

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
	Mathematics Department

Study plan No.	2021/2022		University Specialization		Bachelor of Mathematics	
Course No.	0101112		Course name		Foundations of Mathematics	
Credit Hours	3		Prerequisite/ Co-requisite			
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMENT	□ Support course family requirements	✓ Mandatory requirements	Elective requirements
Teaching style	□ Full online learning		□ Blended learni	ng	✓ Trac lear	litional ning
Teaching model	□ 1 Synchrono asynchronou		□ 1 face to face : 1 asynchronous		✓ 2 Tr	aditional

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

Introduction to logical symbols, Connectives, Tautologies and contradictions, Quantifiers, Methods of proof, Operations on sets, Indexed families, Proof by induction, Relations, Cartesian graphs and direct graphs, Equivalence relations, Partitions, Functions, Operations on functions, Inverse functions, Finite sets and infinite sets, Countable sets.

Learning resources

Learning resources					
Course book information	P. Fletcher and C.W. Patty, Foundations of Higher Mathematics, PWS-				
(Title, author, date of issue,	KENT, Boston, 1988				
publisher etc)	, , , , , ,				
Supportive learning resources	1 Set Theory, C.	Pinter, Addison-W	Vesley, London, 1971		
(Books, databases,	2 A Transition to	Advanced Mathe	matics, D. Smith, M. E	Eggen, and R.	
periodicals, software,	Andre, Wadsworth	, California, 1986).		
applications, others)	3 The Elements of Set Theory, Deepak, 2008				
Supporting websites	1- Discrete Mathematics Notes. Stanford University.				
	2- Vladlen Koltun, Discrete Structures lecture notes.				
	3- http://www.ugrad.math.ubc.ca/coursedoc/math100/index.html				
	4- Online tutorials	and quizzes			
The physical environment for	✓ Class	🗆 labs	☐ Virtual educational	□ Others	
teaching	room		platform		
Necessary equipment and					
software					
Supporting people with					
special needs					
For technical support					

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information

Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
Q101/0400-4.0E	Mathematics Department

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	Define the basic concepts in propositional logic, sets, relations and	MK1
	functions.	
K2	State some important logical implications and equivalences.	MK2
K3	Interpret the principles of mathematical induction.	MK1
K4	Identify suitable methods of proof.	MK2
K5	Define the Countable and uncountable sets, cardinal numbers	MK2
	Skills	
S1	Construct truth tables of compound statements.	MS1
S2	Evaluate the truth value of a statement using the principles of logic	MS2
S3	Analyse the logical structure of statements symbolically, including the	MS4
	proper use of logical connectives, predicates and quantifiers.	
S4	Prove some statements by the direct method or the method of proof by	MS4
	contradiction.	
S5	Disprove a hypothesis by giving counter examples.	MS5
	Competences	
C1	Cooperate to work effectively in the group assignments.	MC1
C2	Develop the individual's ability to communicate and interact with other	MC2
	mathematical courses	

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First/Second exam	30%	30%	30%	30%
Participation / practical applications	0	0	20%	30%
Asynchronous interactive activities	30%	30%	0	0
Final exam	40%	40%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
1	I. Logic and Language of Proof	Lecture	
	Propositions(Statements); truth value, sentential connectives,		
	negation, disjunction, conjunction, conditional and		1-11
	biconditional statements, tautologies and contradictions,		
	equivalent statements.		
2	The converse and the contrapositive of a conditional, the	Lecture	
	universal and the existential quantifiers, negation of quantified		12-17
	statements		

جامعة الزيتونة الأردنية

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating F Mathematics Department					
3	method	ques of proof the direct method, the contrapositive , the contradiction method, proof by cases, examples	Lecture	18-29	
4		on, set-builder notation, subset, equal sets, proper the empty set, the power set.	Lecture	31-34	
5	Union a	nd intersection of sets, disjoint sets, universal set, nents, properties of unions, intersections and	Lecture	34-41	
6		I families of sets, proving or giving counterexamples ous statements involving sets.	Lecture	41-46	
7	The wel	thematical Induction l-ordering property of N, the principle of mathematical n (PMI), equivalent forms of PMI.	Lecture	51-65	
8	IV. <u>Rel</u> Ordered range o	ations and Order d pairs, Cartesian product, relation ,the domain and the f a relation, the inverse of a relation. m Exam	Lecture	80-90	
9		ve, symmetric and transitive relations, equivalence s, composition of relations,	Lecture	92-97 107-109	
10	-	lence classes, partitions, congruence relations, ence classes, orders, partial order, well order.	Lecture	97-106	
11		ctions ns as relations, composition of functions, injective one) functions, the inverse function.	Lecture	115-120	
12		ve (onto) functions, bijections, composition of	Lecture	120-125	
13	proving	lued functions, images and inverse images of sets, more theorems involving the previous concepts ing functions.	Lecture	131-143	
14	VI. <u>Co</u>	untability and Cardinality of Sets nerous sets, finite and infinite sets, denumerable sets.	Lecture	175-194	
15		le and uncountable sets, cardinal numbers.	Lecture	175-194	
16	Final E	xam			