

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
	Department of Mathematics

Study plan No.	2021/2022	University Specialization	Bachelor of Mathematics	
Course No.	0101202	Course name	Advanced Calculus	
Credit Hours	3	Prerequisite/ Co-requisite	Calculus (3)	
Course type	MANDATORY UNIVERSITY UNIVERSITY ELECTIVE REQUIREMEN REQUIREMEN T TS	□ FACULTY MANDATORY REQUIREME NT requirements	✓ Mandatory requirements	
Teaching style	□ Full online learning	□ Blended learning	✓ Traditional learning	
Teaching model	□ 1 Synchronous: 1 asynchronous	□ 1 face to face : 1 asynchronous	✓ 2 Traditional	

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model
1				Traditional	

Brief description

Line and surface integrals, Jacobian determinant, Change of variables, Green's theorem, Curl and divergence of a vector field, Divergence theorem.

Learning resources

Course book information (Title, author, date of issue, publisher etc)	Calculus, by Anton, Bivens and Davis, 10th Ed, 2012			
Supportive learning resources	 1. Calculus, by Finney and Thomas, 14nd Ed., 2018 2. Calculus, one and several variables, by Salas and Hille, 10th Ed, 2007 			
(Books, databases, periodicals,				
software, applications, others)	3. Vector Calculus, by Susan Colley, 4 rd Ed, 2012.			
Supporting websites	https://www.	khanacademy.o	rg/math/multivariable-calculus	
The physical environment for	✓ Class	□ labs	□ Virtual educational	□ Others
teaching	room		platform	
Necessary equipment and				
software				
Supporting people with special				
needs				
For technical support				

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code	
	Knowledge		
K1	Recognize mathematical formulas and methods of derivation of multivariable functions	MK2	

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E		Course Plan for Bachelor program - Study Plan Development an Department of Mathematics	d Updating Procedures/
K2	State the different co	integration techniques to calculate multiple integrals in pordinate systems.	MK2
K3	Memorize	the different theorems of vector calculus.	MK3
		Skills	
S1	Perform d variables derivatives	ifferential calculus operations on functions of several including continuity, partial derivatives and directional	MS1
S2	Estimate n Cartesian,	nultiple integrals in different coordinate systems including polar, cylindrical and spherical coordinates	MS2
S3	Perform ca	lculus operations on vector-valued functions.	MS2
		Competences	
C1	Apply the solutions o	computational and conceptual principles of calculus to the f various scientific applications	MC1
C2	Develop the mathematic	e individual's ability to communicate and interact with other cal courses.	MC2

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	30%	30%
Participation / practical applications	۰	٠	20%	30%
Asynchronous interactive activities	30%	30%	0%	•
Final exam	40%	40%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
1	Review of Vectors. Parametric Equations of Lines Vector Equation of Lines	Lecture	767 - 813
2	Planes in 3-Space. Intersecting Planes Introduction to Vector-Valued Functions	Lecture	813 - 821 841 - 847
3	Graphs of Vector-Valued Functions Calculus of Vector-Valued Functions: Limits, Continuity, and Derivatives. Derivative Rules, Definite Integrals	Lecture	848 - 853
4	Antiderivatives of vector–valued functions Arc length. Properties of Arc Length Parameterizations	Lecture	853 - 868
5	Unit tangent, Normal, and Binormal vectors. Curvature Motion along a curve(velocity, acceleration, and speed).	Lecture	868 - 905
6	Directional derivative. The Gradient	Lecture	960 - 971
7	Tangent Planes and Normal Vectors Vector Fields. Divergence and Curl	Lecture	971 – 976 1088 - 1093
	Line Integrals with Respect to Arc Length. Evaluating Line	Lecture	1094 - 1102

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/04	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Department of Mathematics				
8	Integrals. Line Integrals with Respect to x, y, and z.				
9	Integratin Line Inte	ng a Vector Field Along a Curve. Work as a Line Integral egrals along Piecewise Smooth Curve	Lecture	1102 - 1109	
10	Indepen Test for	dence of path. Conservative Vector Field Conservative Vector Fields. Green's Theorem	Lecture	1111 - 1125	
11	Green's Theorem for Multiply Connected Regions Triple Integrals.		Lecture	$\frac{1125 - 1129}{1039 - 1048}$	
12	Volume Calculated as a Triple integrals Triple Integrals in Cylindrical and Spherical Coordinates		Lecture	1048 - 1057	
13	Surface 1	Integrals	Lecture	1130 - 1138	
14	Applications of Surface Integrals; Flux The Divergence Theorem		Lecture	1138 - 1158	
15	Stokes' T Relation	Theorem ship between Green's Theorem and Stokes' Theorem	Lecture	1158 – 1168	
16	Final Ex	xam 50%			