

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

Detailed Course Description - Course Plan Development and Updating Procedures/	
Mathematics Department	

Faculty	Faculty of Science and Information Technology	Department	Mathematics
Course number	0101376	Course title	Linear Programming & Game Theory
Number of credit hours	3	Pre-requisite/co- requisite	Linear Algebra (1) (0101221)

Brief course description

This course aims at introducing students into linear optimization theory and its applications. Students will learn how to model real world problems as linear programs, basic theory of Linear programming, simplex algorithm, two phase method, duality, dual simplex method, post optimality analysis, transportation and assignment problems, simple network models, linear integer programming, students will also learn basic game theory, 2-player games: minimax solutions; zero sum games; Nash equilibria.

Course goals and learning outcomes					
Goal 1	Introduce the student to the fundamental concepts in Linear Programming				
	1.1 State and describe the basic terminology and results concerning linear optimization				
.	and linear programming.				
Learning	1.2 Students will know how to write a linear program in standard form.				
outcomes	1.3 Describe duality and its implications for the solutions of linear programs.				
	1.4 Use the simplex method to solve linear programs.				
	1.5 Describe duality and understand its importance in the solution of linear programs.				
Goal 2	Recognition of the numerous applications of linear programming.				
	2.1 Formulate real-world problems in mathematical terms.				
	2.2 Have the ability to apply linear programming techniques for solving and modeling				
Learning	some fundamental decision-making problems arising in the daily business life.				
outcomes	2.3 Know how to interpret the solutions in terms of the original problems.				
	2.4 Have a flavor of realistic applied problems from operations research such as the				
	transportation and the assignment problems.				
Goal 3	Learn basic concepts in game theory				
Learning	3.1 Understand the relation between linear programming and games.				
outcomes	3.2 Learn how to solve simple cooperative games.				

Textbook	An Introduction to Linear Programming and Game Theory, by Paul R. Thie & G. E. Keough, 3 rd Ed., 2008.			
Supplementary references	 Linear Programming, K.G. Murty, John Wiley. Game Theory, by Maschler, M., E. Solan, & S. Zamir, Cambridge University Press, 2013. 			
	3. Linear Programming, G. Hadley, Addison Wesley.			

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01/0408-3.0E

Week	Number of hours	Course topics			
01	1 1 1	Introduction to Linear ProgrammingThe linear programming problem LPP, feasible solutions set, solving a two-dimensional problem by the use of a graphical method.			
02	1 1 1	Optimal solutions, unboundedness, transforming to standard form, geometry of linear programming.			
03	1 1 1	<u>The simplex method</u> Initialization, detecting optimality, entering and departing variables, canonical form,			
04	1 1 1	Initial BFS, improving current BFS, artificial variables, two phase method			
05	1 1 1	Unboundedness, degeneracy, fundamental theorem of linear programming			
06	1 1 1	First Exam Duality Introduction to duality, formulation of dual LPP for different models.			
07	1 1 1	Duality theorems and their interpretations, Complementary slackness theorem, Farkas Lemma.			
08	1 1 1	Economic interpretation & applications of duality, the dual simplex method.			
09	1 1 1	<u>Post optimality analysis</u> the cases of change in the cost coefficients, the cases of addition and deletion of variables and constraints.			
10	1 1 1	Special LPPs the transportation programming problem, the assignment problems.			
11	1 1 1	Some network flow problems.			
12	1 1 1	Game Theory Introduction to game theory, some principles of decision making in game theory.			

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detaile	Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01/04				
13	1 1 1	Non-cooperative and cooperative games, Matrix games, L matrix game equivalence.	PP and		
14	1 1 1	Saddle points, mixed strategies, the fundamental theorem, computational techniques.			
15	1 1 1	Games people play, Two-Person Zero-Sum Games.			
16	1 1 1	<u>Final Exam 50%</u>			

Theoretical course	Participation = 10%	Practical (clinical)	Semester students'
evaluation methods	First exam 20%	course evaluation	work = 50%
and weight	Second exam 20%	methods	(Reports, research,
_	Final exam 50%		quizzes, etc.)
			Final exam = 50%

Approved by head of	Dr. Amjed Zraiqat	Date of approval	
department			

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Amal H. Al-Saket	Office Number	9114
Phone number (extension)	430	Email	amal_saket@zuj.edu.jo
Office hours			