

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty Of Science & IT



" حيث تصبح الرؤية واقعاً" "When Vision Becomes Reality" Detailed Course Description - Course Plan Development and Updating Procedures/

" عراقة وجودة" Tradition and Quality

| Detailed Course Des                                                                                        | QF01/0408-3.0E |                                |              |                                        |
|------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|--------------|----------------------------------------|
| Faculty of Science<br>and Information<br>TechnologyDepartmentArtificial Intelligence /<br>Computer Science |                |                                |              | cial Intelligence /<br>outer Science   |
| Course Number                                                                                              | 0142346        | Course Title                   | Prol<br>Arti | bability Theory in ficial Intelligence |
| Number of Credit<br>Hours                                                                                  | 3              | Pre-Requisite/Co-<br>Requisite | Prin         | ciples of AI                           |

**Brief Course Description :** The Probability Theory in Artificial Intelligence is the branch of mathematics that deals with modelling uncertainty. It is important because of its direct application in areas such as genetics, finance and Artificial Intelligence. It also forms the fundamental basis for many other areas in the mathematical sciences including statistics, modern optimization methods and risk modelling. This course introduces probability theory, random variables and Markov processes. Topics covered are: probability axioms, conditional probability; Bayes' theorem; discrete random variables, moments, bounding probabilities, probability generating functions, standard discrete distributions; continuous random variables, uniform, normal, Cauchy, exponential, gamma and chi-square distributions, transformations, the central limit theorem; definition and statistical inference, sample spaces, conditional probability and Bayes' rule, random variables, discrete and continuous probability distributions, expectation, estimation, and hypothesis testing.

|                      | Course Goals and Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Goal 1               | Presenting the concepts and Benefits of AI.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Learning<br>Outcomes | <ul> <li>1.1 Understanding the basic concepts and techniques of The Probability Theory.</li> <li>1.2 Learning how to represent The Probability in both theory and practice with careful attention to underlying principles of probability and statistics .</li> </ul>                                                                                                                                                                                                                        |  |  |
| Goal 2               | Describing concepts of state space search and its strategies.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Learning<br>Outcomes | <ul> <li>2.1 Learning the probability theory.</li> <li>2.2 Learning the concepts of random variables and Markov processes.</li> <li>2.3 Learning probability axioms, conditional probability; Bayes' theorem; discrete random variables</li> <li>2.4 Learning the concepts of probability generating functions, standard discrete distributions.</li> <li>2.5 Learning statistical inference, sample spaces, conditional probability and Bayes' rule, random variables, discrete.</li> </ul> |  |  |
| Goal 3               | Describing the concepts of production systems.                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Learning<br>Outcomes | <ul><li><b>3.1</b> Understanding the concepts of production systems.</li><li><b>3.2</b> Learning the main components of production systems.</li></ul>                                                                                                                                                                                                                                                                                                                                        |  |  |
| Goal 4               | Presenting basic concepts and roles of AI programming (PROLOG).                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Learning<br>Outcomes | <ul><li>4.1 Learning the concepts of PROLOQ language.</li><li>4.2 Learning the statements, rules and queries of Prolog language.</li></ul>                                                                                                                                                                                                                                                                                                                                                   |  |  |



جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty Of Science & IT



" حيث تصبح الرؤية واقعاً" When Vision Becomes" Reality

" عراقة وجودة" Tradition and Quality

| Detailed Course             | QF01/0408-3.0E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Goal 5                      | Describing Expert Systems and Machine learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Learning<br>Outcomes        | Learning<br>Outcomes <b>5.1</b> Learning the concepts of expert systems and applications. <b>5.2</b> Learning the concepts of Knowledge Based Systems. <b>5.3</b> Learning the concepts of machine learning. <b>Textbook</b> Artificial Intelligence: Building Intelligent Systems. (1 <sup>st</sup> edition) by P. Kulkarni<br>and P. Joshi, PHI Learning Private Limited, 2015. ISBN: 978-81-203-5046-5                                                                                                                                                                                                                                                                                          |  |  |  |
| Textbook                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Supplementary<br>References | <ul> <li>and F. Joshi, FH Learning Filvate Ennited, 2013. ISBN: 978-81-203-3040-3</li> <li>Russell and Norvig, Artificial Intelligence: A Modern Approach, 3<sup>rd</sup> edition, Pearson Education, Inc., Prentice-Hall-Series, 2010.</li> <li>Jeff Heaton, Artificial Intelligence for Humans, Volume.1, Fundamental Algorithms, Kindle Edition, 2013.</li> <li>Alan Mackworth and David Poole, Artificial Intelligence: Foundations of Computational Agents, Cambridge Canada Press, 2010.</li> <li>Robots Are People Too: How Siri, Google Car, and Artificial Intelligence Will Force Us to Change Our Laws by John F. Weaver. Praeger, Nov. 2013. ISBN: 1440829462 9781440829468</li> </ul> |  |  |  |

| Course Timeline |                    |                                                                                                                                                                                                                                                                                                                               |                     |       |  |
|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--|
| Week            | Number of<br>Hours | <b>Course Topics</b>                                                                                                                                                                                                                                                                                                          | Pages<br>(Textbook) | Notes |  |
| 01              | 1<br>1<br>1        | <ol> <li>Introduction to         <ul> <li>probability axioms,</li> <li>conditional probability;</li> <li>Bayes' theorem; discrete random variables,</li> <li>moments,</li> </ul> </li> </ol>                                                                                                                                  | TXT: 1-7            |       |  |
| 02              | 1<br>1             | <ul> <li>2. Problem solving</li> <li>– Problem solving process</li> <li>– Formulating problems</li> <li>– Problem types and characteristics</li> </ul>                                                                                                                                                                        | TXT: 15-20          |       |  |
| 02-03           | 1<br>1<br>1        | <ul> <li>3. Problem solving <ul> <li>bounding probabilities,</li> <li>probability generating functions,</li> <li>standard discrete distributions;</li> <li>continuous random variables,<br/>discrete and continuous probability<br/>distributions, expectation,<br/>estimation, and hypothesis testing</li> </ul> </li> </ul> | TXT:39-47           |       |  |
| 04-05           | 1                  | <ul><li>uniform, normal,</li><li>Cauchy, exponential,</li></ul>                                                                                                                                                                                                                                                               | TXT- 56-65,         |       |  |



جامعة الزيتونة الأردنية

AI-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty Of Science & IT



" حيث تصبح الرؤية واقعاً" When Vision Becomes" Reality



| Detail | ed Course Descr<br>Co | QF01/0408-3.0E                                                                                                                                                                                                                                                                                                                            |                                       |  |
|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|        | 1<br>1                | <ul> <li>gamma and chi-square distributions,</li> <li>transformations, the central limit</li> </ul>                                                                                                                                                                                                                                       | 69-83                                 |  |
| 06     | 1<br>1<br>1           | Revision<br>First exam 20%                                                                                                                                                                                                                                                                                                                |                                       |  |
| 07     | 1<br>1<br>1           | <ul> <li>4. Intelligent agents <ul> <li>theorem;</li> <li>definition and statistical inference,</li> <li>sample spaces,</li> <li>conditional probability and Bayes' rule,</li> <li>random variables,</li> </ul> </li> </ul>                                                                                                               | TXT: 95-99                            |  |
| 08-10  | 1<br>1<br>1           | <ul> <li>7. Knowledge and reasoning <ul> <li>Knowledge representation</li> <li>Knowledge-based agents</li> <li>The Wumpus world</li> <li>Logic</li> <li>Prepositional logic</li> <li>Predicate logic</li> <li>Unification and lifting inference in FOL</li> <li>Representing knowledge using rules</li> <li>Prolog</li> </ul> </li> </ul> | TXT: 134-160,<br>477-483              |  |
| 11-12  | 1<br>1<br>1           | <ul> <li>8. Uncertain Knowledge and reasoning <ul> <li>Uncertainty and methods</li> <li>Probabilistic reasoning</li> <li>Perception</li> <li>Other techniques in Uncertainty and</li> <li>reasoning process</li> </ul> </li> <li>Second Exam 20%</li> </ul>                                                                               | TXT:170,171,<br>176, 182, 190-<br>192 |  |
| 13     | 1<br>1<br>1           | <ul> <li>9. Planning</li> <li>Planning problem</li> <li>Simple planning agent</li> <li>Planning as a state space search</li> </ul>                                                                                                                                                                                                        | TXT: 199-202,<br>210-212              |  |
| 14     | 1<br>1<br>1           | <ul> <li><b>10. Learning</b> <ul> <li>What is machine learning</li> <li>Learning paradigms</li> </ul> </li> </ul>                                                                                                                                                                                                                         | TXT: 233-238                          |  |
| 15     | 1<br>1<br>1           | <ul> <li>11. Experts systems         <ul> <li>Architecture of experts systems</li> <li>Existing experts systems</li> <li>Rule based expert systems</li> </ul> </li> </ul>                                                                                                                                                                 | TXT:267-270,<br>271, 276-277          |  |
| 16     | 1                     | Final Exam 50%                                                                                                                                                                                                                                                                                                                            |                                       |  |

L



" حيث تصبح الرؤية واقعاً" When Vision Becomes" Reality

## " عراقة وجودة" Tradition and Quality

| j                                                                                                                         |                |
|---------------------------------------------------------------------------------------------------------------------------|----------------|
| Detailed Course Description - Course Plan Development and Updating Procedures/<br>Computer Information Science Department | QF01/0408-3.0E |
|                                                                                                                           |                |

| Theoretical Course<br>Evaluation Methods<br>and Weight | Participation = 10%<br>First Exam 20%<br>Second Exam 20%<br>Final Exam 50% | Practical (Clinical)<br>Course Evaluation<br>Methods | Semester Students'<br>Work = 50%<br>(Reports, Research,<br>Quizzes, Etc.)<br>Final Exam = 50% |
|--------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|--------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|

| Approved by Head of<br>Department |  | Date of Approval |  |
|-----------------------------------|--|------------------|--|
|-----------------------------------|--|------------------|--|

Extra information (to be updated every semester by corresponding faculty member)

| Name of Teacher             | Office Number |          |
|-----------------------------|---------------|----------|
| Phone Number<br>(Extension) | Email         | <u> </u> |
| Office Hours                |               |          |