

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Study plan No.	2020/2021	University Specialization	Artificial Intelligence	
Course No.	0142442	Course name	Artificial Neural Networks	
Credit Hours	3	Prerequisite Co-requisite	Machine Learning	
Course type	□ MANDATORY □ UNIVERSITY UNIVERSITY ELECTIVE REQUIREMENT REQUIREMENTS	☐ FACULTY MANDATORY REQUIREMENT ☐ Support course family requirements	☐ Mandatory	
Teaching style	☐ Full online learning	☐ Blended learning	Traditional learning	
Teaching model	☐ 2Synchronous: 1asynchronous	☐ 2 face to face : 1synchronous	3 Traditional	

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This course provides the following topics:

Introduction to Classification, Logistic Regression, Artificial Neural Networks, Gradient Descent, Applications of ANN, Vectorization, Deep Learning, Types of Deep Learning, Applications of Deep learning.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	1- Logistic Regression Models (Chapman & Hall/CRC Texts in Statistical
	Science) 1st Edition, 2017.
	2- Neural Networks and Deep Learning: A Textbook Charu C. Aggarwal,
	Springer, 2018.
Supportive learning resources (Books, databases, periodicals,	1- Charu Aggarwal. Data Mining, the text book. Springer. 2015

Th tea

software

needs

Necessary equipment and

For technical support

Supporting people with special

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor]		Artificial Intelligence Department			
ftware, applications, others)		2- Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2016 .				
pporting websites						
ne physical environment aching	t for	Class room	□ labs	☐ Virtual educational platform	☐ Others	

Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

No.	Course learning outcomes	The associated program
	Knowledge	learning output code
K1	To understand how logistic regression works	MK3
K2	To have the knowledge of how ANN works	MK3
К3	To understand the different concepts related to ANN such as vectorization and parameter tuning	MK3
	Skills	
S1	To be able to apply logistic regression models on typical problems using python	MS3
S2	To be able to apply ANN models on typical problems using python	MS3
S3	To be able to compute the output of logistic regression manually	MS3
	Competences	
C1	To be able to use logistic regression in solving a real life problem	MC1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction into Classification.	Lectures	Ref 1. 285-300
2	Applications of Classifications Introduction into Logistic Regression	Lectures	Ref1. 300-344 + Text1 63-71
3	Logistic Regression Examples in Python Gradient Descent of Logistic Regression HW1 Out	Lectures	Python Examples given in class + Text1 63-71
4	Introduction into Vectorization Vectorization in Logistic Regression	Lectures	Python Examples given in class
5	Derivative Meaning Introduction into ANN	Lectures	Text2 1-52
6	Mid Exam Estimated + Revision	learning through problem solving	
7	ANN Examples in Python HW2 Out	Lectures	Python Examples given in class
8	Vectorization of ANN Gradient Descent of ANN Loss Functions	Lectures	Text2 105-167
9	Deep ANN Deep ANN Examples in Python HW3 Out	Lectures	Text2 170-200 + Examples given in class
10	Learning Curve CNN RNN	Lectures	Text2 200-216
11	Case Study 1: ANN for estimating functions	learning through problem solving	Given in class
12	Case Study 2: ANN for	learning through problem solving	Given in class
13	Presentations	participatory learning	
14	Presentations.	participatory learning	
15	Presentations.	participatory learning	
16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

جامعة الزيتونسة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Week	Task / activity	Reference	Expected results
1	Data Mining Categorization		To categorize various
			scenarios into their data
			mining types
2	Logistic Regression Part1		To compute manually
			the output of a
			regression model
3	Logistic Regression Part2		To compute manually
			the output of a
			regression model
4	One Hot Encoding		To apply one hot
			encoding on data
5	Logistic Regression Using Loop		To use logistic
			regression using python
6	Logistic Regression Using Vectorization		To apply vectorization
			on logistic regression
			using python
7	Exam		
8	Logistic Regression Using Vectorization		To apply vectorization
			on logistic regression
			using python
9	Learning Rate		To use learning rate on
			logistic regression
10	Biase		To use biase
11	ANN Part1		To apply ANN using
			python
12	ANN Part2		To apply ANN using
			python
13	Deep Learning		To apply Deep
			Learning using python
14	Presentations		To present a trending
			topic in ANN
15	Presentations		To present a trending
			topic in ANN
16	Exam		_