

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

Mathematics Department	OF01/0408-4 0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
	Q101/0400-4.0E	Mathematics Department

Study plan No.	2022/2021		University Specialization		Bachelor of Mathematics	
Course No.	0101424		Course name		Abstract Algebra (2)	
Credit Hours	3		Prerequisite/ Co-requisite		Abstract Algebra (1)	
Course type	□ MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMENT	□ Support course family requirements	 ✓ Mandatory requirements 	Elective requirements
Teaching style	□ Full online learning		✓ Blended learning		□ Traditional learning	
Teaching model	□ 1 Synchrono asynchrono	ous: 1 us	✓ 1 face to fa asynchron	ace : 1 Ious	□ 2 Tradition	al

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model
				Lecture	

Brief description

Rings, Subrings, Integral domain, Factor ring and ideals, Ring homomorphisms, Polynomial rings, Factorization of polynomial, Reducibility and irreducibility tests, Divisibility in integral domain, Principal ideal domains and unique factorization domains, Algebra extension of fields.

Learning resources

Course book information	Gallian, J. A. (2010), Contemporary Abstract Algebra, 7th edition, USA,				
(Title, author, date of issue,	Brooks/Cole.				
publisher etc)					
Supportive learning 1) A	bstract Algebra. By: I. N. Herstiein				
(Books databases 2) A	bstract Algebra. By: A. P. Hillman and G. W. Alexanderson				
periodicals, software, 3) A	bstract Algebra. By: A. P. Hillman and G. W. Alexanderson				
applications, others) 4) G	roups, rings and field. By: T. S Blyth and E. F. Robertson				
Supporting websites	• http://en.wikipedia.org/wiki/Abstract Algebra.				
	<u>Abstract Algebra Notes- Free Harvard Courses.</u>				
	<u>Abstract Algebra Notes-You Tube.</u>				
	http://www.ugrad.math.ubc.ca/coursedoc/math100/index.html				
	Online tutorials and quizzes				
The physical environment for	\checkmark Class \Box labs \checkmark Virtual educational \Box Others				
teaching	room platform				
Necessary equipment and	N/A				
software					
Supporting people with					
special needs	1				

جامعة الزيتونة الأردنية

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department							
For tec	For technical support							
Course	Course learning outcomes (S = Skills, C= Competences K= Knowledge,)							
No.			Course learn	ning outcomes		The associated program learning output code		
			Kno	wledge				
K1	Recognize r	ings, ex	amples of rings	s and main rings prop	perties	MK	K2	
K2	Test subring	gs and id	leal			MK	K2	
K3	Describe isc	omorphis	sm and homon	orphism		MK	K3	
K4	Utilize ideal	ls				MK	K2	
K5	Discuss poly	ynomial	rings.			MK	Κ4	
	Skills							
S1	Exercising mathematical logic in practical life. MS1							
S2	Using scient	tific met	hodology as a	way of thinking and	as a tool in	MS	52	
	facing problems.							
	Competences							
C1	Applying mathematics in various abstract algebra sectors.						MC2	
C2	2 Developing scientific methodology for pursuing abstract algebra MC3 graduate studies.						23	
Mechanisms for direct evaluation of learning outcomes								
Type of assessment / learning style		Fu lea	arning	Blended learning	Traditional Learning (Theory Learning	g)	Traditional Learning (Practical Learning)	
Midterm exam			30%	30%	40%		30%	
Participation / practical applications		ons	0	0	10%		30%	
Asynchronous interactive activities		s	30%	20%	0		0	

Schedule of simultaneous / face-to-face encounters and their topics

40%

Week	Subject	learning style	Reference
1	Definition and examples of rings, uniqueness of the unity and inverses.	Lecture	235 - 246
2	Subring test, the center of a ring, intersection and union of subrings.	Lecture	235 - 246
3	Integral domains, fields, the relation between fields and integral domains, the characteristic of integral domains.	Lecture	248 - 257
4	Unit elements idempotent elements nilpotent elements and zero divisors with the ring Z_n .	Lecture	248 - 257
5	Ideals. Showing that any ideal is subring while the converse is not always true. Principal ideals in commutative rings.	Lecture	262 - 266
6	Finitely generated ideals, ideals in the ring z[x]. The factor ring R/I, I is an ideal of R.	learning through problem solving	262 - 266
7	Prime ideals, maximal ideals, proving that any maximal ideal is prime while the converse is not always true.	Lecture	266 - 271

50%

50%

40%

Final exam

جامعة الزيتونـــة الأردنيـة Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedure Mathematics Department					
8	maxima factor ri	Lecture	266 - 271		
9	Ring homomorphism and the properties of the ringLecturehomomorphism. Mid ExamImage: Comparison of the ring				
10	The first theorem	Lecture	282 - 290		
11	If f:R \rightarrow ideal of	S is a ring homomorphism, then kernel of f is an R. A ring with unity contains Z_n or Z.	Lecture	282 - 290	
12	Polynor	nial rings.	learning through projects	291 - 294	
13	The division algorithm of $F[x]$, where F is a field, the remainder theorem. The principal ideal domain.		Lecture	294 - 298	
14	Proving that if F is a field then F[x] is a principal ideal domain.		Lecture	297 - 301	
15	Factorization of polynomials, reducibility and irreducibilityLecttests. Algebra extension of fields.			303 - 312	
16	Final E	xam			

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Assignments 1	Ref.2	Submitting pdf document on the virtual educational
			platform
2	Work sheet 1	Internet sources	Pdf document
3	Assignments 2	Text Book	Submitting pdf document on the virtual educational
			platform
4	Assignments 3	Ref.2	Submitting pdf document on the virtual educational
			platform
5	Assignments 4	Ref.2	Submitting pdf document on the virtual educational
			platform
6	Assignments 5	Lecture note	Submitting pdf document on the virtual educational
			platform
7	Video 1	E-learning	Discussion in the class
8	Work sheet 2	Internet sources	Virtual educational platform Document
9	Assignments 6	Lecture note	Submitting pdf document on the virtual educational
			platform
10	Assignments 7	Text Book	Submitting pdf document on the virtual educational
			platform
11	Assignments 8	Text Book	Submitting pdf document on the virtual educational
			platform
12	Quiz 1	E-learning	Submitting pdf on the virtual educational platform
13	Assignments 9	Lecture note	Submit a pdf or word sheet
14	Video 2	E-learning	Discussion in the class
15	Assignments 9	Lecture note	Submitting pdf document on the virtual educational
			platform
16	Final Exam		