

Praise for High Performance Web Sites

“If everyone would implement just 20% of Steve’s guidelines, the Web would be a
dramatically better place. Between this book and Steve’s YSlow extension, there’s really
no excuse for having a sluggish web site anymore.”

— Joe Hewitt, Developer of Firebug debugger and Mozilla’s DOM
Inspector

“Steve Souders has done a fantastic job of distilling a massive, semi-arcane art down to a
set of concise, actionable, pragmatic engineering steps that will change the world of web
performance.”

— Eric Lawrence, Developer of the Fiddler Web Debugger, Microsoft
Corporation

“As the stress and performance test lead for Zillow.com, I have been talking to all of the
developers and operations folks to get them on board with the rules Steve outlined in this
book, and they all ask how they can get a hold of this book. I think this should be a
mandatory read for all new UE developers and performance engineers here.”

— Nate Moch, www.zillow.com

“High Performance Web Sites is an essential guide for every web developer. Steve offers
straightforward, useful advice for making virtually any site noticeably faster.”

— Tony Chor, Group Program Manager, Internet Explorer team,
Microsoft Corporation

High Performance Web Sites

Other resources from O’Reilly

Related titles Adding Ajax

Ajax Design Patterns

CSS Pocket Reference

Dynamic HTML: The
Definitive Reference

Head First HTML with CSS
& XHTML

HTTP: The Definitive Guide

HTTP Pocket Reference

JavaScript & Dynamic HTML
Cookbook™

JavaScript: The Definitive
Guide

Programming PHP

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

High Performance Web Sites
Essential Knowledge for

Frontend Engineers

Steve Souders

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

High Performance Web Sites
by Steve Souders

Copyright © 2007 Steve Souders. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Marlowe Shaeffer
Copyeditor: Amy Thomson
Proofreader: Marlowe Shaeffer

Indexer: Julie Hawks
Cover Designer: Hanna Dyer
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:

September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. High Performance Web Sites, the image of a greyhound, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52930-9
ISBN-13: 978-0-596-52930-7

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

vii

Table of Contents

Foreword . xi

Preface . xiii

A. The Importance of Frontend Performance . 1
Tracking Web Page Performance 1
Where Does the Time Go? 3
The Performance Golden Rule 4

B. HTTP Overview . 6
Compression 7
Conditional GET Requests 7
Expires 8
Keep-Alive 8
There’s More 9

1. Rule 1: Make Fewer HTTP Requests . 10
Image Maps 10
CSS Sprites 11
Inline Images 13
Combined Scripts and Stylesheets 15
Conclusion 16

2. Rule 2: Use a Content Delivery Network . 18
Content Delivery Networks 19
The Savings 20

viii | Table of Contents

3. Rule 3: Add an Expires Header . 22
Expires Header 22
Max-Age and mod_expires 23
Empty Cache vs. Primed Cache 24
More Than Just Images 25
Revving Filenames 27
Examples 28

4. Rule 4: Gzip Components . 29
How Compression Works 29
What to Compress 30
The Savings 31
Configuration 31
Proxy Caching 33
Edge Cases 34
Gzip in Action 35

5. Rule 5: Put Stylesheets at the Top . 37
Progressive Rendering 37
sleep.cgi 38
Blank White Screen 39
Flash of Unstyled Content 43
What’s a Frontend Engineer to Do? 43

6. Rule 6: Put Scripts at the Bottom . 45
Problems with Scripts 45
Parallel Downloads 46
Scripts Block Downloads 48
Worst Case: Scripts at the Top 49
Best Case: Scripts at the Bottom 49
Putting It in Perspective 50

7. Rule 7: Avoid CSS Expressions . 51
Updating Expressions 52
Working Around the Problem 52
Conclusion 54

Table of Contents | ix

8. Rule 8: Make JavaScript and CSS External . 55
Inline vs. External 55
Typical Results in the Field 58
Home Pages 58
The Best of Both Worlds 59

9. Rule 9: Reduce DNS Lookups . 63
DNS Caching and TTLs 63
The Browser’s Perspective 66
Reducing DNS Lookups 68

10. Rule 10: Minify JavaScript . 69
Minification 69
Obfuscation 70
The Savings 70
Examples 72
Icing on the Cake 73

11. Rule 11: Avoid Redirects . 76
Types of Redirects 76
How Redirects Hurt Performance 77
Alternatives to Redirects 79

12. Rule 12: Remove Duplicate Scripts . 85
Duplicate Scripts—They Happen 85
Duplicate Scripts Hurt Performance 86
Avoiding Duplicate Scripts 87

13. Rule 13: Configure ETags . 89
What’s an ETag? 89
The Problem with ETags 91
ETags: Use ’Em or Lose ’Em 93
ETags in the Real World 94

14. Rule 14: Make Ajax Cacheable . 96
Web 2.0, DHTML, and Ajax 96
Asynchronous = Instantaneous? 98
Optimizing Ajax Requests 99
Caching Ajax in the Real World 99

x | Table of Contents

15. Deconstructing 10 Top Sites . 103
Page Weight, Response Time, YSlow Grade 103
How the Tests Were Done 105
Amazon 107
AOL 110
CNN 114
eBay 116
Google 120
MSN 123
MySpace 127
Wikipedia 130
Yahoo! 132
YouTube 135

Index . 139

xi

Foreword1

You’re lucky to be holding this book. More importantly, your web site’s users are
lucky. Implement even a few of the 14 techniques Steve shares in this groundbreak-
ing book and your site will be faster immediately. Your users will thank you.

Here is why it matters. As a frontend engineer, you hold a tremendous amount of
power and responsibility. You’re the users’ last line of defense. The decisions you
make directly shape their experience. I believe our number one job is to take care of
them and to give them what they want—quickly. This book is a toolbox to create
happy users (and bosses, too). Best of all, once you put these techniques in place—in
most cases, a one-time tweak—you’ll be reaping the rewards far into the future.

This book will change your approach to performance optimization. When Steve
began researching performance for our Platform Engineering group at Yahoo!, I
believed performance was mainly a backend issue. But he showed that frontend
issues account for 80% of total time. I thought frontend performance was about opti-
mizing images and keeping CSS and JavaScript external, but the 176 pages and 14
rules you’re holding in your hand right now are proof that it’s much more.

I’ve applied his findings to several sites. Watching already-fast sites render nearly
twice as quickly is tremendous. His methodology is sound, his data valid and exten-
sive, and his findings compelling and impactful.

The discipline of frontend engineering is still young, but the book in your hands is an
important step in the maturation of our craft. Together we’ll raise expectations about
the Web by creating better and faster (and therefore more enjoyable) interfaces and
experiences.

Cheers to faster surfing!

—Nate Koechley
Senior Frontend Engineer

Yahoo! User Interface (YUI) Team, Platform
Engineering, Yahoo! Inc.

San Francisco, August, 2007

xiii

Preface2

In eighth grade, my history class studied the efficiency experts of the Industrial Revo-
lution. I was enthralled by the techniques they used to identify and overcome bottle-
necks in manufacturing. The most elegant improvement, in my mind, was the
adjustable stepstool that afforded workers of different heights the ability to more
easily reach the conveyor belt—a simple investment that resulted in improved perfor-
mance for the life of the process.

Three decades later, I enjoy comparing the best practices in this book to that 19th-
century stepstool. These best practices enhance an existing process. They require
some upfront investment, but the cost is small—especially in comparison to the
gains. And once these improvements are put in place, they continue to boost perfor-
mance over the life of the development process. I hope you’ll find these rules for
building high performance web sites to be elegant improvements that benefit you
and your users.

How This Book Is Organized
After two quick introductory chapters, I jump into the main part of this book: the 14
performance rules. Each rule is described, one per chapter, in priority order. Not
every rule applies to every site, and not every site should apply a rule the same way,
but each is worth considering. The final chapter of this book shows how to analyze
web pages from a performance perspective, including some case studies.

Chapter A, The Importance of Frontend Performance explains that at least 80 percent
of the time it takes to display a web page happens after the HTML document has
been downloaded, and describes the importance of the techniques in this book.

Chapter B, HTTP Overview provides a short description of HTTP, highlighting the
parts that are relevant to performance.

xiv | Preface

Chapter 1, Rule 1: Make Fewer HTTP Requests describes why extra HTTP requests
have the biggest impact on performance, and discusses ways to reduce these HTTP
requests including image maps, CSS sprites, inline images using data: URLs, and
combining scripts and stylesheets.

Chapter 2, Rule 2: Use a Content Delivery Network highlights the advantages of using
a content delivery network.

Chapter 3, Rule 3: Add an Expires Header digs into how a simple HTTP header dra-
matically improves your web pages by using the browser’s cache.

Chapter 4, Rule 4: Gzip Components explains how compression works and how to
enable it for your web servers, and discusses some of the compatibility issues that
exist today.

Chapter 5, Rule 5: Put Stylesheets at the Top reveals how stylesheets affect the render-
ing of your page.

Chapter 6, Rule 6: Put Scripts at the Bottom shows how scripts affect rendering and
downloading in the browser.

Chapter 7, Rule 7: Avoid CSS Expressions discusses the use of CSS expressions and
the importance of quantifying their impact.

Chapter 8, Rule 8: Make JavaScript and CSS External talks about the tradeoffs of
inlining your JavaScript and CSS versus putting them in external files.

Chapter 9, Rule 9: Reduce DNS Lookups highlights the often-overlooked impact of
resolving domain names.

Chapter 10, Rule 10: Minify JavaScript quantifies the benefits of removing
whitespace from your JavaScript.

Chapter 11, Rule 11: Avoid Redirects warns against using redirects, and provides
alternatives that you can use instead.

Chapter 12, Rule 12: Remove Duplicate Scripts reveals what happens if a script is
included twice in a page.

Chapter 13, Rule 13: Configure ETags describes how ETags work and why the
default implementation is bad for anyone with more than one web server.

Chapter 14, Rule 14: Make Ajax Cacheable emphasizes the importance of keeping
these performance rules in mind when using Ajax.

Chapter 15, Deconstructing 10 Top Sites gives examples of how to identify perfor-
mance improvements in real-world web sites.

Preface | xv

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, Unix utilities, and general emphasis.

Constant width
Indicates computer code in a broad sense. This includes commands, options,
switches, variables, attributes, keys, functions, types, classes, namespaces, meth-
ods, modules, properties, parameters, values, objects, events, event handlers,
XML tags, HTML tags, macros, the contents of files, and the output from
commands.

HTTP requests and responses are designated graphically as shown in the following
example.

GET / HTTP/1.1 is an HTTP request header

HTTP/1.1 200 OK is an HTTP response header

Code Examples
Online examples can be found on this book’s companion web site:

http://stevesouders.com/hpws

Examples are included in each chapter in the context in which they are discussed.
They are also listed here for easy review.

No Image Map (Chapter 1)
http://stevesouders.com/hpws/imagemap-no.php

Image Map (Chapter 1)
http://stevesouders.com/hpws/imagemap.php

CSS Sprites (Chapter 1)
http://stevesouders.com/hpws/sprites.php

Inline Images (Chapter 1)
http://stevesouders.com/hpws/inline-images.php

Inline CSS Images (Chapter 1)
http://stevesouders.com/hpws/inline-css-images.php

Separate Scripts (Chapter 1)
http://stevesouders.com/hpws/combo-none.php

http://stevesouders.com/hpws

xvi | Preface

Combined Scripts (Chapter 1)
http://stevesouders.com/hpws/combo.php

CDN (Chapter 2)
http://stevesouders.com/hpws/ex-cdn.php

No CDN (Chapter 2)
http://stevesouders.com/hpws/ex-nocdn.php

No Expires (Chapter 3)
http://stevesouders.com/hpws/expiresoff.php

Far Future Expires (Chapter 3)
http://stevesouders.com/hpws/expireson.php

Nothing Gzipped (Chapter 4)
http://stevesouders.com/hpws/nogzip.html

HTML Gzipped (Chapter 4)
http://stevesouders.com/hpws/gzip-html.html

Everything Gzipped (Chapter 4)
http://stevesouders.com/hpws/gzip-all.html

CSS at the Bottom (Chapter 5)
http://stevesouders.com/hpws/css-bottom.php

CSS at the Top (Chapter 5)
http://stevesouders.com/hpws/css-top.php

CSS at the Top Using @import (Chapter 5)
http://stevesouders.com/hpws/css-top-import.php

CSS Flash of Unstyled Content (Chapter 5)
http://stevesouders.com/hpws/css-fouc.php

Scripts in the Middle (Chapter 6)
http://stevesouders.com/hpws/js-middle.php

Scripts Block Downloads (Chapter 6)
http://stevesouders.com/hpws/js-blocking.php

Scripts at the Top (Chapter 6)
http://stevesouders.com/hpws/js-top.php

Scripts at the Bottom (Chapter 6)
http://stevesouders.com/hpws/js-bottom.php

Scripts Top vs. Bottom (Chapter 6)
http://stevesouders.com/hpws/move-scripts.php

Deferred Scripts (Chapter 6)
http://stevesouders.com/hpws/js-defer.php

Expression Counter (Chapter 7)
http://stevesouders.com/hpws/expression-counter.php

Preface | xvii

One-Time Expressions (Chapter 7)
http://stevesouders.com/hpws/onetime-expressions.php

Event Handler (Chapter 7)
http://stevesouders.com/hpws/event-handler.php

Inlined JS and CSS (Chapter 8)
http://stevesouders.com/hpws/inlined.php

External JS and CSS (Chapter 8)
http://stevesouders.com/hpws/external.php

Cacheable External JS and CSS (Chapter 8)
http://stevesouders.com/hpws/external-cacheable.php

Post-Onload Download (Chapter 8)
http://stevesouders.com/hpws/post-onload.php

Dynamic Inlining (Chapter 8)
http://stevesouders.com/hpws/dynamic-inlining.php

Small Script Normal (Chapter 10)
http://stevesouders.com/hpws/js-small-normal.php

Small Script Minified (Chapter 10)
http://stevesouders.com/hpws/js-small-minify.php

Small Script Obfuscated (Chapter 10)
http://stevesouders.com/hpws/js-small-obfuscate.php

Large Script Normal (Chapter 10)
http://stevesouders.com/hpws/js-large-normal.php

Large Script Minified (Chapter 10)
http://stevesouders.com/hpws/js-large-minify.php

Large Script Obfuscated (Chapter 10)
http://stevesouders.com/hpws/js-large-obfuscate.php

XMLHttpRequest Beacon (Chapter 11)
http://stevesouders.com/hpws/xhr-beacon.php

Image Beacon (Chapter 11)
http://stevesouders.com/hpws/redir-beacon.php

Duplicate Scripts—Not Cached (Chapter 12)
http://stevesouders.com/hpws/dupe-scripts.php

Duplicate Scripts—Cached (Chapter 12)
http://stevesouders.com/hpws/dupe-scripts-cached.php

Duplicate Scripts—10 Cached (Chapter 12)
http://stevesouders.com/hpws/dupe-scripts-cached10.php

xviii | Preface

In general, you may use the code in this book and these online examples in your pro-
grams and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require permis-
sion. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance Web Sites by
Steve Souders. Copyright 2007 Steve Souders, 978-0-596-52930-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at:

http://www.oreilly.com/catalog/9780596529307

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596529307
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xix

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Ash Patel and Geoff Ralston were the Yahoo! executives who asked me to start a cen-
ter of expertise focused on performance. Several Yahoo!s helped answer questions
and discuss ideas: Ryan Troll, Doug Crockford, Nate Koechley, Mark Nottingham,
Cal Henderson, Don Vail, and Tenni Theurer. Andy Oram, my editor, struck the bal-
ance of patience and prodding necessary for a first-time author. Several people
helped review the book: Doug Crockford, Havi Hoffman, Cal Henderson, Don
Knuth, and especially Jeffrey Friedl, Alexander Kirk, and Eric Lawrence.

This book was completed predominantly in spare hours on the weekends and late at
night. I thank my wife and daughters for giving me those hours on the weekends to
work. I thank my parents for giving me the work ethic to do the late-night hours.

http://www.oreilly.com
http://safari.oreilly.com

1

Chapter A CHAPTER A

The Importance of Frontend Performance1

Most of my web career has been spent as a backend engineer. As such, I dutifully
approached each performance project as an exercise in backend optimization, con-
centrating on compiler options, database indexes, memory management, etc. There’s
a lot of attention and many books devoted to optimizing performance in these areas,
so that’s where most people spend time looking for improvements. In reality, for
most web pages, less than 10–20% of the end user response time is spent getting the
HTML document from the web server to the browser. If you want to dramatically
reduce the response times of your web pages, you have to focus on the other 80–90%
of the end user experience. What is that 80–90% spent on? How can it be reduced?
The chapters that follow lay the groundwork for understanding today’s web pages
and provide 14 rules for making them faster.

Tracking Web Page Performance
In order to know what to improve, we need to know where the user spends her time
waiting. Figure A-1 shows the HTTP traffic when Yahoo!’s home page (http://www.
yahoo.com) is downloaded using Internet Explorer. Each bar is one HTTP request.
The first bar, labeled html, is the initial request for the HTML document. The
browser parses the HTML and starts downloading the components in the page. In
this case, the browser’s cache was empty, so all of the components had to be down-
loaded. The HTML document is only 5% of the total response time. The user spends
most of the other 95% waiting for the components to download; she also spends a
small amount of time waiting for HTML, scripts, and stylesheets to be parsed, as
shown by the blank gaps between downloads.

Figure A-2 shows the same URL downloaded in Internet Explorer a second time. The
HTML document is only 12% of the total response time. Most of the components
don’t have to be downloaded because they’re already in the browser’s cache.

2 | Chapter A: The Importance of Frontend Performance

Figure A-1. Downloading http://www.yahoo.com in Internet Explorer, empty cache

Figure A-2. Downloading http://www.yahoo.com in Internet Explorer, primed cache

html

5%

image
image
script

image
image
image
image
image
image
image
script

image
image
image
image

redirect
script

image
image
image

image
script

image
image
image
image
image
image
image
image
image

stylesheet
script

image

html
redirect

image
image
image
image

12%

Where Does the Time Go? | 3

Five components are requested in this second page view:

One redirect
This redirect was downloaded previously, but the browser is requesting it again.
The HTTP response’s status code is 302 (“Found” or “moved temporarily”) and
there is no caching information in the response headers, so the browser can’t
cache the response. I’ll discuss HTTP in Chapter B.

Three uncached images
The next three requests are for images that were not downloaded in the initial
page view. These are images for news photos and ads that change frequently.

One cached image
The last HTTP request is a conditional GET request. The image is cached, but
because of the HTTP response headers, the browser has to check that the image
is up-to-date before showing it to the user. Conditional GET requests are also
described in Chapter B.

Where Does the Time Go?
Looking at the HTTP traffic in this way, we see that at least 80% of the end user
response time is spent on the components in the page. If we dig deeper into the
details of these charts, we start to see how complex the interplay between browsers
and HTTP becomes. Earlier, I mentioned how the HTTP status codes and headers
affect the browser’s cache. In addition, we can make these observations:

• The cached scenario (Figure A-2) doesn’t have as much download activity.
Instead, you can see a blank space with no downloads that occurs immediately
following the HTML document’s HTTP request. This is time when the browser
is parsing HTML, JavaScript, and CSS, and retrieving components from its
cache.

• Varying numbers of HTTP requests occur in parallel. Figure A-2 has a maximum
of three HTTP requests happening in parallel, whereas in Figure A-1, there are as
many as six or seven simultaneous HTTP requests. This behavior is due to the
number of different hostnames being used, and whether they use HTTP/1.0 or
HTTP/1.1. Chapter 6 explains these issues in the section “Parallel Downloads.”

• Parallel requests don’t happen during requests for scripts. That’s because in
most situations, browsers block additional HTTP requests while they download
scripts. See Chapter 6 to understand why this happens and how to use this
knowledge to improve page load times.

Figuring out exactly where the time goes is a challenge. But it’s easy to see where the
time does not go—it does not go into downloading the HTML document, including
any backend processing. That’s why frontend performance is important.

4 | Chapter A: The Importance of Frontend Performance

The Performance Golden Rule
This phenomenon of spending only 10–20% of the response time downloading the
HTML document is not isolated to Yahoo!’s home page. This statistic holds true for
all of the Yahoo! properties I’ve analyzed (except for Yahoo! Search because of the
small number of components in the page). Furthermore, this statistic is true across
most web sites. Table A-1 shows 10 top U.S. web sites extracted from http://www.
alexa.com. Note that all of these except AOL were in the top 10 U.S. web sites.
Craigslist.org was in the top 10, but its pages have little to no images, scripts, and
stylesheets, and thus was a poor example to use. So, I chose to include AOL in its
place.

All of these web sites spend less than 20% of the total response time retrieving the
HTML document. The one exception is Google in the primed cache scenario. This is
because http://www.google.com had only six components, and all but one were
configured to be cached by the browser. On subsequent page views, with all those
components cached, the only HTTP requests were for the HTML document and an
image beacon.

In any optimization effort, it’s critical to profile current performance to identify
where you can achieve the greatest improvements. It’s clear that the place to focus is
frontend performance.

First, there is more potential for improvement in focusing on the frontend. If we were
able to cut backend response times in half, the end user response time would
decrease only 5–10% overall. If, instead, we reduce the frontend performance by
half, we would reduce overall response times by 40–45%.

Table A-1. Percentage of time spent downloading the HTML document for 10 top web sites

Empty cache Primed cache

AOL 6% 14%

Amazon 18% 14%

CNN 19% 8%

eBay 2% 8%

Google 14% 36%

MSN 3% 5%

MySpace 4% 14%

Wikipedia 20% 12%

Yahoo! 5% 12%

YouTube 3% 5%

The Performance Golden Rule | 5

Second, frontend improvements typically require less time and fewer resources.
Reducing backend latency involves projects such as redesigning application architec-
ture and code, finding and optimizing critical code paths, adding or modifying hard-
ware, distributing databases, etc. These projects take weeks or months. Most of the
frontend performance improvements described in the following chapters involve best
practices, such as changing web server configuration files (Chapters 3 and 4); plac-
ing scripts and stylesheets in certain places within the page (Chapters 5 and 6); and
combining images, scripts, and stylesheets (Chapter 1). These projects take hours or
days—much less than the time required for most backend improvements.

Third, frontend performance tuning has been proven to work. Over 50 teams at
Yahoo! have reduced their end user response times by following the best practices
described here, many by 25% or more. In some cases, we’ve had to go beyond these
rules and identify improvements more specific to the site being analyzed, but gener-
ally, it’s possible to achieve a 25% or greater reduction just by following these best
practices.

At the beginning of every new performance improvement project, I draw a picture
like that shown in Figure A-1 and explain the Performance Golden Rule:

Only 10–20% of the end user response time is spent downloading the HTML docu-
ment. The other 80–90% is spent downloading all the components in the page.

The rest of this book offers precise guidelines for reducing that 80–90% of end user
response time. In demonstrating this, I’ll cover a wide span of technologies: HTTP
headers, JavaScript, CSS, Apache, and more.

Because some of the basic aspects of HTTP are necessary to understand parts of the
book, I highlight them in Chapter B.

After that come the 14 rules for faster performance, each in its own chapter. The
rules are listed in general order of priority. A rule’s applicability to your specific web
site may vary. For example, Rule 2 is more appropriate for commercial web sites and
less feasible for personal web pages. If you follow all the rules that are applicable to
your web site, you’ll make your pages 25–50% faster and improve the user experi-
ence. The last part of the book shows how to analyze the 10 top U.S. web sites from
a performance perspective.

6

Chapter BCHAPTER B

HTTP Overview 2

Before diving into the specific rules for making web pages faster, it’s important to
understand the parts of the HyperText Transfer Protocol (HTTP) that affect perfor-
mance. HTTP is how browsers and servers communicate with each other over the
Internet. The HTTP specification was coordinated by the World Wide Web Consor-
tium (W3C) and Internet Engineering Task Force (IETF), resulting in RFC 2616.
HTTP/1.1 is the most common version today, but some browsers and servers still
use HTTP/1.0.

HTTP is a client/server protocol made up of requests and responses. A browser
sends an HTTP request for a specific URL, and a server hosting that URL sends back
an HTTP response. Like many Internet services, the protocol uses a simple, plain-
text format. The types of requests are GET, POST, HEAD, PUT, DELETE,
OPTIONS, and TRACE. I’m going to focus on the GET request, which is the most
common.

A GET request includes a URL followed by headers. The HTTP response contains a
status code, headers, and a body. The following example shows the possible HTTP
headers when requesting the script yahoo_2.0.0-b2.js.

GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js
HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Content-Length: 355

var YAHOO=...

Conditional GET Requests | 7

Compression
The size of the response is reduced using compression if both the browser and server
support it. Browsers announce their support of compression using the Accept-
Encoding header. Servers identify compressed responses using the Content-Encoding
header.

GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js
HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Content-Length: 255
Content-Encoding: gzip

^_\213^H^@^@^@^@^@^@^Cl\217\315j\3030^P\204_E\361IJ...

Notice how the body of the response is compressed. Chapter 4 explains how to turn
on compression, and warns about edge cases that can arise due to proxy caching.
The Vary and Cache-Control headers are also discussed.

Conditional GET Requests
If the browser has a copy of the component in its cache, but isn’t sure whether it’s
still valid, a conditional GET request is made. If the cached copy is still valid, the
browser uses the copy from its cache, resulting in a smaller response and a faster user
experience.

Typically, the validity of the cached copy is derived from the date it was last modi-
fied. The browser knows when the component was last modified based on the Last-
Modified header in the response (refer to the previous sample responses). It uses the
If-Modified-Since header to send the last modified date back to the server. The
browser is essentially saying, “I have a version of this resource with the following last
modified date. May I just use it?”

GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js
HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate
If-Modified-Since: Wed, 22 Feb 2006 04:15:54 GMT

HTTP/1.1 304 Not Modified
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT

8 | Chapter B: HTTP Overview

If the component has not been modified since the specified date, the server returns a
“304 Not Modified” status code and skips sending the body of the response, result-
ing in a smaller and faster response. In HTTP/1.1 the ETag and If-None-Match head-
ers are another way to make conditional GET requests. Both approaches are
discussed in Chapter 13.

Expires
Conditional GET requests and 304 responses help pages load faster, but they still
require making a roundtrip between the client and server to perform the validity
check. The Expires header eliminates the need to check with the server by making it
clear whether the browser can use its cached copy of a component.

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Expires: Wed, 05 Oct 2016 19:16:20 GMT

When the browser sees an Expires header in the response, it saves the expiration
date with the component in its cache. As long as the component hasn’t expired, the
browser uses the cached version and avoids making any HTTP requests. Chapter 3
talks about the Expires and Cache-Control headers in more detail.

Keep-Alive
HTTP is built on top of Transmission Control Protocol (TCP). In early implementa-
tions of HTTP, each HTTP request required opening a new socket connection. This
is inefficient because many HTTP requests in a web page go to the same server. For
example, most requests for images in a web page all go to a common image server.
Persistent Connections (also known as Keep-Alive in HTTP/1.0) was introduced to
solve the inefficiency of opening and closing multiple socket connections to the same
server. It lets browsers make multiple requests over a single connection. Browsers
and servers use the Connection header to indicate Keep-Alive support. The
Connection header looks the same in the server’s response.

GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js
HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Connection: keep-alive

There’s More | 9

The browser or server can close the connection by sending a Connection: close
header. Technically, the Connection: keep-alive header is not required in HTTP/1.1,
but most browsers and servers still include it.

Pipelining, defined in HTTP/1.1, allows for sending multiple requests over a single
socket without waiting for a response. Pipelining has better performance than persis-
tent connections. Unfortunately, pipelining is not supported in Internet Explorer (up
to and including version 7), and it’s turned off by default in Firefox through version
2. Until pipelining is more widely adopted, Keep-Alive is the way browsers and serv-
ers can more efficiently use socket connections for HTTP. This is even more impor-
tant for HTTPS because establishing new secure socket connections is more time
consuming.

There’s More
This chapter contains just an overview of HTTP and focuses only on the aspects that
affect performance. To learn more, read the HTTP specification (http://www.w3.org/
Protocols/rfc2616/rfc2616.html) and HTTP: The Definitive Guide by David Gourley
and Brian Totty (O’Reilly; http://www.oreilly.com/catalog/httptdg). The parts high-
lighted here are sufficient for understanding the best practices described in the
following chapters.

10

Chapter 1CHAPTER 1

Rule 1: Make Fewer HTTP Requests 1

The Performance Golden Rule, as explained in Chapter A, reveals that only 10–20%
of the end user response time involves retrieving the requested HTML document.
The remaining 80–90% of the time is spent making HTTP requests for all the com-
ponents (images, scripts, stylesheets, Flash, etc.) referenced in the HTML document.
Thus, a simple way to improve response time is to reduce the number of compo-
nents, and, in turn, reduce the number of HTTP requests.

Suggesting the idea of removing components from the page often creates tension
between performance and product design. In this chapter, I describe techniques for
eliminating HTTP requests while avoiding the difficult tradeoff decisions between
performance and design. These techniques include using image maps, CSS sprites,
inline images, and combined scripts and stylesheets. Using these techniques reduces
response times of the example pages by as much as 50%.

Image Maps
In its simplest form, a hyperlink associates the destination URL with some text. A
prettier alternative is to associate the hyperlink with an image, for example in
navbars and buttons. If you use multiple hyperlinked images in this way, image maps
may be a way to reduce the number of HTTP requests without changing the page’s
look and feel. An image map allows you to associate multiple URLs with a single
image. The destination URL is chosen based on where the user clicks on the image.

Figure 1-1 shows an example of five images used in a navbar. Clicking on an image
takes you to the associated link. This could be done with five separate hyperlinks,
using five separate images. It’s more efficient, however, to use an image map because
this reduces the five HTTP requests to just one HTTP request. The response time is
faster because there is less HTTP overhead.

You can try this out for yourself by visiting the following URLs. Click on each link to
see the roundtrip retrieval time.

CSS Sprites | 11

No Image Map
http://stevesouders.com/hpws/imagemap-no.php

Image Map
http://stevesouders.com/hpws/imagemap.php

When using Internet Explorer 6.0 over DSL (~900 Kbps), the image map retrieval
was 56% faster than the retrieval for the navbar with separate images for each hyper-
link (354 milliseconds versus 799 milliseconds). That’s because the image map has
four fewer HTTP requests.

There are two types of image maps. Server-side image maps submit all clicks to the
same destination URL, passing along the x,y coordinates of where the user clicked.
The web application maps the x,y coordinates to the appropriate action. Client-side
image maps are more typical because they map the user’s click to an action without
requiring a backend application. The mapping is achieved via HTML’s MAP tag. The
HTML for converting the navbar in Figure 1-1 to an image map shows how the MAP
tag is used:

<map name="map1">
 <area shape="rect" coords="0,0,31,31" href="home.html" title="Home">
 <area shape="rect" coords="36,0,66,31" href="gifts.html" title="Gifts">
 <area shape="rect" coords="71,0,101,31" href="cart.html" title="Cart">
 <area shape="rect" coords="106,0,136,31" href="settings.html" title="Settings">
 <area shape="rect" coords="141,0,171,31" href="help.html" title="Help">
</map>

There are drawbacks to using image maps. Defining the area coordinates of the
image map, if done manually, is tedious and error-prone, and it is next to impossible
for any shape other than rectangles. Creating image maps via DHTML won’t work in
Internet Explorer.

If you’re currently using multiple images in a navbar or other hyperlinks, switching
to an image map is an easy way to speed up your page.

CSS Sprites
Like image maps, CSS sprites allow you to combine images, but they’re much more
flexible. The concept reminds me of a Ouija board, where the planchette (the viewer
that all participants hold on to) moves around the board stopping over different let-
ters. To use CSS sprites, multiple images are combined into a single image, similar to
the one shown in Figure 1-2. This is the “Ouija board.”

Figure 1-1. Image map candidate

http://stevesouders.com/hpws/imagemap-no.php

12 | Chapter 1: Rule 1: Make Fewer HTTP Requests

The “planchette” is any HTML element that supports background images, such as a
SPAN or DIV. The HTML element is positioned over the desired part of the back-
ground image using the CSS background-position property. For example, you can
use the “My” icon for an element’s background image as follows:

<div style="background-image: url('a_lot_of_sprites.gif');
 background-position: -260px -90px;
 width: 26px; height: 24px;">
</div>

I modified the previous image map example to use CSS sprites. The five links are
contained in a DIV named navbar. Each link is wrapped around a SPAN that uses a sin-
gle background image, spritebg.gif, as defined in the #navbar span rule. Each SPAN
has a different class that specifies the offset into the CSS sprite using the background-
position property:

<style>
#navbar span {
 width:31px;
 height:31px;
 display:inline;
 float:left;
 background-image:url(/images/spritebg.gif);
}
.home { background-position:0 0; margin-right:4px; margin-left: 4px;}
.gifts { background-position:-32px 0; margin-right:4px;}
.cart { background-position:-64px 0; margin-right:4px;}
.settings { background-position:-96px 0; margin-right:4px;}
.help { background-position:-128px 0; margin-right:0px;}
</style>

<div id="navbar" style="background-color: #F4F5EB; border: 2px ridge #333; width:
180px; height: 32px; padding: 4px 0 4px 0;">

Figure 1-2. CSS sprites combine multiple images into a single image

Inline Images | 13

</div>

It is about as fast as the image map example: 342 milliseconds versus 354 millisec-
onds, respectively, but this difference is too small to be significant. More impor-
tantly, it is 57% faster than the alternative of using separate images.

CSS Sprites
http://stevesouders.com/hpws/sprites.php

Whereas the images in an image map must be contiguous, CSS sprites don’t have
that limitation. The many pros (and some cons) of CSS sprites are explained well in
Dave Shea’s authoritative web article, “CSS Sprites: Image Slicing’s Kiss of Death.” I
touched on some of the benefits of CSS sprites already: they reduce HTTP requests
by combining images and are more flexible than image maps. One surprising benefit
is reduced download size. Most people would expect the combined image to be
larger than the sum of the separate images because the combined image has addi-
tional area used for spacing. In fact, the combined image tends to be smaller than the
sum of the separate images as a result of reducing the amount of image overhead
(color tables, formatting information, etc.).

If you use a lot of images in your pages for backgrounds, buttons, navbars, links, etc.,
CSS sprites are an elegant solution that results in clean markup, fewer images to deal
with, and faster response times.

Inline Images
It’s possible to include images in your web page without any additional HTTP
requests by using the data: URL scheme. Although this approach is not currently
supported in Internet Explorer, the savings it can bring to other browsers makes it
worth mentioning.

We’re all familiar with URLs that include the http: scheme. Other schemes include
the familiar ftp:, file:, and mailto: schemes. But there are many more schemes,
such as smtp:, pop:, dns:, whois:, finger:, daytime:, news:, and urn:. Some of these
are officially registered; others are accepted because of their common usage.

The data: URL scheme was first proposed in 1995. The specification (http://tools.ietf.
org/html/rfc2397) says it “allows inclusion of small data items as ‘immediate’ data.”
The data is in the URL itself following this format:

data:[<mediatype>][;base64],<data>

http://stevesouders.com/hpws/sprites.php
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2397

14 | Chapter 1: Rule 1: Make Fewer HTTP Requests

An inline image of a red star is specified as:

<IMG ALT="Red Star"
SRC="
lvrKy/FvcPewsO9VVfajo+w6O/zl5estLv/8/AAAAAAAAAAAAAAAACH5BAEA
AAsALAAAAAAMAAwAAAQzcElZyryTEHyTUgknHd9xGV+qKsYirKkwDYiKDBia
tt2H1KBLQRFIJAIKywRgmhwAIlEEADs=">

I’ve seen data: used only for inline images, but it can be used anywhere a URL is
specified, including SCRIPT and A tags.

The main drawback of the data: URL scheme is that it’s not supported in Internet
Explorer (up to and including version 7). Another drawback is its possible size limi-
tations, but Firefox 1.5 accepts inline images up to 100K. The base64 encoding
increases the size of images, so the total size downloaded is increased.

The navbar from previous sections is implemented using inline images in the follow-
ing example.

Inline Images
http://stevesouders.com/hpws/inline-images.php

Because data: URLs are embedded in the page, they won’t be cached across differ-
ent pages. You might not want to inline your company logo, because it would make
every page grow by the encoded size of the logo. A clever way around this is to use
CSS and inline the image as a background. Placing this CSS rule in an external
stylesheet means that the data is cached inside the stylesheet. In the following exam-
ple, the background images used for each link in the navbar are implemented using
inline images in an external stylesheet.

Inline CSS Images
http://stevesouders.com/hpws/inline-css-images.php

The external stylesheet contains a rule for each SPAN that includes an inlined back-
ground image:

.home { background-image: url(...);}

.gift { background-image: url(...);}

.cart { background-image: url(...);}

.settings { background-image: url(...);}

.help { background-image: url(...);}

The file_get_contents PHP function makes it easy to create inline images by read-
ing the image from disk and inserting the contents into the page. In my example, the
URL of the external stylesheet points to a PHP template: http://stevesouders.com/
hpws/inline-css-images-css.php. The use of file_get_contents is illustrated in the PHP
template that generated the stylesheet shown above:

.home { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/home.gif")) ?>);}
.gift { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/gift.gif")) ?>);}

http://stevesouders.com/hpws/inline-images.php
http://stevesouders.com/hpws/inline-css-images.php
http://stevesouders.com/hpws/inline-css-images-css.php
http://stevesouders.com/hpws/inline-css-images-css.php

Combined Scripts and Stylesheets | 15

.cart { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/cart.gif")) ?>);}
.settings { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/settings.gif")) ?>);}
.help { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/help.gif")) ?>);}

Comparing this example to the previous examples, we see that it has about the same
response time as image maps and CSS sprites, which again is more than 50% faster
than the original method of having separate images for each link. Putting the inline
image in an external stylesheet adds an extra HTTP request, but has the additional
benefit of being cached with the stylesheet.

Combined Scripts and Stylesheets
JavaScript and CSS are used on most web sites today. Frontend engineers must
choose whether to “inline” their JavaScript and CSS (i.e., embed it in the HTML
document) or include it from external script and stylesheet files. In general, using
external scripts and stylesheets is better for performance (this is discussed more in
Chapter 8). However, if you follow the approach recommended by software engi-
neers and modularize your code by breaking it into many small files, you decrease
performance because each file results in an additional HTTP request.

Table 1-1 shows that 10 top web sites average six to seven scripts and one to two
stylesheets on their home pages. These web sites were selected from http://www.
alexa.com, as described in Chapter A. Each of these sites requires an additional
HTTP request if it’s not cached in the user’s browser. Similar to the benefits of image
maps and CSS sprites, combining these separate files into one file reduces the
number of HTTP requests and improves the end user response time.

Table 1-1. Number of scripts and stylesheets for 10 top sites

Web site Scripts Stylesheets

http://www.amazon.com 3 1

http://www.aol.com 18 1

http://www.cnn.com 11 2

http://www.bay.com 7 2

http://froogle.google.com 1 1

http://www.msn.com 9 1

http://www.myspace.com 2 2

http://www.wikipedia.org 3 1

http://www.yahoo.com 4 1

http://www.youtube.com 7 3

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.bay.com
froogle.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://www.alexa.com
http://www.alexa.com

16 | Chapter 1: Rule 1: Make Fewer HTTP Requests

To be clear, I’m not suggesting combining scripts with stylesheets. Multiple scripts
should be combined into a single script, and multiple stylesheets should be com-
bined into a single stylesheet. In the ideal situation, there would be no more than one
script and one stylesheet in each page.

The following examples show how combining scripts improves the end user
response time. The page with the combined scripts loads 38% faster. Combining
stylesheets produces similar performance improvements. For the rest of this section
I’ll talk only about scripts (because they’re used in greater numbers), but everything
discussed applies equally to stylesheets.

Separate Scripts
http://stevesouders.com/hpws/combo-none.php

Combined Scripts
http://stevesouders.com/hpws/combo.php

For developers who have been trained to write modular code (whether in JavaScript
or some other programming language), this suggestion of combining everything into
a single file seems like a step backward, and indeed it would be bad in your develop-
ment environment to combine all your JavaScript into a single file. One page might
need script1, script2, and script3, while another page needs script1, script3,
script4, and script5. The solution is to follow the model of compiled languages and
keep the JavaScript modular while putting in place a build process for generating a
target file from a set of specified modules.

It’s easy to imagine a build process that includes combining scripts and stylesheets—
simply concatenate the appropriate files into a single file. Combining files is easy.
This step could also be an opportunity to minify the files (see Chapter 10). The diffi-
cult part can be the growth in the number of combinations. If you have a lot of pages
with different module requirements, the number of combinations can be large. With
10 scripts you could have over a thousand combinations! Don’t go down the path of
forcing every page to have every module whether they need it or not. In my experi-
ence, a web site with many pages has a dozen or so different module combinations.
It’s worth the time to analyze your pages and see whether the combinatorics is
manageable.

Conclusion
This chapter covered the techniques we’ve used at Yahoo! to reduce the number of
HTTP requests in web pages without compromising the pages’ design. The rules
described in later chapters also present guidelines that help reduce the number of
HTTP requests, but they focus primarily on subsequent page views. For components
that are not critical to the initial rendering of the page, the post-onload download
technique described in Chapter 8 helps by postponing these HTTP requests until
after the page is loaded.

http://stevesouders.com/hpws/combo-none.php
http://stevesouders.com/hpws/combo.php

Conclusion | 17

This chapter’s rule is the one that is most effective in reducing HTTP requests for
first-time visitors to your web site; that’s why I put it first, and why it’s the most
important rule. Following its guidelines improves both first-time views and subse-
quent views. A fast response time on that first page view can make the difference
between a user who abandons your site and one who comes back again and again.

Make fewer HTTP requests.

18

Chapter 2CHAPTER 2

Rule 2: Use a Content Delivery Network 2

The average user’s bandwidth increases every year, but a user’s proximity to your
web server still has an impact on a page’s response time. Web startups often have all
their servers in one location. If they survive the startup phase and build a larger audi-
ence, these companies face the reality that a single server location is no longer suffi-
cient—it’s necessary to deploy content across multiple, geographically dispersed
servers.

As a first step to implementing geographically dispersed content, don’t attempt to
redesign your web application to work in a distributed architecture. Depending on
the application, a redesign could include daunting tasks such as synchronizing ses-
sion state and replicating database transactions across server locations. Attempts to
reduce the distance between users and your content could be delayed by, or never
pass, this redesign step.

The correct first step is found by recalling the Performance Golden Rule, described in
Chapter A:

Only 10–20% of the end user response time is spent downloading the HTML docu-
ment. The other 80–90% is spent downloading all the components in the page.

If the application web servers are closer to the user, the response time of one HTTP
request is improved. On the other hand, if the component web servers are closer to
the user, the response times of many HTTP requests are improved. Rather than start-
ing with the difficult task of redesigning your application in order to disperse the
application web servers, it’s better to first disperse the component web servers. This
not only achieves a bigger reduction in response times, it’s also easier thanks to
content delivery networks.

Content Delivery Networks | 19

Content Delivery Networks
A content delivery network (CDN) is a collection of web servers distributed across
multiple locations to deliver content to users more efficiently. This efficiency is typi-
cally discussed as a performance issue, but it can also result in cost savings. When
optimizing for performance, the server selected for delivering content to a specific
user is based on a measure of network proximity. For example, the CDN may choose
the server with the fewest network hops or the server with the quickest response
time.

Some large Internet companies own their own CDN, but it’s cost effective to use a
CDN service provider. Akamai Technologies, Inc. is the industry leader. In 2005,
Akamai acquired Speedera Networks, the primary low-cost alternative. Mirror Image
Internet, Inc. is now the leading alternative to Akamai. Limelight Networks, Inc. is
another competitor. Other providers, such as SAVVIS Inc., specialize in niche mar-
kets such as video content delivery.

Table 2-1 shows 10 top Internet sites in the U.S. and the CDN service providers they
use.

You can see that:

• Five use Akamai

• One uses Mirror Image

• One uses Limelight

• One uses SAVVIS

• Four either don’t use a CDN or use a homegrown CDN solution

Table 2-1. CDN service providers used by top sites

Web site CDN

http://www.amazon.com Akamai

http://www.aol.com Akamai

http://www.cnn.com

http://www.ebay.com Akamai, Mirror Image

http://www.google.com

http://www.msn.com SAVVIS

http://www.myspace.com Akamai, Limelight

http://www.wikipedia.org

http://www.yahoo.com Akamai

http://www.youtube.com

20 | Chapter 2: Rule 2: Use a Content Delivery Network

Smaller and noncommercial web sites might not be able to afford the cost of these
CDN services. There are several free CDN services available. Globule (http://www.
globule.org) is an Apache module developed at Vrije Universiteit in Amsterdam.
CoDeeN (http://codeen.cs.princeton.edu) was built at Princeton University on top of
PlanetLab. CoralCDN (http://www.coralcdn.org) is run out of New York University.
They are deployed in different ways. Some require that end users configure their
browsers to use a proxy. Others require developers to change the URL of their com-
ponents to use a different hostname. Be wary of any that use HTTP redirects to point
users to a local server, as this slows down web pages (see Chapter 11).

In addition to improved response times, CDNs bring other benefits. Their services
include backups, extended storage capacity, and caching. A CDN can also help
absorb spikes in traffic, for example, during times of peak weather or financial news,
or during popular sporting or entertainment events.

One drawback to relying on a CDN is that your response times can be affected by
traffic from other web sites, possibly even those of your competitors. A CDN service
provider typically shares its web servers across all its clients. Another drawback is the
occasional inconvenience of not having direct control of the content servers. For
example, modifying HTTP response headers must be done through the service
provider rather than directly by your ops team. Finally, if your CDN service pro-
vider’s performance degrades, so does yours. In Table 2-1, you can see that eBay and
MySpace each use two CDN service providers, a smart move if you want to hedge
your bets.

CDNs are used to deliver static content, such as images, scripts, stylesheets, and Flash.
Serving dynamic HTML pages involves specialized hosting requirements: database
connections, state management, authentication, hardware and OS optimizations, etc.
These complexities are beyond what a CDN provides. Static files, on the other hand,
are easy to host and have few dependencies. That is why a CDN is easily leveraged to
improve the response times for a geographically dispersed user population.

The Savings
The two online examples discussed in this section demonstrate the response time
improvements gained from using a CDN. Both examples include the same test com-
ponents: five scripts, one stylesheet, and eight images. In the first example, these
components are hosted on the Akamai Technologies CDN. In the second example,
they are hosted on a single web server.

CDN
http://stevesouders.com/hpws/ex-cdn.php

No CDN
http://stevesouders.com/hpws/ex-nocdn.php

http://www.globule.org
http://www.globule.org
http://codeen.cs.princeton.edu
http://www.coralcdn.org
http://stevesouders.com/hpws/ex-cdn.php
http://stevesouders.com/hpws/ex-nocdn.php

The Savings | 21

The example with components hosted on the CDN loaded 18% faster than the page
with all components hosted from a single web server (1013 milliseconds versus 1232
milliseconds). I tested this over DSL (~900 Kbps) from my home in California. Your
results will vary depending on your connection speed and geographic location. The
single web server is located near Washington, DC. The closer you live to Washing-
ton, DC, the less of a difference you’ll see in response times in the CDN example.

If you conduct your own response time tests to gauge the benefits of using a CDN,
it’s important to keep in mind that the location from which you run your test has an
impact on the results. For example, based on the assumption that most web compa-
nies choose a data center close to their offices, your web client at work is probably
located close to your current web servers. Thus, if you run a test from your browser
at work, the response times without using a CDN are often best case. It’s important
to remember that most of your users are not located that close to your web servers.
To measure the true impact of switching to a CDN, you need to measure the
response times from multiple geographic locations. Services such as Keynote Sys-
tems (http://www.keynote.com) and Gomez (http://www.gomez.com) are helpful for
conducting such tests.

At Yahoo!, this factor threw us off for awhile. Before switching Yahoo! Shopping to
Akamai, our preliminary tests were run from a lab at Yahoo! headquarters, located
near a Yahoo! data center. The response time improvements gained by switching to
Akamai’s CDN—as measured from that lab—were less than 5% (not very impres-
sive). We knew the response time improvements would be better when we exposed
the CDN change to our live users, spread around the world. When we exposed the
change to end users, there was an overall 20% reduction in response times on the
Yahoo! Shopping site, just from moving all the static components to a CDN.

Use a content delivery network.

http://stevesouders.com/hpws/ex-nocdn.php
http://www.keynote.com
http://www.gomez.com

22

Chapter 3CHAPTER 3

Rule 3: Add an Expires Header 3

Fast response time is not your only consideration when designing web pages. If it
were, then we’d all take Rule 1 to an extreme and place no images, scripts, or
stylesheets in our pages. However, we all understand that images, scripts, and
stylesheets can enhance the user experience, even if it means that the page will take
longer to load. Rule 3, described in this chapter, shows how you can improve page
performance by making sure these components are configured to maximize the
browser’s caching capabilities.

Today’s web pages include many components and that number continues to grow. A
first-time visitor to your page may have to make several HTTP requests, but by using
a future Expires header, you make those components cacheable. This avoids unnec-
essary HTTP requests on subsequent page views. A future Expires header is most
often used with images, but it should be used on all components, including scripts,
stylesheets, and Flash. Most top web sites are not currently doing this. In this chap-
ter, I point out these sites and show why their pages aren’t as fast as they could be.
Adding a future Expires header incurs some additional development costs, as
described in the section “Revving Filenames.”

Expires Header
Browsers (and proxies) use a cache to reduce the number of HTTP requests and
decrease the size of HTTP responses, thus making web pages load faster. A web
server uses the Expires header to tell the web client that it can use the current copy of
a component until the specified time. The HTTP specification summarizes this
header as “the date/time after which the response is considered stale.” It is sent in
the HTTP response.

Expires: Thu, 15 Apr 2010 20:00:00 GMT

Max-Age and mod_expires | 23

This is a far future Expires header, telling the browser that this response won’t be
stale until April 15, 2010. If this header is returned for an image in a page, the
browser uses the cached image on subsequent page views, reducing the number of
HTTP requests by one. See Chapter B for a review of the Expires header and HTTP.

Max-Age and mod_expires
Before I explain how better caching improves performance, it’s important to men-
tion an alternative to the Expires header. The Cache-Control header was introduced
in HTTP/1.1 to overcome limitations with the Expires header. Because the Expires
header uses a specific date, it has stricter clock synchronization requirements
between server and client. Also, the expiration dates have to be constantly checked,
and when that future date finally arrives, a new date must be provided in the server’s
configuration.

Alternatively, Cache-Control uses the max-age directive to specify how long a compo-
nent is cached. It defines the freshness window in seconds. If less than max-age sec-
onds have passed since the component was requested, the browser will use the
cached version, thus avoiding an additional HTTP request. A far future max-age
header might set the freshness window 10 years in the future.

Cache-Control: max-age=315360000

Using Cache-Control with max-age overcomes the limitations of Expires, but you still
might want an Expires header for browsers that don’t support HTTP/1.1 (even
though this is probably less than 1% of your traffic). You could specify both
response headers, Expires and Cache-Control max-age. If both are present, the HTTP
specification dictates that the max-age directive will override the Expires header.
However, if you’re conscientious, you’ll still worry about the clock synchronization
and configuration maintenance issues with Expires.

Fortunately, the mod_expires Apache module (http://httpd.apache.org/docs/2.0/mod/
mod_expires.html) lets you use an Expires header that sets the date in a relative fash-
ion similar to max-age. This is done via the ExpiresDefault directive. In this example,
the expiration date for images, scripts, and stylesheets is set 10 years from the time of
the request:

<FilesMatch "\.(gif|jpg|js|css)$">
 ExpiresDefault "access plus 10 years"
</FilesMatch>

The time can be specified in years, months, weeks, days, hours, minutes, or seconds.
It sends both an Expires header and a Cache-Control max-age header in the response.

http://httpd.apache.org/docs/2.0/mod/mod_expires.html
http://httpd.apache.org/docs/2.0/mod/mod_expires.html

24 | Chapter 3: Rule 3: Add an Expires Header

Expires: Sun, 16 Oct 2016 05:43:02 GMT
Cache-Control: max-age=315360000

The actual value for the expiration date varies depending on when the request is
received, but in this case, it’s always 10 years out. Since Cache-Control takes prece-
dence and is expressed in seconds relative to the request, clock synchronization
issues are avoided. There is no fixed date to worry about updating, and it works in
HTTP/1.0 browsers. The best solution to improve caching across all browsers is to
use an Expires header set with ExpiresDefault.

A survey of 10 top web sites (see Table 3-1) shows that of the seven that use these
headers, five use both Expires and Cache-Control max-age. One uses only Expires and
another uses only Cache-Control max-age. Sadly, three don’t use either.

Empty Cache vs. Primed Cache
Using a far future Expires header affects page views only after a user has already vis-
ited your site. It has no effect on the number of HTTP requests when a user visits
your site for the first time and the browser’s cache is empty. Therefore, the impact of
this performance improvement depends on how often users hit your pages with a
primed cache. It’s likely that a majority of your traffic comes from users with a
primed cache. Making your components cacheable improves the response time for
these users.

When I say “empty cache” or “primed cache,” I mean the state of the browser’s
cache relative to your page. The cache is “empty” if none of your page’s components
are in the cache. The browser’s cache might contain components from other web
sites, but that doesn’t help your page. Conversely, the cache is “primed” if all of your
page’s cacheable components are in the cache.

Table 3-1. Usage of Expires and max-age

Web site Expires max-age

http://www.amazon.com

http://www.aol.com � �

http://www.cnn.com

http://www.ebay.com � �

http://www.google.com �

http://www.msn.com � �

http://www.myspace.com �

http://www.wikipedia.org � �

http://www.yahoo.com � �

http://www.youtube.com

amazon.com
aol.com
cnn.com
ebay.com
google.com
msn.com
myspace.com
wikipedia.org
yahoo.com
youtube.com

More Than Just Images | 25

The number of empty versus primed cache page views depends on the nature of the
web application. A site like “word of the day” might only get one page view per
session from the typical user. There are several reasons why the “word of the day”
components might not be in the cache the next time a user visits the site:

• Despite her desire for a better vocabulary, a user may visit the page only weekly
or monthly, rather than daily.

• A user may have manually cleared her cache since her last visit.

• A user may have visited so many other web sites that her cache filled up, and the
“word of the day” components were pushed out.

• The browser or an antivirus application may have cleared the cache when the
browser was closed.

With only one page view per session, it’s not very likely that “word of the day” com-
ponents are in the cache, so the percentage of primed cache page views is low.

On the other hand, a travel or email web site might get multiple page views per user
session and the number of primed cache page views is likely to be high. In this
instance, more page views will find your components in the browser’s cache.

We measured this at Yahoo! and found that the number of unique users who came in
at least once a day with a primed cache ranged from 40–60%, depending on the
Yahoo! property. That same study revealed that the number of page views with a
primed cache was 75–85%.* Note that the first statistic measures “unique users”
while the second measures “page views.” The percentage of page views with a
primed cache is higher than the percentage of unique users with a primed cache
because many Yahoo! properties receive multiple page views per session. Users show
up once during the day with an empty cache, but make several subsequent page
views with a primed cache.

These browser cache statistics illustrate why it’s important to optimize the primed
cache experience. We want the 40–60% of users and 75–85% of page views with a
primed cache to be optimized. The percentages for your site may vary, but if users
typically visit your site at least once a month or have multiple page views per session,
the statistics are probably similar. By using a far future Expires header you increase
the number of components that are cached by the browser and reused on subse-
quent page views without sending a single byte over the user’s Internet connection.

More Than Just Images
Using a far future Expires header on images is fairly common, but this best practice
should not be limited to images. A far future Expires header should be included on

* Tenni Theurer, “Performance Research, Part 2: Browser Cache Usage – Exposed!”, http://yuiblog.com/blog/
2007/01/04/performance-research-part-2.

http://yuiblog.com/blog/2007/01/04/performance-research-part-2

26 | Chapter 3: Rule 3: Add an Expires Header

any component that changes infrequently, including scripts, stylesheets, and Flash
components. Typically, an HTML document won’t have a future Expires header
because it contains dynamic content that is updated on each user request.

In the ideal situation, all the components in a page would have a far future Expires
header, and subsequent page views would make just a single HTTP request for the
HTML document. When all of the document’s components are read from the
browser’s cache, the response time is cut by 50% or more.

I surveyed 10 top Internet sites in the U.S and recorded how many of the images,
scripts, and stylesheets had an Expires or a Cache-Control max-age header set at least
30 days in the future. As shown in Table 3-2, the news isn’t good. Three types of
components are tallied: images, stylesheets, and scripts. Table 3-2 shows the num-
ber of components that are cacheable for at least 30 days out of the total number of
components of each type. Let’s see to what extent these sites employ the practice of
making their components cacheable:

• Five sites make a majority of their images cacheable for 30 days or more.

• Four sites make a majority of their stylesheets cacheable for 30 days or more.

• Two sites make a majority of their scripts cacheable for 30 days or more.

The overall percentage from Table 3-2 indicates that 74.7% of all components were
either not cacheable or were cacheable for less than 30 days. One possible explana-
tion is that these components shouldn’t be cached. For example, a news site such as
cnn.com, with 0 out of 138 images cacheable, may have many news photos that
should be constantly refreshed in case of updates, rather than cached in the user’s
browser. The Last-Modified header allows us to see when a component was last
modified. If components weren’t cached because they change frequently, we’d
expect to see recent Last-Modified dates.

Table 3-2. Components with an Expires header

Web site Images Stylesheets Scripts
Median
Last-Modified∆

http://www.amazon.com 0/62 0/1 0/3 114 days

http://www.aol.com 23/43 1/1 6/18 217 days

http://www.cnn.com 0/138 0/2 2/11 227 days

http://www.ebay.com 16/20 0/2 0/7 140 days

http://froogle.google.com 1/23 0/1 0/1 454 days

http://www.msn.com 32/35 1/1 3/9 34 days

http://www.myspace.com 0/18 0/2 0/2 1 day

http://www.wikipedia.org 6/8 1/1 2/3 1 day

http://www.yahoo.com 23/23 1/1 4/4 -

http://www.youtube.com 0/32 0/3 0/7 26 days

amazon.com
aol.com
cnn.com
ebay.com
froogle.google.com
msn.com
myspace.com
wikipedia.org
yahoo.com
youtube.com

Revving Filenames | 27

Table 3-2 shows the median Last-Modified delta (the difference between the current
date and the Last-Modified date) for all uncached components. In the case of cnn.com
the median Last-Modified delta is 227 days. Half of the uncached components had
not been modified in over 227 days, so image freshness is not the issue here.

This was the case at Yahoo!, as well. In the past, Yahoo! did not make scripts,
stylesheets, nor some images cacheable. The logic behind not caching these compo-
nents was that the user should request them every time in order to get updates
because they changed frequently. However, when we discovered how infrequently
the files changed in practice, we realized that making them cacheable resulted in a
better user experience. Yahoo! chose to make them cacheable even at the cost of
additional development expense, as described in the next section.

Revving Filenames
If we configure components to be cached by browsers and proxies, how do users get
updates when those components change? When an Expires header is present, the
cached version is used until the expiration date. The browser doesn’t check for any
changes until after the expiration date has passed. That’s why using the Expires
header significantly reduces response times—browsers read the components straight
from disk without generating any HTTP traffic. Thus, even if you update the compo-
nent on your servers, users who have already been to your site will most likely not
get the updated component (since the previous version is in their cache).

To ensure users get the latest version of a component, change the component’s file-
name in all of your HTML pages. Mark Nottingham’s web article “Caching Tutorial
for Web Authors and Webmasters” says:

The most effective solution is to change any links to them; that way, completely new
representations will be loaded fresh from the origin server.

Depending on how you construct your HTML pages, this practice may be either triv-
ial or painful. If you generate your HTML pages dynamically using PHP, Perl, etc., a
simple solution is to use variables for all your component filenames. With this
approach, updating a filename across all your pages is as simple as changing the vari-
able in one location. At Yahoo! we often make this step part of the build process: a
version number is embedded in the component’s filename (for example, yahoo_2.0.
6.js) and the revved filename is automatically updated in the global mapping.
Embedding the version number not only changes the filename, it also makes it easier
to find the exact source code files when debugging.

28 | Chapter 3: Rule 3: Add an Expires Header

Examples
The following two examples demonstrate the performance improvement achieved by
using a far future Expires header. Both examples include the same components: six
images, three scripts, and one stylesheet. In the first example, these components do
not have a far future Expires header. In the second example, they do.

No Expires
http://stevesouders.com/hpws/expiresoff.php

Far Future Expires
http://stevesouders.com/hpws/expireson.php

Adding the far future Expires header drops the response time for subsequent page
views from ~600 milliseconds to ~260 milliseconds, a 57% reduction when tested
over DSL at 900 Kbps. With more components in the page, response times improve
even more. If your pages average more than six images, three scripts, and one
stylesheet, your pages should show a speed up greater than the 57% I found in my
example.

Where exactly do these response time savings come from? As I mentioned earlier, a
component with a far future Expires header is cached, and on subsequent requests
the browser reads it straight from disk, avoiding an HTTP request. However, I didn’t
describe the converse. If a component does not have a far future Expires header, it’s
still stored in the browser’s cache. On subsequent requests the browser checks the
cache and finds that the component is expired (in HTTP terms it is “stale”). For
efficiency, the browser sends a conditional GET request to the origin server. See
Chapter B for an example. If the component hasn’t changed, the origin server avoids
sending back the entire component and instead sends back a few headers telling the
browser to use the component in its cache.

Those conditional requests add up. That’s where the savings come from. Most of the
time, as we saw when looking at the 10 top web sites, the component hasn’t changed
and the browser is going to read it from disk anyway. You can cut your response
times in half by using the Expires header to avoid these unnecessary HTTP requests.

Add a far future Expires header to your components.

http://stevesouders.com/hpws/expiresoff.php
http://stevesouders.com/hpws/expireson.php

29

Chapter 4 CHAPTER 4

Rule 4: Gzip Components4

The time it takes to transfer an HTTP request and response across the network can
be significantly reduced by decisions made by frontend engineers. It’s true that the
end user’s bandwidth speed, Internet service provider, proximity to peering
exchange points, and other factors are beyond the control of the development team.
However, there are more variables that affect response times. Rules 1 and 3 address
response times by eliminating unnecessary HTTP requests. If there is no HTTP
request then there is no network activity—the ideal situation. Rule 2 improves
response times by bringing the HTTP response closer to the user.

Rule 4, examined in this chapter, reduces response times by reducing the size of the
HTTP response. If an HTTP request results in a smaller response, the transfer time
decreases because fewer packets must travel from the server to the client. This effect
is even greater for slower bandwidth speeds. This chapter shows how to use gzip
encoding to compress HTTP responses, and thus reduce network response times.
This is the easiest technique for reducing page weight and it also has the biggest
impact. There are other ways you can reduce the HTML document’s page weight
(strip comments and shorten URLs, for example), but they are typically less effective
and require more work.

How Compression Works
The same file compression that has been used for decades to reduce file sizes in email
messages and on FTP sites is also used to deliver compressed web pages to browsers.
Starting with HTTP/1.1, web clients indicate support for compression with the
Accept-Encoding header in the HTTP request.

Accept-Encoding: gzip, deflate

30 | Chapter 4: Rule 4: Gzip Components

If the web server sees this header in the request, it may compress the response using
one of the methods listed by the client. The web server notifies the web client of this
via the Content-Encoding header in the response.

Content-Encoding: gzip

Gzip is currently the most popular and effective compression method. It is a free for-
mat (i.e., unencumbered by patents or other restrictions) developed by the GNU
project and standardized by RFC 1952. The only other compression format you’re
likely to see is deflate, but it’s slightly less effective and much less popular. In fact, I
have seen only one site that uses deflate: msn.com. Browsers that support deflate also
support gzip, but several browsers that support gzip do not support deflate, so gzip is
the preferred method of compression.

What to Compress
Servers choose what to gzip based on file type, but are typically too limited in what
they are configured to compress. Many web sites gzip their HTML documents. It’s
also worthwhile to gzip your scripts and stylesheets, but many web sites miss this
opportunity (in fact, it’s worthwhile to compress any text response including XML
and JSON, but the focus here is on scripts and stylesheets since they’re the most
prevalent). Image and PDF files should not be gzipped because they are already com-
pressed. Trying to gzip them not only wastes CPU resources, it can also potentially
increase file sizes.

There is a cost to gzipping: it takes additional CPU cycles on the server to carry out
the compression and on the client to decompress the gzipped file. To determine
whether the benefits outweigh the costs you would have to consider the size of the
response, the bandwidth of the connection, and the Internet distance between the
client and the server. This information isn’t generally available, and even if it were,
there would be too many variables to take into consideration. Generally, it’s worth
gzipping any file greater than 1 or 2K. The mod_gzip_minimum_file_size directive
controls the minimum file size you’re willing to compress. The default value is 500
bytes.

I looked at the use of gzip on 10 of the most popular U.S. web sites. Nine sites
gzipped their HTML documents, seven sites gzipped most of their scripts and
stylesheets, and only five gzipped all of their scripts and stylesheets. The sites that
don’t compress all of their HTML, stylesheets, and scripts are missing the opportu-
nity to reduce the page weight by up to 70%, as we’ll see in the next section, “The
Savings.” A survey of major web sites and what they choose to compress is shown in
Table 4-1.

Configuration | 31

The Savings
Gzipping generally reduces the response size by about 70%. Table 4-2 shows exam-
ples of size reductions for scripts and stylesheets (small and large). In addition to
gzip, the results for deflate are also shown.

It’s clear from Table 4-2 why gzip is typically the choice for compression. Gzip
reduces the response by about 66% overall, while deflate reduces the response by
60%. For these files, gzip compresses ~6% more than deflate.

Configuration
The module used for configuring gzip depends on your version of Apache: Apache 1.3
uses mod_gzip while Apache 2.x uses mod_deflate. This section describes how to con-
figure each module, and focuses on Apache because it is the most popular web server
on the Internet.

Table 4-1. Gzip use for 10 popular U.S. web sites

Web site Gzip HTML Gzip scripts Gzip stylesheets

http://www.amazon.com �

http://www.aol.com � some some

http://www.cnn.com

http://www.ebay.com �

http://froogle.google.com � � �

http://www.msn.com � deflate deflate

http://www.myspace.com � � �

http://www.wikipedia.org � � �

http://www.yahoo.com � � �

http://www.youtube.com � some some

Table 4-2. Compression sizes using gzip and deflate

File type Uncompressed size Gzip size Gzip savings Deflate size Deflate savings

Script 3,277 bytes 1076 bytes 67% 1112 bytes 66%

Script 39,713 bytes 14,488 bytes 64% 16,583 bytes 58%

Stylesheet 968 bytes 426 bytes 56% 463 bytes 52%

Stylesheet 14,122 bytes 3,748 bytes 73% 4,665 bytes 67%

amazon.com
aol.com
cnn.com
ebay.com
froogle.google.com
msn.com
myspace.com
wikipedia.org
yahoo.com
youtube.com

32 | Chapter 4: Rule 4: Gzip Components

Apache 1.3: mod_gzip
Gzip compression for Apache 1.3 is provided by the mod_gzip module. There are
many mod_gzip configuration directives, and these are described on the mod_gzip web
site (http://www.schroepl.net/projekte/mod_gzip). Here are the most commonly used
directives:

mod_gzip_on
Enables mod_gzip.

mod_gzip_item_include
mod_gzip_item_exclude

Define which requests to gzip or not to gzip based on file type, MIME type, user
agent, etc.

Most web hosting services have mod_gzip turned on for text/html by default. The
most important configuration change you should make is to explicitly compress
scripts and stylesheets. You can do this using the following Apache 1.3 directives:

mod_gzip_item_include file \.js$
mod_gzip_item_include mime ^application/x-javascript$
mod_gzip_item_include file \.css$
mod_gzip_item_include mime ^text/css$

The gzip command-line utility offers an option that controls the degree of compres-
sion, trading off CPU usage for size reduction, but there is no configuration directive
to control the compression level in mod_gzip. If the CPU load caused by streaming
compression is an issue, consider caching the compressed responses, either on disk
or in memory. Compressing your responses and updating the cache manually adds
to your maintenance work and can become a burden. Fortunately, there are options
for mod_gzip to automatically save the gzipped content to disk and update that
gzipped content when the source changes. Use the mod_gzip_can_negotiate and mod_
gzip_update_static directives to do this.

Apache 2.x: mod_deflate
Compression in Apache 2.x is done with the mod_deflate module. Despite the name
of the module, it does compression using gzip. The basic configuration shown in the
previous section for compressing scripts and stylesheets is done in one line:

AddOutputFilterByType DEFLATE text/html text/css application/x-javascript

Unlike mod_gzip, mod_deflate contains a directive for controlling the level of com-
pression: DeflateCompressionLevel. For more configuration information, see the
Apache 2.0 mod_deflate documentation at http://httpd.apache.org/docs/2.0/mod/mod_
deflate.html.

http://www.schroepl.net/projekte/mod_gzip
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

Proxy Caching | 33

Proxy Caching
The configuration described so far works fine when the browser talks directly to the
web server. The web server determines whether to compress the response based on
Accept-Encoding. The browser caches the response, whether or not it has been com-
pressed, based on other HTTP headers in the response such as Expires and Cache-
Control (see Chapter 3).

When the browser sends the request through a proxy it gets more complicated. Sup-
pose that the first request to the proxy for a certain URL comes from a browser that
does not support gzip. This is the first request to the proxy, so its cache is empty. The
proxy forwards that request to the web server. The web server’s response is uncom-
pressed. That uncompressed response is cached by the proxy and sent on to the
browser. Now, suppose the second request to the proxy for the same URL comes
from a browser that does support gzip. The proxy responds with the (uncompressed)
contents in its cache, missing the opportunity to use gzip. The situation is worse if
the sequence is reversed: when the first request is from a browser that supports gzip
and the second request is from a browser that doesn’t. In this case, the proxy has a
compressed version of the contents in its cache and serves that version to all subse-
quent browsers whether they support gzip or not.

The way around this problem is to add the Vary header in the response from your
web server. The web server tells the proxy to vary the cached responses based on one
or more request headers. Because the decision to compress is based on the Accept-
Encoding request header, it makes sense to include Accept-Encoding in the server’s
Vary response header.

Vary: Accept-Encoding

This causes the proxy to cache multiple versions of the response, one for each value
of the Accept-Encoding request header. In our previous example, the proxy would
cache two versions of each response: the compressed content for when Accept-
Encoding is gzip and the uncompressed content for when Accept-Encoding is not
specified at all. When a browser hits the proxy with the request header Accept-
Encoding: gzip it receives the compressed response. Browsers without an Accept-
Encoding request header receive the uncompressed response. By default, mod_gzip
adds the Vary: Accept Encoding header to all responses to provoke the right behavior
from the proxy. For more information about Vary, visit http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html#sec14.44.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44

34 | Chapter 4: Rule 4: Gzip Components

Edge Cases
The coordination of compression between servers and clients seems simple, but it
must work correctly. The page could easily break if either the client or server makes a
mistake (sending gzipped content to a client that can’t understand it, forgetting to
declare a compressed response as gzip-encoded, etc.). Mistakes don’t happen often,
but there are edge cases to take into consideration.

Approximately 90% of today’s Internet traffic travels through browsers that claim to
support gzip. If a browser says it supports gzip you can generally trust it. There are
some known bugs with unpatched early versions of Internet Explorer, specifically
Internet Explorer 5.5 and Internet Explorer 6.0 SP1, and Microsoft has published
two Knowledge Base articles documenting the problem (http://support.microsoft.com/
kb/313712/en-us and http://support.microsoft.com/kb/312496/en-us). There are other
known problems, but they occur on browsers that represent less than 1% of Internet
traffic. A safe approach is to serve compressed content only for browsers that are
proven to support it, such as Internet Explorer 6.0 and later and Mozilla 5.0 and
later. This is called a browser whitelist approach.

With this approach you may miss the opportunity to serve compressed content to a
few browsers that would have supported it. The alternative—serving compressed
content to a browser that can’t support it—is far worse. Using mod_gzip in Apache 1.3,
a browser whitelist is specified using mod_gzip_item_include with the appropriate
User-Agent values:

mod_gzip_item_include reqheader "User-Agent: MSIE [6-9]"
mod_gzip_item_include reqheader "User-Agent: Mozilla/[5-9]"

In Apache 2.x use the BrowserMatch directive:

BrowserMatch ^MSIE [6-9] gzip
BrowserMatch ^Mozilla/[5-9] gzip

Adding proxy caches to the mix complicates the handling of these edge case brows-
ers. It’s not possible to share your browser whitelist configuration with the proxy.
The directives used to set up the browser whitelist are too complex to encode using
HTTP headers. The best you can do is add User-Agent to the Vary header as another
criterion for the proxy.

Vary: Accept-Encoding,User-Agent

Once again, mod_gzip takes care of this automatically by adding the User-Agent field
to the Vary header when it detects that you’re using a browser whitelist. Unfortu-
nately, there are thousands of different values for User-Agent. It’s unlikely that the
proxy is able to cache all the combinations of Accept-Encoding and User-Agent for all
the URLs it proxies. The mod_gzip documentation (http://www.schroepl.net/projekte/

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q313712
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q313712
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q312496
http://www.schroepl.net/projekte/mod_gzip/cache.htm
http://www.schroepl.net/projekte/mod_gzip/cache.htm

Gzip in Action | 35

mod_gzip/cache.htm) goes as far as to say, “using filter rules evaluating the User-
Agent HTTP header will lead to totally disabling any caching for response packets.”
Because this virtually defeats proxy caching, another approach is to disable proxy
caching explicitly using a Vary: * or Cache-Control: private header. Because the
Vary: * header prevents the browser from using cached components, the Cache-
Control: private header is preferred and is used by both Google and Yahoo!. Keep in
mind that this disables proxy caching for all browsers and therefore increases your
bandwidth costs because proxies won’t cache your content.

This decision about how to balance between compression and proxy support is com-
plex, trading off fast response times, reduced bandwidth costs, and edge case
browser bugs. The right answer for you depends on your site:

• If your site has few users and they’re a niche audience (for example, an intranet
or all using Firefox 1.5), edge case browsers are less of a concern. Compress your
content and use Vary: Accept-Encoding. This improves the user experience by
reducing the size of components and leveraging proxy caches.

• If you’re watching bandwidth costs closely, do the same as in the previous case:
compress your content and use Vary: Accept-Encoding. This reduces the band-
width costs from your servers and increases the number of requests handled by
proxies.

• If you have a large, diverse audience, can afford higher bandwidth costs, and
have a reputation for high quality, compress your content and use Cache-
Control: Private. This disables proxies but avoids edge case bugs.

There is one more proxy edge case worth pointing out. The problem is that, by
default, ETags (explained in Chapter 13) don’t reflect whether the content is
compressed, so proxies might serve the wrong content to a browser. The issue is
described in Apache’s bug database (http://issues.apache.org/bugzilla/show_bug.
cgi?id=39727). The best solution is to disable ETags. Since that’s also the solution
proposed in Chapter 13, I go into more detail about ETags there.

Gzip in Action
Three examples for Rule 4 demonstrate the different degrees of compression you can
deploy across your site.

Nothing Gzipped
http://stevesouders.com/hpws/nogzip.html

HTML Gzipped
http://stevesouders.com/hpws/gzip-html.html

Everything Gzipped
http://stevesouders.com/hpws/gzip-all.html

http://www.schroepl.net/projekte/mod_gzip/cache.htm
http://www.schroepl.net/projekte/mod_gzip/cache.htm
http://issues.apache.org/bugzilla/show_bug.cgi?id=39727
http://issues.apache.org/bugzilla/show_bug.cgi?id=39727
http://stevesouders.com/hpws/nogzip.html
http://stevesouders.com/hpws/gzip-html.html
http://stevesouders.com/hpws/gzip-all.html

36 | Chapter 4: Rule 4: Gzip Components

In addition to the 48.6K HTML document, each example page contains a 59.9K
stylesheet and a 68.0K script. Table 4-3 shows how the total page size varies with the
amount of compression that is performed. Compressing the HTML document,
stylesheet, and script reduces this page size from 177.6K to 46.4K, a size reduction of
73.8%! Compression typically reduces the content size by approximately 70%, but it
varies depending on the amount of whitespace and character repetition.

The page with everything compressed loads ~831 milliseconds faster than the non-
compressed example, a response time reduction of 53.2%. This was measured over a
900 Kbps DSL line. The absolute response time values vary depending on Internet
connection, CPU, browser, geographic location, etc. However, the relative savings
remain about the same. A simple change in your web server configuration, compress-
ing as many components as possible, dramatically improves the speed of your web
pages.

Table 4-3. Page weight savings for different levels of compression

Example
Components (HTML,
CSS, JS) Total size Size savings Response time Time savings

Nothing Gzipped 48.6K, 59.9K, 68.0K 177.6K - 1562 ms -

HTML Gzipped 13.9K, 59.9K, 68.0K 141.9K 34.7K (19.7%) 1411 ms 151 ms (9.7%)

Everything Gzipped 13.9K, 14.4K, 18.0K 46.4K 130.2K (73.8%) 731 ms 831 ms (53.2%)

Gzip your scripts and stylesheets.

http://stevesouders.com/hpws/gzip-all.html

37

Chapter 5 CHAPTER 5

Rule 5: Put Stylesheets at the Top5

A team running a major portal at Yahoo! added several DHTML features to their
page while trying to ensure there was no adverse effect on response times. One of the
more complex DHTML features, a pop-up DIV for sending email messages, was not
part of the actual rendering of the page—it was accessible only after the page had
loaded and the user clicked on the button to send the email message. Since it wasn’t
used to render the page, the frontend engineer put the CSS for the pop-up DIV in an
external stylesheet and added the corresponding LINK tag at the bottom of the page
with the expectation that including it at the end would make the page load faster.

The logic behind this made sense. Many other components (images, stylesheets,
scripts, etc.) were required to render the page. Since components are (in general)
downloaded in the order in which they appear in the document, putting the DHTML
feature’s stylesheet last would allow the more critical components to be downloaded
first, resulting in a faster-loading page.

Or would it?

In Internet Explorer (still the most popular browser) the resulting page was notice-
ably slower than the old design. While trying to find ways to speed up the page, we
discovered that moving the DHTML feature’s stylesheet to the top of the docu-
ment, in the HEAD, made the page load faster. This contradicted what we expected.
How could putting the stylesheet first, thus delaying the critical components in the
page, actually improve the page load time? Further investigation led to the creation
of Rule 5.

Progressive Rendering
Frontend engineers who care about performance want a page to load progressively;
that is, we want the browser to display whatever content it has as soon as possible.
This is especially important for pages with a lot of content and for users on slower
Internet connections. The importance of giving users visual feedback has been well

38 | Chapter 5: Rule 5: Put Stylesheets at the Top

researched and documented. In his web article,* Jakob Nielson, pioneering usability
engineer, stresses the importance of visual feedback in terms of a progress indicator.

Progress indicators have three main advantages: They reassure the user that the sys-
tem has not crashed but is working on his or her problem; they indicate approxi-
mately how long the user can be expected to wait, thus allowing the user to do other
activities during long waits; and they finally provide something for the user to look at,
thus making the wait less painful. This latter advantage should not be underestimated
and is one reason for recommending a graphic progress bar instead of just stating the
expected remaining time in numbers.

In our case the HTML page is the progress indicator. When the browser loads the
page progressively, the header, the navigation bar, the logo at the top, etc. all serve as
visual feedback for the user who is waiting for the page. This improves the overall
user experience.

The problem with putting stylesheets near the bottom of the document is that it pro-
hibits progressive rendering in many browsers. Browsers block rendering to avoid
having to redraw elements of the page if their styles change. Rule 5 has less to do
with the actual time to load the page’s components and more to do with how the
browser reacts to the order of those components. In fact, the page that feels slower is
ironically the page that loads the visible components faster. The browser delays
showing any visible components while it and the user wait for the stylesheet at the
bottom. The examples in the following section demonstrate this phenomenon,
which I call the “blank white screen.”

sleep.cgi
While building the examples of this phenomenon, I developed a tool that I’ve found
extremely useful for showing how delayed components affect web pages: sleep.cgi.
It’s a simple Perl CGI program that takes the following parameters:

sleep
How long (in seconds) the response should be delayed. The default is 0.

type
The type of component to return. Possible values are gif, js, css, html, and swf.
The default value is gif.

expires
One of three values: –1 (returns an Expires header in the past), 0 (no Expires
header is returned), and 1 (returns an Expires header in the future). The default
is 1.

* Jakob Nielson, “Response Times: The Three Important Limits,” http://www.useit.com/papers/responsetime.
html.

http://www.useit.com/papers/responsetime.html
http://www.useit.com/papers/responsetime.html

Blank White Screen | 39

last
A value of –1 returns a Last-Modified header with a date equal to the file’s time-
stamp. A value of 0 results in no Last-Modified header being returned. The
default is –1.

redir
A value of 1 causes a 302 response that redirects back to the exact same URL
with redir=1 removed.

The first example requires some slow images and a slow stylesheet. Those are
achieved with the following requests to sleep.cgi:

<link rel="stylesheet" href="/bin/sleep.cgi?type=css&sleep=1&expires=-1&last=0">

Both the image and stylesheet use the expires=-1 option to get a response that has an
Expires header in the past. This prevents the components from being cached so that
you can run the test repeatedly and get the same experience each time (I also add a
unique timestamp to each component’s URL to further prevent caching). In order to
reduce the variables in this test, I specify last=0 to remove the Last-Modified header
from the response. The image request has a two-second delay (sleep=2), while the
stylesheet is delayed only one second (sleep=1). This ensures that any delay seen is
not due to the stylesheet’s response time, but instead to its blocking behavior (which
is what the page is testing).

Being able to exaggerate the response times of components makes it possible to visu-
alize their effects on page loading and response times. I’ve made the Perl code avail-
able so others can use it for their own testing (http://stevesouders.com/hpws/sleep.txt).
Copy the code into an executable file named sleep.cgi and place it in an executable
directory on your web server.

Blank White Screen
This section shows two web pages that differ in just one respect: whether the
stylesheet is at the top or bottom of the page. What a difference it makes to the user
experience!

CSS at the Bottom
The first example demonstrates the harm of putting stylesheets at the bottom of the
HTML document.

CSS at the Bottom
http://stevesouders.com/hpws/css-bottom.php

http://stevesouders.com/hpws/sleep.txt
http://stevesouders.com/hpws/css-bottom.php

40 | Chapter 5: Rule 5: Put Stylesheets at the Top

Notice how putting stylesheets near the end of the document can delay page load-
ing. This problem is harder to track down because it only happens in Internet
Explorer and depends on how the page is loaded. After working with the page, you’ll
notice that it occasionally loads slowly. When this happens, the page is completely
blank until all the content blasts onto the screen at once, as illustrated in Figure 5-1.
Progressive rendering has been thwarted. This is a bad user experience because there
is no visual feedback to reassure the user that her request is being handled correctly.
Instead, the user is left to wonder whether anything is happening. That’s the
moment when a user abandons your web site and navigates to your competitor.

Here are the cases where putting stylesheets at the bottom of the document causes
the blank white screen problem to surface in Internet Explorer:

In a new window
Clicking the “new window” link in the example page opens “CSS at the Bot-
tom” in a new window. Users often open new windows when navigating across
sites, such as when going from a search results page to the actual target page.

As a reload
Clicking the Refresh button, a normal user behavior, is another way to trigger a
blank white screen. Minimize and restore the window while the page is loading
to see the blank white screen.

As a home page
Setting the browser’s default page to http://stevesouders.com/hpws/css-bottom.php
and opening a new browser window causes the blank white screen. Rule 5 is
important for any team that wants its web site to be used as a home page.

Figure 5-1. The blank white screen

http://stevesouders.com/hpws/css-bottom.php
http://stevesouders.com/hpws/css-bottom.php

Blank White Screen | 41

CSS at the Top
To avoid the blank white screen, move the stylesheet to the top in the document’s
HEAD. Doing this in the sample web site I’ve called “CSS at the Top” solves all the
problem scenarios. No matter how the page is loaded—whether in a new window, as
a reload, or as a home page—the page renders progressively.

CSS at the Top
http://stevesouders.com/hpws/css-top.php

Solved! There’s just one more complexity to point out.

There are two ways you can include a stylesheet in your document: the LINK tag and
the @import rule. An example LINK tag looks like this:

<link rel="stylesheet" href="styles1.css">

This is an example of a STYLE block with an @import rule:

<style>
@import url("styles2.css");
</style>

A STYLE block can contain multiple @import rules, but @import rules must precede all
other rules. I’ve seen cases where this is overlooked, and developers spend time
trying to determine why the stylesheet isn’t loaded from an @import rule. For this
reason, I prefer using the LINK tag (one less thing to keep track of). Beyond the easier
syntax, there are also performance benefits to using LINK instead of @import. The
@import rule causes the blank white screen phenomenon, even if used in the docu-
ment HEAD, as shown in the following example.

CSS at the Top Using @import
http://stevesouders.com/hpws/css-top-import.php

Using the @import rule causes an unexpected ordering in how the components are
downloaded. Figure 5-2 shows the HTTP traffic for all three examples. Each page
contains eight HTTP requests:

• One HTML page

• Six images

• One stylesheet

The components in css-bottom.php and css-top.php are downloaded in the order in
which they appear in the document. However, even though css-top-import.php has
the stylesheet at the top in the document HEAD, the stylesheet is downloaded last
because it uses @import. As a result, it has the blank white screen problem, just like
css-bottom.php.

http://stevesouders.com/hpws/css-top.php
http://stevesouders.com/hpws/css-top-import.php

42 | Chapter 5: Rule 5: Put Stylesheets at the Top

Figure 5-2 also shows that the overall time for each page to load (including all of the
page’s components) is the same: about 7.3 seconds. It’s surprising that the pages that
feel slower, css-bottom.php and css-top-import.php, actually download all the page’s
necessary components faster. They finish downloading the HTML page and all six
images in 6.3 seconds, while css-top.php takes 7.3 seconds to download the page’s
required components. It takes css-top.php one second longer because it downloads
the stylesheet early on, even though it’s not needed for rendering. This delays the
download of the six images by about one second. Even though the necessary compo-
nents take longer to download, css-top.php displays more quickly because it renders
progressively.

Great! We know what to do: put stylesheets in the document HEAD using the LINK tag.
But if you’re like me you’re asking yourself, “Why does the browser work this way?”

Figure 5-2. Loading components

css-bottom.php
image 1
image 2
image 3
image 4
image 5
image 6

stylesheet

6.3 seconds

css-top.php
stylesheet

image 1
image 2
image 3
image 4
image 5
image 6

7.3 seconds

css-top-import.php
image 1
image 2
image 3
image 4
image 5
image 6

stylesheet

6.3 seconds

What’s a Frontend Engineer to Do? | 43

Flash of Unstyled Content
The blank white screen phenomenon is due to browser behavior. Remember that our
stylesheet wasn’t even used to render the page—only to affect the DHTML feature
for sending email messages. Even when Internet Explorer had all the necessary com-
ponents, it waited to render them until the unnecessary stylesheet was also down-
loaded. The location of the stylesheet in the page doesn’t affect download times, but
it does affect rendering. David Hyatt has a great explanation of why the browser does
this.*

If stylesheets are still loading, it is wasteful to construct the rendering tree, since you
don’t want to paint anything at all until all stylesheets have been loaded and parsed.
Otherwise you’ll run into a problem called FOUC (the flash of unstyled content prob-
lem), where you show content before it’s ready.

The following example demonstrates this problem.

CSS Flash of Unstyled Content
http://stevesouders.com/hpws/css-fouc.php

In this example, the document uses one of the CSS rules from the stylesheet, but the
stylesheet is (incorrectly) placed at the bottom. When the page loads progressively
the text is displayed first, followed by the images as they arrive. Finally, when the
stylesheet is successfully downloaded and parsed, the already-rendered text and
images are redrawn using the new styles. This is the “flash of unstyled content” in
action. It should be avoided.

The blank white screen is the browser’s attempt to be forgiving to frontend engi-
neers who mistakenly put their stylesheets too far down in the document. The blank
white screen is the foil of the FOUC problem. The browser can delay rendering until
all the stylesheets are downloaded, causing the blank white screen. By contrast, the
browser can render progressively and risk flashing the user. Neither choice is ideal.

What’s a Frontend Engineer to Do?
So how can you avoid both the blank white screen and the flash of unstyled content?

In the “CSS Flash of Unstyled Content” example, the flash doesn’t always happen; it
depends on your browser and how you load the page. Earlier in this chapter, I
explained that the blank white screen happens in Internet Explorer only when the
page is loaded in a new window, as a reload, or as a home page. In these cases, Inter-
net Explorer chooses the blank white screen. However, if you click on a link, use a
bookmark, or type a URL, Internet Explorer chooses the second alternative: risking
FOUC.

* David Hyatt, “Surfin’ Safari” blog, http://weblogs.mozillazine.org/hyatt/archives/2004_05.html#005496.

http://weblogs.mozillazine.org/hyatt/archives/2004_05.html#005496
http://stevesouders.com/hpws/css-fouc.php

44 | Chapter 5: Rule 5: Put Stylesheets at the Top

Firefox is more consistent—it always chooses the second alternative (FOUC). All the
examples behave identically in Firefox: they render progressively. For the first three
examples, Firefox’s behavior works to the user’s benefit because the stylesheet is not
required for rendering the page, but in the “CSS Flash of Unstyled Content” exam-
ple, the user is less fortunate. The user experiences the FOUC problem precisely
because Firefox renders progressively.

When browsers behave differently, what’s a frontend engineer to do?

You can find the answer in the HTML specification (http://www.w3.org/TR/html4/
struct/links.html#h-12.3):

Unlike A, [LINK] may only appear in the HEAD section of a document, although it
may appear any number of times.

Browsers have a history of supporting practices that violate the HTML specification
in order to make older, sloppier web pages work, but when it comes to handling the
placement of stylesheets, Internet Explorer and Firefox are nudging the web develop-
ment community to follow the specification. Pages that violate the specification (by
putting the LINK outside of the HEAD section) still render, but risk a degraded user
experience.

In their effort to improve one of the most visited pages on the Web, the Yahoo! por-
tal team initially made it worse by moving the stylesheet to the bottom of the page.
They found the optimal solution by following the HTML specification and leaving it
at the top. Neither of the alternatives—the blank white screen or flash of unstyled
content—are worth the risk. If you have a stylesheet that’s not required to render the
page, with some extra effort you can load it dynamically after the document loads, as
described in the section “Post-Onload Download” in Chapter 8. Otherwise, whether
your stylesheets are necessary to render the page or not, there’s one rule to follow.

Put your stylesheets in the document HEAD using the LINK tag.

http://www.w3.org/TR/html4/struct/links.html#h-12.3
http://www.w3.org/TR/html4/struct/links.html#h-12.3

45

Chapter 6 CHAPTER 6

Rule 6: Put Scripts at the Bottom6

Chapter 5 described how stylesheets near the bottom of the page prohibit progres-
sive rendering, and how moving them to the document HEAD eliminates the problem.
Scripts (external JavaScript files) pose a similar problem, but the solution is just the
opposite: it’s better to move scripts from the top of the page to the bottom (when
possible). This enables progressive rendering and achieves greater download parallel-
ization. Let’s first look at an example of these problems.

Problems with Scripts
The best way to demonstrate the issues with scripts is by using an example that has a
script in the middle of the page.

Scripts in the Middle
http://stevesouders.com/hpws/js-middle.php

This script is programmed to take 10 seconds to load, so it’s easy to see the prob-
lem—the bottom half of the page takes about 10 seconds to appear (see the section
“sleep.cgi” in Chapter 5 for an explanation of how components are configured to
have specific load times). This occurs because the script blocks parallel download-
ing. We’ll come back to this problem after a review of how browsers download in
parallel.

The other problem with the example page has to do with progressive rendering.
When using stylesheets, progressive rendering is blocked until all stylesheets have
been downloaded. That’s why it’s best to move stylesheets to the document HEAD, so
they are downloaded first and rendering isn’t blocked. With scripts, progressive ren-
dering is blocked for all content below the script. Moving scripts lower in the page
means more content is rendered progressively.

http://stevesouders.com/hpws/js-middle.php

46 | Chapter 6: Rule 6: Put Scripts at the Bottom

Parallel Downloads
The biggest impact on response time is the number of components in the page. Each
component generates an HTTP request when the cache is empty, and sometimes
even when the cache is primed. Knowing that the browser performs HTTP requests
in parallel, you may ask why the number of HTTP requests affects response time.
Can’t the browser download them all at once?

The explanation goes back to the HTTP/1.1 specification, which suggests that
browsers download two components in parallel per hostname (http://www.w3.org/
Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4). Many web pages download all their
components from a single hostname. Viewing these HTTP requests reveals a stair-
step pattern, as shown in Figure 6-1.

If a web page evenly distributed its components across two hostnames, the overall
response time would be about twice as fast. The HTTP requests would behave in the
pattern shown in Figure 6-2, with four components downloaded in parallel (two per
hostname). Tto give a visual cue as to how much faster this page loads, the horizon-
tal width of the box is the same as in Figure 6-1.

Limiting parallel downloads to two per hostname is a guideline. By default, both
Internet Explorer and Firefox follow the guideline, but users can override this default
behavior. Internet Explorer stores the value in the Registry Editor.*

You can modify this default setting in Firefox by using the network.http.max-
persistent-connections-per-server setting in the about:config page. It’s interesting
to note that for HTTP/1.0, Firefox’s default is to download eight components in

Figure 6-1. Downloading two components in parallel

* For more information about overriding this default, see Microsoft’s web article “How to configure Internet
Explorer to have more than two download sessions,” http://support.microsoft.com/?kbid=282402.

html

component

component

component

component

component

component

component

component

component

component

http://support.microsoft.com/?kbid=282402
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4

Parallel Downloads | 47

parallel per hostname. Figure 6-3 shows that Firefox’s settings for HTTP/1.0 result in
the fastest response time for this hypothetical page. It’s even faster than that shown
in Figure 6-2, even though only one hostname is used.

Most web sites today use HTTP/1.1, but the idea of increasing parallel downloads
beyond two per hostname is intriguing. Instead of relying on users to modify their
browser settings, frontend engineers could simply use CNAMEs (DNS aliases) to
split their components across multiple hostnames. Maximizing parallel downloads
doesn’t come without a cost. Depending on your bandwidth and CPU speed, too
many parallel downloads can degrade performance. Research at Yahoo! shows that

Figure 6-2. Downloading four components in parallel

Figure 6-3. Downloading eight components in parallel (default for Firefox HTTP/1.0)

html

component

component

component

component

component

component

component

component

component

component

html

component

component

component

component

component

component

component

component

component

component

48 | Chapter 6: Rule 6: Put Scripts at the Bottom

splitting components across two hostnames leads to better performance than using
1, 4, or 10 hostnames.*

Scripts Block Downloads
The benefits of downloading components in parallel are clear. However, parallel
downloading is actually disabled while a script is downloading—the browser won’t
start any other downloads, even on different hostnames. One reason for this behav-
ior is that the script may use document.write to alter the page content, so the browser
waits to make sure the page is laid out appropriately.

Another reason that the browser blocks parallel downloads when scripts are being
loaded is to guarantee that the scripts are executed in the proper order. If multiple
scripts were downloaded in parallel, there’s no guarantee the responses would arrive
in the order specified. For example, if the last script was smaller than scripts that
appear earlier on the page, it might return first. If there were dependencies between
the scripts, executing them out of order would result in JavaScript errors. The follow-
ing example demonstrates how scripts block parallel downloads.

Scripts Block Downloads
http://stevesouders.com/hpws/js-blocking.php

This page contains the following components in this order:

1. An image from host1

2. An image from host2

3. A script from host1 that takes 10 seconds to load

4. An image from host1

5. An image from host2

Given the description of how browsers download in parallel, you would expect that
the two images from host2 would be downloaded in parallel, along with the first two
components from host1. Figure 6-4 shows what really happens.

* Tenni Theurer, “Performance Research, Part 4: Maximizing Parallel Downloads in the Carpool Lane,” http://
yuiblog.com/blog/2007/04/11/performance-research-part-4/.

Figure 6-4. Scripts block downloads

html

image host1

image host2

script

image host1

image host2

http://yuiblog.com/blog/2007/04/11/performance-research-part-4/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/
http://stevesouders.com/hpws/js-blocking.php

Best Case: Scripts at the Bottom | 49

In both Internet Explorer and Firefox, the browser starts by downloading the first
image from host1 and host2. Next, the script from host1 is downloaded. Here’s
where the unexpected behavior occurs. While the script is being downloaded (exag-
gerated to 10 seconds to illustrate the point), the second image from host1 and host2
are blocked from downloading. Not until the script is finished loading are the
remaining components in the page downloaded.

Worst Case: Scripts at the Top
At this point, the effects that scripts can have on web pages are clear:

• Content below the script is blocked from rendering.

• Components below the script are blocked from being downloaded.

If scripts are put at the top of the page, as they usually are, everything in the page is
below the script, and the entire page is blocked from rendering and downloading
until the script is loaded. Try out the following example.

Scripts at the Top
http://stevesouders.com/hpws/js-top.php

Because this entire page is blocked from rendering, it results in the blank white
screen phenomenon described in Chapter 5. Progressive rendering is critical for a
good user experience, but slow scripts delay the feedback users crave. Also, the
reduction of parallelized downloads delays how quickly images are displayed in the
page. Figure 6-5 shows how the components in the page are downloaded later than
desired.

Best Case: Scripts at the Bottom
The best place to put scripts is at the bottom of the page. The page contents aren’t
blocked from rendering, and the viewable components in the page are downloaded
as early as possible. Figure 6-6 shows how the long request for the script has less of
an effect on the page when it is placed at the bottom. You can see this by visiting the
following example.

Figure 6-5. Script at the top blocks the entire page

html

script

component

component

component

component

http://stevesouders.com/hpws/js-top.php

50 | Chapter 6: Rule 6: Put Scripts at the Bottom

Scripts at the Bottom
http://stevesouders.com/hpws/js-bottom.php

The benefit is really highlighted by viewing the pages with scripts at the top versus
scripts at the bottom side-by-side. You can see this in the following example.

Scripts Top vs. Bottom
http://stevesouders.com/hpws/move-scripts.php

Putting It in Perspective
These examples use a script that takes 10 seconds to download. Hopefully, the delay
isn’t as long for any scripts you use, but it is possible for a script to take longer than
expected and for the user’s bandwidth to affect the response time of a script. The
effect that scripts have on your pages might be less than shown here, but it could still
be noticeable. Having multiple scripts in your page compounds the problem.

In some situations, it’s not easy to move scripts to the bottom. If, for example, the
script uses document.write to insert part of the page’s content, it can’t be moved
lower in the page. There might also be scoping issues. In many cases, there are ways
to work around these situations.

An alternative suggestion that comes up often is to use deferred scripts. The DEFER
attribute indicates that the script does not contain document.write, and is a clue to
browsers that they can continue rendering. You can see this in the following example.

Deferred Scripts
http://stevesouders.com/hpws/js-defer.php

Unfortunately, in Firefox, even deferred scripts block rendering and parallel down-
loads. In Internet Explorer, components lower in the page are downloaded slightly
later. If a script can be deferred, it can also be moved to the bottom of the page.
That’s the best thing to do to speed up your web pages.

Figure 6-6. Scripts at the bottom have the least impact

Move scripts to the bottom of the page.

html

component

component

component

component

script

http://stevesouders.com/hpws/js-bottom.php
http://stevesouders.com/hpws/js-bottom.php
http://stevesouders.com/hpws/move-scripts.php
http://stevesouders.com/hpws/js-defer.php

51

Chapter 7 CHAPTER 7

Rule 7: Avoid CSS Expressions7

CSS expressions are a powerful (and dangerous) way to set CSS properties dynami-
cally. They’re supported in Internet Explorer version 5 and later. Let’s start with a
conventional CSS rule for setting the background color:

background-color: #B8D4FF;

For a more dynamic page, the background color could be set to alternate every hour
using CSS expressions.

background-color: expression((new Date()).getHours()%2 ? "#B8D4FF" : "#F08A00");

As shown here, the expression method accepts a JavaScript expression. The CSS
property is set to the result of evaluating the JavaScript expression.

The expression method is simply ignored by other browsers, so it is a useful tool for
setting properties in Internet Explorer to create a consistent experience across brows-
ers. For example, Internet Explorer does not support the min-width property. CSS
expressions are one way to solve this problem. The following example ensures that a
page width is always at least 600 pixels, using an expression that Internet Explorer
respects and a static setting honored by other browsers:

width: expression(document.body.clientWidth < 600 ? "600px" : "auto");
min-width: 600px;

Most browsers ignore the width property here because they don’t support CSS expres-
sions and instead use the min-width property. Internet Explorer ignores the min-width
property and instead sets the width property dynamically based on the width of the
document. CSS expressions are re-evaluated when the page changes, such as when it
is resized. This ensures that as the user resizes his browser, the width is adjusted
appropriately. The frequency with which CSS expressions are evaluated is what
makes them work, but it is also what makes CSS expressions bad for performance.

52 | Chapter 7: Rule 7: Avoid CSS Expressions

Updating Expressions
The problem with expressions is that they are evaluated more frequently than most
people expect. Not only are they evaluated whenever the page is rendered and
resized, but also when the page is scrolled and even when the user moves the mouse
over the page. Adding a counter to the CSS expression allows us to keep track of
when and how often a CSS expression is evaluated.

Expression Counter
http://stevesouders.com/hpws/expression-counter.php

The CSS expression counter example has the following CSS rule:

P {
 width: expression(setCntr(), document.body.clientWidth<600 ? "600px" : "auto");
 min-width: 600px;
 border: 1px solid;
}

The setCntr() function increments a global variable and writes the value in the text
field in the page. There are 10 paragraphs in the page. Loading the page executes the
CSS expression 40 times. Subsequent to that, the CSS expression is evaluated 10
times for various events including resize, scrolling, and mouse movements. Moving
the mouse around the page can easily generate more than 10,000 evaluations. The
danger of CSS expressions is evident in this example. Worst of all, clicking in the text
input field locks up Internet Explorer, and you have to kill the process.

Working Around the Problem
Most CSS experts are familiar with CSS expressions and how to avoid the pitfalls
highlighted by the previous example. Two techniques for avoiding problems created
by CSS expressions are creating one-time expressions and using event handlers
instead of CSS expressions.

One-Time Expressions
If the CSS expression has to be evaluated only once, it can overwrite itself as part of
its execution. The background style defined at the beginning of this chapter is a good
candidate for this approach:

<style>
P {
 background-color: expression(altBgcolor(this));
}
</style>

<script type="text/javascript">

http://stevesouders.com/hpws/expression-counter.php

Working Around the Problem | 53

function altBgcolor(elem) {
 elem.style.backgroundColor = (new Date()).getHours()%2 ? "#F08A00" : "#B8D4FF";
}
</script>

The CSS expression calls the altBgcolor() function, which sets the style’s
background-color property to an explicit value, and this replaces the CSS expression.
This style is associated with the 10 paragraphs in the page. Even after resizing, scroll-
ing, and moving the mouse around the page, the CSS expression is evaluated only 10
times, much better than the tens of thousands in the previous example.

One-Time Expressions
http://stevesouders.com/hpws/onetime-expressions.php

Event Handlers
In most situations where I’ve seen CSS expressions used, it was possible to find an
alternative that didn’t require them. CSS expressions benefit from being automati-
cally tied to events in the browser, but that’s also their downfall. Instead of using
CSS expressions, the frontend engineer can do the “heavy lifting” by tying the
desired dynamic behavior to the appropriate event using event handlers. This avoids
the evaluation of the expression during unrelated events. The event handler example
demonstrates a fix to the min-width problem by setting the style’s width property
with the onresize event, avoiding tens of thousands of unnecessary evaluations
during mouse movements, scrolling, etc.

Event Handler
http://stevesouders.com/hpws/event-handler.php

This example uses the setMinWidth() function to resize all paragraph elements when
the browser is resized:

function setMinWidth() {
 setCntr();
 var aElements = document.getElementsByTagName("p");
 for (var i = 0; i < aElements.length; i++) {
 aElements[i].runtimeStyle.width = (document.body.clientWidth<600 ?
"600px" : "auto");
 }
}

if (-1 != navigator.userAgent.indexOf("MSIE")) {
 window.onresize = setMinWidth;
}

This sets the width dynamically when the browser is resized, but it does not size the
paragraph appropriately when it is first rendered. Therefore, the page also uses the
approach shown in the “One-Time Expressions” section to set the initial width using
CSS expressions, while overwriting the CSS expression after its first evaluation.

http://stevesouders.com/hpws/onetime-expressions.php
http://stevesouders.com/hpws/event-handler.php

54 | Chapter 7: Rule 7: Avoid CSS Expressions

Conclusion
This is one of the few rules that addresses performance of the page after it has been
loaded, which is generally when CSS expressions cause problems. However, in some
cases, CSS expressions can affect the load time of a page, too. One property at
Yahoo! had a CSS expression that caused a 20-second delay during the initial render-
ing of the page. This result was unexpected and took a while to diagnose. Similarly,
who would have thought the CSS expression used in the “Expression Counter”
example would cause Internet Explorer to lock up if the user clicked in a text field? A
full discussion of complicated CSS incompatibilities, such as min-width and location:
fixed, is beyond the scope of this book, and that’s the point—using CSS expressions
without a deep understanding of the underlying implications is dangerous.

Avoid CSS expressions.

55

Chapter 8 CHAPTER 8

Rule 8: Make JavaScript and CSS External8

Many of the performance rules in this book deal with how external components are
managed, such as serving them via a CDN (Rule 2), making sure they have a far
future Expires header (Rule 3), and compressing their contents (Rule 4). However,
before these considerations arise, you should ask a more basic question: should Java-
Script and CSS be contained in external files or inlined in the page itself? As we’ll see,
using external files is generally better.

Inline vs. External
Let’s first start with the tradeoffs in placing JavaScript and CSS inline versus using
external files.

In Raw Terms, Inline Is Faster
I have generated two examples that demonstrate how inlining JavaScript and CSS
results in faster response times than making them external files.

Inlined JS and CSS
http://stevesouders.com/hpws/inlined.php

External JS and CSS
http://stevesouders.com/hpws/external.php

The inline example involves one HTML document that is 87K, with all of the Java-
Script and CSS in the page itself. The external example contains an HTML docu-
ment (7K), one stylesheet (59K), and three scripts (1K, 11K, and 9K) for a total of
87K. Although the total amount of data downloaded is the same, the inline example
is 30–50% faster than the external example. This is primarily because the external
example suffers from the overhead of multiple HTTP requests (see Chapter 1 about
the importance of minimizing HTTP requests). The external example even benefits
from the stylesheet and scripts being downloaded in parallel, but the difference of
one HTTP request compared to five is what makes the inline example faster.

http://stevesouders.com/hpws/inlined.php
http://stevesouders.com/hpws/external.php

56 | Chapter 8: Rule 8: Make JavaScript and CSS External

Despite these results, using external files in the real world generally produces faster
pages. This is due to a benefit of external files that is not captured by these exam-
ples: the opportunity for the JavaScript and CSS files to be cached by the browser.
HTML documents, at least those that contain dynamic content, are typically not
configured to be cached. When this is the case (when the HTML documents are not
cached), the inline JavaScript and CSS is downloaded every time the HTML docu-
ment is requested. On the other hand, if the JavaScript and CSS are in external files
cached by the browser, the size of the HTML document is reduced without increas-
ing the number of HTTP requests.

The key factor, then, is the frequency with which external JavaScript and CSS com-
ponents are cached relative to the number of HTML documents requested. This
factor, although difficult to quantify, can be gauged using the following metrics.

Page Views
The fewer page views per user, the stronger the argument for inlining JavaScript and
CSS. Imagine that a typical user visits your site once per month. Between visits, it’s
likely that any external JavaScript and CSS files have been purged from the browser’s
cache, even if the components have a far future Expires header (see Chapter 3 for
more information about using a far future Expires header).

On the other hand, if a typical user has many page views, the browser is more likely
to have external components (with a far future Expires header) in its cache. The ben-
efit of serving JavaScript and CSS using external files grows along with the number of
page views per user per month or page views per user per session.

Empty Cache vs. Primed Cache
Knowing the potential for users to cache external components is critical to compar-
ing inlining versus external files. We measured this at Yahoo! and found that the
number of unique users coming in at least once a day with a primed cache ranges
from 40–60% depending on the Yahoo! property.* The same study revealed that the
number of page views with a primed cache is 75–85%. Note that the first statistic
measures “unique users” while the second measures “page views.” The percentage of
page views with a primed cache is higher than the percentage of unique users with a
primed cache because many users perform multiple page views per session. Users
may show up once during the day with an empty cache, but make several subse-
quent page views with a primed cache. See more information about this research in
Chapter 3.

* Tenni Theurer, “Performance Research, Part 2: Browser Cache Usage – Exposed!”, http://yuiblog.com/blog/
2007/01/04/performance-research-part-2/.

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

Inline vs. External | 57

These metrics vary depending on the type of web site. Knowing these statistics helps
in estimating the potential benefit of using external files versus inlining. If the nature
of your site results in higher primed cache rates for your users, the benefit of using
external files is greater. If a primed cache is less likely, inlining becomes a better
choice.

Component Reuse
If every page on your site uses the same JavaScript and CSS, using external files will
result in a high reuse rate for these components. Using external files becomes more
advantageous in this situation because the JavaScript and CSS components are
already in the browser’s cache while users navigate across pages.

The opposite end of the spectrum is also easy to comprehend—if no two pages share
the same JavaScript and CSS, the reuse rate will be low. The difficulty is that most
web sites aren’t this black and white. This raises a separate but related issue: where
do you draw the boundaries when packaging JavaScript and CSS into external files?

The debate starts with the premise that fewer files are better (see Chapter 1 for a
more detailed analysis). In a typical situation, the reuse of JavaScript and CSS across
pages is neither 100% overlapping nor 100% disjointed. In this middle-case sce-
nario, one extreme is to make a separate set of external files for each page. The
downside of this approach is that every page subjects the user to another set of exter-
nal components and resulting HTTP requests that slow down response times. This
alternative makes the most sense on sites where a typical user visits only one page
and there is little cross-page traffic.

The other extreme is to create a single file that is the union of all the JavaScript, and
create another single file for all of the CSS. This has the benefit of subjecting the user
to only one HTTP request, but it increases the amount of data downloaded on a
user’s first page view. In this case, users will be downloading more JavaScript and
CSS than is necessary for the page currently being viewed. Also, this single file must
be updated whenever any of the individual scripts or stylesheets changes, invalidat-
ing the version currently cached by all users. This alternative makes the most sense
on sites with a high number of sessions per user per month, where the typical ses-
sion includes visits to multiple different pages.

If your site doesn’t fit nicely into one of these extremes, the best answer is a compro-
mise. Categorize your pages into a handful of page types and then create a single
script and stylesheet for each one. These are not as easy to maintain as a single file,
but are typically much easier to maintain than different scripts and stylesheets for
each page, and they result in less superfluous JavaScript and CSS being downloaded
for any given page.

Ultimately, your decision about the boundaries for JavaScript and CSS external files
affects the degree of component reuse. If you can find a balance that results in a high

58 | Chapter 8: Rule 8: Make JavaScript and CSS External

reuse rate, the argument is stronger for deploying your JavaScript and CSS as exter-
nal files. If the reuse rate is low, inlining might make more sense.

Typical Results in the Field
In analyzing the tradeoffs between inlining versus using external files, the key is the
frequency with which external JavaScript and CSS components are cached relative to
the number of HTML documents requested. In the previous section, I described
three metrics (page views, empty cache vs. primed cache, and component reuse) that
can help you determine the best option. The right answer for any specific web site
depends on these metrics.

Many web sites fall in the middle of these metrics. They get 5–15 page views per user
per month, with 2–5 page views per user per session. Empty cache visits are in the
same range as Yahoo!: 40–60% of unique users per day have a primed cache, and
75–85% of page views per day are performed with a primed cache. There’s a fair
amount of JavaScript and CSS reuse across pages, resulting in a handful of files that
cover every major page type.

For sites that have these metrics, the best solution is generally to deploy the Java-
Script and CSS as external files. This is demonstrated by the example where the
external components can be cached by the browser. Loading this page repeatedly
and comparing the results to those of the first example, “Inlined JS and CSS,” shows
that using external files with a far future Expires header is the fastest approach.

Cacheable External JS and CSS
http://stevesouders.com/hpws/external-cacheable.php

Home Pages
The only exception I’ve seen where inlining is preferable is with home pages. A home
page is the URL chosen as the browser’s default page, such as Yahoo! home page
(http://www.yahoo.com) and My Yahoo! (http://my.yahoo.com). Let’s look at the
three metrics from the perspective of home pages:

Page views
Home pages have a high number of page views per month. By definition, when-
ever the browser is opened, the home page is visited. However, there is often
only one page view per session.

Empty cache vs. primed cache
The primed cache percentage might be lower than other sites. For security rea-
sons, many users elect to clear the cache every time they close the browser. The
next time they open the browser it generates an empty cache page view of the
home page.

http://stevesouders.com/hpws/external-cacheable.php
http://www.yahoo.com
http://my.yahoo.com

The Best of Both Worlds | 59

Component reuse
The reuse rate is low. Many home pages are the only page a user visits on the
site, so there is really no reuse.

Analyzing these metrics, there’s an inclination toward inlining over using external
files. Home pages have one more factor that tips the scale toward inlining: they have
a high demand for responsiveness, even in the empty cache scenario. If a company
decides to launch a campaign encouraging users to set their home pages to the com-
pany’s site, the last thing they want is a slow home page. For the company’s home
page campaign to succeed, the page must be fast.

There’s no single answer that applies to all home pages. The factors highlighted here
must be evaluated for the home page in question. If inlining is the right answer, you’ll
find helpful information in the next section, which describes two techniques that
have the benefit of inlining while taking advantage of external files (when possible).

The Best of Both Worlds
Even if all the factors point to inlining, it still feels inefficient to add all that Java-
Script and CSS to the page and not take advantage of the browser’s cache. Two tech-
niques are described here that allow you to gain the benefits of inlining, as well as
caching external files.

Post-Onload Download
Some home pages, like Yahoo! home page and My Yahoo!, typically have only one
page view per session. However, that’s not the case for all home pages. Yahoo! Mail
is a good example of a home page that often leads to secondary page views (pages
that are accessed after the initial page, such as those for viewing or composing email
messages).

For home pages that are the first of many page views, we want to inline the Java-
Script and CSS for the home page, but leverage external files for all secondary page
views. This is accomplished by dynamically downloading the external components in
the home page after it has completely loaded (via the onload event). This places the
external files in the browser’s cache in anticipation of the user continuing on to other
pages.

Post-Onload Download
http://stevesouders.com/hpws/post-onload.php

The post-onload download JavaScript code associates the doOnload function with the
document’s onload event. After a one-second delay (to make sure the page is com-
pletely rendered), the appropriate JavaScript and CSS files are downloaded. This is
done by creating the appropriate DOM elements (script and link, respectively) and
assigning the specific URL:

http://stevesouders.com/hpws/post-onload.php

60 | Chapter 8: Rule 8: Make JavaScript and CSS External

<script type="text/javascript">
function doOnload() {
 setTimeout("downloadComponents()", 1000);
}

window.onload = doOnload;

// Download external components dynamically using JavaScript.
function downloadComponents() {
 downloadJS("http://stevesouders.com/hpws/testsma.js");
 downloadCSS("http://stevesouders.com/hpws/testsm.css");
}

// Download a script dynamically.
function downloadJS(url) {
 var elem = document.createElement("script");
 elem.src = url;
 document.body.appendChild(elem);
}

// Download a stylesheet dynamically.
function downloadCSS(url) {
 var elem = document.createElement("link");
 elem.rel = "stylesheet";
 elem.type = "text/css";
 elem.href = url;
 document.body.appendChild(elem);
}
</script>

In these pages, the JavaScript and CSS are loaded twice into the page (inline then
external). To work, your code has to deal with double definition. Scripts, for exam-
ple, can define but can’t execute any functions (at least none that the user notices).
CSS that uses relative metrics (percentages or em) may be problematic if applied
twice. Inserting these components into an invisible IFrame is a more advanced
approach that avoids these problems.

Dynamic Inlining
If a home page server knew whether a component was in the browser’s cache, it
could make the optimal decision about whether to inline or use external files.
Although there is no way for a server to see what’s in the browser’s cache, cookies
can be used as an indicator. By returning a session-based cookie with the compo-
nent, the home page server can make a decision about inlining based on the absence
or presence of the cookie. If the cookie is absent, the JavaScript or CSS is inlined. If
the cookie is present, it’s likely the external component is in the browser’s cache and
external files are used. The “Dynamic Inlining” example demonstrates this technique.

The Best of Both Worlds | 61

Dynamic Inlining
http://stevesouders.com/hpws/dynamic-inlining.php

Since every user starts off without the cookie, there has to be a way to bootstrap the
process. This is accomplished by using the post-onload download technique from
the previous example. The first time a user visits the page, the server sees that the
cookie is absent and it generates a page that inlines the components. The server then
adds JavaScript to dynamically download the external files (and set a cookie) after
the page has loaded. The next time the page is visited, the server sees the cookie and
generates a page that uses external files.

The PHP code that handles the dynamic behavior is shown below:

<?php
if ($_COOKIE["CA"]) {
 // If the cookie is present, it's likely the component is cached.
 // Use external files since they'll just be read from disk.
 echo <<<OUTPUT
<link rel="stylesheet" href="testsm.css" type="text/css">
<script src="testsma.js" type="text/javascript"></script>
OUTPUT;
}
else {
 // If the cookie is NOT present, it's likely the component is NOT cached.
 // Inline all the components and trigger a post-onload download of the files.
 echo "<style>\n" . file_get_contents("testsm.css") . "</style>\n";
 echo "<script type=\"text/javascript\">\n" . file_get_contents("testsma.js") .
"</script>\n";
 // Output the Post-Onload Download JavaScript code here.
 echo <<<ONLOAD
<script type="text/javascript">
function doOnload() {
 setTimeout("downloadComponents()", 1000);
}

window.onload = doOnload;

// Download external components dynamically using JavaScript.
function downloadComponents() {
 document.cookie = "CA=1";
[snip...]
ONLOAD;
}
?>

I didn’t show all of the post-onload download JavaScript code (as indicated by
“[snip…]”) since that was included earlier in the “Post-Onload Download” section.
However, I did show just enough to illustrate how the CA cookie is set in the
downloadComponents function. This is the only change, but it’s key to leveraging the
cache on subsequent page views.

http://stevesouders.com/hpws/dynamic-inlining.php

62 | Chapter 8: Rule 8: Make JavaScript and CSS External

The beauty of this approach is how forgiving it is. If there’s a mismatch between the
state of the cookie and the state of the cache, the page still works. It’s not as opti-
mized as it could be. The session-based cookie technique errs on the side of inlining
even though the components are in the browser’s cache—if the user reopens the
browser, the session-based cookie is absent but the components may still be cached.
Changing the cookie from session-based to short-lived (hours or days) addresses this
issue, but moves toward erring on the side of using external files when they’re not
truly in the browser’s cache. Either way, the page still works, and across all users
there is an improvement in response times by more intelligently choosing between
inlining versus using external files.

Put your JavaScript and CSS in external files.

63

Chapter 9 CHAPTER 9

Rule 9: Reduce DNS Lookups9

The Internet is based on finding servers through IP addresses. Because IP addresses
are hard to remember, URLs typically contain hostnames instead, but the IP address
is still necessary for the browser to make its request. That’s the role of the Domain
Name System (DNS). DNS maps hostnames to IP addresses, just as phonebooks
map people’s names to their phone numbers. When you type www.yahoo.com into
your browser, a DNS resolver is contacted by the browser and returns that server’s IP
address.

This explanation highlights another benefit of DNS—a layer of indirection between
URLs and the actual servers that host them. If a server is replaced with one that has a
different IP address, DNS allows users to use the same hostname to connect to the
new server. Or, as is the case with www.yahoo.com, multiple IP addresses can be
associated with a hostname, providing a high degree of redundancy for a web site.

However, DNS has a cost. It typically takes 20–120 milliseconds for the browser to
look up the IP address for a given hostname. The browser can’t download anything
from this hostname until the DNS lookup is completed. The response time depends
on the DNS resolver (typically provided by your ISP), the load of requests on it, your
proximity to it, and your bandwidth speed. After reviewing how DNS works from
the browser’s perspective, I’ll describe what you can do to reduce the amount of time
your pages spend doing DNS lookups.

DNS Caching and TTLs
DNS lookups are cached for better performance. This caching can occur on a special
caching server maintained by the user’s ISP or local area network, but here we’ll
explore DNS caching on the individual user’s computer. As shown in Figure 9-1,
after a user requests a hostname, the DNS information remains in the operating sys-
tem’s DNS cache (the “DNS Client service” on Microsoft Windows), and further
requests for that hostname don’t require more DNS lookups, at least not for a while.

http://www.yahoo.com
http://www.yahoo.com

64 | Chapter 9: Rule 9: Reduce DNS Lookups

Simple enough? Hold on a minute—most browsers have their own caches, separate
from the operating system’s cache. As long as the browser keeps a DNS record in its
own cache, it doesn’t bother the operating system with a request for the record. Only
after the browser’s cache discards the record does it ask the operating system for the
address—and then the operating system either satisfies the request out of its cache or
sends a request to a remote server, which is where potential slowdowns occur.

To make things yet more complicated, designers realize that IP addresses change and
that caches consume memory. Therefore, the DNS records have to be periodically
flushed from the cache, and several different configuration settings determine how
often they are discarded.

Factors Affecting DNS Caching
First, the server has a say in how long records should be cached. The DNS record
returned from a lookup contains a time-to-live (TTL) value. This tells the client how
long the record can be cached.

Although operating system caches respect the TTL, browsers often ignore it and set
their own time limits. Furthermore, the Keep-Alive feature of the HTTP protocol,
discussed in Chapter B, can override both the TTL and the browser’s time limit. In
other words, as long as the browser and the web server are happily communicating
and keeping their TCP connection open, there’s no reason for a DNS lookup.

Browsers put a limit on the number of DNS records cached, regardless of the time the
records have been in the cache. If the user visits many different sites with different

Figure 9-1. DNS caching from the browser’s perspective

User’s computer

Browser

DNS client
service

DNS DNS

User’s ISP

DNS
resolver

DNS

Wider domain
name system

DNS Caching and TTLs | 65

domain names in a short period of time, earlier DNS records are discarded and the
domain must be looked up again.

Remember, however, that if the browser discards a DNS record, the operating sys-
tem cache might still have it, and that saves the day because no query has to be sent
over the network, thereby avoiding what could be noticeable delays.

TTL Values
The maximum TTL values sent to clients for 10 top U.S. web sites range from one
minute to one hour, as shown in Table 9-1.

Why do these values vary so much? It’s probably a mixture of intentional and histori-
cal factors. An interesting RFC* provides more details about the format of DNS
records and common mistakes made when configuring them. Its first suggestion is to
avoid making the TTL values too short, with a recommended value of one day!

These top web sites, given their large numbers of users, strive to have DNS resolvers
quickly failover when a server, virtual IP address (VIP), or co-location goes offline.
That’s the reason for Yahoo!’s short TTL. MySpace, on the other hand, is located in
one co-location facility. Failover is less critical given their current network topology,
so a longer TTL is chosen because it reduces the number of DNS lookups, which in
turn reduces the load on their name servers.

Making DNS configuration recommendations is beyond the scope of this book.
What is most relevant, however, is how DNS caching affects the performance of web
pages. Let’s view DNS caching from the browser’s perspective to determine how
many DNS lookups your web pages cause.

Table 9-1. TTL values

Domain TTL

http://www.amazon.com 1 minute

http://www.aol.com 1 minute

http://www.cnn.com 10 minutes

http://www.ebay.com 1 hour

http://www.google.com 5 minutes

http://www.msn.com 5 minutes

http://www.myspace.com 1 hour

http://www.wikipedia.org 1 hour

http://www.yahoo.com 1 minute

http://www.youtube.com 5 minutes

* “Common DNS Data File Configuration Errors,” http://tools.ietf.org/html/rfc1537.

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.ebay.com
http://www.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://tools.ietf.org/html/rfc1537

66 | Chapter 9: Rule 9: Reduce DNS Lookups

The average TTL value received by the client for a DNS record is half of the maxi-
mum TTL value. That’s because the DNS resolver itself has a TTL associated with its
DNS record. When the browser does a DNS lookup, the DNS resolver returns the
amount of time remaining in the TTL for its record. If the maximum TTL is 5 min-
utes, the TTL returned by the DNS resolver ranges from 1 to 300 seconds, with an
average value of 150 seconds. The TTL received for a given hostname varies each
time the DNS lookup is performed.

The Browser’s Perspective
As discussed earlier in the “Factors Affecting DNS Caching” section, a lot of inde-
pendent variables determine whether a particular browser request for a hostname
makes a remote DNS request. There is a DNS specification (http://tools.ietf.org/html/
rfc1034), but it gives clients flexibility in how the DNS cache works. I’ll focus on
Internet Explorer and Firefox on Microsoft Windows, since they are the most popu-
lar platforms.

The DNS cache on Microsoft Windows is managed by the DNS Client service. You
can view and flush the DNS Client service using the ipconfig command:

ipconfig /displaydns
ipconfig /flushdns

Rebooting also clears the DNS Client service cache. In addition to the DNS Client
service, Internet Explorer and Firefox browsers have their own DNS caches. Restart-
ing the browser clears the browser cache, but not the DNS Client service cache.

Internet Explorer
Internet Explorer’s DNS cache is controlled by three registry settings:
DnsCacheTimeout, KeepAliveTimeout, and ServerInfoTimeOut, which can be created in
the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\InternetSettings\

There are two Microsoft Support articles describing how these settings affect the
DNS cache.* These articles report the following default values for these settings:

• DnsCacheTimeout: 30 minutes

• KeepAliveTimeout: 1 minute

• ServerInfoTimeOut: 2 minutes

* “How Internet Explorer uses the cache for DNS host entries,” http://support.microsoft.com/default.
aspx?scid=KB;en-us;263558.

“How to change the default keep-alive time-out value in Internet Explorer,” http://support.microsoft.com/kb/
813827.

http://support.microsoft.com/default.aspx?scid=KB;en-us;263558
http://support.microsoft.com/default.aspx?scid=KB;en-us;263558
http://support.microsoft.com/kb/813827
http://support.microsoft.com/kb/813827
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1034

The Browser’s Perspective | 67

What’s implied (but not explained very well) is that DNS server TTL values less than
30 minutes have little effect on how frequently the browser does DNS lookups. Once
the browser caches a DNS record, it is used for 30 minutes. If there is an error, the
DNS lookup is refreshed sooner than that; under normal conditions, a short (under
30 minutes) TTL value won’t increase the number of DNS lookups made in Internet
Explorer.

The role that Keep-Alive plays is also important. By default, a persistent TCP connec-
tion is used until it has been idle for one minute. Because the connection persists, a
DNS lookup is not required (the benefits of Keep-Alive are discussed in Chapter B).
This is an additional benefit—Keep-Alive avoids repeated DNS lookups by reusing
the existing connection.

The ServerInfoTimeOut value of two minutes says that even without Keep-Alive, if a
hostname is reused every two minutes without failure, a DNS lookup is not required.
In tests using Internet Explorer, if a hostname is reused at least every two minutes,
no DNS lookups are done even beyond 30 minutes (assuming there are no failures
reaching that IP address).

This is important information for network operations centers when trying to divert
traffic by making DNS changes. If the IP addresses that the traffic is being diverted
from are left running, it will take at least 30 minutes for Internet Explorer users with
the old DNS record to get the DNS update. Users actively hitting the site (at least
once every two minutes) will keep going to the old IP address and never get the DNS
update until a failure occurs.

Firefox
Firefox is quite a bit simpler to figure out. It has the following configuration settings:

• network.dnsCacheExpiration: 1 minute

• network.dnsCacheEntries: 20

• network.http.keep-alive.timeout: 5 minutes

DNS records are cached for one minute beyond their TTLs. Because of this low
value, setting your TTLs low (less than an hour) is likely to increase the number of
DNS lookups required by your pages in Firefox.

Surprisingly, only 20 records are cached in Firefox by default. This means that users
who visit a lot of sites in different domains will be slowed down by DNS lookups
more than Internet Explorer users with the same behavior.

Firefox’s Keep-Alive timeout is higher than Internet Explorer’s: five minutes versus
one minute. Making sure your servers support Keep-Alive reduces the number of
DNS lookups required by users navigating your web site.

68 | Chapter 9: Rule 9: Reduce DNS Lookups

Fasterfox (http://fasterfox.mozdev.org) is a well-known Firefox add-on for measuring
and improving Firefox performance. As a point of comparison, Fasterfox changes
these DNS settings to have the following values:

• network.dnsCacheExpiration: 1 hour

• network.dnsCacheEntries: 512

• network.http.keep-alive.timeout: 30 seconds

Reducing DNS Lookups
When the client’s DNS cache is empty (for both the browser and the operating sys-
tem), the number of DNS lookups is equal to the number of unique hostnames in the
web page. This includes the hostnames used in the page’s URL, images, script files,
stylesheets, Flash objects, etc. Reducing the number of unique hostnames reduces
the number of DNS lookups. Google (http://www.google.com) is the preeminent
example of this, with only one DNS lookup necessary for the page.

Reducing the number of unique hostnames has the potential to reduce the amount of
parallel downloading that takes place in the page. Avoiding DNS lookups cuts
response times, but reducing parallel downloads may increase response times. As
described in Chapter 6 in the section “Parallel Downloads,” some amount of parallel-
ization is good, even if it increases the number of hostnames. In the case of Google.
com, there are only two components in the page. Because components are down-
loaded two per hostname in parallel, using one hostname minimizes the number of
possible DNS lookups while maximizing parallel downloads.

Most pages today have a dozen or more components—not nearly as lean as Google.
My guideline is to split these components across at least two but no more than four
hostnames. This results in a good compromise between reducing DNS lookups and
allowing a high degree of parallel downloads.

The advantage of using Keep-Alive, described in Chapter B, is that it reuses an exist-
ing connection, thereby improving response times by avoiding TCP/IP overhead. As
described here, making sure your servers support Keep-Alive also reduces DNS look-
ups, especially for Firefox users.

Reduce DNS lookups by using Keep-Alive and fewer domains.

http://fasterfox.mozdev.org
http://www.google.com

69

Chapter 10 CHAPTER 10

Rule 10: Minify JavaScript10

JavaScript, being an interpreted language, is great for building web pages. Inter-
preted languages excel when developing user interfaces where rapid prototyping is
the norm. Without a compilation step, though, the responsibility falls on the front-
end engineer to optimize the JavaScript before final deployment. One aspect of this,
gzipping, is discussed in Chapter 4. In this chapter, I describe another step that
should be integrated into the JavaScript deployment process: minification.

Minification
Minification is the practice of removing unnecessary characters from code to reduce
its size, thereby improving load times. When code is minified, all comments are
removed, as well as unneeded whitespace characters (space, newline, and tab). In the
case of JavaScript, this improves response time performance because the size of the
downloaded file is reduced.

Table 10-1 shows how many of the 10 top U.S. web sites practice JavaScript minifi-
cation—4 out of 10 minify their JavaScript code.

Table 10-1. Minification practices across 10 top web sites

Web site External scripts minified?

http://www.amazon.com/ No

http://www.aol.com/ No

http://www.cnn.com/ No

http://www.ebay.com/ Yes

http://froogle.google.com/ Yes

http://www.msn.com/ Yes

http://www.myspace.com/ No

http://www.wikipedia.org/ No

http://www.yahoo.com/ Yes

http://www.youtube.com/ No

http://www.amazon.com/
http://www.aol.com/
http://www.cnn.com/
http://www.ebay.com
http://froogle.google.com/
http://www.msn.com/
http://www.myspace.com/
http://www.wikipedia.org/
http://www.yahoo.com/
http://www.youtube.com/

70 | Chapter 10: Rule 10: Minify JavaScript

Let’s look at what the others could have saved if they had minified. But first, I need
to mention a more aggressive alternative to minification: obfuscation.

Obfuscation
Obfuscation is an alternative optimization that can be applied to source code. Like
minification, it removes comments and whitespace, but it also munges the code. As
part of munging, function and variable names are converted into smaller strings mak-
ing the code more compact, as well as harder to read. This is typically done to make
it more difficult to reverse-engineer the code, but munging can help performance
because it reduces the code size beyond what is achieved by minification.

Assuming that thwarting reverse-engineering is not your objective, the question
arises about whether to minify or obfuscate. Minification is a safe, fairly straightfor-
ward process. Obfuscation, on the other hand, is more complex. There are three
main drawbacks to obfuscating your JavaScript code:

Bugs
Because obfuscation is more complex, there’s a higher probability of introduc-
ing errors into the code as a result of the obfuscation process itself.

Maintenance
Since obfuscators change JavaScript symbols, any symbols that should not be
changed (for example, API functions) have to be tagged so that the obfuscator
leaves them unaltered.

Debugging
Obfuscated code is more difficult to read. This makes debugging problems in
your production environment more difficult.

Although I’ve never seen problems introduced from minification, I have seen bugs
caused by obfuscation. Given the large amount of JavaScript maintained at Yahoo!,
my guidelines recommend minification over obfuscation. The ultimate decision has
to consider the additional size reductions achieved from obfuscation. In the next
section, we’ll do some real minifying and obfuscating.

The Savings
The most popular tool for minifying JavaScript code is JSMin (http://crockford.com/
javascript/jsmin), developed by Douglas Crockford, a fellow Yahoo!. The JSMin
source code is available in C, C#, Java, JavaScript, Perl, PHP, Python, and Ruby. The
tool of choice is less clear in the area of JavaScript obfuscation. Dojo Compressor
(renamed ShrinkSafe and moved to http://dojotoolkit.org/docs/shrinksafe) is the one
I’ve seen used the most. For the purposes of our comparison, I used these two tools.

http://crockford.com/javascript/jsmin
http://crockford.com/javascript/jsmin
http://dojotoolkit.org/docs/shrinksafe

The Savings | 71

As a demonstration, let’s use these tools on event.js from the Yahoo! User Interface
(YUI) library (http://developer.yahoo.com/yui). The source code for the first function
follows:

YAHOO.util.CustomEvent = function(type, oScope, silent, signature) {
 this.type = type;
 this.scope = oScope || window;
 this.silent = silent;
 this.signature = signature || YAHOO.util.CustomEvent.LIST;
 this.subscribers = [];

 if (!this.silent) {
 }

 var onsubscribeType = "_YUICEOnSubscribe";
 if (type !== onsubscribeType) {
 this.subscribeEvent =
 new YAHOO.util.CustomEvent(onsubscribeType, this, true);

 }
};

The same function passed through JSMin has all unneeded whitespace removed:

YAHOO.util.CustomEvent=function(type,oScope,silent,signature){this.type=type;this.
scope=oScope||window;this.silent=silent;this.signature=signature||YAHOO.util.
CustomEvent.LIST;this.subscribers=[];if(!this.silent){}
var onsubscribeType="_YUICEOnSubscribe";if(type!==onsubscribeType){this.subscribeEv
ent=new YAHOO.util.CustomEvent(onsubscribeType,this,true);}};

Dojo Compressor removes most whitespace, but additionally shortens variable names.
Notice how _1 has replaced type as the first parameter to the CustomEvent function:

YAHOO.util.CustomEvent=function(_1,_2,_3,_4){
this.type=_1;
this.scope=_2||window;
this.silent=_3;
this.signature=_4||YAHOO.util.CustomEvent.LIST;
this.subscribers=[];
if(!this.silent){
}
var _5="_YUICEOnSubscribe";
if(_1!==_5){
this.subscribeEvent=new YAHOO.util.CustomEvent(_5,this,true);
}
};

Table 10-2 shows some potential savings for the six companies who didn’t minify
their JavaScript files. I downloaded the JavaScript files used on each site’s home
page. The table shows the original size of each site’s JavaScript files, as well as the
size reductions gained by running them through JSMin and Dojo Compressor. On
average, JSMin reduced the size of JavaScript files by 21%, while Dojo Compressor
achieved a 25% reduction.

http://developer.yahoo.com/yui

72 | Chapter 10: Rule 10: Minify JavaScript

At what point do the additional savings from obfuscation justify the additional risks?
Looking at these six examples, I would argue that all of them should simply minify
their JavaScript code, thus avoiding the possible problems that obfuscation can
cause. The one exception is Amazon, where an additional 17K (9%) would be saved
by using obfuscation. A select few properties at Yahoo!, with large JavaScript pay-
loads (>100K) obfuscate their JavaScript code. As we’ll see below, the delta between
minification and obfuscation decreases when combined with gzip compression.

Examples
To demonstrate the benefits of minification and obfuscation, I have generated two
scripts of different sizes: a small script (50K) and a large script (377K). The small
script drops to 13K after minification and 12K after obfuscation. The large script is
reduced to 129K after minification and 123K after obfuscation. Testing both files
under these three states results in the following six examples.

Small Script Normal
http://stevesouders.com/hpws/js-small-normal.php

Small Script Minified
http://stevesouders.com/hpws/js-small-minify.php

Small Script Obfuscated
http://stevesouders.com/hpws/js-small-obfuscate.php

Large Script Normal
http://stevesouders.com/hpws/js-large-normal.php

Large Script Minified
http://stevesouders.com/hpws/js-large-minify.php

Large Script Obfuscated
http://stevesouders.com/hpws/js-large-obfuscate.php

Table 10-2. Size reductions from using JSMin and Dojo Compressor

Web site Original size JSMin savings Dojo Compressor savings

http://www.amazon.com/ 204K 31K (15%) 48K (24%)

http://www.aol.com/ 44K 4K (10%) 4K (10%)

http://www.cnn.com/ 98K 19K (20%) 24K (25%)

http://www.myspace.com/ 88K 23K (27%) 24K (28%)

http://www.wikipedia.org/ 42K 14K (34%) 16K (38%)

http://www.youtube.com/ 34K 8K (22%) 10K (29%)

Average 85K 17K (21%) 21K (25%)

http://www.amazon.com/
http://www.aol.com/
http://www.cnn.com/
http://www.myspace.com/
http://www.wikipedia.org/
http://www.youtube.com/
http://stevesouders.com/hpws/js-small-normal.php
http://stevesouders.com/hpws/js-small-minify.php
http://stevesouders.com/hpws/js-small-obfuscate.php
http://stevesouders.com/hpws/js-large-normal.php
http://stevesouders.com/hpws/js-large-minify.php
http://stevesouders.com/hpws/js-large-obfuscate.php

Icing on the Cake | 73

As shown in Table 10-3, minification and obfuscation perform about the same, but
are significantly faster than the normal case. For the small script, minification and
obfuscation are 100–110ms (17–19%) faster than the normal case. For the large
script, minification and obfuscation are 331–341ms (30–31%) faster than the normal
case.

As mentioned in the previous section, the difference between minification and obfus-
cation decreases when combined with gzip compression; this is demonstrated by
these examples. Minifying scripts reduces response times without carrying the risks
that come with obfuscation.

Icing on the Cake
There are a couple other ways to squeeze waste out of your JavaScript.

Inline Scripts
The discussion thus far has focused on external JavaScript files. Inline JavaScript
blocks should also be minified, though this practice is less evident on today’s web
sites. Table 10-4 shows that although 4 of the 10 top web sites minify their external
scripts, only 3 minify their inline scripts.

Table 10-3. Response times for minified and obfuscated scripts

Script size Normal Minified Obfuscated

Small (50K) 581 ms 481 ms 471 ms

Large (377K) 1092 ms 761 ms 751 ms

Table 10-4. Inline minification practices across 10 top web sites

Web site External scripts minified? Inline scripts minified?

http://www.amazon.com no no

http://www.aol.com no no

http://www.cnn.com no no

http://www.ebay.com yes no

http://froogle.google.com yes yes

http://www.msn.com yes yes

http://www.myspace.com no no

http://www.wikipedia.org no no

http://www.yahoo.com yes yes

http://www.youtube.com no no

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.ebay.com
froogle.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://stevesouders.com/hpws/js-large-obfuscate.php

74 | Chapter 10: Rule 10: Minify JavaScript

In practice, minifying inline scripts is easier than minifying external scripts. What-
ever page generation platform you use (PHP, Python, Perl CGI, etc.), there is proba-
bly a version of JSMin that can be integrated with it. Once the functionality is
available, all inlined JavaScript can be minified before being echoed to the HTML
document.

Gzip and Minification
Rule 4 stresses the importance of compressing content and recommends using gzip
to accomplish this, resulting in a typical size reduction of 70%. Gzip compression
decreases file sizes more than minification—that’s why it’s in Rule 4 and this is Rule
10. I’ve heard people question whether minification is even worthwhile if gzip com-
pression has already been enabled.

Table 10-5 is similar to Table 10-2, except the responses are gzipped. When gzipped,
the average size of the JavaScript payload drops from 85K (see Table 10-2) to 23K
(see Table 10-5), a reduction of 73%. It’s reassuring to see that the guidelines of Rule
4 hold true for these six web sites. Table 10-5 shows that minifying the files in addi-
tion to gzipping them reduces the payload by an average of 4K (20%) over gzip
alone. It’s interesting that obfuscation and gzip perform about the same as minifica-
tion and gzip, another reason to just stick with minification and avoid the additional
risks of obfuscation.

In summary, the main numbers to compare are:

• 85K: JavaScript size without JSMin and gzip compression

• 68K: JavaScript size with only JSMin (21% savings)

• 23K: JavaScript size with only gzip compression (73% savings)

• 19K: JavaScript size with JSMin and gzip compression (78% savings)

Table 10-5. Size reductions with JSMin and Dojo Compressor after gzip compression

Web site Original size after gzip JSMin savings after gzip
Dojo Compressor savings
after gzip

http://www.amazon.com 48K 7K (16%) 6K (13%)

http://www.aol.com 16K 1K (8%) 1K (8%)

http://www.cnn.com 29K 6K (19%) 6K (20%)

http://www.myspace.com 23K 4K (19%) 4K (19%)

http://www.wikipedia.org 13K 5K (37%) 5K (39%)

http://www.youtube.com 10K 2K (19%) 2K (20%)

Average 23K 4K (20%) 4K (20%)

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.youtube.com

Icing on the Cake | 75

Gzip compression has the biggest impact, but minification further reduces file sizes.
As the use and size of JavaScript increases, so will the savings gained by minifying
your JavaScript code.

Minifying CSS
The savings from minifying CSS are typically less than the savings from minifying
JavaScript because CSS generally has fewer comments and less whitespace than Java-
Script. The greatest potential for size savings comes from optimizing CSS—merging
identical classes, removing unused classes, etc. This is a complex problem, given the
order-dependent nature of CSS (the essence of why it’s called cascading). This area
warrants further research and tool development. The best solution might be one that
removes comments and whitespace, and does straightforward optimizations such as
using abbreviations (like “#606” instead of “#660066”) and removing unnecessary
strings (“0” instead of “0px”).

Minify your JavaScript source code.

76

Chapter 11CHAPTER 11

Rule 11: Avoid Redirects 11

A redirect is used to reroute users from one URL to another. There are different kinds
of redirects—301 and 302 are the most popular. Redirects are usually done for
HTML documents, but they may also be used when requesting components in the
page (images, scripts, etc.). There are different reasons for implementing redirects,
including web site redesign, tracking traffic flow, counting ad impressions, and creat-
ing URLs that are easier for users to remember. We’ll examine all of these aspects in
this chapter, but the main thing to remember is that redirects make your pages
slower.

Types of Redirects
When web servers return a redirect to the browser, the response has a status code in
the 3xx range. This indicates that further action is required of the user agent in order
to fulfill the request. There are several 3xx status codes:

• 300 Multiple Choices (based on Content-Type)

• 301 Moved Permanently

• 302 Moved Temporarily (a.k.a. Found)

• 303 See Other (clarification of 302)

• 304 Not Modified

• 305 Use Proxy

• 306 (no longer used)

• 307 Temporary Redirect (clarification of 302)

“304 Not Modified” is not really a redirect—it’s used in response to conditional GET
requests to avoid downloading data that is already cached by the browser, as
explained in Chapter B. Status code 306 is deprecated.

How Redirects Hurt Performance | 77

The 301 and 302 status codes are the ones used most often. Status codes 303 and
307 were added in the HTTP/1.1 specification to clarify the (mis)use of 302, but the
adoption of 303 and 307 is almost nonexistent, as most web sites continue to use
302. Here’s an example of the headers in a 301 response.

HTTP/1.1 301 Moved Permanently
Location: http://stevesouders.com/newuri
Content-Type: text/html

The browser automatically takes the user to the URL specified in the Location field.
All the information necessary for a redirect is in the headers. The body of the
response is typically empty. Despite their names, neither a 301 nor a 302 response is
cached in practice unless additional headers, such as Expires or Cache-Control, indi-
cate that it should be.

There are other ways to automatically redirect users to a different URL. The meta
refresh tag included in the head of an HTML document redirects the user after the
number of seconds specified in the content attribute:

<meta http-equiv="refresh" content="0; url=http://stevesouders.com/newuri">

JavaScript is also used to perform redirects by setting the document.location to the
desired URL. If you must do a redirect, the preferred technique is to use the stan-
dard 3xx HTTP status codes, primarily to ensure the Back button works correctly.
For more information about this, see the W3C web article “Use standard redirects:
don’t break the back button!” at http://www.w3.org/QA/Tips/reback.

How Redirects Hurt Performance
Figure 11-1 shows how redirects slow down the user experience. The first HTTP
request is the redirect. Nothing is displayed to the user until the redirect is com-
pleted and the HTML document is downloaded.

Figure 11-1. Redirects slow down web pages

redirect
html

script
stylesheet
stylesheet
stylesheet

image
image

http://www.w3.org/QA/Tips/reback

78 | Chapter 11: Rule 11: Avoid Redirects

In Chapter 5, I talk about the importance of downloading stylesheets quickly; other-
wise, the page is blocked from rendering. Similarly, Chapter 6 explains how external
scripts block the page from rendering and inhibit parallel downloads. The delays
caused by redirects are even worse because they delay the delivery of the entire
HTML document. Nothing in the page can be rendered and no components can be
downloaded until the HTML document has arrived. Inserting a redirect between the
user and the HTML document delays everything in the page.

Redirects are typically used with requests for the HTML document, but occasionally
you’ll see them used for components in the page. Figure 11-2 shows the HTTP
requests for Google Toolbar. It contains four redirects.

The sequence of requests and redirects is complex, so I’ll walk through them one at a
time:

1. The initial URL http://toolbar.google.com is requested.

2. A 302 response is received with a Location of http://toolbar.google.com/T4.

3. http://toolbar.google.com/T4/ is requested.

4. This HTML document redirects the user to http://www.google.com/tools/firefox/
toolbar/index.html using JavaScript.

5. The JavaScript redirect results in a 302 response with the Location http://www.
google.com/tools/firefox/toolbar/FT3/intl/en/index.html. At this point there have
been a total of three redirects—one done with JavaScript and two using the 302
status code.

6. Six images are downloaded.

7. A seventh image is requested at http://toolbar.google.com/T3/intl/search.gif.

Figure 11-2. Multiple redirects including an image

redirect
html

script
stylesheet
stylesheet
stylesheet

image
image
image
image
image

redirect
image
image
image

1

2
3

4 5

6

7 8

9

Alternatives to Redirects | 79

8. This seventh image request results in a 302 response with the Location http://
toolbar.google.com/intl/search.gif.

9. The final three images are requested.

The first four HTTP requests (redirect, HTML, script, and redirect) are used to get
the user to the desired HTML document. These redirects account for more than half
of the end user response time.

Redirects are used frequently. Table 11-1 shows that 7 out of 10 top U.S. web sites
use redirects—2 on the initial page and 5 when you navigate to secondary pages. Per-
haps one or more of the redirects in the Google Toolbar page could have been
avoided. Let’s look at some typical uses of redirects and alternatives that don’t have
such a negative impact on end user response times.

Alternatives to Redirects
Redirects are an easy way to solve many problems, but it’s better to use alternative
solutions that don’t slow down page loading. The following sections discuss some of
the typical situations in which redirects are used, and alternatives that are better for
your users.

Missing Trailing Slash
One of the most wasteful redirects happens frequently and web developers are gener-
ally not aware of it. It occurs when a trailing slash (/) is missing from a URL that
should otherwise have one. For example, the redirect illustrated in Figure 11-1 was
generated by going to http://astrology.yahoo.com/astrology. This request results in a
301 response containing a redirect to http://astrology.yahoo.com/astrology/. The only
difference is the addition of a trailing slash.

Table 11-1. Redirects used across 10 top web sites

Web site Uses redirects

http://www.amazon.com No

http://www.aol.com Yes—secondary page

http://www.cnn.com Yes—initial page

http://www.ebay.com Yes—secondary page

http://www.google.com No

http://www.msn.com Yes—initial page

http://www.myspace.com Yes—secondary page

http://www.wikipedia.org Yes—secondary page

http://www.yahoo.com Yes—secondary page

http://www.youtube.com No

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.ebay.com
http://www.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://astrology.yahoo.com/astrology
http://astrology.yahoo.com/astrology/

80 | Chapter 11: Rule 11: Avoid Redirects

There are good reasons for sending a redirect when the trailing slash is missing: it
allows autoindexing (going to the index.html by default) and makes it possible to
retrieve URLs in the page that are relative to the current directory (e.g., logo.gif).
However, many popular web pages don’t rely on autoindexing, instead relying on
specific URLs and handlers. Additionally, URLs are often relative to the root and not
to the current directory.

Note that a redirect does not happen if the trailing slash is missing after the host-
name. For example, http://www.yahoo.com does not generate a redirect. However,
the resultant URL seen in your browser does contain the trailing slash: http://www.
yahoo.com/. The automatic appearance of the trailing slash is caused because the
browser must specify some path when it makes the GET request. If there is no path,
as in http://www.yahoo.com, then it uses simply the document root (/):

GET / HTTP/1.1

Sending a redirect when a trailing slash is missing is the default behavior for many web
servers, including Apache. The Alias directive is an easy workaround. Another alter-
native is to use the mod_rewrite module, but Alias is simpler.* The problem with the
Astrology site could be resolved by adding the following to the Apache configuration:

Alias /astrology /usr/local/apache/htdocs/astrology/index.html

If you’re using handlers in Apache 2.0, a cleaner solution is available in the form of
the DirectorySlash directive (for more information, visit http://httpd.apache.org/docs/
2.0/mod/mod_dir.html). Assuming there is a handler named astrologyhandler, the
use of DirectorySlash would look as follows:

<Location /astrology>
 DirectorySlash Off
 SetHandler astrologyhandler
</Location>

None of these alternatives solves the problem of finding URLs relative to the current
directory, so the URLs of components in the page should be made relative to the
root. Also, make sure you understand the order in which various modules are run
(notably mod_dir and mod_autoindex) because using DirectorySlash this way could
have security implications.

In summary, if your web site contains directories and uses autoindexing, it is likely
that users are suffering a redirect to reach the intended page. You can check your
web logs to see how many 301 status codes were issued, which can help you deter-
mine whether it is worthwhile to fix the missing trailing slash problem.

* For more information about the Apache mod_rewrite module, visit http://httpd.apache.org/docs/1.3/mod/
mod_rewrite.html.

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://www.yahoo.com
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com
http://httpd.apache.org/docs/2.0/mod/mod_dir.html
http://httpd.apache.org/docs/2.0/mod/mod_dir.html

Alternatives to Redirects | 81

Connecting Web Sites
Imagine the situation where a web site backend is rewritten. As often happens, the
URLs in the new implementation might be different. An easy way to transition users
from the old URLs to the new ones is to use redirects. Redirects are a way of integrat-
ing the two code bases using a well-defined API: URLs.

Connecting an old web site to a new one is just one manifestation of this common
use for redirects. Others include connecting different parts of a web site and direct-
ing the user based on certain conditions (type of browser, type of user account, etc.).
Using a redirect to connect two web sites is simple and requires little additional
coding.

Several of the redirects in the Google Toolbar page load (shown in Figure 11-2) are
used for just this purpose—to connect web sites. There are different parts of the
backend web site (T4, firefox, and FT3). As new versions of the backend compo-
nents are released (such as T5 and FT4), they can be linked to the main web site by
simply updating the redirects.

Although redirects reduce the complexity for developers, it degrades the user experi-
ence, as described in the earlier section “How Redirects Hurt Performance.” There
are alternatives for integrating two backends that, while creating more work for
developers than a simple redirect, are not daunting and improve the user experience:

• Alias, mod_rewrite, and DirectorySlash (described previously in the “Missing
Trailing Slash” section) require committing to an interface (handlers or file-
names) in addition to URLs, but are simple to implement.

• If the two backends reside on the same server, it’s likely that the code itself could
be linked. For example, the older handler code could call the new handler code
programmatically.

• If the domain name changes, a CNAME (a DNS record that creates an alias
pointing from one domain name to another) can be used to make both host-
names point to the same server(s). If this is possible, the techniques mentioned
here (Alias, mod_rewrite, DirectorySlash, and directly linking code) are viable.

Tracking Internal Traffic
Redirects are often used to track the flow of user traffic. This is seen on the Yahoo!
home page (http://www.yahoo.com) where many of the navigation links are wrapped
by a redirect. For example, the URL for the Sports link is http://www.yahoo.com/r/26.
Clicking on this link results in a 301 response with the Location set to http://sports.
yahoo.com/. The traffic patterns of people leaving Yahoo!’s home page can be dis-
cerned by analyzing the web server logs from www.yahoo.com. In this case, the num-
ber of people leaving to go to Yahoo! Sports is equal to the number of /r/26 entries
in the logs.

http://www.yahoo.com
http://www.yahoo.com/r/26
http://sports.yahoo.com/
http://sports.yahoo.com/
http://www.yahoo.com

82 | Chapter 11: Rule 11: Avoid Redirects

An alternative is to use Referer* logging to track traffic patterns. Every HTTP request
contains the URL of the page from which it was generated, i.e., the referer (in some
cases there is no referring page, such as when the user types the URL or uses book-
marks). In this example, when the user navigates to the Sports page from the Yahoo!
home page, the access logs from sports.yahoo.com contain a Referer value of http://
www.yahoo.com/. Using Referer logging avoids sending the user through a redirect,
thus improving response times. The difficulty with this approach, however, is that for
Yahoo! home page to gather statistics on everyone leaving its site, Yahoo! has to
analyze the logs of all the destination web sites (Sports, Mail, Calendar, Movies, etc.).

For internal traffic—i.e., traffic from web sites within the same company—it’s
worthwhile to avoid redirects by setting up Referer logging to improve end user
response times. If the destination web site belongs to a different company, it might
not be possible to analyze the logs for Referers. This situation is discussed in the next
section.

Tracking Outbound Traffic
When you’re trying to track user traffic, you might find that links are taking users
away from your web site. In this situation, the use of Referer is not practical.

This is the situation faced by Yahoo! Search. Yahoo! solves the tracking problem by
wrapping each search result link in a redirect. The URL of the search result goes to
rds.yahoo.com and contains the ultimate destination as a parameter in the URL. For
example, here’s a search result link going to the entry for “Performance” at Wikipedia:

http://rds.yahoo.com/[...]5742/**http%3a//en.wikipedia.org/wiki/Performance

Clicking on this search result accesses rds.yahoo.com, which returns a 302 response
with the Location set to http://en.wikipedia.org/wiki/Performance. Administrators can
then track where users are going by analyzing the ** parameters from web server logs
on rds.yahoo.com. The redirect slows retrieval of the destination page, which has a
negative impact on the user’s experience.

An alternative to redirects for outbound traffic is to use a beacon—an HTTP request
that contains tracking information in the URL. The tracking information is extracted
from the access logs on the beacon web server(s). The beacon response is typically a
one-pixel by one-pixel transparent image, although a 204 response is a more elegant
solution because it’s smaller, never cached, and by definition does not alter the state
of the browser.

In the case of Yahoo! Search, the goal would be to send a beacon whenever the user
clicks on a search result link. This is done using the onclick handler for each link
(when JavaScript is enabled). The onclick handler calls a JavaScript function that

* This misspelling of “referrer” is so prevalent that it became part of the HTTP specification.

sports.yahoo.com
http://www.yahoo.com/
http://www.yahoo.com/
http://en.wikipedia.org/wiki/Performance

Alternatives to Redirects | 83

requests an image, where the image URL contains the information being tracked (i.e.,
the link that was clicked):

<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this)">Performance - Wikipedia

<script type="text/javascript">
var beacon;
function resultBeacon(anchor) {
 beacon = new Image();
 beacon.src = "http://rds.yahoo.com/?url=" + escape(anchor.href);
}
</script>

Be warned: beacons have a number of nuances that make reliable implementation
challenging. The challenge in this situation is the race condition between sending the
beacon while the page itself is being unloaded. The image beacon’s onload handler
can be used to ensure the beacon has been delivered before unloading the document:

<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this); return false;">Performance - Wikipedia

<script type="text/javascript">
var beacon;
function resultBeacon(anchor) {
 beacon = new Image();
 beacon.onload = gotoUrl;
 beacon.onerror = gotoUrl;
 beacon.src = "http://rds.yahoo.com/?url=" + escape(anchor.href);
}

function gotoUrl() {
 document.location = beacon.src;
}
</script>

This approach is likely to be as slow as using a redirect because both techniques
require an additional HTTP request. Another approach is to use XMLHttpRequest to
send the beacon, but to only wait until the request reaches readyState 2 (sent) before
unloading the page. This is faster than waiting for the entire HTTP response of a redi-
rect, but you’ll have to decide whether the complexity is justified. For more informa-
tion about using XMLHttpRequest, visit http://www.w3.org/TR/XMLHttpRequest. A
code sample is too complex to show here, but you can see one in the “XMLHttp-
Request Beacon” example. There is also an example of the more typical image beacon.

XMLHttpRequest Beacon
http://stevesouders.com/hpws/xhr-beacon.php

Image Beacon
http://stevesouders.com/hpws/redir-beacon.php

http://www.w3.org/TR/XMLHttpRequest
http://stevesouders.com/hpws/xhr-beacon.php
http://stevesouders.com/hpws/redir-beacon.php

84 | Chapter 11: Rule 11: Avoid Redirects

Even if these approaches are too complex for most links, they work well for links
that use the target attribute:

<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this)"
 target="_blank">Performance - Wikipedia

In this case, there is no race condition and a simple image beacon works fine. This
approach works well, for example, when tracking impressions (clicks) for pop-up
ads. Clicking on a pop-up ad does not unload the current document, allowing the
image beacon request to be completed without interruption.

Prettier URLs
Another motivation for redirects is to make URLs prettier and easier to remember. In
the earlier “Missing Trailing Slash” section, I explained how http://astrology.yahoo.
com/astrology redirects the user to http://astrology.yahoo.com/astrology/ (the same
URL with a “/” appended). A redirect that affects far more users is from http://
astrology.yahoo.com to http://astrology.yahoo.com/astrology/. Clearly, http://astrology.
yahoo.com is prettier and easier to remember, so it’s good for users that this simple
URL works.

The Google Toolbar redirects described in the “How Redirects Hurt Performance”
section are another example of using redirects to support a prettier and easier-to-
remember URL. Imagine how difficult it would be to type or remember http://www.
google.com/tools/firefox/toolbar/FT3/intl/en/index.html. It’s much easier to remember
http://toolbar.google.com.

The key is to find a way to have these simpler URLs without the redirects. Rather
than forcing users to undergo an additional HTTP request, it would be better to
avoid the redirect using Alias, mod_rewrite, DirectorySlash, and directly linking
code, as described in the earlier section “Connecting Web Sites.”

Find ways to avoid redirects.

http://stevesouders.com/hpws/redir-beacon.php
http://astrology.yahoo.com/astrology
http://astrology.yahoo.com/astrology
http://astrology.yahoo.com/astrology/
http://astrology.yahoo.com
http://astrology.yahoo.com
http://astrology.yahoo.com/astrology/
http://astrology.yahoo.com
http://astrology.yahoo.com
http://www.google.com/tools/firefox/toolbar/FT3/intl/en/index.html
http://www.google.com/tools/firefox/toolbar/FT3/intl/en/index.html
http://toolbar.google.com

85

Chapter 12 CHAPTER 12

Rule 12: Remove Duplicate Scripts12

It hurts performance to include the same JavaScript file twice in one page. This mis-
take isn’t as unusual as you might think. A review of the 10 top U.S. web sites shows
that two of them (CNN and YouTube) contain a duplicated script.

How does this happen? How does it affect performance? How can it be avoided?
Let’s take a look.

Duplicate Scripts—They Happen
Two main factors increase the odds of a script being duplicated in a single web page:
team size and number of scripts.

It takes a significant amount of resources to develop a web site, especially if it’s a top
destination. In addition to the core team building the site, other teams contribute to
the HTML in the page for things such as advertising, branding (logos, headers, foot-
ers, etc.), and data feeds (news stories, sports scores, TV listings, etc.). With so many
people from different teams adding HTML to the page, it’s easy to imagine how the
same script could be added twice. For example, two developers might be contribut-
ing JavaScript code that requires manipulating cookies, so each of them includes the
company’s cookies.js script. Both developers are unaware that the other has already
added the script to the page.

As shown in Table 12-1, the average number of scripts in the 10 top U.S. sites is
greater than six (this information is also given in Table 1-1 from Chapter 1). The two
sites that have duplicate scripts also happen to have an above-average number of
scripts (CNN has 11; YouTube has 7). The more scripts in the page, the more likely
it is that one of the scripts will be included twice.

86 | Chapter 12: Rule 12: Remove Duplicate Scripts

Duplicate Scripts Hurt Performance
There are two ways that duplicate scripts hurt performance: unnecessary HTTP
requests and wasted JavaScript execution.

Unnecessary HTTP requests happen in Internet Explorer, but not in Firefox. In Inter-
net Explorer, if an external script is included twice and is not cacheable, the browser
generates two HTTP requests during page loading. This is demonstrated in the
“Duplicate Scripts—Not Cached” example.

Duplicate Scripts—Not Cached
http://stevesouders.com/hpws/dupe-scripts.php

This won’t be an issue for people who follow the advice in Chapter 3 and add a far
future Expires header to their scripts, but if they don’t, and they make the mistake of
including the script twice, the user has to endure an extra HTTP request. Chapter 6
explains how downloading scripts has an especially negative impact on response
times. Subjecting the user to an extra HTTP request for a script doubles that nega-
tive impact.

Even if the script is cacheable, extra HTTP requests occur when the user reloads the
page. The following example includes scripts that are cacheable.

Duplicate Scripts—Cached
http://stevesouders.com/hpws/dupe-scripts-cached.php

Load this page once to fill the cache, and then click the “Example 2 – Duplicate
Scripts – Cached” link to load it again. Since the script is cached, no HTTP requests
are made for the script, but if you click the browser’s Refresh button, two HTTP
requests are made. Specifically, two conditional GET requests are made. For more
information, see the section “Conditional GET Requests” in Chapter B.

Table 12-1. Number of scripts and stylesheets for 10 top sites

Web site Scripts Stylesheets

http://www.amazon.com 3 1

http://www.aol.com 18 1

http://www.cnn.com 11 2

http://www.bay.com 7 2

http://froogle.google.com 1 1

http://www.msn.com 9 1

http://www.myspace.com 2 2

http://www.wikipedia.org 3 1

http://www.yahoo.com 4 1

http://www.youtube.com 7 3

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.bay.com
froogle.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://stevesouders.com/hpws/dupe-scripts.php
http://stevesouders.com/hpws/dupe-scripts-cached.php

Avoiding Duplicate Scripts | 87

In addition to generating unnecessary HTTP requests in Internet Explorer, time is
wasted evaluating the script multiple times. This redundant JavaScript execution
happens in both Firefox and Internet Explorer, regardless of whether the script is
cacheable. In the previous examples, the duplicated script increments a counter that
is displayed in the page. Because the script is included twice and evaluated twice, the
value of the counter is 2.

The problem of superfluous downloads and evaluations occurs for each additional
instance of a script in the page. In the following example, the same script is included
10 times, which results in 10 evaluations. When you reload the page, 10 HTTP
requests are made (only in Internet Explorer).

Duplicate Scripts—10 Cached
http://stevesouders.com/hpws/dupe-scripts-cached10.php

To summarize:

• Including the same script multiple times in a page makes it slower.

• In Internet Explorer, extra HTTP requests are made if the script is not cacheable
or when the page is reloaded.

• In both Firefox and Internet Explorer, the script is evaluated multiple times.

Avoiding Duplicate Scripts
One way to avoid accidentally including the same script twice is to implement a
script management module in your templating system. The typical way to include a
script is to use the SCRIPT tag in your HTML page:

<script type="text/javascript" src="menu_1.0.17.js"></script>

An alternative in PHP would be to create a function called insertScript:

<?php insertScript("menu.js") ?>

While we’re tackling the duplicate script issue, we’ll add functionality to handle
dependencies and versioning of scripts. A simple implementation of insertScript
follows:

<?php
function insertScript($jsfile) {
 if (alreadyInserted($jsfile)) {
 return;
 }
 pushInserted($jsfile);

 if (hasDependencies($jsfile)) {
 $dependencies = getDependencies($jsfile);
 Foreach ($dependencies as $script) {
 insertScript($script);
 }
 }

http://stevesouders.com/hpws/dupe-scripts-cached10.php

88 | Chapter 12: Rule 12: Remove Duplicate Scripts

 echo '<script type="text/javascript" src="' . getVersion($jsfile) . '"></script>
";
}
?>

The first time a script is inserted, we’ll reach pushInserted. This adds the script to the
alreadyInserted list for the page. If that script is accidentally inserted again, the test
for alreadyInserted will not add the script again, thus solving the duplicate script
issue.

If this script has dependencies, those prerequisite scripts are inserted. In this exam-
ple, menu.js might depend on events.js and utils.js. You can capture these depen-
dency relationships using a hash or database. For simpler sites, dependencies can be
maintained manually. For more complex sites, you may choose to automate the
generation of dependencies by scanning the scripts to find symbol definitions.

Finally, the script is echoed to the page. A key function here is getVersion. This func-
tion looks up the script (in this case menu.js) and returns the filename with the
appropriate version appended (e.g., menu_1.0.17.js). In Chapter 3, I mention the
advantage of adding a version number to a component’s filename; when using a far
future Expires header the filename has to be changed whenever the file contents are
changed (see the section “Revving Filenames” in Chapter 3). Centralizing this func-
tionality inside insertScript is another benefit of this script management module.
Whenever a script is modified, all the pages start using the new filename after a sim-
ple update to the getVersion code. Pages start using the new version immediately
without having to modify any of the PHP templates.

Make sure scripts are included only once.

89

Chapter 13 CHAPTER 13

Rule 13: Configure ETags13

Reducing the number of HTTP requests necessary to render your page is the best
way to accelerate the user experience. You can achieve this by maximizing the
browser’s ability to cache your components, but the ETag header thwarts caching
when a web site is hosted on more than one server. In this chapter, I explain what
ETags are and how their default implementation slows down web pages.

What’s an ETag?
Entity tags (ETags) are a mechanism that web servers and browsers use to validate
cached components. Before jumping into the details of ETags, let’s review how com-
ponents are cached and validated.

Expires Header
As the browser downloads components, it stores them in its cache. On subsequent
page views, if the cached component is “fresh,” the browser reads it from disk and
avoids making an HTTP request. A component is fresh if it hasn’t expired, based on
the value in the Expires header. Let’s look at an example.

When a component is requested, the server of origin has the option to send an
Expires header back in the response:

Expires: Thu, 15 Apr 2010 20:00:00 GMT

Chapter 3 recommends setting an expiration date in the far future. How far is “far”
depends on the component in question. An ad image might have to expire daily,
whereas a company logo could expire in 10 years. The HTTP specification (http://
www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21) suggests servers should
not set an Expires date more than one year in the future, but this is a guideline;
browsers support Expires dates further in the future than one year. It’s most effi-
cient to avoid HTTP requests by setting the expiration date so far in the future that
the components are unlikely to expire.

90 | Chapter 13: Rule 13: Configure ETags

Conditional GET Requests
In the event a cached component does expire (or the user explicitly reloads the page),
the browser can’t reuse it without first checking that it is still valid. This is called a
conditional GET request (see the section “Conditional GET Requests” in Chapter B).
It’s unfortunate that the browser has to make this HTTP request to perform a valid-
ity check, but it’s more efficient than simply downloading every component that has
expired. If the component in the browser’s cache is valid (i.e., it matches what’s on
the origin server), instead of returning the entire component, the origin server returns
a “304 Not Modified” status code.

There are two ways in which the server determines whether the cached component
matches the one on the origin server:

• By comparing the last-modified date

• By comparing the entity tag

Last-Modified Date
The component’s last-modified date is returned by the origin server via the Last-
Modified response header.

GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com

HTTP/1.1 200 OK
Last-Modified: Tue, 12 Dec 2006 03:03:59 GMT
Content-Length: 1195

In this example, the browser caches the component (in this case, the Yahoo! logo)
along with its last-modified date. The next time http://us.yimg.com/i/yahoo.gif is
requested, the browser uses the If-Modified-Since header to pass the last-modified
date back to the origin server for comparison. If the last-modified date on the origin
server matches that sent by the browser, a 304 response is returned and the 1195
bytes of data don’t have to be sent.

GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com
If-Modified-Since: Tue, 12 Dec 2006 03:03:59 GMT

HTTP/1.1 304 Not Modified

The Problem with ETags | 91

Entity Tags
ETags provide another way to determine whether the component in the browser’s
cache matches the one on the origin server (“entity” is another word for what I’ve
been calling a “component”: images, scripts, stylesheets, etc.). ETags were intro-
duced in HTTP/1.1. An ETag is a string that uniquely identifies a specific version of
a component. The only format constraint is that the string must be quoted. The ori-
gin server specifies the component’s ETag using the ETag response header.

GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com

HTTP/1.1 200 OK
Last-Modified: Tue, 12 Dec 2006 03:03:59 GMT
ETag: "10c24bc-4ab-457e1c1f"
Content-Length: 1195

ETags were added to provide a more flexible mechanism for validating entities than
the last-modified date. If, for example, an entity changes based on the User-Agent or
Accept-Language headers, the state of the entity can be reflected in the ETag.

Later, if the browser has to validate a component, it uses the If-None-Match header to
pass the ETag back to the origin server. If the ETags match, a 304 status code is
returned, reducing the response by 1195 bytes.

GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com
If-Modified-Since: Tue, 12 Dec 2006 03:03:59 GMT
If-None-Match: "10c24bc-4ab-457e1c1f"

HTTP/1.1 304 Not Modified

The Problem with ETags
The problem with ETags is that they are typically constructed using attributes that
make them unique to a specific server hosting a site. ETags won’t match when a
browser gets the original component from one server and later makes a conditional
GET request that goes to a different server—a situation that is all too common on
web sites that use a cluster of servers to handle requests. By default, both Apache and
IIS embed data in the ETag that dramatically reduces the odds of the validity test
succeeding on web sites with multiple servers.

92 | Chapter 13: Rule 13: Configure ETags

The ETag format for Apache 1.3 and 2.x is inode-size-timestamp. Inodes are used by
filesystems to store information such as file type, owner, group, and access mode.
Although a given file may reside in the same directory across multiple servers and
have the same file size, permissions, timestamp, etc., its inode is different from one
server to the next.

IIS 5.0 and 6.0 have a similar issue with ETags. The format for ETags on IIS is
Filetimestamp:ChangeNumber. ChangeNumber is a counter used to track configuration
changes to IIS. It’s unlikely that the ChangeNumber is the same across all IIS servers
behind a web site.

The end result is that ETags generated by Apache and IIS for the exact same compo-
nent won’t match from one server to another. If the ETags don’t match, the user
doesn’t receive the small, fast 304 response that ETags were designed for; instead,
they’ll get a normal 200 response along with all the data for the component. If you
host your web site on just one server, this isn’t a problem, but if you use a cluster of
servers, components have to be downloaded much more often than is required,
which degrades performance.

The unnecessary reloading of components also has a performance impact on your
servers and increases your bandwidth costs. If you have n servers in your cluster in
round-robin rotation, the probability that the ETag in the user’s cache will match the
server they land on next is 1/n. If you have 10 servers, the user has a 10% chance of
getting the correct 304 response, leaving a 90% chance of getting a wasteful 200
response and full data download.

This ETag issue also degrades the effectiveness of proxy caches. The ETag cached by
users behind the proxy frequently won’t match the ETag cached by the proxy, result-
ing in unnecessary requests back to the origin server. Instead of one 304 response
between the user and the proxy, there are two (slower, bigger) 200 responses: one
from the origin server to the proxy, and another from the proxy to the user. The
default format of ETags has also been cited as a possible security vulnerability.*

It gets worse.

The If-None-Match header takes precedence over If-Modified-Since. You might hope
that if the ETags didn’t match but the last-modified date was the same, a “304 Not
Modified” response would be sent, but that’s not the case. According to the HTTP/
1.1 specification (http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4),
if both of these headers are in the request, the origin server “MUST NOT return a
response status of 304 (Not Modified) unless doing so is consistent with all of the
conditional header fields in the request.” It would actually be better if the If-None-
Match header wasn’t even there. That’s the solution discussed in the next section.

* See the “Apache http daemon file inode disclosure vulnerability” web article at http://www3.ca.com/
securityadvisor/vulninfo/vuln.aspx?ID=7196 for more information.

http://www3.ca.com/securityadvisor/vulninfo/vuln.aspx?ID=7196
http://www3.ca.com/securityadvisor/vulninfo/vuln.aspx?ID=7196
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

ETags: Use ’Em or Lose ’Em | 93

ETags: Use ’Em or Lose ’Em
If you have multiple servers hosting your web site and you’re using Apache or IIS
with the default ETag configuration, your users are getting slower pages, your serv-
ers have a higher load, you’re consuming greater bandwidth, and proxies aren’t cach-
ing your content efficiently. “But wait!” you say, “I followed Rule 3 and added a far
future Expires header to my components. There shouldn’t be any conditional GET
requests.”

Even if your components have a far future Expires header, a conditional GET request
is still made whenever the user clicks Reload or Refresh. There’s no way around it—
the problem with ETags has to be addressed.

One option is to configure your ETags to take advantage of their flexible validation
capabilities. One example might be a script that varies depending on whether the
browser is Internet Explorer. Using PHP to generate the script, you could set the ETag
header to reflect the browser state:

<?php
if (strpos($_SERVER["HTTP_USER_AGENT"], "MSIE")) {
 header("ETag: MSIE");
}
else {
 header("ETag: notMSIE");
}
?>

If you have components that have to be validated based on something other than the
last-modified date, ETags are a powerful way of doing that.

If you don’t have the need to customize ETags, it is best to simply remove them.
Both Apache and IIS have identified ETags as a performance issue, and suggest
changing the contents of the Etag (see http://www.apacheweek.com/issues/02-01-18,
http://support.microsoft.com/?id=922733, and http://support.microsoft.com/kb/922703
for more details).

Apache versions 1.3.23 and later support the FileETag directive. With this directive,
the inode value can be removed from the ETag, leaving size and timestamp as the
remaining components of the ETag. Similarly, in IIS you can set the ChangeNumber to
be identical across all servers, leaving the file timestamp as the only other piece of
information in the ETag.

Following these suggestions leaves an ETag that contains just the size and time-
stamp (Apache) or just the timestamp (IIS). However, because this is basically dupli-
cate information, it’s better to just remove the ETag altogether—the Last-Modified
header provides sufficiently equivalent information, and removing the ETag reduces
the size of the HTTP headers in both the response and subsequent requests. The
Microsoft Support articles referenced in this section describe how to remove ETags.

http://www.apacheweek.com/issues/02-01-18
http://support.microsoft.com/?id=922733
http://support.microsoft.com/kb/922703

94 | Chapter 13: Rule 13: Configure ETags

In Apache, you can remove Etags by simply adding the following line to your Apache
configuration file:

FileETag none

ETags in the Real World
Table 13-1 shows that 6 out of 10 top U.S. web sites use ETags on a majority of their
components. To be fair, three of them have modified the ETag format to remove
inode (Apache) or ChangeNumber (IIS). Four or more contain ETags that haven’t been
modified and therefore cause the performance problems discussed previously.

An example of a component with different ETags across the cluster of servers is http://
stc.msn.com/br/hp/en-us/css/15/blu.css from http://msn.com. The HTTP headers from
the first request in the example contains an ETag value of 80b31d5a4776c71:6e0.

GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com

HTTP/1.1 200 OK
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT
ETag: "80b31d5a4776c71:6e0"
Content-Length: 647
Server: Microsoft-IIS/6.0

On the first reload, the ETag matches and a 304 response is sent. The Content-Length
header is missing from the response because the 304 status code tells the browser to
use the content from its cache.

GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com
If-Modified-Since: Tue, 03 Apr 2007 23:25:23 GMT
If-None-Match: "80b31d5a4776c71:6e0"

Table 13-1. ETags observed across 10 top web sites

Web Site Components with ETags Fixed

http://www.amazon.com 0% (0/24) n/a

http://www.aol.com 5% (3/63) yes

http://www.cnn.com 83% (157/190) no

http://www.ebay.com 86% (57/66) no

http://www.google.com 0% (0/5) n/a

http://www.msn.com 72% (42/58) no

http://www.myspace.com 84% (32/38) yes and no

http://www.wikipedia.org 94% (16/17) unknown

http://www.yahoo.com 0% (0/34) n/a

http://www.youtube.com 70% (43/61) yes

http://www.amazon.com
http://www.aol.com
http://www.cnn.com
http://www.ebay.com
http://www.google.com
http://www.msn.com
http://www.myspace.com
http://www.wikipedia.org
http://www.yahoo.com
http://www.youtube.com
http://stc.msn.com/br/hp/en-us/css/15/blu.css
http://stc.msn.com/br/hp/en-us/css/15/blu.css
http://msn.com

ETags in the Real World | 95

HTTP/1.1 304 Not Modified
ETag: "80b31d5a4776c71:6e0"
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT

On the second reload, the ETag changes to 80b31d5a4776c71:47b. Instead of a fast
304 response with no content, a larger 200 response with the full content is returned.

GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com
If-Modified-Since: Tue, 03 Apr 2007 23:25:23 GMT
If-None-Match: "80b31d5a4776c71:6e0"

HTTP/1.1 200 OK
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT
ETag: "80b31d5a4776c71:47b"
Content-Length: 647
Server: Microsoft-IIS/6.0

Even though the ETag changed, we know this is the same component. The size (647
bytes) is the same. The last-modified date (03 April 2007 23:25:23) is the same. The
ETags are almost the same. Let’s look at the ETag headers more closely:

ETag: "80b31d5a4776c71:6e0"
ETag: "80b31d5a4776c71:47b"

The Server header in the response confirms that this is from IIS. As described ear-
lier, the default ETag format for IIS is Filetimestamp:ChangeNumber. Both ETags have
the same value for Filetimestamp (80b31d5a4776c71). This isn’t a surprise because the
Last-Modified header shows that both components have the same modification date.
The ChangeNumber is the part of the ETag that differs. Although disappointing, this
also isn’t a surprise because, as stated in the Microsoft Support articles referenced
earlier, this is precisely what causes the performance issues. Removing ChangeNumber
from the ETag or removing the ETag altogether would avoid these unnecessary and
inefficient downloads of data that’s already in the browser’s cache.

Reconfigure or remove ETags.

96

Chapter 14CHAPTER 14

Rule 14: Make Ajax Cacheable 14

People frequently ask whether the performance rules in this book apply to Web 2.0
applications. They definitely do! The rule discussed in this chapter is, however, the
first rule that resulted from working with Web 2.0 applications at Yahoo!. In this
chapter, I describe what Web 2.0 means, how Ajax fits into Web 2.0, and an impor-
tant performance improvement you can make to Ajax.

Web 2.0, DHTML, and Ajax
The relationship between Web 2.0, DHTML, and Ajax is illustrated in Figure 14-1.
This figure doesn’t show that Ajax is used only in DHTML or that DHTML is used
only by Web 2.0 applications, but rather it is meant to show that Web 2.0 includes
many concepts, one of which is DHTML, and that Ajax is one of the key technolo-
gies in DHTML. A discussion of Web 2.0 and what it includes is a book (or more) by
itself, but we do want to have a common understanding of these terms. Below, I give
brief definitions with references for more information.

Figure 14-1. Relationship between Web 2.0, DHTML, and Ajax

Ajax

DHTML

Web 2.0

Web 2.0, DHTML, and Ajax | 97

Web 2.0
O’Reilly Media first used the term “Web 2.0” in 2004, the first year they held the
Web 2.0 conference. The term pertains not as much to technology as the social and
business aspects of how the next-generation Internet will be used. It alludes to web
sites evolving into Internet communities rich in wikis, blogs, and podcasts. Key con-
cepts of Web 2.0 include a rich, application-like user interface and the aggregation of
information from multiple web services. In effect, the web page becomes more and
more like an application with well-defined inputs and outputs. DHTML and Ajax are
technologies for implementing these concepts. In his web article “Web 2.0 Compact
Definition: Trying Again” (http://radar.oreilly.com/archives/2006/12/web_20_compact.
html), Tim O’Reilly provides one of the most referenced definitions of Web 2.0.

DHTML
Dynamic HTML allows the presentation of an HTML page to change after the page
has loaded. This is accomplished using JavaScript and CSS interacting with the Doc-
ument Object Model (DOM) in the browser. Examples include links that change
when the user hovers the mouse over them, tree controls that expand and collapse,
and cascading menus within the page. More complex DHTML pages may redraw the
entire page based on the user’s intention; for example, changing from viewing an
email inbox to a form for composing an email message. Ajax is a technology used in
DHTML so that the client can retrieve and display new information requested by the
user without reloading the page.

Ajax
The term “Ajax” was coined in 2005 by Jesse James Garrett.* Ajax stands for “Asyn-
chronous JavaScript and XML” (although today there are alternatives to XML, most
notably JSON). Ajax is not a single, licensable technology, but is instead a collection
of technologies, primarily JavaScript, CSS, DOM, and asynchronous data retrieval.
The goal of Ajax is to break out of the start-and-stop nature of interaction on the
Web. Displaying a blank white screen to the user followed by repainting the entire
window is not a good user experience. Instead, Ajax inserts a layer between the UI
and web server. This Ajax layer resides on the client, interacting with the web server
to get requested information, and interfacing with the presentation layer to update
only the components necessary. It transforms the Web experience from “viewing
pages” to “interacting with an application.”

* Jesse James Garrett, “Ajax: A New Approach to Web Applications,” http://www.adaptivepath.com/
publications/essays/archives/000385.php.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://radar.oreilly.com/archives/2006/12/web_20_compact.html
http://radar.oreilly.com/archives/2006/12/web_20_compact.html

98 | Chapter 14: Rule 14: Make Ajax Cacheable

The technologies behind Ajax have been around much longer than the phrase itself.
IFrames, first found in Internet Explorer 3 in 1996, allow asynchronous loading of
content within a page, and are still used today in some Ajax applications.
XMLHttpRequest, what I consider the heart of Ajax, was available in Internet Explorer
5 in 1999 (under the name XMLHTTP), and in Mozilla in 2002. The proposed W3C
XMLHttpRequest specification for Ajax was first released in April 2006.

I highly recommend using the Yahoo! UI (YUI) Connection Manager for Ajax devel-
opment (http://developer.yahoo.com/yui/connection). It handles browser compatibil-
ity issues with XMLHttpRequest and has excellent documentation and code samples.

Asynchronous = Instantaneous?
One of the cited benefits of Ajax is that it provides instantaneous feedback to the
user because it requests information asynchronously from the backend web server. In
the article referenced earlier, Jesse James Garrett uses Google Suggest and Google
Maps as examples of web interfaces where “everything happens almost instantly.”

Be careful! Using Ajax is no guarantee that the user won’t be twiddling his thumbs
waiting for those “asynchronous JavaScript and XML” responses to return. I’d hate
to use Google Maps and Yahoo! Maps on a dial-up connection. In many applica-
tions, whether or not the user is kept waiting depends on how Ajax is used. Front-
end engineers once again shoulder the responsibility of identifying and following the
best practices required to ensure a fast user experience.

A key factor to whether the user might be kept waiting is whether the Ajax requests
are passive or active. Passive requests are made in anticipation of a future need. For
example, in a web-based email client, a passive request might be used to download
the user’s address book before it’s actually needed. By loading it passively, the client
makes sure the address book is already in its cache when the user needs to address
an email message. Active requests are made based on the user’s current actions. An
example is finding all the email messages that match the user’s search criteria.

The latter example illustrates that even though active Ajax requests are asynchro-
nous, the user may still be kept waiting for the response. It is true that, thanks to
Ajax, the user won’t have to endure a complete page reload, and the UI is still
responsive while the user waits. Nevertheless, the user is most likely sitting, waiting
for the search results to be displayed before taking any further action. It’s important
to remember that “asynchronous” does not imply “instantaneous.” I definitely agree
with Jesse James Garrett’s final FAQ.

Q. Do Ajax applications always deliver a better experience than traditional web appli-
cations?

A. Not necessarily. Ajax gives interaction designers more flexibility. However, the
more power we have, the more caution we must use in exercising it. We must be care-
ful to use Ajax to enhance the user experience of our applications, not degrade it.

http://developer.yahoo.com/yui/connection

Caching Ajax in the Real World | 99

I also agree with his other comment:

It’s going to be fun.

Let’s have some fun exploring how to enhance the user experience with Ajax while
avoiding the typical pitfalls that can degrade it.

Optimizing Ajax Requests
The previous section makes it clear that it’s possible that the user will be kept wait-
ing when making active Ajax requests. To improve performance, it’s important to
optimize these requests. The techniques for optimizing active Ajax requests are
equally applicable to passive Ajax requests, but since active requests have a greater
impact on the user experience, you should start with them.

To find all the active Ajax requests in your web application, start your favorite packet
sniffer. (The section “How the Tests Were Done” in Chapter 15 mentions my favor-
ite packet sniffer: IBM Page Detailer.) After your web application has loaded, start
using it while watching for Ajax requests that show up in the packet sniffer. These
are the active Ajax requests that have to be optimized for better performance.

The most important way to improve these active Ajax requests is to make the
responses cacheable, as discussed in Chapter 3. Some of the other 13 rules we’ve
already covered are also applicable to Ajax requests:

• Rule 4: Gzip Components

• Rule 9: Reduce DNS Lookups

• Rule 10: Minify JavaScript

• Rule 11: Avoid Redirects

• Rule 13: ETags—Use ’Em or Lose ’Em

However, Rule 3 is the most important. It might not be fair for me to create a new
rule that simply reapplies previous rules in a new context, but I’ve found that,
because Ajax is so new and different, these performance improvements have to be
called out explicitly.

Caching Ajax in the Real World
Let’s take a look at some examples to see how Ajax adheres to these performance
guidelines in the real world.

Yahoo! Mail
In our first example, we’ll look at the Ajax version of Yahoo! Mail (http://mail.yahoo.
com), which is in beta at the time of this writing.

http://mail.yahoo.com
http://mail.yahoo.com

100 | Chapter 14: Rule 14: Make Ajax Cacheable

When the user starts the Ajax version of Yahoo! Mail, it downloads the body of the
user’s first three email messages. This is a smart passive Ajax request. There’s a good
chance the user will click on one or more of these email messages, so having them
already downloaded in the client means that the user sees her email messages with-
out having to wait for any Ajax responses.

If the user wants to view an email message that’s not in the first three, an active Ajax
request is made. The user is waiting for this response so she can read the email mes-
sage. Let’s look at the HTTP headers.

GET /ws/mail/v1/formrpc?m=GetMessage[snip...] HTTP/1.1
Host: us.mg0.mail.yahoo.com
Accept-Encoding: gzip,deflate

HTTP/1.1 200 OK
Date: Mon, 23 Apr 2007 23:22:57 GMT
Cache-Control: no-store, private
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/xml; charset=UTF-8
Content-Encoding: gzip
Connection: keep-alive

Now imagine that the user leaves Yahoo! Mail to visit another web site. Later, she
returns to Yahoo! Mail and again clicks on the fourth email message. Not surpris-
ingly, the exact same request is sent again because the previous Ajax response was
not saved in the browser’s cache. It wasn’t cached because the response contains a
Cache-Control header with the value no-store, and an Expires header with a date in
the past. Both of these tell the browser not to cache the response. And yet, if her
inbox hasn’t changed, the content is identical in both responses.

If these headers were replaced with a far future Expires header (see Chapter 3) the
response would be cached and read off disk, resulting in a faster user experience.
This might seem counterintuitive to some developers—after all, this is a dynamically
generated response that contains information relevant to only one user in the world.
It doesn’t seem to make sense to cache this data. The critical thing to remember is
that this one user might make that request multiple times in a day or week. If you
can make the response cacheable for her, it may make the difference between a slow
user experience and a fast one.

Making this Ajax response cacheable requires more work than simply changing the
HTTP headers. The personalized and dynamic nature of the response has to be
reflected in what’s cached. The best way to do this is with query string parameters.
For example, this response is valid only for the current user. This can be addressed
by putting the username in the query string:

/ws/mail/v1/formrpc?m=GetMessage&yid=steve_souders

It’s also important that the exact message is reflected. We wouldn’t want to say
&msg=4, because what’s “fourth” in the inbox is constantly changing. Instead, a mes-
sage ID that is unique across all messages for this user would solve the problem:

Caching Ajax in the Real World | 101

/ws/mail/v1/formrpc?m=GetMessage&yid=steve_souders&msgid=001234

It’s possible that the responses are not being cached for data privacy reasons. The
Cache-Control: no-store header is commonly used with data that is considered pri-
vate. When this header is used, the response is not written to disk at all. However,
the HTTP specification warns that you shouldn’t rely on this mechanism to ensure
data privacy, as malicious or compromised caches may ignore the Cache-Control: no-
store header altogether.

A better alternative for handling data privacy is using a secure communications pro-
tocol such as Secure Sockets Layer (SSL). SSL responses are cacheable (only for the
current browser session in Firefox), so it provides a compromise: data privacy is
ensured while cached responses improve performance during the current session.

Walking through the other relevant performance rules, we can find several positive
performance traits in this implementation. The response is gzipped (Rule 4). The
domain is used in many other requests in the page, which helps to avoid additional
DNS lookups (Rule 9). The XML response is minified as much as possible (Rule 10).
It doesn’t use redirects (Rule 11). And the ETags are removed (Rule 13).

Google Spreadsheets
Google Docs & Spreadsheets (http://docs.google.com) offers an Ajax spreadsheet
application, which is in beta at the time of this writing.

In a typical workflow, the user creates a spreadsheet and saves it in his list of docu-
ments. Let’s examine what happens when the user returns and opens the spread-
sheet. Figure 14-2 shows the HTTP traffic when the spreadsheet is opened—10
active Ajax requests are made. On a side note, this illustrates that Ajax requests are
not exclusively XML-fetched using XMLHttpRequest. In Google Spreadsheets, the Ajax
requests are HTML and JavaScript. Some of these are requested using
XMLHttpRequest, but IFrames are also used.

Figure 14-2. Active Ajax requests in Google Spreadsheets

redirect
html

script
script
html

script
script
html

script
html

script
script

http://docs.google.com

102 | Chapter 14: Rule 14: Make Ajax Cacheable

If the user closes the spreadsheet and reopens it, 10 requests are made again. That’s
because none of the requests is cacheable. Most of the requests are fairly small, but
one of the HTML requests is 47K (before compression). Let’s look at the HTTP
headers for that request.

GET /ar?id=[snip...]&srow=0&erow=100 HTTP/1.1
Host: spreadsheets.google.com
Accept-Encoding: gzip,deflate

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Cache-Control: private
Content-Encoding: gzip
Date: Tue, 24 Apr 2007 23:37:13 GMT

Again, it’s no surprise that the Ajax request is made every time the user opens the
spreadsheet. The response does not have a header telling the browser to cache it. In
my test, I wasn’t modifying the spreadsheet, so this response was identical every time
I opened my spreadsheet. In fact, 8 of the 10 requests were identical, so it raises the
question of whether they could have been cached.

Just as in the Yahoo! Mail example, caching the spreadsheet is not as easy as adding
a far future Expires header. If the user modifies the spreadsheet, we need to ensure
that cached requests affected by the changes aren’t reused. Again, a simple solution
is to use the query string. The Google Spreadsheets backend could save a timestamp
representing when the last modifications were made, and embed this in the query
string of the Ajax requests:

/ar?id=[snip...]&srow=0&erow=100&t=1177458941

Although the Ajax requests aren’t cacheable, other performance guidelines are imple-
mented successfully. The response is gzipped (Rule 4). As with most Google sites,
domain lookups are minimized (Rule 9). The scripts are minified (Rule 10). It
doesn’t use redirects (Rule 11). And the ETags are removed (Rule 13).

Make sure your Ajax requests follow the performance
guidelines, especially having a far future Expires header.

103

Chapter 15 CHAPTER 15

Deconstructing 10 Top Sites15

What follows is an examination of 10 top U.S. web sites using the rules and tools
described in this book. This analysis gives examples of how to identify performance
improvements in real-world web sites. My hope is that after walking through these
examples you will look at web sites with the critical eye of a performance advocate.

Page Weight, Response Time, YSlow Grade
Table 15-1 shows the page weight, response time, and YSlow grade for the home
pages of 10 top U.S. web sites as measured in early 2007. YSlow is a performance
tool developed at Yahoo! that produces a single score (A is best, F is worst) for how
well a page satisfies the performance rules described in this book. See the upcoming
section “How the Tests Were Done” for more information.

Table 15-1. Performance summary of 10 top U.S. web sites

Page weight Response time YSlow grade

Amazon 405K 15.9 sec D

AOL 182K 11.5 sec F

CNN 502K 22.4 sec F

eBay 275K 9.6 sec C

Google 18K 1.7 sec A

MSN 221K 9.3 sec F

MySpace 205K 7.8 sec D

Wikipedia 106K 6.2 sec C

Yahoo! 178K 5.9 sec A

YouTube 139K 9.6 sec D

104 | Chapter 15: Deconstructing 10 Top Sites

Not surprisingly, page weight and response time are strongly correlated, with a cor-
relation coefficient of 0.94, as shown in Figure 15-1. This makes sense—adding more
components or larger components to the page makes it slower. Plotting page weight
and response time throughout the development process is a worthwhile analysis for
any web page undergoing performance improvements.

YSlow grades are a strong indicator of the response time of a page, as shown in
Figure 15-2. A high (good) YSlow grade indicates a well-built page that is fast and
lean. A page with a low (bad) YSlow grade is probably going to be slow and heavier.
Since the YSlow grade is inversely related to response time and page weight, the
inverse YSlow grade is plotted in Figure 15-2. YSlow grades are typically indicated as
A, B, C, D, or F, but behind the letter grade is a numeric score on the scale 0–100.

Yahoo! doesn’t quite follow the curve. It has the second-best YSlow grade (its score
is A, at 95, which is slightly lower than Google’s A, a perfect 100) and response time,
even though it’s the fourth-heaviest page. The Yahoo! home page team is a long-time
consumer of these performance best practices, and therefore scores well in YSlow
and is able to squeeze more speed out of their page. Amazon’s YSlow grade also
doesn’t reflect the page weight and response time. The main reason for this is the
large number of images in their page (approximately 74 images). YSlow doesn’t
subtract points for images, so the Amazon page scores well, but performs slowly.

In general, we see that following these best practices results in a faster page. The cor-
relation coefficient for inverse YSlow grade and response time is 0.76, indicating a
strong correlation. This has been my experience in working with product teams at
Yahoo!. As pages are changed to adopt one rule after another, their response times

Figure 15-1. Page weight and response time are correlated

Am
az

on AO
L

CN
N

eB
ay

Go
og

le

M
SN

M
yS

pa
ce

W
ik

ip
ed

ia

Ya
ho

o!

Yo
uT

ub
e

Response time
Page weight

How the Tests Were Done | 105

get faster and faster. In the next section, “How the Tests Were Done,” I review the
tools and measurements used in this analysis. After that, we’ll jump into the perfor-
mance analysis of these 10 top web sites.

How the Tests Were Done
Reviewing these 10 top web sites illustrates how performance best practices are
followed in real world pages. A problem in doing an analysis of this type is that the
subject of the analysis is a moving target—these web sites are constantly changing.
For example, during my analysis one web site switched from IIS to Apache. It’s pos-
sible, and likely, that the page I analyzed is not the one you’ll see if you visit that web
site today. Ideally, the page you find will implement the suggestions and other best
practices highlighted here, and will perform well and load quickly.

The charts of HTTP requests were generated by IBM Page Detailer (http://
alphaworks.ibm.com/tech/pagedetailer). This is my preferred packet sniffer. It works
across all HTTP clients. I like the way IBM Page Detailer indicates how the HTTP
requests are associated to the corresponding HTML document. The HTTP chart
makes it easy to identify bottlenecks in component downloads. The bars are color-
coded to indicate the type of component being downloaded.

The response times were measured using Gomez’s web monitoring services (http://
www.gomez.com). The response time is defined as the time from when the request is
initiated to when the page’s onload event fires. Each URL was measured thousands of
times over low broadband (56K–512K); the average value is what is shown here.

Figure 15-2. YSlow grade is inversely correlated to page weight and response time

Am
az

on AO
L

CN
N

eB
ay

Go
og

le

M
SN

M
yS

pa
ce

W
ik

ip
ed

ia

Ya
ho

o!

Yo
uT

ub
e

Response time
Page weight
Inverse YSlow grade

http://alphaworks.ibm.com/tech/pagedetailer
http://alphaworks.ibm.com/tech/pagedetailer

106 | Chapter 15: Deconstructing 10 Top Sites

I used Firebug (http://www.getfirebug.com) to analyze the JavaScript and CSS in the
various pages. Firebug is a critical tool for any frontend engineer. Its strongest fea-
ture is the ability to debug JavaScript code, but that’s just a fraction of what it can
do. Firebug also provides functionality to inspect the DOM, tweak CSS, execute
JavaScript, and explore the page’s HTML.

The main tool used to analyze the performance of these pages was YSlow (http://
developer.yahoo.com/yslow). I built YSlow for Yahoo! development teams to help
them identify the changes that could lead to the greatest improvements in perfor-
mance. Joe Hewitt, Firebug’s author, provided support for the integration of YSlow
with Firebug. This is an ideal combination since frontend engineers already use Fire-
bug during development.

YSlow crawls the page’s DOM to find all the components in the page. It uses
XMLHttpRequest to find the response time and size of each component, as well as the
HTTP response headers. This, along with other information gathered from parsing
the page’s HTML is used to score each rule, as shown in Figure 15-3. The overall
YSlow grade is a weighted average of each rule’s score. YSlow provides other tools as
well, including a summary of the page’s components and an analysis of all the Java-
Script in the page using JSLint (http://jslint.com).

Figure 15-3. YSlow

http://jslint.com

Amazon | 107

Amazon

Amazon (http://www.amazon.com) is a relatively heavy page with a total page weight
of 405K and 84 HTTP requests. Given the size and number of components in the
page, the biggest performance improvement for Amazon would be to add a far future
Expires header to their components (Rule 3). Only 3 out of 84 components have an
Expires header. They use only one stylesheet and three scripts. The scripts are loaded
one after the other, so it would be a simple improvement to combine them into a
single HTTP request. The stylesheet and scripts should be gzipped. The three scripts
are minified to a large degree, but further savings could be gained by removing all
comments and extraneous carriage returns.

Figure 15-4. http://www.amazon.com

YSlow grade
Page weight
HTTP requests
Response time

D
405K
84
15.9 sec

http://www.amazon.com

108 | Chapter 15: Deconstructing 10 Top Sites

Even with the performance improvements identified by YSlow, the sheer number of
images in the page (74) is a challenge. Nineteen of these images are used as back-
grounds in CSS rules. Converting them into CSS sprites would reduce the total
HTTP requests from 84 to 66.

Looking at the subset of HTTP requests shown in the waterfall chart in Figure 15-5,
we see that because these images are all requested from the same hostname, only two
images are downloaded in parallel, increasing the total page load time. Splitting this
large number of images across two hostnames would double the amount of parallel
downloads, significantly reducing the end user response time. Two is the number of
hostnames recommended in Chapter 6 in the “Parallel Downloads” section.

Amazon | 109

Figure 15-5. Amazon HTTP requests

image
image
image
image
image
image
image
image
image
image
image
image
image
image

flash
image
image
image
image

html
script

image
DNS lookup

image
image
image
image
image
image
image
image
image

html
image

DNS lookup
image
image
image
image
image
image
image
image
image
image
image
image
image
image

DNS lookup
script
script
script

stylesheet
DNS lookup

html

...

110 | Chapter 15: Deconstructing 10 Top Sites

AOL

The HTTP requests for AOL (http://www.aol.com) show a high degree of paralleliza-
tion of downloads in the first half, but in the second half, the HTTP requests are
made sequentially (see Figure 15-7). In turn, the page load time is increased. There
are two interesting implementation details here: downgrading to HTTP/1.0 and
multiple scripts.

Figure 15-6. http://www.aol.com

YSlow grade
Page weight
HTTP requests
Response time

F
182K
65
11.5 sec

AOL | 111

Figure 15-7. AOL HTTP requests

html
DNS lookup

script
DNS lookup

stylesheet
script
script

image
DNS lookup

image
DNS lookup
DNS lookup

redirect
image

html
html
html

image
image
image
image
image
image
image

html
script

DNS lookup
image

redirect
image
image
image

DNS lookup
image
script

image
image
image
image
image
image
image
image

DNS lookup
image
script

image
image
image
image
image
script
script
script
script

image
DNS lookup

script
image
script
script

image
script
script
script

image
html

image
script
flash
flash

script
script

112 | Chapter 15: Deconstructing 10 Top Sites

In the first half, where there is greater parallelization, the responses have been down-
graded from HTTP/1.1 to HTTP/1.0. I discovered this by looking at the HTTP head-
ers where the request method specifies HTTP/1.1, whereas the response states HTTP/1.0.

GET /_media/aolp_v21/bctrl.gif HTTP/1.1
Host: www.aolcdn.com

HTTP/1.0 200 OK

For HTTP/1.0, the specification recommends up to four parallel downloads per host-
name, versus HTTP/1.1’s guideline of two per hostname. Greater parallelization is
achieved as a result of the web server downgrading the HTTP version in the
response.

Typically, I’ve seen this result from outdated server configurations, but it’s also pos-
sible that it’s done intentionally to increase the amount of parallel downloading. At
Yahoo!, we tested this, but determined that HTTP/1.1 had better overall perfor-
mance because it supports persistent connections by default (see the section “Keep-
Alive” in Chapter B).

There are no parallel downloads in much of the second half of AOL’s HTTP traffic
because most of these requests are scripts. As described in Chapter 6, all other down-
loading is blocked while the browser downloads external scripts. This results in a
small number of requests spreading out over a longer time period than if they were
done in parallel.

These scripts appear to be used for ads, but the insertion of the scripts seems ineffi-
cient. The scripts come in pairs. The first script contains:

document.write('<script type="text/javascript" src="http://twx.doubleclick.net/adj/
TW.AOLCom/Site_WS[snip...]script>\n');

This causes the second script to be downloaded from http://twx.doubleclick.net. It
contains the content of the ad:

document.write('<!-- Template Id = 4140 Template Name = AOL - Text - WS Portal ATF DR
2-line (291x30) -->\nFree Credit Score[snip...]');

There are 6 ads done this way, totaling 12 external scripts that have to be down-
loaded. If each ad could be called and downloaded using just one script per ad, six
HTTP requests could be eliminated. These additional requests have a significant
impact on the page load time because they’re scripts that block all other downloads.

The other areas for greatest improvement are:

Rule 3: Add an Expires Header
More than 30 images aren’t cached because they don’t have an Expires header.

AOL | 113

Rule 4: Gzip Components
One of the stylesheets and 20 of the scripts aren’t compressed.

Rule 9: Reduce DNS Lookups
Eleven domains are used, meaning delays from extra DNS lookups are more
likely.

There are four beacons served in the page, and three more are sent after the page has
finished loading. A nice performance aspect of these beacons is that they use the
“204 No Content” status code. This status code is ideal for beacons because it does
not contain an entity body, making the responses smaller.

114 | Chapter 15: Deconstructing 10 Top Sites

CNN

CNN (http://www.cnn.com) is the heaviest of the 10 top web sites in both total page
weight (502K) and number of HTTP requests (198!). The main reason for this is the
use of images to display text. For example, the image http://i.a.cnn.net/cnn/element/
img/1.5/main/tabs/topstories.gif is the text “Top Stories,” as shown in Figure 15-9.

Figure 15-8. http://www.cnn.com

Figure 15-9. Text rendered in an image

YSlow grade
Page weight
HTTP requests
Response time

F
502K
198
22.4 sec

http://www.cnn.com
http://i.a.cnn.net/cnn/element/img/1.5/main/tabs/topstories.gif
http://i.a.cnn.net/cnn/element/img/1.5/main/tabs/topstories.gif

CNN | 115

Over 70 images contain only text. Capturing text as an image allows for a custom-
ized appearance that may not be possible with text fonts. The tradeoff, as seen in the
download statistics, is an increase in page weight and HTTP requests, resulting in a
slower user experience. Also, internationalization is more challenging, as each trans-
lation requires a new set of images. Rule 1 tells us that reducing the number of
components is the most important step to faster performance. Replacing these
images with text would yield the biggest performance improvement for this page.

Similarly, there are 16 images used for CSS backgrounds. If these were combined
into a few CSS sprites, as described in Chapter 1, 10 or more HTTP requests would
be eliminated. Combining the 10 separate JavaScript files together would eliminate
another 9 HTTP requests.

Further, more than 140 of the components in the page do not have an Expires
header and thus are not cached by the browser (Rule 3). None of the stylesheets or
scripts is gzipped (Rule 4) and most of the scripts aren’t minified (Rule 10). The
stylesheets add up to 87K and the scripts are 114K, so gzipping and minifying would
significantly reduce the total page weight. Over 180 of the components have the
default ETag from Apache. As described in Chapter 13, this means that it’s unlikely
the more efficient 304 status code can be used when conditional GET requests are
made. This is especially bad in this case because most components must be validated
since they don’t have a future Expires header.

116 | Chapter 15: Deconstructing 10 Top Sites

eBay

The YSlow grade for eBay (http://www.ebay.com) is very close to a B. With a little bit
of work it would perform well. The main problems are with Rules 1, 3, 9, and 13.

Figure 15-10. http://www.ebay.com

YSlow grade
Page weight
HTTP requests
Response time

C
275K
62
9.6 sec

http://www.ebay.com

eBay | 117

Rule 1: Make Fewer HTTP Requests
The eBay page has 10 scripts and 3 stylesheets. A simple fix would be to use the
combination technique described in Chapter 1. Four of the scripts are loaded
close together at the top of the page, and three are at the bottom of the page.
These should be combined into a top script and a footer script, reducing 10
scripts to 5. The three stylesheets are all loaded close together and should also be
combined.

Rule 3: Add an Expires Header
One script and one stylesheet have an Expires header that is only nine hours in
the future. According to the Last-Modified date, the stylesheet hasn’t been modi-
fied in 3 days, and the script in 24 days. These are likely assets that change over
time, but given the number of users of the site, it would be better to use a far
future Expires header to make these files cacheable. Additionally, there are five
IFrames without an Expires header. These are used to insert ad images, some of
which don’t have an Expires header as well.

Rule 9: Reduce DNS Lookups
Nine different domains are used in the eBay page. Typically, a domain count this
high includes several domains from third-party advertisers, but in this case, there
are seven domains related to eBay, and only two used by third-party advertisers.

Rule 13: ETags—Configure ETags
Fifty-two components are served from IIS using the default ETag. As explained
in Chapter 13, this causes components to be downloaded much more frequently
than necessary. This is exacerbated by the fact that these components have an
expiration date that is at most 45 days in the future. As the components become
stale and the conditional GET request is made, the ETag is likely to spoil the
chances of getting a fast “304 Not Modified” response, and instead end up send-
ing back the entire component even though it already resides on the user’s disk.

The use of IFrames to serve ads is worth discussing. IFrames achieve a clear separa-
tion between ads and the actual web page, allowing those teams and systems to work
independently. The downside is that each IFrame is an additional HTTP request that
typically (as in this case) is not cached.

Using IFrames to serve ads is further justified because ads often contain their own
JavaScript code. If the ad content is coming from a third party and includes Java-
Script, placing it in an IFrame sandboxes the JavaScript code, resulting in greater
security (the third party’s JavaScript code cannot access the web page’s namespace).
However, in eBay’s page, the ads served in IFrames include no JavaScript. Further-
more, only one contains third-party content. Inserting the ads during HTML page
generation would eliminate these five HTTP requests for IFrames.

An additional improvement would be to split the bulk of the images across two host-
names. Thirty-six of the 41 images come from http://pics.ebaystatic.com. In HTTP/1.1,
only two components per hostname are downloaded in parallel (see Chapter 6). This
has a negative effect on the degree of HTTP request parallelization (see Figure 15-11).

118 | Chapter 15: Deconstructing 10 Top Sites

Figure 15-11. eBay HTTP requests

html
DNS lookup

script
stylesheet
stylesheet

script
script
script

stylesheet
DNS lookup

image
script

image
script

image
image
image
image
image
image
image
image
image
image
image
image

DNS lookup
image
image
image
image
image
script

image
DNS lookup

image
image
image

html
html

script
image
image

html
html

image
image
image

DNS lookup
DNS lookup

html
redirect

image
redirect

image
image

DNS lookup
DNS lookup

image
image
image
image
image
image
image
image

DNS lookup
image

html
script
script
script

image

eBay | 119

Most of these 36 images are downloaded in the middle of the graph, where you can
see a clear stairstep pattern of just two requests at a time. If these were split across
http://pics1.ebaystatic.com and http://pics2.ebaystatic.com, for example, four images
could be downloaded in parallel, thus speeding up the overall page load time. There
is a trade-off in performance between splitting images across multiple hostnames and
reducing DNS lookups (Rule 9), but in this case, downloading 36 images, 4 at a time,
is worth an extra DNS lookup.

A nice performance trait is that three of the scripts are downloaded at the bottom of
the page. These scripts are related to the user’s eBay “Favorites” and are probably
not required for rendering the page. eBay has followed the recommended practice
here of loading scripts at the bottom, which Chapter 6 explained as valuable because
it doesn’t block downloading and rendering.

120 | Chapter 15: Deconstructing 10 Top Sites

Google

Google is known for its simple and fast page design. Its home page, http://www.
google.com, is just 18K in total page size and issues just 3 HTTP requests (the HTML
document and 2 images). However, even in this simple page there are several perfor-
mance optimizations worth noting.

The Google page is just three HTTP requests, but Figure 15-13 shows five HTTP
requests.

The two extra requests aren’t really part of the page. One is http://www.google.com/
favicon.ico (see Figure 15-14). Favicons are used to associate a visual image with a
URL. They are displayed next to the URL at the top of the browser, next to each
URL in the list of Bookmarks or Favorites, and in tabs (for tab-enabled browsers).
Browsers fetch them the first time a web site is loaded. If a web site doesn’t have a
favicon, a default icon is used.

Figure 15-12. http://www.google.com

Figure 15-13. Google HTTP requests

YSlow grade
Page weight
HTTP requests
Response time

A
18K
3
1.7 sec

html
image
image
image
image

http://www.google.com/favicon.ico
http://www.google.com/favicon.ico

Google | 121

The second extra request is for http://www.google.com/images/nav_logo3.png, shown
in Figure 15-15. This is a CSS sprite, a combination of images that was described in
Chapter 1. I say it is not part of the page because it is loaded after the page is done,
as part of the onload event in the Google home page:

onload="sf();if(document.images){new Image().src='/images/nav_logo3.png'}"

The sf() function call sets the input focus to the search field. The second statement
creates an image object using new Image(). The image object’s src attribute is set to
/images/nav_logo3.png. This is a typical way to load images dynamically, except for
one thing: the new image isn’t assigned to a variable. There is no easy way for the
page to access this image later. That’s OK, though, because this page has no inten-
tion of using the image. The nav_logo3.png image is downloaded in anticipation of
future pages the user is expected to visit. Notice how this CSS sprite has the next and
previous arrows used to page through the search results. It also contains images used
in other pages, such as a checkout button and shopping cart.

This is called preloading. In situations where the next page the user will visit is highly
predictable, components needed by that subsequent page are downloaded in the
background. In the Google page, however, there is one problem: nav_logo3.png isn’t
used by any subsequent pages. After submitting a search from http://www.google.com,
the user goes to http://www.google.com/search. The search results page loads http://
www.google.com/images/nav_logo.png (no “3” after “logo”). As shown in Figure 15-16,
nav_logo.png is similar to nav_logo3.png. It’s also a CSS sprite.

Figure 15-14. http://www.google.com/favicon.ico

Figure 15-15. http://www.google.com/images/nav_logo3.png

Figure 15-16. http://www.google.com/images/nav_logo.png

http://www.google.com/images/nav_logo3.png
http://www.google.com
http://www.google.com/search
http://www.google.com/images/nav_logo.png
http://www.google.com/images/nav_logo.png

122 | Chapter 15: Deconstructing 10 Top Sites

Why did the Google home page preload nav_logo3.png if it’s not used on the search
results page? It’s possible it’s preloaded for other Google sites, but I visited http://
froogle.google.com, http://catalogs.google.com, http://books.google.com, and several
others. None of them used nav_logo3.png. Perhaps this is left over from a previous
design and just hasn’t been cleaned up. It could also be a foreshadowing of a future
site integration strategy (hence the “3”). Despite this apparently wasteful download
on the Google home page, don’t be dissuaded. Preloading is a good strategy for
improving the page load times of secondary pages on your site.

Another interesting performance optimization in the Google home page is the use of
the SCRIPT DEFER attribute. In Chapter 6, I describe how the DEFER attribute doesn’t
completely resolve the negative performance impacts that scripts have when they
block downloads and rendering. However, that was in regard to external scripts; in
this case, the script is inlined:

<script type="text/javascript" defer><!--
function qs(el){...
function togDisp(e){...
function stopB(e){...
document.onclick=function(event){...
//-->
</script>

Using the DEFER attribute avoids possible rendering delays by telling the browser to
continue rendering and execute the JavaScript later, but I’ve never seen it used for
inline scripts. The justification for using it with an inline script may be that parsing
and executing the JavaScript code could delay rendering the page. In this case, how-
ever, a problem is that after this SCRIPT block, there is a link that relies on the togDisp
function to display a pop-up DIV of “more” links:

more

If using the DEFER attribute allowed the page to render without executing the togDisp
function definition, a race condition would be created. If the “more” link is rendered
and the user clicks on it before the JavaScript is executed, an error would occur. The
use of DEFER on inline scripts is an area for further investigation.

These suggestions, however, are far beyond the typical performance improvements
needed on most sites. The Google page scores a perfect 100 in YSlow—it is one of
the fastest pages on the Internet.

http://froogle.google.com
http://froogle.google.com
http://catalogs.google.com
http://books.google.com

MSN | 123

MSN

The MSN home page (http://www.msn.com), ranks in the middle among the sites
examined in this chapter when it comes to total size and number of HTTP requests.
It fails to meet some basic performance guidelines, due especially to the way ads are
inserted. However, it has several positive performance traits not seen in any of the
other web sites analyzed here. Let’s start by looking at how MSN does ads, because
this will come up in several of the following recommendations.

Figure 15-17. http://www.msn.com

YSlow grade
Page weight
HTTP requests
Response time

F
221K
53
9.3 sec

124 | Chapter 15: Deconstructing 10 Top Sites

MSN uses IFrames to insert five ads into the page. As discussed earlier, with regard
to eBay, using IFrames is an easy way to remove dependencies between the ads sys-
tem and the HTML page generation system. However, each IFrame results in an
additional HTTP request. In the case of MSN, each IFrame’s SRC attribute is set to
about:blank, which doesn’t generate any HTTP traffic. However, each IFrame con-
tains an external script that inserts an ad into the page using JavaScript and
document.write. Integrating the ad system and the HTML page generation system
would preclude the need for these five HTTP requests. Instead of requesting a script
that contains multiple document.write statements, that JavaScript could be inlined in
the HTML document.

Rule 1: Make Fewer HTTP Requests
The MSN home page has four scripts (other than the scripts used for ads), three
of which are loaded very close together and could be combined. It also has over
10 CSS background images. These could be combined using CSS sprites.

Rule 3: Add an Expires Header
One script is not cacheable because its expiration date is set in the past. The five
scripts used to insert ads also have an expiration date in the past, and so they
aren’t cacheable. It’s likely the JavaScript couldn’t be cached, but if the ads were
inserted into the HTML page itself, these five external script files wouldn’t be
required.

Rule 4: Gzip Components
Two scripts and two stylesheets are not gzipped. Also, the five scripts used to
serve ads are not gzipped.

Rule 9: Reduce DNS Lookups
Twelve domains are used in the MSN home page. This is more than most web
pages, but we’ll discuss later how this is a benefit in increasing parallel down-
loads.

Rule 10: Minify JavaScript
The five scripts used to serve ads are not minified.

Rule 13: ETags—Configure ETags
Most of the components in the page have ETags that follow the default format
for IIS. The same images downloaded from different servers have different
ETags, meaning they will be downloaded more frequently than needed.

Several noteworthy performance optimizations exist in the MSN home page:

• It uses a CSS sprite (http://stc.msn.com/br/hp/en-us/css/19/decoration/buttons.gif),
one of the few 10 top web sites to do so (the others are AOL and Yahoo!). This
sprite is shown in Figure 15-18.

http://stc.msn.com/br/hp/en-us/css/19/decoration/buttons.gif

MSN | 125

• The entire HTML document is minified. None of the other web sites do this.

• Components are split across multiple hostnames for increased parallelized
downloads, as shown in Figure 15-19. This is done in a very deliberate way—all
CSS images are from a different hostname from the other images displayed in the
page.

MSN clearly has people on its staff focused on some aspects of performance.
However, integrating the ads with the HTML page and fixing a few web server
configuration settings would greatly improve the performance of their page.

Figure 15-18. Images stored in MSN site’s sprite

126 | Chapter 15: Deconstructing 10 Top Sites

Figure 15-19. MSN HTTP requests

html
DNS lookup

image
stylesheet
stylesheet

DNS lookup
script

DNS lookup
script

stylesheet
image

DNS lookup
script

image
DNS lookup
DNS lookup

image
image
image

DNS lookup
image
image
image

DNS lookup
image

DNS lookup
image
image
image
image

html
image
image
image
image
image
image
image

DNS lookup
image
image
image

redirect
image
image

html
image
image
image
image

redirect
image
image
image

html
image
image

DNS lookup
image
script

image
image
image
image
image

MySpace | 127

MySpace

It’s a challenge for web sites geared toward user-generated content to achieve fast
performance—the content is varied and changes frequently. Nevertheless, there are
some simple changes that would improve the response time of MySpace (http://www.
myspace.com).

Figure 15-20. http://www.myspace.com

YSlow grade
Page weight
HTTP requests
Response time

D
205K
39
7.8 sec

128 | Chapter 15: Deconstructing 10 Top Sites

Rule 1: Make Fewer HTTP Requests
Combining scripts and stylesheets would reduce the number of HTTP requests.
The page has six scripts, three of which are loaded close together at the top of
the page and could easily be combined. The three stylesheets are also loaded
close together at the top of the page, making it easy to combine them as well.

Rule 3: Add an Expires Header
The MySpace page has over a dozen images with no Expires header. Some of the
images in the page understandably wouldn’t benefit from an Expires header
because they rotate frequently, such as in the new videos and new people sec-
tions of the page. However, some of the images that are used on every page also
do not have an Expires header.

Rule 9: Reduce DNS Lookups
The impact of DNS lookups would be reduced by eliminating some of the 10
unique domains used in the page.

Rule 10: Minify JavaScript
Four scripts, totaling over 20K, are not minified.

As shown in Figure 15-21, there’s a high degree of parallelized HTTP requests in the
middle of the page, but the beginning of the page is negatively affected by the block-
ing behavior of scripts and stylesheets (this blocking behavior is described in
Chapter 6). Combining these files would lessen the impact. The effect is worse here
because the HTTP requests were measured in Firefox. In addition to scripts block-
ing parallel downloads (in both Firefox and Internet Explorer), stylesheets also block
parallel downloads (only in Firefox). Nevertheless, combining scripts and doing the
same for stylesheets would improve the performance for both Firefox and Internet
Explorer.

MySpace | 129

Figure 15-21. MySpace HTTP requests

html
DNS lookup

script
script

stylesheet
stylesheet

script
image
image

DNS lookup
stylesheet

image
image
image

DNS lookup
image

DNS lookup
DNS lookup

image
DNS lookup
DNS lookup

html
DNS lookup

image
script

image
html

image
image
image
image
image
image
image

DNS lookup
image
image
image
image
script

image
image
image
image
script

image
DNS lookup

image
image

130 | Chapter 15: Deconstructing 10 Top Sites

Wikipedia

The Wikipedia page is relatively small and fast. It would be faster if the 10 images
used as navigation icons at the bottom of the page were converted to a CSS sprite.
Further, there are two stylesheets that should be combined. These simple improve-
ments would reduce the page’s HTTP requests from 16 to just 6: the HTML docu-
ment, 1 stylesheet, 3 images, and 1 CSS sprite.

Figure 15-22. http://www.wikipedia.org

YSlow grade
Page weight
HTTP requests
Response time

C
106K
16
6.2 sec

Wikipedia | 131

None of the images has an Expires header. This is the second-most important perfor-
mance improvement for Wikipedia. Some of the images haven’t been modified in
over a year. Adding a far future Expires header would improve the response time for
millions of users, without adding much burden to the development process when
images change.

Also, the stylesheets should be gzipped. They currently total about 22K, and gzip-
ping them would reduce the number of bytes downloaded to 16K.

Most of Wikipedia’s images are in PNG format. The PNG format is frequently cho-
sen over GIF because of its smaller file size, as well as greater color depth and trans-
parency options. It’s likely that using the PNG format saved Wikipedia several
kilobytes of data to download (it’s not possible to convert their PNG images to GIF
for comparison because of the loss of color depth). However, even after choosing the
PNG format, further optimization can bring the file sizes down even more. For
example, optimizing Wikipedia’s 12 PNG images brought the total size from 33K
down to 28K, a 15% savings. There are several PNG optimizers available—I used
PngOptimizer (http://psydk.org/PngOptimizer.php). Adding a PNG optimization step
to their development process would improve Wikipedia’s performance.

http://psydk.org/PngOptimizer.php

132 | Chapter 15: Deconstructing 10 Top Sites

Yahoo!

Yahoo! (http://www.yahoo.com) is the fourth-heaviest page in total bytes among the
ones examined in this chapter, but second in response time and YSlow grade. The
Yahoo! home page team has been engaged with my performance team for years, and
is constantly tracking and working to improve response times. As a result, their
YSlow scores are high, and they are able to squeeze more speed out of their page.

Yahoo!’s home page has four CSS sprite images. It has been using sprites for years
and was the first web site in which I encountered the use of sprites. One of these
sprites is icons_1.5.gif. Looking at the list of components, we see that this image is

Figure 15-23. http://www.yahoo.com

YSlow grade
Page weight
HTTP requests
Response time

A
178K
40
5.9 sec

Yahoo! | 133

downloaded twice. On further investigation, the issue is that two URLs reference the
exact same image:

http://us.js2.yimg.com/us.js.yimg.com/i/ww/sp/icons_1.5.gif
http://us.i1.yimg.com/us.yimg.com/i/ww/sp/icons_1.5.gif

How does a mistake like this happen? Template variables are most likely used to
build these URLs. The CSS rules that include this background image are both inlined
in the HTML document, so presumably both had access to the same template vari-
ables. The us.js2.yimg.com hostname is used for all of the scripts, and us.i1.yimg.com
is used solely for images and Flash. Most likely, the “JavaScript” hostname, us.js2.
yimg.com, was accidentally used for this CSS background image.

This look at the use of hostnames reveals some nice performance optimizations in
the Yahoo! home page. They have split their components across multiple host-
names, resulting in an increase in simultaneous downloads, as shown in
Figure 15-24. Also, they have chosen the domain yimg.com, which is different from
the page’s hostname, yahoo.com. As a result, the HTTP requests to yimg.com will not
be encumbered with any cookies that exist in the yahoo.com domain. When I’m
logged in to my personal Yahoo! Account, my yahoo.com cookies are over 600 bytes,
so this adds up to a savings of over 25K across all the HTTP requests in the page.

The names of two elements are intriguing: onload_1.3.4.css and onload_1.4.8.js. In
Chapters 5 and 6 I talk about the negative impact that stylesheets and scripts have on
performance (stylesheets block rendering in the page, and scripts block rendering
and downloading for anything after them in the page). An optimization around this
that I described in Chapter 8 is downloading these components after the page has
finished loading, thus eliminating the negative blocking effect. This more extreme
approach is applicable only when the stylesheet or script is not necessary for the ren-
dering of the initial page. In the case of the Yahoo! home page, this stylesheet and
script are most likely used for DHTML actions that occur after the page has loaded.
For example, clicking on the “More Yahoo! Services” link displays a DHTML list of
links to other Yahoo! properties. This functionality, which happens after the page
has loaded, is contained in onload_1.3.4.css.

The main improvements that could be made to the Yahoo! home page, other than
removing the duplicate CSS background image described earlier, would be to reduce
the number of domains (seven) and combine the three scripts that are loaded as part
of the page. Minifying the HTML document (as MSN does) would reduce it from
117K to 29K. Overall, the Yahoo! home page demonstrates several advanced perfor-
mance optimizations and has a fast response time given the content and functional-
ity included in the page.

http://us.js2.yimg.com/us.js.yimg.com/i/ww/sp/icons_1.5.gif
http://us.i1.yimg.com/us.yimg.com/i/ww/sp/icons_1.5.gif

134 | Chapter 15: Deconstructing 10 Top Sites

Figure 15-24. Yahoo! HTTP requests

DNS lookup
html

DNS lookup
image
image
script

image
image
image
image
image

DNS lookup
image
image
image
image

DNS lookup
image
script

image
image
image
image
image
image
image
image
image
image

DNS lookup
image
image
script

image
DNS lookup

image
image
image
image
image
image
image

stylesheet
image

flash
script

YouTube | 135

YouTube

YouTube’s home page (http://www.youtube.com) isn’t very heavy, but it has a low
YSlow grade and ends up in the bottom half of response times. Figure 15-26 shows
that there isn’t very much parallelization at the beginning and end. Increasing the
level of parallelization in these areas would make the greatest improvement to
response times.

Figure 15-25. http://www.youtube.com

YSlow grade
Page weight
HTTP requests
Response time

D
139K
58
9.6 sec

136 | Chapter 15: Deconstructing 10 Top Sites

Figure 15-26. YouTube HTTP requests

html
stylesheet
stylesheet

script
image
script
script
script
script
html

image
image

DNS lookup
image
image
image
image
image

DNS lookup
image
image
script

image
image
image
image
image
image
image
image
image

DNS lookup
image
image
script

image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image

YouTube | 137

In the beginning of the page load, the main hurdle to parallelization is the six scripts
downloaded back-to-back. As explained in Chapter 6, scripts block all other down-
loads, no matter what their hostnames are. Additionally, the scripts aren’t minified.
Combining these six scripts into a single script and minifying them would decrease
the download time. Also, if any of these scripts could be downloaded later in the
page, the initial part of the page would be downloaded and rendered sooner.

At the end of the page, decreased parallelization results from downloading 15 images
from a single hostname (img.youtube.com). YouTube only uses four unique host-
names in their page. It would be worth the cost of an extra DNS lookup to split these
15 downloads across two hostnames and double the amount of simultaneous down-
loads.

Sadly, not a single component has a far future Expires header (Rule 3). Most of the
components in the page are user-generated images that rotate frequently. Adding an
Expires header to these might have little benefit, but the other components in the
page don’t change so often. Eleven of the components haven’t changed in six months
or more. Adding a far future Expires header to these components would improve the
response times for subsequent page views.

YouTube uses the Apache web server, and their components still contain Etags, but
YouTube has made the extra effort to modify the ETag syntax to improve their
cacheability, as explained in Chapter 13.

139

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
204 No Content status code

AOL, 113
300 Multiple Choices (based on

Content-Type) status code, 76
301 Moved Permanently status code, 76
302 Moved Temporarily (a.k.a. Found) status

code, 76
303 See Other (clarification of 302) status

code, 76
304 Not Modified status code, 76, 90
304 responses, 8
305 Use Proxy status code, 76
306 status code (no longer used), 76
307 Temporary Redirect (clarification of 302)

status code, 76

A
Accept-Encoding, 33
ads, serving, 117
Ajax, 96–102

active requests, 98
caching examples, 99–102

Google Docs & Spreadsheets, 101
Yahoo! Mail, 99–101

defined, 97
far future Expires header, 102
optimizing requests, 99
passive requests, 98

relationship between Web 2.0, DHTML,
and Ajax, 96

technologies behind, 98
Yahoo! UI (YUI) Connection Manager for

Ajax, 98
Akamai Technologies, Inc., 19
Alias directive, 80, 81
Amazon

CSS sprites, 108
Expires header, 107
percentage of time downloading, 4
performance recommendations, 107
(see also top 10 U.S. web sites)

AOL
204 No Content status code, 113
beacons, 113
DNS lookups, 113
Expires header, 112
gzip, 113
HTTP requests, 110
percentage of time downloading, 4
performance recommendations, 110–113
scripts, 112
(see also top 10 U.S. web sites)

Apache 1.3 mod_gzip module, 31
Apache 2.x mod_deflate module, 32
application web servers, proximity to

users, 18
autoindexing, 80

140 | Index

B
beacons, 82

AOL, 113
warning, 83

BrowserMatch directive, 34
browsers, when they act differently, 44

C
cache, DNS, 66
cache, empty versus primed, 56
Cacheable External JS and CSS

(example), 58
Cache-Control header, 23, 35

max-age directive, 23
top 10 U.S. web sites, 24

CDN (example), 20
CDN (see content delivery network)
client-side image maps, 11
CNAMEs (DNS aliases), 47, 81
CNN

CSS sprites, 115
percentage of time downloading, 4
performance recommendations, 114–115
text as image, 115
(see also top 10 U.S. web sites)

CoDeeN, 20
Combined Scripts (example), 16
component web servers, proximity to

users, 18
components

delayed, 38
ensuring users get latest version, 27
exaggerating response times of, 39
example with changing ETag, 94
far future Expires header, 25–27
how they are cached and validated, 89–91

conditional GET requests, 90
ETags, 91
Expires header, 89
Last-Modified response header, 90

reuse, 57
stylesheets (see stylesheets)
unnecessary reloading, 92
ways server determines whether

component matches one on origin
server, 90

compression
deflate (see deflate)
edge cases, 34–35
how it works, 29
HTTP, 7

HTTP responses (see gzip)
page weight savings, 36
sizes using deflate and gzip, 31
what to compress, 30

conditional GET requests, 3, 7, 8, 90
ETags, 8
If-None-Match headers, 8

content delivery network (CDN), 18–21
Akamai Technologies, Inc., 19
benefits, 20
CoDeeN, 20
CoralCDN, 20
defined, 19
drawbacks, 20
Globule, 20
Limelight Networks, Inc., 19
Mirror Image Internet, Inc., 19
response time improvements, 20
SAVVIS Inc., 19
service providers, 19

free, 20
top 10 U.S. web sites, 19

Speedera Networks, 19
content, geographically dispersed, 18
CoralCDN, 20
Crockford, Douglas, 70
CSS, 55–62

combined, 15–16
dynamic inlining, 60–62
examples

CSS at the Bottom, 39
CSS at the Top, 41
CSS at the Top Using @import, 41
CSS Flash of Unstyled Content, 43
CSS Sprites, 13
Expression Counter, 52

expressions, 51–54
event handlers, 53
one-time expressions, 52
techniques for avoiding problems, 52
updating, 52
what makes them bad for

performance, 51
home pages, 58
inline versus external, 55–58

component reuse, 57
empty cache versus primed cache, 56
inline examples, 55
page views, 56
tradeoffs, 58

minifying, 75
post-onload download, 59

Index | 141

sprites, 11–13
Amazon, 108
CNN, 115
Google, 121
MSN, 124
Wikipedia, 130
Yahoo!, 132

D
data: URL scheme, 13

main drawback, 14
Deferred Scripts (example), 50
deflate, 30

compression sizes, 31
delayed components, 38
DELETE request, 6
DHTML

defined, 97
relationship between Web 2.0, DHTML,

and Ajax, 96
DirectorySlash, 80, 81
DNS (Domain Name Service)

aliases, 47
browser whitelist approach, 34
cache, 66
role of, 63

DNS lookups, 63–68
AOL, 113
browser perspective, 66–68

Firefox, 67
Internet Explorer, 66

caching and TTLs, 63–66
maximum TTL values sent to clients

for top 10 U.S. web sites, 65
eBay, 117
factors affecting caching, 64
Keep-Alive, 67, 68
MSN, 124
MySpace, 128
reducing, 68

Dojo Compressor, 70
size reductions

after gzip compression, 74
size reductions using, 71

Domain Name System (see DNS; DNS
lookups)

downloads
parallel, 46–48

cost, 47
limiting, 46

scripts blocking, 48
Duplicate Scripts—10 Cached (example), 87

Duplicate Scripts—Cached (example), 86
Duplicate Scripts—Not Cached

(example), 86
Dynamic Inlining (example), 61

E
eBay

DNS lookups, 117
ETags, 117
Expires header, 117
HTTP requests, 117
IFrames, 117
images, 117
percentage of time downloading, 4
performance recommendations, 116–119
scripts, 119
(see also top 10 U.S. web sites)

Entity tags (see ETags)
ETags, 35, 89–95

conditional GET requests, 8
defined, 89
eBay, 117
effectiveness of proxy caches, 92
example of component with changing

ETag, 94
format for Apache 1.3 and 2.x, 92
format for IIS, 92
MSN, 124
options, 93
problem with, 91
removing, 93
top 10 U.S. web sites, 94–95
YouTube, 137

event handlers, 53
example, 53

Everything Gzipped (example), 35
examples

Cacheable External JS and CSS, 58
CDN, 20
Combined Scripts, 16
CSS at the Bottom, 39
CSS at the Top, 41
CSS at the Top Using @import, 41
CSS Flash of Unstyled Content, 43
CSS Sprites, 13
Deferred Scripts, 50
Duplicate Scripts—10 Cached, 87
Duplicate Scripts—Cached, 86
Duplicate Scripts—Not Cached, 86
Dynamic Inlining, 61
Event Handler, 53
Everything Gzipped, 35

142 | Index

examples (continued)
Expression Counter, 52
External JS and CSS, 55
Far Future Expires, 28
HTML Gzipped, 35
Image Beacon, 83
Image Map, 11
Inline CSS Images, 14
Inline Images, 14
Inlined JS and CSS, 55
Large Script Minified, 72
Large Script Normal, 72
Large Script Obfuscated, 72
No CDN, 20
No Expires, 28
No Image Map, 11
Nothing Gzipped, 35
One-Time Expressions, 53
Post-Onload Download, 59
Scripts at the Bottom, 50
Scripts at the Top, 49
Scripts Block Downloads, 48
Scripts in the Middle, 45
Scripts Top vs. Bottom, 50
Separate Scripts, 16
Small Script Minified, 72
Small Script Normal, 72
Small Script Obfuscated, 72
where to find online, xv
XMLHttpRequest Beacon, 83

Expires header, 8, 22–28, 89
alternative, 23
Amazon, 107
AOL, 112
components

ensuring users get latest version, 27
top 10 U.S. web sites, 26

defined, 22
eBay, 117
empty cache versus primed cache, 24
mod_expires, 23
MSN, 124
MySpace, 128
top 10 U.S. web sites, 24
Wikipedia, 131
YouTube, 137
(see also far future Expires header)

Expression Counter (example), 52
expression method (see CSS, expressions)
External JS and CSS (example), 55

F
Far Future Expires (example), 28
far future Expires header, 25, 100

Ajax, 102
cached, 28
components, 25–27
definition, 23
examples, 28
page views, 24

Fasterfox, 68
favicons, 120
file_get_contents PHP function, 14
fileETag directive, 93
Firebug, 106
Firefox

deferred scripts, 50
DNS lookups, 67
duplicate scripts, 86
parallel downloads, 46
pipelining, 9
progressive rendering, 44

frontend performance, 1–5

G
Garrett, Jesse James, 97, 98
geographically dispersed content, 18
GET requests, 6

conditional (see conditional GET
requests)

Globule, 20
Gomez, 21

web monitoring services, 105
Google

CSS sprites, 121
HTTP requests, 120
percentage of time downloading, 4
performance recommendations, 120–122
SCRIPT DEFER attribute, 122
(see also top 10 U.S. web sites)

Google Docs & Spreadsheets, 101
Google Toolbar, redirects, 84
gzip, 29–36

AOL, 113
command-line utility, 32
compression

edge cases, 34–35
compression sizes, 31
configuring

Apache 1.3 mod_gzip module, 31
Apache 2.x mod_deflate module, 32

examples, 35

Index | 143

how compression works, 29
images and PDF files, 30
minification, 74
mod_gzip documentation, 34
MSN, 124
problems in IE, 34
proxy caching, 33
top 10 U.S. web sites, 30
what to compress, 30
Wikipedia, 131

H
HEAD request, 6
Hewitt, Joe, 106
home pages, 58
hostnames, reducing, 68
HTML Gzipped (example), 35
HTTP

304 responses, 8
compression, 7
Expires header, 8
GET request, 6

conditional, 7
GET requests

conditional, 8
Keep-Alive, 8
overview, 6–9
Persistent Connections, 8
pipelining, 9
responses, compressing (see gzip)
specification, 6, 9
traffic, 3

HTTP requests, 10–17
AOL, 110
CSS sprites, 11–13
eBay, 117
Google, 120
image maps, 10

client-side, 11
drawbacks, 11
server-side, 11

inline images, 13–15
JavaScript and CSS combined, 15–16
MSN, 123, 124
MySpace, 128
post-onload download technique, 16
types of, 6
Yahoo!, 133

http: scheme, 13
Hyatt, David, 43

I
IBM Page Detailer, 105
If-None-Match headers, 8
IFrames

eBay, 117
MSN, 124

Image Beacon (example), 83
Image Map (example), 11
image maps, 10

client-side, 11
drawbacks, 11
server-side, 11

images
cached and uncached, 3
eBay, 117
gzipping, 30
inline, 13–15

Inline CSS Images (example), 14
inline images, 13–15
Inline Images (example), 14
Inlined JS and CSS (example), 55
inodes, 92
internationalization, 115
Internet Explorer

data: scheme, 14
deferred scripts, 50
DNS lookups, 66
duplicate scripts, 87
gzip bugs, 34
parallel downloads, 46
pipelining, 9
problems with gzip, 34
progressive rendering, 43
XMLHTTP, 98

J
JavaScript, 55–62

combined, 15–16
debugging code tool, 106
dependencies and versioning, 87
duplicate scripts, 85–88

avoiding, 87
performance, 86

dynamic inlining, 60–62
home pages, 58
inline scripts

minifying, 73
inline versus external, 55–58

component reuse, 57
empty cache versus primed cache, 56
inline examples, 55

144 | Index

JavaScript (continued)
page views, 56
tradeoffs, 58

minification, 69–75
defined, 69
examples, 72
MSN, 124
MySpace, 128
savings, 70–72

obfuscation, 70
post-onload download, 59
script management module, 87
squeezing waste out of, 73–75
(see also scripts)

JSLint, 106
JSMin, 70

size reductions
after gzip compression, 74
using, 71

K
Keep-Alive, 8

DNS lookups, 67, 68
Firefox versus IE, 67

Keynote Systems, 21

L
Large Script Minified (example), 72
Large Script Normal (example), 72
Large Script Obfuscated (example), 72
Last-Modified dates, 26
Last-Modified header, 26
Last-Modified response header, 90
Limelight Networks, Inc., 19

M
max-age directive, 23

top 10 U.S. web sites, 24
minification

defined, 69
JavaScript (see JavaScript, minification)
top 10 U.S. web sites, 69

Mirror Image Internet, Inc., 19
mod_autoindex, 80
mod_deflate module, 32
mod_dir, 80
mod_expires, 23
mod_gzip documentation, 34
mod_gzip module, 31
mod_gzip_minimum_file_size directive, 30

mod_rewrite module, 80
MSN

CSS sprites, 124
DNS lookups, 124
ETags, 124
Expires header, 124
gzip, 124
HTTP requests, 123, 124
IFrames, 124
JavaScript minification, 124
percentage of time downloading, 4
performance recommendations, 123–125
(see also top 10 U.S. web sites)

MySpace
DNS lookups, 128
Expires header, 128
HTTP requests, 128
JavaScript minification, 128
percentage of time downloading, 4
performance recommendations, 127–128
(see also top 10 U.S. web sites)

N
network.http.max-persistent-connections-per

-server setting, 46
New York University, 20
Nielson, Jakob, 38
No CDN (example), 20
No compression (example), 35
No Expires (example), 28
No Image Map (example), 11
Nottingham, Mark, 27

O
O’Reilly, Tim, 97
obfuscation, 70
One-Time Expressions (example), 53
optimization alternative, 70
OPTIONS request, 6

P
page views, 56
page weight, top 10 U.S. web sites, 103
parallel downloads, 46–48

cost, 47
limiting, 46

parallelization, 112
YouTube, 137

passive requests, 98
PDF files, gzipping, 30

Index | 145

performance
cached and uncached images, 3
conditional GET requests, 3
figuring where the time goes, 3
frontend, 1–5
percentage of time spent downloading top

10 U.S. web sites, 4
profiling, 4
recommendations

Amazon, 107
AOL, 110–113
CNN, 114–115
eBay, 116–119
Google, 120–122
MSN, 123–125
MySpace, 127–128
Wikipedia, 130–131
Yahoo!, 132–133
YouTube, 135–137

redirects, 3
response time improvements gained from

CDNs, 20
response time tests, 21
scripts, 3
summary of top 10 U.S. web sites, 103
top 10 U.S. web sites

how tests were done, 105
tracking web page, 1

Performance Golden Rule, 4, 5
Persistent Connections, 8
pipelining, 9
PlanetLab, 20
PNG images, 131
POST request, 6
Post-Onload Download (example), 59
post-onload download technique, 16
preloading, 121
Princeton University, 20
progressive rendering, 37
proxy caching

gzip, 33
PUT request, 6

R
redirects, 3, 76–84

across top 10 U.S. web sites, 79
alternatives, 79–84

connecting web sites, 81
missing trailing slash, 79
prettier URLs, 84
tracking internal traffic, 81
tracking outbound traffic, 82–84

how performance is hurt, 77–79
types of, 76

rendering, progressive, 37
response times

biggest impact on, 46
bringing HTTP response closer to user

(see content delivery networks)
eliminating unnecessary HTTP requests

(see Expires header)
exaggerating for components, 39
making fewer HTTP requests (see HTTP

requests)
reducing size of HTTP response (see gzip)
tests, 21
top 10 U.S. web sites, 103

S
SAVVIS Inc., 19
schemes, 13
SCRIPT DEFER attribute (Google), 122
scripts, 3, 45–50

AOL, 112
at bottom of page, 49
at top of page, 49
blocking downloads, 48
deferred, 50
dependencies and versioning, 87
duplicate, 85–88

avoiding, 87
performance, 86

eBay, 119
number for top 10 U.S. web sites, 85
parallel downloads, 46–48
problems with, 45
script management module, 87
Yahoo!, 133
(see also JavaScript)

Scripts at the Bottom (example), 50
Scripts at the Top (example), 49
Scripts Block Downloads (example), 48
Scripts in the Middle (example), 45
Scripts Top vs. Bottom (example), 50
Separate Scripts (example), 16
ServerInfoTimeOut value, 67
server-side image maps, 11
Shea, Dave, 13
ShrinkSafe, 70
sleep.cgi, 38
Small Script Minified (example), 72
Small Script Normal (example), 72
Small Script Obfuscated (example), 72
Speedera Networks, 19

146 | Index

stylesheets, 37–44
blank white screen, 39–42

avoiding, 43
examples of stylesheet at bottom versus at

top, 39–42
CSS at bottom, 39
CSS at top, 41–42

flash of unstyled content, 43
avoiding, 43

number for top 10 U.S. web sites, 85
problem with putting at bottom of

documents, 38

T
text as image, 115
Theurer, Tenni, 25
top 10 U.S. web sites

CDN service providers, 19
components with Expires header, 26
ETags, 94–95
Expires header and max-age directive, 24
gzip use, 30
how performance tests were done, 105
maximum TTL values sent to clients

for, 65
minification, 69
minifying inline scripts, 73
number of scripts and stylesheets, 85
page weight, 103
percentage of time spent downloading, 4
performance summary, 103
redirects, 79
response times, 103
scripts and stylesheets, 15
YSlow grade, 103–105

TRACE request, 6
TTLs

DNS caching and, 63–66
maximum TTL values sent to clients

for top 10 U.S. web sites, 65

U
URLs, prettier, 84

V
visual feedback, 37
Vrije Universiteit, 20

W
Web 2.0, 96–102

defined, 97
relationship between Web 2.0, DHTML,

and Ajax, 96
web page performance, 1
Wikipedia

CSS sprites, 130
Expires header, 131
gzip, 131
percentage of time downloading, 4
performance recommendations, 130–131
PNG images, 131
(see also top 10 U.S. web sites)

X
XMLHttpRequest, 83
XMLHttpRequest Beacon (example), 83

Y
Yahoo!, 1, 4

CSS sprites, 132
domains, 133
HTTP requests, 133
percentage of time downloading, 4
performance recommendations, 132–133
scripts, 133
two URLs referencing same image, 133
(see also top 10 U.S. web sites)

Yahoo! Mail
Ajax caching example, 99–101

Yahoo! Search, 4
Yahoo! Shopping and Akamai’s CDN, 21
Yahoo! UI (YUI) Connection Manager for

Ajax, 98
YouTube

Etags, 137
Expires header, 137
parallelization, 137
percentage of time downloading, 4
performance recommendations, 135–137
(see also top 10 U.S. web sites)

YSlow, 106
grades

defined, 104
top 10 U.S. web sites, 103–105

About the Author
Steve Souders holds down the job of Chief Performance Yahoo! at Yahoo! He’s been
at Yahoo! since 2000, working on many of the platforms and products within the
company. He ran the development team for My Yahoo! before reaching his current
position.

As Chief Performance Yahoo!, he has developed a set of best practices for making
web sites faster. He builds tools for performance analysis and evangelizes these best
practices and tools across Yahoo!’s product teams.

Prior to Yahoo!, Steve worked at several small to mid-size startups, including two
companies he cofounded: Helix Systems and CoolSync. He also worked at General
Magic, WhoWhere?, and Lycos. In the early 1980s, Steve caught the Artificial Intelli-
gence bug and worked at a few companies doing research on Machine Learning. He
received a B.S. in Systems Engineering from the University of Virginia and an M.S. in
Management Science and Engineering from Stanford University.

Steve’s interests are varied. He sits on the board of Freehand Systems and Fremont
Hills Country Club, and he teaches Sunday School. He’s played basketball with
several NBA and WNBA players, but has recently retired and switched to Ultimate
Frisbee. He was a member of the Universal Studios Internet Task Force, has rebuilt a
90-year-old carriage house, and participated in setting a Guinness world record. He
has a wonderful wife and three daughters.

Colophon
The animal on the cover of High Performance Web Sites is a greyhound.

The fastest dog in the world, a greyhound can reach speeds of up to 45 miles per
hour, enabled by its streamlined, narrow body; large lungs, heart, and muscles;
double suspension gallop (two periods of a gait when all four feet are off the
ground); and the flexibility of its spine. Although greyhounds are incredibly fast,
they are actually low-energy dogs and lack endurance, requiring less exercise time
than most dogs. For this reason, they’re often referred to as “45-mile-per-hour couch
potatoes” because when not chasing smaller prey (such as rabbits and cats), they are
content to spend their days sleeping.

Greyhounds are one of the oldest breeds of dogs, appearing in art and literature
throughout history. In ancient Egypt, greyhounds were often mummified and buried
with their owners, and hieroglyphics from 4000 B.C.E. show a dog closely resem-
bling the modern greyhound. In Greek and Roman mythology, greyhounds were
often depicted with gods and goddesses. Greyhounds appeared in the writings of
Homer, Chaucer, Shakespeare, and Cervantes, and they are the only type of dog
mentioned in the Bible. They’ve long been appreciated for their intelligence, graceful
form, athleticism, and loyalty.

During the early 1920s, modern greyhound racing was introduced into the United
States. Smaller and lighter than show greyhounds, track greyhounds are selectively
bred and usually stand between 25–29 inches tall and weigh 60–70 pounds. These
dogs instinctively chase anything that moves quickly (as they are sighthounds, not
bloodhounds), hence the lure—the mechanical hare they chase around the track.
Greyhound racing is still a very popular spectator sport in the United States and, like
horse racing, is enjoyed as a form of parimutuel gambling.

Greyhound racing is very controversial as the dogs experience little human contact
and spend most of their non-racing time in crates. Once greyhounds are too old to
race (somewhere between three and five years of age), many are euthanized, though
there are now many rescue programs that find homes for retired racers. Because grey-
hounds are naturally docile and even-tempered, most adjust well to adoption and
make wonderful pets.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	High Performance Web Sites
	Table of Contents
	Foreword
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments

	The Importance of Frontend Performance
	Tracking Web Page Performance
	Where Does the Time Go?
	The Performance Golden Rule

	HTTP Overview
	Compression
	Conditional GET Requests
	Expires
	Keep-Alive
	There’s More

	Rule 1: Make Fewer HTTP Requests
	Image Maps
	CSS Sprites
	Inline Images
	Combined Scripts and Stylesheets
	Conclusion

	Rule 2: Use a Content Delivery Network
	Content Delivery Networks
	The Savings

	Rule 3: Add an Expires Header
	Expires Header
	Max-Age and mod_expires
	Empty Cache vs. Primed Cache
	More Than Just Images
	Revving Filenames
	Examples

	Rule 4: Gzip Components
	How Compression Works
	What to Compress
	The Savings
	Configuration
	Apache 1.3: mod_gzip
	Apache 2.x: mod_deflate

	Proxy Caching
	Edge Cases
	Gzip in Action

	Rule 5: Put Stylesheets at the Top
	Progressive Rendering
	sleep.cgi
	Blank White Screen
	CSS at the Bottom
	CSS at the Top

	Flash of Unstyled Content
	What’s a Frontend Engineer to Do?

	Rule 6: Put Scripts at the Bottom
	Problems with Scripts
	Parallel Downloads
	Scripts Block Downloads
	Worst Case: Scripts at the Top
	Best Case: Scripts at the Bottom
	Putting It in Perspective

	Rule 7: Avoid CSS Expressions
	Updating Expressions
	Working Around the Problem
	One-Time Expressions
	Event Handlers

	Conclusion

	Rule 8: Make JavaScript and CSS External
	Inline vs. External
	In Raw Terms, Inline Is Faster
	Page Views
	Empty Cache vs. Primed Cache
	Component Reuse

	Typical Results in the Field
	Home Pages
	The Best of Both Worlds
	Post-Onload Download
	Dynamic Inlining

	Rule 9: Reduce DNS Lookups
	DNS Caching and TTLs
	Factors Affecting DNS Caching
	TTL Values

	The Browser’s Perspective
	Internet Explorer
	Firefox

	Reducing DNS Lookups

	Rule 10: Minify JavaScript
	Minification
	Obfuscation
	The Savings
	Examples
	Icing on the Cake
	Inline Scripts
	Gzip and Minification
	Minifying CSS

	Rule 11: Avoid Redirects
	Types of Redirects
	How Redirects Hurt Performance
	Alternatives to Redirects
	Missing Trailing Slash
	Connecting Web Sites
	Tracking Internal Traffic
	Tracking Outbound Traffic
	Prettier URLs

	Rule 12: Remove Duplicate Scripts
	Duplicate Scripts—They Happen
	Duplicate Scripts Hurt Performance
	Avoiding Duplicate Scripts

	Rule 13: Configure ETags
	What’s an ETag?
	Expires Header
	Conditional GET Requests
	Last-Modified Date
	Entity Tags

	The Problem with ETags
	ETags: Use ’Em or Lose ’Em
	ETags in the Real World

	Rule 14: Make Ajax Cacheable
	Web 2.0, DHTML, and Ajax
	Web 2.0
	DHTML
	Ajax

	Asynchronous = Instantaneous?
	Optimizing Ajax Requests
	Caching Ajax in the Real World
	Yahoo! Mail
	Google Spreadsheets

	Deconstructing 10 Top Sites
	Page Weight, Response Time, YSlow Grade
	How the Tests Were Done
	Amazon
	AOL
	CNN
	eBay
	Google
	MSN
	MySpace
	Wikipedia
	Yahoo!
	YouTube

	Index

