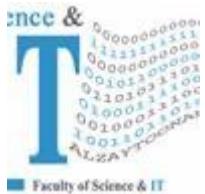


QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
----------------	--	--

Study plan No.	2024/2025		University Specialization		Data Science and Artificial Intelligence	
Course No.	0135445		Course Name		Machine learning applications and deep learning 1	
Credit Hours	3		Prerequisite Co-requisite		Machine Learning	
Course Type	<input type="checkbox"/> Mandatory University Requirement	<input type="checkbox"/> University Elective Requirements	<input type="checkbox"/> Faculty Mandatory Requirement	<input type="checkbox"/> Support Course Family Requirements	<input checked="" type="checkbox"/> Mandatory Requirements	<input type="checkbox"/> Elective Requirements
Teaching Style	<input type="checkbox"/> Full Online Learning		Blended Learning		<input checked="" type="checkbox"/> Traditional Learning	
Teaching Model	<input type="checkbox"/> 2 Synchronous: 1 Asynchronous		1 Face to Face: 1 Synchronous		3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)


Name	Academic Rank	Office No.	Phone No.	E-mail	
Division Number	Time	Place	Number of Students	Teaching Style	Approved Model

Brief Description

The course revises student knowledge on how to use the basic Python libraries that are related to machine learning, such as Numpy, pandas, matplotlib, and Scikit-learn. The course allows students to perform machine learning projects that deal with real-life datasets obtained from official sources on the internet. Additionally, this course introduces foundational concepts in deep learning, providing students with the tools and knowledge to design, train, and deploy neural networks Using TensorFlow and Pytorch..

Learning resources

Course book information (Title, author, date of issue, publisher ... etc)	1- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, by Aurélien Géron, 3rd Edition, O'Reilly.
Supportive learning resources (Books, databases, periodicals, software, applications, others)	<ol style="list-style-type: none"> Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, by Chris Albon, 2nd edition, O'Reilly Media, 2023. Python Data Analytics, ISBN-13 (electronic): 978-1-4842-3913-1 January 2018. Introduction to Computation and Programming Using Python with Application to Understanding Data, Third Edition, MIT Press, 2021.
Supporting websites	

" عِرَاقَةٌ وَجُودَةٌ "
"Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department			
The physical environment for teaching	<input checked="" type="checkbox"/> Class Room	<input type="checkbox"/> Labs	<input type="checkbox"/> Virtual Educational	<input type="checkbox"/> Others

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department		
----------------	--	--	--

			Platform	
Necessary equipment and software				
Supporting people with special needs				
For technical support				

Course Learning Outcomes (S= Skills, C= Competences K= Knowledge,)

No.	Course Learning Outcomes	The Associated Program Learning Output Code	
		Knowledge	Skills
K1	Understanding the basic machine learning libraries such as Pandas, NumPy, matplotlib, and Scikit-learn.		MK2
K2	Understanding complete data preprocessing techniques before starting a new machine learning project.		MK2
K3	Understand the principles of Neural Networks		MK2
Competences			
C1	Applying the gained knowledge in real-life projects and performing a complete machine learning project from scratch using Python.		MC1
C2	Design, train, and deploy deep learning models in real-world applications.		MC1

Mechanisms for direct evaluation of learning outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
PBL				15%
Second / midterm exam				30%
Participation / practical applications				30%
Asynchronous interactive activities				0
final exam				40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc., which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

QF01/0408-4.0E		Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
Week	Subject	learning style*	Reference **
1	- Review of Data science and Machine learning concepts	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
2	- Review of Numpy, Pandas and Matplotlib	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
3	Working with Real Data Look at the Big (initial Data Cleaning)	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
4	Exploratory Data Analysis – Uni-Variate Analysis	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
5	- Exploratory Data Analysis – Bi -Variate Analysis	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
6	- Exploratory Data Analysis – Bi-Variate Analysis	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
7	Removing outliers	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts 	Textbook 1
8	Midterm Exam 30%		
9	- Feature Selection and feature scaling	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
Practical Sessions	- Choosing the machine learning model	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
11	Evaluating the model	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
12	Introduction to Neural Networks	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
13	- Building a real-world application with neural networks and evaluating it	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
14	Evaluating the neural network model	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
15	Projects discussions (PBL (15%))	<ul style="list-style-type: none"> Presentations 	-

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department
-----------------------	--

16

Final Exam 40%

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.