
Journal of Computer Science 6 (11): 1347-1354, 2010
ISSN 1549-3636
© 2010 Science Publications

1347

Improving the Performance of Backpropagation Neural Network

Algorithm for Image Compression/Decompression System

Omaima N.A. AL-Allaf
Department of Computer Information Systems,

Faculty of Sciences and Information Technology,
AL-Zaytoonah Private University of Jordan, P.O. Box 130,

Amman (11733), Jordan

Abstract: Problem statement: The problem inherent to any digital image is the large amount of
bandwidth required for transmission or storage. This has driven the research area of image
compression to develop algorithms that compress images to lower data rates with better quality.
Artificial neural networks are becoming attractive in image processing where high computational
performance and parallel architectures are required. Approach: In this research, a three layered
Backpropagation Neural Network (BPNN) was designed for building image
compression/decompression system. The Backpropagation neural network algorithm (BP) was used for
training the designed BPNN. Many techniques were used to speed up and improve this algorithm by
using different BPNN architecture and different values of learning rate and momentum variables.
Results: Experiments had been achieved, the results obtained, such as Compression Ratio (CR) and
peak signal to noise ratio (PSNR) are compared with the performance of BP with different BPNN
architecture and different learning parameters. The efficiency of the designed BPNN comes from
reducing the chance of error occurring during the compressed image transmission through analog or
digital channel. Conclusion: The performance of the designed BPNN image compression system can
be increased by modifying the network itself, learning parameters and weights. Practically, we can
note that the BPNN has the ability to compress untrained images but not in the same performance of
the trained images.

Key words: Image compression, artificial neural networks, backpropagation neural network,

backpropagation algorithm

INTRODUCTION

 Artificial Neural Networks (ANN) models have
been studied for many years in the hope of achieving
human-like performance in the fields of pattern
recognition, speech and image recognition where high
computational rates are required. The Backpropagation
Neural Network (BPNN) is the most widely used multi
layer feed-forward ANN. The BPNN consists of three
or more fully interconnected layers of neurons which
can be trained by using the Backpropagation Algorithm
(BP). The BP training can be applied to any multilayer
NN that uses differentiable activation function and
supervised training (Wasserman, 1989).
 Image compression is a process of: representing an
image with fewer bits while maintaining image quality
(Gonzales and Wintz, 1987); saving cost associated
with sending less data over communication lines and
finally reducing the probability of transmission errors.
In the literature, different ANN architectures and

training algorithms have been developed for image
compression which provided high Compression Ratio
(CR) and high Signal to Noise Ratio (SNR).
 The BPNN has the simplest architecture of ANN
that has been developed for image compression but its
drawback is very slow convergence. Many approaches
have been carried out to improve the speed of
convergence. These approaches are computationally
complex in nature and applied only to limited patterns.
At the same time, the images used for compression are
of different types like dark image and high intensity
image. When these images are compressed using
BPNN, it takes longer time to converge because any
given image may contain a number of distinct gray
levels with narrow difference with their neighborhood
pixels. Therefore, Durai and Saro (2006) suggested
mapping the gray levels of the image pixels and their
neighbors in such a way that the difference in gray
levels of the neighbors with the pixel is minimized and
then the CR and network convergence can be improved.

J. Computer Sci., 6 (11): 1347-1354, 2010

1348

They achieved this by estimating a cumulative
Distribution Function (CDF) for the image. They used
CDF to map the image pixels, then, the BPNN yields
high CR and converges quickly. Their experiments
achieved CR equal 4:1 and Peak Signal to Noise Ratio
(PSNR) equal 28.91 when applied this approach on
(256×256) Lena image. While, Roy et al. (2005)
developed an edge preserving image compression
technique using one hidden layer feed forward BPNN
of which the neurons are determined adaptively. Edge
detection and multi-level thresholding operations are
applied to reduce the image size. The processed image
block is fed as single input pattern while single output
pattern has been constructed from the original image
unlike other NN based techniques where multiple image
blocks are fed to train the network. Their experiment
achieved CR (30:1) and SNR (0.3013) when they applied
their proposed approach on Lena image.
 Khalil (2007) proposed a bipolar sigmoidal BP
(PPB) to train a feed forward auto associative NN. The
proposed method includes steps to break down large
images into smaller windows for image compression
process. Experiments have been achieved CR (8:1) and
PSNR (29.0) on applying PPB with number of hidden
units equal 16 on (256×256) Lena image.
 Xianghong and Yang (2008) used BPNN for image
compression and developed algorithm based on
improved BP. The blocks of original image are
classified into three classes: background blocks, object
blocks and edge blocks, considering the features of
intensity change and visual discrimination. Experiments
have been achieved CR (3.156:1) and PSNR (41.209)
on applying this approach with number of hidden units
equal 8 on (256×256) Lena image.
 Finally, Veisi and Jamzad (2009) presented an
adaptive method based on BPNN for image
compression/decompression based on complexity level
of the image by dividing image into blocks, computing
the complexity of each block and then selecting one
network for each block according to its complexity
value. They used three complexity measure methods
such as: entropy, activity and pattern-based to
determine the level of complexity in image blocks.
They used best-SNR approach in selecting compressor
network for image blocks which chooses one of the
trained networks such that results best-SNR in
compressing the input image block. Experiments have
been achieved CR (3.156:1) and PSNR (34.92) on
applying this approach with number of hidden units
equal to 8 on (256×256) Lena image.
 According to literature studies, we need
compression technique that leads to less storage
requirements and best CR. The two most important

problems that must be solved by using ANNs are the
definition of network architecture, learning parameters
and the weights on the connecting arcs between the
neurons. In this research, we present and improve
BPNN image compression/decompression system
which is trained by BP.

MATERIALS AND METHODS

BPNN for image compression: In this research, a
BPNN is designed for image compression and the
architecture of it is developed using the idea of encoder
problem. The BPNN is fed by analog gray level of
image (ranged between 0 and 255) as an input and
produces an appropriate compressed code at outputs of
hidden layer units. In the reconstruction process, this
network would produce an analog gray level image by
the outputs of output layer units.
 The design of BPNN for image compression
system involves determining the number of
network’s layers. The complexity of decision regions
formed by network can be increased by increasing
the number of layers. BPNN with three layers (input,
hidden and output layers) as shown in Fig. 1 and a
suitable number of hidden layer units is a good
choice because one layer of sigmoidal hidden units is
sufficient to approximate any continuous function
(Jagesh and Poon, 1999). It is noted practically that
when BPNN architecture is designed with more than
one hidden layer, the probability of occurring BP
problems such as trapping in local minimum and
slow convergence would increase very much than
when we design BPNN with three layers only. As
shown in Fig. 1, the number of input layer units (Ni) is
equal to the number of output layer units (N). The
number of neurons in input and output layers is
governed by the dimension of image sub block (P×P).

Fig. 1: BPNN image compression system

J. Computer Sci., 6 (11): 1347-1354, 2010

1349

Whereas the number of hidden layer units with K units
(K<N) is usually less than the number of input layer
units, no rule exists to select the best number of units in
the hidden layer. Therefore, the number of hidden layer
units is determined empirically and it is affects on
compression performance of BPNN as shown later in
results.

Image normalization and segmentation must be
applied to that image to simplify using it by the BPNN.
The image data is represented by the pixel value
function f(X,Y) where X and Y correspond to the
spatial coordinates within the image with pixel values
between 0 and 2k-1, where k is the number of bits
which represent each pixel in the image, usually k = 8,
then the pixel values would lie within the range [0-255].
The BPNN requires inputs with real type and the
sigmoid function of each BPNN neuron requires the
input data to be in the range [0-1]. For this reason the
image data values must be normalized. The
normalization is the process of linearly transformation
of image values from the range [0-255] into another
range that is appropriate for BPNN requirements to
obtain valuable results and to speed up the learning
(Kursk et al., 2006). In this research, the image is
linearly transformed from range [0-255] to range [0-1].
 Image segmentation is the process of dividing the
image into sub images, each of which is considered to
be a new separate image. In this research, the image is
segmented by dividing it into non overlapping blocks
with equal size to simplify the learning/compressing
processes. The input layer units of BPNN are
represented by one-dimensional vector. Image
rasterization is the process of converting each sub
image from a two-dimensional block into a one-
dimensional vector.

Initialization BPNN learning parameters: The
weight connections of the BPNN are represented by
two weight matrices. The first matrix is V which
represents the weight connections between the input
and hidden layer units and the second matrix is W
which represents the weight connections between the
hidden and output layer units. These two weight
matrices must be initialized to small random numbers
because the network may be saturated by large values
of the weights. The learning rate value usually reflects
the rate of network learning and its value (between 0.1
and 0.9) is chosen by the user of the network. Values
that are very large can lead to instability in the network
and unsatisfactory learning, while values that are too
small can lead to excessively slow learning
(Wasserman, 1989).

Preparation of BPNN training/testing set: A testing
set consists of sub images that are not included in the
training set and it is used to assess the BPNN
performance after training. The preparation of
training/testing set includes the following steps:

Step 1: Apply the segmentation process on the image to

be used in learning/testing processes.
Step 2: Apply rasterization and normalization on every

block segment.
Step 3: Store the results in the training set file.
Step 4: Repeat from Step 1 while there are more images

to be used in training process.

Simulation of BPNN learning: a simulation program
to implement BP was built to include the steps:

Step 1: Initialization of network weights, learning rate

(η) and Threshold error. Set iterations to zero.
Step 2: Open file which contains the image training

set.
Step 3: Total_error = zero; iterations → iterations+1.
Step 4: Get one vector and feed it to input layer.
Step 5: Initialize the target output of that vector.
Step 6: Calculate the outputs of hidden layer units.
Step 7: Calculate the outputs of output layer units.
Step 8: Calculate error (desired output - actual output)

and calculate total_error → total_error + error.
Step 9: Calculate delta sigma of output layer units and

adjust weights between output and hidden
layer.

Step 10: Calculate delta sigma of hidden layer units
and adjust weights between hidden and input
layer.

Step 11: While there are more vectors, go to Step 4.
Step 12: If Threshold error >= Total_error then stop,

otherwise go to Step 3.

BPNN compression process: The number of
connections between each two layers in BPNN is
calculated by multiplying the total number of neurons
of the two layers, then adding the number of bias
neurons connections of the second layer (bias
connections of a layer is equal to the number of layer
neurons). If there are Ni neurons in the input layer, Nh
neurons in the hidden layer and No neurons in the
output layer, the total number of connections is given
by equation:

Network Size(Nw) = [(Ni×Nh)+Nh]+[(Nh×No)+No] (1)

 The block diagram of the BPNN image
compression/decompression is shown in Fig. 2. The

J. Computer Sci., 6 (11): 1347-1354, 2010

1350

compression process can be summarized by the
following steps:

Step 1: Read image pixels from file and then normalize

it by converting it from range [0-255] to range
[0-1].

Step 2: Divide the image into non-overlapping blocks.
Step 3: Rasterizing the image blocks.
Step 4: Apply the rasterized vector into input layer units
Step 5: Compute the outputs of hidden layer units by

multiplying the input vector by the weight
matrix (V).

Step 6: Store the outputs of hidden layer units after
denormalizing them in a compressed file.

Step 7: While there are more image vectors go to
Step 4.

 At the beginning of NN compressed file, there is a
header block that contains information about the source
image and the compression process parameters.

BPNN decompression process: The implementation of
BPNN decompression includes the following steps:

Step 1: Open the compressed file.
Step 2: Take one vector from the file.
Step 3: Normalize this vector (it represents the outputs

of hidden layer units).
Step 4: Compute the outputs of output layer units by

multiplying outputs of hidden layer units by the
weight matrix (W).

Step 5: Derasterize the outputs of output layer units to
build the sub image of size P×P.

Fig. 2: BPNN image compression/decompression

Step 6: Return this sub image to its proper location
Step 7: Denormalize this block and store it in the

reconstructed file.
Step 8: While there are more vectors in compressed

file go to Step 2.

Improving performance of BP: The performance of
BPNN can be improved by applying many approaches
as follows.

Adding bias unit: A bias unit is added as a part of
every BPNN layer but not the output layer. This unit
has a constant value of 1 and it is connected to all units
in the next layer. The weights on these connections can
be trained in just the same way as other weights. The
bias units provide a constant term in the weighted sum
of the units in the next layer. The result is sometimes an
improvement on convergence properties of the network.
The bias unit also provides a threshold effect on each
unit it targets. It contributes a constant term in
summation of products (NETj) which is the operand in
sigmoid function. Thus, we used the equation:

N

j i ji j
i 1

NET X W
=

= + θ∑ (2)

 This is equivalent to translating the sigmoid curve
to the left or to the right. In this way, the bias unit
provides an adjustable threshold for each target unit.
The threshold for unit j then comes from the value of
Wj0 (considering θj as X0 unit) the weight of
interconnection for bias unit.

Using momentum variable (θθθθ): Momentum variable
improves the training time of BP and enhancing the
stability of the process. It involves adding a term to the
weight adjustment that is proportional to the amount of
the previous weight change. Once an adjustment is
made, it is “remembered” and serves to modify all
subsequent weight adjustments (Wasserman, 1989). We
used the following equation for weight adjustment:

new old q new
ji ji jiW W [W]= + ∆ (3)

and also, we used the following equation (Wasserman,
1989):

q new q q 1 q old
ji i j ji[W] O [W]−∆ = η δ + α ∆ (4)

where, α is the momentum variable in the range 0.0-
1.0, but it is commonly set to around 0.9. By using
momentum, the network tends to follow the bottom of

J. Computer Sci., 6 (11): 1347-1354, 2010

1351

narrow gullies in error surface (if they exist) rather than
crossing rapidly from side to side. If α is 0.0, then the
smoothing is minimum; the entire weight adjustment
comes from the newly calculated change. If α is 1.0, the
new adjustment is ignored and previous one is repeated.
Between 0 and 1 is a region where weight adjustments
are smoothed by amount proportional to α (Wasserman,
1989).

Using beta (ββββ): The variable Beta can be used in the
sigmoidal function during BP to determine the
steepness of the shape of sigmoid function. When β is
used in BP training it lies in the range [0.1-1], so when
β has a value of 0.1, learning is slowly converge, but
when the value of β = 1, instability may occur. When β
is used in sigmoid function, we used the following
equation:

OUT = F(NETj) = 1 / (1 + e-β×NETj) (5)

 Also we used the following equation:

F' (NETj) = β×(OUT (1 - OUT)) (6)

Changing the learning rate value (ηηηη): an attempt to
produce more efficient BPNN learning, by allowing the
value of η to begin at a high value and to decrease
during the learning process. At the same time, allowing
α to begin with low value and to increase during
learning process to improve learning performance.

Introduction of random noise: One of the most
important problems of BP training is the local minimum
problem. Local minimum traps can be avoided with the
introduction of random noise during the training
process. Introducing random noise is another way of
shifting the location of error function thereby
permitting the descent process to escape from local
minimum and continue on its downward search for a
global minimum. The introduction of noise can also
improve the network’s ability to generalize. Introducing
noise into the training patterns can be done by adding
small random perturbations to the training patterns
during training process.

Effects of channel errors: The fundamental problem
in image transmission is the image reproduction at
receiver with acceptable image quality. ANN has a
strong immunity against noise and this can be examined
by simulating image transmission on analog or digital
channel with white noise added to transmitted image. In
analog transmission, noise is added to image intensity
value, while in digital transmission, noise is added to

each bit of image intensity as suggested by Melesse et al.
(2005). To simulate transmission process, we take the
compressed file of an image that compressed using
BPNN and then, a random noise is added to this
compressed file.
 The transmission on analog channel is simulated as
follows: each index in the compressed image file is
converted into a decimal code and then a random
number of Gaussian distribution is generated for that
code. If the random number is greater than 0.5, the code
is incremented by one, but if it is less than -0.5 the code
is decremented by one. The Probability of error of
changing the code can be varied by altering the value of
the variance during the generation of the Gaussian
distributed numbers. Whereas the transmission on a
noisy digital channel is simulated as follows: Each
index in the compressed image file is converted into a
binary code, then for this code a random number of
Gaussian distribution is generated, if it is greater than
0.5 or less than -0.5, then one bit is inverted.

RESULTS

 The CR is the degree of data reduction obtained as
a result of compression process. In BPNN image
compression system, the CR is defined by the ratio of
the data fed to the input layer Neurons (Ni) to the data
out from the hidden layer neurons (Nh). Also the CR
can be computed by the equation:

CR = (1- (Nh/Ni)) × 100% (7)

 After completing the decoding process, the SNR
and PSNR and NMSE (Normalized Mean Squared
Error) should be calculated between the reconstructed
image and original image to verify the quality of the
decoded image with respect to the original one. To
check the compression performance, the CR and Bit Per
Pixel rate (BPP) are calculated. The CR is the amount
of compression, while BPP is the number of bits
required to represent each pixel value of compressed
image. The better compression performance is with the
highest CR, the least BPP rate and highest PSNR
(Gonzales and Wintz, 1987). Simulations were
conducted to evaluate the compression and
generalization performances of the proposed BPNN
image compression system. The efficiency of this
BPNN was tested by several experiments using real
world images.

BPNN size, capacity and generalization: The network
capacity quantifies the learning capabilities of ANN
architecture, which is a measure of the number of

J. Computer Sci., 6 (11): 1347-1354, 2010

1352

training patterns that ANN can correctly identify after
training has been completed. Generalization is the
network’s ability to correctly identify a pattern on other
parts of the domain that the network did not access
during the training phase (Alshoaibi et al., 2009).
Referring to BPNN in Fig. 1, let Ni represents the
number of input layer neurons, No represents the
number of output layer neurons, Nh represents the
number of hidden layer neurons and Nw represents the
total number of weights in BPNN including bias
weights, the Capacity (C) is defined as (Nw/No).
Assume that, training patterns are taken from an N×N
pixel image which is partitioned into P×P pixel patches
for training, where P is the block dimension. Let Np
represents the total number of patterns in training set:

Np = (N×N) / (P×P) (8)

 To expect good generalization, it is necessary that
the Np be several times larger than the network
capacity, that is, Np>C, then Generalization (G) is
defined as (Np/(Nw/No)) and it is equal also (Np/C).

Effectiveness of hidden layer neurons: In suggested
BPNN image compression, if we take an image of
256×256 dimension (N=256) and block dimension (P =
8), then Np was computed using Eq.8 and it is equal to
1024 patterns. Table 1 list various network architectures
where Nw was computed using Eq. 1.

Effectiveness of input layer neurons: Ni depends on
the block dimension (P). If the P increases this would
result in increasing the Ni and this also would result in
decreasing the G and decreasing the C. Table 2 shows
the effect of P on G and C for images of size 256×256
using BPNN of Nh = 2. Increasing P decreases Np
which results in decreasing G and C.

Table 1: Effectiveness of Nh on BPNN Size, C and G
Nh Network size (Nw) Capacity Generalization
2 322 5.0 203.53
4 580 9.0 113.00
8 1096 17.0 59.80
16 2128 33.0 30.80
32 4192 65.5 15.60
64 8320 130.0 7.90

Table 2: Effectiveness of Ni on BPNN size, G and C
Block (P) Ni Np Nw G C
2 4 16384 22 2978.90 5.50
4 16 4096 82 799.20 5.12
8 64 1024 322 203.50 5.03
16 256 256 1282 51.12 5.00

Hidden layer neurons Vs BPNN convergence time:
To evaluate the relation between the Nh, convergence
time and reconstructed image error, the BPNN was
trained on the image (boy16.dat) of dimension 16×16,
with training set of 4 blocks (block size 8×8) and with
tolerance value equal 0.001 for various Nh. We fixed
all other network parameter values except Nh. We
recorded in Table 3 convergence time, PSNR and
RMSE error for each value of Nh. From Table 3, we
can see that minimum convergence time, minimum
error, maximum SNR and PSNR occur when Nh = 8.

Number of input layer neurons vs. CR: The block
dimension (P) plays a role in determining Ni, where Ni
equals P×P. When the P is increased then Ni is
increased also, this would result in increasing the CR.
Table 4 shows various BPNN architectures (for various
P and Nh = 2) Vs their corresponding CR and bpp.

Learning rate Vs convergence time: The convergence
time required for BPNN training depends on the value
of learning rate (η) because this value is used during the
weights update. Values that are very large (0.9) can
lead to fast learning but instability in the network and
unsatisfactory learning. Values that are too small can
lead to excessively slow learning. Table 5 shows the
effectiveness of η value on convergence time and the
number of iterations when the value of momentum
variable is equal to 0.1 and for a fixed BPNN
architecture. To produce more efficient BPNN learning,
training the network can be started with large value of η
and then decreasing it during learning.

Ability to compress untrained images: The BPNN
image compression system has the ability to compress
untrained image but with lower compression
performance than when using trained image, because
given a trained BPNN, it is not possible to guarantee
a particular level of performance on unseen images.

Table 3: Effectiveness of Nh on BPNN convergence time and

objective fidelity criteria
 Convergence SNR PSNR
K Nh time (sec) (dB) (dB) RMSE Iterations
1 2 31923.0 35.20 44.50 0.90 93549
2 4 145.0 41.70 51.10 0.70 2545
3 8 33.0 43.40 52.90 0.57 778
4 16 51.0 43.20 52.60 0.59 670
5 32 77.0 43.00 52.40 0.60 526
6 64 203.0 41.20 50.70 0.74 692

Table 4: Input layer neurons vs. CR and bpp
Block dimension Ni CR:1 BPP
2 4 2:1 4.0000
4 16 8:1 1.0000
8 64 32:1 0.2500
16 256 128:1 0.0625

J. Computer Sci., 6 (11): 1347-1354, 2010

1353

Table 5: The learning rate Vs convergence time

 Convergence
Learning rate Iterations time (sec) MSE
0.1 5449 874.00 0.579
0.2 3252 394.99 0.643
0.3 1872 122.00 0.637
0.4 1371 101.99 0.579
0.5 1207 92.99 0.612
0.6 1033 87.00 0.555
0.7 1046 86.00 0.618
0.8 745 32.00 0.628
0.9 649 27.00 0.618
1.0 594 25.99 0.602

Table 6: SNR, PSNR and RMSE for three images

Trained image Figure
or not trained SNR (dB) PSNR (dB) RMSE name
Trained image 28.13 32.35 6.17 (3b)
Not trained 22.00 30.00 8.28 (3d)
Not trained 21.10 28.30 9.75 (3f)

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 3: BPNN ability to compress untrained images

It is in fact common for the generalization performance
of NN to become sub-optimal if training is allowed to
continue indefinitely as the model over fits training data
(Souiyah et al., 2009). Figure 3a and 3b show original and
decoded trained image (256×256 pixels, 256 gray levels).

Table 7: SNR and PSNR of decoded images when transmission
through analog channel (Aows image)

Probability of error SNR (dB) PSNR (dB)
0 20.00 28.00
0.6 19.71 27.20
0.9 19.58 27.17

Table 8: SNR and PSNR of decoded images when transmission

through digital channel (girl image)
Probability of error SNR (dB) PSNR (dB) Figure name
0 21.0 31.0 (3b)
0.05 13.4 22.7 (3c)
0.2 10.0 18.5 (3d)

Fig. 4: Hidden layer neurons Vs CR

Figure 3c and 3d show original and decoded untrained
image. Figure 3e and 3f show another example of
original and decoded untrained image. Table 6 shows
SNR, PSNR and RMSE of these decoded images.

Hidden layer neurons Vs CR: When the BPNN image
compression system is used for image compression
problem, the Nh represents the compression version of
image blocks. CR is inversely proportional to Nh. Let
Ni equal No. We select Nh = 2k where 1≤ k ≤Log2 Ni
and the CR is calculated using the Eq. 7: CR = (1-
(Nh/Ni))×100. When Ni = 64; CR = (1- (Nh/64)) ×100;
Fig. 4 shows the various network architectures (by
changing Nh) Vs their corresponding CR. It is obvious
that the Nh is responsible for determining the ratio of
achieved CR. Also, by providing too many hidden layer
neurons to the BPNN, the number of connection
weights will increase, which increases the number of
solutions available to the network. Thus, it will take a
longer amount of time to find the correct set of weights,
or only a local solution will be found.

BPNN for removing channel errors: When BPNN
image compression system is used for image
compression, it has the ability to remove errors that
have occurred during compressed image transmission
through analog or digital channel. This ability comes
from the BP that is used to train the BPNN.
 The decoded images (BMP image named Aows with
256×256 pixels and 256 gray levels) are transmitted
respectively through a very noisy analog channel with
probabilities of error p = 0.6 and p = 0.9 respectively.
Table 7 shows SNR and PSNR of these decoded images
with respect to their probabilities of errors during
transmission through noisy analog channel.

J. Computer Sci., 6 (11): 1347-1354, 2010

1354

 Table 8 shows the SNR and PSNR of the decoded
Girl image with 256×256 pixels and 256 gray levels
with respect to their probabilities of errors when
transmission through a noisy digital channel (when the
BPNN image compression system is used).

CONCLUSION

 In this research, a simulation program for BP was
developed on a single processor computer. This leads to
the problem of long execution times to train an image.
Many methods have been carried out to improve the
speed of convergence. All of these methods are
computationally complex in nature and applied only to
limited patterns. This research has successfully applied
the BP for training the BPNN image compression
system. But this BP has many problems. We suggested
improving the BP for a better convergence, CR and
PSNR by considering the drawbacks of BP. These
drawbacks can be avoided by: (1) monitoring the total
error value during the training process and changing the
values of learning rate (η) and momentum variable (α)
depending on this error; (2) by using the beta term (βα)
in the sigmoid function and finally (3) by adding small
random noise to BPNN weights.
 The performance of BPNN image compression
system has been tested in various types of images.
Experiments were conducted by varying the sub-image
size namely 4×4, 8×8, 16×16 and 32×32. The BPNN
was also tested by varying the number of neurons in the
hidden layer, resulting in CRs ranging from 4 to 64.
The PSNR values for various combinations of the
above were obtained. The Quality of restored image
(PSNR, CR and the speed of convergence of the
BPNN) were compared for both conditions. From the
results, one can clearly see that the performance of the
designed BPNN image compression/decompression
system can be increased; this may be accomplished by
modifying the network itself.
 Practically, we can note that the BPNN has the
ability to enhance any noisy compressed image that had
been corrupted during compressed image transmission
through a noisy digital or analog channel. Practically,
we can note that the BPNN has the ability to compress
untrained images but not in the same performance of
the trained images. This can be done especially when
using small number of image block dimension (P).

REFERENCES

Alshoaibi, A.M., A.K. Ariffin and M.N. ALmaghribi,

2009. Development of efficient finite element
software of crack propagation simulation using
adaptive mesh strategy. Am. J. Applied Sci.,
6: 661-666. DOI: 10.3844/.2009.661.666

Durai S.A. and E.A. Saro, 2006. Image compression
with back-propagation neural network using
cumulative distribution function. World Acad. Sci.
Eng. Technol., 17: 60-64.
http://www.waset.org/journals/waset/v17/v17-
12.pdf

Souiyah, M., A. Muchtar, A. Alshoaibi and A.K.
Ariffin, 2009. Finite element analysis of the crack
propagation for solid materials. Am. J. Applied
Sci., 6: 1396-1402. DOI: 10.3844/.2009.1396.1402

Gonzales R.C. and P. Wintz, 1987. Digital Image
Processing. 2nd Edn., Addison-Wesley, Boston,
MA., USA., ISBN: 10: 0201110261, pp: 503.

Jagesh, V.S. and C.S. Poon, 1999. Linear independence
of internal representations in multi layer
perceptrons. IEEE Trans. Neural Networks, 10: 10-18.
DOI: 10.1109/72.737489

Melesse, A.M. and R.S. Hanley, 2005. Energy and
carbon flux coupling: multi-ecosystem
comparisons using artificial neural network. Am. J.
Applied Sci., 2: 491-495. DOI:
10.3844/.2005.491.495

Khalil, R.A., 2007. Digital image compression
enhancement using bipolar backpropagation neural
networks. Al-Rafidain Eng., 15: 40-52.
http://alrafidain.engineering-coll-
mosul.com/files/4ab25.pdf

Kursk, S.M., R.J. Rasras and D. Skopin, 2006. The
artificial neural network based approach for
mortality structure analysis. Am. J. Applied Sci.,
3: 1698-1702. DOI: 10.3844/.2006.1698.1702

Roy, S.B., K. Kayal and J. Sil, 2005. Edge preserving
image compression technique using adaptive feed
forward neural network. Proceeding of the 9th
IASTED International Conference on internet and
Multimedia Systems and Applications, Feb. 21-23,
DBXLAB, Grindelwald, Switzerland, pp: 467-471.
http://dbxlab.uta.edu/dbxlab/EURO.pdf

Veisi, H. and M. Jamzad, 2009. A complexity-based
approach in image compression using neural
networks. Int. J. Sign. Process., 5: 82-92.
http://www.akademik.unsri.ac.id/download/journal
/files/waset/v5-2-11-5.pdf

Wasserman, P.D., 1989. Neural Computing: Theory
and Practice. Coriolis Group, New York, USA.,
ISBN: 10: 0442207433, pp: 230.

Xianghong, T. and L. Yang, 2008. An image
compressing algorithm based on classified blocks
with BP neural networks. Proceeding of the
International Conference on Computer Science and
Software Engineering, Dec. 12-14, IEEE Computer
Society, Wuhan, Hubei, pp: 819-822. DOI:
10.1109/CSSE.2008.1357

