

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department
----------------	--

Study plan No.	2020/2021		University Specialization		Artificial Intelligence	
Course No.	0142442		Course name		Artificial Neural Networks	
Credit Hours	3		Prerequisite Co-requisite		Machine Learning	
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMENT	Support course family requirements	□ Mandatory requirement s	✓Elective requirements
Teaching style	□ Full online learning		□ Blended l	earning	Traditio	hal learning
Teaching model	□ 2Synchronous	: 1asynchronous	□ 2 face to face :	1synchronous	3 Tradit	ional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This course provides the following topics:

Introduction to Classification, Logistic Regression, Artificial Neural Networks, Gradient Descent, Applications of ANN, Vectorization, Deep Learning, Types of Deep Learning, Applications of Deep learning.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	1- Logistic Regression Models (Chapman & Hall/CRC Texts in Statistical
	Science) 1st Edition, 2017.
	2- Neural Networks and Deep Learning: A Textbook Charu C. Aggarwal,
	Springer, 2018.
Supportive learning resources (Books, databases, periodicals,	1- Charu Aggarwal. Data Mining, the text book. Springer. 2015

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department				
software, applications, ot	hers)	2- Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2016 .			
Supporting websites					
The physical environment for teaching		Class room	□ labs	□ Virtual educational platform	□ Others
Necessary equipment and software					
Supporting people with special needs					
For technical support					

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	To understand how logistic regression works	МКЗ
K2	To have the knowledge of how ANN works	MK3
K3	To understand the different concepts related to ANN such as vectorization and parameter tuning	MK3
	Skills	
S1	To be able to apply logistic regression models on typical problems using python	MS3
S2	To be able to apply ANN models on typical problems using python	MS3
S3	To be able to compute the output of logistic regression manually	MS3
	Competences	
C1	To be able to use logistic regression in solving a real life problem	MC1

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department
QI 01/0400-4.0L	Artificial Intelligence Department

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedu	<u>e of simultaneous / face-to-face encou</u>	inters and their topics	
Week	Subject	learning style*	Reference **
1	Introduction into Classification.	Lectures	Ref 1. 285-300
2	Applications of Classifications Introduction into Logistic Regression	Lectures	Ref1. 300-344 + Text1 63-71
3	Logistic Regression Examples in Python Gradient Descent of Logistic Regression HW1 Out	Lectures	Python Examples given in class + Text1 63-71
4	Introduction into Vectorization Vectorization in Logistic Regression	Lectures	Python Examples given in class
5	Derivative Meaning Introduction into ANN	Lectures	Text2 1-52
6	Mid Exam Estimated + Revision	learning through problem solving	
7	ANN Examples in Python HW2 Out	Lectures	Python Examples given in class
8	Vectorization of ANN Gradient Descent of ANN Loss Functions	Lectures	Text2 105-167
9	Deep ANN Deep ANN Examples in Python HW3 Out	Lectures	Text2 170-200 + Examples given in class
10	Learning Curve CNN RNN	Lectures	Text2 200-216
11	Case Study 1: ANN for estimating functions	learning through problem solving	Given in class
12	Case Study 2: ANN for	learning through problem solving	Given in class
13	Presentations	participatory learning	
14	Presentations.	participatory learning	
15	Presentations.	participatory learning	
16	Final Exam		
	·	-	•

Schedule of simultaneous / face-to-face encounters and their topics

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Artificial Intelli				
Week		Task / activity	Reference	Expected results
1	Data Mining Categorization			To categorize various scenarios into their data mining types
2	Logistic Regression Part1			To compute manually the output of a regression model
3	Logistic R	egression Part2		To compute manually the output of a regression model
4	One Hot E	ncoding		To apply one hot encoding on data
5	Logistic R	egression Using Loop		To use logistic regression using python
6	Logistic Regression Using Vectorization			To apply vectorization on logistic regression using python
7	Exam			
8	Logistic R	egression Using Vectorization		To apply vectorization on logistic regression using python
9	Learning Rate			To use learning rate on logistic regression
10	Biase			To use biase
11	ANN Part	1		To apply ANN using python
12	ANN Part2			To apply ANN using python
13	Deep Learning			To apply Deep Learning using python
14	Presentatio	ons		To present a trending topic in ANN
15	Presentations			To present a trending topic in ANN
16	Exam			