

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department		
----------------	--	--	--

Study plan No.	2024/2025		University Specialization		Cybersecurity	
Course No.	0133212		Course name		Data Structure and Algorithm	
Credit Hours	3		Prerequisite Co-requisite		البرمجة التطبيقية	
Course type	<input type="checkbox"/> MANDATORY UNIVERSITY REQUIREMENT	<input type="checkbox"/> UNIVERSITY ELECTIVE REQUIREMENTS	<input type="checkbox"/> FACULTY MANDATORY REQUIREMENT	<input type="checkbox"/> Support course family requirements	<input type="checkbox"/> Mandatory requirements	<input type="checkbox"/> Elective requirements
Teaching style	<input type="checkbox"/> Full online learning		<input type="checkbox"/> Blended learning		<input type="checkbox"/> Traditional learning	
Teaching model	<input type="checkbox"/> 2Synchronous: 1asynchronous		<input type="checkbox"/> 2 face to face : 1synchronous		<input type="checkbox"/> 3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This Data Structure and Algorithm course provides students with knowledge about abstract data types and the basic operations to manipulate them, as well as the skills to apply them to solve problems. The following topics included in this course: Lists, Stacks, Queues, Recursion. Introduction to algorithm analysis. Introduction of search and sort algorithms including Trees and Binary Search Trees. In a high-level language (usually Java) the student should implement the user-defined data structures. Student can compare performance-related alternative implementations of data structures. Write programs that use the arrays, records, strings, linked lists, stacks and queues of each data structures.

Learning resources

Course book information (Title, author, date of issue, publisher ... etc)	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
Supportive learning resources (Books, databases, periodicals, software, applications, others)	1. Introduction to Algorithms, fourth edition 4th Edition by Thomas H. Cormen (Author), Charles E. Leiserson (Author), Ronald L. Rivest (Author) 2. Nell Dale, Daniel T. Joyce, Chip Weems ,Object-oriented data structures using Java,2016Data Structures and Algorithms in Java 6th Edition by Michael T. Goodrich, Roberto Tamassia
Supporting websites	

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department			
----------------	--	--	--	--

The physical environment for teaching	<input type="checkbox"/> Class room	<input type="checkbox"/> labs	<input type="checkbox"/> Virtual educational platform	<input type="checkbox"/> Others
Necessary equipment and software				
Supporting people with special needs				
For technical support	E-learning and Open Educational Center, Computer Center			

Course learning outcomes (S= Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
Knowledge		
K1	Recognize the concept of an Abstract Data Type (ADT)	K1
K2	Determine how an ADT is designed and implemented as a class of some object-oriented programming language	K2
K3	Understanding the concepts of time and space complexity, worst case, average case and best case complexities and the big-O notation	K3
K4	Understanding a wide range of searching and sorting algorithms	K4
Skills		
S1	Improve the programming skills of students, especially in Java.	S1
S2	Enable students to design and implement some user-defined data structures (lists, stacks, queues, linked lists, binary trees, etc.) as Java generic classes.	S2
Competences		
C1	Give students some practice in the application of new user-defined data structures	C1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	0	0
Second / midterm exam	%30	%30	%30	%30
Participation / practical applications	0	0	0	0
Asynchronous interactive activities	%30	%30	%30	%30
final exam	%40	%40	%40	%40

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department
----------------	--

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction to data structures: What is a data structure? Concept of an ADT: Definition of an Abstract Data Type (ADT), representation of objects, implementation of operations.	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
2	Introduction to Linked Lists: Array vs. Linked Lists, operations on Linked Lists. Stack ADT: Stack ADT definition and its array implementation	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
3	Stack ADT: Linked stack implementation, applications of stacks (Evaluating Postfix Expressions). Recursion: recursive definitions, how recursion works, classic examples	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
4	Queue ADT: Queue ADT definition	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
5	Queue ADT: implementation, Queue implementation as a linked structure, applications of queues	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
6	List Abstract Data Type ADT	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
7	List implementation as a linked: Comparing Objects, varieties of lists	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department		
-----------------------	---	--	--

8	Midterm Exam	Traditional Learning	
9	Big-O Analysis. Binary Search algorithm,	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
10	Binary Search Trees: Binary search tree specification, binary search tree implementation.	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
11	Algorithms for sorting: insertion sort	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
12	Divide and conquer Sort Algorithm	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
13	Merge Sort Algorithm	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
14	Quicksort Algorithm	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
15	Project	Traditional Learning	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.
16	Final Exam	Traditional Learning	

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department
-----------------------	---

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Activity on Object oriented Programming	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019	
2	Activity on Abstract Data Type (ADT)	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.	
3	Activity on Stack ADT And stack implementation	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019	
4	Activity on queue	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.	
5	Activity on queue implementation	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019	
6	Activity on List Abstract Data Type ADT	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.	
7	Activity on algorithms	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson,	
8	Activity on Binary search tree	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with Java, 5th edition, Pearson, 2019.	