

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

"Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
Department

Study plan No.	2021/2022	University Specialization	Software Engineering
Course No.	0114497	Course name	Cloud Computing and Big Data
Credit Hours	3	Prerequisite Co-requisite	Database Management
Course type	□ MANDATORY □ UNIVERSITY UNIVERSITY ELECTIVE REQUIREMENT REQUIREMENTS	FACULTY Support MANDATORY course family REQUIREMENT requirements	Mandatory requirements Elective requirements
Teaching style	☐ Full online learning	☐ Blended learning	✓ Traditional learning
Teaching model	✓2Synchronous: 1asynchronous	☐ 2 face to face : 1synchronous	☐ 3 Traditional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-n	nail
Wael Alzaydat	Assistant			Wael.alzyada	ıt@zuj.edu.jo
	Professor				
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This course is a capstone Artificial Intelligent (AI), Web3 Decentralized Applications technologies and Big Data that can be combined the emerging technology. Students will learn about principles, processes, and techniques for understanding phenomena via the (automated) analysis of data., Students will learn refer to cloud term the computing and hosting services, storage services, networking services, big data services, and machine/deep learning services.

Learning resources

Learning resources				
Course book information	Cloud Computing for Science and Engineering, Ian Foster, Dennis B. Gannon, 2017, MIT			
(Title, author, date of issue,	press.			
publisher etc)				
Supportive learning resources	1 Google's Datalab			
(Books, databases,	2 R- programming language			
periodicals, software,	3 Orange			
applications, others)				
Supporting websites	Big Clouds websites (e.g., azure.microsoft.com, aws.amazon.com, cloud.google.com,			
	cloud.ibm.com, force.com)			
The physical environment for	✓ Class room	✓ labs	☐ Virtual	□ Others
teaching			educational	
			platform	
Necessary equipment and	1 R- programming language			
software	2 Orange			
Supporting people with				
special needs				

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
Department

For technical support

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program			
	g	learning output code			
	Knowledge				
K1	Capacity for knowing and understanding a database steps by different scales	Mk3, Mk4			
K2	Use appropriate models for solution development	Mk2, Mk3			
К3	Choose appropriate strategy to analyze the problems such as problem decomposition and abstraction	Mk1,Mk5,			
K4	Develop understanding of general concepts of Data Base, object- oriented programming, functional programming, and Data Analytics	Mk2, Mk4, Mk5			
	Skills				
S1	Understand general concepts of database system, database architecture, conceptual modeling, ER modeling, relational modeling, and transaction processing	Ms1 ,Ms4			
S2	Choose an appropriate data structure such as stack, queue, binary tree, or graph required to solve a problem	Ms2,Ms3, Ms4			
S3	Identify the components of conceptual solutions such as entities, relationships, attributes, data integrity and security requirements	Ms2			
	Competences				
C1	Understand Computer networks and distributed systems through the process aspects and services aspects	Mc2			
C2	students to the Cloud landscape and its service and deployment models	Mc1			
C3	Lead by taking responsibility for various tasks Big Data stages via cloud platform	Mc1, Mc2			
C4	Use appropriate cloud platform for deployment	Mc2,Mc3			

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	30%	0	0
Final exam	40%	40%	50%	40%

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
Department

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Cloud Principles	Lecture	1-16
	(introduce students to the		
	Cloud landscape and its		
	service and deployment		
	models)		
2	Managing Data in the	Lecture	20-36
	Cloud (Cloud Storage		
	Services)		
3	Cloud-Based Computing	learning	37-57
	and Hosting Services	through	
		projects	
4	CosmosDB Planet-Scale	learning	https://esciencegroup.com/2017/07/31/azures-
	Database	through	new-cosmosdb-planet-scale-database/
		problem	
		solving	
5	Computing in the Cloud	Lecture	64-71
6	Using and Managing	Lecture	73-84
	Virtual Machines		
7	Scaling Deployments (to	Lecture	96-129
	scale Cloud deployments		
	via HPC, MapReduce,		
	Graph Dataflow		
	Execution, Agents and		
8	Microservices) Cloud Networking	looming	129-135
o	Services and Service	learning through	129-133
	Platform Design	_	
9	Data analytics	projects learning	136-159
7	Data analytics	through	130-137
		projects	
10	Streaming data services	learning	162-190
10	Streaming data services	through	102-170
		projects	
11	Machine learning	learning	192-223
11	services	through	1/2-223
	BOI VICOS	projects	
12	Globus platform services	Lecture	226-255
13	eucalyptus	participatory	https://www.eucalyptus.cloud/
13	cacaryptus	participatory	imps.// w w w.cucaryptus.ciouu/

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

"Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
QF01/0400-4.0E	Department

		learning	
14	eucalyptus	participatory	https://www.eucalyptus.cloud/
		learning	
15	eucalyptus	participatory	https://www.eucalyptus.cloud/
		learning	
16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Learn how to access the Cloud via Big	https://jupyter.org/	familiar with Cloud
	Cloud vendors' websites		services
2	Migrate a legacy storage structure to the	cloud.google.com	Building own cloud
	various Big Clouds using the appropriate		
	storage models and structures		
3	Google's Cloud	cloud.google.com/sdk/	Students will learn about
			computing as a service,
4	Google's Cloud	cloud.google.com/sdk/	service platforms
5	Google's Cloud	cloud.google.com/sdk/	service platforms
6	Google's Cloud	cloud.google.com/sdk/	using/managing virtual
			machines
7	Google's Cloud	cloud.google.com/sdk/	using/managing virtual
			machines
8	Google's Cloud	cloud.google.com/sdk/	docker containers
9	Google's Cloud	cloud.google.com/sdk/	docker containers
10	Google's Cloud	cloud.google.com/sdk/	docker containers
11	Jupyter	Jupyter.com	Computing as a Service
12	Jupyter	Jupyter.com	Data Analytics
13	Jupyter	Jupyter.com	Visualization
14	Jupyter	Jupyter.com	Streaming data
15	Jupyter	Jupyter.com	Select the right methods
16	Jupyter	Jupyter.com	Define the output

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.