

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Computer Science Department	g Procedures/
--	---------------

Study plan No.	2021/2022	University Specialization	Computer Science	
Course No.	0112 131	Course name	Digital Logic Design	
Credit Hours	3 hours	Prerequisite Co-requisite	Discrete Mathematics	
Course type	□MANDATORY UNIVERSITY REQUIREMEN T□UNIVERSITY ELECTIVE REQUIREMEN TS	FACULTY MANDATORY REQUIREME NTSupport course family requirements	□ Mandator □ Elective y requirem requireme ents nts	
Teaching style	□ Full online learning	☑ Blended learning	Traditional learning	
Teaching model	□ 2 Synchronous: 1asynchronous	☑ 2 face to face : 1synchronous	3 Traditional	

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Dr. Maher Nabelsi	Associate professor	9332	-	nabulsi@zuj.edu.jo	
Division number	Time	Place	e Number of students		Approved model
				Blended	2:1

Brief description

Digital logic design is concerned with computer organization, architecture, operating systems, networks, and many other materials. This course introduces the following topics: **Digital systems**, **Number systems and conversions**, **Unsigned and signed binary numbers**, **Binary codes**, **Boolean Algebra and logic gates**, **The map method**, **Combinational circuits**, **MSI circuits**, **Sequential circuits**, **Registers and counters**.

Learning resources					
Course book information	Morris.M.Mano," Digital Logic and Computer Design ", 1 st ed., Pearson, 2016.				
(Title, author, date of issue, publisher etc)					
Supportive learning resources	1. Morris.M.Mano, 1	Michael Ciletti," Dig	gital design'', 5th ed.,	Prentice-hall, 2013.	
(Books, databases, periodicals, software, applications, others)	2. David Harris and Sarah Harris, " Digital design and computer architecture ", 2nd ed, Morgan Kaufmann, 2012.				
applications, others)		3. David L. Prowse, "Computer Structure and Logic ",Pearson Education,			
	2011.	•	U /	,	
	4. Charles , Larry Kinny, "Fundamentals of Logic Design ",6th ed. Thomson,				
	2009.				
Supporting websites	https://elearning.zuj.ed	lu.jo			
The physical environment for	✓ Class room	□ labs	□ Virtual	□ Others	
teaching			educational		
	platform				
Necessary equipment and software					
Supporting people with					

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Cour	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Computer Science Department		
special needs				
For technical support				

Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	Providing the students with the required knowledge about the basic	MK3
17.5	hardware components and digital systems of computer.	MIZO
K2	Providing knowledge of binary codes and the unsigned and signed binary numbers.	MK3
K3	Developing the students' knowledge about Boolean algebra, logic gates, and the map method.	МКЗ
K4	Providing the students with the required knowledge about the combinational and sequential circuits.	МКЗ
	Skills	
S1	The student should understand the number systems and conversions.	MS5
S2	Represent the unsigned and signed numbers in binary system. Construct different binary codes.	MS5
S 3	Apply Boolean algebra to describe digital circuits.Use the map method for simplification Boolean functions.Understand NAND & NOR implementations.Use don't care conditions in the map method.	MS5
S4	Define the combinational and sequential circuits. Design the combinational circuits (adder, subtractor,). Design MSI circuits (decoder, encoder, MUX,).	MS5
~ 4	Competences	
C1	The ability to understand the number systems and conversions.	MC2
C2	The ability to construct different binary codes.	MC2
C3	The ability to construct simple digital circuits.	MC2
C4	The ability to differentiate between combinational and sequential circuits.	MC2

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	-	0
Second / midterm exam	%30	%30	%30	30%
Participation / practical applications	0	0	%20	30%
Asynchronous interactive activities	%30	%20	0	0
final exam	%40	%50	%50	40%

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, and work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/
QF01/0400-4.0E	Computer Science Department

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Digital systems.	Lectures	1-14
	Number systems.	2000000	
	Conversions between systems.		
2	Complements.	Lectures	
_	Unsigned numbers.	Lectures	
	Signed numbers.		
3	Signed numbers.	Lectures	
5	Binary codes.	Lectures	14- 31
	·		14- 51
	Codes for decimal digits		
4	Parity code and error detection.	T t	
4	ASCII code.	Lectures	
	ASCII code.		
	Boolean Algebra and logic gates.		21.65
			31-65
=	Theorems and properties.	T	
5	Boolean functions.	Lectures	
	Boolean functions.		
	Canonical and Standard forms, non-		
	standard form.		
(Logic operations and gates.	T	
6	Duffer incorter AND OD	Lectures	
	Buffer, inverter , AND, OR .		
	NAND, NOR , E – OR , E -NOR .		
_	NAND, NOK, E - OK, E -NOK.	-	
7		Lectures	c7 102
	The map method.		65-103
	Two, three and four- variable functions.		
	Product of sums simplification.		
	Midterm exam.		
8	NAND & NOR implementations.	Lectures	
	Don't care conditions.		
	Combinational circuits.		103-137
9	Design procedure. Half adder, full adder.	Lectures	
	Half sub-tractor, full sub-tractor.		
	Analysis procedure.		
10	Code conversion.	Lectures	
	Parity generator and parity checker.		
	MSI circuits.		137-179
11	Parallel adder- subtractor circuit.	Lectures	
	Decoder, encoder.		
	MUX, De-MUX.		
12	Sequential circuits.	Lectures	179-229

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

QF01	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures Computer Science Department					
	Analysis of clocked sequential circuits.					
13	Flip-flo	ps: SR, D	Lectures			
	JK, and	ĪT				
	Excitation tables.					
14	Registers and counters.		Lectures	229 - 247		
	Design of registers.					
	Design of counters.					
15	General problems and applications.		Lectures			
	Review	of previous chapters.				
16	Final Exam					

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1	Conversions between number systems.	https://elearning.zuj.edu.jo	Understanding
2	Represent unsigned and signed numbers in binary system.	https://elearning.zuj.edu.jo	Understanding
3	Addition and subtraction for unsigned and signed binary numbers.	https://elearning.zuj.edu.jo	Understanding
4	Construct binary codes.	https://elearning.zuj.edu.jo	Understanding and developing
5	Simplification of Boolean functions using logical identities.	https://elearning.zuj.edu.jo	Understanding and developing
6	Implementation of Boolean functions with logic gates.	https://elearning.zuj.edu.jo	Understanding
7	Simplification of Boolean functions using the map method.	https://elearning.zuj.edu.jo	Understanding and developing
8	Implement Boolean functions with NAND and NOR gates.	https://elearning.zuj.edu.jo	Understanding
9	Using don't care conditions on the map.	https://elearning.zuj.edu.jo	Understanding
10	Design procedure of combinational circuits.	https://elearning.zuj.edu.jo	Understanding
11	Design procedure of SSI circuits.	https://elearning.zuj.edu.jo	Understanding and developing
12	Design procedure of MSI circuits.	https://elearning.zuj.edu.jo	Understanding and developing
13	Design procedure of registers.	https://elearning.zuj.edu.jo	Understanding
14	Design procedure of counters.	https://elearning.zuj.edu.jo	Understanding
15			
16			