جامعة الزيتونـة الأردنيـة

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

	Tradition and Quanty
QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Study plan No.	2021/2022	University Specialization	Artificial Intelligence
Course No.	0142433	Course name	Big Data
Credit Hours	3	Prerequisite Co-requisite	Data Mining
Course type	MANDATORY UNIVERSITY REQUIREMENT UNIVERSITY ELECTIVE REQUIREMENTS	FACULTY Support Course family REQUIREMENT requirements	☐ Mandatory Elective requirements ts
Teaching style	☐ Full online learning	☐ Blended learning	☐ Traditional learning
Teaching model	☐ 2Synchronous: 1asynchronous	2 face to face : 1synchronous	☐ 3 Traditional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-r	nail
Dr. Dara Aqel	Assistant professor			d.aqel(@zuj.edu.jo
Division number	Time	Place	Number of students	Teaching style	Approved model
1					

Brief description

Introduction to data warehouse, types of data warehouses, ETL, star architecture, snow flake architecture, Implementing data warehouse using SQL, introduction to big data, OLAP vs RTAP, Map Reduce, Hadoop, Spark, Machine learning using spark, Streamline Data Ingestion using AWS, Hive, NoSQL databases.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	1- Data Science from Scratch: First Principles with Python. Joel Grus, 2019.O'REILLY, 2 nd Edition.				
Supportive learning resources (Books, databases, periodicals, software, applications, others)	 Data Mining, Concepts and Techniques, Jiawei Han, 3rd edition, 2016. Introducing Data Science, big data, machine learning, and more, using python tools. Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, Manning, 2016. 				
Supporting websites					
The physical environment for	☐ Class	□ labs	□ Virtual	☐ Others	
teaching	room		educational		
			platform		
Necessary equipment and					
software					
Supporting people with special needs					
For technical support					

شعار الكلية

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	To show excellent knowledge in the basic data warehouse and big data topics	MK3
K2	To be acquainted with the basics of various advanced data warehouse and big data topics.	MK3
	Skills	
S1	To be able to apply data warehouse concepts on a real case scenario using SQL	MS3
S2	To be able to use Spark for machine learning of a big data	MS3
	Competences	
C1	To apply the various concepts of data warehouse and big data in solving real life problems	MC1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction to Data Warehouse	Lecture	T:1-13
2	Data Warehouse Types	Lecture	T:111-128
3	ETL	Lecture	R1: 84-95
4	Data Warehouse Architectures	Lecture	R1: 95-110
5	Implementing Data Warehouse	Lecture	R1: 111-117
6	Mid Exam Estimated + Revision	learning through problem solving	
7	Case Study 1: Data Warehouse implementation using SQL	learning through problem solving	Handouts

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information

Technology

" عراقة وجودة" "Tradition and Quality"

	Tradition and Quanty
OF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
Q101/0406-4.0E	Artificial Intelligence Department

8	Introduction to Big Data	Lecture	T:43-52
9	Map Reduce	Lecture	R1: 125-149
10	Hadoop and Spark	Lecture	T:55-99
11	Spark Machine Learning	Lecture	Handouts
12	NoSQL databases	Lecture	Handouts
13	Streamline Data Ingestion	Lecture	Handouts
14	Case Study 2: Spark Machine Learning using pyspark	learning through problem solving	Handouts
15	Case Study 3: Querying Unstructured data using Hadoop Hive	learning through problem solving	Handouts
16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1			To show a good
	Introduction to Data Warehouse		comprehension of the
	introduction to Data warehouse		data warehousing basic
			concepts
2			To distinguish among
	Data Warehouse Types		different types of data
			warehouses
3	ETL		To be acquainted of
	LIL		basics of ETL concepts
4			To distinguish among
	Data Warehouse Architectures		different architectures
			of data warehouses
5	Implementing Data Warehouse		To implement a data
			warehouse using SQL
6	Mid Exam Estimated + Revision		
7	Case Study 1: Data Warehouse		To apply data
	implementation using SQL		warehouse concepts
8			To show a good
	Introduction to Big Data		comprehension of the
			big data basic concepts
9			To show a good
	Map Reduce		comprehension of Map
			Reduce
10			To show a good
	Hadoop and Spark		comprehension of the
			Hadoop and Spark
11			To apply Spark to
	Spark Machine Learning		handle big data using
			python

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

شعار الكلية

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality

	radition and Quanty
OF01/0408 4 0F	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
QF01/0408-4.0E	Artificial Intelligence Department

12	NoSQL databases	To be acquainted v basics of NoSQL	with
13	Streamline Data Ingestion	To have basic understanding of dingestion	lata
14	Case Study 2: Spark Machine Learning using pyspark	To apply Spark to handle big data using python	ing
15	Case Study 3: Querying Unstructured data using Hadoop Hive	To apply Hive to c NoSql databases	luery
16	Final Exam		