

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

QF02/0408-4.0E

Study Plan No.	2021/2022		University Specialization		Bachelor of Pharmacy	
Course No.	0201372		Course Name		Biopharmaco Pharmaco	
Credit Hours	3		Prerequisite *Co-requisite		Pharmacology (1) + Pharmaceutical Dosage Forms (2)	
Course Type	☐ Mandatory University Requireme nt	☐ University Elective Requirement	☐ Faculty Mandatory Requiremen t	☐ Support course family require ments	☑ Mandat ory Requir ement	□ Electi ve Requi remen t
Teaching Style	□ Full O	nline Learning	☐ Blended	Learning		aditional earning
Teaching Model		nchronous: 1 ynchronous	☐ 1 Face to Face: 1 Asynchronous		☑ 2 Tı	raditional

Faculty Member and Study Divisions Information (to be filled in each semester by the subject instructor)

Taculty Williams and Study Divisions and mation (to be futer in each semester by the subject instructor)					
Name	Academic rank Office No.		Phone No.	E-n	nail
Office Hours (Days/Time)	Sunday, Tuesda	y, Thursday ()	Monday	, Wednesday ())
Division number	Time	Place	Number of Students	Teaching Style	Approved Model
				Traditional Learning	2 Traditional

Brief Description

This course is intended to equip the students with the necessary knowledge about how the body deals with the medications via the ADME processes. And how a dosage regimen is designed based on the pharmacokinetics of medications. Also it sheds the light on the physiological aspects of drug elimination.

Learning Resources

Course Book Information (Title, author, date of issue, publisher etc)	Shargel, L., and A.B.C. Yu. 2015. Applied Biopharmaceutics & Pharmacokinetics, Seventh Edition (McGraw-Hill Education).			
Supportive Learning Resources (Books, databases, periodicals, software, applications, others)	Gibaldi, M., and D. Perrier. 1975. Pharmacokinetics (M. Dekker).			
Supporting Websites	-			
The Physical Environment for Teaching	☑ Classroom	□ Labs	☑ Virtual Educationa l Platform	□ Others
Necessary Equipment and Software	Moodle		•	
Supporting People with Special Needs	-			

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/
Pharmacy Department QF02/0408-4.0E

For Technical Support E-Learnin

E-Learning & Open Educational Resources Center

Email: <u>elearning@zuj.edu.jo</u>; Phone: +962 6 429 1511 ext. 425/362

Course learning outcomes (K= Knowledge, S= Skills, C= Competencies)

No.	Course Learning Outcomes	The Associated Program Learning Output Code			
	Knowledge				
The s	tudent should be able to:				
K1	Identify pharmacokinetic parameters that describe the absorption, distribution, metabolism, and excretion (ADME) of drugs	MK3			
K2	Describe various ADME processes, and the different pharmacokinetic models	MK3			
К3	Recognize the effect of various disease states such as renal and kidney diseases on various ADME processes	MK3			
	Skills				
The s	student should be able to:				
S1	Solve different problems related to different pharmacokinetics models.	MS1			
	Competencies				
The s	The student should be able to:				
C1	Formulate appropriate dosing regimen (single- or multiple-dose) for individualized drug therapy, based on information from single-dose studies or from literature	MC1			
C2	Take responsibility of personal and professional development by handing the pharmacokinetics assignments on time.	МС3			

Mechanisms for Direct Evaluation of Learning Outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm Exam	30%	30%	30%	0%
Participation / Practical Applications	0%	0%	20%	50%
Asynchronous Interactive Activities	20%	20%	0%	0%
Final Exam	50%	50%	50%	50%

Note 1: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, and work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Note 2: According to the Regulations of granting Master's degree at Al-Zaytoonah University of Jordan, 40% of final evaluation goes for the final exam, and 60% for the semester work (examinations, reports, research or any scientific activity assigned to the student).

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

QF02/0408-4.0E

Schedule of Simultaneous / Face-to-Face Encounters and their Topics

Week	Subject	Learning Style*	Reference ** (Pages in Course Book)
1	Introduction to Biopharmaceutics and Pharmacokinetics -Pharmacokinetics Introduction & Concepts -Plasma Level-Time curve - Pharmacokinetic models -Review of rates and orders of reactions	Lecture	Chapter 1 1-26 Chapter 2 40-42
2	One compartment open model(IV bolus): -calculation of volume of distribution -calculation of Elimination half-life and AUC	Lecture	Chapter 3 75-96
3	-calculation of k from plasma data - calculation of k from urinary excretion data - Learning questions	Lecture	Chapter 3 75-96
4	Two compartment open model (IVbolus): -Define the pharmacokinetic terms used in a two- and three-compartment modelequations and graph to simulate plasma drug concentration -Estimate two-compartment model parameters by using the method of residuals.	Lecture	Chapter 4 97-114
5	-types of Volumes of distribution -Learning questions Intravenous Infusion: -the concept of steady state and how it relates to continuous dosing.	Lecture	Chapter 4 97-114 Chapter 5 131-148
6	 time needed to reach Css loading dose plus IV infusion -calculating elimination half-life & K estimation of drug clearance and Vd from infusion data Learning Questions for IV infusion 	Lecture	Chapter 5 131-148
7	Pharmacokinetics of oral absorption: - first order absorption models -calculation of plasma concentration, calculation of t max	Lecture	Chapter 8 196-204
8	-determination of absorption rate constant by method of residuals -Lag time and flip-flop of ka and k -determination of excretion rate constant from urine data -Learning Questions in single oral dose	Lecture	Chapter 8 196-204
9	Multiple dosage regimens:	Lecture	Chapter 9

" عراقة وجودة" "Tradition and Quality"

	Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department	QF02/0408-4.0E
--	---	----------------

	-drug accumulation & superposition principle		205-228
	-Repetitive intravenous bolus injections Midterm Exam		
	- Calculation of Missed dose		
10	-Early or Late Dose Administration during Multiple Dosing - Intermittent IV infusion	Lecture	Chapter 9 205-228
11	-Multiple oral dose regimen -Loading dose plus maintenance dose -Determination of bioavailability in multiple dose regimen -Learning Questions in multiple dosage regimens	Lecture	Chapter 9 205-228
12	Drug Elimination and Renal Clearance: Drug Elimination: metabolism & excretion -Total body clearance, clearance models	Lecture	Chapter 7 149-176
13	-Physiological processes of kidneys -1 st order elimination, fraction of drug excreted and renal clearance -Learning Questions	Lecture	Chapter 7 149-176
14	Drug Elimination and Hepatic Clearance: -hepatic elimination of drugs, pathways for drug metabolism -1 st order elimination, fraction of drug metabolized, hepatic clearance -1 st pass effect,liver extraction ratio, intrinsic clearance	Lecture	Chapter 7 149-176
15	-Bioavailability & Bioequivalence: -definitions -Relative & Absolute availability -Methods for assessing bioavailability	Lecture	Chapter 16 469-528
16	Final Exam	-	-

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of Asynchronous Interactive Activities (in the case of e-learning and blended learning)

Week	Task / Activity	Reference	Expected Results
-	-	_	_

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.