

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department
	Mathematics Department

Study plan No.	2021/2022		University Spe	cialization	Bachelor of			
					Mathematic	S		
Course No.	0101272		Course name		Numerical A	Analysis (1)		
Credit Hours	3				Linear Algebra (1)+			
			Prerequisite/ Co-requisite		Calculus (1)			
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	☐ FACULTY MANDATORY REQUIREMENT	Support course family requirements	✓ Mandatory requirements	Elective requirements		
Teaching style	□ Full online learning		✓ Blended learning		✓ Blended learning		□ Traditional le	earning
Teaching model	□ 1 Synchronous: 1 asynchronous		✓ 1 face t asynch	o face : 1 ronous	□ 2 Tradition	al		

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

Introduction to representation of numbers, Errors and their sources, Numerical solution of nonlinear equations with one variable (the bisection, the fixed- point, Newton-Raphson and the secant methods), Multiplicity, the modified Newton's method, Synthetic division, Approximating functions by Taylor polynomials, Interpolation (Lagrange's formula and Newton's finite divided differences formula), Numerical methods to solve systems of linear equation: direct methods (Cramer's Method, inverse method, Gauss elimination method) and iterative methods (Jacobi method and Gauss-Seidel method).

Learning resources

Course book information	"Numerical Analysis"	"Numerical Analysis", by R. Burden & D. Fairs, 7th Ed.					
(Title, author, date of							
issue, publisher etc)							
Supportive learning	1-"Applied Numerica	al Analysis", by	Geral	ld & Wheatley , 7th I	Ed., (2004),		
resources	Addison-Wesley I	Publishing Comp	bany.	-			
(Books, databases,	2-"Numerical Metho	ds: Using Matlal	b", by	y John H. Mathews an	nd Kurtis D.		
applications others) Fink, 4 th Ed., (2004), Prentice-Hall Pub. Inc.							
-FF,)	3-"Numerical Metho	ds and Computir	1g", t	y Cheney & KinCaid	d, 6 th Ed.,		
	(2008), Thomson Lea	arning Academic	Rese	ource Center.			
	4-"Numerical Methodsfor Engineers", by S. K. Gupta, 3 rd Ed., (2013), New						
	Academic Science Ltd, United Kingdom.						
Supporting websites	1- <u>http://ins.sjtu.edu.cn/people/mtang/textbook.pdf</u>						
	2- http://www.mathworks.com/products/matlab						
	3- https://www.wolfram.com/mathematica						
The physical	✓ Class room	□ labs	\checkmark	Virtual educational	□ Others		

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	(ourse Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department					
environment for teach	ing		platform				
Necessary equipment	and						
software							
Supporting people with	th						
special needs							
For technical support							

Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	Use the various methods to approximate roots of functions.	MK1
K2	Use the polynomials used to approximate functions.	MK2
K3	Define some numerical methods to solve the nonlinear system	MK1
K4	Describe factorization of matrices for solving linear system.	MK2
K5	Recognize the error analysis for iterative methods	MK1
	Skills	
S1	Compute approximation errors for numerical approximations.	MS1
S2	Apply basic numerical methods and techniques for solving nonlinear equations.	MS2
S3	Operate computational algorithms for solving mathematical problems.	MS1
	Competences	
C1	Work independently to solve assignments in the course.	MC1
C2	Develop the individual's ability to communicate and interact with other mathematical courses	MC 1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	20%	0	0
Final exam	40%	50%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
1	I. Mathematical Preliminaries	Lecture	
	Continuity, differentiation, Rules of differentiation. Rolle's		2 10
	Theorem. Mean value theorem. Extreme value theorem.		2-10
	Intermediate value theorem. Bolzano theorem.		
2	Applications of the I.V.T. and Rolle's Theorem to prove the	Lecture	11 10
	existence and uniqueness of a root of a function.		11-10
3	II. Solutions of Equations in One Variable	Lecture	48 - 55

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Proce Mathematics Department				
	The bise analysis	ection method. Analysis of the bisection method, error . Applications of the bisection method.		
4	The Fix theorem	ed-Point method: definition, theorem of existence, of uniqueness. Analysis of the Fixed-point method.	Lecture	55 - 66
5	The New	wton-Raphson Method, derivation and applications.	Lecture	66 - 78
6	The Sec Polynor	ant method, derivation and applications. Zeros of nials and multiplicity. Applications.	Lecture	78 – 86
7	The Mo division	dified Newton method. Horner's Method (synthetic	Lecture	86 - 91
8	III. Inte Taylor I Midter	erpolation and Polynomial Approximation Polynomial; applications. m Exam	Lecture	107 – 122
9	Interpol	ation and Lagrange's Polynomial.	Lecture	107 - 122
10	Iterated Analysi	Interpolation; Newton's Divided Differences form. s and applications. Midterm	Lecture	122 – 133
11	IV. Dir Review	ect Methods for Solving Linear Systems of systems and matrices.	Lecture	345 - 359
12	Gaussia applicat	n Elimination and Backward Substitution, ions. Matrix inversion.	Lecture	370 - 388
13	V. <u>Iter</u> Norms of	ative Techniques in Matrix Algebra of Vectors and Matrices.	Lecture	418-430
14	Iterative analysis	e Techniques for Solving Linear Systems. Derivation, , and applications. Jacobi method.	Lecture	437 - 454
15	Gauss-S	eidel method, applications.	Lecture	437 - 454
16	Final E	xam		

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Background	On derivatives and introduction	Self-reading and
		of linear algebra. Students	Discussion
		Notes or any Calculus book	
2	Video 1 Solving exercises	E-learning	Discussion in the class
3	Home work1: On the subjects	(Lecture notes)	Submit a pdf or word
	studied on the first three weeks		sheet
4	Quiz 1	On the subjects studied on the	Submitting on the E-
		first three weeks	learning
5	Assignment 1: On applications of	Internet sources and the other	Presentation
	the I.V.T. and Rolle's Theorem.	Supportive learning resources	
6	Video 2	Solving exercises	Discussion in the class
7	Home work 2 On the subjects	(Lecture notes)	Submit a pdf or word
	studied in the weeks 4,5 and 6		sheet
8	Assignment 2: On the Fixed-Point	Internet sources and the other	Submitted with the mid
	method Newton-Raphson method	Supportive learning resources	exam
9	Self-reading	Interpolation and Lagrange's	Talk
		Polynomial	

" عراقة وجودة" "Tradition and Quality"

QF01/04	408-4.0E	Course Plan for Bachelo	r program - Study Plan Development a Mathematics Department	nd Updating Procedures/
10	Video3	Solving exercises	E-learning	Discussion in the class
11	Home w	ork 3: On the subjects	(Lecture notes)	Submit a pdf or word
	studied a	after the midterm		sheet
12	Self-rea	ding	Gaussian Elimination and	Talk
			Backward Substitution,	
			applications. Matrix inversion.	
13	Quiz 2		On the subjects studied on the	Submitting on the E-
			subject studied after midterm	learning
14	Presenta	tion of the subject: The	Internet sources and the	Video
	second f	fundamental form.	reference book	
15	Video 4	Revision of all the	E-learning	
	course			
16	Final E	xam		