

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Department of Mathematics	5/
--	----

Study plan No.	2021/2022		University S	University Specialization		Bachelor of Mathematics	
Course No.	0101471		Course name	Course name		Mathematical Modeling 2	
Credit Hours	3		Prerequisite/	Co-requisite			
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	 FACULTY MANDATORY REQUIREMEN T 	□ Support course family requirements		Mandatory requirements	Elective requirements
Teaching style	□ Full online lear	ning	Bler	Blended learning		□ Traditional learning	
Teaching model	□ 1 Synchronous	: 1 asynchronous		 1 face to face : 1 asynchronous 		□ 2 Traditional	

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model
1				Blended	

Brief description

This course is an introduction to mathematical modeling using tools from various parts of mathematics to describe and explore real-world data and phenomena. A variety of modeling techniques will be discussed with examples taken from linear programming, Graph theory, Differential and methods of solving matrices, Using of Matlab will take a part of this course. Finally, we study the expansion of polynomials by different methods.

Learning resources

Course book information	1. A First Course	e in Mathematical	Modelin	ng by F. Giordano, W.	. Fox and
(Title, author, date of		S. Horton, 5th Ed., Cengage, 2013.			
issue, publisher etc)					
Supportive learning	2. "Concepts of Mathematical Modeling", by J. Meyer, (2004), Dover Publications,				
resources	ISBN 0-486-431	5-6.			
(Books, databases,	3. "Mathematic	al Modeling", by S	Stefan He	einz, (2011), Springer	•
periodicals, software,	ISBN 978-3-642	ISBN 978-3-642-20310-7			
applications, others)	4. "Principles of Mathematical Modeling, by Clive L. Dym, 2nd Ed., (2004),				
	Elsevier Inc., ISBN: 0-12-226551-3.				
	5. "Mathematical Modeling", by Mark M. Meerschaert, 4th Ed., (2013), Academic				
	Press (Elsevier Inc.), ISBN: 978-0-12-386912-8.				
Supporting websites	1. https://lir	nk.springer.com/cha	pter/10.10	007/978-3-319-44234-1	_4
The physical environment	✓ Class	🗆 labs	√	Virtual educational	□ Others
for teaching	room platform				
Necessary equipment and	Matlab				
software					
Supporting people with					
special needs					

جامعة الزيتونة الأردنية

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Department of Mathematics
For technical support	Lab Supervisor

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	learning output code
K1	Produce methods for solving applications using a variety of problems, solving strategies including geometric and algebraic techniques.	MK 1
K2	Express mathematical information, concepts, and thoughts in verbal, numeric.	MK 2
К3	Analyze multiple-step problems through different (inductive, deductive, and symbolic) modes of reasoning.	MK 2
	Skills	
S1	Initiate models using matrices.	MS1
S2	Build models using linear programs.	MS2
S3	Plot models using graphs and networks.	MS3
S4	Perform models using expansion and least squares	MS3
	Competences	
C1	Reaching the use of applied mathematics for solving real live problems	MC1
C2	Cooperate to work effectively in the group assignments.	MC 1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	20%	0	0
Final exam	40%	50%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
1	What is Mathematical Modeling?	Lecture	Ref 1 (25-40)
	Steps of the Modeling Process. An Example.		
2	Plotting data, proportionality. Fitting linear data visually.	Lecture	Ref 1 (41-60)
	Functions we should recognize on sight. Fitting $y(x)$		
3	Introduction to optimization.	Lecture	Ref 1 (61-90)
4	Modeling exponential data. Modeling exponential data.	Lecture	Ref 1 (91-110)
	Exponential growth.		
5	Method of least squares. Interpolation and extrapolation.	Lecture	Ref 1 (11-120)
6	Review of vectors and matrices. Transition matrix.	Lecture	Ref 1 (121-135)
	Modeling using Leslie matrices. Some examples in		
	MATLAB.		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Department of Mathematics				
7	Optimization using calculus. Linear optimization. Lecture Ref 1 (1)				
8		ation of linear programs. Graphical solution of rograms. Some examples in MATLAB.	Lecture	Ref 1 (145-180)	
9		m Exam: The theory of linear programming. The method.	Blended	Ref 1 (200-217)	
10	Duality in linear programming. Sensitivity analysis in Bl linear programming.			Ref 1 (218-240)	
11	Integer programming. Branch and bound method. Travelling salesman problem.		Blended	Ref 1 (241-260)	
12	Modeling with graphs. Shortest-path problems.		Blended	Ref 2 (180-200)	
13		m spanning tree. Maximum-flow problems. oloring.	Blended	Ref 2 (201-220)	
14	Modeling with differential equations. Graphical solution.		Blended	Ref 2 (221-240)	
15	Euler's MATLA	method. Bezier method. Some examples in AB.	Blended	Ref 2 (241-260)	
16	Final Exam				

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Background	Ref 1	Self-reading and Discussion
2	Video 1 Solving exercises	Ref 1	Discussion in the class
3	Home work1: On the basics	Ref 1	Submit a pdf or word sheet
4	Quiz 1	Ref 1	Submitting on the E-learning
5	Assignment 1: On Linear programming	Ref 1	Talk
6	Video 2	Ref 1	Discussion in the class
7	Home work 2 On the subjects studied in	Ref 1	Submit a pdf or word sheet
	weeks 4,5 and 6		
8	Assignment 2: On Matrices	Ref 1	Submitted with the mid exam
9	Self-reading	Ref 2+Ref 3	Talk
10	Video3 Solving exercises	Ref 2+Ref 3	Discussion in the class
11	Home work 3: On the subjects studied	Ref 2+Ref 3	Submit a pdf or word sheet
	after the Mid-Exam		
12	Self-reading	Ref 2+Ref 3	Talk
13	Quiz 2	Ref 2+Ref 3	Submitting on the E-learning
14	Presentation of the subject: Expansion	$\operatorname{Ref} 4 + \operatorname{Ref} 5$	Video presentation
	and optimization		
15	Video 4 Revision of all the course	Ref 1-5	Self-reading and Discussion
16	Final Exam	-	-