

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

OF02/0408-4.0E

Study Plan No.	2021/2022		University Specialization		Bachelor of Pharmacy	
Course No.	0201216		Course Name		Pharmaceutical Organic Chemistry (2)	
Credit Hours	3		Prerequisite *Co-requisite		Pharmaceutical Organic Chemistry (1)	
Course Type	☐ Mandator y University Requirem ent	□ University Elective Requireme nt	☐ Faculty Mandatory Requireme nt	☐ Suppor t course family require ments	☑ Mandatory Requirement	□ Electi ve Requi remen t
Teaching Style	□ Full Or	lline Learning	□ Blended	Learning	☑ Traditional Learning	
Teaching Model	€/	☐ 1 Synchronous: 1 ☐ Asynchronous		☐ 1 Face to Face: 1 Asynchronous		itional

Faculty Member and Study Divisions Information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail		
Office Hours (Days/Time)	Sunday, Tuesda	esday, Thursday () Monday, V		 nday, Wednesda	Wednesday ()	
Division number	Time	Place	Number of Students	Teaching Style	Approved Model	
				Traditional Learning	2 Traditional	

Brief Description

This course explores the structures and chemical transformations of organic molecules. It introduces important functional groups in molecules and explains their reactivity. This course assists students to define a possible scheme for compounds' synthesis. It also addresses basic concepts of electronic structures and applies these concepts to solve problems from various areas of organic chemistry, including reactivity patterns and synthesis.

Learning Resources

Learning Resources				
Course Book Information (Title, author, date of issue, publisher etc)	Organic Chemistry, T.W.G. Solomons and C.B. Fryhle, 12 th Edition, 2016, John Wiley & Sons.			
Supportive Learning Resources	1. Organic Chemistry	by Hart, Craine, Har	rt, and Hadad, 13 th Edi	tion, 2011,
(Books, databases, periodicals,	Brooks/Cole.			
software, applications, others)	2. Organic Chemistry	by McMurry, 9th Ed	lition, 2016, Brooks/Co	ole.
Supporting Websites	-			
The Physical Environment for Teaching	☑ Classroom	□ Labs	☑ Virtual Educational Platform	□ Others
Necessary Equipment and Software	Moodle			
Supporting People with Special Needs	-			
For Technical Support	E-Learning & Open Educational Resources Center Email: <u>elearning@zuj.edu.jo</u> ; Phone: +962 6 429 1511 ext. 425/362			

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

QF02/0408-4.0E

Course learning outcomes (K= Knowledge, S= Skills, C= Competencies)

No.	Course Learning Outcomes	The Associated Program Learning Output Code			
Thos	Knowledge The student should be able to:				
K1	Explain the physical and chemical properties of organic compounds and the effect of electron-donating and electron-withdrawing groups on these properties.	MK2			
K2	Identify suitable conditions and reagents for chemical reactions.	MK2			
К3	Predict reaction mechanisms.	MK2			
The s	Skills The student should be able to:				
S1	Draw the mechanistic pathways of reaction mechanisms.	MS4			
S2	Apply IUPAC nomenclature rules to convert between chemical names and structures.	MS4			
S3	Predict the outcome of organic reactions based on given substrates and reagents.	MS4			

Mechanisms for Direct Evaluation of Learning Outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm Exam	30%	30%	30%	30%
Participation / Practical Applications	0%	0%	30%	30%
Asynchronous Interactive Activities	30%	30%	0%	0%
Final Exam	40%	40%	40%	40%

Note 1: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, and work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Note 2: According to the Regulations of granting Master's degree at Al-Zaytoonah University of Jordan, 40% of final evaluation goes for the final exam, and 60% for the semester work (examinations, reports, research or any scientific activity assigned to the student).

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department

QF02/0408-4.0E

Schedule of Simultaneous / Face-to-Face Encounters and their Topics

Week	Subject	Learning Style*	Reference ** (Pages in Course Book)
1	Ethers and Epoxides	Lecture Participatory learning Problem-based learning	504-533
2	Aromatic Compounds	Lecture Participatory learning Problem-based learning	632-674
3	Aromatic Compounds	Lecture Participatory learning Problem-based learning	632-674
4	Reactions of Aromatic Compounds	Lecture Participatory learning Problem-based learning	676-727
5	Reactions of Aromatic Compounds	Lecture Participatory learning Problem-based learning	676-727
6	Phenols	Lecture Participatory learning Problem-based learning	964-980
7	Aldehydes and Ketones: Nucleophilic Addition to the carbonyl group	Lecture Participatory learning Problem-based learning	729-765
8	Aldehydes and Ketones: Nucleophilic Addition to the carbonyl group	Lecture Participatory learning Problem-based learning	729-765
9	Reactions at the α Carbon of Carbonyl Compounds: Enols and Enolates Midterm Exam	Lecture Participatory learning Problem-based learning	832-857
10	Condensation and Conjugate Addition Reactions of Carbonyl Compounds	Lecture Participatory learning Problem-based learning	869-897
11	Carboxylic Acids and Their Derivatives	Lecture Participatory learning Problem-based learning	779-830
12	Carboxylic Acids and Their Derivatives	Lecture Participatory learning Problem-based learning	779-830
13	Amines	Lecture Participatory learning Problem-based learning	911-963
14	Amines	Lecture Participatory learning	911-963

" عراقة وجودة" "Tradition and Quality"

Course Plan for Bachelor Program - Study Plan Development and Updating Procedures/ Pharmacy Department	QF02/0408-4.0E
--	----------------

		Problem-based learning	
		Lecture	388-408
15	Heterocyclic compounds	Participatory learning	(Supportive Book
		Problem-based learning	1)
16	Final Exam	-	-

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of Asynchronous Interactive Activities (in the case of e-learning and blended learning)

Week	Task / Activity	Reference	Expected Results
_	-	_	-

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.