جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information

Technology

" عراقة وجودة" "Tradition and Quality"

 \square $\sqrt{\text{Traditional learning}}$

√3 Traditional

QF01/0408-4	.0E Course Plan for Bach	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department			
Study plan No.	2021/2022	University Specialization	Artificial Intelligence		
Course No. 0142232		Course name	Machine Learning		
Credit Hours	3 hours	Prerequisite Co-requisite	Computing Systems for Data Science and Artificial Intelligence		
Course type	□ MANDATORY □ UNIVERSITY UNIVERSITY ELECTIVE REQUIREMENT REQUIREMENT	FACULTY Support MANDATORY course family REQUIREMENT requirements	□ √ Mandatory □ Elective requirements		

☐ Blended learning

2 face to face:

1synchronous

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Full online learning

2Synchronous: 1asynchronous

Name	Academic rank	Office No.	Phone No.	E-m	ail
Dr. DARA AQEL	Assistant Professor	231	327	d.aqel@zu	ıj.edu.jo
Division number	Time	Place	Number of students	Teaching style	Approved model
1				Traditional	

Brief description

Teaching

style Teaching

model

This course will introduce the field of Machine Learning, in particular focusing on the core concepts of supervised and unsupervised learning. In supervised learning, we will discuss algorithms which are trained on input data labelled with a desired output, for instance an image of a face and the name of the person whose face it is, and learn a function mapping from the input to the output. Unsupervised learning aims to discover latent structure in an input signal where no output labels are available, an example of which is grouping web-pages based on the topics they discuss.

Learning resources

Lear ning resources				
Course book information	Hands-On Mach	ine Learning with Scik	cit-Learn, Keras, and Te	ensorFlow:
(Title, author, date of issue,	Concepts, Tools, and Techniques to Build Intelligent Systems 2 nd Edition. by.			
publisher etc)	Aurélien Géron,	_		·
Supportive learning resources	Machine Learning with Python Cookbook Practical Solutions from			
(Books, databases,	Preprocessing to Deep Learning, by Chris Albon, 2018.			
periodicals, software,	2. Foundations of Machine Learning, 2 nd edition by Mehryar Mohri Afshin			
applications, others)	Rostamizadeh, Ameet Talwalkar, 2018 Massachusetts Institute of			
	Technology.			
	3. Expert Systems: Principles and Programming/ Joseph C. Giarratano and			
	Gary Riley, 4th edition, 2005.			
Supporting websites		•		
The physical environment for	□ √Class	□ labs	☐ Virtual	☐ Others
teaching	room		educational	
			platform	
Necessary equipment and	WEKA			
software				
Supporting people with				
special needs				

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

For technical support

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code			
	Knowledge				
K1	Understanding the fundamental concepts of machine learning algorithms and models.	MK4			
K2	To become familiar with regression methods, classification methods, and clustering methods.	MK4			
К3	Understand the types of problems that machine learning algorithms can solve.	MK4			
K4	Understanding various machine learning algorithms in a range of real-world applications.	MK4			
	Skills				
S1	To use different datasets in applying a wide variety of supervised and unsupervised machine learning algorithms and evaluating the models generated from these datasets.	MS4			
S2	To design and implement machine learning solutions to classification, regression, and clustering problems.	MS4			
S3	To apply different machine learning algorithms and models to real- world problems and use these machine learning methods in solving problems.	MS4			
S4	To evaluate and interpret the results of machine learning algorithms.	MS4			
	Competences				
C1	To apply the main concepts of machine learning algorithms for problems solving in real life.	MC1			
C2	To build smart applications based on machine learning algorithms.	MC3			
С3	To create effective applications that match the requirements and needs of the labor market based on machine learning algorithms.	MC3			

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Class overview: Class organization,	Lectures	Textbook1
	topics overview, software etc.		Pages:
	Introduction to ML.		1 - 7
	What Is Machine Learning?		
2	Why Use Machine Learning?	Lectures	Textbook1
	Examples of Applications		Pages:
	Types of Machine Learning Systems		8-23
3	Main Challenges of Machine Learning	Lectures	Textbook1
	What Is Testing and Validating		Pages:
			23-35
4	Classification.	Lectures	Textbook1
	MNIST		Pages:
	Training a Binary Classifier		85 -90
	Performance Measures		
	Measuring Accuracy Using Cross-		
	Validation		
	Confusion Matrix		
5	Precision and Recall	Lectures	Textbook1
	Precision/Recall Trade-off		Pages:
	The ROC Curve		92 - 100
	Multiclass Classification		
6	Error Analysis	Lectures	Textbook1
	Multi-label Classification		Pages:
	Multioutput Classification		102-108
	Exercises		
7	Linear Regression	Lectures	Textbook1
	The Normal Equation		Pages:
	Computational Complexity		112 - 128
	Gradient Descent		
	Batch Gradient Descent		
	Stochastic Gradient Descent		
	Mini-batch Gradient Descent		
	Polynomial Regression		
8	Learning Curves 130	Lectures	Textbook1
	Regularized Linear Models 134		Pages:
	Ridge Regression 135		130 - 150
	Lasso Regression 137		
	Elastic Net 140		
	Early Stopping 141		

جامعة الزيتونية الأردنية

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

OF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/

·		ciui intenigence Depui tinent	
	Logistic Regression 142 Estimating Probabilities 143 Training and Cost Function 144 Decision Boundaries 145 Softmax Regression 148 Exercises		
9	Support Vector Machines. Linear SVM Classification 153 Soft Margin Classification 154 Nonlinear SVM Classification 157 Polynomial Kernel 158 Similarity Features 159 Gaussian RBF Kernel 160 Computational Complexity 162	Lectures	Textbook1 Pages: 153 - 162
10	SVM Regression 162 Under the Hood 164 Decision Function and Predictions 165 Training Objective 166 Quadratic Programming 167 The Dual Problem 168 Kernelized SVMs	Lectures	Textbook1 Pages: 162 - 170
11	Selected review questions and exercises	Lectures	Textbook1 Pages:
12	Decision Trees. 175 Training and Visualizing a Decision Tree 175 Making Predictions 176 Estimating Class Probabilities 178 The CART Training Algorithm 179	Lectures	Textbook1 Pages: 175 - 179
13	Computational Complexity 180 Gini Impurity or Entropy? 180 Regularization Hyperparameters 181 Regression 183 Instability 185 Exercises	Lectures	Textbook1 Pages: 180 - 185
14	Unsupervised Learning Techniques 235 Clustering 236 K-Means 238 Limits of K-Means 248 Using Clustering for Image Segmentation 249 Using Clustering for Preprocessing 251 Using Clustering for Semi-Supervised Learning 253 DBSCAN 255	Lectures	Textbook1 Pages: 235-255
15	Other Clustering Algorithms 258	Lectures	Textbook1

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course P		Course Plan for Bachelor program - Study Plan Artificial Intelligence	
		n Mixtures 260	Pages: 258-274
	Anomaly Detection Using Gaussian Mixtures 266		238-274
	Selecting the Number of Clusters 267		
	Bayesian Gaussian Mixture Models 270		
	Other Algorithms for Anomaly and Novelty Detection 274		
	Exercise	es	
16	Final E	xam	

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.