Design, Synthesis, and Biological Evaluation of N-Substituted-7-Methyl-4-Hydroxy-2-Quinolone-3-Carboxamides as PI3Kα Inhibitors

By

Batool Mohammed Al-lahowani

Supervisor

Dr. Dima A. Sabbah Co-supervisor Dr. Rima Hajjo

AL-Zaytoonah University of Jordan, 2021 Abstract

Phosphoinositide-3-kinase α (PI3K α) is assigned as a promising target for cancer treatment. A series of *N*-substituted-7-methyl-4-hydroxy-2-quinolone-3-carboxamides (**34-50**) was synthesized and characterized by FT-IR and NMR (¹H and ¹³C). The series exhibited selective inhibitory activity against human colon carcinoma (HCT-116) epithelial and colorectal adenocarcinoma (Caco-2) cell lines. Compounds **48** (HCT-116 IC₅₀ = 13 μ M, Caco-2 IC₅₀ = 82 μ M), **38** (HCT-116 IC₅₀ = 32 μ M, Caco-2 IC₅₀ = 105 μ M), **49** (HCT-116 IC₅₀ = 42 μ M, Caco-2 IC₅₀ = 149 μ M), **42** (HCT-116 IC₅₀ = 53 μ M, Caco-2 IC₅₀ = 100 μ M), **41** (HCT-116 IC₅₀ = 49 μ M, Caco-2 IC₅₀ = 105 μ M) exhibited distinct inhibitory activity in HCT-116 Cell line. The induced-fit docking (IFD) studies against PI3K α s shows that the series occupies PI3K α kinase domain and forms H-bonds with Asp933, Ser919, Tyr836, Tyr835, Asp810, Lys802, Ser774 of mutant PI3K α

Keywords: HCT-116 cell line, Caco-2 cell line, PI3Kα, cancer.