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ABSTRACT 
The objective of this paper is to develop an Artificial Neural Network (ANN) 
model to estimate soil temperature for any day. We used air average temperature, 
sunshine, radiation and soil temperature for meteorological data between years 
[1980 and 1984] at Nineveh/Iraq Meteorological Station.  
In this research, three ANN models with their associated training algorithms 
(Backpropagation neural network (BPNN), Cascade-Forward and Nonlinear 
Autoregressive (NARX)) were used for estimating soil temperatures at different 
depths of 5, 10, 20, 50 and 100cm within the time 9, 12 and 15 respectively.  
The performance of the three models with their training algorithms were compared 
with the measured soil temperature values to identify the best fit ANN model for 
soil temperature forecasting.  The results showed that the NARX model is the best 
model.  Finally, a comparison between five optimization ANN training algorithms 
was adopted to train NARX ANN model to identify best fit optimization algorithm 
for forecasting soil temperature with best results. From comparisons, TrainLM is 
the best optimization algorithm for training NARX model. 

 
Keywords: Artificial Neural Networks, BackPropagation Algorithm, Cascade-

Forward Algorithm, Time Series Algorithm, Soil Temperature 
 
 

1 INTRODUCTION 

 Artificial Neural Networks (ANNs) were developed to 
emulate the non-linear functions of human natural neural 
networks [1]. From equations which require input/output 
relationships, ANNs are trained by sample data to build the 
input/output vector maps in an implicit way. So, ANNs can 
solve highly non-linear problems without the need to define 
the relationship between inputs and outputs [2].  
The backpropagation neural network (BPNN) is a multi-
layer feed forward ANNs which use backpropagation 
algorithm (BP) for training and it is the most popular 
architecture. Methods using standard BP perform gradient 
descent only in the weight space of a network with fixed 
topology. In general, BPNN is useful only when the 
network architecture is chosen correctly. Too small 
network cannot learn the problem well, but too large size 
will lead to over fitting and poor generalization 
performance [3]. 

Soil temperature is an important meteorological 
parameter for ground source heat pump applications, solar 
energy applications (heating and cooling of buildings), 

frost prediction, and other applications [4], [5].  
Soil temperature determines the type and rate of 

different physical and chemical reactions in the soil. It 
affects diffusion of nutrients in soil and their uptake by 
plants. It influences the rate of organic matter 
decomposition, which in turn affects soil structure and 
water movement in the soil. Plant growth is more rapid 
when the soil temperature increases up to the optimum 
level. The soil temperature also affects the functional 
activities of plant roots such as absorption and translocation 
of water. Whereas, crop species differ in their response to 
soil temperature and each species has its optimum range of 
temperature for maximum growth [6].  

Also, the soil temperature is an important parameter 
that directly affects the growth of plants and biological and 
physical processes occurring in the soil [7]. Finally, soil 
surface temperature is an important factor for calculating 
the thermal performance of buildings in direct contact with 
the soil and for predicting the efficiency of earth-to air heat 
exchangers [4].  

From the above, many literature researches focused on 
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determining the soil temperature. Yang, et. al. 1997 [2] 
developed ANN model to simulate soil temperature at 
different depths by considering available meteorological 
parameters. They used five years of meteorological data 
which measured at a weather station at central experimental 
farm in Ottawa, Ontario, Canada. The model inputs 
consisted of daily rainfall, evaporation and the day of the 
year. The model outputs were daily soil temperatures at the 
depths of 100, 500 and 1500 mm. Their estimated values 
were found to be close to the measured values. Paul et al., 
2004 [8] stated that daily fluctuations in soil temperature 
influence biological and chemical processes in the soil. 
Yilmaz et al., 2009 [5] stated that determination of ground 
temperature at different depths is very important for 
agricultural and ground source heat pump applications and 
for the calculation of heat losses from the parts of buildings 
that are buried in the ground.  

For these purposes, we require accurate soil 
temperature measurements. Soil temperature depends on a 
variety of environmental factors including: meteorological 
conditions such as surface global radiation and air 
temperature; soil physical parameters such as albino of 
surface; water content and texture; and finally 
topographical variables such as elevation, slope and aspect 
[7], [8]. Therefore, prediction of soil temperature is 
difficult, especially near the ground surface where the 
variations of the soil temperature are high [4]. 

In recent years, several studies were concerned on 
determination of soil temperatures using analytical models 
and experimental methods [6], [4], [8]. At the same time 
ANNs models have been used for soil temperature 
forecasting and estimation.  

Hayati and Mohebi, 2008 [9] explored the application 
of ANN to study the design of short-term temperature 
forecasting (STTF) systems for Kermanshah city, west of 
Iran. They used Multi-Layer Perceptron (MLP) to model 
STTF systems. Their study based on training and testing 
MLP using ten years (1996-2006) meteorological data. 
Their results show that MLP network has the minimum 
forecasting error and can be considered as a good method 
to model the STTF systems. 

Bilgili, 2010 [10] developed ANN model to estimate 
monthly mean soil temperature for the present month by 
using various previous monthly mean meteorological 
variables. The measured soil temperature and other data 
between years [2000..2007] at Adana meteorological 
station were used. The soil temperatures were measured at 
different depths below the ground level by the Turkish 
State Meteorological Service (TSMS). A feed-forward 
ANN was constructed with 3-layers and a BP was used for 
the training this ANN. The models based on the 
combination of input variables were constructed and the 
best fit input structure was investigated. The performances 
of ANN models in training and testing procedures were 
compared with the measured soil temperature values to 
identify the best fit forecasting model. The results show 
that the ANN approach is a reliable model for prediction of 

monthly mean soil temperature. 
According to above, we need to identify the best ANN 

model for soil temperature estimation at any depth. The 
objective of this paper is to develop ANN model that can 
be used for best prediction of soil temperature by using 
various meteorological variables of any day of the year in 
the city of Mosul- Iraq. At the same time, we need to 
identify the best optimization training algorithm to train the 
best ANN model. The remaining of this research is as 
follows: section 2 includes details about different BPNN 
architectures. Section 3 explains materials, methodology 
and proposed model. Section 4 includes the results and 
section 5 concludes this research. 
  
 
2 BACKPROPAGATION ANN  

A neural network can be classified into: static and 
dynamic categories. Static feed forward network has no 
feedback elements and contain no delays like Fig.1. The 
output is calculated directly from the input through feed 
forward connections like BP, Cascade BPNN. In static 
network, the artificial neuron model is comprised of a 
summing and an activation function. The worth of each 
input value is assessed through synaptic weights, and then, 
all weighted inputs are added. To correct for a linearity 
assumption a distributive value of bias is added to the 
summing function (Eq.1). The result forms the argument of 
an activation function φ that acts as a filter and which 
yields the neuron’s response as a single number (Eq.2) 
[11]. For hydrologic processes the procedure for a single 
neuron k, where input parameters j are given as time series, 
xj(t), can be described at each time interval as follows: 
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Here xj(t) is the input value of parameter j at time-step t; 

wjk(t) is the weight assigned by neuron k to the input value 
of parameter j at time t; φ is a nonlinear activation 
function; bk (t) is the bias of the k-neuron at time t, and yk(t) 
is the output signal from neuron k at time t. The process 
can be repeated for all entries of the time series and yields 
an output vector yk. 

Neurons can form layers that are fully interconnected 
creating networks. A typical network consists of three 
layers: input layer, hidden layer and output layer. The input 
layer refers to the available data that enter the system. The 
number of input layer neurons is equal to the number of 
parameters that contribute to the simulation. The number of 
hidden layers can be more than one according to the 
problem’s complexity. Finally, the output layer returns the 
output vectors, which are the final responses of ANN [11]. 
A typical BPNN is shown in Fig.1.  
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Fig.1: Typical BPNN 

 
The learning process refers to the adjustment of 

weights, through which the inputs are linearly related, to 
minimize the error between the network’s prediction and 
the actual response. It is an iterative procedure that adjusts 
the synaptic weights values when the network gaining extra 
knowledge after each iteration. The output yk is compared 
with the target output Tk using an error function (Eq.3): 
δk = (Tk – yk) yk (1- yk)                                                  (3) 
 
For the neuron in the hidden layer, the error term is given 
by Eq.4 [12]: 
 
δk = yk  (1- yk) Σδkwk                                                      (4) 
                                          
Where δk is the error term of the output layer and wk is the 
weight between hidden and output layer. The error is then 
propagated backward from the output layer to the input 
layer to update the weight of each connection [12]: 
wjk(t+1)=wjk(t)+ ηδk yk + α(wjk(t)–wjk(t–1))               (5) 

 
Here, η is the learning rate, and the term α is called the 

momentum factor, which determines the effect of past 
weight changes on the current direction of movement. Both 
of these constant terms are specified at the start of the 
training cycle and determine the speed and stability of the 
network [13]--[17]. 

 
2.1 Cascade-Forward ANN 

Feed-forward networks with more layers and 
connection might learn complex relationships more quickly 
like cascade-forward networks. These are similar to BPNN 
but include a weight connection from the input to each 
layer and from each layer to the successive layers. Fig.2 
shows a three-layer network has connections from layer 1 
to layer 2, layer 2 to layer 3, and layer 1 to layer 3. The 
three-layer network also has connections from the input to 
all three layers. The additional connections might improve 
the speed at which the network learns the desired 
relationship [13]--[17]. 

 
Fig. 2: Cascade-forward ANN 

 
2.2 Recurrent Dynamic ANN 

Other ANNs can learn dynamic or time-series 
relationships. In dynamic networks, the output depends not 
only on the current input to the network, but also on the 
current or previous inputs, outputs, or states of the network. 
The nonlinear autoregressive network with exogenous 
inputs (NARX) is a recurrent dynamic network with 
feedback connections enclosing several layers of the 
network. The NARX model is based on linear ARX model 
which is commonly used in time-series modeling, where 
the next value of the dependent output signal y(t) is 
regressed on previous values of the output signal and 
previous values of an independent input signal. You can 
implement the NARX model by using a feedforward ANN 
to approximate the function f. Fig. 3 shows where a two-
layer feedforward network is used for the NARX network. 
The defining equation for the NARX model is:  
Y(t) = F( y(t – 1), y(t – 2),…..,y( t – n y ), 
          u(t-1 , u(t -2 ),….., u( t – n u ))                           (6) 

 
Fig.3: Recurrent Dynamic ANN 

 
Although dynamic networks (time serious) can be 

trained using the same gradient-based algorithms (BP) that 
are used for static networks, the performance of the 
algorithms on dynamic networks can be quite different, and 
the gradient must be computed in a more complex way. 
The weights have two different effects on the network 
output. The first is the direct effect, because change in 
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weight causes an immediate change in the output at the 
current time step (This first effect can be computed using 
standard BP). The second is an indirect effect, because 
some of the inputs to the layer such as a(t-1) are also 
functions of the weights. To account for this indirect effect, 
you must use dynamic BP to compute the gradients, which 
is more computationally intensive.  Expect dynamic BP to 
take more time to train. In addition, the error surfaces for 
dynamic networks can be more complex than those for 
static networks. Training is more likely to be trapped in 
local minima. This suggests that you might need to train 
the network several times to achieve an optimal result [13]-
-[17]. 

 
3 MATERIALS and METHODOLOGY 

 According to the background in section 2, we designed 
and trained three layered ANN model with sigmoid transfer 
function for hidden layer, and linear transfer function for 
output layer to represent any functional relationship 
between inputs and outputs, if the sigmoid layer has 
enough neurons. 

The weather data of 4 years which will be used as input 
to the designed ANN were taken and collected from the 
office of Soil and Water in Nineveh-Iraq. Table 1 shows 
the part of weather data (i.e. variables used to determine 
structure of ANN) which has measured at hours 9, 12 and 
15 respectively. Another variable which we got soil 
temperature at soil depth equals 5, 10, 20, 30, 50 and 
100cm respectively. We used also average temperature of 
air, sunshine and radiation. The general structure of 
input/outputs of the model is shown in Fig. 4.  
 

Table 1:  Metrological variables 

 
3.1 The Used ANN Structure 

We used the multilayer ANN to be trained by BP, 
which principles are based on error correction learning. 
When a pattern (input vector) is presented to this BPNN for 
the first time, it produces a random output (actual). The 
difference between this output and the desired compose the 
error (that is calculated by BP). The BP makes that the 
weights from output layer been the first to be adjusted and 
after the weights from residual layers, correcting them from 

back to front, with the objective of reduce the error. This 
process is repeated during the learning until the error 
become acceptable. 

The structure of the proposed BPNN for temperature 
forecasting is shown in Fig. 4. The chosen weather data 
were divided into two randomly selected groups: the 
training group (corresponding to 70% of the patterns), and 
the test group (corresponding to 30% of patterns); so that 
the generalization capacity of network could be checked 
after training phase. We used the Mean Square Error 
(MSE) (Eq.7), determination coefficient R_square and root 
mean square errors (RMSE) (Eq.8) as a measure of error 
made by the suggested BPNN. 
 

 
Fig. 4: Structure of Proposed Model 

 

                   (7) 
 

                                     (8) 
 
Where n is the total number of days.  
 
 
3.2. Optimization Training Algorithms for ANN models 

The optimization training algorithms adjusted the 
ANN weights and biases with the goal to minimize the 
performance function. In static feed forward networks or 
recurrent dynamic networks,   the performance function to 
be minimized is taken to be the mean square error, between 
model-predicted output and actual response. In each 
synapse between connected neurons the training function 
calculates the output error and determines the adjustments 
to the network’s weights and bias.  
In this research, five different optimization ANN training 
algorithms were used to train the identified best ANN 
model to get best results for soil temperature forecasting. 
These optimization training algorithms are as follows [18]:  

1. Gradient descent (GD)  
2. Gradient descent with momentum (GDM)  

No. Daily meteorological variables min max 
1 Time  9 15 
2 Day 1 365 
3 Avg_temperature 1 35 
4 Sunshine 0 20 
5 Radiation 84 770 
6 Depth  temperature 5 2 40 
7 Depth  temperature 10 3 40 
8 Depth  temperature 20 4 36 
9 Depth  temperature 30 5 36 
10 Depth  temperature 50 1 33 
11 Depth  temperature 100 1 30 
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3. Gradient descent momentum and an adaptive 
learning rate (GDX)  

4. Levenberg-Marquardt (LM)  
5. Bayesian regularization (BR) 

 
The above training algorithms can be used to train the any 
ANN to adjust the weights of the network to reduce errors 
as possible as. 
 
 
 
4 EXPERIMENTAL RESULTS 

For the development of forecasting models, the total 
8760 data records (4 years × 12 months × 6 depths) for 
each variable were collected for the period 1980-1984 for 
the city of Nineveh-Iraq. The data set was divided into two 
subsets: training and a testing data set. The training data set 
included a total of 6570 data records from 1980-1983, 
which was 70% of the total data records. For more reliable 
evaluations and comparisons, the models were tested with 
the testing data set (which was not used during the training 
process). The testing data set consisted of a total 2190 data 
records, which was 30% of the total data. 

We designed various structures of BPNN forecasting 
models with MATLAB software to determine the optimal 
ANN architecture. We changed the number of neurons in 
the input layer.  

We used different numbers of hidden layer neurons 
(between 10 and 35) to predict soil temperature. We used 
different training algorithms (BP, Cascaded BP and 
NARX). The different structures of forecasting models and 
their outputs are given in Table II. The predicted results for 
each model were compared statistically using three 
parameters:  Mean Square Error (MSE), the determination 
coefficient (R-square) and root mean square errors 
(RMSE). This parameter used to see the convergence 
between the target (T) values and the output (O) values.  

We trained and tested the models given in Table 2 to 
compare and evaluate the performances of ANN models. 
From Table 2, we can note that the best BPNN model is 
NARX due to its number of iterations to learn the 
estimation of soil temperature. The actual data and testing 
result of the best BPNN model (NARX) for prediction of 
soil temperature with different depth (Dep=5cm, 
Dep=10cm, Dep=20cm, Dep=30cm, Dep=50cm, 
Dep=100cm) are presented in Fig.5, Fig6, Fig.7, Fig.8, 
Fig9 and Fig.10 respectively. 

Through testing we noticed that there are significant 
between the accuracy of the data and the data actually 
tested with a few errors in the prediction. 

 
 
 
 
 
 
 
 

Table 2: Different structures of forecasting models 

 
 

 
Fig.5: BPNN Prediction (Dep=5cm) 

 

 
Fig.6: BPNN Prediction (Dep=10cm) 

 

 
Fig.7: BPNN Prediction (Dep=20cm) 

Model 
Input 

Structur
e 

Outputs 

No. of 
hidden 
layer 
neurons 

Epoch (No. 
of iterati-
ons) 

M1(BP) T, D, Av D(5,10,20,30,50,10

0) 
25 35 

M2(BP) T, D, Av, 
S 

D(5,10,20,30,50,10

0) 
25 39 

M3(BP) T, D, Av, 
S, R 

D(5,10,20,30,50,10

0) 
35 35 

M4(BP) T, D, Av, 
S, R 

D(5,10,20,30,50,10

0) 
25 29 

M5 
(CascadeBP) 

T, D, Av, 
S, R 

D(5,10,20,30,50,10

0) 
15 14 

M6(NARX) T, D, Av, 
S, R 

D(5,10,20,30,50,10

0) 
15 12 
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Fig.8: BPNN Prediction (Dep=30cm) 

 

 
Fig.9: BPNN Prediction (Dep=50cm) 

 

 
Fig.10: BPNN Prediction (Dep=100cm) 

 
 
We used different architecture models of BPNN as 

shown previously in Table 2: M4: BP, M5: Cascade BP, and 
M6: NARX. During experiments, we tried to change the 
architecture of BPNN by changing the number of hidden 
layers to finally, choose the suitable BPNN model which 
obtain the best results of soil temperature prediction. 

We note from the BPNN training process that, taking 
one value (factor) of weather is not enough to predict the 
correct soil temperature of the day. It is more effective to 
take many values (factors) of weather of any day of the 
year such as (time, average air temperature, radiation and 
sunshine) to predict the correct soil temperature of any day 
in the year.  

At the same time, the number of neurons in the hidden 
layer has important effect on BPNN results. We trained the 
BPNN with different number of hidden layer neurons for 
the same input data. From training process, we note that the 
number of hidden layer neurons ranged between 15 and 25 
has best effect on BPNN results. 

Table 3 lists the Mean Square Error (MSE), Root Mean 
Square Error (RMSE) and R2 of the prediction results of 
the three different trained models (M4: BP, M5: Cascade BP, 
and M6: NARX) with different soil depths. 
 

 
Table 3: MSE, RMSE and R2 of models' prediction results 

 
As shown in Table 3, the error rates (MSE) was 

gradually decreased from the surface soil down to the 
depths for all models (M4, M5 and M6). All the results 
showed that the depth of 100 gives a daily forecasting very 
close to the truth of the readings. 

On the other hand, the value of R-square for all models 
(M4, M5 and M6) ranged from 0.93 to 0.98 with depth of 
5cm. While the value of R-square ranged from 0.95 to 0.99 
with depth of 100cm. All of the values of R-square were 
taken when apply time factor to the BPNN with the values: 
15, 12 and 9 respectively. 

After training, the testing results showed that there is a 
correct prediction of daily soil temperature with different 
depths. From testing, the model M4: BP gave a soil 
temperature prediction correctly by 75%. Whereas the 
model M5: Cascade BP gave predict correctly by 80%. 
While the model M6: NARX gave soil temperature 
prediction correctly by a large quite reached 95%. Fig.11 
shows the MSE of the three models (M4, M5 and M6) and 
the best MSE values are for model M6 and ranged from 
2.051 at depth 5cm to 0.412 at depth 100cm. At the same 
time, Fig. 12 shows the values of R-square for the models 
(M4, M5 and M6) ranged between 0.98 at depth 5cm to 
0.99 at depth 100cm. 

After training ANN: NARX, Table 4 shows the final 
values of the weights between the hidden layer and the 
output layer. These values can be used later to get the 
values of the output layer neurons for any real daily 
readings (for input) at any hour in any day of the year.  

Table 4 can be used with the equations (9), (10) and 
(11) to get the correct estimation of soil temperature with 
different depths for any real daily reading for any day of 
the year and at any time. 

To estimate the soil temperature of any depth for any 
given input reading, use the Eq.9. 

 
Eij=Ti×Wij+Di×Wij+Si×Wij+Ri×Wij+Ai×Wij                     (9) 
 
Where i=(1,2,3,4,5)  for input layer neurons and 
j=(1,2,3,4,……..15) for hidden layer neurons. 
Apply the Eq.10 to compute the soil temperature of all 
depths 
Fjk = 1  / ( 1+e-E

ij )                                                           (10) 

Model D5 D10 D20 D30 D50 D100 
M4 8.574 6.496 5.631 4.861 2.811 1.695 
M5 6.096 4.961 4.17 3.485 2.08 1.193 MSE 
M6 2.051 1.254 0.986 0.515 0.752 0.412 

 
M4 2.928 2.549 2.373 2.205 1.677 1.302 
M5 2.469 2.228 2.042 1.867 1.441 1.092 RMSE 
M6 1.432 1.119 0.993 0.718 0.867 0.641 

 
M4 0.93 0.94 0.94 0.94 0.95 0.95 
M5 0.95 0.95 0.95 0.96 0.96 0.96 R2 
M6 0.984 0.99 0.99 0.99 0.99 0.99 
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Finally, use Eq.11 to find final results (i.e. the correct 

soil temperature estimation with different depths). This is 
done by: 

(1) Input the real measured values to Eq.9. 
(2) Use the real weights which make the ANN: NARX 

more stable. 
(3)  Compute the output from Eq.10. 
(4) Compute the final values of outputs for all depths 

and depend on weights in Table 4 using Eq.11 
                  DT(5,10,20,30,50,100) = ∑( Fjk × Wjk)                     (11) 

                  where k=1,2,3,4,5,6  for depth 
 
As example, use the first column (Wj1) in Table 4 to 

estimate the soil temperature at depth equal 5, use the 
following equation:  
 D(5) = -0.20079×Fj1 - 0.01194×Fj1  +….+ 2.370612×Fj1 
 

Table 4: Final values of weights between hidden and 
output layer 

Wj1 Wj2 Wj3 Wj4 Wj5 Wj6 

-0.2007 -0.2483 -0.3157 -0.3944 -0.3408 -0.035 
-0.0119 -0.1973 -0.1540 -0.0878 0.03073 -0.038 
0.1029 -0.0355 -0.0164 0.02747 0.00814 0.0310 

-0.1073 -0.2951 -0.2961 -0.3051 -0.3487 -0.076 
-0.1506 0.21711 0.0896 0.00872 -0.0129 -0.090 
0.0601 -0.2171 -0.1960 -0.1807 -0.1435 0.0444 
0.1188 0.15229 0.12583 0.10218 0.12172 0.0600 
0.0023 -0.0882 -0.0674 -0.0529 -0.0453 0.0150 
0.0114 0.02361 0.05755 0.02493 -0.0243 0.0306 
0.0263 0.05621 0.02368 0.09365 -0.0808 -0.170 
0.0401 -0.0282 -0.10373 -0.09571 -0.1196 -0.038 

-0.2741 -0.21598 -0.14176 -0.10553 -0.1525 -0.085 
0.0280 0.02479 0.01956 0.02038 0.01676 0.0221 

0.06802 -0.14198 -0.10936 -0.09405 0.00942 0.0280 
2.37061 1.019359 2.496822 3.620902 1.61798 -0.579 
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Fig.11: MSE of prediction results 

 
According to the testing results, we noticed that the 

model M6: NARX is the best model that could be adopted 
in the prediction of deep soil temperatures with 
consideration of the average temperature air, radiation and 
sunshine at times (15, 12 and 9).  

Finally, the high performance of BPNN model comes 
from the nature of input data, time factor and the BPNN 
structure (M6: NARX) including training BP which all will 
build a strong prediction model for soil temperature with 
best results. 
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Fig.12: Values of (R2) of prediction results 

 
 
4.1. Optimal Algorithm for NARX 

In this research, five different optimization ANN training 
algorithms (T1:GD, T2:GDM, T3:GDX, T4:LM and 
T5:BR) were used to train NARX ANN model (with 15 
neurons in a single hidden layer) to get best results for soil 
temperature forecasting as shown in Table 5. 
 

Table 5: Optimization training algorithms 

 Training algorithms 
Number of 
Neurons in 

hidden layer 

Epoch (No. of 
iteration) 

1 TrainGD(T1) 15 19 
2 TrainGDM(T2) 15 20 
3 TrainGDX(T3) 15 23 
4 TrainLM(T4) 15 12 
5 TrainBR(T5) 15 17 

 
From the Table 5, we can see that TrainLM algorithm is the 
best and fastest training algorithm for NARX ANN. It 
requires only 12 iterations to convergence the NARX ANN.  
Table 6 shows MSE, RMSE, and R2 for all training 
algorithms (T1 to T5) used for training NARX ANN. 
 
 

Table 6: MSE and RMSE of NARX training algorithms 

 

 

M
od

el
 

D5 D10 D20 D30 D50 D100 

T1 2.066 1.289 1.015 0.770 0.674 0.439 
T2 2.925 1.301 1.054 0.702 0.745 0.510 
T3 2.075 1.293 1.023 0.721 0.692 0.454 
T4 2.051 1.254 0.986 0.515 0.752 0.412 M

SE
 

T5 2.056 1.276 0.995 0.764 0.623 0.422 
 

T1 1.437 1.135 1.008 0.82 0.88 0.662 
T2 1.71 1.14 1.03 0.86 0.84 0.714 
T3 1.44 1.14 1.012 0.85 0.83 0.674 
T4 1.432 1.119 0.993 0.718 0.867 0.641 R

M
SE

 

T5 1.434 1.13 0.998 0.874 0.79 0.65 
 

T1 0.98 0.987 0.99 0.99 0.99 0.99 
T2 0.973 0.982 0.986 0.99 0.99 0.99 
T3 0.976 0.984 0.99 0.99 0.99 0.99 
T4 0.984 0.99 0.99 0.99 0.99 0.99 

R2 

T5 0.982 0.996 0.99 0.99 0.99 0.99 
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From Table 6, we can see that the smallest values of RMSE 
are when using the TrainLM algorithm. And the values of 
R2 are between 0.99 and 0.98 for all training algorithms 
(T1 to T5). 

We mentioned earlier in the literature studies, one study 
which was adopted by Bilgili [10] and it is similar to our 
study but with many differences.  Table 7 lists the main 
features of our study in comparison to study adopted by 
Bilgili [10]. 

 
 

Table 7: comparisons with reference [10] 
Our research Reference [10] 
Develop best ANN model to 
predict soil temperature for 
any day of year using various 
previous day variables 

Develop ANN model to predict 
monthly soil temperature for 
present month using various 
previous monthly variables 
 

Used BP, Cascade-forward 
and NARX Time Series 
(Nonlinear Autoregressive)   
 

Used only  BP algorithm 

ANN model consisting of 5 
input variables (previous day 
atmospheric temperature, 
sunshine,  radiation, time, 
day of the year) 

ANN Model consisting of 4 
input variables (previous 
monthly soil temperature (St-1), 
previous monthly atmospheric 
temperature (Tt-1), depth (D), 
and  month of the year (Mt)) 
 

Six outputs from ANN to 
represent soil temperature 
with many depths (5, 10, 20, 
30, 50,100 cm) of day 
 

Only one output from ANN to 
represent soil temperature of a 
specified depth of month. 
 

Forecasting soil temperature 
for any depth (5, 10, 20, 30, 
50,100 cm) of Nineveh city  
 

Forecasting the monthly mean 
soil temperature of Adana city 
in Turkey. 

R2 is 0.99 in depth 10, 20, 30, 
50 and 100cm 

R2 is  0.99 in depth 100cm 

Many Optimization training 
algorithms were used for 
NARX ANN 

Only one algorithm (BP) 

 
From the Table 7, we can note that, the research [10] 

had good estimation of soil temperature but for one depth 
with specified month.  

In our study, the time and day have important effect on 
estimation of soil temperature for any day in the year 
because the data were listed sequentially according the 
days of the year (increase and decrease in temperature 
degrees) 

The sequentially nature of ANN: NARX with 
sequential data have a large effect in correct estimation of 
daily soil temperature with different depths (5, 10, 20, 30, 
50 and 100). Therefore our ANN has 6 outputs with 
consideration of output weather circumstances. 

At the same time, we conducted another comparison 
between our suggested ANN: NARX model and the model 
explained in reference [2]. Table 8 shows this comparison. 

Table 8: Comparisons with reference [2] 
 Our Research Reference [2] 

RMSE 
Between 0.64 and 
1.4 
 

Between 0.59 to 
1.82°C 

R2 Between 0.98 and 
0.99 

Between from 0.937 
to 0.987 

Depth 5 cm to 100 cm 
100mm, 500mm and 
1500mm 
 

Used ANN M6: NARX One hidden layer 
BPNN 

Used Factors 

5 inputs: 
temperature, 
sunshine,  
radiation, 
time, 
day of the year. 

3 inputs: 
daily rainfall,  
evaporation, 
day of the year 

Optimization 
training 
algorithms 

Train GD 
TrainGDM 
TrainGDX 
TrainLM 
TrainBR 
 

Only one algorithm 
(BP) 

 
Therefore, we can use our obtained ANN: NARX 

results to estimate the soil temperature for any day in the 
year and at any depth by considering routinely measured 
meteorological parameters. 
 
 

5 CONCLUSION 

In this study, BPNN models (M4: BP, M5: Cascade BP, 
and M6: NARX) were used to predict the day soil 
temperature for the present day by using five various 
previous day meteorological variables in Nineveh-Iraq. The 
five variables (previous day atmospheric temperature, 
sunshine, time and day of the year) represent the input to 
the ANN model. 

After ANN training and testing, we noticed that, the 
model M4: BP gave a soil temperature prediction correctly 
by 75%. Whereas the model M5: Cascade BP gave predict 
correctly by 80%. While the model M6: NARX gave soil 
temperature prediction correctly by a large quite reached 
95%. 

From a series of BPNN exercises and according to the 
values of MSE, we found that, the M6: NARX model was 
the best model for forecasting the soil temperature for any 
depth (5, 10, 20, 30, 50, 100cm) of the city of Nineveh, Iraq.  

The results obtained with NARX model were compared 
with the measured data. Errors obtained within the 
acceptable limits. The best result was found in the depth of 
100cm. The advantage of NARX model is that, having the 
required various previous day meteorological variables, the 
day soil temperature for the present day can be predicted 
quickly and satisfactorily without the use of any other 
parameters related to soil. 

Finally, to get best results for NARX ANN model for 
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soil temperature forecasting, we used five different 
optimization ANN training algorithms (TrainGD, 
TrainGDM, TrainGDX, TrainLM and TrainBR) to train the 
NARX. From our results, we noticed that, TrainLM 
optimization algorithm is the best and fastest training 
algorithm for NARX ANN.  

For future work, we suggest to make a comparison 
between the NARX ANN model of best results for 
estimating soil temperature with other statistical method for 
soil temperature: Auto-Regressive Integrated Moving 
Average (ARIMA). We will also get the weather data of 
the years 1990-2010 and then apply NARX ANN model. 
We will check the validity of the NARX results using other 
statistical techniques. 
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