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Abstract: Problem statement: The problem inherent to any digital image is the large amount of 
bandwidth required for transmission or storage. This has driven the research area of image 
compression to develop algorithms that compress images to lower data rates with better quality. 
Artificial neural networks are becoming attractive in image processing where high computational 
performance and parallel architectures are required. Approach: In this research, a three layered 
Backpropagation Neural Network (BPNN) was designed for building image 
compression/decompression system. The Backpropagation neural network algorithm (BP) was used for 
training the designed BPNN. Many techniques were used to speed up and improve this algorithm by 
using different BPNN architecture and different values of learning rate and momentum variables. 
Results: Experiments had been achieved, the results obtained, such as Compression Ratio (CR) and 
peak signal to noise ratio (PSNR) are compared with the performance of BP with different BPNN 
architecture and different learning parameters. The efficiency of the designed BPNN comes from 
reducing the chance of error occurring during the compressed image transmission through analog or 
digital channel. Conclusion: The performance of the designed BPNN image compression system can 
be increased by modifying the network itself, learning parameters and weights. Practically, we can 
note that the BPNN has the ability to compress untrained images but not in the same performance of 
the trained images.  
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INTRODUCTION 
 
 Artificial Neural Networks (ANN) models have 
been studied for many years in the hope of achieving 
human-like performance in the fields of pattern 
recognition, speech and image recognition where high 
computational rates are required. The Backpropagation 
Neural Network (BPNN) is the most widely used multi 
layer feed-forward ANN. The BPNN consists of three 
or more fully interconnected layers of neurons which 
can be trained by using the Backpropagation Algorithm 
(BP). The BP training can be applied to any multilayer 
NN that uses differentiable activation function and 
supervised training (Wasserman, 1989).  
 Image compression is a process of: representing an 
image with fewer bits while maintaining image quality 
(Gonzales and Wintz, 1987); saving cost associated 
with sending less data over communication lines and 
finally reducing the probability of transmission errors. 
In the literature, different ANN architectures and 

training algorithms have been developed for image 
compression which provided high Compression Ratio 
(CR) and high Signal to Noise Ratio (SNR). 
 The BPNN has the simplest architecture of ANN 
that has been developed for image compression but its 
drawback is very slow convergence. Many approaches 
have been carried out to improve the speed of 
convergence. These approaches are computationally 
complex in nature and applied only to limited patterns. 
At the same time, the images used for compression are 
of different types like dark image and high intensity 
image. When these images are compressed using 
BPNN, it takes longer time to converge because any 
given image may contain a number of distinct gray 
levels with narrow difference with their neighborhood 
pixels. Therefore, Durai and Saro (2006) suggested 
mapping the gray levels of the image pixels and their 
neighbors in such a way that the difference in gray 
levels of the neighbors with the pixel is minimized and 
then the CR and network convergence can be improved. 
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They achieved this by estimating a cumulative 
Distribution Function (CDF) for the image. They used 
CDF to map the image pixels, then, the BPNN yields 
high CR and converges quickly. Their experiments 
achieved CR equal 4:1 and Peak Signal to Noise Ratio 
(PSNR) equal 28.91 when applied this approach on 
(256×256) Lena image. While, Roy et al. (2005) 
developed an edge preserving image compression 
technique using one hidden layer feed forward BPNN 
of which the neurons are determined adaptively. Edge 
detection and multi-level thresholding operations are 
applied to reduce the image size. The processed image 
block is fed as single input pattern while single output 
pattern has been constructed from the original image 
unlike other NN based techniques where multiple image 
blocks are fed to train the network. Their experiment 
achieved CR (30:1) and SNR (0.3013) when they applied 
their proposed approach on Lena image. 
 Khalil (2007) proposed a bipolar sigmoidal BP 
(PPB) to train a feed forward auto associative NN. The 
proposed method includes steps to break down large 
images into smaller windows for image compression 
process. Experiments have been achieved CR (8:1) and 
PSNR (29.0) on applying PPB with number of hidden 
units equal 16 on (256×256) Lena image. 
 Xianghong and Yang (2008) used BPNN for image 
compression and developed algorithm based on 
improved BP. The blocks of original image are 
classified into three classes: background blocks, object 
blocks and edge blocks, considering the features of 
intensity change and visual discrimination. Experiments 
have been achieved CR (3.156:1) and PSNR (41.209) 
on applying this approach with number of hidden units 
equal 8 on (256×256) Lena image. 
 Finally, Veisi and Jamzad (2009) presented an 
adaptive method based on BPNN for image 
compression/decompression based on complexity level 
of the image by dividing image into blocks, computing 
the complexity of each block and then selecting one 
network for each block according to its complexity 
value. They used three complexity measure methods 
such as: entropy, activity and pattern-based to 
determine the level of complexity in image blocks. 
They used best-SNR approach in selecting compressor 
network for image blocks which chooses one of the 
trained networks such that results best-SNR in 
compressing the input image block. Experiments have 
been achieved CR (3.156:1) and PSNR (34.92) on 
applying this approach with number of hidden units 
equal to 8 on (256×256) Lena image.    
 According to literature studies, we need 
compression technique that leads to less storage 
requirements and best CR. The two most important 

problems that must be solved by using ANNs are the 
definition of network architecture, learning parameters 
and the weights on the connecting arcs between the 
neurons. In this research, we present and improve 
BPNN image compression/decompression system 
which is trained by BP.  

 
MATERIALS AND METHODS 

 
BPNN for image compression: In this research, a 
BPNN is designed for image compression and the 
architecture of it is developed using the idea of encoder 
problem. The BPNN is fed by analog gray level of 
image (ranged between 0 and 255) as an input and 
produces an appropriate compressed code at outputs of 
hidden layer units. In the reconstruction process, this 
network would produce an analog gray level image by 
the outputs of output layer units.  
 The design of BPNN for image compression 
system involves determining the number of 
network’s layers. The complexity of decision regions 
formed by network can be increased by increasing 
the number of layers. BPNN with three layers (input, 
hidden and output layers) as shown in Fig. 1 and a 
suitable number of hidden layer units is a good 
choice because one layer of sigmoidal hidden units is 
sufficient to approximate any continuous function 
(Jagesh and Poon, 1999). It is noted practically that 
when BPNN architecture is designed with more than 
one hidden layer, the probability of occurring BP 
problems such as trapping in local minimum and 
slow convergence would increase very much than 
when we design BPNN with three layers only. As 
shown in Fig. 1, the number of input layer units (Ni) is 
equal to the number of output layer units (N). The 
number of neurons in input and output layers is 
governed  by the dimension of image sub block (P×P). 

 

 
 
Fig. 1: BPNN image compression system 
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Whereas the number of hidden layer units with K units 
(K<N) is usually less than the number of input layer 
units, no rule exists to select the best number of units in 
the hidden layer. Therefore, the number of hidden layer 
units is determined empirically and it is affects on 
compression performance of BPNN as shown later in 
results. 
 
Image normalization and segmentation must be 
applied to that image to simplify using it by the BPNN. 
The image data is represented by the pixel value 
function  f(X,Y) where  X  and  Y  correspond  to  the 
spatial coordinates within the image with pixel values 
between 0 and 2k-1, where k is the number of bits 
which represent each pixel in the image, usually k = 8, 
then the pixel values would lie within the range [0-255]. 
The BPNN requires inputs with real type and the 
sigmoid function of each BPNN neuron requires the 
input data to be in the range [0-1]. For this reason the 
image data values must be normalized. The 
normalization is the process of linearly transformation 
of image values from the range [0-255] into another 
range that is appropriate for BPNN requirements to 
obtain valuable results and to speed up the learning 
(Kursk et al., 2006). In this research, the image is 
linearly transformed from range [0-255] to range [0-1]. 
 Image segmentation is the process of dividing the 
image into sub images, each of which is considered to 
be a new separate image. In this research, the image is 
segmented by dividing it into non overlapping blocks 
with equal size to simplify the learning/compressing 
processes. The input layer units of BPNN are 
represented by one-dimensional vector. Image 
rasterization is the process of converting each sub 
image from a two-dimensional block into a one-
dimensional vector.  
 
Initialization BPNN learning parameters: The 
weight connections of the BPNN are represented by 
two weight matrices. The first matrix is V which 
represents the weight connections between the input 
and hidden layer units and the second matrix is W 
which represents the weight connections between the 
hidden and output layer units. These two weight 
matrices must be initialized to small random numbers 
because the network may be saturated by large values 
of the weights. The learning rate value usually reflects 
the rate of network learning and its value (between 0.1 
and 0.9) is chosen by the user of the network. Values 
that are very large can lead to instability in the network 
and unsatisfactory learning, while values that are too 
small can lead to excessively slow learning 
(Wasserman, 1989). 

Preparation of BPNN training/testing set: A testing 
set consists of sub images that are not included in the 
training set and it is used to assess the BPNN 
performance after training. The preparation of 
training/testing set includes the following steps: 
 
Step 1: Apply the segmentation process on the image to 

be used in learning/testing processes. 
Step 2: Apply rasterization and normalization on every 

block segment. 
Step 3: Store the results in the training set file. 
Step 4: Repeat from Step 1 while there are more images 

to be used in training process. 
 
Simulation of BPNN learning: a simulation program 
to implement BP was built to include the steps: 
 
Step 1: Initialization of network weights, learning rate 

(η) and Threshold error. Set iterations to zero. 
Step 2: Open file which contains the image training 

set. 
Step 3: Total_error = zero; iterations → iterations+1. 
Step 4: Get one vector and feed it to input layer. 
Step 5: Initialize the target output of that vector. 
Step 6: Calculate the outputs of hidden layer units. 
Step 7: Calculate the outputs of output layer units. 
Step 8: Calculate error (desired output - actual output) 

and calculate   total_error → total_error + error. 
Step 9: Calculate delta sigma of output layer units and 

adjust weights between output and hidden 
layer. 

Step 10: Calculate delta sigma of hidden layer units 
and adjust weights between hidden and input 
layer. 

Step 11: While there are more vectors, go to Step 4. 
Step 12: If Threshold error >= Total_error then stop, 

otherwise go to Step 3. 
 
BPNN compression process: The number of 
connections between each two layers in BPNN is 
calculated by multiplying the total number of neurons 
of the two layers, then adding the number of bias 
neurons connections of the second layer (bias 
connections of a layer is equal to the number of layer 
neurons). If there are Ni neurons in the input layer, Nh 
neurons in the hidden layer and No neurons in the 
output layer, the total number of connections is given 
by equation: 
 
Network Size(Nw) = [(Ni×Nh)+Nh]+[(Nh×No)+No] (1) 
 
 The block diagram of the BPNN image 
compression/decompression is shown in Fig. 2. The 
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compression process can be summarized by the 
following steps: 
 
Step 1: Read image pixels from file and then normalize 

it by converting it from range [0-255] to range 
[0-1]. 

Step 2: Divide the image into non-overlapping blocks. 
Step 3: Rasterizing the image blocks. 
Step 4: Apply the rasterized vector into input layer units 
Step 5: Compute the outputs of hidden layer units by 

multiplying the input vector by the weight 
matrix (V). 

Step 6: Store the outputs of hidden layer units after 
denormalizing them in a compressed file.  

Step 7: While there are more image vectors go to 
Step 4. 

 
 At the beginning of NN compressed file, there is a 
header block that contains information about the source 
image and the compression process parameters.  
 
BPNN decompression process: The implementation of 
BPNN decompression includes the following steps: 
 
Step 1: Open the compressed file. 
Step 2: Take one vector from the file. 
Step 3: Normalize this vector (it represents the outputs 

of hidden layer units). 
Step 4: Compute the outputs of output layer units by 

multiplying outputs of hidden layer units by the 
weight matrix (W). 

Step 5: Derasterize the outputs of output layer units to 
build the sub image of size P×P. 

 

 
 
Fig. 2: BPNN image compression/decompression 

Step 6: Return this sub image to its proper location 
Step 7: Denormalize this block and store it in the 

reconstructed file. 
Step 8: While there are more vectors in compressed 

file go to Step 2. 
 
Improving performance of BP: The performance of 
BPNN can be improved by applying many approaches 
as follows. 
 
Adding bias unit: A bias unit is added as a part of 
every BPNN layer but not the output layer. This unit 
has a constant value of 1 and it is connected to all units 
in the next layer. The weights on these connections can 
be trained in just the same way as other weights. The 
bias units provide a constant term in the weighted sum 
of the units in the next layer. The result is sometimes an 
improvement on convergence properties of the network. 
The bias unit also provides a threshold effect on each 
unit it targets. It contributes a constant term in 
summation of products (NETj) which is the operand in 
sigmoid function. Thus, we used the equation: 
 

N

j i ji  j
i 1

NET X W  
=

= + θ∑  (2) 

 
 This is equivalent to translating the sigmoid curve 
to the left or to the right. In this way, the bias unit 
provides an adjustable threshold for each target unit. 
The threshold for unit j then comes from the value of 
Wj0 (considering θj as X0 unit) the weight of 
interconnection for bias unit. 
 
Using momentum variable (θθθθ): Momentum variable 
improves the training time of BP and enhancing the 
stability of the process. It involves adding a term to the 
weight adjustment that is proportional to the amount of 
the previous weight change. Once an adjustment is 
made, it is “remembered” and serves to modify all 
subsequent weight adjustments (Wasserman, 1989). We 
used the following equation for weight adjustment: 
 

new old q new
ji ji jiW   W    [ W ]= + ∆  (3) 

 
and also, we used the following equation (Wasserman, 
1989): 
 

q new q q 1 q old
ji i j ji[ W ]      O      [ W ]−∆ = η δ + α ∆  (4) 

 

where, α is the momentum variable in the range 0.0-
1.0, but it is commonly set to around 0.9. By using 
momentum, the network tends to follow the bottom of 
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narrow gullies in error surface (if they exist) rather than 
crossing rapidly from side to side. If α is 0.0, then the 
smoothing is minimum; the entire weight adjustment 
comes from the newly calculated change. If α is 1.0, the 
new adjustment is ignored and previous one is repeated. 
Between 0 and 1 is a region where weight adjustments 
are smoothed by amount proportional to α (Wasserman, 
1989). 
 
Using beta (ββββ): The variable Beta can be used in the 
sigmoidal function during BP to determine the 
steepness of the shape of sigmoid function. When β is 
used in BP training it lies in the range [0.1-1], so when 
β has a value of 0.1, learning is slowly converge, but 
when the value of β = 1, instability may occur. When β 
is used in sigmoid function, we used the following 
equation:  
 

OUT = F(NETj) = 1 / (1 + e-β×NETj) (5) 
 
 Also we used the following equation: 
 

F' (NETj) = β×(OUT (1 - OUT)) (6) 
 

Changing the learning rate value (ηηηη): an attempt to 
produce more efficient BPNN learning, by allowing the 
value of η to begin at a high value and to decrease 
during the learning process. At the same time, allowing 
α to begin with low value and to increase during 
learning process to improve learning performance.  
 
Introduction of random noise: One of the most 
important problems of BP training is the local minimum 
problem. Local minimum traps can be avoided with the 
introduction of random noise during the training 
process. Introducing random noise is another way of 
shifting the location of error function thereby 
permitting the descent process to escape from local 
minimum and continue on its downward search for a 
global minimum. The introduction of noise can also 
improve the network’s ability to generalize. Introducing 
noise into the training patterns can be done by adding 
small random perturbations to the training patterns 
during training process. 
 
Effects of channel errors: The fundamental problem 
in image transmission is the image reproduction at 
receiver with acceptable image quality. ANN has a 
strong immunity against noise and this can be examined 
by simulating image transmission on analog or digital 
channel with white noise added to transmitted image. In 
analog transmission, noise is added to image intensity 
value, while in digital transmission, noise is added to 

each bit of image intensity as suggested by Melesse et al. 
(2005). To simulate transmission process, we take the 
compressed file of an image that compressed using 
BPNN and then, a random noise is added to this 
compressed file. 
 The transmission on analog channel is simulated as 
follows: each index in the compressed image file is 
converted into a decimal code and then a random 
number of Gaussian distribution is generated for that 
code. If the random number is greater than 0.5, the code 
is incremented by one, but if it is less than -0.5 the code 
is decremented by one. The Probability of error of 
changing the code can be varied by altering the value of 
the variance during the generation of the Gaussian 
distributed numbers. Whereas the transmission on a 
noisy digital channel is simulated as follows: Each 
index in the compressed image file is converted into a 
binary code, then for this code a random number of 
Gaussian distribution is generated, if it is greater than 
0.5 or less than -0.5, then one bit is inverted.  
 

RESULTS  
 
 The CR is the degree of data reduction obtained as 
a result of compression process. In BPNN image 
compression system, the CR is defined by the ratio of 
the data fed to the input layer Neurons (Ni) to the data 
out from the hidden layer neurons (Nh). Also the CR 
can be computed by the equation: 
 
CR = (1- (Nh/Ni)) × 100%  (7) 
 
 After completing the decoding process, the SNR 
and PSNR and NMSE (Normalized Mean Squared 
Error) should be calculated between the reconstructed 
image and original image to verify the quality of the 
decoded image with respect to the original one. To 
check the compression performance, the CR and Bit Per 
Pixel rate (BPP) are calculated. The CR is the amount 
of compression, while BPP is the number of bits 
required to represent each pixel value of compressed 
image. The better compression performance is with the 
highest CR, the least BPP rate and highest PSNR 
(Gonzales and Wintz, 1987). Simulations were 
conducted to evaluate the compression and 
generalization performances of the proposed BPNN 
image compression system. The efficiency of this 
BPNN was tested by several experiments using real 
world images.  
 
BPNN size, capacity and generalization: The network 
capacity quantifies the learning capabilities of ANN 
architecture, which is a measure of the number of 
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training patterns that ANN can correctly identify after 
training has been completed. Generalization is the 
network’s ability to correctly identify a pattern on other 
parts of the domain that the network did not access 
during the training phase (Alshoaibi et al., 2009). 
Referring to BPNN in Fig. 1, let Ni represents the 
number of input layer neurons, No represents the 
number of output layer neurons, Nh represents the 
number of hidden layer neurons and Nw represents the 
total number of weights in BPNN including bias 
weights, the Capacity (C) is defined as (Nw/No). 
Assume that, training patterns are taken from an N×N 
pixel image which is partitioned into P×P pixel patches 
for training, where P is the block dimension. Let Np 
represents the total number of patterns in training set:  

 
Np = (N×N) / (P×P)  (8) 

 
 To expect good generalization, it is necessary that 
the Np be several times larger than the network 
capacity, that is, Np>C, then Generalization (G) is 
defined as (Np/(Nw/No) ) and it is equal also (Np/C). 

  
Effectiveness of hidden layer neurons: In suggested 
BPNN image compression, if we take an image of 
256×256 dimension (N=256) and block dimension (P = 
8), then Np was computed using Eq.8 and it is equal to 
1024 patterns. Table 1 list various network architectures 
where Nw was computed using Eq. 1.  

 
Effectiveness of input layer neurons: Ni depends on 
the block dimension (P). If the P increases this would 
result in increasing the Ni and this also would result in 
decreasing the G and decreasing the C. Table 2 shows 
the effect of P on G and C for images of size 256×256 
using BPNN of Nh = 2. Increasing P decreases Np 
which results in decreasing G and C.  

 
Table 1: Effectiveness of Nh on BPNN Size, C and G 
Nh  Network size (Nw)   Capacity  Generalization 
2  322 5.0 203.53 
4  580 9.0 113.00 
8  1096 17.0 59.80 
16  2128 33.0 30.80 
32  4192 65.5 15.60 
64  8320 130.0 7.90 

 
Table 2: Effectiveness of Ni on BPNN size, G and C 
Block (P)   Ni Np Nw G C 
2  4 16384 22 2978.90 5.50 
4  16 4096 82 799.20 5.12 
8  64 1024 322 203.50 5.03 
16  256 256 1282 51.12 5.00 

Hidden layer neurons Vs BPNN convergence time: 
To evaluate the relation between the Nh, convergence 
time and reconstructed image error, the BPNN was 
trained on the image (boy16.dat) of dimension 16×16, 
with training set of 4 blocks (block size 8×8) and with 
tolerance value equal 0.001 for various Nh. We fixed 
all other network parameter values except Nh. We 
recorded in Table 3 convergence time, PSNR and 
RMSE error for each value of Nh. From Table 3, we 
can see that minimum convergence time, minimum 
error, maximum SNR and PSNR occur when Nh = 8. 
 
Number of input layer neurons vs. CR: The block 
dimension (P) plays a role in determining Ni, where Ni 
equals P×P. When the P is increased then Ni is 
increased also, this would result in increasing the CR. 
Table 4 shows various BPNN architectures (for various 
P and Nh = 2) Vs their corresponding CR and bpp.  
 
Learning rate Vs convergence time: The convergence 
time required for BPNN training depends on the value 
of learning rate (η) because this value is used during the 
weights update. Values that are very large (0.9) can 
lead to fast learning but instability in the network and 
unsatisfactory learning. Values that are too small can 
lead to excessively slow learning. Table 5 shows the 
effectiveness of η value on convergence time and the 
number of iterations when the value of momentum 
variable is equal to 0.1 and for a fixed BPNN 
architecture. To produce more efficient BPNN learning, 
training the network can be started with large value of η 
and then decreasing it during learning. 
 
Ability to compress untrained images: The BPNN 
image compression system has the ability to compress 
untrained image but with lower compression 
performance than when using trained image, because 
given  a  trained  BPNN,  it is not possible to guarantee 
a  particular  level  of  performance  on  unseen  images.  
 
Table 3: Effectiveness of Nh on BPNN convergence time and 

objective fidelity criteria 
   Convergence SNR PSNR  
K Nh time (sec) (dB) (dB) RMSE Iterations 
1 2  31923.0 35.20 44.50 0.90 93549 
2 4  145.0 41.70 51.10 0.70 2545 
3 8  33.0 43.40 52.90 0.57 778 
4 16  51.0 43.20 52.60 0.59 670 
5 32  77.0 43.00 52.40 0.60 526 
6 64  203.0 41.20 50.70 0.74 692 
 
Table 4: Input layer neurons vs. CR and bpp 
Block dimension Ni CR:1  BPP 
2  4 2:1 4.0000 
4  16 8:1 1.0000 
8  64 32:1 0.2500 
16  256 128:1 0.0625 
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Table 5: The learning rate Vs convergence time 

   Convergence  
Learning rate Iterations time (sec) MSE 
0.1  5449 874.00 0.579 
0.2  3252 394.99 0.643 
0.3  1872 122.00 0.637 
0.4  1371 101.99 0.579 
0.5  1207 92.99 0.612 
0.6  1033 87.00 0.555 
0.7  1046 86.00 0.618 
0.8  745 32.00 0.628 
0.9  649 27.00 0.618 
1.0  594 25.99 0.602 

 
Table 6: SNR, PSNR and RMSE for three images 

Trained image     Figure 
or not trained SNR (dB) PSNR (dB) RMSE name 
Trained image 28.13 32.35 6.17 (3b) 
Not trained 22.00 30.00 8.28 (3d) 
Not trained 21.10 28.30 9.75 (3f) 

 

  
 (a) (b) 

 

  
 (c) (d) 

 

  
 (e) (f) 

 
Fig. 3: BPNN ability to compress untrained images 
 
It is in fact common for the generalization performance 
of NN to become sub-optimal if training is allowed to 
continue indefinitely as the model over fits training data 
(Souiyah et al., 2009). Figure 3a and 3b show original and 
decoded  trained  image (256×256 pixels, 256 gray levels). 

Table 7: SNR and PSNR of decoded images when transmission 
through analog channel (Aows image) 

Probability of error SNR (dB) PSNR (dB) 
0  20.00 28.00  
0.6  19.71 27.20  
0.9  19.58 27.17  

 
Table 8: SNR and PSNR of decoded images when transmission 

through digital channel (girl image) 
Probability of error SNR (dB) PSNR (dB) Figure name 
0  21.0 31.0 (3b) 
0.05  13.4 22.7 (3c) 
0.2  10.0 18.5 (3d) 

 

 
 

Fig. 4: Hidden layer neurons Vs CR 
 

Figure 3c and 3d show original and decoded untrained 
image. Figure 3e and 3f show another example of 
original and decoded untrained image. Table 6 shows 
SNR, PSNR and RMSE of these decoded images. 

 
Hidden layer neurons Vs CR: When the BPNN image 
compression system is used for image compression 
problem, the Nh represents the compression version of 
image blocks. CR is inversely proportional to Nh. Let 
Ni equal No. We select Nh = 2k where 1≤ k ≤Log2 Ni 
and the CR is calculated using the Eq. 7: CR = (1-
(Nh/Ni))×100. When Ni = 64; CR = (1- (Nh/64)) ×100; 
Fig. 4 shows the various network architectures (by 
changing Nh) Vs their corresponding CR. It is obvious 
that the Nh is responsible for determining the ratio of 
achieved CR. Also, by providing too many hidden layer 
neurons to the BPNN, the number of connection 
weights will increase, which increases the number of 
solutions available to the network. Thus, it will take a 
longer amount of time to find the correct set of weights, 
or only a local solution will be found.  

 
BPNN for removing channel errors: When BPNN 
image compression system is used for image 
compression, it has the ability to remove errors that 
have occurred during compressed image transmission 
through analog or digital channel. This ability comes 
from the BP that is used to train the BPNN.   
 The decoded images (BMP image named Aows with 
256×256 pixels and 256 gray levels) are transmitted 
respectively through a very noisy analog channel with 
probabilities of error p = 0.6 and p = 0.9 respectively. 
Table 7 shows SNR and PSNR of these decoded images 
with respect to their probabilities of errors during 
transmission through noisy analog channel. 
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 Table 8 shows the SNR and PSNR of the decoded 
Girl image with 256×256 pixels and 256 gray levels 
with respect to their probabilities of errors when 
transmission through a noisy digital channel (when the 
BPNN image compression system is used). 
 

CONCLUSION 
 
 In this research, a simulation program for BP was 
developed on a single processor computer. This leads to 
the problem of long execution times to train an image. 
Many methods have been carried out to improve the 
speed of convergence. All of these methods are 
computationally complex in nature and applied only to 
limited patterns. This research has successfully applied 
the BP for training the BPNN image compression 
system. But this BP has many problems. We suggested 
improving the BP for a better convergence, CR and 
PSNR by considering the drawbacks of BP. These 
drawbacks can be avoided by: (1) monitoring the total 
error value during the training process and changing the 
values of learning rate (η) and momentum variable (α) 
depending on this error; (2) by using the beta term (βα) 
in the sigmoid function and finally (3) by adding small 
random noise to BPNN weights.  
 The performance of BPNN image compression 
system has been tested in various types of images. 
Experiments were conducted by varying the sub-image 
size namely 4×4, 8×8, 16×16 and 32×32. The BPNN 
was also tested by varying the number of neurons in the 
hidden layer, resulting in CRs ranging from 4 to 64. 
The PSNR values for various combinations of the 
above were obtained. The Quality of restored image 
(PSNR, CR and the speed of convergence of the 
BPNN) were compared for both conditions. From the 
results, one can clearly see that the performance of the 
designed BPNN image compression/decompression 
system can be increased; this may be accomplished by 
modifying the network itself. 
 Practically, we can note that the BPNN has the 
ability to enhance any noisy compressed image that had 
been corrupted during compressed image transmission 
through a noisy digital or analog channel. Practically, 
we can note that the BPNN has the ability to compress 
untrained images but not in the same performance of 
the trained images. This can be done especially when 
using small number of image block dimension (P). 
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