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ABSTRACT 
Impulsive noise (IN) produced by image sensors and/or communication channels corrupts images in 
many practical applications. This noise may cause miscalculation of sharpness values which, in turn, 
introduce considerable errors in fused images. In this paper, conventional focus measures and 
frequency selective weighted median filter (FSWM) based focus measure are evaluated for fusion of 
multi-focus images in the presence of IN. Experimental results are presented for several sets of images 
and the results show that FSWM based focus measure can provide better performance than other focus 
measures. 
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1. Introduction 

Recently, intelligent inspection systems have 
become an important topic in industrial 
informatics. Image fusion has been widely 
applied in industrial manufacturing [1-5] areas 
such as electronic circuitry and component 
inspection, product surface measurement and 
inspection and intelligent robots on assembly 
lines, manufacture process monitoring, etc.  

In practice, all cameras used in imaging 
systems are not pin-hole devices but consist of 
convex lenses. Therefore, they have a limited 
depth of field, i.e., when a lens focuses at a 
particular distance, objects that are in front of 
or beyond this distance are out of focus and 
appear blurring [6]. The degree of this blurring 
is affected by the camera position, the focal 
length, the f-number of the lens and the 
distance between the lens and the sensor plane 
[7]. A popular way to extend the depth of field 
of an optical imaging system is to combine the 
images of the same scene taken from the 
identical point of view under different focal 
settings. This process is named as multi-focus 
image fusion.  

Image fusion produces a sharply focused 
single image of a scene from partially focused 
and defocused images of the same scene 
acquired using either multiple sensors or a 
sensor whose geometric and sensory 
parameters can be changed. The sharper parts 
of the input images are copied into the fused 
image with the aim of obtaining everywhere in 
focus image of the scene. For human and 
machine perception, well-focused images are 
preferred to out-of-focus images since more 
information can be acquired from sharply 

focused images than the defocused images 
[8,9,10]. 

Recently, several methods based on multi-
scale transforms have been proposed such as 
Laplacian Pyramid [11] and the discrete 
wavelet transforms (DWT) [12]. However, 
multi-resolution approaches are generally 
shift-variant and sensitive to noise [13]. To 
overcome this problem, a discrete wavelet 
frame transform based method has been 
proposed [9]. However, the implementation of 
these methods is complicated and the 
algorithms are time consuming. In addition to 
that, a spatial domain multi-focus image fusion 
(SDMIF) method has also been presented [14]. 
The fundamental idea behind this method is to 
construct a fused image that encloses the 
sharper parts of the source images. This 
process necessitates an analytic focus measure 
which can be used to evaluate the sharpness of 
focus in a part of the image. A sharpness 
criterion should:  

a. respond to high-frequency variations in 
image intensity, 

b. be independent from the image content, 
c. be computationally efficient for the real-

time implementations. 
Without considering the noise generated by 

the CCD of video cameras, the performance of 
several focus measures was studied with 
respect to image fusion [14,15]. However, in 
many practical applications, images are 
distorted by impulsive noise produced by 
image sensors and/or communication channels. 
This noise may cause miscalculation of 
sharpness values which, in turn, degrade the 
performance of image fusion. In this paper, 
conventional focus measures and FSWM based 



 

focus measure are evaluated for multi-focus 
image fusion in the presence of IN.  
2. Focus measures 

The general idea behind focus measures is 
to compute the high frequency content of an 
image [16,17]. Let f (i, j) be the gray level 
intensity of the pixel (i, j). 

 
2.1. Variance (VAR)  
For an M×N size of an image block, variance 
can be employed as a focus measure and is 
computed as: 
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where f  is the average grey level over the 
image region: 
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2.2. Energy of laplacian (EOL) 
Laplacian of an image can also be utilized as a 
focus measure that can analyze high 
frequencies associated with image edges and is 
calculated as: 
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The Laplacian of the image intensity can be 
estimated using any of the Laplacian masks. 

 
2.3. Tenengrad (TNG)  
Edge characteristics are affected by the quality 
of focus. Since defocusing tends to decrease 
the gradient of an edge, the focus measure 
involves measuring the magnitude of the 
gradients in the region of interest. The criterion 
estimates the gradient at each image point, and 
simply sums their magnitudes. 
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where T is a threshold value and ∇f( i, j) is the 
gradient magnitude given as: 

22),( yx ffjif +=∇  (4)

where fx and fy are gradients along the 
horizontal and vertical direction, respectively. 
There are many discrete operators which can 
estimate fx and fy. Tenengrad uses Sobel 
operators to approximate gradients in the 
horizontal and vertical directions. 
 
2.4. Frequency selective weighted 
median filter (FSWM):  
The high frequency content of an image can be 
measured by a gradient estimator because it is 

inherently a high-pass filter. In the course of 
detailed analysis between gradient estimator 
and the high-pass filter, the basic structure for 
FSWM based focus measure is derived in [18]. 
The FSWM based focus measure not only 
responds to high frequency components of the 
images, but also eliminates the effects of 
impulsive noise. Therefore, it can measure the 
sharpness of an image more precisely.  

The characteristics of the high-pass filter 
can be improved by a nonlinear weighted 
median (WM) filter. The WM filter can be 
represented with <W; F>, where W = [w1, 
w2,…,wm] and F = [f1, f2,…,fm] are the weight 
vector and the discrete time continuous valued 
input vector of a WM filter, respectively. The 
elements of F are arranged in increasing order 
as f1<f2<…<fm. The output of the WM filter is 
computed by repeating each sample fi to the 
number of the corresponding weight wi 
followed by sorting the resulting array. Then, 
the median value from the expanded vector is 
chosen.  

For instance, <[1, 2, 3, 2, 1]; [-3, -
2, 0, 1, 4]>  refers to median{f (i-3), 2◊f (i-
2), 3◊f (i), 2◊f (i+1),  f (i+4)}, where ◊ is the 
duplicating operator, i.e., w◊f represents that f 
is repeated w times.  

WM filters can be linearly combined to 
form an FSWM filter that can be defined as: 
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An FSWM filter can be obtained by finding 
appropriate ai∈R, Wi and Fi. In [18], the 
frequency characteristics of FSWM filters 
were investigated to find a desirable filter for 
autofocusing and the following band pass filter 
is applied for measuring image sharpness: 
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In this paper, the filter given in eq. (6) can 
also be employed to measure image sharpness 
for the purpose of image fusion. Let Hh and Hv, 
respectively, be FSWM filtering results that 
are obtained by applying the filter to an image 
along the horizontal and vertical directions 
using (6). The sharpness measure can be 
defined as: 
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Fig. 1. Schematic diagram of multi-focus image fusion. 

3. Multi-focus image fusion 
The spatial domain pixel-level multi-focus 

image fusion algorithm is illustrated in Fig. 1. 
This work only deals with the fusion of two 
images. However it can easily be adopted to 
handle more than two images.  

First the algorithm partitions the source 
images into equi-sized square tiles. As a result, 
there are no gaps or overlaps between the 
neighboring sub-image blocks. Then, the 
sharpness values of each corresponding blocks 
of the source images are computed. Lastly, by 
comparing these values, the blocks with the 
high sharpness values are copied into the 
corresponding positions in the fused image.  

The computation steps of the algorithm can 
be expressed as the followings: 

1. Decompose the input images A and B into 
equi-sized square blocks. The 
corresponding image blocks of A and B are 
referred by Ai and Bi, respectively, where i 
represents the position of the block. 

2. Calculate the sharpness values of Ai and Bi 
by applying the focus measure and refer 
the results of Ai and Bi by Si

A, and Si
B, 

respectively. 
3. Determine the sharper image block by 

comparing the sharpness values of the 
corresponding blocks, and copy the 
sharper block into the intermediate fused 
image Fi as: 
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4. Repeat Steps 2 and 3 for all corresponding 
blocks of the input images. 

5. Compute the final fused image by applying 
a majority filter on the intermediate fused 
image. This filter eliminates the isolated 
blocks. That is, if a particular block in the 
intermediate fused image is copied from 
image A but the majority of its 
surrounding blocks are from image B, this 

block will be replaced with the 
corresponding block of B and vice versa. 
In the implementation, the size of the 
majority filter employed was 3× 3 
window. 

 
4. Experimental results 

This section presents several experiments 
conducted on artificially and naturally blurred 
images for comparing the image fusion 
performance of focus measures.  

The first experiment was carried out on two 
256×256 reference (everywhere-in-focus) 
images. The images (Kids and Sulfur) are 
shown in Fig. 2a and Fig. 3a, respectively. The 
blurred versions of the Kids image were then 
obtained by convolving the regions of the 
children with a Gaussian of radius 1,4 and 
distorted by adding different amount of 
random IN. As an example, two of the 
resulting noisy (1% IN) and blurred images are 
shown in Figs. 2c and 2d. In a similar manner, 
Figs. 3c and 3d were obtained by blurring Fig. 
3a with a Gaussian of radius 1 and degraded by 
1% random IN. 

Peak signal-to-noise ratio (PSNR) is used to 
evaluate the quality of the artificially produced 
multi-focus images. PSNR is a metric for the 
ratio between the maximum possible power of 
a signal and the power of corrupting noise that 
affects the fidelity of its representation and is 
given by: 
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where R is the everywhere-in-focus reference 
image, F is the fused image. The larger the 
PSNR value, the better the fused image. 

Experiments were conducted for evaluating 
the performance of the focus measures on 



 

image fusion with respect to various block 
sizes (8×8, 16×16 and 32×32) and different 
levels of IN (0.5%, 1%, 1.5%, 2% and 2.5%). 
Simulations were performed 30 times due to 
the random nature of artificial IN. For Kids 
images (Fig. 2c and 2d), the results of PSNR 
values obtained by averaging the results of 
independent runs are given in Table 1. The 
standard deviation (StdDev) for the PSNR 
values were also computed showing the 
variations of the PSNR values with respect to 
the average PSNR values. Table 1 gives the 
computed StdDev values of the results.  

The same experiments were also carried out 
for the Sulfur images (Fig. 3c and 3d) and the 
results obtained are given in Table 2. As can 
be seen from Table 1 and 2, it is clear that 
FSWM performs better than other methods 
under various amount of noise and block sizes. 
All the experiments show that the calculated 
average PSNR values of FSWM are less than 
those of other functions. In addition, the 
standard deviations computed for all the 
experiments show that the difference between 
various runs is lower for FSWM than that of 
the others. These indicate that the FSWM is 
more reliable, robust and stable than the other 
focus measures. Examples of fused images 
obtained by employing FSWM with the block 
size of 8×8 are given in Fig. 2b and 3b. 

The second experiment was performed on 
the images which were acquired by a real lens. 
The images were composed of multiple objects 
at different distances from the camera. 
Therefore, the images had naturally defocused 
parts because points on the surface of the 
world at a particular distance from the lens 
were focused whereas points at other distances 
were defocused (or blurred) by varying 
degrees depending on their distances. In the 
experiments, 1% artificial impulsive noise was 
added to the out of focus images. Focus 
measures were performed on the images 
shown in Fig. 4a (near focused) and Fig. 4b 
(far focused) by employing 8×8 block size. 
The resulting fused images are shown in Figs. 
4c through f. The fused images given in Figs. 
4c through e have some problematic parts. For 
example, some areas on the person head and 
the first monitor are copied from the wrong 
source images. On the other hand, the fused 
image by FSWM, as shown in Fig. 4f, is 
clearer than the results of the other techniques.  

 
5. Conclusion 
Almost all focus measures depend directly on 
the amount of high frequency information in 

the image. It should be noted that much of the 
image noise is also related to high frequencies. 
This dilemma causes miscalculation of the 
image sharpness and consequently of the fused 
image. The effects of noise on the 
measurement of image sharpness should be 
reduced as much as possible. Efforts to 
mitigate image distortions before the image 
fusion level can modify pixel values of the 
original images and may result in unjustified 
complication of image fusion algorithms since 
the decision for fusion has to be done on 
processed images rather than original images. 
Therefore, image fusing algorithms should not 
use filtering operations for noise removal 
before fusing stage.  
 

 
(a) (b) 

 
(c) (d) 

Fig. 2. Kids image: (a) reference image, (b) fused 
image using FSWM, (c) noisy source image (near 
focused), (d) noisy source image (far focused). 
 

 
(a) (b) 

 
(c) (d) 

Fig. 3. Sulfur image: (a) reference image, (b) fused 
image using FSWM, (c) noisy source image (near 
focused), (d) noisy source image (far focused). 



 

 
Table 1. PSNR results for focus measures after 30 replicates for Kids image. 

IN levels 0.5% 1% 1.5% 2% 
 

Block Size 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32
Avg. 42.586 40.527 40.203 40.301 39.167 39.761 39.000 38.771 39.118 37.864 38.067 38.784VAR 
StdDev 0.638 0.636 0.969 0.711 0.786 1.089 0.576 0.973 1.076 0.718 0.867 1.208
Avg. 42.410 37.455 36.267 39.463 35.159 35.692 37.010 34.858 34.833 35.760 33.983 34.698EOL 
StdDev 0.818 1.003 1.318 0.835 0.929 1.588 0.746 0.997 1.072 0.680 0.779 1.369
Avg. 42.745 40.684 40.196 40.545 39.014 39.698 38.842 38.523 38.786 37.642 37.916 38.549TNG 
StdDev 0.535 0.684 1.002 0.640 0.763 1.113 0.640 0.707 1.050 0.639 1.074 1.291
Avg. 44.470 44.344 42.613 44.337 43.944 41.965 44.374 43.341 41.271 44.057 42.936 40.413

FSWM StdDev 0.135 0.106 0.657 0.257 0.543 0.829 0.291 0.577 1.017 0.474 0.750 1.182
 

Table 2. PSNR results for focus measures after 30 replicates for Sulfur image. 
IN levels 0.5% 1% 1.5% 2% 

 
Block Size 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32 8× 8 16× 16 32× 32
Avg. 46.886 44.012 45.349 43.462 42.438 44.077 41.759 42.073 43.663 40.881 41.289 42.986VAR 
StdDev 1.169 1.028 1.315 0.893 1.220 1.107 0.953 1.077 1.098 0.788 1.524 1.653
Avg. 46.474 40.381 40.263 43.177 38.253 39.142 40.732 38.065 39.476 39.474 37.799 38.441EOL 
StdDev 1.128 1.177 1.721 0.988 1.166 1.765 0.940 0.985 1.625 0.603 0.777 1.701
Avg. 47.368 44.673 45.683 44.380 43.278 44.913 42.241 42.567 43.868 41.214 41.910 43.553TNG 
StdDev 1.086 0.854 1.127 0.772 1.290 1.329 0.796 0.915 1.477 0.866 1.143 1.273
Avg. 51.800 51.136 49.179 51.587 50.290 48.284 51.380 49.199 47.049 50.642 48.334 45.943

FSWM StdDev 0.312 0.299 0.619 0.484 0.891 1.000 0.496 1.389 1.007 0.979 1.183 1.406
 

 
(a)  

 
(b)  (c)  

 
(d)  

 
(e)  (f)  

Fig. 4. Lab image (320× 240) and fusion results under 1% IN: (a) near focused, (b) far focused, (c)-(f) fused 
images using VAR, EOL, TNG, and FSWM, respectively. 

 
The simulations have been performed with 

different block sizes and amounts of IN. The 
experimental results obtained show that 
FSWM focus measure is less sensitive to 
noise, exhibits the sharpness of an image more 
precisely and outperform the other focus 
measures and fusion methods on the fused 
noisy images in terms of quantitative and 

subjective evaluation.  
The main objective of this paper is to 

explore the suitability and effectiveness of the 
focus measures for the fusion of multi-focus 
noisy images. The performances of the 
functions are compared by employing the 
various block sizes and amount of noise. By 
employing an optimal block size obtained by 



 

an intelligent optimization technique may 
improve the performance of the fusion results. 
Development of an optimization tool to aid in 
this task is beyond the scope of this work, and 
could be an interesting future work. 
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