

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Proce Department of Mathematics	dures/
--	--------

Study plan No.	2021/2022		University S	pecialization	Bache	elor of Math	ematics
Course No.	0101376		0101376 Course name		Linear Programming & Game Theory		
Credit Hours	3		Prerequisite/ Co-requisite		Linear Algebra (1)		
Course type	 MANDATORY UNIVERSITY REQUIREMENT 	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMEN T	Support course family requirements	~	Mandatory requirements	Elective requirement
Teaching style	□ Full online learn	ning	Blended learning		□ Traditional learning		- -
Teaching model	\Box 1 Synchronous:	1 asynchronous		e to face : 1 chronous	□ 2 T	raditional	

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-r	nail
Division number	Time	Place	Number of students	Teaching style	Approved model
1				Blended	

Brief description

Introducing the linear optimization theory and its applications, Modeling of real world problems as linear programs, Basic theory of linear programming, Simplex algorithm, Two phase method, Duality, Dual simplex method, Post optimality analysis, Transportation and assignment problems, Simple network models, Linear integer programming, Basic game theory, 2-player games, Mini-max solutions, Zero sum games Nash equilibrium.

Learning resources

Course book information	1 An Introduction to Lincor Pr	ogramming and Came Theory by	Doul P. This & C. F.	
(Title, author, date of	1. An Introduction to Linear Programming and Game Theory, by Paul R. Thie & G. E.			
issue, publisher etc)	Keough,			
· ·	514 Ed., 2000.			
Supportive learning	2. Linear Programming, K.G. M	Aurty, John Wiley.		
resources	3. Game Theory, by Maschler,	M., E. Solan, & S. Zamir, Cambrid	dge University Press,	
(Books, databases,	2013.			
periodicals, software,	4. Linear Programming, G. Hadley, Addison Wesley.			
applications, others)	1. Eniour Programming, G. Hudroy, Hadison Wesley.			
Supporting websites	https://www.springer.com/gp/bool	k/9780387969312		
The physical environment	✓ Class □ lal	✓ Virtual educational	□ Others	
for teaching	room	platform		
Necessary equipment and				
software				
Supporting people with				
special needs				
For technical support				

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
QF01/0408-4.0E	Department of Mathematics

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	Students will match how to write a linear program in standard form.	MK 1
K2	Recognition of the numerous applications of linear programming	MK 2
K3	Review basic concepts in game theory	MK 2
K4	Describe how to interpret the solutions in terms of the original problems.	MK 3
	Skills	
S1	Obtain the ability to apply linear programming techniques on solving and modeling some fundamental decision-making problems arising in the daily business life.	MS3
S2	Formulate real-world problems in mathematical terms.	MS4
S 3	Produce a flavor of realistic applied problems from operations research such as the transportation and the assignment problems.	MS4
S4	Describe duality and its implications for the solutions of linear programs.	MS4
	Competences	
C1	Reaching the use of applied mathematics for solving real live problems	MC1
C2	Cooperate to work effectively in the group assignments.	MC 1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	20%	0	0
Final exam	40%	50%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
1	Introduction to Linear Programming:	Lecture	Ref 1 (1-10)
	The linear programming problem LPP, feasible solutions set,		
	solving a two-dimensional problem by the use of a graphical		
	method.		
2	Optimal solutions, unboundedness, transforming to standard	Lecture	Ref 1 (11-38)
	form, geometry of linear programming.		
3	The simplex method: Initialization, detecting optimality, entering		Ref 1 (57-90)
	and departing variables, canonical form		
4	Initial BFS, improving current BFS, artificial variables, two	Lecture	Ref 1 (91-110)
	phase method		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Department of Mathematics			
5	Unbound program	Lecture	Ref 1 (111-126)	
6	Introduc models	tion to duality, formulation of dual LPP for different	Lecture	Ref 1 (127-130)
7	-	heorems and their interpretations, Complementary s theorem, Farkas Lemma.	Lecture	Ref 1 (131-157)
8	Economi simplex	ic interpretation & applications of duality, the dual method.	Lecture	Ref 1 (158-190)
9	Midterm Exam: Post optimality analysis: the cases of change in the cost coefficients, the cases of addition and deletion of variables and constraints.		Lecture	Ref 1 (191-210)
10	Special LPPs: The transportation programming problem, the assignment problems.		Lecture	Ref 1 (211-230)
11	Some network flow problems.		Blended	Ref 1 (230-244)
12	Game Theory: Introduction to game theory, some principles of decision making in game theory.		Blended	Ref 1 (350-370)
13	Non-cooperative and cooperative games, Matrix games, LPP and matrix game quivalence.		Blended	Ref 1 (371-390)
14	-	oints, mixed strategies, the fundamental theorem, tional techniques.	Blended	Ref 1 (400-421)
15	Games p	eople play, Two-Person Zero-Sum Games.	Blended	Ref 1 (411-421)
16	Final E	xam		

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Background	Ref 1	Self-reading and Discussion
2	Video 1 Solving exercises	Ref 1	Discussion in the class
3	Home work1: On the basics	Ref 1	Submit a pdf or word sheet
4	Quiz 1	Ref 1	Submitting on the E-learning
5	Assignment 1: On Matlab Operations	Ref 1	Talk
6	Video 2	Ref 1	Discussion in the class
7	Home work 2 On the subjects studied in weeks 4,5 and 6	Ref 1+Ref 3	Submit a pdf or word sheet
8	Assignment 2: On Plotting of functions	Ref 1+Ref 3	Submitted with the mid exam
9	Self-reading	Ref 2+Ref 3	Talk
10	Video3 Solving exercises	Ref 2+Ref 3	Discussion in the class
11	Home work 3: On the subjects studied after the Mid-Exam	Ref 2+Ref 3	Submit a pdf or word sheet
12	Self-reading	Ref 2+Ref 3	Talk
13	Quiz 2	Ref 2+Ref 3	Submitting on the E-learning
14	Presentation of the subject: Matlab for differential equations	Ref 4	Video presentation
15	Video 4 Revision of all the course	Ref 1-4	Self-reading and Discussion
16	Final Exam	-	-