

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

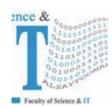
OF01/0408-	4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Study plan No.	2020/2021	University Specialization	Artificial Intelligence
Course No.	0142334	Course name	Data Mining
Credit	3	Prerequisite Co-requisite	Introduction into Data
Hours		Trerequisite Co-requisite	Science
Course type	□ MANDATORY □ UNIVERSITY UNIVERSITY = LECTIVE REQUIREMENT REQUIREMENTS	FACULTY Support course family REQUIREMENT requirements	☐ Mandatory requirement requirements s
Teaching style	☐ Full online learning	☐ Blended learning	Traditional learning
Teaching model	☐ 2Synchronous: 1asynchronous	☐ 2 face to face : 1synchronous	3 Traditional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-n	nail
Division number	Time	Place	Number of students	Teaching style	Approved model


Brief description

This course provides the following topics:

Introduction to Data Mining, Classification, Clustering, Association Rule Discovery, Anomaly Detection, Web Mining, Collaborative Filtering, and various data mining topics.

Learning resources

Course book information	T C 1C 11 3	17 1 D '	1 4 6 '11 1	D I .
	Ian Goodfellow,	Yoshua Bengio, an	nd Aaron Courville, I	Deep Learning,
(Title, author, date of issue,	2016.			
publisher etc)	2010.			
Supportive learning resources	1- Charu Age	garwal. Data Mini	ng, the text book. Sp	ringer. 2015
(Books, databases, periodicals,		D	8,	8
software, applications, others)	O T 1777	P" P 1 14 1	TT 11 1 C1 1	D 1 D .
TI TI	2- Ian Witten,	Eibe Frank, Mark	K Hall, and Christoph	ier Pal. Data
	Mining: Pract	ical Machine Lear	ning Tools and Tech	miques. Morgan
	Kaufmann. 20)16 .		
Supporting websites				
The physical environment for	Class room	□ labs	☐ Virtual	☐ Others
teaching			educational	
			platform	
Necessary equipment and			_	
software				

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
•	Artificial Intelligence Department

Supporting people with special needs	
For technical support	

Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	To have a good comprehension of the Classification, Clustering, and	MK3
	association rule discovery.	
K2	To have a good understanding of various advanced data mining topics.	MK3
	Skills	
S1	To be able to categorize each scenario to DM or Non DM task.	MS3
S2	To be able to use WEKA to solve data mining problems.	MS3
S3	To be able to compute cosine similarity, Euclidian distance between	MS3
	vectors	
S4	To be able to select features based on TF.IDF method	MS3
S5	To be able to compute manually the results of certain data mining	MS3
	algorithms such as decision tree, ANN, KNN, K-Means, and Apriori.	
	Competences	
C1	To be able to use data mining methods to solve real-life problems.	MC1

Mechanisms for direct evaluation of learning outcomes

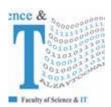
Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm exam	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%
Asynchronous interactive activities	%30	%30	0	0
final exam	%40	%40	%50	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Data Mining Definition. Data	Lectures	1-16
	Mining Categories.		(Ref1)

جامعة الزيتونية الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT


" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

	1		
2	Data Preprocessing. Types of Data. Enhancing Data Quality. Similarity Measurements.	Lectures	22-44 (Ref1)
3	Sampling and Feature Selection. Types of Sampling. Feature Selection Methods. Mean TF.IDF. CHI Square.	Lectures	47-55 (Ref1)
4	Classification Introduction. Decision Support Trees, K-Nearest Neighborhood, Support Vector Machines, Artificial Neural Networks.	Lectures	145-276 (Ref1)
5	Classification Rule Based Classification. Using WEKA to apply classification.	Lectures	145-276 (Ref1)
6	Clustering Introduction. KMeans Algorithm. Hierarchical Clustering. Using WEKA to apply clustering.	Lectures	487-526 (Ref1)
7	Case Study	Learning Through Problem Solving	
8	Mid Exam		
9	Association Rules. Apriori Algorithm. Dimensionality Reduction Methods. Introduction. Latent Semantic Indexing. Information Retreival.	Lectures	327-353 (Ref1)
10	Various Data Mining Topics. Collaborative Filtering. Web Mining. Data ware Housing.	Lectures	Ref2
11	Various Data Mining Topics. Graph Mining. Social Network Analysis. Data Stream Mining.	Lectures	Ref2
12	Introduction to Deep Learning.	Lectures	12-27 (TB)
13	Advanced Deep Learning and Data Mining Topics.	Lectures	(TB)
14	Project Presentations.	Participatory Learning	
15	Project Presentations.	Participatory Learning	
16	Final Exam		

^{*} Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

^{**} Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

جامعة الزيتونسة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Artificial Intelligence Department

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)			
Week	Task / activity	Reference	Expected results
1	Data Mining Types		To be able to categorize real life scenarios according to their type (classification, clustering, anomaly detection, association rule mining, not data mining)
2	Types of Data Recognition		To be able to recognize data type in given scenarios
3	Feature Selection Using Mean TF.IDF		To be able to find Mean TF.IDF for one or more features and select among them
4	Data Preprocessing		To be able to perform some data preprocessing tasks
5	Data Scaling and Normalization		To apply data scaling and normalization on the data
6	Data Transformation		To apply certain data transformations on the data
7	Finding Similarity and Distance Between Items		To find the cosine similarity and Euclidean distance between two vectors
8	Applying KNN Classifier		To use KNN to classify testing records
9	Evaluating KNN		To compute some evaluation measurements for the classifier
10	Applying Decision Tree		To build manually a decision tree given a training data and use it in the classification
11	Applying ANN		To classify testing data using a given ANN classifier
12	Applying Clustering using K-Means		To do the first two iterations in K-Means clustering given a

جامعة الزيتونسة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and IT

" عراقة وجودة" "Tradition and Quality"

	Tradition and Quanty
QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
	Artificial Intelligence Department

		dataset
13	Applying Apriori	To apply Apriori to find frequent itemsets
14	Applying WEKA	To use weka to solve a real life problem
15	Applying Recommender Systems	To use item-item and user-user similarities to give recommendations
16		