

جامعة الزيتونـة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber
QI01/0400-4.0L	Security Department

Study plan No.	2022/2021		University Specialization		Cyber security	
Course No.	0125312		Course name		Data Structure and Algorithms	
Credit Hours	3		Prerequisite/ Co-requisite		Object Oriented Programming	
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	FACULTY MANDATORY REQUIREMENT	□ Support course family requirements	Mandator y requirement s	Elective cequirements
Teaching style	□ Full online learning		√Blended lear	ning	Traditional l	earning
Teaching model	□ 1 Synchronous: 1 asynchronous		√1 face to face : asynchronous	:1	□ 2 Tradition	al

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model
				Blended learning	1 face to face : 1 asynchronous

Brief description

The Data Structure and Algorithm course sets out the structuring principles, Abstract Data Types (ADT) and Implementations: Lists, Stacks, Queues, Priority Queues, Recursion. Introduction to algorithm analysis. Introduction of search and sort algorithms including Trees and Binary Search Trees, Hashing, and Heaps. In a high-level language (usually Java) the student should implement the user-defined data structures. Student can compare performance-related alternative implementations of data structures. Write programs that use the arrays, records, strings, linked lists, stacks and queues of each of the following data structures.

Learning resources

Course book information	F. M. Carrano and T. M. Henry: Data Structures and Abstractions with					
(Title, author, date of issue,	Java, 5th edition, P	Java, 5th edition, Pearson, 2019.				
publisher etc)		••••••••••••••••••••				
Supportive learning resources						
(Books, databases,	Nell Dale, Daniel T. Joyce, Chip Weems ,Object-oriented data structures using Java,2016					
periodicals, software,	Data Structures and Algorithms in Java 6th Edition by Michael T. Goodrich, Roberto					
applications, others)	Tamassia					
Supporting websites						
The physical environment for	\Box VClass labs \Box Virtual \Box Others					
teaching	room		educational			
			platform			

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cy Security Department		
Necessary equipment and			
software			
	-		
Supporting people wi	th		
special needs			
For technical support			
For teeninear support			

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	learning output code
K1	Recognize the concept of an Abstract Data Type (ADT).	MK4
K2	Determine how an ADT is designed and implemented as a class of some object-oriented programming language.	MK4
K3	Understanding the concepts of time and space complexity, worst case, average case and best case complexities and the big-O notation	MK4
K4	Understanding a wide range of searching and sorting algorithms	MK4
	Skills	
S1	Apply some basic complexity analysis methods.	MS4
S2	Improve the programming skills of students, especially in Java.	MS4
S 3	Enable students to design and implement some user-defined data structures (lists, stacks, queues, linked lists, binary trees, etc.) as Java generic classes.	MS4
	Competences	
C1	Give students some practice in the application of new user-defined data structures	MC2

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	20%	0	0
Final exam	40%	50%	50%	40%

Note 1: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Note 2: According to the Regulations of granting Master's degree at Al-Zaytoonah University of Jordan, 40% of final evaluation goes for the final exam, and 60% for the semester work (examinations, reports, research or any scientific activity assigned to the student).

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Introduction to data structures: What	Lecture	
	is a data structure? References, arrays,		
	Big-O Analysis.		
	Concept of an ADT: Definition of an		Ref.1: 28-68
	Abstract Data Type (ADT),		
	representation of objects,		
	implementation of operations.		
2	Introduction to Linked Lists: Array vs.	Lecture	
	Linked Lists, operations on Linked		Ref.1: 102-112
	Lists.		Ref.1: 160-162,185-193
	Stack ADT: Stack ADT definition and		Kel.1. 100 102,105 175
	its array implementation.		
3	Stack ADT: Linked stack	Lecture	Ref.1: 194-229
	implementation, applications of stacks		
	(Evaluating Postfix Expressions).		Ref.1: 243-253
	Recursion : recursive definitions, how		
	recursion works, classic examples.		
4	Recursion : Recursive processing of	Lecture	Ref.1: 269-285
	linked lists, deciding when to use		Ref.1: 297-314
	recursion.		
	Queue ADT: Queue ADT definition and		
_	its linear array implementation.	T 4	
5	Queue ADT: Circular Queue	Lecture	
	implementation, Queue implementation		Ref.1: 331-339
	as a linked structure, applications of		
6	queues. Review of previous chapters + solutions	Lecture	
U	of problems. Analysis of exam results.	Lecture	
7	List ADT: Comparing Objects, varieties	Lecture	
/	of lists, List ADT specifications, array		
	implementation of sorted and unsorted		Ref.1: 383-413
	lists.		
8	List ADT: Binary Search algorithm,	lecture	
0	recursive binary search, implementing		Ref.1: 425-444
	List ADT as a linked structure.		
9	List ADT : Circular linked lists, doubly	lecture	
-	linked linear and circular lists, linked		D 61 474 404
	lists with headers and trailers, linked list		Ref.1: 474 - 496
	as an array of nodes.		
10	Review of Previous Chapters	Lecture	
	MID Exam: 30%		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Develop Security Departme			
11	 Binary Search Trees: Binary search tree specification, binary search tree implementation. 		Ref.1: 536-554
12	-Algorithms for sorting: insertion sort and merge sort. Sorting in Linear Time	Lecture	Ref.1: 555-577
13	-Divide and conquer in the context of merge sort	Lecture	Ref.1: 584-598
14	Minimum Spanning Trees, Shortest Paths	Lecture	Ref.1: 600-608
15	Review of Previous Chapters Discussions of Reports and Home Works:10% 		
16	Final Exam 50%		

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Week	Task / activity	Reference	Expected results
1	Assignment	Lectures 1 and 2	Understanding Abstract
			Data Type (ADT),
2	Assignment	Lectures 3 and 4	
3	Fill in blanks, drag the words	Lectures 5 and 6	Understanding Stack ADT
4	Fill in blanks, drag the words	Lectures 7 and 8	Understanding Linked Lists
5	Assignment	Lecture 9 and 10	Recursion
6	Assignment	Lecture 11 and 12	Queue ADT
7	Assignment	Lecture 13 and 14	
8	Fill in blanks, drag the words	Lecture 15 and 16	Binary Search algorithm
9	Assignment	Lecture 17 and 18	Understanding circular lists
10	Fill in blanks, drag the words	Lecture 19 and 20	Understanding
11	Assignment	Lecture 21 and 22	
12	Assignment	Lecture 23 and 24	insertion sort
13	Assignment	Lecture 25 and 25	Understanding merge sort
14	Assignment	Lecture 25 and 25	Minimum Spanning Trees, Shortest Paths
15	Discussion forum	Review lectures	Review final exam materials
16	Final exam		

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)