

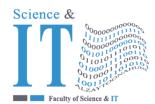
جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

"Tradition and Quality"

QF01/0408-4.0E Course Plan for Master program - Study Plan Development and Updating Procedures/
Department

Study plan No.	2021/2022	University Specialization	Software Engineering
Course No.	0104761	Course name	Advanced Database management system
Credit Hours	3	Prerequisite Co-requisite	
Course type	□ MANDATORY UNIVERSITY REQUIREMENT □ UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY □ Support MANDATORY course family REQUIREMENT requirements	☐ Mandatory
Teaching style	☐ Full online learning	✓ Blended learning	☐ Traditional learning
Teaching model	☐ 2Synchronous: 1asynchronous	✓ 2 face to face : 1synchronous	☐ 3 Traditional

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)


Name	Academic rank	Office No.	Phone No.	E-r	nail
Dr.Feras Ahmed Altarawneh	Assistant professor	117	325	f.altarawneh	n@zuj.edu.jo
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This module builds on the introductory module in databases. It intends to introduce more advanced topics in databases such as data mining and data warehousing, distributed databases and client server architecture after introducing the DBMS implementation.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	"FUNDAMENTALS OF DATABASE SYSTEMS", Seventh Edition. Ramez Elmasri and Shamkant B. Navathe. 2017 by Pearson
Supportive learning resources (Books, databases,	1- Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, "Introduction to Data Mining", Addison Wesley, 2006.
periodicals, software, applications, others)	2- Han J., Kamber M., "Data Mining: Concepts and Techniques", Morgan Kaufmann, 2006.
	3- ilberschatz, A., Korth, H.F. and Sudarshan, S. "Database System Concepts", 5 th . Ed., McGraw-Hill Higher Education, 2006.
	4- Coronel, R., "Database Systems: Design, Implementation and Management" Course Technology- Thomson Learning, 2002.
	5- Date, C.J., "An Introduction to Database Systems", 8 th . Ed., Addison-Wesley, 2004.
	6- Patrick Valduriez M. TamerOzsu, "Principles of Distributed Database Systems", 2th Ed., Prentice Hall, 1999.Lecturers Notes and Handouts

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

	Trustion and Quanty
QF01/0408-4.0E	Course Plan for Master program - Study Plan Development and Updating Procedures/ Department

Supporting websites				
The physical environment for	✓ Class	✓ labs	✓ Virtual	☐ Others
teaching	room		educational	
			platform	
Necessary equipment and	SQL			
software				
Supporting people with				
special needs				
For technical support				

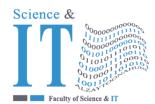
Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	The knowledge of the fundamental principles, and concepts, architectural of database technology.	MK1
K2	awareness of the query processing and optimization	MK2
К3	Understanding of the hashing and indexing structures in data base systems.	Mk2
K4	Understanding the knowledge related transaction processing, data mining concepts, information retrieval, and distributed database.	Mk2
	Skills	
S1	An ability to discuss the main concepts and the architecture of database systems.	MS1
S2	An ability to apply different query operations and use query size estimation rules.	MS3
S3	An ability to select the best hashing and indexing methods	MS1, MS3
S4	An ability to compare, analysis and evaluate different control techniques of concurrency and database recovery techniques.	MS1
S5	An ability to distinguish between the data mining and data warehouse.	MS1
	Competences	
C1	An ability to create different database systems in diverse application domains.	MC1
C2	An ability to work with diverse team and communicate effectively	MC1
C3	An ability to learn from, and get expertise from different domains.	MC3

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical	0	0	10	30%

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT


"Tradition and Quality"

QF01/0408-4.0E	Course Plan for Master program - Study Plan Development and Updating Procedures/ Department			
applications				
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

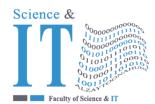
Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction : Database concepts, architecture, and Data modeling	Lecture	7, 10, 11, 13
2	Relational model: Concepts, Constraints, Query language Database design: Functional	Lecture	29 489
	dependencies, Normalization		
3	SQL : complex queries, queries, triggers, views, and scheme modification	Lecture	237-262
4	Strategies for query processing: Translating SQL queries, sorting, selection operation, JOIN operation, other operation	Lecture	685 718
5	- Query optimization : query tree and heuristics, query execution plan, costbased optimization	Lecture	721-761
6	Indexing and Hashing Structures for Files: • lacing file records on disk, Operations on file, Files of ordered and unordered records, Hashing techniques	Lecture	590-602
7	Introduction to transaction processing: • Concepts and theory	Lecture	775-793
8	Concurrency control techniques:	Lecture	811-837
9	Database recovery techniques: Recovery concept, log based recovery,	Lecture	843-863

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات **Faculty of Science and IT**

"Tradition and Quality"

r Master program - Study Plan Development and Updating Procedures/ Department	QF01/0408-4.0E
--	----------------


	T	1	
	failure with loss of nonvolatile storage,		
	remote backup system		
10	Distributed database :	Lecture	
	Concepts, design, types, data		
	fragmentation, replication, allocation		971 005
	techniques, others		871-905
	_		
	MID EXAM		
11	NOSQL database	Lecture	
	Big data storage system		941-966
	Mapreduce and hadoop		
12	Enhanced data model:	Lecture	
	Introduction to active database,		
	Temporal database, Spatial database,		002 1024
	Multimedia database, Deductive		993-1024
	database		
13	Introduction to information retrieval	Lecture	
	And web search: concepts, retrieval		1052 1077
	models, text preprocessing, queries in IR		1052-1077
	systems, web search and analysis		
14	Data mining:	Lecture	
	Concepts, algorithms, types of data,		1-88
	data reprocessing, data quality,		Ref2
	Classification using decision tree		
15	SVM, KNN, artificial neural networks,	Lecture	1.45 2.15
	clustering, data warehousing, web		145-315
	mining, and graph mining.		Ref.,2,3
16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Define the following terms: data,	Page 27, 1.1	All definitions of the
	database, DBMS, database system,		previous terms
	database catalog, program-data		
	independence, user view, DBA, end		
	user, canned trans action, deductive		
	database system, persistent object, meta-		
	data, and transaction-processing		
	application		
2	Discuss the characteristics of relations	Page 80 3.6	Set of relations
	that make them different from ordinary		characteristics
	tables an		
3	Write appropriate SQL DDL statements	Page 112 4.8	SQL DDL statements
	for declaring the LIBRARY relational		


جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

"Tradition and Quality"

QF01/0408-4.0E	Course Plan for Master program - Study Plan Development and Updating Procedures/
QF01/0400-4.0E	Department

	database schema of Figure 4.6. Specify the keys and referential triggered actions.			
4	Discuss how each of the following constructs is used in SQL, and discuss the various options for each construct. Specify what each construct is useful for. a. Nested queries. b. Joined tables and outer joins. c. Aggregate functions and grouping. d. Triggers. e. Assertions and how they differ from triggers. f. Views and their updatability. g. Schema change commands.	Page 141	5.4	SQL Queries
5	What is meant by the term heuristic optimization? Discuss the main heuristics that are applied during query optimization.	Page 723	19.4	The main characteristics of heuristic optimization
6	What are the differences among primary, secondary, and clustering indexes? How do these differences affect the ways in which these indexes are implemented? Which of the indexes are dense, and which are not?	Page 671	18.2	Txt of discussion
7	Discuss the different measures of transaction equivalence. What is the difference between conflict equivalence and view equivalence?	Page 772	21.8	Set of differences between conflict equivalence and view equivalence
8	Prove that the basic two-phase locking protocol guarantees conflict serializability of schedules. (Hint: Show that if a serializability graph for a schedule has a cycle, then at least one of the transactions participating in the schedule does not obey the two-phase locking protocol.)	Page 804	22.20	examples
9	Describe the shadow paging recovery technique. Under what circumstances does it not require a log?	Page 828	23.15	shadow paging recovery technique
10	Discuss what is meant by the following terms: degree of homogeneity of a DDBMS, degree of local autonomy of a DDBMS, federated DBMS, distribution transparency, fragmentation transparency, replication transparency, multidatabase system	Page 920	25.3	Set of definitions
11	Discuss the Big data storage system	Page 956		Text of discussion
12	Give the differences between the	Page 678		Definition of each term

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

"Tradition and Quality"

OF01/0408-4.0E	Course Plan for Master program - Study Plan Development and Updating Procedures/
QFU1/0408-4.0E	Department

	Temporal database, Spatial database, Multimedia database, Deductive database		
13	What is meant by navigational, informational, and transformational search?	Page 102 27.3	Definition of each term
14	What are the different phases of the knowledge discovery from databases? Describe a complete application scenario in which new knowledge may be mined from an existing database of transactions.	Page 1063 28.1	Set of steps related how to discover new knowledge.
15	What is a data warehouse? How does it differ from a database	Page 1081 29.1	The different between data warehouse and DB
16			