

" عراقة وجودة" "Tradition and Quality"

Study plan No.	2021/2022	University Specialization	Artificial Intelligence
Course No.	0142433	Course name	Big Data
Credit Hours	3	Prerequisite Co-requisite	Data Mining
Course type	MANDATORY I UNIVERSITY UNIVERSITY ELECTIVE REQUIREMENT REQUIREMENTS	FACULTY Support MANDATORY course family REQUIREMENT requirements	Mandatory requiremen ts
Teaching style	□ Full online learning	□ Blended learning	□ Traditional learning
Teaching model	□ 2Synchronous: 1asynchronous	□ 2 face to face : 1synchronous	□ 3 Traditional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-n	nail
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

Introduction to data warehouse, types of data warehouses, ETL, Star architecture, Snowflake architecture, implementing data warehouse using SQL, introduction to big data, OLAP vs RTAP, Map Reduce, Hadoop, Spark, Machine learning using Spark, Streamline Data Ingestion using AWS, Hive, NoSQL databases.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	1- Data Science from Scratch: First Principles with Python. Joel Grus, 2019.O'REILLY, 2 nd Edition.				
Supportive learning resources (Books, databases, periodicals, software, applications, others)	 Data Mining, Concepts and Techniques, Jiawei Han, 3rd edition, 2016. Introducing Data Science, big data, machine learning, and more, using python tools. Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, Manning, 2016. 				
Supporting websites					
The physical environment for teaching	Class room	□ labs		Virtual educational platform	□ Others
Necessary equipment and software					
Supporting people with special needs					
For technical support					

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	To show excellent knowledge in the basic data warehouse and big data	MK3
	topics	
K2	To be acquainted with the basics of various advanced data warehouse	MK3
	and big data topics.	
	Skills	
S1	To be able to apply data warehouse concepts on a real case scenario	MS3
	using SQL	
S2	To be able to use Spark for machine learning of a big data	MS3
	Competences	
C1	To apply the various concepts of data warehouse and big data in	MC1
	solving real life problems	

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Week	Subject	learning style*	Reference **
1	Introduction to Data Warehouse	Lecture	T:1-13
2	Data Warehouse Types	Lecture	T:111-128
3	ETL	Lecture	R1: 84-95
4	Data Warehouse Architectures	Lecture	R1: 95-110
5	Implementing Data Warehouse	Lecture	R1: 111-117
6	Mid Exam Estimated + Revision	learning through problem solving	
7	Case Study 1: Data Warehouse implementation using SQL	learning through problem solving	Handouts

Schedule of simultaneous / face-to-face encounters and their topics

" عراقة وجودة" "Tradition and Quality"

QF01/	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures Artificial Intelligence Department					
8	Introduction to Big Data		Lecture	T:43-52		
9	Map Re	duce			Lecture	R1: 125-149
10	Hadoop	and Spark			Lecture	T:55-99
11	Spark M	Iachine Learn	ing		Lecture	Handouts
12	NoSQL	databases			Lecture	Handouts
13	Streamli	ine Data Inges	stion		Lecture	Handouts
14	Case Learnin	Study 2: ig using pysp	Spark ark	Machine	learning through problem solving	Handouts
15	Case Study 3: Querying Unstructured data using Hadoop Hive		learning through problem solving	Handouts		
16	Final E	xam				

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1			To show a good
	Introduction to Data Warahousa		comprehension of the
	Introduction to Data watehouse		data warehousing basic
			concepts
2			To distinguish among
	Data Warehouse Types		different types of data
			warehouses
3	FTL		To be acquainted of
			basics of ETL concepts
4			To distinguish among
	Data Warehouse Architectures		different architectures
			of data warehouses
5	Implementing Data Warehouse		To implement a data
	Implementing Duta Walenbuse		warehouse using SQL
6	Mid Exam Estimated + Revision		
7	Case Study 1: Data Warehouse		To apply data
	implementation using SQL		warehouse concepts
8			To show a good
	Introduction to Big Data		comprehension of the
			big data basic concepts
9			To show a good
	Map Reduce		comprehension of Map
			Reduce
10			To show a good
	Hadoop and Spark		comprehension of the
			Hadoop and Spark
11			To apply Spark to
	Spark Machine Learning		handle big data using
			python

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for I		Course Plan for Bachelor program - Study Pla Artificial Intelligen	an Development and Updating Procedures/ nce Department	
12	NoSQL databases		To be acquainted with basics of NoSQL	
13	Streaml	ine Data Ingestion	To have basic understanding of data ingestion	
14	Case St Learnii	udy 2: Spark Machine ng using pyspark	To apply Spark to handle big data using python	
15	Case St data us	udy 3: Querying Unstructured ing Hadoop Hive	To apply Hive to query NoSql databases	
16	Final E	xam		