

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department		
----------------	--	--	--

Study plan No.	2024/2025		University Specialization		Cybersecurity	
Course No.	0133328		Course name		Artificial Intelligence in Cybersecurity	
Credit Hours	3		Prerequisite Co-requisite		0133325	
Course type	<input type="checkbox"/> MANDATORY UNIVERSITY REQUIREMENT	<input type="checkbox"/> UNIVERSITY ELECTIVE REQUIREMENTS	<input type="checkbox"/> FACULTY MANDATORY REQUIREMENT	<input type="checkbox"/> Support course family requirements	<input type="checkbox"/> Mandatory requirements	<input checked="" type="checkbox"/> Elective requirements
Teaching style	<input type="checkbox"/> Full online learning		<input type="checkbox"/> Blended learning		<input type="checkbox"/> <input checked="" type="checkbox"/> Traditional learning	
Teaching model	<input type="checkbox"/> 2Synchronous: 1asynchronous		<input type="checkbox"/> 2 face to face : 1synchronous		<input type="checkbox"/> <input checked="" type="checkbox"/> 3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail
Division number	Time	Place	Number of students	Teaching style

Brief description

The course aims to explore fundamental techniques of artificial intelligence (AI) and machine learning (ML) and its role in cybersecurity. Students will implement different AI and ML techniques to detect threats, identify anomalies in networks, prevent cyberattacks in order to improve cybersecurity.

Learning resources

Course book information (Title, author, date of issue, publisher ... etc)	Hands-On Artificial Intelligence for Cybersecurity: Implement smart AI systems for preventing cyber-attacks and detecting threats and network anomalies, Alessandro Parisi, August 2, 2019.			
Supportive learning resources (Books, databases, periodicals, software, applications, others)	<ol style="list-style-type: none"> 1. McKinney, W Brij B. Gupta and Quan Z. Sheng.(2019). Machine Learning for Computer and Cyber Security: Principle, Algorithms, and Practices. 2. T. Dunning and E. Friedman, Practical Machine Learning - A New Look at Anomaly Detection, O'Reilly, 1st edition, 2014. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 			
Supporting websites				
The physical environment for teaching	<input type="checkbox"/> <input checked="" type="checkbox"/> Class room	<input type="checkbox"/> labs	<input type="checkbox"/> Virtual educational platform	<input type="checkbox"/> Others
Necessary equipment and software				
Supporting people with				

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department
----------------	--

special needs	
For technical support	E-learning and Open Educational Center. Computer Center

Course learning outcomes (S= Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
Knowledge		
K1	Understanding varies AI and Machine Learning Techniques	MK1
K2	Understand different aspects of Cybersecurity.	MK2
Skills		
S1	Apply different Machine Learning Techniques in Cybersecurity Problems	MS1
S2	Analyze various Feature extraction and reduction techniques	MS2
S3	Implement various AI based security tools	MS1
Competences		
C1	Develop AI and machine learning techniques for Cybersecurity solutions	MC1
C2	Evaluate the performance of various Machine Learning algorithms in Real time network environments	MC1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	0	0
Second / midterm exam	%30	%30	%30	%30
Participation / practical applications	0	0	0	0
Asynchronous interactive activities	%30	%30	%30	%30
final exam	%40	%40	%40	%40

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction to Data Mining and Machine Learning	Lecture	Lecture notes
2	Cybersecurity attacks and solutions	Lecture	Lecture notes
3	Fundamentals of Supervised and Unsupervised Machine Learning algorithms	Lecture	Lecture notes
4	Feature Selection and Feature Extraction	Lecture	Lecture notes

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department		
----------------	--	--	--

	Methods		
5	Feature Selection and Feature Extraction Methods	Lecture	Lecture notes
6	Network Anomaly Detection Methods and Requirements	Lecture	Lecture notes
7	Anomaly Detection Using Unsupervised Learning	Lecture	Lecture notes
8	Midterm Exam		
9	Anomaly Detection Using Probabilistic Learning	Lecture	Lecture notes
10	Anomaly Detection Using Soft Computing	Lecture	Lecture notes
11	Knowledge base systems in Anomaly Detection. Anomaly Detection Using Combination Learners.	Lecture	Lecture notes
12	AI based network intrusion detection system evaluation methods	Lecture	Lecture notes
13	Applications of Machine learning in scan detection and Network traffic analysis	Lecture	Lecture notes
14	Applications of Machine learning in malware analysis	Lecture	Lecture notes
15	Tools and Systems	Lecture	Lecture notes
16	Final Exam		

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

This activities was designed using the **Project-Based Learning (PBL)**

Project : Evaluation of AI-Based NIDS and ML in Scan Detection

Field / Task / Activity	Reference	Expected Results
1. Dataset Preparation & Feature Engineering: - Source CIC-IDS2017/UNSW-NB15 dataset	Sharafaldin et al. (2018). CIC-IDS2017 dataset paper Scikit-learn preprocessing documentation	1. Cleaned, normalized dataset 2. Feature importance analysis report

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department	
----------------	--	--

Field / Task / Activity	Reference	Expected Results
<ul style="list-style-type: none"> - Extract flow features (duration, protocol, packet size stats) - Normalize data and apply PCA for dimensionality reduction 		3. Reduced dimension feature set
<p>2. Unsupervised Model</p> <p>Implementation:</p> <ul style="list-style-type: none"> - Build Autoencoder neural network - Train on normal traffic only - Use reconstruction error as anomaly score 	TensorFlow/PyTorch Autoencoder tutorials Chandola et al. (2009) anomaly detection survey	1. Trained Autoencoder model 2. Reconstruction error distribution plots 3. Anomaly threshold determination
<p>3. Probabilistic Model</p> <p>Implementation:</p> <ul style="list-style-type: none"> - Implement Gaussian Mixture Model (GMM) - Fit to normal traffic distribution - Flag low-probability samples as anomalies 	Scikit-learn GMM documentation Bishop (2006) Pattern Recognition book	1. Trained GMM with optimal components 2. Probability density function plots 3. Anomaly probability scores
<p>4. Hybrid System Design:</p> <ul style="list-style-type: none"> - Create knowledge-based rules combining both models - Design decision logic (e.g., "IF Autoencoder error > X AND GMM prob < Y THEN alert") 	Rule-based system literature Expert system design principles	1. Rule specification document 2. Hybrid decision algorithm 3. Confidence scoring mechanism

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department
----------------	--

Field / Task / Activity	Reference	Expected Results
<p>5. Evaluation & Comparison:</p> <ul style="list-style-type: none"> - Test on attack-included dataset - Calculate Precision, Recall, F1, ROC-AUC - Compare model performance across attack types 	ML evaluation metrics literature Confusion matrix analysis methods	<ol style="list-style-type: none"> 1. Performance comparison table 2. ROC curves for both models 3. False positive/negative analysis

Week	Task / activity	Reference	Expected results
1			
2			
3			
4			
5			
6			
7			
8			