



Al-Zaytoonah University of Jordan



## **Course Syllabus**

**According to JORDAN National Qualification  
Framework (JNQF)**

**Course Name:** Differential Geometry

**Course Number:** 0101433

## General Course Information:

|                                                     |                                    |
|-----------------------------------------------------|------------------------------------|
| Course Title                                        | Differential Geometry              |
| Course Number                                       | 0101433                            |
| Credit Hours                                        | 3 credit hours                     |
| Education Type                                      | Blended learning                   |
| Prerequisites/Co-requisites                         | Calculus (3)                       |
| Academic Program                                    | Bachelor Program                   |
| Program Code                                        | 114                                |
| Faculty                                             | Faculty of Science and IT          |
| Department                                          | Mathematics                        |
| Level of Course                                     | 3                                  |
| Academic Year /Semester                             | 2023/2024 1 <sup>st</sup> Semester |
| Awarded Qualification                               | Bachelor                           |
| Other Department(s) Involved in Teaching the Course | -                                  |
| Language of Instruction                             | English                            |
| Date of Production                                  | 2021-2022                          |
| Date of Revision                                    | 16-10-2023                         |

## Course Coordinator:

|                               |    |
|-------------------------------|----|
| Coordinator's Name            | NA |
| Office No.                    |    |
| Office Phone Extension Number |    |
| Office Hours                  |    |
| E-mail                        |    |

## Other Instructors:

### Course Description (English/Arabic):

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>English</b> | This course concerns the Plane and space curves, Reparameterization by arc length, Curvature, Torsion, Frenet formulas, Osculating plane, normal plane, Rectifying plane, Bertrand curves, Surfaces in three dimensions, Smooth surfaces, The first fundamental form, length of curves on surfaces, Surface area, The Gauss map, The second fundamental form, Gauss formula, The normal and geodesic curvatures, Principal curvatures, Mean and Gauss curvatures, Geodesics and applications. |
| <b>Arabic</b>  | يهم هذا المنسق بمنحنيات المستوى والفضاء، إعادة القياس بطول القوس، الانحناء، الالتواء، صيغ فرينيت، المستوى المتذبذب، المستوى العادي، المستوى التصحيحي، منحنيات برتراند، الأسطح في ثلاثة أبعاد، الأسطح الملساء، الشكل الأساسي الأول، أطوال المنحنيات على الأسطح، مساحة السطح، خريطة غاووس، الشكل الأساسي الثاني، صيغة غاووس، الانحناءات العادي والجيوديسية، الانحناءات الرئيسية، الانحناءات المتوسطة والغاوسية، الجيوديسيا وتطبيقاتها.                                                          |

### Textbook: Author(s), Title, Publisher, Edition, Year, Book website.

- 1) Banchoff, T. and Lovett, S. (2010), Differential Geometry of Curves and Surfaces, USA, A. K. Peters, Ltd., Taylor and Francis Group, LLC.
- 2) O' Neill, B. (2006), Elementary Differential Geometry, 2<sup>nd</sup> edition, USA, Elsevier Inc.

## References: Author(s), Title, Publisher, Edition, Year, Book website.

1. Pressley, A. (2010), Elementary Differential Geometry, 2<sup>nd</sup> edition, London, Springer – Verlage, Springer Undergraduate Mathematics Series.
2. Gray, A., Abbena, E. and Salamon, S. (2006), Modern Differential Geometry of Curves and Surfaces with Mathematica, 3<sup>rd</sup> edition, USA, Chapman & Hall/CRC, Studies in Advanced Mathematics, Boca Raton.
3. Kühnel, W. (2006), Differential Geometry, Curves-Surfaces-Manifolds, 2<sup>nd</sup> edition, USA, AMS.

## Course Educational Objectives (CEOs):

|             |                                                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CEO1</b> | Students should develop a strong understanding of smooth manifolds, which serve as the foundation for differential geometry. They should understand the definition, properties, and examples of smooth manifolds. |
| <b>CEO2</b> | Students should be able to define tangent spaces at points on a manifold and work with tangent vectors and vector fields on these spaces.                                                                         |
| <b>CEO3</b> | Students should understand smooth functions on manifolds, as well as the algebraic structure of these functions and how to work with them.                                                                        |
| <b>CEO4</b> | Students should learn about isometries, conformal mappings, and other geometric transformations and their properties.                                                                                             |

## Intended Learning Outcomes (ILO's):

| Intended learning outcomes (ILOs) |                                                                                                                               | Relationship to CEOs   | Contribution to PLOs | Bloom Taxonomy Levels* | JNQF Descriptors** |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------------------------|--------------------|
| <b>K</b><br><br><b>ILO1-k</b>     | Knowledge and Understanding                                                                                                   |                        |                      |                        |                    |
|                                   | Introduce plane and space curves.                                                                                             | CEO1                   | PLO1 -K              | Understanding          | K                  |
| <b>ILO2-k</b>                     | Identify regular surfaces in three dimension, construct simple revolution surfaces, sphere, cylinder, ellipsoid...            | CEO1+<br>CEO2+<br>CEO3 | PLO1-K               | Understanding          | K                  |
|                                   |                                                                                                                               |                        |                      |                        |                    |
| <b>S</b><br><br><b>ILO3-s</b>     | Perceive the difference between the Euclidean distance and the distance on a surface, the role of the first fundamental form. | CEO1                   | PLO7-s               | Applying               | S                  |
|                                   |                                                                                                                               |                        |                      |                        |                    |
| <b>C</b><br><br><b>ILO4-c</b>     | Subject specific skills                                                                                                       |                        |                      |                        |                    |
|                                   | Cooperate to work effectively in the group assignments.                                                                       | CEO3                   | PLO11-c              | Applying               | C                  |

\*Bloom Taxonomy Levels:

|            |             |               |          |           |            |          |
|------------|-------------|---------------|----------|-----------|------------|----------|
| Level #    | 1           | 2             | 3        | 4         | 5          | 6        |
| Level Name | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating |

\*\* Descriptor (National Qualification Framework Descriptors): K: Knowledge, S: Skill, C: Competency.

## Program Learning Outcome (PLOs):

| (PLOs) |                                                                                                | JNQF Descriptors** |   |   |
|--------|------------------------------------------------------------------------------------------------|--------------------|---|---|
|        |                                                                                                | K                  | S | C |
| 1.     | Knowledge of the main concepts in pure mathematics.                                            | ✓                  |   |   |
| 2.     | Knowledge of the main concepts in applied mathematics.                                         | ✓                  |   |   |
| 3.     | Explain concepts, principles and theories in the fields of probability and statistics.         | ✓                  |   |   |
| 4.     | Possession of technological culture related to the fields of mathematics and its applications. | ✓                  |   |   |
| 5.     | Making use of mathematical logic in practical life.                                            |                    | ✓ |   |
| 6.     | Engaging scientific methodology as a way of thinking and as a tool in facing problems.         |                    | ✓ |   |
| 7.     | Applying mathematical software packages in problem solving.                                    |                    | ✓ |   |
| 8.     | Being capable of data analysis.                                                                |                    | ✓ |   |
| 9.     | Capability of teaching according to modern educational techniques.                             |                    | ✓ |   |
| 10.    | Develop creative and innovative methods of teaching mathematics.                               |                    | ✓ |   |
| 11.    | Showing the ability to work under ethical and professional standards within teams.             |                    |   | ✓ |
| 12.    | Gaining critical thinking and scientific research skills.                                      |                    |   | ✓ |

\*\* Descriptors according to the national qualifications framework (K: knowledge, S: skill, C: Competency)

## Weekly Schedule (please choose the type of teaching)

- Face to Face (F2F)
- Hybrid (One - To - One)
- Online

## Schedule of Simultaneous and their Topics:

| Week | First Lecture (F2F)                                                  | Second Lecture (F2F)                                                 | IL Os  | PLOs   | JNQF Descriptors* |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------|--------|-------------------|
| 1    | Plane and space curves                                               | Plane and space curves                                               | ILO1-k | PLO2-k | K                 |
| 2    | Reparametrization by arc length, Curvature and Torsion, Applications | Reparametrization by arc length, Curvature and Torsion, Applications | ILO1-k | PLO2-k | K                 |
| 3    | Frenet- Serret frame, Frenet- Serret Theorem.                        | Frenet- Serret frame, Frenet- Serret Theorem.                        | ILO1-k | PLO2-k | K                 |
| 4    | Osculating plane, Normal plane, Rectifying plane.                    | Osculating plane, Normal plane, Rectifying plane.                    | ILO1-k | PLO2-k | K                 |
| 5    | Involutes, Evolutes,                                                 | Involutes, Evolutes,                                                 | ILO1-k | PLO2-k | K                 |

|                           |                                                                   |                                                                |                  |        |      |
|---------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------|--------|------|
| 6                         | Bertrand curves,<br>Spherical<br>indicatrix.                      | Bertrand curves,<br>Spherical indicatrix.                      | ILO2-k           | PLO2-k | K    |
| 7                         | Global properties<br>of curves,<br>Simple closed<br>curve.        | Global properties of<br>curves, Simple closed<br>curve.        | ILO2-k           | PLO2-k | K    |
| <b>Midterm Exam (30%)</b> |                                                                   |                                                                |                  |        |      |
| 9                         | Surfaces in three<br>dimensions.                                  | Surfaces in three<br>dimensions.                               | ILO2-k           | PLO2-k | K    |
| 10                        | The first<br>fundamental form.<br>Length of curves<br>on surfaces | The first fundamental<br>form. Length of<br>curves on surfaces | ILO2-k<br>ILO3-s | PLO2-k | K    |
| 11                        | Surface area.<br>Propositions and<br>examples.                    | Surface area.<br>Propositions and<br>examples.                 | ILO2-k<br>ILO3-s | PLO2-k | K, S |
| 12                        | The second<br>fundament<br>al form.<br>Gaussian<br>formula.       | The second<br>fundamental<br>form.<br>Gaussian<br>formula.     | ILO2-k           | PLO2-k | K    |
| 13                        | The normal and<br>geodesic curvature,<br>Principal curvatures.    | The normal and<br>geodesic curvature,<br>Principal curvatures. | ILO2-k           | PLO2-k | K    |
| 14                        | Mean and Gauss's<br>curvatures.                                   | Mean and Gauss's<br>curvatures.                                | ILO2-k           | PLO2-k | K    |
| 15                        | <b>Projects Discussion</b>                                        |                                                                |                  |        |      |
| 16                        | <b>Final Exam</b>                                                 |                                                                |                  |        |      |

\* K: Knowledge, S: Skills, C: Competency

### Teaching Methods and Assignments:

Development of ILOs is promoted through the following teaching and learning methods:

- Lecture.
- learning through projects.
- learning through problem solving.

## Course Policies:

### A- Attendance policies:

The maximum allowed absences is 15% of the lectures.

### B- Absences from exams and handing in assignments on time:

Midterm exam can be retaken based on approval of excuse by the instructor's discretion.

Not handing assignment on time will incur penalties.

### C- Academic Health and safety procedures

### D- Honesty policy regarding cheating, plagiarism, and misbehaviour:

Cheating, plagiarism, misbehaviour will result in zero grade and further disciplinary actions may be taken.

### E- Grading policy:

- All homework is to be posted online through the e-learning system.
- Exams will be marked within 72 hours and the marked exam papers will be handed to the students.
- Online Activities (Course Videos, Discussion Forums, Quizzes) **20%**
- Midterm **30%**
- Final Exam **50%**

### F- Available university services that support achievement in the course: **E-Learning Platform, Labs, Library.**

## Required Equipment:

- PC / Laptop with webcam and mic
- Internet Connection
- Access to the ZUJ E-Learning Platform at <https://exams.zuj.edu.jo/>
- E-learning plan
- Satisfaction questionnaires for online and face-to-face learning
- Software for e-learning

## Assessment Tools Implemented in the Course:

- Final Exam
- Midterm Exam
- Quizzes
- Homework
- Practice Labs
- Discussion Forums
- Improvement plans for online or face-to-face teaching.

## Responsible Persons and their Signatures:

|                    |  |                |     |
|--------------------|--|----------------|-----|
| Course Coordinator |  | Completed Date | / / |
|                    |  | Signature      |     |

|                                  |  |               |     |
|----------------------------------|--|---------------|-----|
| Received by<br>(Department Head) |  | Received Date | / / |
|                                  |  | Signature     |     |