

فكر حضاري وحوار متمدن Civilized Thought ...Civilized Dialogue

"عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor program - Study Plan Development and Updating Procedures /
Department of Basic Sciences

QF04/0408-4.0E

Study Plan No.	2021–2022		University Specialization		Bachelor of Pharmacy	
Course No.	0420820		Course Name		General Chemistry for Pharmacy	
Credit Hours	3	3		Prerequisite *Co-requisite		
Course Type	☐ Mandatory University Requirement	□ University Elective Requirement	☑ Faculty Mandatory Requirement	Support Course Family Requirements	☐ Mandatory Requirement	Elective Requirement
Teaching Style	☐ Full Online Learning		☐ Blended Learning		☑ Tradition	nal Learning
Teaching Model	☐ 1 Synchronous : 1 Asynchronous		☐ 1 Face to Face : 1 Asynchronous		☑ 2 Tr:	aditional

Faculty Member and Study Divisions Information (to be filled in each semester by the subject instructor)

Name	Academic Rank	Office No.	Phone No.	E-mail	
Office Hours (Days/Time)	Sunday Tuesday Thursday () Monday Wednesday ()		y ()		
Division Number	Time	Place	Number of Students	Teaching Style	Approved Model
				Traditional Learning	2 Traditional

Brief Description

This course covers the fundamental principles and common applications of chemistry for pharmacy students. Topics include matter, energy, and measurement; atoms, molecules, and ions; chemical reactions and stoichiometry; reactions in aqueous solution; thermochemistry; electronic structure of atoms; periodic properties of the elements; basic concepts of chemical bonding; and molecular geometry and bonding theories.

Learning Resources

Course Book Information (Title, author, date of issue, publisher etc)	Chemistry: The Central Science. Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus. 2022, 15 th ed. Pearson.
Supportive Learning Resources (Books, databases, periodicals, software, applications, others)	 Chemistry: The Molecular Nature of Matter, James E. Brady, Neil D. Jespersen, Alison Hyslop, 7th Edition International Student Version, 2015. Chemical Principles, The Quest for Insight, Peter Atkins (Oxford University), Loretta Jones (University of Northern Colorado), Leroy Laverman (University of California, Santa Barbara), 7th Edition, 2016. Chemistry, by Raymond Chang Kenneth Goldsby, 12th edition, AP student edition, 2016.

فكر حضاري وحوار متمدن Civilized Thought ...Civilized Dialogue

"عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor program - Study Plan Development and Updating Procedures / Department of Basic Sciences			QF04/0408-4.0E	
Supporting Websites	-			
The Physical Environment for Teaching	☑ Classroom	□ Labs	☑ Virtual Educational Platform	□ Others
Necessary Equipment and Software	Moodle			
Supporting People with Special Needs	-			
For Technical Support	E-Learning & Open Educational Resources Center. Email: elearning@zui.edu.jo; Phone: +962 6 429 1511 ext. 425/362.			

Course learning outcomes (K= Knowledge, S= Skills, C= Competencies)

No.	Course Learning Outcomes	The Associated Program Learning Output Code		
The stu				
K1	Recognize the principles of chemistry targeted for pharmacy students including matter, energy, and measurement; atoms, molecules, and ions; chemical reactions and stoichiometry; reactions in aqueous solution; thermochemistry.	MK1		
K2	Identify the fundamental concepts of chemistry that interest pharmacy students including electronic structure of atoms; periodic properties of the elements; basic concepts of chemical bonding; and molecular geometry and bonding theories.	MK1		
The stu	Skills The student should be able to:			
S1	Apply SI units, significant figures, scientific notation, and dimensional analysis in calculations while identifying common element symbols and metric prefixes.	MS4		
S2	Analyze stoichiometric problems by balancing chemical equations, predicting reaction products, performing mass—mole conversions, determining empirical and molecular formulas, and calculating limiting reactants and percent yield.	MS4		
S3	Apply acid-base and electrolyte concepts to predict reaction products, calculate molarity, perform dilutions, and interpret titration results.	MS4		
S4	Use thermodynamic principles to calculate internal energy, enthalpy changes, heat transfer, reaction enthalpies using Hess's law, standard enthalpies of formation, and bond enthalpies.	MS4		

فكر حضاري وحوار متمدن Civilized Thought ...Civilized Dialogue

"عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor program - Study Plan Development and Updating Procedures / Department of Basic Sciences	QF04/0408-4.0E
---	----------------

No.	Course Learning Outcomes	The Associated Program Learning Output Code			
S5	Apply quantum principles to determine electron configurations, orbital characteristics, atomic structure, and elemental properties, in addition to predict periodic trends.	MS4			
S6	Construct Lewis structures to predict molecular geometry using VSEPR, determine polarity, hybridization, orbital interactions, resonance, and exceptions to the octet rule.	MS4			
	Competencies				
The stu	ident should be able to:				
C1	Not applicable.				

Mechanisms for Direct Evaluation of Learning Outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm Exam	30%	30%	30%	0%
Participation / Practical Applications	0%	0%	30%	60%
Asynchronous Interactive Activities	30%	30%	0%	0%
Final Exam	40%	40%	40%	40%

Note 1: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, and work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Note 2: According to the Regulations of granting Master's degree at Al-Zaytoonah University of Jordan, 40% of final evaluation goes for the final exam, and 60% for the semester work (examinations, reports, research or any scientific activity assigned to the student).

Schedule of Simultaneous / Face-to-Face Encounters and their Topics

Week	Subject	Learning Style*	Reference **
1	1 Introduction: Matter, Energy, and Measurement 1.1 The Study of Chemistry 1.2 Classifications of Matter 1.3 Properties of Matter	Lecture, participatory learning, group work	pp. 46–59
2	1.5 Units of Measurement1.6 Uncertainty in Measurement1.7 Dimensional Analysis	Lecture, participatory learning, group work	pp. 62–80

فكر حضاري وحوار متمدن Civilized Thought ...Civilized Dialogue Faculty of Arts "عراقة وجودة" "Tradition and Quality"

Week	Subject	Learning Style*	Reference **
3	2 Atoms, Molecules, and Ions 2.3 The Modern View of Atomic Structure 2.4 Atomic Weights 2.5 The Periodic Table 2.6 Molecules and Molecular Compounds 2.7 Ions and Ionic Compounds	Lecture, participatory learning, group work	pp. 97–115
4	2.8 Naming Inorganic Compounds 3 Chemical Reactions and Stoichiometry 3.1 The Conservation of Mass, Chemical Equations, and Stoichiometry 3.2 Simple Patterns of Chemical Reactivity: Combination, Decomposition, and Combustion 3.3 Formula Weights and Elemental Compositions of Substances	Lecture, participatory learning, group work	pp. 116–123, 134–145
5	3.4 Avogadro's Number and the Mole; Molar Mass 3.5 Formula Weights and Elemental Compositions of Substances [Excluded: Combustion Analysis] 3.6 Reaction Stoichiometry 3.7 Limiting Reactants	Lecture, participatory learning, group work	pp. 146–166
6	4 Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions 4.2 Precipitation Reactions 4.3 Acids, Bases, and Neutralization Reactions 4.4 Oxidation–Reduction Reactions [Excluded: The Activity Series]	Lecture, participatory learning, group work	pp. 175–199
7	4.5 Concentrations of Solutions 4.6 Solution Stoichiometry and Chemical Analysis 5 Thermochemistry 5.1 The Nature of Chemical Energy 5.2 The First Law of Thermodynamics [Excluded: State Function] 5.3 Enthalpy [Excluded: Pressure-Volume Work]	Lecture, participatory learning, group work	pp. 201–211, 219–233
8	5.4 Enthalpies of Reaction 5.5 Calorimetry 5.6 Hess's Law 5.7 Enthalpies of Formation 5.8 Bond Enthalpies	Lecture, participatory learning, group work	pp. 234–257
9	Midterm Exam	Lecture, participatory learning, group work	pp. 291–302

فكر حضاري وحوار متمدن Civilized Thought ...Civilized Dialogue

"عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor program - Study Plan Development and Updating Procedures /
Department of Basic Sciences

QF04/0408-4.0E

Week	Subject	Learning Style*	Reference **
	6 Electronic Structure of Atoms6.5 Quantum Mechanics and Atomic Orbitals6.6 Representations of Orbitals6.7 Many-Electron Atoms		
10	6.8 Electron Configurations6.9 Electron Configurations and the Periodic Table	Lecture, participatory learning, group work	pp. 303–312
11	7 Periodic Properties of the Elements 7.2 Effective Nuclear Charge 7.3 Sizes of Atoms and Ions 7.4 Ionization Energy 7.5 Electron Affinity	Lecture, participatory learning, group work	pp. 328–342
12	8 Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule 8.2 Ionic Bonding 8.3 Covalent Bonding 8.4 Bond Polarity and Electronegativity 8.5 Drawing Lewis Structures	Lecture, participatory learning, group work	pp. 369–392
13	8.6 Resonance Structures 8.7 Exceptions to the Octet Rule 8.8 Strengths and Lengths of Covalent Bonds 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes 9.2 The VSEPR Model	Lecture, participatory learning, group work	pp. 393–402, 412–425
14	9.3 Molecular Shape and Molecular Polarity 9.4 Covalent Bonding and Orbital Overlap 9.5 Hybrid Orbitals 9.6 Multiple Bonds	Lecture, participatory learning, group work	pp. 426–444
15, 16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of Asynchronous Interactive Activities (in the case of e-learning and blended learning)

Week	Task / Activity	Reference	Expected Results
-	-	-	-

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.