

Al-Zaytoonah University of Jordan

Course Syllabus

**According to JORDAN National Qualification
Framework (JNQF)**

Course Name: Computerized mathematical application

Course Number: 0101274

General Course Information:

Course Title	Computerized mathematical application
Course Number	0101274
Credit Hours	3 credit hours
Education Type	
Prerequisites/Co-requisites	-
Academic Program	Bachelor Program
Program Code	114
Faculty	Faculty of Science and IT
Department	Mathematics
Level of Course	1
Academic Year /Semester	2024/2025 1 st Semester
Awarded Qualification	Bachelor
Other Department(s) Involved in Teaching the Course	AI department, CS department,
Language of Instruction	English
Date of Production	
Date of Revision	

Course Coordinator:

Coordinator's Name	
Office No.	
Office Phone Extension Number	
Office Hours	
E-mail	

Instructor Name					
Office No.					
Office Phone Extension Number					
Office Hours				Tuesday	Wednesday
1					
2					
3					
4					
Email					

Course Description (English/Arabic):

English	<ul style="list-style-type: none"> - Basic concept in limits (Definition, limit from graphs, limit of polynomials, limit of division functions, limit of piece wise defined functions, limit of Trigonometric functions, limit of composition of functions). - Basic concepts in differentiation :(Definition, Derivative of polynomials, Derivative of division functions, Derivative of multiplying of functions, Derivative of Trigonometric functions, and chain rule) - Basic concepts in numerical analysis: Introduction to the representation of numbers and errors, their types, numerical solutions of nonlinear equations
---------	---

	<p>in one variable (bisection method, fixed point method, Newton-Arrivson method), recurrence of roots, modified Newton method, synthetic division, numerical solutions of linear systems; direct and indirect methods.</p>
Arabic	<p>- المفاهيم الأساسية في النهايات: التعريف، النهاية من الرسم البياني، نهاية كثيرات الحدود، نهاية الاقترانات الكسرية، نهاية الاقترانات المتشعبة، نهاية الاقترانات المثلثية، نهاية تركيب الاقترانات.</p> <p>- المفاهيم الأساسية في المشتقات: التعريف، مشتقة الاقترانات كثيرة الحدود، مشتقة الاقترانات الكسرية، مشتقة الضرب، مشتقة الاقترانات المثلثية و قاعدة السلسلة.</p> <p>- المفاهيم الأساسية في التحليل العددي : مقدمة في تمثيل الأعداد والأخطاء وأنواعها، الحلول العددية للمعادلات غير الخطية بمتغير واحد (طريقة التنصيف، طريقة النقطة الثابتة، طريقة نيوتن - رفسون)، تكرار الجذور، طريقة نيوتن المعدلة، القسمة الترکيبية .</p>

Textbook: Author(s), Title, Publisher, Edition, Year, Book website.

Calculus, 10th edition By Howard Anton, Irl Bivens and Stephen Davis.
"Numerical Analysis", by R. Burden & D. Fairs , 7th Ed. 2017

References: Author(s), Title, Publisher, Edition, Year, Book website.

1. CALCULUS, 10th Edition, by Finney and Thomas.
2. Vector Calculus" Susan Colley. Pearson Prentice Hall, 3rd Edition (2006)

Course Educational Objectives (CEOs):

CEO1	Basic concept in limits (Definition, limit from graphs, limit of polynomials, limit of division functions, limit of piece wise defined functions, limit of Trigonometric, limit of composition of functions).
CEO2	Basic concepts in differentiation :(Definition, Derivative of polynomials, Derivative of division functions, Derivative of multiplying of functions, Derivative of Trigonometric functions, and chain rule)
CEO3	Basic concepts in numerical analysis: Introduction to the representation of numbers and errors, their types, numerical solutions of nonlinear equations in one variable (bisection method, fixed point method, Newton-Arrivson method), recurrence of roots, modified Newton method, synthetic division.

Intended Learning Outcomes (ILO's):

Intended learning outcomes (ILOs)		Relationships to CEOs	Contribution to PLOs	Bloom Taxonomy Levels*	JNQF Descriptors*
K	Knowledge and Understanding				
ILO1-k	Recognize the Concept of limits	CEO1	PLO1-k	Remembering	K
ILO2-k	Recognize the Main Concepts of differentiation.	CEO2	PLO2-k + PLO3-k	Remembering	K
ILO3-k	Recognize Some basic Concept in numerical analysis.	CEO3	PLO4-k	Understanding	K

S					
ILO4-s	Calculate the limit for algebraic functions	CEO1	PLO6-S	Applying	S
ILO5-s	Apply rules to Calculate the derivative of functions at known point.	CEO2	PLO6-S	Applying	S
ILO6-s	Apply rules to find numerical solutions of nonlinear equations in one variable	CEO3	PL06-S	Applying	S
ILO7-s	Apply rules to find recurrence of roots, modified Newton method, synthetic division.	CEO4	PLO6-S	Applying	S
C	Subject specific skills				
ILO8-c	Develop the individual's ability to communicate and interact with other mathematical courses.	CEO1+ CEO2+ CEO3+	PLO9-c	Analysing	C

***Bloom Taxonomy Levels:**

Level #	1	2	3	4	5	6
Level Name	Remembering	Understanding	Applying	Analysing	Evaluating	Creating

**** Descriptor (National Qualification Framework Descriptors): K: Knowledge, S: Skill, C: Competency.**

Program Learning Outcome (PLOs):

(PLOs)			JNQF Descriptors**		
K	S	C			

1.	Knowledge of the main concepts in pure mathematics.	√		
2.	Knowledge of the main concepts in applied mathematics.	√		
3.	Explain concepts, principles and theories in the fields of probability and statistics.	√		
4.	Possession of technological culture related to the fields of mathematics and its applications.	√		
5.	Making use of mathematical logic in practical life.	√		
6.	Engaging scientific methodology as a way of thinking and as a tool in facing problems.	√		
7.	Applying mathematical software packages in problem solving.	√		
8.	Being capable of data analysis.	√		
9.	Capability of teaching according to modern educational techniques.	√		
10.	Develop creative and innovative methods of teaching mathematics.	√		
11.	Showing the ability to work under ethical and professional standards within teams.			√
12.	Gaining critical thinking and scientific research skills.			√

** Descriptors according to the national qualifications framework (K: knowledge, S: skill, C: Competency)

Weekly Schedule (please choose the type of teaching)

Face to Face (F2F)
 Hybrid (One - To - One)
 Online

Schedule of Simultaneous and their Topics:

Week	First Lecture (F2F)	Second Lecture (F2F)	ILOs	PLOs	JNQF Descriptor s*
1	Basic concept in limits: Definition, limit from graphs	Introduction to R- tool +Application to limit	ILO1-k	PLO1-k	k
2	limit of polynomials, limit of division functions,	Solving examples + applications on R	ILO1-k ILO4-s	PLO1-k	K, S
3	limit of division functions, and applications	limit of piece wise defined functions,	ILO1-k ILO4-s	PLO1-k	K, S
4	limit of Trigonometric functions,	Solving examples + applications on R	ILO1-k ILO4-s	PLO1-k	K, S
5	limit of composition of functions	Solving examples + applications on R	ILO1-k ILO4-s	PLO1-k	K ,S
6	Solving examples + applications on R	Basic concepts in differentiation: Definition, Derivative of polynomials.	ILO2-k ILO5-s	PLO1-k	K, S
7	Solving examples + applications on R	Derivative of multiplying of functions.	ILO2-k ILO5-s	PLO1-k + PLO3-k	K, S
Midterm Exam (30%)					
9	Derivative of division functions	Derivative of Trigonometric functions	ILO2-k ILO5-s	PLO1-k+ PLO3-k	K, S
10	Solving examples + applications on R	Basic concepts in numerical analysis:	ILO3-k ILO6-s	PLO1-k	K, S

		Introduction to the representation of numbers and errors, their types,			
11	numerical solutions of nonlinear equations in one variable :bisection method.	Solving examples + applications on R	ILO3-k ILO6-s	PLO1-k + PLO3-k	K, S
12	fixed point method	Newton-Arrivson method	ILO3-k ILO6-s	PLO1-k	K, S
13	recurrence of roots, modified Newton method.	recurrence of roots, modified Newton method.	ILO3-k ILO7-s	PLO1-k	K, S
14	synthetic division.	Solving examples	ILO3-k ILO7-s	PLO1-k	K, S
15	Projects Discussion				
16	Final Exam				

* K: Knowledge, S: Skills, C: Competency

Teaching Methods and Assignments:

The development of ILOs is promoted through the following teaching and learning methods:

- Lecture.
- learning through projects.
- learning through problem solving.

Course Policies:

A- Attendance policies:

The maximum allowed absences is 15% of the lectures.

B- Absences from exams and handing in assignments on time:

Midterm exam can be retaken based on approval of excuse by the instructor's discretion.

Not handing assignment on time will incur penalties.

C- Academic Health and safety procedures

D- Honesty policy regarding cheating, plagiarism, and misbehaviour:

Cheating, plagiarism, misbehaviour will result in zero grade and further disciplinary actions may be taken.

E- Grading policy:

- All homework is to be posted online through the e-learning system.
- Exams will be marked within 72 hours and the marked exam papers will be handed to the students.
- Online Activities (Course Videos, Discussion Forums, Quizzes) 30%
- Midterm 30%
- Final Exam 40%

F- Available university services that support achievement in the course: **E-Learning Platform, Labs, Library.**

Required Equipment:

- PC / Laptop with webcam and mic
- Internet Connection
- Access to the ZUJ E-Learning Platform at <https://exams.zuj.edu.jo/>
- E-learning plan
- Satisfaction questionnaires for online and face-to-face learning
- Software for e-learning

Assessment Tools Implemented in the Course:

- Final Exam
- Midterm Exam
- Quizzes
- Homework
- Discussion Forums
- Improvement plans for online or face-to-face teaching.

Responsible Persons and their Signatures:

Course Coordinator		Completed Date	
		Signature	
Received by (Department Head)		Received Date	/ /
		Signature	