

جامعة الزيتونة الأردنية

Al–Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty of Sciences and Information Technology

" عراقة وجودة" "Tradition and Quality"

Brief course description- Course Plan Development and Updating Procedures\ Mathematics Department				Q	PF01/0409-3.0E
	Sciences and				
Faculty	Information	Academic Department	Mathemati	ics	Number of the

Faculty	Inform	nation	Academic Department	Mathe	matics	Number of the
	Techn	ology				course plan
Number of Major	1	5	Date of plan approval			(2021-2022)
requirement cours	es 1	5	Date of plan approval			
Course number	Credit hours		Title of the course		Prerequis	site-co-requisite

Course number	Cicuit nouis	The of the course	Therequisite=co-requisite		
0101711	3	Real Analysis	None		
Outer measure, measurable sets and Lebesgue measure. Measurable functions. Lebesgue integral, integral of a					
nonnegative functi	nonnegative function, general Lebesgue integral, convergence in measure. Differentiation and integration,				
differentiation of monotone functions. The L ^P spaces, Holder and Minkowski inequalities.					
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101712	3	Functional Analysis	None		
Metric spaces, con	npact sets in me	tric spaces, normed spaces, finite dimensional no	ormed spaces, complete and		
separable normed	spaces, Banach	spaces. Inner product spaces, Hilbert spaces, o	orthogonal and orthonormal		
system, separable	Hilbert spaces,	and Parseval's equality, Riesz representation for	r linear functionals. Linear		
operators, bounded	linear operators	, continuity linear operators, algebraic dual, Hahn-	Banach theorems.		
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101713	3	Complex Analysis	0101711		
Analytic function	ns, power ser	ries, Laurent series, Mobius transformation	ns, complex integration,		
Cauchy's theorem	n and formula,	, the maximum modulus principle, Schwartz	lemma, singularities and		
classification of	singularities, H	Riemann mapping theorem, Schwartz-Christ	ofell formulas, harmonic		
functions, Dirichl	et problem, Poi	isson's formula.			
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101714	3	Mathematical Optimization	None		
Linear programming	ng and mathem	atical modeling, the simplex method, duality,	convexity, constrained and		
unconstrained non	linear programi	ning problems, Lagrange multipliers, Kuhn-Tu	icker conditions, quadratic		
programming.					
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101721	3	Abstract Algebra (1)	None		
Isomorphism theor	ems of groups, g	group automorphism, finite direct products, finite	ly generated groups, groups		
actions, Sylow the	orems, rings and	l ideals, prime and maximal ideals, polynomial	rings and irreducibity tests,		
unique factorization	n domains, Eucli	dean domains.			
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101722	3	Abstract Algebra (2)	0101721		
Rings and ideals,	Rings and ideals, nilpotents and idempotents in rings, R-modules, products and sums of R-modules, exact				
sequences and split exact sequences, simple and semisimple R-modules, essential and small submodules, the ring					
of endomorphisms of an R-modules, projective and injective modules, regular rings, the radical and the socle of					
an R-module, Noetherian and Artinian R-modules.					
Course number	Credit hours	Title of the course	Prerequisite-co-requisite		
0101731	3	Topology (1)	None		
Topological spaces, neighborhoods, bases and subbases, continuous functions, product spaces, weak topologies,					
quotient spaces, filters, separation axioms, regular and completely regular spaces, normal and perfectly normal					
spaces, Lindelof, separable spaces and second countable spaces, compact spaces, locally compact spaces,					
sequentially and countably compact spaces, one point compactification, paracompact spaces, connected spaces.					
Course number	Cradit hours	Title of the course	Drana quinita ao raquinita		
	Clean nouis	The of the course	Prerequisite-co-requisite		

جامعة الزيتونة الأردنية

Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty of Sciences and Information Technology

" عراقة وجودة" "Tradition and Quality"

Brief course description- Course Plan Development and Updating Procedures\ Mathematics Department	QF01/0409-3.0E

Locally compact and K-Spaces, Cech complete spaces, metric and metrizable spaces, complete metric spaces and				
the completion theorem, Baire spaces and Baire category theorem, uniform and proximity spaces.				
Course number	Credit hours	Title of the course	Prerequisite-co-requisite	
0101741	3	Applied Mathematics (1)	None	
Review of ODEs,	existence and un	niqueness of solutions for ODEs, integral transfer	orms, and Green's function,	
approximation met	hods, non-linear	ODEs and their stability.		
Course number	Credit hours	Title of the course	Prerequisite-co-requisite	
0101742	3	Applied Mathematics (2)	0101741	
PDEs of mathem	atical physics,	separation of variables, transform methods, e	eigen function expansions,	
Green's function,	approximation	methods, integral equations.		
Course number	Credit hours	Title of the course	Prerequisite-co-requisite	
0101744	3	Advanced Numerical Analysis	None	
Data fitting (poly	nomial interpola	ation, least squares method), numerical method	ls for ordinary and partial	
differential equation	ons (Euler, Ru	nge-Kutta formulas, boundary value problems,	finite difference methods),	
numerical linear A	lgebra (LU, Cho	plesky, QR and singular value decompositions),	eigenvalue problem (power	
method, Lanczos al	gorithm).			
Course number	Credit hours	Title of the course	Prerequisite-co-requisite	
			None	
0101751	3	Mathematical Statistics	None	
0101751 Univariate and mu	3 Itivariate distrib	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient	None ent statistics, completeness,	
0101751 Univariate and mu methods of point es	3 Itivariate distrib stimation and pro	Mathematical Statistics ution theory, sufficient statistics, minimal suffici- operties of point estimators, confidence, intervals,	None ent statistics, completeness, testing hypotheses, Neman-	
0101751 Univariate and mu methods of point es Pearson lemma, rar	3 Itivariate distrib stimation and pro- adomized tests, u	Mathematical Statistics ution theory, sufficient statistics, minimal suffici- operties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods.	
0101751 Univariate and mu methods of point es Pearson lemma, rar Course number	3 Itivariate distrib stimation and pro adomized tests, u Credit hours	Mathematical Statistics ution theory, sufficient statistics, minimal suffice operties of point estimators, confidence, intervals, iniformly most powerful test, likelihood ratio tests Title of the course	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite	
0101751 Univariate and mu methods of point es Pearson lemma, rar Course number 0101752	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient operties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None	
0101751 Univariate and mu methods of point es Pearson lemma, rar Course number 0101752 Kolmogorrov's axis	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient operties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditional	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence,	
0101751 Univariate and mu methods of point ex Pearson lemma, rar Course number 0101752 Kolmogorrov's axie Borel-Cantelli lem	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van ma, characterist	Mathematical Statistics ution theory, sufficient statistics, minimal sufficiency operties of point estimators, confidence, intervals, iniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditional tic functions and inversion formula, convergent	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large	
0101751 Univariate and mu methods of point es Pearson lemma, rar Course number 0101752 Kolmogorrov's axie Borel-Cantelli lem numbers, central lin	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random vai ma, characterist nit theorems.	Mathematical Statistics ution theory, sufficient statistics, minimal sufficiency operties of point estimators, confidence, intervals, informly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic functions and inversion formula, convergen	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None I probability, independence, ce concepts, laws of large	
0101751 Univariate and mu methods of point en Pearson lemma, ran Course number 0101752 Kolmogorrov's axia Borel-Cantelli lem numbers, central lin Course number	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van ma, characterist nit theorems. Credit hours	Mathematical Statistics ution theory, sufficient statistics, minimal sufficiency operties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic functions and inversion formula, convergen Title of the course Title of the course	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large Prerequisite-co-requisite	
0101751 Univariate and mu methods of point en Pearson lemma, ran Course number 0101752 Kolmogorrov's axie Borel-Cantelli lem numbers, central lin Course number 0101771	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van ma, characterist nit theorems. Credit hours 3	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient poperties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionation formula, convergen Title of the course Title of the course Selected Topics in Mathematics	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None I probability, independence, ce concepts, laws of large Prerequisite-co-requisite None	
0101751 Univariate and mu methods of point es Pearson lemma, rar Olurse number 0101752 Kolmogorrov's axid Borel-Cantelli lem numbers, central lin Course number 0101771 Study of selected a	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random vai ma, characterist mit theorems. Credit hours 3 reas in mathemat	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient operties of point estimators, confidence, intervals, informly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic ic functions and inversion formula, convergent Title of the course Selected Topics in Mathematics tics. Designed for special needs of advanced stude	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None I probability, independence, ce concepts, laws of large Prerequisite-co-requisite None nts.	
0101751 Univariate and mu methods of point en Pearson lemma, ran Course number 0101752 Kolmogorrov's axid Borel-Cantelli lem numbers, central lin Course number 0101771 Study of selected an Course number	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van ma, characterist nit theorems. Credit hours 3 reas in mathemat Credit hours	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient operties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic tic functions and inversion formula, convergen Title of the course Selected Topics in Mathematics tics. Designed for special needs of advanced stude Title of the course	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large Prerequisite-co-requisite None ents. Prerequisite-co-requisite	
0101751 Univariate and mu methods of point en Pearson lemma, ran Course number 0101752 Kolmogorrov's axis Borel-Cantelli lem numbers, central lin Course number 0101771 Study of selected an Course number 0101772	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random van ma, characterist nit theorems. Credit hours 3 reas in mathemat Credit hours 3	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient poperties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic functions and inversion formula, convergen Title of the course Selected Topics in Mathematics tics. Designed for special needs of advanced stude Title of the course Scientific Research Methodology	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large Prerequisite-co-requisite None ents. Prerequisite-co-requisite None	
0101751 Univariate and mu methods of point es Pearson lemma, rar Olurse number 0101752 Kolmogorrov's axid Borel-Cantelli lem numbers, central lin Course number 0101771 Study of selected an Course number 0101772 The course aims to	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random vai ma, characterist mit theorems. Credit hours 3 reas in mathemat Credit hours 3 o provide in-dep	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient operties of point estimators, confidence, intervals, informly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic tic functions and inversion formula, convergent Selected Topics in Mathematics tics. Designed for special needs of advanced stude Title of the course Scientific Research Methodology oth knowledge of research design and methodology	None ient statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large Prerequisite-co-requisite None ents. Prerequisite-co-requisite None ogy and train the student in	
0101751 Univariate and mu methods of point en Pearson lemma, ran Ourse number 0101752 Kolmogorrov's axid Borel-Cantelli lem numbers, central lin Course number 0101771 Study of selected an Course number 0101772 The course aims to writing a study plan	3 Itivariate distrib stimation and pro- adomized tests, u Credit hours 3 oms, random var ma, characterist nit theorems. Credit hours 3 reas in mathemat Credit hours 3 o provide in-dep and critically re	Mathematical Statistics ution theory, sufficient statistics, minimal sufficient poperties of point estimators, confidence, intervals, uniformly most powerful test, likelihood ratio tests Title of the course Probability Theory riables, distributions, expected values, conditionatic functions and inversion formula, convergenties Selected Topics in Mathematics tics. Designed for special needs of advanced stude Title of the course Scientific Research Methodology oth knowledge of research design and methodole	None ent statistics, completeness, testing hypotheses, Neman- , minimax methods. Prerequisite-co-requisite None l probability, independence, ce concepts, laws of large Prerequisite-co-requisite None ents. Prerequisite-co-requisite ogy and train the student in	

Approved by	18-	Date of approval	2021/8/12
department council			