

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

OF02/0408-4.0E

Study Plan No.	2021/2022		University Specialization		Bachelor of Pharmacy	
Course No.	0201372		Course Name		Biopharmaceutics & Pharmacokinetics	
Credit Hours	3		Prerequisite *Co-requisite		Pharmacology (1) + Pharmaceutical Dosage Forms (2)	
Course Type	☐ Mandato ry Universit y Require ment	☐ Universit y Elective Require ment	☐ Faculty Mandator y Requirem ent	☐ Support course family require ments	☑ Mandatory Requirement	□ Electi ve Requi remen t
Teaching Style	□ Full Onl	line Learning	□ Blended	l Learning	☑ Traditional Learning	
Teaching Model	☐ 2 Synchronous: 1 Asynchronous			o Face: 1 hronous	☑ 2 Traditional	

Faculty Member and Study Divisions Information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
			-		
Office Hours (Days/Time)					
Division number	Time	Place	Number of Students	Teaching Style	Approved Model
				Traditional Learning	2 Traditional

Brief Description

This course is intended to equip the students with the necessary knowledge about how the body deals with the medications via the ADME processes and how a dosage regimen is designed based on the pharmacokinetics of medications. It also sheds light on the physiological aspects of drug elimination.

Learning Resources

Learning Resources					
Course Book Information (Title, author, date of issue, publisher etc)	Shargel, L., and A.B.C. Yu. 2015. Applied Biopharmaceutics & Pharmacokinetics, 7 th edition (McGraw-Hill Education).				
Supportive Learning Resources (Books, databases, periodicals, software, applications, others)	Gibaldi, M., and D. Perrier. 1975. Pharmacokinetics (M. Dekker).				
Supporting Websites	-				
The Physical Environment for Teaching	✓ Class room ☐ Labs ✓ Virtual ☐ Others Educational Platform Platform	S			
Necessary Equipment and Software	Moodle				
Supporting People with Special Needs	-				
For Technical Support	E-Learning & Open Educational Resources Center Email: <u>elearning@zuj.edu.jo</u> ; Phone: +962 6 429 1511 ext. 425/362	5 1			

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department QF02/0408-4.0E

Course learning outcomes (K= Knowledge, S= Skills, C= Competencies)

No.	Course Learning Outcomes	The Associated Program Learning Output Code				
	Knowledge					
The s	student should be able to:					
K1	Estimate pharmacokinetic parameters that describe the absorption, distribution, metabolism, and excretion (ADME) of drugs.	MK3				
K2	Describe various ADME processes and the different pharmacokinetic models.	MK3				
К3	Interpret the effect of various disease states such as renal and kidney diseases on various ADME processes	МК3				
	Skills					
The s	The student should be able to:					
S1	Plan appropriate dosing regimen (single- or multiple-dose) for individualized drug therapy, based on information from single-dose studies or from literature.	MS1				
	Competencies					
The s	The student should be able to:					
	-					

Mechanisms for Direct Evaluation of Learning Outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm Exam	30%	30%	30%	0%
Participation / Practical Applications	0	0	30%	60%
Asynchronous Interactive Activities	30%	30%	0	0
Final Exam	40%	40%	40%	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of Simultaneous / Face-to-Face Encounters and their Topics

Week	Subject	Learning Style*	Reference ** (Pages in Course Book)
1	Introduction to Biopharmaceutics and Pharmacokinetics -Pharmacokinetics Introduction & Concepts -Plasma Level-Time curve - Pharmacokinetic models	Lecture	Chapter 1 1-26 Chapter 2 40-42

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/	QF02/0408-4.0E
Pharmacy Department	QF02/0408-4.0E

	-Review of rates and orders of reactions		
	One compartment open model (IV bolus):		Chapter 3
2	-calculation of volume of distribution	Lecture	75-96
	-calculation of Elimination half-life and AUC		
	-calculation of k from plasma data		Chapter 3
3	- calculation of k from urinary excretion data	Lecture	75-96
	- Learning questions		73-90
	Two compartment open model (IV bolus):		
	-Define the pharmacokinetic terms used in a two- and		
	three-compartment model.		Chapter 4
4	-equations and graph to simulate plasma drug	Lecture	97-114
	concentration		<i>71</i> 111
	-Estimate two-compartment model parameters by using		
	the method of residuals.		
	-types of Volumes of distribution		Chapter 4
_	-Learning questions		97-114
5	Intravenous Infusion:	Lecture	Chapter 5
	-the concept of steady state and how it relates to		131-148
	continuous dosing.		
	- time needed to reach Css		
	-loading dose plus IV infusion -calculating elimination half-life & K		C1
6		Lecture	Chapter 5 131-148
	-estimation of drug clearance and Vd from infusion data		131-146
	- Learning Questions for IV infusion		
	Pharmacokinetics of oral absorption:		
	- first order absorption models		Chapter 8
7	-calculation of plasma concentration, calculation of t	Lecture	196-204
	max		170 204
	-determination of absorption rate constant by method		
	of residuals		
	-Lag time and flip-flop of ka and k		Chapter 8
8	-determination of excretion rate constant from urine	Lecture	196-204
	data		
	-Learning Questions in single oral dose		
	Multiple dosage regimens:		C1. a.u.t = 0
9	-drug accumulation & superposition principle	Lecture	Chapter 9
	-Repetitive intravenous bolus injections		205-228
	- Calculation of Missed dose		
10	-Early or Late Dose Administration during Multiple	Lastura	Chapter 9
	Dosing	Lecture	205-228
	- Intermittent IV infusion		
	-Multiple oral dose regimen		
11	-Loading dose plus maintenance dose	Lecture	Chapter 9
11	-Determination of bioavailability in multiple dose	Lecture	205-228
	regimen		

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/
Pharmacy Department

QF02/0408-4.0E

	-Learning Questions in multiple dosage regimens		
12	Drug Elimination and Renal Clearance: Drug Elimination :metabolism &excretion -Total body clearance, clearance models	Lecture	Chapter 7 149-176
13	-Physiological processes of kidneys -1 st order elimination, fraction of drug excreted and renal clearance -Learning Questions	ral processes of kidneys mination, fraction of drug excreted earance Lecture Chapter 149-176	
14	Drug Elimination and Hepatic Clearance: -hepatic elimination of drugs, pathways for drug metabolism -1 st order elimination, fraction of drug metabolized, hepatic clearance -1 st pass effect, liver extraction ratio, intrinsic clearance	Lecture	Chapter 7 149-176
15	-Bioavailability & Bioequivalence: -definitions -Relative & Absolute availability -Methods for assessing bioavailability	Lecture	Chapter 16 469-528
16	Final Exam	-	-

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.