

## ة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية الصيدلة Faculty of Pharmacy



| Detailed Course Description - Course Plan Development and Updating Procedures/ | QF02/0408-3.0E |  |
|--------------------------------------------------------------------------------|----------------|--|
| Pharmacy Department                                                            | QF02/0408-3.0E |  |

| Faculty                | Pharmacy | Department                 | Pharmacy                      |
|------------------------|----------|----------------------------|-------------------------------|
| Course number          | 201700   | Course title               | Advanced Organic<br>Chemistry |
| Number of credit hours | 3        | Pre-requisite/co-requisite | None                          |

## **Brief course description**

This course is designed to address the mechanistic, theoretical and synthetic aspects of a broad range of reactions utilized in organic chemistry. Classical reactions and developed reactions will be reviewed with examples from the literature. It will explore the stereochemical features including conformation and stereoelectronic effects; reaction dynamics, isotope effects and molecular orbital theory applied to pericyclic and photochemical reactions; and special reactive intermediates including carbenes, carbanions, and free radicals.

|                   | Course goals and learning outcomes                                                                                                                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Goal 1            | At the end of this course students will be able to:                                                                                                                                                                                                                                                        |
| Learning outcomes | <ul><li>1.1 Delineate mechanisms for reactions in organic chemistry</li><li>1.2 Apply organic reactions in multi-step synthesis</li><li>1.3 Describe principles concerning green- and sustainable chemistry</li></ul>                                                                                      |
| Goal 2            |                                                                                                                                                                                                                                                                                                            |
| Learning outcomes | <ul> <li>2.1 Describe principles regarding reaction energetics and reaction kinetics</li> <li>2.2 Apply molecular orbital theory on reactivity and stereochemistry</li> <li>2.3 Describe supramolecular principles applied to reactivity</li> </ul>                                                        |
| Goal 3            |                                                                                                                                                                                                                                                                                                            |
| Learning outcomes | <ul> <li>3.1 Interpret ate the reactions outcome such as secondary products and yield</li> <li>3.2 Describe the reactions experimental conditions (temperature, time, solvents and molar ratio)</li> <li>3.3 To arrange a suitable way for the separation and purification of reaction products</li> </ul> |
| Goal 4            |                                                                                                                                                                                                                                                                                                            |
| Learning outcomes | <ul> <li>4.1 Describe principles for the rationalization of regio- or enantioselective reaction outcomes</li> <li>4.2 Extend applying knowledge in organic chemistry on pharmaceutical chemistry,</li> </ul>                                                                                               |



## ة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية الصيدلة Faculty of Pharmacy



| Detailed Course Description - Course Plan Development and Updating Procedures/ | QF02/0408-3.0E   |
|--------------------------------------------------------------------------------|------------------|
| Pharmacy Department                                                            | Q1 02/0 100 210E |

| biochemistry, and polymer chemistry                     |                                                                           |  |
|---------------------------------------------------------|---------------------------------------------------------------------------|--|
|                                                         | 4.3 To predict organic reaction mechanisms and conditions for novel ones. |  |
| Torrith a als                                           | 1 March- Advanced Organic Chemistry –Reaction Mechanisms.                 |  |
| Textbook                                                | 2 Sykes- A Guidebook to Mechanism in Organic Chemistry                    |  |
| Supplementary 1 Jerry March- Advanced Organic Chemistry |                                                                           |  |
| references                                              | 2 J[1] Clayden – Organic Chemistry                                        |  |

| Course timeline |                 |                                                                                                                      |                  |       |  |  |
|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------|------------------|-------|--|--|
| Week            | Number of hours | Course topics                                                                                                        | Pages (textbook) | Notes |  |  |
| 01              | 1<br>1<br>1     | Revision of organic reaction of acid- base, nucleophilic substitution and elimination reactions                      |                  |       |  |  |
| 02              | 1<br>1<br>1     | Revision of aromatic electrophilic substitution reactions and synthesis                                              |                  |       |  |  |
| 03              | 1<br>1<br>1     | Revision of organic reaction of nucleophilic addition<br>and addition-elimination reactions and synthetic<br>methods |                  |       |  |  |
| 04              | 1<br>1<br>1     | Wagner – Meerwein rearrangement Pinacol rearangement                                                                 |                  |       |  |  |
| 05              | 1<br>1<br>1     | Meerwein-Pondorff reduction                                                                                          |                  |       |  |  |
| 06              | 1<br>1<br>1     | Benzilic acid rearrangement<br>Favorski reaction                                                                     |                  |       |  |  |
| 07              | 1<br>1<br>1     | Wolf rearrangement                                                                                                   |                  |       |  |  |
| 08              | 1<br>1<br>1     | Boc and Fmoc protective groups to amines                                                                             |                  |       |  |  |
| 09              | 1<br>1<br>1     | Curtius rearrangement                                                                                                |                  |       |  |  |
| 10              | 1<br>1<br>1     | Beckmann rearrangement                                                                                               |                  |       |  |  |
| 11              | 1<br>1<br>1     | Schmidt reaction (rearrangement reaction)                                                                            |                  |       |  |  |



## ة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية الصيدلة Faculty of Pharmacy



| Detail                               | ed Course Desc | cription - Course Plan Devel<br>Pharmacy Departr                                                 | opment and Updating Proced<br>nent                                      | lures/ | QF02/0408-3.0E |
|--------------------------------------|----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------|----------------|
| 12                                   | 1<br>1<br>1    | Darzens reaction Darzens condensation                                                            |                                                                         |        |                |
| 13                                   | 1<br>1<br>1    |                                                                                                  | Lossen rearrangement Baeyer-Villiger Oxidation (rearrangement reaction) |        |                |
| 14                                   | 1<br>1<br>1    | Hofmann rearrangement (degradation reaction) Claisen rearrangement Ireland-Claisen rearrangement |                                                                         |        |                |
| 15                                   | 1<br>1<br>1    | Cope rearrangement Fries rearrangement                                                           |                                                                         |        |                |
| 16                                   | 1<br>1<br>1    | Garbriel Synthesis Wittig Reaction                                                               |                                                                         |        |                |
| Theoretic<br>evaluation<br>and weigh | n methods      | Mid exam 30%                                                                                     | Seminar 30%                                                             | Fin    | al exam 40%    |
| Approved b<br>lepartment             |                |                                                                                                  | Date of approval                                                        |        |                |

| Name of teacher          | Prof. Ghassan M. Abu<br>Sheikha | Office Number | 407                          |
|--------------------------|---------------------------------|---------------|------------------------------|
| Phone number (extension) | 273                             | Email         | ghassan.abushekha@zug.edu.jo |
| Office hours             | Monday 1-3<br>Tuesday 1-3       |               |                              |