

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
----------------	--	--

Study plan No.	2024/2025		University Specialization		Data science and Artificial Intelligence	
Course No.	0135321		Course name		Big Data	
Credit Hours	3		Prerequisite Co-requisite		Databases	
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	<input type="checkbox"/> FACULTY MANDATORY REQUIREMENT	<input type="checkbox"/> Support course family requirements	<input type="checkbox"/> Mandatory requirements	Elective requirements
Teaching style	<input type="checkbox"/> Full online learning		<input type="checkbox"/> Blended learning		<input type="checkbox"/> Traditional learning	
Teaching model	<input type="checkbox"/> 2Synchronous: 1asynchronous		<input type="checkbox"/> 2 face to face : 1synchronous		<input type="checkbox"/> 3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Dr. Dara Aqel	Associate professor			d.aqel@zuj.edu.jo	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

of big data including collecting, analyzing, processing, storing, and managing large amounts of data. The students will be able to apply advanced analytical tools to extract meaningful patterns from large and complex datasets. They will also utilize big data technologies and platforms such as Hadoop and Spark. This course presents an introduction to data warehouse, types of data warehouses, ETL, star architecture, snowflake architecture, implementing data warehouse using SQL, introduction to big data, OLAP vs RTAP, Map Reduce, Hadoop, Spark, Machine learning using spark, Streamline Data Ingestion using AWS, Hive, NoSQL databases.

Learning resources

Course book information (Title, author, date of issue, publisher ... etc)	1- Big Data: Concepts, Technology, and Architecture. Balamurugan Balusamy, Nandhini Abirami R, Seifedine Kadry, Amir Gandomi. John Wiley & Sons. 368 Pages, 2021.
Supportive learning resources (Books, databases, periodicals, software, applications, others)	<ol style="list-style-type: none"> 1. Data Mining, Concepts and Techniques, Jiawei Han, Jian Pei, Hanghang Tong, 4th edition, Elsevier Science, 2022. 2. Big Data Concepts, Technologies, and Applications. Husain, Mohammad Shahid, Mohammad Zunnun Khan, and Tamanna Siddiqui, Auerbach Publications. 2023. 3. Big data: concepts, warehousing, and analytics. Santos, M.Y. and Costa, C., CRC Press, 2022. 4. Data Science from Scratch: First Principles with Python. By Joel Grus. O'REILLY, 2nd Edition, 2019.
Supporting websites	
The physical environment for	<input type="checkbox"/> Class <input type="checkbox"/> labs <input type="checkbox"/> Virtual <input type="checkbox"/> Others

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department			
----------------	--	--	--	--

teaching	room		educational platform	
Necessary equipment and software				
Supporting people with special needs				
For technical support				

Course learning outcomes (S= Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
Knowledge		
K1	To show excellent knowledge in the basic data warehouse and big data topics	MK2
K2	To be acquainted with the basics of various advanced data warehouse and big data topics.	MK2
Skills		
S1	To be able to apply data warehouse concepts on a real case scenario using SQL	MS1
S2	To be able to use Spark for machine learning of a big data	MS1
Competences		
C1	To apply the various concepts of data warehouse and big data in solving real life problems	MC1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Project based learning (PBL)	0	0	5%	10%
Second / midterm exam	%30	%30	30%	30%
Participation / practical applications/Assignments	0	0	25%	20%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	40%	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction to Data Warehouse	Lecture	T:1-13
2	Data Warehouse Types	Lecture	T:111-128
3	ETL	Lecture	R1: 84-95
4	Data Warehouse Architectures	Lecture	R1: 95-110

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department		
-----------------------	--	--	--

5	Implementing Data Warehouse	Lecture	R1: 111-117
6	Mid Exam Estimated + Revision	learning through problem solving	
7	Case Study 1: Data Warehouse implementation using SQL	learning through problem solving	Handouts
8	Introduction to Big Data	Lecture	T:43-52
9	Map Reduce	Lecture	R1: 125-149
10	Hadoop and Spark	Lecture	T:55-99
11	Spark Machine Learning	Lecture	Handouts
12	NoSQL databases	Lecture	Handouts
13	Streamline Data Ingestion	Lecture	Handouts
14	Case Study 2: Spark Machine Learning using pyspark + Case Study 3: Querying Unstructured data using Hadoop Hive	learning through problem solving	Handouts
15	Project based learning (PBL): Projects discussions	learning through projects	Handouts
16	Final Exam		

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Introduction to Data Warehouse		To show a good comprehension of the data warehousing basic concepts
2	Data Warehouse Types		To distinguish among different types of data warehouses
3	ETL		To be acquainted of basics of ETL concepts
4	Data Warehouse Architectures		To distinguish among different architectures of data warehouses
5	Implementing Data Warehouse		To implement a data warehouse using SQL
6	Mid Exam Estimated + Revision		
7	Case Study 1: Data Warehouse implementation using SQL		To apply data warehouse concepts
8	Introduction to Big Data		To show a good comprehension of the big data basic concepts
9	Map Reduce		To show a good comprehension of Map Reduce

"عراقة و جودة"

"Tradition and Quality"

QF01/0408-4.0E		Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
10	Hadoop and Spark		To show a good comprehension of the Hadoop and Spark
11	Spark Machine Learning		To apply Spark to handle big data using python
12	NoSQL databases		To be acquainted with basics of NoSQL
13	Streamline Data Ingestion		To have basic understanding of data ingestion
14	Case Study 2: Spark Machine Learning using pyspark + Case Study 3: Querying Unstructured data using Hadoop Hive		To apply Spark to handle big data using python
15	Project based learning (PBL): Projects discussions		To apply Hive to query NoSql databases
16	Final Exam		