

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
----------------	--	--

Study plan No.	2024/2025		University Specialization		Data Science and Artificial Intelligence	
Course No.	0135240		Course Name		Machine learning	
Credit Hours	3		Prerequisite Co-requisite		Computing Systems for Data Science and Artificial Intelligence (0135203) AND Data Science and Artificial Intelligence Programming 1 (0135232)	
Course Type	<input type="checkbox"/> Mandatory University Requirement	<input type="checkbox"/> University Elective Requirements	<input type="checkbox"/> Faculty Mandatory Requirement	<input type="checkbox"/> Support Course Family Requirements	<input checked="" type="checkbox"/> Mandatory Requirements	<input type="checkbox"/> Elective Requirements
Teaching Style	<input type="checkbox"/> Full Online Learning		Blended Learning		<input checked="" type="checkbox"/> Traditional Learning	
Teaching Model	<input type="checkbox"/> 2 Synchronous: 1 Asynchronous		1 Face to Face: 1 Synchronous		3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic Rank	Office No.	Phone No.	E-mail	
Division Number	Time	Place	Number of Students	Teaching Style	Approved Model

Brief Description

This course offers an introduction to machine learning, focusing on supervised learning techniques. Students will explore foundational ML concepts, types of data, and key evaluation metrics. The course covers major supervised algorithms including K-Nearest Neighbors, Decision Trees, Ensemble Methods, Support Vector Machines, Naive Bayes, and Regression. Emphasis is placed on both theoretical understanding and hands-on implementation using Python. By the end, learners will be equipped to build, evaluate, and interpret supervised machine learning models effectively.

Learning resources

Course book information (Title, author, date of issue, publisher ... etc)	1- A Hands-On Introduction to Machine Learning by Chirag Shah, 2023, Cambridge University
--	---

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department			
Supportive learning resources (Books, databases, periodicals, software, applications, others)	<p>1- Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, by Chris Albon, 2nd edition, O'Reilly Media, 2023.</p> <p>2- Patterns, predictions, and actions: Foundations of machine learning. By Moritz Hardt, Benjamin Recht, Princeton University Press, 2022.</p> <p>3- Machine learning foundations. Supervised, Unsupervised, and Advanced Learning. By Taeho Jo, Springer International Publishing</p>			
Supporting websites				
The physical environment for teaching	<input checked="" type="checkbox"/> Class Room	<input type="checkbox"/> Labs	<input type="checkbox"/> Virtual Educational	<input type="checkbox"/> Others
Necessary equipment and software				
Supporting people with special needs				
For technical support				

Course Learning Outcomes (S= Skills, C= Competences K= Knowledge,)

No.	Course Learning Outcomes	The Associated Program Learning Output Code
Knowledge		
K1	Understand and explain fundamental concepts in machine learning, including supervised learning, unsupervised learning, overfitting, underfitting, model generalization, and model evaluations	MK2
K2	Understand the types of problems that machine learning algorithms can solve and understand various machine learning algorithms in a range of real-world applications.	MK2
Skills		
S1	Analyze the theoretical underpinnings and assumptions of key supervised learning algorithms to determine their suitability for specific types of data and problems.	MS2
S2	To apply different machine learning algorithms and models to real-world problems, and use these machine learning methods in solving problems, and to evaluate and interpret the results of machine learning algorithms.	MS2
Competences		
C1	To apply the main concepts of machine learning algorithms for problem-solving in real life.	MC1

Mechanisms for direct evaluation of learning outcomes

Type of Assessment / Learning Style	Fully Electronic Learning	Blended Learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Project			10%	
Second / midterm exam			30%	
Participation / practical applications			20%	
Asynchronous interactive activities			0	
final exam			40%	

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, work within student groups ... etc., which the student carries out on his own, through the virtual platform without a direct encounter with QFXX/0408– page 2/4

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department
----------------	--

the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	- Introduction to ML.	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
2	- Why Use Machine Learning? - Examples of Applications - Types of Machine Learning Systems	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
3	Main Challenges of Machine Learning What Is Testing and Validating	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
4	Evaluation Metrics for Classification	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
5	- K Nearest Neighbors	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
6	- Practical Sessions	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
7	Decision Trees	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts 	Textbook 1
8	Midterm Exam 30%		
9	Pruning, Random Forests Ensemble Learning	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
Practical Sessions	- Practical Sessions	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
11	Support Vector Machines. (SVM)	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
12	Naive Bayes Classifier	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
13	- Regression	<ul style="list-style-type: none"> Classroom lectures, discussions, and review of theoretical concepts Slides 	Textbook 1
14	Evaluation Metrics for Regressions	<ul style="list-style-type: none"> Classroom lectures, 	Textbook 1

QF01/0408-4.0E		Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department	
		discussions, and review of theoretical concepts <ul style="list-style-type: none"> • Slides • Presentations 	
15	Projects discussions	Final Exam 40%	

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.