-
derstand how reference counting, retaining, and releasing/autoreleasing objects work. Ex-
amine Program 17.6, which defines a dummy class called Foo with one instance variable
and only inherited methods.

Program 17.6

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>

@interface Foo: NSObject
{

int x;
}
@end

@implementation Foo
@end

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Foo *myFoo = [[Foo alloc] init];

NSLog (@”myFoo retain count = %x”, [myFoo retainCount]);

[pool drain];
NSLog (@”after pool drain = %x”, [myFoo retainCount]);

pool = [[NSAutoreleasePool alloc] init];
[myFoo autorelease];
NSLog (@”after autorelease = %x”, [myFoo retainCount]);

[myFoo retain];
NSLog (@”after retain = %x”, [myFoo retainCount]);

[pool drain];
NSLog (@”after second pool drain = %x”, [myFoo retainCount]);

[myFoo release];
return 0;

}

Program 17.6 Output

myFoo retain count = 1

419Summary of Memory-Management Rules

after poolrelease = 1
after autorelease = 1
after retain = 2
after second pool drain = 1

The program allocates a new Foo object and assigns it to the variable myFoo. Its initial
retain count is 1, as you’ve already seen.This object is not a part of the autorelease pool
yet, so releasing the pool does not invalidate the object.A new pool is then allocated, and
myFoo is added to the pool by sending it an autorelease message. Notice again that its
reference count doesn’t change, because adding an object to the autorelease pool does not
affect its reference count—it only marks it for later release.

Next, you send myFoo a retain message.This changes its reference count to 2.When
you subsequently release the pool the second time, the reference count for myFoo is decre-
mented by 1 because it was previously sent an autorelease message and, therefore, is sent
a release message when the pool is released.

Because myFoo was retained before the pool was released, its reference count after
decrementing is still greater than 0.Therefore, myFoo survives the pool drain and is still a
valid object. Of course, you must now release it yourself, which we do in Program 17.6 to
properly clean up and avoid memory leaks.

Reread this explanation of the autorelease pool if it still seems a little fuzzy to you.
When you understand Program 17.6, you will thoroughly understand of the autorelease
pool and how it works.

Summary of Memory-Management Rules
Let’s summarize what you’ve learned about memory management in this chapter:

n Releasing an object can free up its memory, which can be a concern if you’re creat-
ing many objects during the execution of a program.A good rule is to release ob-
jects you’ve created or retained when you’re done with them.

n Sending a release message does not necessarily destroy an object.When an object’s
reference count is decremented to 0, the object is destroyed.The system does this by
sending the dealloc message to the object to free its memory.

n The autorelease pool provides for the automatic release of objects when the pool
itself is released.The system does this by sending a release message to each object
in the pool for each time it was autoreleased. Each object in the autorelease pool
whose reference count goes down to 0 is sent a dealloc message to destroy the ob-
ject.

n If you no longer need an object from within a method but need to return it, send it
an autorelease message to mark it for later release.The autorelease message does
not affect the reference count of the object. So it enables the object to be used by
the message sender but still be freed up later when the autorelease pool is released.

n When your application terminates, all the memory your objects take up is released,
regardless of whether they were in the autorelease pool.

420 Chapter 17 Memory Management

n When you develop more sophisticated applications (such as Cocoa applications), au-
torelease pools can be created and destroyed during execution of the program (for
Cocoa applications, that happens each time an event occurs). In such cases, if you
want to ensure that your object survives automatic deallocation when the autore-
lease pool itself is released, you need to explicitly retain it.All objects that have a ref-
erence count greater than the number of autorelease messages they have been sent
will survive the release of the pool.

n If you directly create an object using an alloc or copy method (or with an
allocWithZone:, copyWithZone:, or mutableCopy method), you are responsible for
releasing it. For each time you retain an object, you should release or
autorelease that object.

n You don’t have to worry about releasing objects that are returned by methods other
than those noted in the previous rule. It’s not your responsibility; those methods
should have autoreleased those objects.That’s why you needed to create the autore-
lease pool in your program in the first place. Methods such as stringWithString:
automatically add newly created string objects to the pool by sending them
autorelease messages. If you don’t have a pool set up, you get a message that you
tried to autorelease an object without having a pool in place.

Garbage Collection
Up to this point in this book, you have been creating your programs to run in a memory-
managed runtime environment.The memory-management rules summarized in the previ-
ous sections apply to such an environment, in which you deal with autorelease pools,
issues related to retaining and releasing objects, and object ownership.

As of Objective C 2.0, an alternate form of memory management, known as garbage
collection, became available.With garbage collection, you don’t have to worry about retain-
ing and releasing objects, autorelease pools, or retain counts.The system automatically
keeps tracks of what objects own what other objects, automatically freeing up (or garbage-
collecting) objects that are no longer referenced as space is needed during the program’s
execution.

If things can be that simple, why didn’t we just take advantage of garbage collection
throughout this book and skip all the discussions about memory management? There are
three reasons: First, even in an environment that supports garbage collection, it’s best to
know who owns your objects and to keep track of when you don’t need them anymore.
This will make you more meticulous about writing your code because you will under-
stand the relationships of your objects to each other and their lifespan in your program.

The second reason, as has been previously noted, is that the iPhone runtime environ-
ment doesn’t support garbage collection, so you don’t have a choice when developing
programs for that platform.

The third reason applies to you if you plan on writing library routines, plugins, or
shared code. Since that code might be loaded into a garbage-collected or non garbage-
collected process, it has to be written to work in both environments.That means, you

421Garbage Collection

Figure 17.1 Enabling garbage collection.

need to write your code using the memory management techniques described through-
out this book. It also means you have to test your code with garbage-collection disabled
and enabled.

If you decide to use garbage collection, you must turn it on when building programs
with Xcode.You can do this through the Project, Edit Project Settings menu. Under the
“GCC 4.0—Code Generation” settings, you’ll see a setting called Objective-C Garbage
Collection. Changing that from its default value of Unsupported to Required specifies that
your program will be built with automatic garbage collection enabled (see Figure 17.1).

When garbage collection is enabled, your program can still make its retain,
autorelease, release, and dealloc method calls. However, they’ll all be ignored. In that
way, you can develop a program that can run in both memory-managed and garbage-col-
lected environments. However, this also implies that if your code is to run in both envi-
ronments, that you can’t do any work in a dealloc method that you provide.That’s
because, as stated, dealloc calls are ignored when garbage-collection is enabled.

Note
The memory-management techniques described in this chapter will suffice for most applica-
tions. However, in more advanced cases, such as when writing multithreaded applications,
you might need to do more. To learn more about these issues and others related to garbage
collection, see Appendix D, “Resources.”

422 Chapter 17 Memory Management

Exercises
1. Write a program to test the effects of adding and removing entries in a dictionary

on the reference count of the objects you add and remove.

2. What effect do you think the NSArray’s replaceObjectAtIndex:withObject:

method will have on the reference count of the object that is replaced in the array?
What effect will it have on the object placed into the array? Write a program to test
it.Then consult your documentation on this method to verify your results.

3. Return to the Fraction class you worked with throughout Part I,“The Objective-
C Language.” For your convenience, it is listed in Appendix D,“Resources.” Modify
that class to work under the Foundation framework.Then add messages as appro-
priate to the various MathOps category methods to add the fractions resulting from
each operation to the autorelease pool.When that is done, can you write a state-
ment like this:
[[fractionA add: fractionB] print];

without leaking memory? Explain your answer.

4. Return to your AddressBook and AddressCard examples from Chapter 15. Mod-
ify each dealloc method to print a message when the method is invoked.Then
run some of the sample programs that use these classes, to ensure that a dealloc

message is sent to every AddressBook and AddressCard object you use in the pro-
gram before reaching the end of main.

5. Choose any two programs in this book and build and run them in Xcode with
garbage collection turned on.Verify that when garbage collection is on, method
calls such as retain, autorelease, and release are ignored.

18
Copying Objects

This chapter discusses some of the subtleties involved in copying objects.We introduce
the concept of shallow versus deep copying nd discuss how to make copies under the
Foundation framework.

Chapter 8,“Inheritance,” discussed what happens when you assign one object to an-
other with a simple assignment statement, such as here:

origin = pt;

In this example, origin and pt are both XYPoint objects that we defined like this:

@interface XYPoint: NSObject

{

int x;

int y;

};

...

@end

Recall that the effect of the assignment is to simply copy the address of the object pt
into origin.At the end of the assignment operation, both variables point to the same lo-
cation in memory. Making changes to the instance variables with a message such as

[origin setX: 100 andY: 200];

changes the x, y coordinate of the XYPoint object referenced by both the origin and pt

variables because they both reference the same object in memory.
The same applies to Foundation objects:Assigning one variable to another simply cre-

ates another reference to the object (but it does not increase the reference count, as dis-
cussed in Chapter 17,“Memory Management”). So if dataArray and dataArray2 are
both NSMutableArray objects, the following statements remove the first element from the
same array that both variables reference:

dataArray2 = dataArray;

[dataArray2 removeObjectAtIndex: 0];

424 Chapter 18 Copying Objects

The copy and mutableCopy Methods
The Foundation classes implement methods known as copy and mutableCopy that you
can use to create a copy of an object.This is done by implementing a method in confor-
mance with the <NSCopying> protocol for making copies. If your class needs to distin-
guish between making mutable and immutable copies of an object, you must implement a
method according to the <NSMutableCopying> protocol as well.You learn how to do that
later in this section.

Getting back to the copy methods for the Foundation classes, given the two
NSMutableArray objects dataArray2 and dataArray, as described in the previous sec-
tion, the statement

dataArray2 = [dataArray mutableCopy];

creates a new copy of dataArray in memory, duplicating all its elements. Subsequently,
executing the statement

[dataArray2 removeObjectAtIndex: 0];

removes the first element from dataArray2 but not from dataArray. Program 18.1 illus-
trates this.

Program 18.1

#import <Foundation/NSObject.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

@”one”, @”two”, @”three”, @”four”, nil];
NSMutableArray *dataArray2;

// simple assignment

dataArray2 = dataArray;
[dataArray2 removeObjectAtIndex: 0];

NSLog (@”dataArray: “);
for (NSString *elem in dataArray)

NSLog (@” %@”, elem);

NSLog (@”dataArray2: “);

for (NSString *elem in dataArray2)
NSLog (@” %@”, elem);

// try a Copy, then remove the first element from the copy

425The copy and mutableCopy Methods

dataArray2 = [dataArray mutableCopy];
[dataArray2 removeObjectAtIndex: 0];

NSLog (@”dataArray: “);

for (NSString *elem in dataArray)
NSLog (@” %@”, elem);

NSLog (@”dataArray2: “);

for (NSString *elem in dataArray2)
NSLog (@” %@”, elem);

[dataArray2 release];
[pool drain];
return 0;

}

Program 18.1 Output

dataArray:
two
three
four

dataArray2:
two
three
four

dataArray:
two
three
four

dataArray2:
three
four

The program defines the mutable array object dataArray and sets its elements to the
string objects @”one”, @”two”, @”three”, @”four”, respectively

As we’ve discussed, the assignment

dataArray2 = dataArray;

simply creates another reference to the same array object in memory.When you remove
the first object from dataArray2 and subsequently print the elements from both array
objects, it’s no surprise that the first element (the string @”one”) is gone from both array
object references.

Next, you create a mutable copy of dataArray and assign the resulting copy to
dataArray2.This creates two distinct mutable arrays in memory, both containing three

426 Chapter 18 Copying Objects

elements. Now when you remove the first element from dataArray2, it has no effect on
the contents of dataArray, as verified by the last two lines of the program’s output.

Note that making a mutable copy of an object does not require that the object being
copied be mutable.The same applies to immutable copies:You can make an immutable
copy of a mutable object.

Also note when making a copy of an array that the copy operation automatically in-
crements the retain count for each element in the array.Therefore, if you make a copy of
an array and subsequently release the original array, the copy still contains valid elements.

Because a copy of dataArray was made in the program using the mutableCopy
method, you are responsible for releasing its memory.The last chapter covered the rule
stating that you are responsible for releasing objects you create with one of the copy
methods.This explains the inclusion of this line toward the end of Program 18.1:

[dataArray2 release];

Shallow Versus Deep Copying
Program 18.1 fills the elements of dataArray with immutable strings (recall that constant
string objects are immutable). In Program 18.2, you’ll fill it with mutable strings instead
so that you can change one of the strings in the array.Take a look at Program 18.2 and
see whether you understand its output.

Program 18.2

#import <Foundation/NSObject.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSString.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

[NSMutableString stringWithString: @”one”],
[NSMutableString stringWithString: @”two”],
[NSMutableString stringWithString: @”three”],
nil

];
NSMutableArray *dataArray2;
NSMutableString *mStr;

NSLog (@”dataArray: “);
for (NSString *elem in dataArray)

NSLog (@” %@”, elem);

427Shallow Versus Deep Copying

// make a copy, then change one of the strings

dataArray2 = [dataArray mutableCopy];

mStr = [dataArray objectAtIndex: 0];
[mStr appendString: @”ONE”];

NSLog (@”dataArray: “);
for (NSString *elem in dataArray)

NSLog (@” %@”, elem);

NSLog (@”dataArray2: “);
for (NSString *elem in dataArray2)

NSLog (@” %@”, elem);

[dataArray2 release];
[pool drain];
return 0;

}

Program 18.2 Output

dataArray:
one
two
three

dataArray:
oneONE
two
three

dataArray2:
oneONE
two

three

You retrieved the first element of dataArray2 with the following statement:

mStr = [dataArray2 objectAtIndex: 0];

Then you appended the string @”ONE” to it with this statement:

[mStr appendString: @”ONE”];

Notice the value of the first element of both the original array and its copy: Both were
modified. Perhaps you can understand why the first element of dataArray was changed

428 Chapter 18 Copying Objects

but not why its copy was as well.When you get an element from a collection, you get a
new reference to that element, but not a new copy. So when the objectAtIndex:
method is invoked on dataArray, the returned object points to the same object in mem-
ory as the first element in dataArray. Subsequently modifying the string object mStr has
the side effect of also changing the first element of dataArray, as you can see from the
output.

But what about the copy you made? Why is its first element changed as well? This has
to do with the fact that copies, by default, are shallow copies.Thus, when the array was
copied with the mutableCopy method, space was allocated for a new array object in
memory and the individual elements were copied into the new array. But copying each
element in the array from the original to a new location meant just copying the reference
from one element of the array to another.The net result was that the elements of both ar-
rays referenced the same strings in memory.This is no different from assigning one object
to another, which we covered at the beginning of this chapter.

To make distinct copies of each element of the array, you must perform a deep copy.
This means making copies of the contents of each object in the array, not just copies of
the references to the objects (and think about what that implies if an element of an array
is itself an array object). But deep copies are not performed by default when you use the
copy or mutableCopy methods with the Foundation classes. In Chapter 19,“Archiving,”
we show you how to use the Foundation’s archiving capabilities to create a deep copy of
an object.

When you copy an array, a dictionary, or a set, for example, you get a new copy of
those collections. However, you might need to make your own copies of individual ele-
ments if you want to make changes to one collection but not to its copy. For example, if
you wanted to change the first element of dataArray2 but not dataArray in Program
18.2, you could make a new string (using a method such as stringWithString:) and
store it into the first location of dataArray2, as follows:

mStr = [NSMutableString stringWithString: [dataArray2 objectAtIndex: 0]];

Then you could make the changes to mStr and add it to the array using the
replaceObject:atIndex:withObject: method, as follows:

[mStr appendString @”ONE”];
[dataArray2 replaceObjectAtIndex: 0 withObject: mStr];

Hopefully you realize that even after replacing the object in the array, mStr and the
first element of dataArray2 refer to the same object in memory.Therefore, subsequent
changes to mStr in your program will also change the first element of the array. If that’s
not what you want, you can always release mStr and allocate a new instance, because the
replaceObject:atIndex:withObject: method automatically retains an object.

429Implementing the <NSCopying> Protocol

Implementing the <NSCopying> Protocol
If you try to use the copy method on one of your own classes—for example, on your
address book, as follows

NewBook = [myBook mutableCopy];

you’ll get an error message that looks something like this:

*** -[AddressBook copyWithZone:]: selector not recognized

*** Uncaught exception:

*** -[AddressBook copyWithZone:]: selector not recognized

As noted, to implement copying with your own classes, you have to implement one or
two methods according to the <NSCopying> protocol.

We now show how you can add a copy method to your Fraction class, which you
used extensively in Part I,“The Objective-C 2.0 Language.” Note that the techniques we
describe here for copying strategies will work fine for your own classes. If those classes are
subclasses of any of the Foundation classes, you might need to implement a more sophis-
ticated copying strategy.You’ll have to account for the fact that the superclass might have
already implemented its own copying strategy.

Recall that your Fraction class contains two integer instance variables, called
numerator and denominator.To make a copy of one of these objects, you must allocate
space for a new fraction and then simply copy the values of the two integers into the new
fraction.

When you implement the <NSCopying> protocol, your class must implement the
copyWithZone: method to respond to a copy message. (The copy message just sends a
copyWithZone: message to your class with an argument of nil.) If you want to make a
distinction between mutable and immutable copies, as we noted, you’ll also need to im-
plement the mutableCopyWithZone: method according to the <NSMutableCopying>

protocol. If you implement both methods, copyWithZone: should return an immutable
copy and mutableCopyWithZone: should return a mutable one. Making a mutable copy
of an object does not require that the object being copied also be mutable (and vice
versa); it’s perfectly reasonable to want to make a mutable copy of an immutable object
(consider a string object, for example).

Here’s what the @interface directive should look like:

@interface Fraction: NSObject <NSCopying>

Fraction is a subclass of NSObject and conforms to the NSCopying protocol.

430 Chapter 18 Copying Objects

In the implementation file Fraction.m, add the following definition for your new
method:

-(id) copyWithZone: (NSZone *) zone

{

Fraction *newFract = [[Fraction allocWithZone: zone] init];

[newFract setTo: numerator over: denominator];

return newFract;

}

The zone argument has to do with different memory zones that you can allocate and
work with in your program.You need to deal with these only if you’re writing applica-
tions that allocate a lot of memory and you want to optimize the allocation by grouping
them into these zones.You can take the value passed to copyWithZone: and hand it off to
a memory allocation method called allocWithZone:.This method allocates memory in a
specified zone.

After allocating a new Fraction object, you copy the receiver’s numerator and
denominator variables into it.The copyWithZone: method is supposed to return the new
copy of the object, which you do in your method.

Program 18.3 tests your new method.

Program 18.3

// Copying fractions

#import “Fraction.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *f1 = [[Fraction alloc] init];
Fraction *f2;

[f1 setTo: 2 over: 5];
f2 = [f1 copy];

[f2 setTo: 1 over: 3];

[f1 print];
[f2 print];

[f1 release];
[f2 release];
[pool drain];
return 0;

}

431Implementing the <NSCopying> Protocol

Program 18.3 Output

2/5
1/3

The program creates a Fraction object called f1 and sets it to 2/5. It then invokes the
copy method to make a copy, which sends the copyWithZone: message to your object.
That method makes a new Fraction, copies the values from f1 into it, and returns the
result. Back in main, you assign that result to f2. Subsequently setting the value in f2 to
the fraction 1/3 verifies that it had no effect on the original fraction f1. Change the line
in the program that reads

f2 = [f1 copy];

to simply

f2 = f1;

and remove the release of f2 at the end of the program to see the different results you
will obtain.

If your class might be subclassed, your copyWithZone: method will be inherited. In
that case, you should change the line in the method that reads

Fraction *newFract = [[Fraction allocWithZone: zone] init];

to read

Fraction *newFract = [[[self class] allocWithZone: zone] init];

That way, you allocate a new object from the class that is the receiver of the copy. (For
example, if it has been subclassed to a class named NewFraction, be sure to allocate a new
NewFraction object in the inherited method instead of a Fraction object.)

If you are writing a copyWithZone: method for a class whose superclass also imple-
ments the <NSCopying> protocol, you should first call the copy method on the superclass
to copy the inherited instance variables and then include your own code to copy what-
ever additional instance variables (if any) you might have added to the class.

You must decide whether you want to implement a shallow or a deep copy in your
class. Just document it for other users of your class so they know.

432 Chapter 18 Copying Objects

Copying Objects in Setter and Getter Methods
Whenever you implement a setter or getter method, you should think about what you’re
storing in the instance variables, what you’re retrieving, and whether you need to protect
these values. For example, consider this when you set the name of one of your
AddressCard objects using the setName: method:

[newCard setName: newName];

Assume that newName is a string object containing the name for your new card.As-
sume that inside the setter routine you simply assigned the parameter to the correspon-
ding instance variable:

-(void) setName: (NSString *) theName

{

name = theName;

}

Now, what do you think would happen if the program later changed some of the
characters contained in newName in the program? It would also unintentionally change
the corresponding field in your address card because both would reference the same
string object.

As you have already seen, a safer approach is to make a copy of the object in the setter
routine, to prevent this inadvertent effect.We did this by using the alloc method to cre-
ate a new string object and then using initWithString: to set it to the value of the pa-
rameter provided to the method.

You can also write a version of the setName: method to use copy, like this:

-(void) setName: (NSString *) theName

{

name = [theName copy];

}

Of course, to make this setter routine memory management friendly, you should
autorelease the old value first, like this:

-(void) setName: (NSString *) theName

{

[name autorelease];

name = [theName copy];

}

If you specify the copy attribute in a property declaration for an instance variable, the
synthesized method will use the class’s copy method (the one you wrote or the one you
inherited). So the following property declaration

@property (nonatomic, copy) NSString *name;

433Copying Objects in Setter and Getter Methods

will generate a synthesized method that behaves like this:

-(void) setName: (NSString *) theName

{

if (theName != name) {

[name release]

name = [theName copy];

}

}

Use of nonatomic here tells the system not to protect the property accessors with a
mutex (mutually exclusive) lock People writing threadsafe code use mutex locks to pre-
vent two threads from executing in the s me code at the same time, a situation that can
often lead to dire problems. But these locks can slow programs down, and you can avoid
using them if you know this code will only ever be running in a single thread.

If nonatomic is not specified or atomic is specified instead (which is the default), then
your instance variable will be protected with a mutex lock. In addition, the synthesized
getter method will retain and autorelease the instance variable before its value is returned.
In a non-garbage collected environment, this protects the instance variable from possibly
being overwritten by a setter method call that releases the instance variable’s old value be-
fore setting its new value.The retain in the getter method ensures that old value is not
deallocated.

Note
Even though the retain/autorelease issue is irrelevant in a garbage-collected environment
(recall those method calls are ignored), the mutex lock issue is not. Therefore, consider us-
ing atomic accessor methods if your code will run in a multi-threaded environment.

The same discussion about protecting the value of your instance variables applies to
the getter routines. If you return an object, you must ensure that changes to the returned
value will not affect the value of your instance variables. In such a case, you can make a
copy of the instance variable and return that instead.

Getting back to the implementation of a copy method, if you are copying instance
variables that contain immutable objects (for example, immutable string objects), you
might not need to make a new copy of the object’s contents. It might suffice to simply
make a new reference to the object by retaining it. For example, if you are implementing
a copy method for the AddressCard class, which contains name and email members, the
following implementation for copyWithZone: would suffice:

-(AddresssCard *) copyWithZone: (NSZone *) zone

{

AddressCard *newCard = [[AddressCard allocWithZone: zone] init];

[newCard retainName: name andEmail: email];

return newCard;

}

434 Chapter 18 Copying Objects

-(void) retainName: (NSString *) theName andEmail: (NSString *) theEmail

{

name = [theName retain];

email = [theEmail retain];

}

The setName:andEmail: method isn’t used here to copy the instance variables over
because that method makes new copies of its arguments, which would defeat the whole
purpose of this exercise. Instead, you just retained the two variables using a new method
called retainName:andEmail:. (You could have set the two instance variables in newCard
directly in the copyWithZone: method, but it involves pointer operations, which we’ve
been able to avoid up to this point. Of course, the pointer operations would be more effi-
cient and would not expose the user of this class to a method [retainName:andEmail:]
that was not intended for public consumption, so at some point you might need to learn
how to do that—just not right now!)

Realize that you can get away with retaining the instance variables here (instead of
making complete copies of them) because the owner of the copied card can’t affect the
name and email members of the original.You might want to think about that for a sec-
ond to verify that this is the case (hint: it has to do with the setter methods).

Exercises
1. Implement a copy method for the AddressBook class according to the NSCopying

protocol.Would it make sense to also implement a mutableCopy method? Why or
why not?

2. Modify the Rectangle and XYoint classes defined in Chapter 8 to conform to the
<NSCopying> protocol.Add a copyWithZone: method to both classes. Make sure
that the Rectangle copies its XYPoint member origin using the XYPoint’s copy
method. Does it make sense to implement both mutable and immutable copies for
these classes? Explain.

3. Create an NSDictionary dictionary object and fill it with some key/object pairs.
Then make both mutable and immutable copies.Are these deep copies or shallow
copies that are made? Verify your answer.

4. Who is responsible for releasing the memory allocated for the new AddressCard in
the copyWithZone: method as implemented in this chapter? Why?

19
Archiving

In Objective-C terms, archiving is the process of saving one or more objects in a format
so that they can later be restored. Often this involves writing the object(s) to a file so it
can subsequently be read back in.We discuss two methods for archiving data in this chap-
ter: property lists and key-valued coding.

Archiving with XML Property Lists
Mac OS X applications use XML propertylists (or plists) for storing things such as your
default preferences, application settings, and configuration information, so it’s useful to
know how to create them and read them back in.Their use for archiving purposes, how-
ever, is limited because when creating a property list for a data structure, specific object
classes are not retained, multiple references to the same object are not stored, and the mu-
tability of an object is not preserved.

Note
So-called “old-style” property lists store the data in a different format than XML property
lists. Stick to using XML property lists in your program, if possible.

If your objects are of type NSString, NSDictionary, NSArray, NSDate, NSData, or
NSNumber, you can use the writeToFile:atomically: method implemented in these
classes to write your data to a file. In the case of writing out a dictionary or an array, this
method writes the data to the file in the format of an XML property list. Program 19.1
shows how the dictionary you created as a simple glossary in Chapter 15,“Numbers,
Strings, and Collections,” can be written to a file as a property list.

Program 19.1

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSAutoreleasePool.h>
int main (int argc, char *argv[])

436 Chapter 19 Archiving

{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSDictionary *glossary =
[NSDictionary dictionaryWithObjectsAndKeys:

@”A class defined so other classes can inherit from it.”, @”abstract class”,
@”To implement all the methods defined in a protocol”, @”adopt”,
@”Storing an object for later use. “, @”archiving”,
nil

];
if ([glossary writeToFile: @”glossary” atomically: YES] == NO)

NSLog (@”Save to file failed!”);
[pool drain];
return 0;

}

The writeToFile:atomically: message is sent to your dictionary object glossary,
causing the dictionary to be written to the file glossary in the form of a property list.
The atomically parameter is set to YES, meaning that you want the write operation to
be done to a temporary backup file first; once successful, the final data is to be moved to
the specified file named glossary.This is a safeguard that protects the file from becoming
corrupt if, for example, the system crashes in the middle of the write operation. In that
case, the original glossary file (if it previously existed) isn’t harmed.

If you examine the contents of the glossary file created by Program 19.1, it looks
like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN”

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>

<key>abstract class</key>

<string>A class defined so other classes can inherit from it.</string>

<key>adopt</key>

<string>To implement all the methods defined in a protocol</string>

<key>archiving</key>

<string>Storing an object for later use. </string>

</dict>

</plist>

You can see from the XML file that was created that the dictionary is written to the
file as a set of key (<key>...</key>) value (<string>...</string>) pairs.

When you create a property list from a dictionary, the keys in the dictionary must all
be NSString objects.The elements of an array or the values in a dictionary can be
NSString, NSArray, NSDictionary, NSData, NSDate, or NSNumber objects.

To read an XML property list from a file into your program, you use the
dictionaryWithContentsOfFile: or arrayWithContentsOfFile: methods.To read

437Archiving with NSKeyedArchiver

back data, use the dataWithContentsOfFile: method; to read back string objects, use
the stringWithContentsOfFile: method. Program 19.2 reads back the glossary written
in Program 19.1 and then displays its contents.

Program 19.2

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSEnumerator.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSDictionary *glossary;

glossary = [NSDictionary dictionaryWithContentsOfFile: @”glossary”];

for (NSString *key in glossary)
NSLog (@”%@: %@”, key, [glossary objectForKey: key]);

[pool drain];
return 0;

}

Program 19.2 Output

archiving: Storing an object for later use.
abstract class: A class defined so other classes can inherit from it.
adopt: To implement all the methods defined in a protocol

Your property lists don’t need to be created from an Objective-C program; the prop-
erty list can come from any source.You can make your own property lists using a simple
text editor, or you can use the Property List Editor program located in the
/Developer/Applications/Utilities directory on Mac OS X systems.

Archiving with NSKeyedArchiver
A more flexible approach enables you to save any type of objects to a file, not just strings,
arrays, and dictionaries.This is done by creating a keyed archive using the
NSKeyedArchiver class.

Mac OX X has supported keyed archives since version 10.2. Before that, sequential
archives were created with the NSArchiver class. Sequential archives require that the data
in the archive be read back in precisely the same order in which it was written.

A keyed archive is one in which each field of the archive has a name.When you
archive an object, you give it a name, or key.When you retrieve it from the archive, you
retrieve it by the same key. In that manner, objects can be written to the archive and re-

438 Chapter 19 Archiving

trieved in any order. Furthermore, if new instance variables are added or removed to a
class, your program can account for it.

Note that NSArchiver is not available in the iPhone SDK. If you want to use archiv-
ing on the iPhone, you must use NSKeyedArchiver

To work with keyed archives you need to import
<Foundation/NSKeyedArchiver.h>.
Program 19.3 shows that the glossary can be saved to a file on disk using the method
archiveRootObject:toFile: from the NSKeyedArchiver class.To use this class, include
the file

#import <Foundation/NSKeyedArchiver.h>

in your program.

Program 19.3

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSDictionary *glossary =

[NSDictionary dictionaryWithObjectsAndKeys:
@”A class defined so other classes can inherit from it”,
@”abstract class”,
@”To implement all the methods defined in a protocol”,
@”adopt”,
@”Storing an object for later use”,
@”archiving”,
nil

];

[NSKeyedArchiver archiveRootObject: glossary toFile: @”glossary.archive”];

[pool release];
return 0;

}

Program 19.3 does not produce any output at the terminal. However, the statement

[NSKeyedArchiver archiveRootObject: glossary toFile: @”glossary.archive”];

439Archiving with NSKeyedArchiver

writes the dictionary glossary to the file glossary.archive.Any pathname can be
specified for the file. In this case, the file is written to the current directory.

The archive file created can later be read into your program by using
NSKeyedUnarchiver’s unArchiveObjectWithFile: method, as is done in Program 19.4.

Program 19.4

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSDictionary.h>
#import <Foundation/NSEnumerator.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSDictionary *glossary;

glossary = [NSKeyedUnarchiver unarchiveObjectWithFile:
@”glossary.archive”];

for (NSString *key in glossary)
NSLog (@”%@: %@”, key, [glossary objectForKey: key]);

[pool drain];
return 0;

}

Program 19.4 Output

abstract class: A class defined so other classes can inherit from it.
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use.

The statement

glossary = [NSKeyedUnarchiver unarchiveObjectWithFile: @”glossary.archive”];

causes the specified file to be opened and its contents to be read.This file must be the re-
sult of a previous archive operation.You can specify a full pathname for the file or a rela-
tive pathname, as in the example.

After the glossary has been restored, the program simply enumerates its contents to
verify that the restore was successful.

440 Chapter 19 Archiving

Table 19.1 Encoding and Decoding Basic Data Types in Keyed Archives

Encoder Decoder

encodeBool:forKey: decodeBool:forKey:

encodeInt:forKey: decodeInt:forKey:

encodeInt32:forKey: decodeInt32:forKey:

encodeInt64: forKey: decodeInt64:forKey:

Writing Encoding and Decoding Methods
Basic Objective-C class objects such as NSString, NSArray, NSDictionary, NSSet, NSDate,
NSNumber, and NSData can be archived and restored in the manner just described.That in-
cludes nested objects as well, such as an array containing a string or even other array objects.

This implies that you can’t directly archive your AddressBook using this technique be-
cause the Objective-C system doesn’t know how to archive an AddressBook object. If
you tried to archive it by inserting a line such as

[NSKeyedArchiver archiveRootObject: myAddressBook toFile: @”addrbook.arch”];

into your program, you’d get the following message displayed if you ran the program:

*** -[AddressBook encodeWithCoder:]: selector not recognized

*** Uncaught exception: <NSInvalidArgumentException>

*** -[AddressBook encodeWithCoder:]: selector not recognized

archiveTest: received signal: Trace/BPT trap

From the error messages, you can see that the system was looking for a method called
encodeWithCoder: in the AddressBook class, but you never defined such a method.

To archive objects other than those listed, you must tell the system how to archive, or
encode, your objects, and also how to unarchive, or decode, them.This is done by adding
encodeWithCoder: and initWithCoder: methods to your class definitions, according to
the <NSCoding> protocol. For our address book example, you’d have to add these meth-
ods to both the AddressBook and AddressCard classes.

The encodeWithCoder: method is invoked each time the archiver wants to encode an
object from the specified class, and the method tells it how to do so. In a similar manner,
the initWithCoder: method is invoked each time an object from the specified class is to
be decoded.

In general, the encoder method should specify how to archive each instance variable
in the object you want to save. Luckily, you have help doing this. For the basic Objective-
C classes described previously, you can use the encodeObject:forKey: method. For basic
underlying C data types (such as integers and floats), you use one of the methods listed in
Table 19.1.The decoder method, initWithCoder:, works in reverse:You use
decodeObject:forKey: to decode basic Objective-C classes and the appropriate decoder
method shown in Table 19.1 for the basic data types.

441Writing Encoding and Decoding Methods

Table 19.1 Encoding and Decoding Basic Data Types in Keyed Archives

Encoder Decoder

encodeFloat:forKey: decodeFloat:forKey:

encodeDouble:forKey: decodeDouble:forKey:

Program 19.5 adds the two encoding and decoding methods to both the AddressCard
and AddressBook classes.

Program 19.5 Addresscard.h Interface File

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSKeyedArchiver.h>

@interface AddressCard: NSObject <NSCoding, NSCopying>
{

NSString *name;
NSString *email;

}

@property (copy, nonatomic) NSString *name, *email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail;
-(NSComparisonResult) compareNames: (id) element;
-(void) print;

// Additional methods for NSCopying protocol
-(AddressCard *) copyWithZone: (NSZone *) zone;
-(void) retainName: (NSString *) theName andEmail: (NSString *) theEmail;

@end

These are the two new methods used for your AddressCard class to be added to the
implementation file:

-(void) encodeWithCoder: (NSCoder *) encoder

{

[encoder encodeObject: name forKey: @”AddressCardName”];
[encoder encodeObject: email forKey: @”AddressCardEmail”];

}

-(id) initWithCoder: (NSCoder *) decoder

{

name = [[decoder decodeObjectforKey: @”AddressCardName”] retain];
email = [[decoder decodeObjectforKey: @”AddressCardEmail”] retain];

return self;

}

442 Chapter 19 Archiving

The encoding method encodeWithCoder: is passed an NSCoder object as its argu-
ment. Since your AddressCard class inherits directly from NSObject, you don’t need to
worry about encoding inherited instance variables. If you did, and if you knew the super-
class of your class conformed to the NSCoding protocol, you should start your encoding
method with a statement like the following to make sure your inherited instance variables
are encoded:

[super encodeWithCoder: encoder];

Your address book has two instance variables, called name and email. Because these are
both NSString objects, you can use the encodeObject:forKey: method to encode each
of them in turn.These two instance variables are then added to the archive.

The encodeObject:forKey: method encodes an object and stores it under the speci-
fied key for later retrieval using that key.The key names are arbitrary, so as long you use
the same name to retrieve (decode) the data as you did when you archived (encoded) it,
you can specify any key you like.The only time a conflict might arise is if the same key is
used for a subclass of an object being encoded.To prevent this from happening, you can
insert the class name in front of the instance variable name when composing the key for
the archive, as was done in Program 19.5.

Note that encodeObject:forKey: can be used for any object that has implemented a
corresponding encodeWithCoder: method in its class.

The decoding process works in reverse.The argument passed to initWithCoder: is
again an NSCoder object.You don’t need to worry about this argument; just remember
that it’s the one that gets the messages for each object you want to extract from the
archive.

Again, since our AddressCard class inherits directly from NSObject, you don’t have to
worry about decoding inherited instance variables. If you did, you would insert a line like
this at the start of your decoder method (assuming the superclass of your class conformed
to the NSCoding protocol):

self = [super initWithCoder: decoder];

Each instance variable is then decoded by invoking the decodeObject:forKey:
method and passing the same key that was used to encode the variable.

Similarly to your AddressCard class, you add encoding and decoding methods to your
AddressBook class.The only line you need to change in your interface file is the
@interface directive to declare that the AddressBook class now conforms to the
NSCoding protocol.The change looks like this:

@interface AddressBook: NSObject <NSCoding, NSCopying>

Here are the method definitions for inclusion in the implementation file:

-(void) encodeWithCoder: (NSCoder *) encoder

{

443Writing Encoding and Decoding Methods

[encoder encodeObject: bookName forKey: “AddressBookBookName”];
[encoder encodeObject: book forKey: @”AddressBookBook”];

}

-(id) initWithCoder: (NSCoder *) decoder

{

bookName = [[decoder decodeObjectForKey: @”AddressBookBookName”] retain];
book = [[decoder decodeObjectForKey: @”AddressBookBook”] retain];

return self;

}

The test program is shown next as Program 19.6.

Program 19.6 Test Program

#import “AddressBook.h”
#import <Foundation/NSAu orelea ePool.h>

int main (int argc, char *argv[])
{

NSString *aName = @”Julia Kochan”;
NSString *aEmail = @”jewls337@axlc.com”;
NSString *bName = @”Tony Iannino”;
NSString *bEmail = @”tony.iannino@techfitness.com”;
NSString *cName = @”Stephen Kochan”;
NSString *cEmail = @”steve@steve_kochan.com”;
NSString *dName = @”Jamie Baker”;
NSString *dEmail = @”jbaker@hitmail.com”;

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @”Steve’s Address Book”];

444 Chapter 19 Archiving

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

[myBook sort];

if ([NSKeyedArchiver archiveRootObject: myBook toFile: @”addrbook.arch”] == NO)
NSLog (@”archiving failed”);

[card1 release];
[card2 release];
[card3 release];
[card4 release];
[myBook release];

[pool drain];
return 0;

}

This program creates the address book and then archives it to the file addrbook.arch.
In the process of creating the archive file, realize that the encoding methods from both the
AddressBook and AddressCard classes were invoked.You can add some NSLog calls to
these methods if you want proof.

Program 19.7 shows how you can read the archive into memory to set up the address
book from a file.

Program 19.7

#import “AddressBook.h”
#import <Foundation/NSAutoreleasePool.h>

int main (int argc, char *argv[])
{

AddressBook *myBook;
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

myBook = [NSKeyedUnarchiver unarchiveObjectWithFile: @”addrbook.arch”];

[myBook list];

[pool drain];
return 0;

}

445Writing Encoding and Decoding Methods

Program 19.7 Output

======== Contents of: Steve’s Address Book =========
Jamie Baker jbaker@hitmail.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@steve_kochan.com
Tony Iannino tony.iannino@techfitness.com
==

In the process of unarchiving the address book, the decoding methods added to your
two classes were automatically invoked. Notice how easily you can read the address book
back into the program.

As noted, the encodeObject:forKey: method works for built-in classes and classes for
which you write your encoding and decoding methods according to the NSCoding pro-
tocol. If your instance contains some basic data types, such as integers or floats, you need
to know how to encode and decode them (see Table 19.1).

Here’s a simple definition for a class called Foo that contains three instance variables—
one is an NSString, another is an int, and the third is a float.The class has one setter
method, three getter methods, and two encoding/decoding methods to be used for
archiving:

@interface Foo: NSObject <NSCoding>

{

NSString *strVal;

int intVal;

float floatVal;

}

@property (copy, nonatomic) NSString *strVal;

@property int intVal;

@property float floatVal;

@end

The implementation file follows:

@implementation Foo

@synthesize strVal, intVal, floatVal;

-(void) encodeWithCoder: (NSCoder *) encoder

{

[encoder encodeObject: strVal forKey: @”FoostrVal”];
[encoder encodeInt: intVal forKey: @”FoointVal”];
[encoder encodeFloat: floatVal forKey: @”FoofloatVal”];

}

-(id) initWithCoder: (NSCoder *) decoder

446 Chapter 19 Archiving

{

strVal = [[decoder decodeObjectForKey: @”FoostrVal”] retain];
intVal = [decoder decodeIntForKey: @”FoointVal”];
floatVal = [decoder decodeFloatForKey: @”FoofloatVal”];

return self;

}

@end

The encoding routine first encodes the string value strVal using the
encodeObject:forKey: method, as was shown previously.

In Program 19.8, a Foo object is created, archived to a file, unarchived, and then displayed.

Program 19.8 Test Program

#import <Foundation/NSObject.h>
#import <Foundation/NSString.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSAutoreleasePool.h>
#import “Foo.h” // Definition for our Foo class

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Foo *myFoo1 = [[Foo alloc] init];
Foo *myFoo2;

[myFoo1 setStrVal: @”This is the string”];
[myFoo1 setIntVal: 12345];
[myFoo1 setFloatVal: 98.6];

[NSKeyedArchiver archiveRootObject: myFoo1 toFile: @”foo.arch”];

myFoo2 = [NSKeyedUnarchiver unarchiveObjectWithFile: @”foo.arch”];
NSLog (@”%@\n%i\n%g”, [myFoo2 strVal], [myFoo2 intVal], [myFoo2 floatVal]);
[myFoo1 release];
[pool drain];
return 0;

}

Program 19.8 Output

This is the string
12345
98.6

The following messages archive the three instance variables from the object:

[encoder encodeObject: strVal forKey: @”FoostrVal”];
[encoder encodeInt: intVal forKey: @”FoointVal”];
[encoder encodeFloat: floatVal forKey: @”FoofloatVal”];

447Using NSData to Create Custom Archives

Some of the basic data types, such as char, short, long, and long long, are not listed
in Table 19.1; you must determine the size of your data object and use the appropriate
routine. For example, a short int is normally 16 bits, an int and long can be 32 or 64
bits, and a long long is 64 bits. (You can use the sizeof operator, described in Chapter
13,“Underlying C Language Features,” to determine the size of any data type.) So to
archive a short int, store it in an int first and then archive it with encodeInt:forKey:.
Reverse the process to get it back: Use decodeInt:forKey: and then assign it to your
short int variable.

Using NSData to Create Custom Archives
You might not want to write your object directly to a file using the
archiveRootObject:ToFile: method, as was done in the previous program examples.
For example, perhaps you want to collect some or all of your objects and store them in a
single archive file.You can do this in Objective-C using the general data stream object class
called NSData, which we briefly visited in Chapter 16,“Working with Files.”

As mentioned in Chapter 16, an NSData object can be used to reserve an area of
memory into which you can store data.Typical uses of this data area might be to provide
temporary storage for data that will subsequently be written to a file or perhaps to hold
the contents of a file read from the disk.The simplest way to create a mutable data area is
with the data method:

dataArea = [NSMutableData data];

This creates an empty buffer space whose size expands as needed as the program exe-
cutes.

As a simple example, let’s assume that you want to archive your address book and one
of your Foo objects in the same file.Assume for this example that you’ve added keyed
archiving methods to the AddressBook and AddressCard classes (see Program 19.9).

Program 19.9

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSCoder.h>
#import <Foundation/NSData.h>
#import “AddressBook.h”
#import “Foo.h”

448 Chapter 19 Archiving

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Foo *myFoo1 = [[Foo alloc] init];
Foo *myFoo2;
NSMutableData *dataArea;
NSKeyedArchiver *archiver;
AddressBook *myBook;

// Insert code from Program 19.7 to create an Address Book
// in myBook containing four address cards

[myFoo1 setStrVal: @”This is the string”];
[myFoo1 setIntVal: 12345];
[myFoo1 setFloatVal: 98.6];

// Set up a data area and connect it to an NSKeyedArchiver object
dataArea = [NSMutableData data];

archiver = [[NSKeyedArchiver alloc]
initForWritingWithMutableData: dataArea];

// Now we can begin to archive objects
[archiver encodeObject: myBook forKey: @”myaddrbook”];
[archiver encodeObject: myFoo1 forKey: @”myfoo1”];
[archiver finishEncoding];

// Write the archived data are to a file
if ([dataArea writeToFile: @”myArchive” atomically: YES] == NO)

NSLog (@”Archiving failed!”);

[archiver release];

[myFoo1 release];
[pool drain];
return 0;

}

After allocating an NSKeyedArchiver object, the initForWritingWithMutableData:
message is sent to specify the area in which to write the archived data; this is the
NSMutabledata area dataArea that you previously created.The NSKeyedArchiver object
stored in archiver can now be sent encoding messages to archive objects in your pro-
gram. In fact, until it receives a finishEncoding message, it archives and stores all encod-
ing messages in the specified data area.

You have two objects to encode here—the first is your address book and the second is
your Foo object.You can use encodeObject: for these objects because you previously
implemented encoder and decoder methods for the AddressBook, AddressCard, and Foo
classes. (It’s important to understand that concept.)

449Using NSData to Create Custom Archives

When you are finished archiving your two objects, you send the archiver object the
finishEncoding message. No more objects can be encoded after that point, and you
need to send this message to complete the archiving process.

The area you set aside and named dataArea now contains your archived objects in a
form that you can write to a file.The message expression

[data writeToFile: @”myArchive” atomically: YES]

sends the writeToFile:atomically: message to your data stream to ask it to write its
data to the specified file, which you named myArchive.

As you can see from the if statement, the writeToFile:atomically: method returns
a BOOL value: YES if the write operation succeeds and NO if it fails (perhaps an invalid
pathname for the file was specified or the file system is full).

Restoring the data from your archive file is simple:You just do things in reverse. First,
you need to allocate a data area like before. Next, you need to read your archive file into
the data area; then you have to create an NSKeyedUnarchiver object and tell it to decode
data from the specified area.You must invoke decode methods to extract and decode your
archived objects.When you’re finished, you send a finishDecoding message to the
NSKeyedUnarchiver object.

This is all done in Program 19.10.

Program 19.10

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSCoder.h>
#import <Foundation/NSData.h>
#import “AddressBook.h”
#import “Foo.h”

int main (int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSData *dataArea;
NSKeyedUnarchiver *unarchiver;
Foo *myFoo1;
AddressBook *myBook;
// Read in the archive and connect an
// NSKeyedUnarchiver object to it

dataArea = [NSData dataWithContentsOfFile: @”myArchive”];

450 Chapter 19 Archiving

if (! dataArea) {
NSLog (@“Can’t read back archive file!”);
Return (1);

}

unarchiver = [[NSKeyedUnarchiver alloc]
initForReadingWithData: dataArea];

// Decode the objects we previously stored in the archive
myBook = [unarchiver decodeObjectForKey: @”myaddrbook”];
myFoo1 = [unarchiver decodeObjectForKey: @”myfoo1”];

[unarchiver finishDecoding];

[unarchiver release];

// Verify that the restore was successful
[myBook list];
NSLog (“%@\n%i\n%g”, [myFoo1 strVal],

[myFoo1 intVal], [myFoo1 floatVal]);

[pool release];
return 0;

}

Program 19.10 Output

======== Contents of: Steve’s Address Book =========
Jamie Baker jbaker@hitmail.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@steve_kochan.com
Tony Iannino tony.iannino@techfitness.com
===

This is the string
12345
98.6

The output verifies that the address book and your Foo object were successfully re-
stored from the archive file.

Using the Archiver to Copy Objects
In Program 19.2, you tried to make a copy of an array containing mutable string elements
and you saw how a shallow copy of the array was made.That is, the actual strings them-
selves were not copied—only the references to them were.

451Using the Archiver to Copy Objects

You can use the Foundation’s archiving capabilities to create a deep copy of an ob-
ject. For example, Program 19.11 copies dataArray to dataArray2 by archiving
dataArray into a buffer and then unarchiving it, assigning the result to dataArray2.You
don’t need to use a file for this process; the archiving and unarchiving process can all
take place in memory.

Program 19.11

#import <Foundation/NSObject.h>
#import <Foundation/NSAutoreleasePool.h>
#import <Foundation/NSString.h>
#import <Foundation/NSKeyedArchiver.h>
#import <Foundation/NSArray.h>

int main (int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSData *data;
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

[NSMutableString stringWithString: @”one”],
[NSMutableString stringWithString: @”two”],
[NSMutableString stringWithString: @”three”],
nil

];

NSMutableArray *dataArray2;
NSMutableString *mStr;

// Make a deep copy using the archiver

data = [NSKeyedArchiver archivedDataWithRootObject: dataArray];
dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData: data];

mStr = [dataArray2 objectAtIndex: 0];
[mStr appendString: @”ONE”];

NSLog (@”dataArray: “);
for (NSString *elem in dataArray)

NSLog (“%@”, elem);

NSLog (@”\ndataArray2: “);
for (NSString *elem in dataArray2)

NSLog (“%@”, elem);

[pool drsin];
return 0;

}

452 Chapter 19 Archiving

Program 19.11 Output

dataArray:
one
two
three

dataArray2:
oneONE
two
three

The output verifies that changing the first element of dataArray2 had no effect on
the first element of dataArray.That’s because a new copy of the string was made through
the archiving/unarchiving process.

The copy operation in Program 19.11 is performed with the following two lines:

data = [NSKeyedArchiver archivedDataWithRootObject: dataArray];

dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData: data];

You can even avoid the intermediate assignment and perform the copy with a single
statement, like this:

dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData:

[NSKeyedArchiver archivedDataWithRootObject: dataArray]];

This is a technique you might want to keep in mind next time you need to make a
deep copy of an object or of an object that doesn’t support the NSCopying protocol.

Exercises
1. In Chapter 15, Program 15.8 generated a table of prime numbers. Modify that pro-

gram to write the resulting array as an XML property list to the file primes.pl.
Then examine the contents of the file.

2. Write a program to read in the XML property list created in exercise 1 and store
the values in an array object. Display all the elements of the array to verify that the
restore operation was successful.

3. Modify Program 19.2 to display the contents of one of the XML property lists
(.plist files) stored in the /Library/Preferences folder.

4. Write a program to read in an archived AddressBook and look up an entry based
on a name supplied on the command line, like so:

$ lookup gregory

Part III
Cocoa and the

iPhone SDK

20 Introduction to Cocoa

21 Writing iPhone Applications

20
Introduction to Cocoa

Throughout this book you developed programs that had a simple user interface.You re-
lied on the NSLog routine to display messages on the console. However, as useful as this
routine is, it is very limited in its capabilities. Certainly, other programs you use on the
Mac aren’t as unfriendly. In fact, the Mac’s reputation is based on its user-friendly dialogs
and ease of use. Lucky for you, this is where XCode combined with the Interface Builder
application come to the rescue. Not only does this combination offer a powerful environ-
ment for program development, consisting of editing and debugging tools, and conven-
ient access to online documentation, but it also provides an environment for easily
developing sophisticated graphical user interfaces (GUIs).

The frameworks that provide the support for your applications to provide a rich user
experience are called Cocoa, which actually consists of two frameworks: the Foundation
framework, with which you are already familiar, and the Application Kit (or AppKit)
framework.This latter framework provides the classes associated with windows, buttons,
lists, and so on.

Framework Layers
A diagram is often used to illustrate the different layers that separate the application at the
topmost level from the underlying hardware. One such representation is depicted in
Figure 20.1

The kernel provides the low-level communication to the hardware in the form of device
drivers. It manages the system’s resources, which includes scheduling programs for execu-
tion, managing memory and power, and performing basic I/O operations.

As its name implies, Core Services provides support at a lower or “core” level than that
provided in the layers above it. For example, here you find support for collections, net-
working, debugging, file management, folders, memory management, threads, time, and
power.

The Application Services layer includes support for printing and graphics rendering, in-
cluding Quartz, OpenGL, and Quicktime.

456 Chapter 20 Introduction to Cocoa

Cocoa (Foundation and AppKit Frameworks)

Application

Application Services

Core Services

Mac OS X kernel

User

Computer Resources (memory, disk, display, etc.)

Figure 20.1 The application hierarchy

Directly below your application sits the Cocoa layer.As noted, Cocoa includes the
Foundation and AppKit frameworks. Foundation offers classes for working with collec-
tions, strings, memory management, the file system, archiving, and so on.AppKit provides
classes for managing views, windows, documents, and the rich user interface for which
Mac OS X is well known.

From this description, there seems to be duplication of functionality between some of
the layers. Collections exist in both the Cocoa and Core Services layers. However, the
former builds on support of the latter.Also, in some cases, a layer can be bypassed. For ex-
ample, some Foundation classes, such as those that deal with file system, rely directly on
functionality in the Core Services layer and so bypass the Application Services layer. In
many cases, the Foundation framework defines an object-oriented mapping of data struc-
tures defined in the lower-level Core Services layer (which is written primarily in the
procedural C language).

Cocoa Touch
The iPhone contains a computer that runs a scaled-down version of Mac OS X. Some
features in the iPhone’s hardware, such as its accelerometer, are unique to the phone and
are not found in other Mac OS X computers, such as MacBooks or iMacs.

Note
Actually, Mac notebooks contain an accelerometer so that the hard drive can be parked if
the computer gets dropped; however, you can’t access this accelerometer directly from your
programs.

457Cocoa Touch

Whereas the Cocoa frameworks are designed for application development for Mac OS
X desktop and notebook computers, the Cocoa Touch frameworks are for applications
targeted for the iPhone and iTouch.

Both Cocoa and Cocoa Touch have the Foundation framework in common. However,
the UIKit replaces the AppKit framework under Cocoa Touch, providing support for
many of the same types of objects, such as windows, views, buttons, text fields, and so on.
In addition, Cocoa Touch provides classes for working with the accelerometer, triangulat-
ing your location with GPS and WiFi signals, and the touch-driven interface, and also
eliminates classes that aren’t needed, such as those that support printing.

That concludes this brief overview of Cocoa. In the next chapter, you learn how to
write an application for the iPhone, using the simulator that is part of the iPhone SDK.

21
Writing iPhone Applications

In this chapter, you’ll develop two simple iPhone applications.The first illustrates some
fundamental concepts to familiarize you with using Interface Builder, making connec-
tions, and understanding delegates, outlets, and actions. For the second iPhone application,
you’ll build a fraction calculator. It combines what you learned while developing the first
application with what you’ll learned throughout the rest of the book.

The iPhone SDK
To write an iPhone application, you have to install Xcode and the iPhone SDK.This
SDK is available free of charge from Apple’s Web site.To download the SDK, you’ll need
to first register to be an Apple Developer.That process is also free.To get the appropriate
links, you can start at developer.apple.com and navigate to the appropriate point. It’s a
great idea to become familiar with that site.Appendix D,“Resources,” lists some direct
links to particular spots on this site that might be of interest to you.

The discussions in this chapter are based on Xcode 3.1.1 and the iPhone SDK for
iPhone OS 2.1. Later versions of either should be compatible with what’s described here.

Your First iPhone Application
The first application shows how you can put a black-colored window on the iPhone’s
screen, allow for the user to press a button, and then display some text in response to the
pressing of that button.

Note
The second application is more fun! You use the knowledge gained from your first applica-
tion to build a simple calculator that does operations with fractions. You can use your
Fraction class that you worked with earlier in the book, as well as a modified
Calculator class. This time, your calculator needs to know how to work with fractions.

460 Chapter 21 Writing iPhone Applications

Figure 21.1 First iPhone application.

Let’s dive right into the first program.The pedagogy used in this chapter is not to cover
all the details; as noted, there’s simply not enough space to do that here. Instead, we walk
you through the steps to give you the necessary foundation (no pun intended!) for you to
explore and learn more concepts on your own with a separate Cocoa or iPhone program-
ming text.

Figure 21.1 shows the first application you develop for the iPhone, running on the
iPhone simulator (more about that shortly).

This application is designed so that when you press the button labeled “1” the corre-
sponding digit appears in the display (see Figure 21.2).That’s all it does! This simple appli-
cation lays the groundwork for the second fraction calculator application.

You’ll create you application using Xcode and your user interface using Interface
Builder. By this point in the book, you should be quite comfortable using Xcode if you’ve
been using it throughout to enter and test your programs. Interface Builder, as noted, is
the tool that lets you design your user interface by placing UI elements such as tables, la-
bels, and buttons in a window that resembles the iPhone’s screen. Using Interface Builder,
like any powerful development tool, takes some getting used to.

Apple distributes an iPhone simulator as part of the iPhone SDK.The simulator repli-
cates much of your iPhone environment, including its home screen, Safari web browser,

461Your First iPhone Application

Figure 21.2 iPhone application results.

Contacts application, and so on.The simulator makes it much easier to debug your appli-
cations; you don’t have to download each iteration of your application to an actual iPhone
device and then debug it there.This can save you a lot of time and effort.

To run applications on the iPhone device, you need to register for the iPhone devel-
oper program and pay a $99 fee (as of the time of this writing) to Apple. In turn, you will
receive an activation code that will allow you to get an iPhone Development Certificate
to enable you to test and install applications on your iPhone. Unfortunately, you cannot
develop applications even for your own iPhone without going through this process. Note
that the application we develop in this chapter will be loaded and tested on the iPhone
simulator and not on an iPhone device.

Creating a New iPhone Application Project
Let’s return to developing your first application.After you install the iPhone SDK, start up
the Xcode application. Select New Project from the File menu. Under iPhone OS (and if
you don’t see this in the left pane, you haven’t installed the iPhone SDK), click on Appli-
cation.You should see a window, as shown in Figure 21.3.

Here you see templates that provide starting points for different types of applications, as
summarized in the Table 21.1.

462 Chapter 21 Writing iPhone Applications

Figure 21.3 Starting a new iPhone project.

Table 21.1 iPhone Application Templates

Application Type Description

Navigation-Based For an application that uses a navigation controller.
Contacts is a sample application of this type.

OpenGL ES For OpenGL graphics-based applications such as
games.

Tab Bar For applications that use a tab bar. An example would
be the iPod application.

Utility For an application that has a flipside view. The Stock
Quote application is an example of this type.

View-Based For an application that has a single view. You draw into
the view and then display that view in the window.

Window-Based For an application that starts with just the main iPhone
window. You can use this as the starting point for any
application.

463Your First iPhone Application

Figure 21.4 New iPhone project iPhone_1 is created.

Returning to your New Project window, select Window-Based Application in the top
rightmost pane and then click on the Choose button.When next prompted to enter the
project name (in the Save As box), enter the text iPhone_1 and click Save.This also be-
comes your application’s name by default.As you know from previous projects you cre-
ated with Xcode, a new project will now be created for you that contains templates for
files you’ll want to use.This is shown in Figure 21.4.

Depending on your settings and previous uses of Xcode, your window might not ap-
pear precisely as depicted in Figure 21.4.You can choose to follow along with whatever
your current layout resembles or else try to make it match the figure more closely.

In the top-left corner of your Xcode window, you see a drop-down labeled with your
current selection of SDK and Active Configuration. Because we’re not developing your
application to run directly on the iPhone, you want the SDK set up to run with the
iPhone simulator and the Configuration to be set to Debug. If the drop-down is not la-
beled Simulator | Debug, set the appropriate options as shown in Figure 21.5.

Entering Your Code
Now we’re ready to modify some of your project files. Notice that a class called project-
name AppDelegate.h and project-name AppDelegate.m were created for you, where in this
example project-name is iPhone_1.The work of handling the various buttons and labels in
the type of Window-based application you’re creating gets delegated to a class called project-
name AppDelegate, or in this case, iPhone_1AppDelegate. In this class we’ll define meth-

464 Chapter 21 Writing iPhone Applications

Figure 21.5 iPhone_1 project with SDK
and Configuration options set.

ods to respond to actions that occur in the iPhone’s window, such as the pressing of a but-
ton or the movement of a slider.As you’ll see, it’s in the Interface Builder application that
you make the actual connection between these controls and the corresponding methods.

The class will also have instance variables whose values correspond to some control in
your iPhone’s window, such as the name on a label or the text displayed in an editable
text box.These variables are known as outlets, and like your action routines, in Interface
Builder you connect your instance variables to the actual control in the iPhone’s window.

For our first application, we need a method that responds to the action of the pressing of
the button labeled 1.We also need an outlet variable that contains (among other informa-
tion) the text to be displayed in the label that we create at the top of the iPhone’s window.

Edit the file iPhone_1AppDelegate.h to add a new UILabel variable called display
and declare an action method called click1: to respond to the pressing of the button.
Your interface file should look as shown in Program 21.1. (The comment lines automati-
cally inserted at the head of the file are not shown here.)

Program 21.1 iPhone_1AppDelegate.h

#import <UIKit/UIKit.h>

@interface iPhone_1AppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;

465Your First iPhone Application

UILabel *display;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UILabel *display;

- (IBAction) click1: (id) sender;

@end

Notice that iPhone applications import the header file <UIKit/UIKit.h>.This header
file, in turn, imports other UIKit header files, in a similar way that the Foundation.h
header file imported other header files you needed, such as NSString.h and NSObject.h.
If you want to examine the contents of this file, you have to hunt a bit. Here’s where it’s
installed on my system at the time of this writing:
/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulat

or2.1.sdk/System/Library/Frameworks/UIKit.framework/Headers/UIKit.h.
The iPhone_1AppDelegate class now has two instance variables.The first is a

UIWindow object called window.That instance variable is created automatically when you
create the project, and it references the iPhone’s main window.You added another instance
variable belonging to the UILabel class called display.This will be an outlet variable that
will be connected to a label.When you set this variable’s text field, it updates the corre-
sponding text for the label in the window. Other methods defined for the UILabel class
allow you to set and retrieve other attributes of a label, such as its color, the number of
lines, and the size of the font.

You’ll want to use other classes in your interface as you learn more about iPhone pro-
gramming that we won’t describe here.The names of some of these give you a clue as to
their purpose: UITextField, UIFont, UIView, UITableView, UIImageView, UIImage, and
UIButton.

Both the window and display instance variables are outlets, and in the property decla-
rations for these two variables, note the use of IBOutlet identifier. IBOutlet is really
defined as nothing in the UIKit header file UINibDeclarations.h. (That is, it is literally
replaced by nothing in the source file by the preprocessor.) However, it’s needed because
Interface Builder looks for IBOutlet when it reads your header file to determine which
of your variables can be used as outlets.

In the interface file, note that we declare a method called click1: that takes a single
argument called sender.When the click1: method is called, the method will be passed
information related to the event in this argument. For example, if you had a single action
routine that you used to handle the pressing of different buttons, the argument can be
queried to ascertain the particular button that was pressed.

The click1: method is defined to return a value of type IBAction. (This is defined as
void in the UINibDeclarations.h header file.) Like IBOutlet, Interface Builder uses this

466 Chapter 21 Writing iPhone Applications

identifier when it examines your header file to identify methods that can be used as ac-
tions.

Now it’s time to modify the corresponding iPhone_1AppDelegate.m implementation
file for your class. Here you synthesize the accessor methods for your display variable
(the window access methods are already synthesized for you) and add the definition for
your click1: method.

Edit your implementation file so that it resembles the one shown in Program 21.1.

Program 21.1 iPhone_1AppDelegate.m

#import ““iPhone_1AppDelegate.h””
@implementation iPhone_1AppDelegate

@synthesize window, display;

- (void) applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after application launch
[window makeKeyAndVisible];

}

-(IBAction) click1: (id) sender
{

[display setText: @”1”];
}

- (void) dealloc {
[window release];
[super dealloc];

}

@end

The applicationDidFinishLaunching: method is automatically called by the iPhone
runtime system once; as its name implies, your application has finished launching.This is
the place where you can initialize your instance variables, draw things on the screen, and
make your window visible to display its contents.This last action is done by sending the
makeKeyAndVisible message sent to your window at the end of the method.

The click1: method sets the outlet variable display to the string 1 by using
UILabel’s setText: method.After you connect the pressing of the button to the invoca-
tion of this method, it can perform the desired action of putting a 1 into the display in the
iPhone’s window.To make the connection, you must now learn how to use Interface
builder. Before you do that, build the program to remove any compiler warning or error
messages.

467Your First iPhone Application

Designing the Interface
In Figure 21.4, and in your Xcode main window, notice a file called MainWindow.xib.An
xib file contains all the information about the user interface for your program, including
information about its windows, buttons, labels, tab bars, text fields, and so on. Of course
you don’t have a user interface yet! That’s the next step.

Double-click on the MainWindow.xib file.This causes another application, called Inter-
face Builder, to launch.You can also access the XIB file from the Resources folder of your
project.

When Interface Builder starts, you get a series of windows drawn on your screen, as
depicted in Figures 21.6, 21.7, and 21.8.The actual windows that are opened might differ
from the figures.

The Library window provides a palette of controls that you can use for your interface.
This window is depicted in Figure 21.6 in one of its display formats.

The MainWindow.xib window (Figure 21.7) is the controlling window for establishing
connections between your application code and the interface, as you’ll see shortly.

Figure 21.6 Interface Builder Library window.

468 Chapter 21 Writing iPhone Applications

Figure 21.7 Interface Builder MainWindow.xib.

The window simply labeled Window shows the layout of the iPhone’s main window.
Because you haven’t designed anything for your iPhone’s window yet, it starts out empty,
as shown in Figure 21.8.

The first thing we’ll do is set the iPhone’s window to black.To do this, first click inside
the window labeled Window. Now, select Inspector from the Tools menu.This should bring
up the Inspector window, as shown in Figure 21.9.

Make sure your Inspector window is labeled Window Attributes, as shown in Figure
21.8. If it isn’t, click on the leftmost tab in the top tab bar to get the correct window dis-
played.

If you glance down to the View section of the window, you see an attribute labeled
Background. If you double-click inside the white-filled rectangle next to Background, it
brings up a color picker for you. Choose black from the picker, which changes the rectan-
gle next to Background attribute in the Inspector from white to black (see Figure 21.10).

If you take a look at the window labeled Window, which represents the iPhone’s display
window, you see that it’s been changed to black, as shown in Figure 21.11.

You can now close the Colors window.
You create new objects in your iPhone interface window by click-dragging an object

from the Library window into your iPhone window. Click-drag a Label now. Release the
mouse when the label is near the center of the window, close to the top, as shown in
Figure 21.12.

Blue guide lines appear in your window as you move the label around inside your win-
dow. Sometimes they appear to help you align objects with other objects previously
placed in the window.At other times, they appear to make sure your objects are spaced far
enough apart from other objects and from the edges of the window, to be consistent with
Apple’s interface guidelines.

469Your First iPhone Application

Figure 21.8 Interface Builder iPhone window.

Figure 21.9 Interface Builder Inspector window.

470 Chapter 21 Writing iPhone Applications

Figure 21.10 Changing the window’s background color.

Figure 21.11 Interface window changes to black.

471Your First iPhone Application

You can always reposition the label in the window at any time in the future by click-
dragging it to another spot inside the window.

Let’s now set some attributes for this label. In your window, if it’s not currently se-
lected, click the label you just created to select it. Notice that the Inspector window auto-
matically changes to give you information about the currently selected object in your
window.We don’t want any text to appear by default for this label, so change the Text
value to an empty string. (That is, delete the string Label from the text field shown in the
Inspector’s window.)

For the Layout attribute, select Right-justified for the alignment. Finally, change the
background color for the label to blue (or any other color you choose), like you changed
the window’s background color to black.Your Inspector window should resemble Figure
21.13.

Now let’s change the size of the label. Go back to Window and simply resize the label
by pulling out along its corners and sides. Resize and reposition the label so that it looks
like the one shown in Figure 21.14

Now we add a button to the interface. From the Library window, click-drag a Round
Rect Button object into your interface window, placing it toward the lower-left corner of
the window, as shown in Figure 21.15.You can change the label on the button in one of

Figure 21.12 Adding a label.

472 Chapter 21 Writing iPhone Applications

two ways: by double-clicking on the button and then typing your text, or by setting the
Title field in the Inspector window. Either way you choose, make you window match the
one shown in Figure 21.15.

Now we have a label that we want to connect to our display instance variable in our
program so that when we set the variable in our program the label’s text will be changed.

We also have a button labeled 1 that we want to set to invoke our click1: method
whenever it gets pressed.That method sets the value of display’s text field to 1.And be-
cause that variable will be connected to the label, the label will then be updated.As a re-
cap, here’s the sequence we want to set up:

1. The user presses the button labeled 1.

2. This event causes the click1: method to be invoked.

3. The click1: method changes the text of the instance variable display to the
string 1.

4. Because the UILabel object display connects to the label in the iPhone’s window,
this label updates to the corresponding text value, or to the value 1.

Figure 21.13 Changing the label’s attributes.

473Your First iPhone Application

Figure 21.14 Sizing and positioning a label.

Figure 21.15 Adding a button to the interface.

474 Chapter 21 Writing iPhone Applications

Figure 21.16 Adding an action for a button.

For this sequence to work, we just need to make the two connections. Let’s discuss
how to do it.

First, let’s connect the button to the IBAction method click1:.You do this by hold-
ing down the Control key while you click on the button and drag the blue line that ap-
pears on the screen to the application delegate in the MainWindow.xib window.This is
shown in Figure 21.16.

When you release the mouse over the Delegate cube, a drop-down appears that allows
you to select an IBAction method to connect to this button. In our case, we have only
one such method called click1: so that appears in the drop down. Select that method to
make the connection, as shown in Figure 21.17.

Now, let’s connect the display variable to the label.Whereas pressing the button
causes a method in the application to be executed (that is, the flow of action is from the
interface to the application delegate), setting the value of an instance variable in the appli-
cation causes the label in the iPhone’s window to be updated. (Here the flow is from the
application delegate to the interface.) So for this reason, you start by holding down the
Control key while clicking on the application delegate icon and dragging the blue line
that appears to the label in Window.This is shown in Figure 21.18.

475Your First iPhone Application

Figure 21.17 Connecting the event to the method.

Figure 21.18 Connecting an outlet variable.

476 Chapter 21 Writing iPhone Applications

When you release the mouse, you get a list of IBOutlet variables of the corresponding
class as the control (UILabel) to choose from.We have one such variable in our program,
and it’s called display. Choose this variable (as shown in Figure 21.19) and make the
connection.

That’s it; you’re done! Select File->Save from Interface Builder’s menu bar and then
Build and Go from Xcode. (You can initiate this from Interface Builder as well.)

If all goes well, the program will successfully build and begin execution.When execu-
tion begins, your program will be loaded into the iPhone simulator, which will appear on
your computer’s display.The simulator window should appear as shown in Figure 21.1 at
the start of this chapter.You simulate pressing a button with the simulator by simply click-
ing it.When you do that, the sequence of steps we outlined and the connections you
made should result in the display of the string 1 in the label at the top of the display, as
shown in Figure 21.2.

Figure 21.19 Finishing the connection.

An iPhone Fraction Calculator
The next example is a bit more involved, but the concepts from the previous example
equally apply.We’re not going to show all the steps to create this example, but rather give

477An iPhone Fraction Calculator

a summary of the steps and an overview of the design methodology. Of course, we’ll also
show all the code.

First, let’s see how the application works. Figure 21.20 shows what the application
looks like in the simulator just after launching.

The calculator application allows you to enter fractions by first keying in the numera-
tor, pressing the key labeled Over, and then keying in the denominator. So to enter the
fraction 2/5, you would press 2, followed by Over, followed by 5.You’ll note that, unlike
other calculators, this one actually shows the fraction in the display, so 2/5 is displayed as
2/5.

After keying in one fraction, you then choose an operation—addition, subtraction,
multiplication, or division—by pressing the appropriately labeled key +, –, ×, or ÷, respec-
tively.

After keying-in the second fraction, you then complete the operation by pressing the
= key, just as you would with a standard calculator.

Figure 21.20 Fraction calculator after launch.

Note
This calculator is designed to perform just a single operation between two fractions. It’s left
as an exercise at the end of this chapter for you to remove this limitation.

478 Chapter 21 Writing iPhone Applications

Figure 21.21 Keying in an operation.

The display is continuously updated as keys are pressed. Figure 21.21 shows the display
after the fraction 4/6 has been entered and the multiplication key has been pressed.

Figure 21.22 shows the result of multiplying the fractions 4/6 and 2/8 together.You’ll
note that the result of 1/6 indicates that the result has first been reduced.

Starting the New Fraction_Calculator Project
The first iPhone program started from a Windows-based project template. Here you did
your (minimal) UI work directly in the application controller (the AppDelegate class).
This is not the recommended approach for developing UI-rich applications.The AppDel-
egate class typically just handles changes related to the state of the application itself, such
as when the application finishes launching or when it is about to be deactivated.

The view controller (implemented with the UIViewController class) is where you
should perform your actions related to the UI.This might be displaying text, reacting to
the pressing of a button, or putting an entirely new view on the iPhone’s screen.

For this second program example, you’ll start by creating a new project.This time, se-
lect View-Based Application from the New Project window. Call your new project
Fraction_Calculator.

479An iPhone Fraction Calculator

When your project is created, this time you’ll notice you get two class templates de-
fined for you. Fraction_CalculatorAppDelegate.h and
Fraction_CalculatorAppDelegate.m define the application’s controller class for your
project, while Fraction_CalculatorViewController.h and
Fraction_CalculatorViewController.m define the view controller class for your proj-
ect.As noted, it’s in this latter class where you’ll perform all your work.

We’ll start first with the application controller class. It contains two instance variables:
one for referencing the iPhone’s window and another for the view controller.These have
both been set up for you by Xcode. In fact, there are no changes you need to make to
either the application controller’s .h or .m files.

The Fraction_CalculatorAppDelegate interface file is shown in Program 21.2.

Program 21.2 Fraction_CalculatorAppDelegate.h Interface File

#import <UIKit/UIKit.h>

@class Fraction_CalculatorViewController;

@interface Fraction_CalculatorAppDelegate : NSObject <UIApplicationDelegate> {
IBOutlet UIWindow *window;
IBOutlet Fraction_CalculatorViewController *viewController;

}

Figure 21.22 The result of multiplying two fractions.

480 Chapter 21 Writing iPhone Applications

@property (nonatomic, retain) UIWindow *window;
@property (nonatomic, retain) Fraction_CalculatorViewController *viewController;

@end

The UIWindow instance variable window serves the same purpose as in the first pro-
gram example: it represents the iPhone’s window.The
Fraction_CalculatorViewController instance variable represents the view controller
that will manage all the interaction with the user, as well as the display. In the implemen-
tation file for this class you will put all the work associated with these tasks.

Program 21.2 shows the implementation file for the application controller class.As
noted, we’re not doing any of the work in this file like we did in Program 21.1; that’s all
being delegated to the view controller. So this file appears untouched, exactly as it was
generated by Xcode for you when you created the new project.

Program 21.2 Fraction_CalculatorAppDelegate.m Implementation File

#import “Fraction_CalculatorAppDelegate.h”
#import “Fraction_CalculatorViewController.h”

@implementation Fraction_CalculatorAppDelegate

@synthesize window;
@synthesize viewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after app launch
[window addSubview:viewController.view];
[window makeKeyAndVisible];

}

- (void)dealloc {
[viewController release];
[super dealloc];

}

Defining the View Controller
Now let’s write the code for the view controller class
Fraction_CalculatorViewController.We’ll start with the interface file.This is shown
in Program 21.2.

Program 21.2 Fraction_CalculatorViewController.m Interface File

#import <UIKit/UIKit.h>
#import “Calculator.h”

@interface Fraction_CalculatorViewController : UIViewController {
UILabel *display;
char op;

481An iPhone Fraction Calculator

int currentNumber;
NSMutableString *displayString;
BOOL firstOperand, isNumerator;
Calculator *myCalculator;

}

@property (nonatomic, retain) IBOutlet UILabel *display;
@property (nonatomic, retain) NSMutableString *displayString;

-(void) processDigit: (int) digit;
-(void) processOp: (char) op;
-(void) storeFracPart;

// Numeric keys

-(IBAction) clickDigit: (id) sender;

// Arithmetic Operation keys

-(IBAction) clickPlus: (id) sender;
-(IBAction) clickMinus: (id) sender;
-(IBAction) clickMultiply: (id) sender;
-(IBAction) clickDivide: (id) sender;

// Misc. Keys

-(IBAction) clickOver: (id) sender;
-(IBAction) clickEquals: (id) sender;
-(IBAction) clickClear: (id) sender;

@end

There are housekeeping variables for building the fractions (currentNumber,
firstOperand, and isNumerator), and for building the string for the display
(displayString).There is also a Calculator object (myCalculator) that can perform
the actual calculation between the two fractions.We will associate a single method called
clickDigit: to handle the pressing of any of the digit keys 0-9. Finally, we define meth-
ods to handle storing the operation to be performed (clickPlus:, clickMinus:,
clickMultiply:, clickDivide:), carrying out the actual calculation when the = key is
pressed (clickEquals:), clearing the current operation (clickClear:), and separating the
numerator from the denominator when the Over key is pressed (clickOver:). Several
methods (processDigit:, processOp:, and storeFracPart) are defined to assist in the
aforementioned chores.

Program 21.2 shows the implementation file for this controller class.

Program 21.2 Fraction_CalculatorViewController.m Implementation File

#import “Fraction_CalculatorAppDelegate.h”
@implementation Fraction_CalculatorAppDelegate

@synthesize window, displayString, display;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

482 Chapter 21 Writing iPhone Applications

// Override point for customization after application launch

firstOperand = YES;
isNumerator = YES;
self.displayString = [NSMutableString stringWithCapacity: 40];
myCalculator = [[Calculator alloc] init];
[window makeKeyAndVisible];

}

-(void) processDigit: (int) digit
{

currentNumber = currentNumber * 10 + digit;

[displayString appendString: [NSString stringWithFormat: @”%i”, digit]];
[display setText: displayString];

}

- (IBAction) clickDigit:(id)sender
{

int digit = [sender tag];

[self processDigit:digit];
}

-(void) processOp: (char) theOp
{

NSString *opStr;

op = theOp;

switch (theOp) {
case ‘+’:

opStr = @” + “;
break;

case ‘-’:
opStr = @” – “;
break;

case ‘*’:
opStr = @” × “;
break;

case ‘/’:
opStr = @” ÷ “;
break;

}

[self storeFracPart];
firstOperand = NO;
isNumerator = YES;

[displayString appendString: opStr];
[display setText: displayString];

}

-(void) storeFracPart
{

483An iPhone Fraction Calculator

if (firstOperand) {
if (isNumerator) {

myCalculator.operand1.numerator = currentNumber;
myCalculator.operand1.denominator = 1; // e.g. 3 * 4/5 =

}
else

myCalculator.operand1.denominator = currentNumber;
}
else if (isNumerator) {

myCalculator.operand2.numerator = currentNumber;
myCalculator.operand2.denominator = 1; // e.g. 3/2 * 4 =

}
else {

myCalculator.operand2.denominator = currentNumber;
firstOperand = YES;

}

currentNumber = 0;
}

-(IBAction) clickOver: (id) sender
{

[self storeFracPart];
isNumerator = NO;
[displayString appendString: @”/”];
[display setText: displayString];

}

// Arithmetic Operation keys

-(IBAction) clickPlus: (id) sender
{

[self processOp: ‘+’];
}

-(IBAction) clickMinus: (id) sender
{

[self processOp: ‘-’];
}

-(IBAction) clickMultiply: (id) sender
{

[self processOp: ‘*’];
}

-(IBAction) clickDivide: (id) sender
{

[self processOp: ‘/’];
}

// Misc. Keys

-(IBAction) clickEquals: (id) sender
{

[self storeFracPart];
[myCalculator performOperation: op];

484 Chapter 21 Writing iPhone Applications

[displayString appendString: @” = “];
[displayString appendString: [myCalculator.accumulator convertToString]];
[display setText: displayString];

currentNumber = 0;
isNumerator = YES;
firstOperand = YES;
[displayString setString: @””];

}

-(IBAction) clickClear: (id) sender
{

isNumerator = YES;
firstOperand = YES;
currentNumber = 0;
[myCalculator clear];

[displayString setString: @””];
[display setText: displayString];

}

- (void)dealloc {
[window release];
[myCalculator dealloc];
[super dealloc];

}

@end

The calculator’s window still contains just one label as in the previous application, and
we still call it display.As the user enters a number digit-by-digit, we need to build the
number along the way.The variable current_Number holds the number-in-progress,
while the BOOL variables firstOperand and isNumerator keep track of whether this is
the first or second operand entered and whether the user is currently keying in the nu-
merator or the denominator of that operand.

When a digit button is pressed on the calculator, we set it up so that some identifying
information will be passed to the clickDigit: method to identify which digit button
was pressed.This is done by setting the button’s attribute (using Interface Builder’s In-
spector) called tag to a unique value for each digit button. In this case, we want to set the
tag to the corresponding digit number. So the tag for the button labeled 0 will be set to
0, the tag for the button labeled 1 to 1, and so on. By then sending the tag message to
the sender parameter that is passed to the clickDigit: method, you can retrieve the
value of the button’s tag.This is done in the clickDigit: method as shown:

- (IBAction) clickDigit:(id)sender

{

int digit = [sender tag];

[self processDigit:digit];

}

485An iPhone Fraction Calculator

There are a lot more buttons in Program 21.2 than in the first application. Most of the
complexity in the view controller’s implementation file revolves around building the frac-
tions and displaying them.As noted, as a digit button 0–9 gets pressed, the action method
clickDigit: gets executed.That method calls the processDigit: method to tack the
digit onto the end of the number that’s being built in the variable currentNumber.That
method also adds the digit to the current display string that’s kept in the variable
displayString, and updates the display:

-(void) processDigit: (int) digit

{

currentNumber = currentNumber * 10 + digit;

[displayString appendString: [NSString stringWithFormat: @”%i”, digit]];
[display setText: displayString];

}

When the = key is pressed, the clickEquals: method gets invoked to perform the
operation.The calculator performs the operation between the two fractions, storing the
result in its accumulator.This accumulator is fetched inside the clickEquals: method,
and the result is added to the display.

The Fraction Class
The Fraction class remains largely unchanged from earlier examples in this text.There is
a new convertToString method that was added to convert a fraction to its equivalent
string representation. Program 21.2 shows the Fraction interface file followed immedi-
ately by the corresponding implementation file.

Program 21.2 Fraction.h Interface File

#import <UIKit/UIKit.h>

@interface Fraction : NSObject {
int numerator;
int denominator;

}

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(Fraction *) add: (Fraction *) f;
-(Fraction *) subtract: (Fraction *) f;
-(Fraction *) multiply: (Fraction *) f;
-(Fraction *) divide: (Fraction *) f;
-(void) reduce;
-(double) convertToNum;
-(NSString *) convertToString;

@end

486 Chapter 21 Writing iPhone Applications

Program 21.2 Fraction.m Implementation File

#import “Fraction.h”

@implementation Fraction

@synthesize numerator, denominator;

-(void) setTo: (int) n over: (int) d
{

numerator = n;
denominator = d;

}

-(void) print
{

NSLog (@”%i/%i”, numerator, denominator);
}

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return 1.0;

}

-(NSString *) convertToString;
{

if (numerator == denominator)
if (numerator == 0)

return @”0”;
else

return @”1”;
else if (denominator == 1)

return [NSString stringWithFormat: @”%i”, numerator];
else

return [NSString stringWithFormat: @”%i/%i”,
numerator, denominator];

}

// add a Fraction to the receiver

-(Fraction *) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

// result will store the result of the addition
Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

487An iPhone Fraction Calculator

resultNum = numerator * f.denominator + denominator * f.numerator;
resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];

return [result autorelease];
}

-(Fraction *) subtract: (Fraction *) f
{

// To sub two fractions:
// a/b - c/d = ((a*d) - (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];
int resultNum, resultDenom;

resultNum = numerator * f.denominator - denominator * f.numerator;
resultDenom = denominator * f.denominator;

[result setTo: resultNum over: resultDenom];
[result reduce];
return [result autorelease];

}

-(Fraction *) multiply: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

[result setTo: numerator * f.numerator over: denominator
* f.denominator];

[result reduce];

return [result autorelease];
}

-(Fraction *) divide: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

[result setTo: numerator * f.denominator over: denominator * f.numerator];
[result reduce];

return [result autorelease];
}

- (void) reduce
{

int u = numerator;
int v = denominator;
int temp;

if (u == 0)
return;

else if (u <0)
u = -u;

488 Chapter 21 Writing iPhone Applications

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

numerator /= u;
denominator /= u;

}

@end

The convertToString: method checks the numerator and denominator of the frac-
tion to produce a more eye-pleasing result. If the numerator and denominator are equal
(but not zero), we return @”1”. If the numerator is zero, the string @“0” is returned. If the
denominator is 1, it’s a whole number, so there’s no need to show the denominator.

The stringWithFormat: method that’s used inside convertToString: returns a
string given a format string (akin to NSLog) and a comma-separated list of arguments.You
pass arguments to a method that takes a variable number of arguments by separating them
with commas, just like you did when passing the arguments to the NSLog function.

A Calculator Class That Deals with Fractions
Next, it’s time to take a look at the Calculator class.The concept is similar to the class of
the same name we developed earlier in this book. However, in this case, our calculator
must know how to deal with fractions. Here are our new Calculator class interface and
implementation files.

Program 21.2 Calculator.h Interface File

#import <UIKit/UIKit.h>
#import “Fraction.h”

@interface Calculator : NSObject {
Fraction *operand1;
Fraction *operand2;
Fraction *accumulator;

}

@property (retain, nonatomic) Fraction *operand1, *operand2, *accumulator;

-(Fraction *) performOperation: (char) op;
-(void) clear;

@end

Program 21.2 Calculator.m Implementation File

#import “Calculator.h”

@implementation Calculator

489An iPhone Fraction Calculator

@synthesize operand1, operand2, accumulator;

-(id) init
{

self = [super init];

operand1 = [[Fraction alloc] init];
operand2 = [[Fraction alloc] init];
accumulator = [[Fraction alloc] init];

return self;
}

-(void) clear
{

if (accumulator) {
accumulator.numerator = 0;
accumulator.denominator = 0;

}
}

-(Fraction *) performOperation: (char) op
{

Fraction *result;

switch (op) {
case ‘+’:

result = [operand1 add: operand2];
break;

case ‘-’:
result = [operand1 subtract: operand2];
break;

case ‘*’:
result = [operand1 multiply: operand2];
break;

case ‘/’:
result= [operand1 divide: operand2];
break;

}

accumulator.numerator = result.numerator;
accumulator.denominator = result.denominator;

return accumulator;
}

-(void) dealloc
{

[operand1 release];
[operand2 release];
[accumulator release];
[super dealloc];

}

@end

490 Chapter 21 Writing iPhone Applications

Designing the UI
You may have noticed that you have two xib files in your project’s Resources folder: one
called MainWindow.xib and the other called
Fraction_CalculatorViewController.xib.You don’t need to work with the former
file at all, so open up the latter by double-clicking on its file name.When Interface
Builder starts up, you’ll see that you have an icon labeled ‘View’ displayed in the window
labeled Fraction_CalculatorViewController.xib.This is shown in Figure 21.23

If the View window isn’t already open, double-click on the icon and open it. Inside
this View window is where you will design your calculator’s UI. Make the connections
between each digit button and the clickDigit: method. Do this by Control-click-
dragging each button in turn to the File’s Owner icon in the
Fraction_CalculatorViewController.xib window and selecting clickDigit: from
the Events drop-down.Also, for each digit button, in the Inspector window set the Tag
value to the number that corresponds to the button’s title. So for the digit button labeled
0 set the Tag value to 0, for the digit button labeled 1, set the Tag value to 1, and so on.

Draw the remaining buttons in theView window and make the corresponding connec-
tions. Don’t forget to insert a label for the calculator’s display and Control-click-drag from
the File’s Owner to the label. Select display from the Outlets dropdown that appears.

That’s it! Your interface design is done and your fraction calculator application is ready
to be put into action.

Figure 21.23 Fraction_CalculatorViewController.xib window.

491Summary

Summary
Figure 21.24 shows the Xcode project window so that you can see all the files related to
the Fraction calculator project.

Figure 21.24 Fraction calculator project files.

The following summarizes the steps you followed to create you iPhone fraction calcu-
lator application:

1. Created a new View-based Application.

2. Entered your UI code into the Fraction_CalculatorViewController .h and
.m files.

3. Added the Fraction and Calculator classes to the project.

4. Opened Fraction_CalculatorViewController.xib in Interface Builder to cre-
ate the UI.

5. Made the View window’s background black.

6. Created a label and buttons and positioned them inside the View window.

7. Control-click-dragged from File’s Owner to the label you created in the View
window and set that to ‘display’.

492 Chapter 21 Writing iPhone Applications

8. Control-click-dragged from each button in the View window to the File’s Owner
and made the connection to the appropriate action method. For each digit button,
you selected the clickDigit: method.Also, for each digit button, you set the tag
button attribute to the corresponding digit 0-9 so that the clickDigit: method
could identify which button was pressed.

It was a worthwhile exercise learning how to use a view controller, even though it was
more work than simply doing everything in the app controller. However, if you want to
do any sort of sophisticated things in your application, such as animation, responding to
screen rotation, using a navigation controller, or building a tabbed interface, you’ll need to
use a view controller.

Hopefully this brief introduction to developing iPhone applications gives you a good
start for writing your own iPhone applications.As noted earlier, there are many features
offered in UIKit and lots for you to explore!

There are several limitations with our fraction calculator application. Many of these are
addressed in the exercises that follow.

Exercises
1. Add a Convert button to the fraction calculator application.When the button is

pressed, use the Fraction class’s convertToNum method to produce the numeric
representation of the fractional result. Convert that result to a string and show it in
the calculator’s display.

2. Modify the fraction calculator application so that a negative fraction can be entered
if the – key gets pressed before a numerator is entered.

3. If the value of zero is keyed in for a denominator for either the first or second
operand, display the string Error in the fraction calculator’s display.

4. Modify the fraction calculator application so that calculations can be chained.
For example, allow for the following operation to be keyed:

1/5 + 2/7 – 3/8 =

5. You can add an icon to your application that will appear on the iPhone’s home
screen.This can be done by adding an image to be used as the icon (.png file) to
your application’s Resources folder and setting the value of the “Icon file” key in
your information property list (Info.plist file in your Resources folder) to this image
file, as shown in the Figure 21.25.

Find a suitable calculator image on the Internet that you can use and set up the
fraction calculator to use this image as its application icon.

493Exercises

Figure 21.25 Adding an application icon.

Part IV
Appendixes

A Glossary

B Objective-C Language Summary

C Address Book Source Code

D Resources

Glossary

This appendix contains informal defini-
tions for many of the terms you will
encounter. Some of these terms have to
do directly with the Objective-C lan-
guage itself, whereas others gain their
etymology from the discipline of object-
oriented programming. In the latter case,
I provide the meaning of the term as it
specifically applies to the Objective-C
language.

abstract class A class defined to make
creating subclasses easier. Instances are
created from the subclass, not of the
abstract class. See also concrete subclass.

accessor method A method that gets
or sets the value of an instance variable.
Using accessor methods to set and
retrieve the values of instance variables is
consistent with the methodology of data
encapsulation.

Application Kit A framework for
developing an application’s user interface,
which includes objects such as menus,
toolbars, and windows. Part of Cocoa
and more commonly called AppKit.

archiving Translating the representa-
tion of an object’s data into a format that
can later be restored (unarchived).

array An ordered collection of values.
Arrays can be defined as a basic
Objective-C type and are implemented
as objects under Foundation through the
NSArray and NSMutableArray classes.

automatic variable A variable that is
automatically allocated and released
when a statement block is entered and
exited.Automatic variables have scope
that is limited to the block in which they
are defined and have no default initial
value.They are optionally preceded by
the keyword auto.

autorelease pool An object defined in
the Foundation framework that keeps
track of objects that are to be released
when the pool itself is released. Objects
are added to the pool by sending them
autorelease messages.

bitfield A structure containing one or
more integer fields of a specified bit
width. Bitfields can be accessed and
manipulated the same way other struc-
ture members can.

category A set of methods grouped
together under a specified name.
Categories can modularize the method
definitions for a class and can be used to
add new methods to an existing class.

character string A null-terminated
sequence of characters.

class A set of instance variables and
methods that have access to those vari-
ables.After a class is defined, instances of
the class (that is, objects) can be created.

class method A method (defined with
a leading + sign) that is invoked on class
objects. See also instance method.

class object An object that identifies a
particular class.The class name can be
used as the receiver of a message to
invoke a class method. In other places,
the class method can be invoked on
the class to create a class object.

cluster An abstract class that groups a
set of private concrete subclasses, provid-
ing a simplified interface to the user
through the abstract class.

Cocoa A development environment
that consists of the Foundation and
Application Kit frameworks.

Cocoa Touch A development envi-
ronment that consists of the Foundation
and UIKit frameworks.

collection A Foundation framework
object that is an array, a dictionary, or a
set used for grouping and manipulating
related objects.

compile time The time during which
the source code is analyzed and convert-
ed into a lower-level format known as
object code.

composite class A class that is com-
posed of objects from other classes; often
it’s used as an alternative to subclassing.

concrete subclass A subclass of an
abstract class. Instances can be created
from a concrete subclass.

conform A class conforms to a proto-
col if it adopts all the required methods
in the protocol, either directly through
implementation or indirectly through
inheritance.

constant character string A
sequence of characters enclosed inside a
pair of double quotation marks. If pre-
ceded by an @ character, it defines a con-
stant character string object of type
NSConstantString.

data encapsulation The notion that
the data for an object is stored in its
instance variables and is accessed only by
the object’s methods.This maintains the
integrity of the data.

498 automatic variable

delegate An object directed to carry
out an action by another object.

designated initializer The method
that all other initialization methods in the
class, or in subclasses (through messages
to super), will invoke.

dictionary A collection of key/value
pairs implemented under Foundation
with the NSDictionary and
NSMutableDictionary classes.

directive In Objective-C, a special
construct that begins with an at sign (@).
@interface, @implementation, @end,
and @class are examples of directives.

Distributed Objects The capability
of Foundation objects in one application
to communicate with Foundation objects
in another application, possibly running
on another machine.

dynamic binding Determining the
method to invoke with an object at run-
time instead of at compile time.

dynamic typing Determining the
class to which an object belongs at run-
time instead of at compile time. See also
static typing.

encapsulation See data encapsulation.

extern variable See global variable.

factory method See class method.

factory object See class object.

formal protocol A set of related
methods grouped together under a name
declared with the @protocol directive.
Different classes (not necessarily related)
can adopt a formal protocol by imple-
menting (or inheriting) all its required
methods. See also informal protocol.

forwarding The process of sending a
message and its associated argument(s) to
another method for execution.

Foundation framework A collection
of classes, functions, and protocols that
form the foundation for application
development, providing basic facilities
such as memory management, file and
URL access, the tasks of archiving and
working with collections, strings, and
number and date objects.

framework A collection of classes,
functions, protocols, documentation, and
header files and other resources that are
all related. For example, the Cocoa frame-
work is used in developing interactive
graphical applications under Mac OS X.

function A block of statements identi-
fied by a name that can accept one or
more arguments passed to it by value and
can optionally return a value. Functions
can be either local (static) to the file in
which they’re defined or global, in which
case they can be called from functions or
methods defined in other files.

garbage collection A memory-man-
agement system that automatically releas-
es the memory used by unreferenced
objects. Garbage collection is not sup-
ported in the iPhone runtime environ-
ment.

gcc The name of the compiler devel-
oped by the Free Software Foundation
(FSF). gcc supports many programming
languages, including C, Objective-C, and
C++. gcc is the standard compiler used
in Mac OS X for compiling Objective-C
programs.

499gcc

gdb The standard debugging tool for
programs compiled with gcc.

getter method An accessor method
that retrieves the value of an instance
variable. See also setter method.

global variable A variable defined
outside any method or function that can
be accessed by any method or function
in the same source file or from other
source files that declare the variable as
extern.

header file A file that contains com-
mon definitions, macros, and variable
declarations that is included in a program
using either an #import or an #include
statement.

id The generic object type that can
hold a pointer to any type of object.

immutable object An object whose
value cannot be modified. Examples from
the Foundation framework include
NSString, NSDictionary, and NSArray
objects. See also mutable object.

implementation section The section
of a class definition that contains the
actual code (that is, implementation) for
the methods declared in the correspon-
ding interface section (or as specified by
a protocol definition).

informal protocol A logically related
set of methods declared as a category,
often as a category of the root class.
Unlike formal protocols, all the methods
in an informal protocol do not have to
be implemented. See also formal protocol.

inheritance The process of passing
methods and instance variables from a
class, starting with the root object, down
to subclasses.

instance A concrete representation of a
class. Instances are objects that are typi-
cally created by sending an alloc or new
message to a class object.

instance method A method that can
be invoked by an instance of a class. See
also class method.

instance variable A variable declared
in the interface section (or inherited
from a parent) that is contained in every
instance of the object. Instance methods
have direct access to their instance vari-
ables.

Interface Builder A tool under Mac
OS X for building a graphical user inter-
face for an application.

interface section The section for
declaring a class, its superclass, instance
variables, and methods. For each method,
the argument types and return type are
also declared. See also implementation
section.

internationalization See localization.

isa A special instance variable defined
in the root object that all objects inherit.
The isa variable is used to identify the
class to which an object belongs at run-
time.

linking The process of converting one
or more object files into a program that
can be executed.

local variable A variable whose scope
is limited to the block in which it is
defined.Variables can be local to a
method, function, or statement block.

localization The process of making a
program suitable for execution within a
particular geographic region, typically by
translating messages to the local language

500 gdb

and handling things such as local time
zones, currency symbols, date formats,
and so on. Sometimes localization is used
just to refer to the language translation,
and the term internationalization is used to
refer to the rest of the process.

message The method and its associat-
ed arguments that are sent to an object
(the receiver).

message expression An expression
enclosed in square brackets that specifies
an object (the receiver) and the message
to send to the object.

method A procedure that belongs to a
class and can be executed by sending a
message to a class object or to instances
from the class. See also class method and
instance method.

mutable object An object whose
value can be changed.The Foundation
framework supports mutable and
immutable arrays, sets, strings, and dic-
tionaries. See also immutable object.

nil An object of type id, which is used
to represent an invalid object. Its value is
defined as 0. nil can be sent messages.

notification The process of sending a
message to objects that have registered to
be alerted (notified) when a specific
event occurs.

NSObject The root object under the
Foundation framework.

null character A character whose
value is 0.A null character constant is
denoted by ‘\0’.

null pointer An invalid pointer value,
normally defined as 0.

object A set of variables and associated
methods.An object can be sent messages
to cause one of its methods to be execut-
ed.

object-oriented programming A
method of programming based on classes
and objects, and performing actions on
those objects.

parent class A class from which
another class inherits.Also referred to as
the super class.

pointer A value that references another
object or data type.A pointer is imple-
mented as the address of a particular
object or value in memory.An instance
of a class is a pointer to the location of
the object’s data in memory.

polymorphism The capability of
objects from different classes to accept
the same message.

preprocessor A program that makes a
first pass through the source code pro-
cessing lines that begin with a #, which
presumably contain special preprocessor
statements. Common uses are for defin-
ing macros with #define, including
other source files with #import and
#include, and conditionally including
source lines with #if, #ifdef, and
#ifndef.

procedural programming language
A language in which programs are
defined by procedures and functions that
operate on a set of data.

501procedural programming language

property declaration A way to speci-
fy attributes for instance variables that
enables the compiler to generate leak-
free and thread-safe accessor methods for
instance variables. Property declarations
can also be used to declare attributes for
accessor methods that will be dynamical-
ly loaded at runtime.

property list A representation of dif-
ferent types of objects in a standardized
format. Property lists are typically stored
in XML format.

protocol A list of methods that a class
must implement to conform to or adopt
the protocol. Protocols provide a way to
standardize an interface across classes. See
also formal protocol and informal proto-
col.

receiver The object to which a mes-
sage is sent.The receiver can be referred
to as self from inside the method that is
invoked.

reference count See retain count.

retain count A count of the number
of times an object is referenced. It’s
incremented by sending a retain mes-
sage to the object, and it’s decremented
by sending a release message to it.

root object The topmost object in the
inheritance hierarchy that has no parent.

runtime The time when a program is
executing; also the mechanism responsi-
ble for executing a program’s instruc-
tions.

selector The name used to select the
method to execute for an object.
Compiled selectors are of type SEL and
can be generated using the @selector
directive.

self A variable used inside a method to
refer to the receiver of the message.

set An unordered collection of unique
objects implemented under Foundation
with the NSSet, NSMutableSet, and
NSCountedSet classes.

setter method An accessor method
that sets the value of an instance variable.
See also getter method.

statement One or more expressions
terminated by a semicolon.

statement block One or more state-
ments enclosed in a set of curly braces.
Local variables can be declared within a
statement block, and their scope is limit-
ed to that block.

static function A function declared
with the static keyword that can be
called only by other functions or meth-
ods defined in the same source file.

static typing Explicitly identifying the
class to which an object belongs at com-
pile time. See also dynamic typing.

static variable A variable whose scope
is limited to the block or module in
which it is defined. Static variables have
default initial values of 0 and retain their
values through method or function invo-
cations.

structure An aggregate data type that
can contain members of varying types.
Structures can be assigned to other struc-
tures, passed as arguments to functions
and methods, and returned by them as
well.

subclass Also known as a child class, a
subclass inherits the methods and
instance variables from its parent or
superclass.

502 property declaration

super A keyword used in a method to
refer to the parent class of the receiver.

super class The parent class of a par-
ticular class. See also super.

synthesized method A setter or get-
ter method that the compiler automati-
cally creates for you. It was added to the
Objective C 2.0 language.

UIKit A framework for developing
applications on the iPhone and iTouch.
In addition to providing classes for work-
ing with usual UI elements such as win-
dows, button and labels, it defines cla ses
for dealing with device specific features
such as the accelerometer and the touch
interface. UIKit is part of Cocoa Touch.

Unicode character A standard for
representing characters from sets contain-
ing up to millions of characters.The
NSString and NSMutableString classes
work with strings containing Unicode
characters.

union An aggregate data type, such as a
structure containing members that share
the same storage area. Only one of those
members can occupy the storage area at
any point in time.

Xcode A compiling and debugging
tool for program development with Mac
OS X.

XML Extensible Markup Language.
The default format for property lists gen-
erated on Mac OS X.

zone A designated area of memory for
allocating data and objects.A program
can work with multiple zones to more
efficiently manage memory.

503zone

Digraph Meaning

<: [

:>]

<% {

%> }

%: #

%:%: ##

Appendix B
Objective-C 2.0 Language

Summary

This appendix summarizes the Objective-C language in a format suitable for quick ref-
erence. It is not intended to be a complete definition of the language, but rather a more
informal description of its features.You should thoroughly read the material in this ap-
pendix after you have completed the text. Doing so will not only reinforce the material
you learned, but also provide you with a better global understanding of Objective-C.

This summary is based on the ANSI C99 (ISO/IEC 9899:1999) standard with Objec-
tive-C 2.0 language extensions.As of this writing, the latest version of the GNU gcc
compiler used on my Mac OS X v10.5.5 system is version 4.0.1.

Digraphs and Identifiers
Digraph Characters
The following special two-character sequences (digraphs) are equivalent to the listed sin-
gle-character punctuators:

506 Appendix B Objective-C 2.0 Language Summary

Identifiers
An identifier in Objective-C consists of a sequence of letters (upper- or lowercase), univer-
sal character names (1.2.1), digits, or underscore characters.The first character of an iden-
tifier must be a letter, an underscore, or a universal character name.The first 31 characters
of an identifier are guaranteed to be significant in an external name, and the first 63 char-
acters are guaranteed to be significant for an internal identifier or macro name.

Universal Character Names
A universal character name is formed by the characters \u followed by four hexadecimal
numbers or the characters \U followed by eight hexadecimal numbers. If the first charac-
ter of an identifier is specified by a universal character, its value cannot be that of a digit
character. Universal characters, when used in identifier names, can also not specify a char-
acter whose value is less than A016 (other than 2416, 4016, or 6016) or a character in the
range D80016 through DFFF16, inclusive.

Universal character names can be used in identifier names, character constants, and
character strings.

Keywords
The identifiers listed here are keywords that have special meanings to the Objective-C
compiler:
_Bool
_Complex
_Imaginary
auto
break
bycopy
byref
case
char
const
continue
default
do
double
else
enum
extern
float
for
goto
if
in
inline
inout
int
long
oneway
out

507Digraphs and Identifiers

Table B.1 Compiler Directives

Directive Meaning Example

@”chars” Defines a constant NSSTRING
character string object
(Adjacent strings are
concatenated.)

NSString *url =

@”http://www.kochan-wood.com”;

@class c1,

c2,...

Declares c1, c2, ... as
classes.

@class Point, Rectangle;

@defs (class) Returns a list of the structure
variables for class.

struct Fract { @defs(Fraction); }

*fractPtr; fractPtr =

(struct Fract *) [[Fraction

alloc] init];

@dynamic names Accessor methods for names
may be provided dynamically

@dynamic drawRect;

@encode (type) String encoding for type. @encode (int *)

@end Ends an interface section, an
implementation section, or a
protocol section.

@end

@implementation Begins an implementation
section.

@implementation Fraction

register
restrict
return
self
short
signed
sizeof
static
struct
super
switch
typedef
union
unsigned
void
volatile
while

Directives
Compiler directives begin with an @ sign and are used specifically for working with
classes and objects, as summarized in Table B.1.

508 Appendix B Objective-C 2.0 Language Summary

Table B.1 Compiler Directives

Directive Meaning Example

@interface Begins an interface section. @interface Fraction: NSObject

<Copying>

@private Defines the scope of one or
more instance variables.

See “Instance Variables.”

@protected Defines the scope of one or
more instance variables

@public Defines the scope of one or
more instance variables

@property

(list) names

Declares properties in list for
names.

property (retain, nonatomic)

NSSTRING *name;

@protocol Creates a Protocol object for a
specified protocol.

@protocol (Copying)]){...}

if ([myObj conformsTo:

(protocol)

@protocol name Begins a protocol definition
for name.

@protocol Copying

@selector

(method)
SEL object for specified
method.

if ([myObj respondsTo:

@selector (allocF)]) {...}

@synchronized

(object)
Begins a block to be executed
by a single thread. Object is
known as the mutual exclu-
sion (mutex) semaphore.

@synthesize

names
Generates accessor methods
for names if not provided.

@synthesize name, email; See
also “Instance Variables.”

@try Begins a block to catch
exceptions.

See “Exception Handling.”

@catch

(exception)

Begins a block to process
exception.

@finally Begins a block that gets exe-
cuted whether an exception is
thrown in the previous @try
block.

@throw Throws an exception.

509Comments

Predefined Identifiers
Table B.2 lists identifiers that have special meanings in Objective-C programs.

Table B.2 Special Predefined Identifiers

Identifier Meaning

_cmd A local variable automatically defined in a method that contains the selector for
the method

__func__ A local character string variable automatically defined in a function or method
containing the name of the function or method

BOOL Boolean value, typically used with YES and NO

Class Class object type

id Generic object type

IMP Pointer to a method returning the value of type id

nil Null object

Nil Null class object

NO Defined as (BOOL) 0

NSObject Root Foundation object defined in <Foundation/NSObject.h>

Protocol Name of class for storing information about protocols

SEL A compiled selector

self A local variable automatically defined in a method that references the receiver
of the message

super The parent of the receiver of the message

YES Defined as (BOOL) 1

Comments
There are two ways to insert comments into program.A comment can begin with the
two characters //, in which case any characters that follow on the line are ignored by the
compiler.

A comment can also begin with the two characters /* and end when the characters */
are encountered.Any characters can be included inside the comment, which can extend
over multiple lines of the program.A comment can be used anywhere in the program
where a blank space is allowed. Comments, however, cannot be nested, which means that
the first */ characters encountered end the comment, no matter how many /* characters
you use.

510 Appendix B Objective-C 2.0 Language Summary

Constants
Integer Constants
An integer constant is a sequence of digits, optionally preceded by a plus or minus sign. If
the first digit is 0, the integer is taken as an octal constant, in which case all digits that fol-
low must be 0–7. If the first digit is 0 and is immediately followed by the letter x (or X),
the integer is taken as a hexadecimal constant, and the digits that follow can be in the
range 0–9 or a–f (or A–F).

The suffix letter l or L can be added to the end of a decimal integer constant to make
it a long int constant. If the value can’t fit into a long int, it’s treated as a long long

int. If the suffix letter l or L is added to the end of an octal or a hexadecimal constant,
it is taken as a long int if it can fit; if it can’t fit there, it is taken as a long long int.
Finally, if it can’t fit in a long long int, it is taken as an unsigned long long int

constant.
The suffix letters ll or LL can be added to the end of a decimal integer constant to

make it a long long int.When added to the end of an octal or a hexadecimal constant,
it is taken as a long long int first, and if it can’t fit there, it is taken as an unsigned
long long int constant.

The suffix u or U can be added to the end of an integer constant to make it unsigned.
If the constant is too large to fit inside an unsigned int, it’s taken as an unsigned long
int. If it’s too large for an unsigned long int, it’s taken as an unsigned long long
int.

Both an unsigned and long suffix can be added to an integer constant to make it an
unsigned long int. If the constant is too large to fit in an unsigned long int, it’s
taken as an unsigned long long int.

Both an unsigned and a long-long suffix can be added to an integer constant to make
it an unsigned long long int.

If an unsuffixed decimal integer constant is too large to fit into a signed int, it is treated
as a long int. If it’s too large to fit into a long int, it’s treated as a long long int.

If an unsuffixed octal or hexadecimal integer constant is too large to fit into a signed
int, it is treated as an unsigned int. If it’s too large to fit into an unsigned int, it’s
treated as a long int, and if it’s too large to fit into a long int, it’s treated as an
unsigned long int. If it’s too large for an unsigned long int, it’s taken as a long long
int. Finally, if it’s too large to fit into a long long int, the constant is treated as an
unsigned long long int.

Floating-Point Constants
A floating-point constant consists of a sequence of decimal digits, a decimal point, and
another sequence of decimal digits.A minus sign can precede the value to denote a nega-
tive value. In addition, either the sequence of digits before the decimal point or after the
decimal point can be omitted, but not both.

If the floating-point constant is immediately followed by the letter e (or E) and an op-
tionally signed integer, the constant is expressed in scientific notation.This integer (the

511Constants

Character Meaning

\a Audible alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\” Double quote

\’ Single quote

\? Question mark

\nnn Octal character value

\unnnn Universal character name

\Unnnnnnnn Universal character name

\xnn Hexadecimal character value

exponent) represents the power of 10 by which the value preceding the letter e (the
mantissa) is multiplied (for example, 1.5e-2 represents 1.5 ×10-2 or .015).

A hexadecimal floating constant consists of a leading 0x or 0X, followed by one or
more decimal or hexadecimal digits, followed by a p or P, followed by an optionally
signed binary exponent. For example, 0x3p10 represents the value 3 × 210. Floating-point
constants are treated as double precision values by the compiler.The suffix letter f or F
can be added to specify a float constant instead of a double one, and the suffix letter l
or L can be added to specify a long double constant.

Character Constants
A character enclosed within single quotation marks is a character constant. How the inclu-
sion of more than one character inside the single quotation marks is handled is imple-
mentation-defined.A universal character can be used in a character constant to specify a
character not included in the standard character set.

Escape Sequences
Special escape sequences are recognized and are introduced by the backslash character.
These escape sequences are listed here:

512 Appendix B Objective-C 2.0 Language Summary

In the octal character case, from one to three octal digits can be specified. In the last
three cases, hexadecimal digits are used.

Wide Character Constants
A wide character constant is written as L'x'.The type of such a constant is wchar_t, as de-
fined in the standard header file <stddef.h>.Wide character constants provide a way to
express a character from a character set that cannot be fully represented with the normal
char type.

Character String Constants
A sequence of zero or more characters enclosed within double quotation marks repre-
sents a character string constant.Any valid character can be included in the string, includ-
ing any of the escape characters listed previously.The compiler automatically inserts a null
character ('\0') at the end of the string.

Normally, the compiler produces a pointer to the first character in the string and the
type is “pointer to char.” However, when the string constant is used with the sizeof op-
erator to initialize a character array, or with the & operator, the type of the string constant
is “array of char.”

Character string constants cannot be modified by the program.

Character String Concatenation
The preprocessor automatically concatenates adjacent character string constants together.
The strings can be separated by zero or more whitespace characters. So, the three strings

”a” “ character “
“string”

are equivalent to the single string

”a character string”

after concatenation.

Multibyte Characters
Implementation-defined sequences of characters can be used to shift between different
states in a character string so that multibyte characters can be included.

513Data Types and Declarations

Wide Character String Constants
Character string constants from an extended character set are expressed using the format
L'...'.The type of such a constant is “pointer to wchar_t,” where wchar_t is defined in
<stddef.h>.

Constant Character String Objects
A constant character string object can be created by placing an @ character in front of a
constant character string.The type of the object is NSConstantString.

Adjacent constant string objects are concatenated together. So the three string objects

@”a” @” character “
@”string”

are equivalent to the single string object

@”a character string

Enumeration Constants
An identifier that has been declared as a value for an enumerated type is taken as a con-
stant of that particular type and is otherwise treated as type int by the compiler.

Data Types and Declarations
This section summarizes the basic data types, derived data types, enumerated data types,
and typedef.Also summarized in this section is the format for declaring variables.

Declarations
When defining a particular structure, union, enumerated data type, or typedef, the com-
piler does not automatically reserve any storage.The definition merely tells the compiler
about the particular data type and (optionally) associates a name with it. Such a definition
can be made either inside or outside a function or method. In the former case, only the
function or method knows of its existence; in the latter case, it is known throughout the
remainder of the file.

After the definition has been made, variables can be declared to be of that particular
data type.A variable that is declared to be of any data type will have storage reserved for
it, unless it is an extern declaration, in which case it might or might not have storage al-
located (see the section “Storage Classes and Scope”).

The language also enables storage to be allocated at the same time that a particular
structure, union, or enumerated data type is defined.This is done by simply listing the
variables before the terminating semicolon of the definition.

Basic Data Types
The basic Objective-C data types are summarized in Table B.3.A variable can be declared
to be of a particular basic data type using the following format:

type name = initial_value;

The assignment of an initial value to the variable is optional and is subject to the rules
summarized in the section “Variables.” More than one variable can be declared simultane-
ously using the following general format:

type name = initial_value, name = initial_value, .. ;

Before the type declaration, an optional storage class can also be specified, as summa-
rized in the section “Variables.” If a storage class is specified and the type of the variable is
int, then int can be omitted. For example

static counter;

declares counter to be a static int variable.

514 Appendix B Objective-C 2.0 Language Summary

Table B.3 Summary of Basic Data Types

Type Meaning

int Integer value; that is, a value that contains no decimal point; guaranteed
to contain at least 16 bits of accuracy

short int Integer value of reduced accuracy; takes half as much memory as an
int on some machines; guaranteed to contain at least 16 bits of accu-
racy

long int Integer value of extended accuracy; guaranteed to contain at least 32
bits of accuracy

long long int Integer value of extra-extended accuracy; guaranteed to contain at least
64 bits of accuracy

unsigned int Positive integer value; can store positive values up to twice as large as
an int; guaranteed to contain at least 16 bits of accuracy

Note that the signed modifier can also be placed in front of the short int, int, long int,
and long long int types. Because these types are signed by default anyway, this has no ef-
fect.

_Complex and _Imaginary data types enable complex and imaginary numbers to be
declared and manipulated, with functions in the library for supporting arithmetic on
these types. Normally, you should include the file <complex.h> in your program, which
defines macros and declares functions for working with complex and imaginary numbers.
For example, a double_Complex variable c1 can be declared and initialized to the value 5
+ 10.5i with a statement such as follows:

double _Complex c1 = 5 + 10.5 ∗ I;

515Data Types and Declarations

Table B.3 Summary of Basic Data Types

Type Meaning

float Floating-point value; that is, a value that can contain decimal places;
guaranteed to contain at least six digits of precision

double Extended accuracy floating-point value; guaranteed to contain at least
10 digits of precision

long double Extra-extended accuracy floating-point value; guaranteed to contain at
least 10 digits of precision

char Single character value; on some systems, sign extension can occur
when used in an expression

unsigned char Same as char, except it ensures that sign extension will not occur as a
result of integral promotion

signed char Same as char, except it ensures that sign extension will occur as a re-
sult of integral promotion

_Bool Boolean type; large enough to store the value 0 or 1

float _Complex Complex number

double _Complex Extended accuracy complex number

long double

_Complex

Extra-extended accuracy complex number

void No type; used to ensure that a function or method that does not return a
value is not used as if it does return one, or to explicitly discard the re-
sults of an expression; also used as a generic pointer type (void *)

516 Appendix B Objective-C 2.0 Language Summary

Library routines such as creal and cimag can then be used to extract the real and
imaginary parts of c1, respectively.

An implementation is not required to support types _Complex and _Imaginary, and it
can optionally support one but not the other.

Derived Data Types
A derived data type is one that is built up from one or more of the basic data types. De-
rived data types are arrays, structures, unions, and pointers (which include objects).A
function or method that returns a value of a specified type is also considered a derived
data type. Each of these, with the exception of functions and methods, is summarized in
the following paragraphs. Functions and methods are separately covered in the sections
“Functions” and “Classes,” respectively.

Arrays
Single-Dimensional Arrays
Arrays can be defined to contain any basic data type or any derived data type.Arrays of
functions are not permitted (although arrays of function pointers are).

The declaration of an array has the following basic format:

type name[n] = { initExpression, initExpression, .. };

The expression n determines the number of elements in the array name and can be
omitted, provided a list of initial values is specified. In such a case, the size of the array is
determined based on the number of initial values listed or on the largest index element
referenced if designated initializers are used.

Each initial value must be a constant expression if a global array is defined. Fewer val-
ues can exist in the initialization list than there are elements in the array, but more cannot
exist. If fewer values are specified, only that many elements of the array are initialized—
the remaining elements are set to 0.

A special case of array initialization occurs in the case of character arrays, which can be
initialized by a constant character string. For example

char today[] = “Monday”;

declares today as an array of characters.This array is initialized to the characters ‘M’, ‘o’,
'n', 'd', 'a', 'y', and '\0', respectively.

If you explicitly dimension the character array and don’t leave room for the terminat-
ing null, the compiler doesn’t place a null at the end of the array:

char today[6] = “Monday”;

This declares today as an array of six characters and sets its elements to the characters
'M', 'o', 'n', 'd', 'a', and 'y', respectively.

517Data Types and Declarations

By enclosing an element number in a pair of brackets, specific array elements can be
initialized in any order. For example

int x = 1233;

int a[] = { [9] = x + 1, [2] = 3, [1] = 2, [0] = 1 };

defines a 10-element array called a (based on the highest index into the array) and initial-
izes the last element to the value of x + 1 (1234) and the first three elements to 1, 2, and
3, respectively.

Variable-Length Arrays
Inside a function, method, or block, you can dimension an array using an expression con-
taining variables. In that case, the size is calculated at runtime. For example, the function

int makeVals (int n)

{

int valArray[n];

...

}

defines an automatic array called valArray with a size of n elements, where n is evaluated
at runtime and can vary between function calls.Variable-length arrays cannot be initial-
ized.

Multidimensional Arrays
The general format for declaring a multidimensional array follows:

type name[d1][d2]...[dn] = initializationList;

The array name is defined to contain d1 x d2 x...x dn elements of the specified type.
For example

int three_d [5][2][20];

defines a three-dimensional array, three_d, containing 200 integers.
A particular element is referenced from a multidimensional array by enclosing the desired
subscript for each dimension in its own set of brackets. For example, the statement

three_d [4][0][15] = 100;

stores 100 into the indicated element of the array three_d.
Multidimensional arrays can be initialized in the same manner as one-dimensional ar-

rays. Nested pairs of braces can be used to control the assignment of values to the ele-
ments in the array.

The following declares matrix to be a two-dimensional array containing four rows
and three columns:

int matrix[4][3] =

{ { 1, 2, 3 },

{ 4, 5, 6 },

{ 7, 8, 9 } };

518 Appendix B Objective-C 2.0 Language Summary

Elements in the first row of matrix are set to the values 1, 2, and 3, respectively; in the
second row they are set to 4, 5, and 6, respectively; and in the third row they are set to 7,
8, and 9, respectively.The elements in the fourth row are set to 0 because no values are
specified for that row.The declaration

int matrix[4][3] =

{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };

initializes matrix to the same values because the elements of a multidimensional array are
initialized in dimension order—that is, from leftmost to rightmost dimension.

The declaration

int matrix[4][3] =

{ { 1 },

{ 4 },

{ 7 } };

sets the first element of the first row of matrix to 1, the first element of the second row
to 4, and the first element of the third row to 7.All remaining elements are set to 0 by de-
fault.

Finally, the declaration

int matrix[4][3] = { [0][0] = 1, [1][1] = 5, [2][2] = 9 };

initializes the indicated elements of the matrix to the specified values.

Structures
General Format:

struct name
{

memberDeclaration
memberDeclaration
...

} variableList;

The structure name is defined to contain the members as specified by each
memberDeclaration. Each such declaration consists of a type specification followed by a
list of one or more member names.

Variables can be declared at the time that the structure is defined simply by listing
them before the terminating semicolon, or they can subsequently be declared using the
following format:

struct name variableList;

519Data Types and Declarations

This format cannot be used if name is omitted when the structure is defined. In that
case, all variables of that structure type must be declared with the definition.

The format for initializing a structure variable is similar to that for arrays. Its members
can be initialized by enclosing the list of initial values in a pair of curly braces. Each value
in the list must be a constant expression if a global structure is initialized.

The declaration

struct point

{

float x;

float y;

} start = {100.0, 200.0};

defines a structure called point and a struct point variable called start with initial
values as specified. Specific members can be designated for initialization in any order with
the notation

.member = value

in the initialization list, as in

struct point end = { .y = 500, .x = 200 };

The declaration

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

{ “a”, “first letter of the alphabet” },

{ “aardvark”, “a burrowing African mammal” },

{ “aback”, “to startle” }

};

declares dictionary to contain 1,000 entry structures, with the first 3 elements initial-
ized to the specified character string pointers. Using designated initializers, you could
have also written it like this:

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

[0].word = “a”, [0].def = “first letter of the alphabet”,
[1].word = “aardvark”, [1].def = “a burrowing African mammal”,
[2].word = “aback”, [2].def = “to startle”

};

520 Appendix B Objective-C 2.0 Language Summary

or equivalently like this:

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

{ {.word = “a”, .def = “first letter of the alphabet” },

{.word = “aardvark”, .def = “a burrowing African mammal”} ,
{.word = “aback”, .def = “to startle”}

};

An automatic structure variable can be initialized to another structure of the same type
like this:

struct date tomorrow = today;

This declares the date structure variable tomorrow and assigns to it the contents of the
(previously declared) date structure variable today.

A memberDeclaration that has the format

type fieldName : n

defines a field that is n bits wide inside the structure, where n is an integer value. Fields
can be packed from left to right on some machines and right to left on others. If
fieldName is omitted, the specified number of bits is reserved but cannot be referenced. If
fieldName is omitted and n is 0, the field that follows is aligned on the next storage unit
boundary, where a unit is implementation-defined.The type of a field can be int,
signed int, or unsigned int. It is implementation-defined whether an int field is
treated as signed or unsigned.The address operator (&) cannot be applied to a field, and
arrays of fields cannot be defined.

Unions
General Format:

union name
{

memberDeclaration
memberDeclaration
...

} variableList;

This defines a union called name with members as specified by each
memberDeclaration. Each member of the union shares overlapping storage space, and the
compiler ensures that enough space is reserved to contain the largest member of the
union.

521Data Types and Declarations

Variables can be declared at the time that the union is defined, or they can be subse-
quently declared using the notation

union name variableList;

provided the union was given a name when it was defined.
It is the programmer’s responsibility to ensure that the value retrieved from a union is

consistent with the last value stored inside the union.The first member of a union can be
initialized by enclosing the initial value, which, in the case of a global union variable, must
be a constant expression, inside a pair of curly braces:

union shared

{

long long int l;

long int w[2];

} swap = { 0xffffffff };

A different member can be initialized instead by specifying the member name, as in

union shared swap2 = {.w[0] = 0x0, .w[1] = 0xffffffff};

This declares the union variable swap and sets the l member to hexadecimal
ffffffff.

An automatic union variable can also be initialized to a union of the same type, as in

union shared swap2 = swap;

Pointers
The basic format for declaring a pointer variable is as follows:

type *name;

The identifier name is declared to be of type “pointer to type,” which can be a basic
data type or a derived data type. For example

int *ip;

declares ip to be a pointer to an int, and the declaration

struct entry *ep;

declares ep to be a pointer to an entry structure. If Fraction is defined as a class, the
declaration

Fraction *myFract;

522 Appendix B Objective-C 2.0 Language Summary

declares myFract to be an object of type Fraction—or more explicitly, myFract is used
to hold a pointer to the object’s data structure after an instance of the object is created
and assigned to the variable.

Pointers that point to elements in an array are declared to point to the type of element
contained in the array. For example, the previous declaration of ip would also be used to
declare a pointer into an array of integers.

More advanced forms of pointer declarations are also permitted. For example, the dec-
laration

char *tp[100];

declares tp to be an array of 100 character pointers, and the declaration

struct entry (*fnPtr) (int);

declares fnPtr to be a pointer to a function that returns an entry structure and takes a
single int argument.

A pointer can be tested to see whether it’s null by comparing it against a constant ex-
pression whose value is 0.The implementation can choose to internally represent a null
pointer with a value other than 0. However, a comparison between such an internally
represented null pointer and a constant value of 0 must prove equal.

The manner in which pointers are converted to integers and integers are converted to
pointers is machine-dependent, as is the size of the integer required to hold a pointer.

The type “pointer to void” is the generic pointer type.The language guarantees that a
pointer of any type can be assigned to a void pointer and back again without changing
its value.

The type id is a generic object pointer.Any object from any class can be assigned to
an id variable, and vice versa.

Other than these two special cases, assignment of different pointer types is not permit-
ted and typically results in a warning message from the compiler if attempted.

Enumerated Data Types
General Format:

enum name { enum_1, enum_2, .. } variableList;

The enumerated type name is defined with enumeration values enum_1, enum_2,...,
each of which is an identifier or an identifier followed by an equals sign and a constant
expression. variableList is an optional list of variables (with optional initial values) de-
clared to be of type enum name.

The compiler assigns sequential integers to the enumeration identifiers starting at 0. If
an identifier is followed by = and a constant expression, the value of that expression is as-
signed to the identifier. Subsequent identifiers are assigned values beginning with that
constant expression plus one. Enumeration identifiers are treated as constant integer val-
ues by the compiler.

523Data Types and Declarations

If you want to declare variables to be of a previously defined (and named) enumera-
tion type, you can use the following construct:

enum name variableList;

A variable declared to be of a particular enumerated type can be assigned only a value
of the same data type, although the compiler might not flag this as an error.

typedef
The typedef statement is used to assign a new name to a basic or derived data type.The
typedef does not define a new type but simply a new name for an existing type.There-
fore, variables declared o be of the newly named type are treated by the compiler exactly
as if they were declared to be of the type associated with the new name.

In forming a typedef definition, proceed as though a normal variable declaration
were being made.Then, place the new type name where the variable name would nor-
mally appear Fina ly, in front of every hing, place the keyword typedef

As an example,

typedef struct

{

float x;

float y;

} POINT;

associates the name POINT with a structure containing two floating-point members called
x and y.Variables can subsequently be declared to be of type POINT, like so:

POINT origin = { 0.0, 0.0 };

Type Modifiers: const, volatile, and restrict
The keyword const can be placed before a type declaration to tell the compiler the value
cannot be modified. So, the declaration

const int x5 = 100;

declares x5 to be a constant integer. (That is, it won’t be set to anything else during the
program’s execution.) The compiler is not required to flag attempts to change the value of
a const variable.

The volatile modifier explicitly tells the compiler that the value changes (usually dy-
namically).When a volatile variable is used in an expression, its value is accessed each
place it appears.

To declare port17 to be of type “volatile pointer to char,” you would write this line:

char *volatile port17;

524 Appendix B Objective-C 2.0 Language Summary

The restrict keyword can be used with pointers. It is a hint to the compiler for op-
timization (similar to the register keyword for variables).The restrict keyword speci-
fies to the compiler that the pointer will be the only reference to a particular
object—that is, it will not be referenced by any other pointer within the same scope.The
lines

int * restrict intPtrA;

int * restrict intPtrB;

tell the compiler that, for the duration of the scope in which intPtrA and intPtrB are
defined, they will never access the same value.Their use for pointing to integers (in an ar-
ray, for example) is mutually exclusive.

Expressions
Variable names, function names, message expressions, array names, constants, function
calls, array references, and structure and union references are all considered expressions.
Applying a unary operator (where appropriate) to one of these expressions is also an ex-
pression, as is combining two or more of these expressions with a binary or ternary oper-
ator. Finally, an expression enclosed within parentheses is also an expression.

An expression of any type other than void that identifies a data object is called an
lvalue. If it can be assigned a value, it is known as a modifiable lvalue.

Modifiable lvalue expressions are required in certain places.The expression on the left
side of an assignment operator must be a modifiable lvalue.The unary address operator
can be applied only to a modifiable lvalue or a function name. Finally, the increment
and decrement operators can be applied only to modifiable lvalues.

Summary of Objective-C Operators
Table B.4 summarizes the various operators in the Objective-C language.These operators
are listed in order of decreasing precedence, and operators grouped together have the
same precedence.

As an example of how to use Table B.4, consider the following expression:

b | c & d * e

The multiplication operator has higher precedence than both the bitwise OR and
bitwise AND operators because it appears above both of these in Table B.4. Similarly,
the bitwise AND operator has higher precedence than the bitwise OR operator because
the former appears above the latter in the table.Therefore, this expression would be
evaluated as

b | (c & (d * e))

Now, consider the following expression:

b % c * d

525Expressions

Table B.4 Summary of Objective-C Operators

Operator Description Associativity

() Function call

[] Array element reference or message expression

-> Pointer to structure member reference Left to right

. Structure member reference or method call

- Unary minus

+ Unary plus

++ Increment

-- Decrement

! Logical negation

~ Ones complement Right to left

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication

/ Division Left to right

% Modulus

+ Addition Left to right

- Subtraction

<< Left shift Left to right

>> Right shift

< Less than

<= Less than or equal to Left to right

> Greater than

>= Greater than or equal to

== Equality Left to right

!= Inequality

& Bitwise AND Left to right

526 Appendix B Objective-C 2.0 Language Summary

Because the modulus and multiplication operators appear in the same grouping in
Table B.4, they have the same precedence.The associativity listed for these operators is left
to right, indicating that the expression would be evaluated as follows:

(b % c) * d

As another example, the expression

++a->b

would be evaluated as

++(a->b)

because the -> operator has higher precedence than the ++ operator.
Finally, because the assignment operators group from right to left, the statement

a = b = 0;

would be evaluated as

a = (b = 0);

which would have the net result of setting the values of a and b to 0. In the case of the
expression

x[i] + ++i

Table B.4 Summary of Objective-C Operators

Operator Description Associativity

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

?: Conditional Right to left

= *= /= %= +=

-= &= ^= |=

<<= >>=

Assignment operators Right to left

, Comma operator Right to left

527Expressions

it is not defined whether the compiler will evaluate the left side of the plus operator or
the right side first. Here, the way that it’s done affects the result because the value of i
might be incremented before x[i] is evaluated.

Another case in which the order of evaluation is not defined is in the expression
shown here:

x[i] = ++i

In this situation, it is not defined whether the value of i will be incremented before or
after its value is used to index into x.

The order of evaluation of function and method arguments is also undefined.There-
fore, in the function call

f (i, ++i);

or in the message expression

[myFract setTo: i over: ++i];

i might be incremented first, thereby causing the same value to be sent as the two argu-
ments to the function or method.

The Objective-C language guarantees that the && and || operators will be evaluated
from left to right. Furthermore, in the case of &&, it is guaranteed that the second operand
will not be evaluated if the first is 0; in the case of ||, it is guaranteed that the second
operand will not be evaluated if the first is nonzero.This fact is worth considering when
forming expressions such as

if (dataFlag || [myData checkData])

...

because, in this case, checkData is invoked only if the value of dataFlag is 0.As another
example, if the array object a is defined to contain n elements, the statement that begins

if (index >= 0 && index < n && ([a objectAtIndex: index] == 0))

...

references the element contained in the array only if index is a valid subscript into the
array.

528 Appendix B Objective-C 2.0 Language Summary

Constant Expressions
A constant expression is an expression in which each of the terms is a constant value. Con-
stant expressions are required in the following situations:

1. As the value after a case in a switch statement

2. For specifying the size of an array

3. For assigning a value to an enumeration identifier

4. For specifying the bit field size in a structure definition

5. For assigning initial values to external or static variables

6. For specifying initial values to global variables

7. As the expression following the #if in a #if preprocessor statement

In the first four cases, the constant expression must consist of integer constants, charac-
ter constants, enumeration constants, and sizeof expressions.The only operators that can
be used are the arithmetic operators, bitwise operators, relational operators, conditional
expression operator, and type cast operator.

In the fifth and sixth cases, in addition to the rules cited earlier, the address operator
can be implicitly or explicitly used. However, it can be applied only to external or static
variables or functions. So, for example, the expression

&x + 10

would be a valid constant expression, provided that x is an external or static variable. Fur-
thermore, the expression

&a[10] - 5

is a valid constant expression if a is an external or static array. Finally, because &a[0] is
equivalent to the expression a

a + sizeof (char) * 100

is also a valid constant expression.
For the last situation that requires a constant expression (after the #if), the rules are

the same as for the first four cases, except the sizeof operator, enumeration constants,
and type cast operator cannot be used. However, the special defined operator is permit-
ted (see the section “The #if Directive”).

529Expressions

Arithmetic Operators
Given that

In each expression, the usual arithmetic conversions are performed on the operands
(see the section “Conversion of Basic Data Types”). If a is unsigned, -a is calculated by
first applying integral promotion to it, subtracting it from the largest value of the pro-
moted type, and adding 1 to the result.

If two integral values are divided, the result is truncated. If either operand is negative,
the direction of the truncation is not defined (that is, –3 / 2 can produce –1 on some ma-
chines and –2 on others); otherwise, truncation is always toward 0 (3 / 2 always produces
1). See the section “Basic Operations with Pointers” for a summary of arithmetic opera-
tions with pointers.

Logical Operators
Given that

2a, b are expressions of any basic data type except void;

i, j are expressions of any integer data type;

the expression

-a negates the value of a;

+a gives the value of a;

a + b adds a with b;

a - b subtracts b from a;

a * b multiplies a by b;

a / b divides a by b;

i % j gives the remainder of i divided by j.

a, b are expressions of any basic data type except void, or are both pointers;

the expression

a && b has the value 1 if both a and b are nonzero and 0 otherwise (and b is
evaluated only if a is nonzero);

a || b has the value 1 if either a or b is nonzero and 0 otherwise (and b is
evaluated only if a is 0);

! a has the value 1 if a is 0, and 0 otherwise.

530 Appendix B Objective-C 2.0 Language Summary

The usual arithmetic conversions are applied to a and b (see the section “Conversion
of Basic Data Types”).The type of the result in all cases is int.

Relational Operators
Given that

The usual arithmetic conversions are performed on a and b (see the section “Conver-
sion of Basic Data Types”).The first four relational tests are meaningful for pointers only
if they both point into the same array or to members of the same structure or union.
The type of the result in each case is int.

Bitwise Operators
Given that

a, b are expressions of any basic data type except void, or are both pointers;

the expression

a < b has the value 1 if a is less than b, and 0 otherwise;

a <= b has the value 1 if a is less than or equal to b, and 0 otherwise;

a > b has the value 1 if a is greater than b, and 0 otherwise;

a >= b has the value 1 if a is greater than or equal to b, and 0 otherwise;

a == b has the value 1 if a is equal to b, and 0 otherwise;

a != b has the value 1 if a is not equal to b, and 0 otherwise.

]]i, j, n are expressions of any integer data type; the expression

the expression

i & j performs a bitwise AND of i and j;

i | j performs a bitwise OR of i and j;

i ^ j performs a bitwise XOR of i and j;

~i takes the ones complement of i;

i << n shifts i to the left n bits;

i >> n shifts i to the right n bits.

531Expressions

The usual arithmetic conversions are performed on the operands, except with << and
>>, in which case just integral promotion is performed on each operand (see the section
“Conversion of Basic Data Types”). If the shift count is negative or is greater than or
equal to the number of bits contained in the object being shifted, the result of the shift is
undefined. On some machines, a right shift is arithmetic (sign fill) and on others logical
(zero fill).The type of the result of a shift operation is that of the promoted left operand.

Increment and Decrement Operators
Given that

The section “Basic Operations with Pointers” describes these operations on pointers.

l is a modifiable lvalue expression, whose type is not qualified as const;

the expression

++l increments l and then uses its value as the value of the expression;

l++ uses l as the value of the expression and then increments l;

--1 decrements l and then uses its value as the value of the expression;

l-- uses l as the value of the expression and then decrements l.

Assignment Operators
Given that

]]l is a modifiable lvalue expression, whose type is not qualified as const;

op is any operator that can be used as an assignment operator (see Table B.4);

a is an expression;

the expression

l = a stores the value of a into l;

l op= a applies op to l and a, storing the result into l.

532 Appendix B Objective-C 2.0 Language Summary

In the first expression, if a is one of the basic data types (except void), it is converted
to match the type of l. If l is a pointer, a must be a pointer to the same type as l, a void
pointer, or the null pointer.

If l is a void pointer, a can be of any pointer type.The second expression is treated as
if it were written l = l op (a), except l is evaluated only once (consider x[i++] += 10).

Conditional Operator
Given that

Expressions b and c must be of the same data type. If they are not, but are both arith-
metic data types, the usual arithmetic conversions are applied to make their types the
same. If one is a pointer and the other is 0, the latter is taken as a null pointer of the same
type as the former. If one is a pointer to void and the other is a pointer to another type,
the latter is converted to be a pointer to void and is the resulting type.

Type Cast Operator
Given that

a, b, c are expressions;

the expression

a ? b : c has as its value b if a is nonzero, and c otherwise. Only expression b or
c is evaluated.

]]type is the name of a basic data type, an enumerated data type (preceded by the
keyword enum), or a typedef-defined type, or is a derived data type;

a is an expression;

the expression

(type) converts a to the specified type.

533Expressions

If type is char, the result is defined to be 1. If a is the name of an array that has been
dimensioned (either explicitly or implicitly through initialization) and is not a formal pa-
rameter or undimensioned extern array, sizeof a gives the number of bytes required to
store the elements in a.

If a is the name of a class, sizeof (a) gives the size of the data structure needed to
hold an instance of a.

The type of the integer produced by the sizeof operator is size_t, which is defined
in the standard header file <stddef.h>.

If a is a variable length array, then the expression is evaluated at runtime; otherwise, it
is evaluated at compile time and can be used in constant expressions (refer to the section
“Constant Expressions”).

Comma Operator
Given that

type is as described previously;

a is an expression;

the expression

sizeof

(type)
has as its value the number of bytes needed to contain a value of the
specified type;

sizeof a has as its value the number of by es required to hold the result of the evalua-
tion of a

a, b are expressions;

the expression

a, b causes a to be evaluated and then b to be evaluated.The type and value of the
expression are that of b.

Note that the use of a parenthesized type in a method declaration or definition is not
an example of the use of the type cast operator.

sizeof Operator
Given that

534 Appendix B Objective-C 2.0 Language Summary

In each case, the type of the result is the type of the elements contained in a. See the
section “Basic Operations with Pointers” for a summary of operations with pointers
and arrays.

Basic Operations with Structures
Note
This also applies to unions.

Given that

x is a modifiable lvalue expression of type struct s;

y is an expression of type struct s;

m is the name of one of the members of the structure s;

obj is any object;

M is any method;

v is an expression;

the expression

x references the entire structure and is of type struct s;

y.m references the member m of the structure y and is of the type declared
for the member m;

Basic Operations with Arrays
Given that

a is declared as an array of n elements;

i is an expression of any integer data type;

v is an expression;

the expression

a[0] references the first element of a;

a[n - 1] references the last element of a;

a[i] references element number i of a;

a[i] = v stores the value of v into a[i].

535Expressions

Basic Operations with Pointers
Given that

x.m = v assigns v to the member m of x and is of the type declared for the
member m;

x = y assigns y to x and is of type struct s;

f (y) calls the function f, passing contents of the structure y as the argument
(inside f, the formal parameter must be declared to be of type struct s);

[obj M: y] invokes the method M on the object obj, passing the contents of the
structure y as the argument (inside the method, the parameter must be
declared to be of type struct s);

return y; returns the structure y (the return type declared for the function or
method must be struct s).

x is an lvalue expression of type t;

pt is a modifiable lvalue expression of type “pointer to t”;

v is an expression;

the expression

&x produces a pointer to x and has type “pointer to t”;

pt = &x sets pt pointing to x and has type “pointer to t”;

pt = 0 assigns the null pointer to pt;

pt == 0 tests whether pt is null;

*pt references the value pointed to by pt and has type t;

*pt = v stores the value of v into the location pointed to by pt and has type t.

536 Appendix B Objective-C 2.0 Language Summary

Pointers to Arrays
Given that

a is an array of elements of type t;

pa1 is a modifiable lvalue expression of type “pointer to t” that points to an
element in a;

pa2 is an lvalue expression of type “pointer to t” that points to an element
in a, or to one past the last element in a;

v is an expression;

n is an integral expression;

the expression

a, &a, &a[0] each produces a pointer to the first element;

&a[n] produces a pointer to element number n of a and has type “pointer to t”;

*pa1 references the element of a that pa1 points to and has type t;

*pa1 = v stores the value of v into the element pointed to by pa1 and has type t;

++pa1 sets pa1 pointing to the next element of a, no matter which type of
elements is contained in a, and has type “pointer to t”;

--pa1 sets pa1 pointing to the previous element of a, no matter which type
of elements is contained in a, and has type “pointer to t”;

*++pa1 increments pa1 and then references the value in a that pa1 points to
and has type t;

*pa1++ references the value in a that pa1 points to before incrementing pa1

and has type t;

pa1 + n produces a pointer that points n elements further into a than pa1 and
has type “pointer to t”;

pa1 - n produces a pointer to a that points n elements previous to that pointed
to by pa1 and has type “pointer to t”;

*(pa1 + n) stores the value of v into the element pointed to by pa1 + n and has =
v type t;

pa1 < pa2 tests whether pa1 is pointing to an earlier element in a than is pa2

and has type int (any relational operators can be used to compare two
pointers);

537Expressions

pa2 - pa1 produces the number of elements in a contained between the pointers
pa2 and pa1 (assuming that pa2 points to an element further in a than
pa1) and has integer type;

a + n produces a pointer to element number n of a, has type “pointer to t,”
and is in all ways equivalent to the expression &a[n];

*(a + n) references element number n of a, has type t, and is in all ways equiva-
lent to the expression a[n].

The actual type of the integer produced by subtracting two pointers is specified by
ptrdiff_t, which is defined in the standard header file <stddef.h>.

Pointers to Structures
Given that

x is an lvalue expression of type struct s;

ps is a modifiable lvalue expression of type “pointer to struct s”;

m is the name of a member of the structure s and is of type t;

v is an expression;

the expression

&x produces a pointer to x and is of type “pointer to struct s”;

ps = &x sets ps pointing to x and is of type “pointer to struct s”;

ps->m references member m of the structure pointed to by ps and is of type t;

(*ps).m also references this member and is in all ways equivalent to the expression
ps->m;

ps->m = v stores the value of v into the member m of the structure pointed to by ps

and is of type t

538 Appendix B Objective-C 2.0 Language Summary

Compound Literals
A compound literal is a type name enclosed in parentheses followed by an initialization list.
It creates an unnamed value of the specified type, which has scope limited to the block in
which it is created, or global scope if defined outside of any block. In the latter case, the
initializers must all be constant expressions.

As an example,

(struct point) {.x = 0, .y = 0}

is an expression that produces a structure of type struct point with the specified initial
values.This can be assigned to another struct point structure, like so:

origin = (struct point) {.x = 0, .y = 0};

Or it can be passed to a function or method expecting an argument of struct point,
like so:

moveToPoint ((struct point) {.x = 0, .y = 0});

Types other than structures can be defined as well—for example, if intPtr is of type
int *, the statement

intPtr = (int [100]) {[0] = 1, [50] = 50, [99] = 99 };

(which can appear anywhere in the program) sets intptr pointing to an array of 100 in-
tegers, whose 3 elements are initialized as specified.

If the size of the array is not specified, it is determined by the initializer list.

Conversion of Basic Data Types
The Objective-C language converts operands in arithmetic expressions in a predefined
order, known as the usual arithmetic conversions:

1. If either operand is of type long double, the other is converted to long double
and that is the type of the result.

2. If either operand is of type double, the other is converted to double and that is the
type of the result.

3. If either operand is of type float, the other is converted to float and that is the
type of the result.

4. If either operand is of type _Bool, char, short int, int bit field, or an enumerated
data type, it is converted to int, if an int can fully represent its range of values;
otherwise, it is converted to unsigned int. If both operands are of the same type,
that is the type of the result.

5. If both operands are signed or both are unsigned, the smaller integer type is con-
verted to the larger integer type and that is the type of the result.

539Storage Classes and Scope

6. If the unsigned operand is equal in size or larger than the signed operand, the
signed operand is converted to the type of the unsigned operand, and that is the
type of the result.

7. If the signed operand can represent all the values in the unsigned operand, the latter
is converted to the type of the former if it can fully represent its range of values,
and that is the type of the result.

8. If this step is reached, both operands are converted to the unsigned type correspon-
ding to the type of the signed type.

Step 4 is known more formally as integral promotion.
Conversion of operands is well behaved in most situations, although the following

points should be noted:

1. Conversion of a char to an int can involve sign extension on some machines, un-
less the char is declared as unsigned.

2. Conversion of a signed integer to a longer integer results in extension of the sign to
the left; conversion of an unsigned integer to a longer integer results in zero fill to
the left.

3. Conversion of any value to a _Bool results in 0 if the value is zero and 1 otherwise.

4. Conversion of a longer integer to a shorter one results in truncation of the integer
on the left.

5. Conversion of a floating-point value to an integer results in truncation of the deci-
mal portion of the value. If the integer is not large enough to contain the converted
floating-point value, the result is not defined, as is the result of converting a nega-
tive floating-point value to an unsigned integer.

6. Conversion of a longer floating-point value to a shorter one might or might not
result in rounding before the truncation occurs.

Storage Classes and Scope
The term storage class refers to the manner in which memory is allocated by the compiler
in the case of variables and to the scope of a particular function or method definition.
Storage classes are auto, static, extern, and register.A storage class can be omitted in
a declaration, and a default storage class will be assigned, as discussed next.

The term scope refers to the extent of the meaning of a particular identifier within a
program.An identifier defined outside any function, method, or statement block (herein
referred to as a BLOCK) can be referenced anywhere subsequent in the file. Identifiers
defined within a BLOCK are local to that BLOCK and can locally redefine an identifier

540 Appendix B Objective-C 2.0 Language Summary

defined outside it. Label names are known throughout the BLOCK, as are formal param-
eter names. Labels, instance variables, structure and structure member names, union and
union member names, and enumerated type names do not have to be distinct from each
other or from variable, function, or method names. However, enumeration identifiers do
have to be distinct from variable names and from other enumeration identifiers defined
within the same scope. Class names have global scope and must be distinct from other
variables and type names with the same scope.

Functions
If a storage class is specified when a function is defined, it must be either static or
extern. Functions that are declared static can be referenced only from within the same
file that contains the function. Functions specified as extern (or that have no class speci-
fied) can be called by functions or methods from other files.

Variables
Table B.5 summarizes the various storage classes that can be used in declaring variables as
well as their scopes and methods of initialization.

Table B.5 Variables: Summary of Storage Classes, Scope, and Initialization.

If storage
class is

And variable
is declared

Then it can be
referenced

And be
initialized
with

Comments

static Outside any
BLOCK

Inside a
Block

Anywhere within
the file

Within the Block

Constant
expression
only

Variables are initialized
only once at the start
of program execution;
values are retained
through BLOCKS; the
default value is 0

extern Outside any
BLOCK

Inside a
BLOCK

Anywhere within
the file

Within the BLOCK

Constant
expression
only

Variable must be de-
clared in at least one
place without the
extern keyword, or in
one place using the
keyword extern and
assigned an initial
value

auto Inside a
BLOCK

Within the BLOCK Any valid
expression

Variable is initialized
each time the BLOCK is
entered; no default
value

541Storage Classes and Scope

Instance Variables
Instance variables can be accessed by any instance method defined for the class, either in
the interface section that explicitly defines the variable or in categories created for the
class. Inherited instance variables can also be accessed directly without any special declara-
tions. Class methods do not have access to instance variables.

The special directives @private, @protected, and @public can be used to control the
scope of an instance variable.After these directives appear, they remain in effect until the
closing curly brace ending the declaration of the instance variables is encountered or until

Table B.5 Variables: Summary of Storage Classes, Scope, and Initialization.

If storage
class is

And variable
is declared

Then it can be
referenced

And be
initialized
with

Comments

register Inside a
BLOCK

Within the BLOCK Any valid ex-
pression

Assignment register
not guaranteed; varying
restrictions on types of
variables that can be
declared; cannot take
the address of a
register variable;
initialized each time
BLOCK is entered; no
default value

omitted Outside any
BLOCK

Inside a

BLOCK

Anywhere within
the file or by other
files that contain
appropriate
declarations

(See auto)

Constant
expressions
only

(See auto)

This declaration can
appear in only one
place; the variable is
initialized at the start
of program execution;
the default value is 0;
it defaults to auto

542 Appendix B Objective-C 2.0 Language Summary

another of the three listed directives is used. For example, the following begins an inter-
face declaration for a class called Point containing four instance variables:

@interface Point: NSObject

{

@private

int internalID;

@protected

float x;

float y;

@public

BOOL valid;

}

The internalID variable is private, the x and y variables are protected (the de-
fault), and the valid variable is public.

These directives are summarized in Table B.6.

Table B.6 Scope of Instance Variables

If variable is de-
clared after this
directive...

...then it can be referenced... Comments

@protected By instance methods in the class,
instance methods in subclasses,
and instance methods in category
extensions to the class

This is the default.

@private By instance methods in the class
and instance methods in any cate-
gory extensions to the class, but not
by any subclasses

This restricts access to the class it-
self.

@public By instance methods in the class, in-
stance methods in subclasses, and
instance methods in category exten-
sions to the class; it can also be ac-
cessed from other functions or meth-
ods by applying the structure pointer
indirection operator (->) to an in-
stance of the class followed by the
name of the instance variable
(as in myFract->numerator)

This should not be used unless nec-
essary; it defeats the notion of data
encapsulation.

543Functions

Functions
This section summarizes the syntax and operation of functions.

Function Definition
General Format:

returnType name (type1 param1, type2 param2, ..)
{

variableDeclarations

programStatement
programStatement
...

return expression;
}

The funct on called name is defined, which returns a value of type returnType and has
formal parameters param1, param2, param1 is declared to be of type type1, param2 of
type type2, and so on.

Local variables are typically declared at the beginning of the function, but that’s not re-
quired.They can be declared anywhere, in which case their access is limited to statements
appearing after their declaration in the function.

If the function does not return a value, returnType is specified as void.
If just void is specified inside the parentheses, the function takes no arguments. If .. is

used as the last (or only) parameter in the list, the function takes a variable number of ar-
guments, as in the following:

int printf (char *format, ...)

{

...

}

Declarations for single-dimensional array arguments do not have to specify the num-
ber of elements in the array. For multidimensional arrays, the size of each dimension ex-
cept the first must be specified.

See the section “The return Statement” for a discussion of the return statement.
An older way of defining functions is still supported.The general format is

returnType name (param1, param2, ..)
param_declarations
{

variableDeclarations
programStatement
programStatement
...

return expression;
}

544 Appendix B Objective-C 2.0 Language Summary

Here, just the parameter names are listed inside the parentheses. If no arguments are
expected, nothing appears between the left and right parentheses.The type of each pa-
rameter is declared outside the parentheses and before the opening curly brace of the
function definition. For example, the following defines a function called rotate that takes
two arguments called value and n:

unsigned int rotate (value, n)

unsigned int value;

int n;

{

...

}

The first argument is an unsigned int, and the second is an int.
The keyword inline can be placed in front of a function definition as a hint to the

compiler. Some compilers replace the function call with the actual code for the function
itself, thus providing for faster execution.An example is shown here:

inline int min (int a, int b)

{

return (a < b ? a : b);

}

Function Call
General Format:

name (arg1, arg2, ..)

The function called name is called and the values arg1, arg2, ... are passed as arguments
to the function. If the function takes no arguments, just the open and closed parentheses
are specified (as in initialize ()).

If you are calling a function that is defined after the call, or in another file, you should
include a prototype declaration for the function, which has the following general format:

returnType name (type1 param1, type2 param2, ..);

This tells the compiler the function’s return type, the number of arguments it takes,
and the type of each argument.As an example, the line

long double power (double x, int n);

545Functions

declares power to be a function that returns a long double and that takes two argu-
ments—the first of which is a double and the second of which is an int.The argument
names inside the parentheses are actually dummy names and can be omitted if desired, so

long double power (double, int);

works just as well.
If the compiler has previously encountered the function definition or a prototype dec-

laration for the function, the type of each argument is automatically converted (where
possible) to match the type expected by the function when the function is called.

If neither the function’s definition nor a prototype declaration has been encountered,
the compiler assumes the function returns a value of type int and automatically converts
all float arguments to type double and performs integral promotion on any integer ar-
guments as outlined in the section Conversion of Basic Data Types. Other function argu-
ments are passed without conversion.

Functions that take a variable number of arguments must be declared as such. Other-
wise, the compiler is at liberty to assume the function takes a fixed number of arguments
based on the number actually used in the call.

If the function were defined with the old-style format (refer to the section “Function
Definition”), a declaration for the function takes the following format:

returnType name ();

Arguments to such functions are converted, as described in the previous paragraph.
A function whose return type is declared as void causes the compiler to flag any calls

to that function that try to make use of a returned value.
All arguments to a function are passed by value; therefore, their values cannot be

changed by the function. If, however, a pointer is passed to a function, the function can
change values referenced by the pointer, but it still cannot change the value of the pointer
variable itself.

Function Pointers
A function name, without a following set of parentheses, produces a pointer to that func-
tion.The address operator can also be applied to a function name to produce a pointer to
it.

If fp is a pointer to a function, the corresponding function can be called either by
writing

fp ()

or

(*fp) ()

If the function takes arguments, they can be listed inside the parentheses.

546 Appendix B Objective-C 2.0 Language Summary

Classes
This section summarizes the syntax and semantics associated with classes.

Class Definition
A class definition consists of declaring the instance variables and methods in an interface
section and defining the code for each method in an implementation section.

Interface Section
General Format:

@interface className : parentClass <protocol, ...>
{

instanceVariableDeclarations
}

methodDeclaration
methodDeclaration

...

@end

The class className is declared with the parent class parentClass. If className also
adopts one or more formal protocols, the protocol names are listed inside a pair of angular
brackets after parentClass. In that case, the corresponding implementation section must
contain definitions for all such methods in the listed protocols.

If the colon and parentClass are omitted, a new root class is declared.

Instance Variable Declarations
The optional instanceVariableDeclarations section lists the type and name of each
instance variable for the class. Each instance of className gets its own set of these vari-
ables, plus any variables inherited from parentClass.All such variables can be referenced
directly by name either by instance methods defined in className or by any subclasses of
className. If access has been restricted with an @private directive, subclasses cannot ac-
cess the variables declared as such (refer to the section “Instance Variables”).

Class methods do not have access to instance variables.

Property Declarations
General Format:

@property (attributes) nameList;

This declares properties with the specified comma-separated list of attributes.
nameList is a comma-separated list of property names of a declared type:

(type) propertyName1, propertyName2, propertyName3,...

An @property directive can appear anywhere inside the method declaration section
for a class, protocol, or category.

547Classes

You can only specify one of the attributes assign, copy, or retain. If you don’t use
garbage collection, then one of these attributes should be explicitly used; otherwise you
will get a warning from the compiler. If you use garbage collection and you don’t specify
one of these three attributes, the default attribute, assign, will be used. In that case, the
compiler gives a warning only if the class conforms to the NSCopying protocol (in which
case you might want to copy and not assign the property).

If you use the copy attribute, the object’s copy method will be used by the synthesized
setter method.This results in an immutable copy.You must supply your own setter
method if you need a mutable copy instead.

Table B.7 Property Attributes

Attribute Meaning

assign Use simple assignment to set the value of the instance variable in the setter
method. (This is a default attribute.)

copy Use the copy method to set the value of the instance variable.

getter=name Use name for the name of the getter method instead of propertyName,
which is the default for the synthesized getter method.

nonatomic The value from a synthesized getter method can be returned directly. If this at-
tribute is not declared, then the accessor methods are atomic—meaning ac-
cess to the instance variables is mutex-locked. This provides protection in a
multithreaded environment by ensuring the get or set operation runs in a sin-
gle thread. Further, by default, in a nongarbage-collected environment, the syn-
thesized getter method retains and autoreleases the property before its value
is returned.

readonly The property’s value cannot be set. No setter method is expected from the
compiler, nor will one be synthesized. (This is a default attribute.)

readwrite The property’s value can be retrieved and set. The compiler expects you to
provide both getter and setter methods or will synthesize both methods if
@synthesize is used.

retain The property should be retained on assignment. This can only be specified for
Objective-C types.

setter=name Use name for the name of the setter method instead of setPropertyName,
which is the default for the synthesized accessor method.

548 Appendix B Objective-C 2.0 Language Summary

Method Declaration
General Format:

mType (returnType) name1 : (type1) param1 name2 : (type2) param2, ...;

The method name1:name2:.. is declared, which returns a value of type returnType
and has formal parameters param1, param2, param1 is declared to be of type type1,
param2 is declared to be of type type2, and so on.

Any of the names after name1 (meaning name2, ...) can be omitted, in which case a
colon is still used as a placeholder and becomes part of the method name (see the follow-
ing example).

If mType is +, a class method is declared, but if mType is –, an instance method is declared.
If the declared method is inherited from a parent class, the parent’s definition is over-

ridden by the new definition. In such a case, the method from the parent class can still be
accessed by sending a message to super.

Class methods are invoked when a corresponding message is sent to a class object,
whereas instance methods are invoked when a corresponding message is sent to an in-
stance of the class. Class methods and instance methods can have the same name.

The same method name can also be used by different classes.The capability of objects
from different classes to respond to the same named method is known as polymorphism.

If the method does not return a value, returnType is void. If the function returns an
id value, returnType can be omitted, although specifying id as the return type is better
programming practice.

If , ... is used as the last (or only) parameter in the list, the method takes a variable
number of arguments, as in

-(void) print: (NSSTRING *) format, ...

{

...

}

As an example of a class declaration, the following interface declaration section de-
clares a class called Fraction whose parent is NSObject:

@interface Fraction: NSObject

{

int numerator, denominator;

}

+(Fraction *) newFract;

-(void) setTo: (int) n : (int) d;

-(void) setNumerator: (int) n andDenominator: (int) d;

-(int) numerator;

-(int) denominator;

@end

The Fraction class has two integer instance variables called numerator and
denominator. It also has one class method called newFract, which returns a Fraction

549Classes

object. It has two instance methods called setTo:: and
setNumerator:andDenominator:, each of which takes two arguments and does not re-
turn a value. It also has two instance methods called numerator and denominator that
take no arguments and return an int.

Implementation Section
General Format:

@implementation className;
methodDefinition
methodDefinition
...

@end

The class called className is defined.The parent class and instance variables are not
typically redeclared in the implementation section (although they can be) because they
have been previously declared in the interface section.

Unless the methods for a category are being implemented (see the section “Category
Definition”), all the methods declared in the interface section must be defined in the im-
plementation section. If one or more protocols were listed in the interface section, all the
protocols’ methods must be defined—either implicitly through inheritance or explicitly
by definition in the implementation section.

Each methodDefinition contains the code that will be executed when the method is
invoked.

Method Definition
General Format:

mType (returnType) name1 : (type1) param1 : name2 (type2) param2, ...
{

variableDeclarations

programStatement
programStatement
...

return expression;
}

The method name1:name2:... is defined, which returns a value of type returnType
and has formal parameters param1, param2, param1 is declared to be of type type1,
param2 is declared to be of type type2, and so on. If mType is +, a class method is defined;
if mType is –, an instance method is defined.This method declaration must be consistent
with the corresponding method declaration from the interface section or from a previ-
ously defined protocol definition.

550 Appendix B Objective-C 2.0 Language Summary

An instance method can reference the class’s instance variables and any variables it has
inherited directly by name. If a class method is being defined, it cannot reference any in-
stance variables.

The identifier self can be used inside a method to reference the object on which the
method was invoked—that is, the receiver of the message.

The identifier super can be used inside a method to reference the parent class of the
object on which the method was invoked.

If returnType is not void, one or more return statements with expressions of type
returnType must appear in the method definition. If returnType is void, use of a
return statement is optional, and if used, it cannot contain a value to return.

As an example of a method definition, the following defines a
setNumerator:andDenominator: method in accordance with its declaration (refer to the
section “Method Declaration”):

-(void) setNumerator: (int) n andDenominator: (int) d

{

numerator = n;

denominator = d;

}

The method sets its two instance variables to the supplied arguments and does not ex-
ecute a return (although it could) because the method is declared to return no value.

Declarations for single-dimensional array arguments do not have to specify the num-
ber of elements in the array. For multidimensional arrays, the size of each dimension ex-
cept the first must be specified.

Local variables can be declared inside a method and are typically declared at the start
of the method definition.Automatic local variables are allocated when the method is in-
voked and deallocated when the method is exited.

See the section “The return Statement” for a discussion of the return statement.

Synthesized Accessor Methods
General Format:

@synthesize property_1, property_2, ...

This specifies that methods should be synthesized for the listed properties property_1,
property_2,

The notation

property=instance_var

can be used in the list to specify that property will be associated with the instance
variable instance_var.The synthesized methods will have characteristics based on attrib-
utes declared for the property through a prior @property directive.

551Classes

Category Definition
General Format:

@interface className (categoryName) <protocol,...>
methodDeclaration
methodDeclaration

...

@end

This defines the category categoryName for the class specified by className with the
associated listed methods. If one or more protocols are listed, the category adopts the
listed protocols.

The compiler must know about className through a previous @interface section
declaration for the class.

You can define as many categories as you want in as many different source files as you
want.The listed methods become part of the class and are inherited by subclasses.

Categories are uniquely defined by className/categoryName pairs. For example, in a
given program there can be only one NSArray (Private) category. However, individual
category names can be reused. So, a given program can include an NSArray (Private)
category and an NSString (Private) category, and both categories will be distinct from
each other.

You do not need to implement the methods defined in a category that you do not in-
tend to use.

A category can only extend the definition of a class with additional methods, or it
can override existing methods in the class. It cannot define any new instance variables
for the class.

If more than one category declares a method with the same name for the same class, it
does not define which method will be executed when invoked.

As an example, the following defines a category for the Complex class called
ComplexOps, with four instance methods:

#import “Complex.h”
@interface Complex (ComplexOps)

-(Complex *) abs;

-(Complex *) exp;

-(Complex *) log;

-(Complex *) sqrt;

@end

Presumably, a corresponding implementation section appears somewhere that imple-
ments one or more of these methods:

#import “ComplexOps.h”
@implementation Complex (ComplexOps)

-(Complex *) abs

{

...

552 Appendix B Objective-C 2.0 Language Summary

}

-(Complex *) exp

{

...

}

-(Complex *) log

{

...

}

-(Complex *) sqrt

{

...

}

@end

A category that defines methods meant for other subclasses to implement is known as
an informal protocol or abstract category. Unlike formal protocols, the compiler does not
perform any checks for conformance to an informal protocol.At runtime, an object
might or might not test for conformance to an informal protocol on an individual
method basis. For example, one method might be required at runtime, whereas another
method in the same protocol might not.

Protocol Definition
General Format:

@protocol protocolName <protocol, ...>
methodDeclarations

@optional

methodDeclarations
@required

methodDeclarations
...

@end

The protocol called protocolName is defined with associated methods. If other proto-
cols are listed, protocolName also adopts the listed protocols.

This definition is known as a formal protocol definition.
A class conforms to the protocolName protocol if it defines or inherits all the required

methods declared in the protocol plus all the methods of any other listed protocols.The
compiler checks for conformance and generates a warning if a class does not conform to
a declared formal protocol. Objects might or might not be tested for conformance to a
formal protocol at runtime.

553Classes

The @optional directive can precede a list of methods whose implementation is op-
tional.An @required directive can subsequently be used to resume the list of required
methods that must be implemented for conformance to the protocol.

Protocols are often not associated with any particular class but provide a way to define
a common interface that is shared among classes.

Special Type Modifiers
The method parameters and return type declared in protocols can use the type qualifiers
listed in Table B.8.These qualifiers are used for distributed object applications.

Table B.8 Special Protocol Type Mod fiers

Qualifier Meaning

in The a gument references an object whose value will be changed by the sender
and sent (that is, copied) back to he receiver

out The argument references an object whose value will be changed by the receiver
and sent back to the sender.

inout The argument references an object whose value will be set by both the sender
and the receiver and will be sent back and forth; this is the default.

oneway It’s used for return type declarations; typically (one way void) is used to specify
that the invoker of this method does not have to wait for a return value—that is,
the method can execute asynchronously.

bycopy The argument or return value is to be copied.

byref The argument or return value is passed by reference and not copied.

554 Appendix B Objective-C 2.0 Language Summary

Object Declaration
General Format:

className *var1, *var2, ...;

This defines var1, var2, ... to be objects from the class className. Note that this de-
clares pointer variables and does not reserve space for the actual data contained in each
object.The declaration

Fraction *myFract;

defines myFract as a Fraction object or, technically, as a pointer to one.To allocate the
actual space for the data structure of a Fraction, the alloc or new method is typically in-
voked on the class, like so:

myFract = [Fraction alloc];

This causes enough space to be reserved for a Fraction object and a pointer to it to
be returned and assigned to myFract.The variable myFract is often referred to as an ob-
ject or as an instance of the Fraction class.As the alloc method in the root object is de-
fined, a newly allocated object has all its instance variables set to 0. However, that does
not mean the object has been properly initialized and an initialization method (like init)
should be invoked on the object before it is used.

Because the myFract variable has been explicitly declared as an object from the
Fraction class, the variable is said to be statically typed.The compiler can check the use
of statically typed variables for consistency by consulting the class definition for proper
use of methods and their arguments and return types.

id Object Declaration
General Format:

id <protocol,...> var1, var2, ...;

This declares var1, var2, ... to be objects from an indeterminate class that conform to
the protocols listed in the angular brackets.The protocol list is optional.

Objects from any class can be assigned to id variables, and vice versa. If one or more
protocols is listed, the compiler checks that methods used from the listed protocols on any
of the declared variables are used in a consistent manner—that is, consistent with respect
to argument and return types for the methods declared in the formal protocol.

For example, in the statements

id <MathOps> number;

...

result = [number add: number2];

the compiler checks whether the MathOps protocol defines an add: method. If it does, it
then checks for consistency with respect to the argument and return types for that

555Classes

method. So, if the add: method takes an integer argument and you are passing it a
Fraction object above, the compiler complains.

The system keeps track of the class to which each object belongs; therefore, at runtime
it can determine the class of an object and then select the correct method to invoke.
These two processes are known as dynamic typing and dynamic binding, respectively.

Message Expressions
Format 1:

[receiver name1: arg1 name2: arg2, name3: arg3 ..]

The method name1:name2:name3 ... from the class specified by receiver is invoked
and the values arg1, arg2, ... are passed as arguments.This is called a message expression.
The value of the expression is the value returned by the method, or void if the method is
declared as such and returns no value.The type of the expression is that of the type de-
clared for the method invoked.

Format 2:

[receiver name];

If a method takes no arguments, this format is used to invoked the method name from
the class specified by receiver.

If receiver is an id type, the compiler looks among the declared classes for a defini-
tion or inherited definition of the specified method. If no such definition is found, the
compiler issues a warning that the receiver might not respond to the specified message. It
further assumes the method returns a value of type id and converts any float arguments to
type double and performs integral promotion on any integer arguments as outlined ear-
lier in the section “Conversion of Basic Data Types.” Other method arguments are passed
without conversion.

If receiver is a class object (which can be created by simply specifying the class
name), the specified class method is invoked. Otherwise, receiver is an instance of a
class, and the corresponding instance method is invoked.

If receiver is a statically typed variable or expression, the compiler looks in the class
definition for the method (or for any inherited methods) and converts any arguments
(where possible) to match the expected arguments for the method. So, a method expect-
ing a floating value that is passed an integer has that argument automatically converted
when the method is invoked.

If receiver is a null object pointer—that is, nil—it can be sent messages. If the
method associated with the message returns an object, the value of the message expression
is nil. If the method does not return an object, the value of the expression is not defined.

If the same method is defined in more than one class (either by explicit definition or
from inheritance), the compiler checks for consistency for argument and return types
among the classes.

556 Appendix B Objective-C 2.0 Language Summary

All arguments to a method are passed by value; therefore, their values cannot be
changed by the method. If a pointer is passed to a method, the method can change values
referenced by the pointer, but it still cannot change the value of the pointer itself.
Format 3:

receiver.property

This calls the getter method (by default property) for receiver, unless this expression
is used as an lvalue (see Format 4). The getter method name can be changed with an
@property directive, in which case that will be the method that gets called.

If the default getter method name is used, then the previous expression is equivalent to
the following:

[receiver property]

Format 4:

receiver.property = expression

This calls the setter method associated with the property property, passing as its argu-
ment the value of expression. By default, the setter method setProperty: gets called,
unless another setter method name was assigned to the property using a prior @property
directive.

If the default setter property name is used, the previous expression is equivalent to
writing the following:

[receiver setProperty: expression]

Statements
A program statement is any valid expression (usually an assignment or a function call) that
is immediately followed by a semicolon, or it is one of the special statements described in
the following.A label can optionally precede any statement and consists of an identifier
followed immediately by a colon (see the goto statement).

Compound Statements
Program statements contained within a pair of braces are known collectively as a
compound statement or block and can appear anywhere in the program that a single state-
ment is permitted.A block can have its own set of variable declarations, which override
any similarly named variables defined outside the block.The scope of such local variables
is the block in which they are defined.

The break Statement
General Format:

break;

557Statements

Execution of a break statement from within a for, while, do, or switch statement
causes execution of that statement to be immediately terminated. Execution continues
with the statement that immediately follows the loop or switch.

The continue Statement
General Format:

continue;

Execution of the continue statement from within a loop causes any statements that
follow the continue in the loop to be skipped. Execution of the loop otherwise contin-
ues as normal.

The do Statement
General Format:

do

programStatement
while (expression);

programStatement is executed as long as expression evaluates to nonzero. Note that,
because expression is evaluated each time after the execution of programStatement, it
is guaranteed that programStatement will be executed at least once.

The for Statement
Format 1:

for (expression_1; expression_2; expression_3)

programStatement

expression_1 is evaluated once when execution of the loop begins. Next,
expression_2 is evaluated. If its value is nonzero, programStatement is executed and
then expression_3 is evaluated. Execution of programStatement and the subsequent
evaluation of expression_3 continue as long as the value of expression_2 is nonzero.
Because expression_2 is evaluated each time before programStatement is executed,
programStatement might never be executed if the value of expression_2 is 0 when the
loop is first entered.

Variables local to the for loop can be declared in expression_1.The scope of such
variables is the scope of the for loop. For example

for (int i = 0; i < 100; ++i)

...

declares the integer variable i and sets its initial value to 0 when the loop begins.The
variable can be accessed by any statements inside the loop, but it is not accessible after the
loop is terminated.

558 Appendix B Objective-C 2.0 Language Summary

Format 2:

for (var in expression)

programStatement

This variant of the for loop sets up a fast enumeration. var is a variable whose type can
also be declared, making its scope local to the for loop. expression is an expression that
produces a result that conforms to the NSFastEnumeration protocol.Typically,
expression is a collection, such as an array or a dictionary.

Each time through the for loop, the next object produced by the initial evaluation of
expression is assigned to var and the body of the loop, represented by programStatenent,
is executed. Execution terminates when all objects in expression have been enumerated.

Note that the for loop cannot change the contents of the collection. If it does, an ex-
ception is raised.

An array has each of its elements enumerated in order. Enumerating a dictionary ob-
ject results in each key being enumerated, in no particular order. Enumeration of a set re-
sults in each member of the set being enumerated, in no particular order.

The goto Statement
General Format:

goto identifier;

Execution of the goto causes control to be sent directly to the statement labeled
identifier.The labeled statement must be located in the same function or method as
the goto.

The if Statement
Format 1:

if (expression)

programStatement

If the result of evaluating expression is nonzero, programStatement is executed; oth-
erwise, it is skipped.

Format 2:

if (expression)

programStatement_1
else

programStatement_2

If the value of expression is nonzero, programStatement_1 is executed; otherwise,
programStatement_2 is executed. If programStatement_2 is another if statement, an
if-else if chain is affected, like so:

if (expression_1)

559Statements

programStatement_1
else if (expression_2)

programStatement_2
...

else

programStatement_n

An else clause is always associated with the last if statement that does not contain an
else. Braces can be used to change this association if necessary.

The null Statement
General Format:

;

Execution of a null statement has no effect and is used primarily to satisfy the require-
ment of a program statement in a for, do, or while loop.The following statement copies
a character string pointed to by from to one pointed to by to:

while (*to++ = *from++)

;

In this statement, the null statement is used to satisfy the requirement that a program
statement appear after the looping expression of the while.

The return Statement
Format 1:

return;

Execution of the return statement causes program execution to be immediately re-
turned to the calling function or method.This format can be used only to return from a
function or method that does not return a value.

If execution proceeds to the end of a function or method and a return statement is
not encountered, it returns as if a return statement of this form had been executed.
Therefore, in such a case, no value is returned.

Format 2:

return expression;

The value of expression is returned to the calling function or method. If the type of
expression does not agree with the return type declared in the function or method dec-
laration, its value is automatically converted to the declared type before it is returned.

560 Appendix B Objective-C 2.0 Language Summary

The switch Statement
General Format:

switch (expression)

{

case constant_1:
programStatement
programStatement
...

break;

case constant_2:
programStatement
programStatement
...

break;

...

case constant_n:
programStatement
programStatement
...

break;

default:

programStatement
programStatement
...

break;

}

expression is evaluated and compared against the constant expression values
constant_1, constant_2, ..., constant_n. If the value of expression matches one of
these case values, the program statements that immediately follow are executed. If no case
value matches the value of expression, the default case, if included, is executed. If the
default case is not included, no statements contained in the switch are executed.

The result of the evaluation of expression must be of integral type, and no two cases
can have the same value. Omitting the break statement from a particular case causes exe-
cution to continue into the next case.

The while Statement
General Format:

while (expression)

programStatement

programStatement is executed as long as the value of expression is nonzero. Because
expression is evaluated each time before the execution of programStatement,
programStatement might never be executed.

561Preprocessor

Exception Handling
Exceptions can be handled at runtime by enclosing statements that might generate an ex-
ception inside an @try block, whose general format is as follows:

@try

programStatement 1
@catch (exception)

programStatement 2
@catch (exception)

...

@finally

programStatement n

If an exception is thrown by programStatement 1, the @catch blocks that follow will
be tested (in order) to see if the corresponding exception matches the one that was thrown.
If it does, the corresponding programStatement will be executed.Whether or not an ex-
ception is thrown and caught, the @finally block, if supplied, will be executed.

Preprocessor
The preprocessor analyzes the source file before the compiler proper sees the code. Here
is what the preprocessor does:

1. It replaces trigraph sequences by their equivalents (refer to the section “Compound
Statements”).

2. It joins any lines that end with a backslash character (\) together into a single line.

3. It divides the program into a stream of tokens.

4. It removes comments, replacing them by a single space.

5. It processes preprocessor directives (see the section “Preprocessor Directives”) and
expands macros.

Trigraph Sequences
To handle non-ASCII character sets, the following three-character sequences (called
trigraphs) are recognized and treated specially wherever they occur inside a program (as
well as inside character strings):

Trigraph Meaning

??= #

??([

??)]

562 Appendix B Objective-C 2.0 Language Summary

Preprocessor Directives
All preprocessor directives begin with the character #, which must be the first nonwhite-
space character on the line.The # can be optionally followed by one or more space or tab
characters.

The #define Directive
Format 1:

#define name text

This defines the identifier name to the preprocessor and associates with it whatever
text appears after the first blank space after name to the end of the line. Subsequent use
of name in the program causes text to be substituted directly into the program at that
point.

Format 2:

#define name(param_1, param_2, ..., param_n) text

The macro name is defined to take arguments as specified by param_1, param_2, ...,
param_n, each of which is an identifier. Subsequent use of name in the program with an
argument list causes text to be substituted directly into the program at that point, with
the arguments of the macro call replacing all occurrences of the corresponding parame-
ters inside text.

If the macro takes a variable number of arguments, three dots are used at the end of
the argument list.The remaining arguments in the list are collectively referenced in the
macro definition by the special identifier __VA_ARGS__.As an example, the following de-
fines a macro called myPrintf to take a variable number of arguments:

#define myPrintf(...) printf (“DEBUG: “ __VA_ARGS__);

Legitimate macro uses would include

myPrintf (“Hello world!\n”);

as well as

myPrintf (“i = %i, j = %i\n”, i, j);

??< {

??> }

??/ \

??’ ^

??! |

??- ~

563Preprocessor

If a definition requires more than one line, each line to be continued must end with a
backslash character.After a name has been defined, it can be used anywhere in the file.

The # operator is permitted in #define directives that take arguments and is followed
by the name of an argument to the macro.The preprocessor puts double quotation marks
around the actual value passed to the macro when it’s invoked.That is, it turns it into a
character string. For example, the definition

#define printint(x) printf (# x “ = %d\n”, x)

with the call

printint (count);

is expanded by the preprocessor into

printf (“count” “ = %i\n”, count);

or equivalen ly

printf (“count = %i\n”, count ;

The preprocessor puts a \ character in front of any “ or \ characters when performing
this stringizing operation. So, with the definition

#define str(x) # x

the call

str (The string “\t” contains a tab)

expands to the following:

”The string \”\\t\” contains a tab”

The ## operator is also allowed in #define directives that take arguments. It is pre-
ceded (or followed) by the name of an argument to the macro.The preprocessor takes the
value passed when the macro is invoked and creates a single token from the argument to
the macro and the token that follows (or precedes) it. For example, the macro definition

#define printx(n) printf (“%i\n”, x ## n);

with the call

printx (5)

produces the following:

printf (“%i\n”, x5);

The definition

#define printx(n) printf (“x” # n “ = %i\n”, x ## n);

with the call

564 Appendix B Objective-C 2.0 Language Summary

printx(10)

produces

printf (“x10 = %i\n”, x10);

after substitution and concatenation of the character strings.
Spaces are not required around the # and ## operators.

The #error Directive
General Format:

#error text
...

The specified text is written as an error message by the preprocessor.

The #if Directive
Format 1:

#if constant_expression
...

#endif

The value of constant_expression is evaluated. If the result is nonzero, all program
lines up until the #endif directives are processed; otherwise, they are automatically
skipped and are not processed by the preprocessor or the compiler.

Format 2:

#if constant_expression_1
...

#elif constant_expression_2
...

#elif constant_expression_n
...

#else

...

#endif

If constant_expression_1 is nonzero, all program lines up until the #elif are
processed and the remaining lines up to the #endif are skipped. Otherwise, if
constant_expression_2 is nonzero, all program lines up until the next #elif are
processed and the remaining lines up to the #endif are skipped. If none of the constant
expressions evaluates to nonzero, the lines after the #else (if included) are processed.

The special operator defined can be used as part of the constant expression, so

#if defined (DEBUG)

565Preprocessor

...

#endif

causes the code between the #if and #endif to be processed if the identifier DEBUG has
been previously defined (see also #ifdef in the next section).The parentheses are not nec-
essary around the identifier, so

#if defined DEBUG

works just as well.

The #ifdef Directive
General Format:

#ifdef identifier
...

#endif

If the value of identifier has been previously defined (either through a #define or
with the -D command-line option when the program was compiled), all program lines up
until the #endif are processed; otherwise, they are skipped.As with the #if directive,
#elif and #else directives can be used with a #ifdef directive.

The #ifndef Directive
General Format:

#ifndef identifier
...

#endif

If the value of identifier has not been previously defined, all program lines up until
the #endif are processed; otherwise, they are skipped.As with the #if directive, #elif
and #else directives can be used with a #ifndef directive.

The #import Directive4

Format 1:

#import “fileName”

If the file specified by fileName has been previously included in the program, this
statement is skipped. Otherwise, the preprocessor searches an implementation-defined di-
rectory or directories first for the file fileName.Typically, the same directory that contains
the source file is searched first, and if the file is not found there, a sequence of implemen-
tation-defined standard places is searched.After it’s found, the contents of the file are in-
cluded in the program at the precise point that the #import directive appears.
Preprocessor directives contained within the included file are analyzed; therefore, an in-
cluded file can itself contain other #import or #include directives.

566 Appendix B Objective-C 2.0 Language Summary

Format 2:

#import <fileName>

If the file has not been previously included, the preprocessor searches for the specified
file only in the standard places. Specifically, the current source directory is omitted from
the search.The action taken after the file is found is otherwise identical to that described
previously.

In either format, a previously defined name can be supplied and expansion will occur.
So, the following sequence works:

#define ROOTOBJECT <NSObject.h>

...

#import ROOTOBJECT

The #include Directive
This behaves the same way as #import except no check is made for previous inclusion of
the specified header file.

The #line Directive
General Format:

#line constant “fileName”

This directive causes the compiler to treat subsequent lines in the program as if the
name of the source file were fileName and as if the line number of all subsequent lines
began at constant. If fileName is not specified, the filename specified by the last #line
directive, or the name of the source file (if no filename was previously specified), is used.

The #line directive is primarily used to control the filename and line number that are
displayed whenever an error message is issued by the compiler.

The #pragma Directive
General Format:

#pragma text

This causes the preprocessor to perform some implementation-defined action. For ex-
ample, under the pragma

#pragma loop_opt(on)

causes special loop optimization to be performed on a particular compiler. If this pragma
is encountered by a compiler that doesn’t recognize the loop_opt pragma, it is ignored.

567Preprocessor

The #undef Directive
General Format:

#undef identifier

The specified identifier becomes undefined to the preprocessor. Subsequent #ifdef
or #ifndef directives behave as if the identifier were never defined.

The # Directive
This is a null directive and is ignored by the preprocessor.

Predefined Identifiers
The following identifiers are defined by the preprocessor:

Identifier Meaning

__LINE__ Current line number being compiled

__FILE__ Name of the current source file being compiled

__DATE__ Date the file is being compiled, in the format “Mmm dd yyyy”

__TIME__ Time the file is being compiled, in the format “hh:mm:ss”

__STDC__ Defined as 1 if the compiler conforms to the ANSI standard and 0
if not

__STDC_HOSTED__ Defined as 1 if the implementation is hosted and 0 if not

__STDC_VERSION__ Defined as 199901L

Appendix C
Address Book Source Code

For your reference purposes, here are the complete interface and implementation files
for the address book example you worked with throughout Part II,“The Foundation
Framework.”This includes the definitions for the AddressCard, and AddressBook classes.
You should implement these classes on your system; then extend the class definitions to
make them more practical and powerful.This is an excellent way for you to learn the lan-
guage and become familiar with building programs, working with classes and objects, and
working with the Foundation framework.

AddressCard Interface File
#import <Foundation/Foundation.h>

@interface AddressCard : NSObject <NSCopying, NSCoding> {

NSString *name;

NSString *email;

}

@property (nonatomic, copy) NSString *name, *email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail;

-(void) retainName: (NSString *) theName andEmail: (NSString *) theEmail;

-(NSComparisonResult) compareNames: (id) element;

-(void) print;

@end

570 Appendix C Address Book Source Code

AddressBook Interface File
#import <Foundation/Foundation.h>

#import “AddressCard.h”

@interface AddressBook: NSObject <NSCopying, NSCoding>

{

NSString *bookName;

NSMutableArray *book;

}

@property (nonatomic, copy) NSString *bookName;

@property (nonatomic, copy) NSMutableArray *book;

-(id) initWithName: (NSString *) name;

-(void) sort;

-(void) addCard: (AddressCard *) theCard;

-(void) removeCard: (AddressCard *) theCard;

-(int) entries;

-(void) list;

-(AddressCard *) lookup: (NSString *) theName;

-(void) dealloc;

@end

AddressCard Implementation File
#import “AddressCard.h”

@implementation AddressCard

@synthesize name, email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail

{

[self setName: theName];

[self setEmail: theEmail];

}

// Compare the two names from the specified address cards

-(NSComparisonResult) compareNames: (id) element

{

return [name compare: [element name]];

571AddressCard Implementation File

}

-(void) print

{

NSLog (@”====================================”);
NSLog (@”| |”);
NSLog (@”| %-31s |”, [name UTF8String]);
NSLog (@”| %-31s |”, [email UTF8String]);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| |”);
NSLog (@”| O O |”);
NSLog (@”====================================”);

}

-(AddressCard *) copyWithZone: (NSZone *) zone

{

AddressCard *newCard = [[AddressCard allocWithZone: zone] init];

[newCard retainName: name andEmail: email];

return newCard;

}

-(void) retainName: (NSString *) theName andEmail: (NSString *) theEmail

{

name = [theName retain];

email = [theEmail retain];

}

-(void) encodeWithCoder: (NSCoder *) encoder

{

[encoder encodeObject: name forKey: @”AddressCardName”];
[encoder encodeObject: email forKey: @”AddressCardEmail”];

}

-(id) initWithCoder: (NSCoder *) decoder

{

name = [[decoder decodeObjectForKey: @”AddressCardName”] retain];
email = [[decoder decodeObjectForKey: @”AddressCardEmail”] retain];

return self;

}

-(void) dealloc

{

572 Appendix C Address Book Source Code

[name release];

[email release];

[super dealloc];

}

@end

AddressBook Implementation File
#import “AddressBook.h”

@implementation AddressBook

@synthesize book, bookName;

// set up the AddressBook’s name and an empty book

-(id) initWithName: (NSString *) name{

self = [super init];

if (self) {

bookName = [[NSString alloc] initWithString: name];

book = [[NSMutableArray alloc] init];

}

return self;

}

-(void) sort

{
[book sortUsingSelector: @selector(compareNames:)];

}

-(void) addCard: (AddressCard *) theCard

{

[book addObject: theCard];

}

-(void) removeCard: (AddressCard *) theCard

{

[book removeObjectIdenticalTo: theCard];

}

-(int) entries

{

return [book count];

573AddressBook Implementation File

}

-(void) list

{

NSLog (@”======== Contents of: %@ =========”, bookName);

for (AddressCard *theCard in book)

NSLog (@”%-20s %-32s”, [theCard.name UTF8String],
[theCard.email UTF8String]);

NSLog (@”==”);
}

// lookup address card by name — assumes an exact match

-(AddressCard *) lookup: (NSString *) theName

{

for (AddressCard *nextCard in book)

if ([[nextCard name] caseInsensitiveCompare: theName] == NSOrderedSame)

return nextCard;

return nil;

}

-(void) dealloc

{

[bookName release];

[book release];

[super dealloc];

}

-(void) encodeWithCoder: (NSCoder *) encoder

{

[encoder encodeObject:bookName forKey: @”AddressBookBookName”];
[encoder encodeObject:book forKey: @”AddressBookBook”];

}

-(id) initWithCoder: (NSCoder *) decoder

{

bookName = [[decoder decodeObjectForKey: @”AddressBookBookName”] retain];
book = [[decoder decodeObjectForKey: @”AddressBookBook”] retain];

return self;

}

574 Appendix C Address Book Source Code

// Method for NSCopying protocol

-(id) copyWithZone: (NSZone *) zone

{

AddressBook *newBook = [[self class] allocWithZone: zone];

[newBook initWithName: bookName];

[newBook setBook: book];

return newBook;

}

@end

Appendix D
Resources

This appendix contains a selective list of resources you can turn to for more informa-
tion. Some of the information might be on your system, online at a Web site, or available
from a book.We’ve compiled resources for C language, Objective-C, Cocoa, and
iPhone/iTouch programming.This list gives you a good starting point to help you locate
whatever it is you’re looking for.

Answers to Exercises, Errata, and Such
You can visit the publisher’s Web site www.informit.com/register to get answers to exer-
cises and errata for this book.

Objective-C Language
Following is a list of resources you can turn to for more information about the Objec-
tive-C language.

Books
n The Objective-C 2.0 Programming Language.Apple Computer, Inc., 2008—This is

the best reference available on Objective-C language and is a good book for you
to read after completing this one.You can get to this text either through Xcode’s
Help->Documentation window or directly online from Apple’sWeb site. Here is the
online link for the pdf version of this text: http://developer.apple.com/documenta-
tion/Cocoa/Conceptual/ObjectiveC/ObjC.pdf.

n Object-Oriented Programming:An Evolutionary Approach, Second Edition.Brad
Cox and Andy Novobilski.Addison-Wesley, 1991—This is the original book about
Objective-C, coauthored by Brad Cox, the designer of the language.

n Objective-C Pocket Reference.Andrew M. Duncan. O’Reilly Associates Inc.,
2003—This is a terse reference for the Objective-C language.

576 Appendix D Resources

Websites
n http://developer.apple.com/documentation/Cocoa/ObjectiveCLanguage-date.html—

The part of the AppleWeb site devoted to Objective-C language. Contains, among
other things, online documentation, sample code, and technical notes.

C Programming Language
Because C is the underlying programming language, you might want to study it in more
depth.The language has been around for more than 25 years, so there’s certainly no
dearth of information on the subject.

Books
n Programming in C,Third Edition. Stephen Kochan. Sams Publishing, 2004—This is

the first book I wrote (way back when), revised several times along the way.This is
a tutorial, but it covers in greater detail many of the language features that were
lumped together in Chapter 13,“Underlying C Language Features.”

n The C Programming Language, Second Edition. Brian W. Kernighan and Dennis
M. Ritchie. Prentice Hall, Inc., 1988—This has always been the bible as far as a ref-
erence for the language. It was the first book written about C and was cowritten by
Dennis Ritchie, who created the language.

n C:A Reference Manual, Fifth Edition. Samuel P. Harbison, III and Guy L. Steele, Jr.
Prentice Hall, 2002—Another excellent reference book for C programmers.

Cocoa
If you are serious about application development under Mac OS X, you need to learn
how to program with Cocoa. Many books are available on Cocoa, with new ones being
published all the time.You can type in “Cocoa” in amazon.com’s search window to see
what pops up.The following are just a few of the books available.

577iPhone and iTouch Application Development

Books
n Introduction to Cocoa Fundamentals Guide.Apple Computer, Inc., 2007—This is

an excellent text covering application development with Cocoa.You can access it
from Xcode’s Documentation window.You can access it online and get a pdf ver-
sion from here: http://developer.apple.com/documentation/Cocoa/Conceptual/
CocoaFundamentals/CocoaFundamentals.pdf.

n Cocoa Programming for Mac OS X,Third Edition.Aaron Hillegass.Addison-Wes-
ley, 2008—A good introduction to Cocoa written in an easy-to-read style.

n Cocoa in a Nutshell.Michael Beam and James Duncan Davidson. O’Reilly & Asso-
ciates, Inc., 2003—This is a reference resource for the many different classes and
methods that are part of the Cocoa development system.

n Learning Cocoa with Objective-C, Second Edition.James Duncan Davidson and
Apple Computer, Inc. O’Reilly & Associates, Inc., 2002—This is an introductory
book on Cocoa programming.

Websites
n http://developer.apple.com/cocoa/—Apple’s main Web site for Cocoa developers

includes documentation, sample code, technical notes, and a wealth of information.
n http://www.cocoadevcentral.com/—This is a Web site designed to help people

learn how to program in Cocoa with Objective-C.
n http://www.cocoadev.com/—This is an open Web site that can be edited by any-

one.There’s a lot of good information to be found here.

iPhone and iTouch Application Development
The popularity of the iPhone will surely result in a stream of titles related to application
development for this device. Here are a few of the titles that were published or an-
nounced at the time this book went to press.

578 Appendix D Resources

Books
n iPhone OS Programming Guide.Apple Computer, Inc., 2008—This is an excellent

text covering application development for the iPhone.You can access it from
Xcode’s Documentation window.You can access it online and get a pdf version
from here: http://developer.apple.com/iphone/library/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf.

n The iPhone Developer’s Cookbook: Building Applications with the iPhone
SDK.Erica Sadun.Addison-Wesley Professional, 2008—Offers recipes for writing
different types of iPhone applications.

n Beginning iPhone Development: Exploring the iPhone SDK.Dave Mark.Apress,
2008—An introductory text on writing applications for the iPhone and iTouch.

n iPhone Application Development: Building Applications for the AppStore.Jonathan
Zdziarski, 2009, O’Reilly Media, Inc., 2002—Not yet published at the time this
book went to press.

Websites
n http://developer.apple.com/iphone/—Apple’s main Web site for iPhone develop-

ers (known as the iPhone DevCenter). Here you can find documentation, tutorial
videos, sample code, technical notes, and a wealth of information.You can also
download the iPhone SDK from here.

n http://www.iphonedevcentral.org/—This is a Web site offering free tutorials and a
forum for exchanging ideas and asking questions.

Programming in Objective-C 2.0, Second Edition Page 585 Return to Table of Contents

	About the Author
	About the Technical Reviewers
	We Want to Hear from You!
	Reader Services
	Introduction
	What You Will Learn from This Book
	How This Book Is Organized
	Acknowledgments

	The Objective-C 2.0 Language
	Programming in Objective-C
	Compiling and Running Programs
	Explanation of Your First Program
	Displaying the Values of Variables
	Summary
	Exercises

	Classes, Objects, and Methods
	What Is an Object, Anyway?
	Instances and Methods
	An Objective-C Class for Working with Fractions
	The @interface Section
	The @implementation Section
	The program Section
	Accessing Instance Variables and Data Encapsulation
	Summary
	Exercises

	Data Types and Expressions
	Data Types and Constants
	Arithmetic Expressions
	Assignment Operators
	A Calculator Class
	Bit Operators
	Types: _Bool, _Complex, and _Imaginary
	Exercises

	Program Looping
	The for Statement
	The while Statement
	The do Statement
	The break Statement
	The continue Statement
	Summary
	Exercises

	Making Decisions
	The if Statement
	The switch Statement
	Boolean Variables
	The Conditional Operator
	Exercises

	More on Classes
	Separate Interface and Implementation Files
	Synthesized Accessor Methods
	Accessing Properties Using the Dot Operator
	Multiple Arguments to Methods
	Local Variables
	The self Keyword
	Allocating and Returning Objects from Methods
	Exercises

	Inheritance
	It All Begins at the Root
	Extension Through Inheritance: Adding New Methods
	Overriding Methods
	Extension Through Inheritance: Adding New Instance Variables
	Abstract Classes
	Exercises

	Polymorphism, Dynamic Typing, and Dynamic Binding
	Polymorphism: Same Name, Different Class
	Dynamic Binding and the id Type
	Compile Time Versus Runtime Checking
	The id Data Type and Static Typing
	Asking Questions About Classes
	Exception Handling Using @try
	Exercises

	More on Variables and Data Types
	Initializing Classes
	Scope Revisited
	Storage Class Specifiers
	Enumerated Data Types
	The typedef Statement
	Data Type Conversions
	Exercises

	Categories and Protocols
	Categories
	Protocols
	Composite Objects
	Exercises

	The Preprocessor
	The #define Statement
	The #import Statement
	Conditional Compilation
	Exercises

	Underlying C Language Features
	Arrays
	Functions
	Structures
	Pointers
	Unions
	They’re Not Objects!
	Miscellaneous Language Features
	How Things Work
	Exercises

	The Foundation Framework
	Introduction to the Foundation Framework
	Foundation Documentation

	Numbers, Strings, and Collections
	Number Objects
	String Objects
	Array Objects
	Synthesized AddressCard Methods
	Dictionary Objects
	Set Objects
	Exercises

	Working with Files
	Managing Files and Directories: NSFileManager
	Working with Paths: NSPathUtilities.h
	Basic File Operations: NSFileHandle
	Exercises

	Memory Management
	The Autorelease Pool
	Reference Counting
	An Autorelease Example
	Summary of Memory-Management Rules
	Garbage Collection
	Exercises

	Copying Objects
	The copy and mutableCopy Methods
	Shallow Versus Deep Copying
	Implementing the <NSCopying> Protocol
	Copying Objects in Setter and Getter Methods
	Exercises

	Archiving
	Archiving with XML Property Lists
	Archiving with NSKeyedArchiver
	Writing Encoding and Decoding Methods
	Using NSData to Create Custom Archives
	Using the Archiver to Copy Objects
	Exercises

	Cocoa and the iPhone SDK
	Introduction to Cocoa
	Framework Layers
	Cocoa Touch

	Writing iPhone Applications
	The iPhone SDK
	Your First iPhone Application
	An iPhone Fraction Calculator
	Summary
	Exercises

	Appendixes
	Glossary
	Objective-C 2.0 Language Summary
	Digraphs and Identifiers
	Comments
	Constants
	Data Types and Declarations
	Expressions
	Storage Classes and Scope
	Functions
	Classes
	Statements
	Exception Handling
	Preprocessor

	Address Book Source Code
	AddressCard Interface File
	AddressBook Interface File
	AddressCard Implementation File
	AddressBook Implementation File

	Resources
	Answers to Exercises, Errata, and Such
	Objective-C Language
	C Programming Language
	Cocoa
	iPhone and iTouch Application Development

